xref: /netbsd-src/sys/dev/usb/if_rum.c (revision 6cd39ddb8550f6fa1bff3fed32053d7f19fd0453)
1 /*	$OpenBSD: if_rum.c,v 1.40 2006/09/18 16:20:20 damien Exp $	*/
2 /*	$NetBSD: if_rum.c,v 1.51 2015/08/30 13:09:48 ryoon Exp $	*/
3 
4 /*-
5  * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini@free.fr>
6  * Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*-
22  * Ralink Technology RT2501USB/RT2601USB chipset driver
23  * http://www.ralinktech.com.tw/
24  */
25 
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: if_rum.c,v 1.51 2015/08/30 13:09:48 ryoon Exp $");
28 
29 #include <sys/param.h>
30 #include <sys/sockio.h>
31 #include <sys/sysctl.h>
32 #include <sys/mbuf.h>
33 #include <sys/kernel.h>
34 #include <sys/socket.h>
35 #include <sys/systm.h>
36 #include <sys/malloc.h>
37 #include <sys/module.h>
38 #include <sys/conf.h>
39 #include <sys/device.h>
40 
41 #include <sys/bus.h>
42 #include <machine/endian.h>
43 #include <sys/intr.h>
44 
45 #include <net/bpf.h>
46 #include <net/if.h>
47 #include <net/if_arp.h>
48 #include <net/if_dl.h>
49 #include <net/if_ether.h>
50 #include <net/if_media.h>
51 #include <net/if_types.h>
52 
53 #include <netinet/in.h>
54 #include <netinet/in_systm.h>
55 #include <netinet/in_var.h>
56 #include <netinet/ip.h>
57 
58 #include <net80211/ieee80211_netbsd.h>
59 #include <net80211/ieee80211_var.h>
60 #include <net80211/ieee80211_amrr.h>
61 #include <net80211/ieee80211_radiotap.h>
62 
63 #include <dev/firmload.h>
64 
65 #include <dev/usb/usb.h>
66 #include <dev/usb/usbdi.h>
67 #include <dev/usb/usbdi_util.h>
68 #include <dev/usb/usbdevs.h>
69 
70 #include <dev/usb/if_rumreg.h>
71 #include <dev/usb/if_rumvar.h>
72 
73 #ifdef RUM_DEBUG
74 #define DPRINTF(x)	do { if (rum_debug) printf x; } while (0)
75 #define DPRINTFN(n, x)	do { if (rum_debug >= (n)) printf x; } while (0)
76 int rum_debug = 1;
77 #else
78 #define DPRINTF(x)
79 #define DPRINTFN(n, x)
80 #endif
81 
82 /* various supported device vendors/products */
83 static const struct usb_devno rum_devs[] = {
84 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_HWU54DM },
85 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573_2 },
86 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573_3 },
87 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573_4 },
88 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_WUG2700 },
89 	{ USB_VENDOR_AMIT,		USB_PRODUCT_AMIT_CGWLUSB2GO },
90 	{ USB_VENDOR_ASUSTEK,		USB_PRODUCT_ASUSTEK_WL167G_2 },
91 	{ USB_VENDOR_ASUSTEK,		USB_PRODUCT_ASUSTEK_WL167G_3 },
92 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D7050A },
93 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D9050V3 },
94 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D9050C },
95 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB200 },
96 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GC },
97 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GR },
98 	{ USB_VENDOR_CONCEPTRONIC,	USB_PRODUCT_CONCEPTRONIC_C54RU2 },
99 	{ USB_VENDOR_CONCEPTRONIC,	USB_PRODUCT_CONCEPTRONIC_RT2573 },
100 	{ USB_VENDOR_COREGA,		USB_PRODUCT_COREGA_CGWLUSB2GL },
101 	{ USB_VENDOR_COREGA,		USB_PRODUCT_COREGA_CGWLUSB2GPX },
102 	{ USB_VENDOR_DICKSMITH,		USB_PRODUCT_DICKSMITH_CWD854F },
103 	{ USB_VENDOR_DICKSMITH,		USB_PRODUCT_DICKSMITH_RT2573 },
104 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWLG122C1 },
105 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_WUA1340 },
106 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWA110 },
107 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWA111 },
108 	{ USB_VENDOR_EDIMAX,		USB_PRODUCT_EDIMAX_EW7318 },
109 	{ USB_VENDOR_EDIMAX,		USB_PRODUCT_EDIMAX_EW7618 },
110 	{ USB_VENDOR_GIGABYTE,		USB_PRODUCT_GIGABYTE_GNWB01GS },
111 	{ USB_VENDOR_GIGABYTE,		USB_PRODUCT_GIGABYTE_GNWI05GS },
112 	{ USB_VENDOR_GIGASET,		USB_PRODUCT_GIGASET_RT2573 },
113 	{ USB_VENDOR_GOODWAY,		USB_PRODUCT_GOODWAY_RT2573 },
114 	{ USB_VENDOR_GUILLEMOT,		USB_PRODUCT_GUILLEMOT_HWGUSB254LB },
115 	{ USB_VENDOR_GUILLEMOT,		USB_PRODUCT_GUILLEMOT_HWGUSB254V2AP },
116 	{ USB_VENDOR_HUAWEI3COM,	USB_PRODUCT_HUAWEI3COM_RT2573 },
117 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_G54HP },
118 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_SG54HP },
119 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_SG54HG },
120 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_WLIUCG },
121 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573 },
122 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_2 },
123 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_3 },
124 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_4 },
125 	{ USB_VENDOR_NOVATECH,		USB_PRODUCT_NOVATECH_RT2573 },
126 	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUS54HP },
127 	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUS54MINI2 },
128 	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUSMM },
129 	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573 },
130 	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573_2 },
131 	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573_3 },
132 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2573 },
133 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2671 },
134 	{ USB_VENDOR_SITECOMEU,		USB_PRODUCT_SITECOMEU_WL113R2 },
135 	{ USB_VENDOR_SITECOMEU,		USB_PRODUCT_SITECOMEU_WL172 },
136 	{ USB_VENDOR_SPARKLAN,		USB_PRODUCT_SPARKLAN_RT2573 },
137 	{ USB_VENDOR_SURECOM,		USB_PRODUCT_SURECOM_RT2573 },
138 	{ USB_VENDOR_ZYXEL,		USB_PRODUCT_ZYXEL_RT2573 }
139 };
140 
141 static int		rum_attachhook(void *);
142 static int		rum_alloc_tx_list(struct rum_softc *);
143 static void		rum_free_tx_list(struct rum_softc *);
144 static int		rum_alloc_rx_list(struct rum_softc *);
145 static void		rum_free_rx_list(struct rum_softc *);
146 static int		rum_media_change(struct ifnet *);
147 static void		rum_next_scan(void *);
148 static void		rum_task(void *);
149 static int		rum_newstate(struct ieee80211com *,
150 			    enum ieee80211_state, int);
151 static void		rum_txeof(usbd_xfer_handle, usbd_private_handle,
152 			    usbd_status);
153 static void		rum_rxeof(usbd_xfer_handle, usbd_private_handle,
154 			    usbd_status);
155 static uint8_t		rum_rxrate(const struct rum_rx_desc *);
156 static int		rum_ack_rate(struct ieee80211com *, int);
157 static uint16_t		rum_txtime(int, int, uint32_t);
158 static uint8_t		rum_plcp_signal(int);
159 static void		rum_setup_tx_desc(struct rum_softc *,
160 			    struct rum_tx_desc *, uint32_t, uint16_t, int,
161 			    int);
162 static int		rum_tx_data(struct rum_softc *, struct mbuf *,
163 			    struct ieee80211_node *);
164 static void		rum_start(struct ifnet *);
165 static void		rum_watchdog(struct ifnet *);
166 static int		rum_ioctl(struct ifnet *, u_long, void *);
167 static void		rum_eeprom_read(struct rum_softc *, uint16_t, void *,
168 			    int);
169 static uint32_t		rum_read(struct rum_softc *, uint16_t);
170 static void		rum_read_multi(struct rum_softc *, uint16_t, void *,
171 			    int);
172 static void		rum_write(struct rum_softc *, uint16_t, uint32_t);
173 static void		rum_write_multi(struct rum_softc *, uint16_t, void *,
174 			    size_t);
175 static void		rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
176 static uint8_t		rum_bbp_read(struct rum_softc *, uint8_t);
177 static void		rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
178 static void		rum_select_antenna(struct rum_softc *);
179 static void		rum_enable_mrr(struct rum_softc *);
180 static void		rum_set_txpreamble(struct rum_softc *);
181 static void		rum_set_basicrates(struct rum_softc *);
182 static void		rum_select_band(struct rum_softc *,
183 			    struct ieee80211_channel *);
184 static void		rum_set_chan(struct rum_softc *,
185 			    struct ieee80211_channel *);
186 static void		rum_enable_tsf_sync(struct rum_softc *);
187 static void		rum_update_slot(struct rum_softc *);
188 static void		rum_set_bssid(struct rum_softc *, const uint8_t *);
189 static void		rum_set_macaddr(struct rum_softc *, const uint8_t *);
190 static void		rum_update_promisc(struct rum_softc *);
191 static const char	*rum_get_rf(int);
192 static void		rum_read_eeprom(struct rum_softc *);
193 static int		rum_bbp_init(struct rum_softc *);
194 static int		rum_init(struct ifnet *);
195 static void		rum_stop(struct ifnet *, int);
196 static int		rum_load_microcode(struct rum_softc *, const u_char *,
197 			    size_t);
198 static int		rum_prepare_beacon(struct rum_softc *);
199 static void		rum_newassoc(struct ieee80211_node *, int);
200 static void		rum_amrr_start(struct rum_softc *,
201 			    struct ieee80211_node *);
202 static void		rum_amrr_timeout(void *);
203 static void		rum_amrr_update(usbd_xfer_handle, usbd_private_handle,
204 			    usbd_status status);
205 
206 /*
207  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
208  */
209 static const struct ieee80211_rateset rum_rateset_11a =
210 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
211 
212 static const struct ieee80211_rateset rum_rateset_11b =
213 	{ 4, { 2, 4, 11, 22 } };
214 
215 static const struct ieee80211_rateset rum_rateset_11g =
216 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
217 
218 static const struct {
219 	uint32_t	reg;
220 	uint32_t	val;
221 } rum_def_mac[] = {
222 	RT2573_DEF_MAC
223 };
224 
225 static const struct {
226 	uint8_t	reg;
227 	uint8_t	val;
228 } rum_def_bbp[] = {
229 	RT2573_DEF_BBP
230 };
231 
232 static const struct rfprog {
233 	uint8_t		chan;
234 	uint32_t	r1, r2, r3, r4;
235 }  rum_rf5226[] = {
236 	RT2573_RF5226
237 }, rum_rf5225[] = {
238 	RT2573_RF5225
239 };
240 
241 static int rum_match(device_t, cfdata_t, void *);
242 static void rum_attach(device_t, device_t, void *);
243 static int rum_detach(device_t, int);
244 static int rum_activate(device_t, enum devact);
245 extern struct cfdriver rum_cd;
246 CFATTACH_DECL_NEW(rum, sizeof(struct rum_softc), rum_match, rum_attach,
247     rum_detach, rum_activate);
248 
249 static int
250 rum_match(device_t parent, cfdata_t match, void *aux)
251 {
252 	struct usb_attach_arg *uaa = aux;
253 
254 	return (usb_lookup(rum_devs, uaa->vendor, uaa->product) != NULL) ?
255 	    UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
256 }
257 
258 static int
259 rum_attachhook(void *xsc)
260 {
261 	struct rum_softc *sc = xsc;
262 	firmware_handle_t fwh;
263 	const char *name = "rum-rt2573";
264 	u_char *ucode;
265 	size_t size;
266 	int error;
267 
268 	if ((error = firmware_open("rum", name, &fwh)) != 0) {
269 		printf("%s: failed firmware_open of file %s (error %d)\n",
270 		    device_xname(sc->sc_dev), name, error);
271 		return error;
272 	}
273 	size = firmware_get_size(fwh);
274 	ucode = firmware_malloc(size);
275 	if (ucode == NULL) {
276 		printf("%s: failed to allocate firmware memory\n",
277 		    device_xname(sc->sc_dev));
278 		firmware_close(fwh);
279 		return ENOMEM;
280 	}
281 	error = firmware_read(fwh, 0, ucode, size);
282 	firmware_close(fwh);
283 	if (error != 0) {
284 		printf("%s: failed to read firmware (error %d)\n",
285 		    device_xname(sc->sc_dev), error);
286 		firmware_free(ucode, size);
287 		return error;
288 	}
289 
290 	if (rum_load_microcode(sc, ucode, size) != 0) {
291 		printf("%s: could not load 8051 microcode\n",
292 		    device_xname(sc->sc_dev));
293 		firmware_free(ucode, size);
294 		return ENXIO;
295 	}
296 
297 	firmware_free(ucode, size);
298 	sc->sc_flags |= RT2573_FWLOADED;
299 
300 	return 0;
301 }
302 
303 static void
304 rum_attach(device_t parent, device_t self, void *aux)
305 {
306 	struct rum_softc *sc = device_private(self);
307 	struct usb_attach_arg *uaa = aux;
308 	struct ieee80211com *ic = &sc->sc_ic;
309 	struct ifnet *ifp = &sc->sc_if;
310 	usb_interface_descriptor_t *id;
311 	usb_endpoint_descriptor_t *ed;
312 	usbd_status error;
313 	char *devinfop;
314 	int i, ntries;
315 	uint32_t tmp;
316 
317 	sc->sc_dev = self;
318 	sc->sc_udev = uaa->device;
319 	sc->sc_flags = 0;
320 
321 	aprint_naive("\n");
322 	aprint_normal("\n");
323 
324 	devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
325 	aprint_normal_dev(self, "%s\n", devinfop);
326 	usbd_devinfo_free(devinfop);
327 
328 	error = usbd_set_config_no(sc->sc_udev, RT2573_CONFIG_NO, 0);
329 	if (error != 0) {
330 		aprint_error_dev(self, "failed to set configuration"
331 		    ", err=%s\n", usbd_errstr(error));
332 		return;
333 	}
334 
335 	/* get the first interface handle */
336 	error = usbd_device2interface_handle(sc->sc_udev, RT2573_IFACE_INDEX,
337 	    &sc->sc_iface);
338 	if (error != 0) {
339 		aprint_error_dev(self, "could not get interface handle\n");
340 		return;
341 	}
342 
343 	/*
344 	 * Find endpoints.
345 	 */
346 	id = usbd_get_interface_descriptor(sc->sc_iface);
347 
348 	sc->sc_rx_no = sc->sc_tx_no = -1;
349 	for (i = 0; i < id->bNumEndpoints; i++) {
350 		ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
351 		if (ed == NULL) {
352 			aprint_error_dev(self,
353 			    "no endpoint descriptor for iface %d\n", i);
354 			return;
355 		}
356 
357 		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
358 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
359 			sc->sc_rx_no = ed->bEndpointAddress;
360 		else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
361 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
362 			sc->sc_tx_no = ed->bEndpointAddress;
363 	}
364 	if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
365 		aprint_error_dev(self, "missing endpoint\n");
366 		return;
367 	}
368 
369 	usb_init_task(&sc->sc_task, rum_task, sc, 0);
370 	callout_init(&sc->sc_scan_ch, 0);
371 
372 	sc->amrr.amrr_min_success_threshold =  1;
373 	sc->amrr.amrr_max_success_threshold = 10;
374 	callout_init(&sc->sc_amrr_ch, 0);
375 
376 	/* retrieve RT2573 rev. no */
377 	for (ntries = 0; ntries < 1000; ntries++) {
378 		if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
379 			break;
380 		DELAY(1000);
381 	}
382 	if (ntries == 1000) {
383 		aprint_error_dev(self, "timeout waiting for chip to settle\n");
384 		return;
385 	}
386 
387 	/* retrieve MAC address and various other things from EEPROM */
388 	rum_read_eeprom(sc);
389 
390 	aprint_normal_dev(self,
391 	    "MAC/BBP RT%04x (rev 0x%05x), RF %s, address %s\n",
392 	    sc->macbbp_rev, tmp,
393 	    rum_get_rf(sc->rf_rev), ether_sprintf(ic->ic_myaddr));
394 
395 	ic->ic_ifp = ifp;
396 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
397 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
398 	ic->ic_state = IEEE80211_S_INIT;
399 
400 	/* set device capabilities */
401 	ic->ic_caps =
402 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
403 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
404 	    IEEE80211_C_HOSTAP |	/* HostAp mode supported */
405 	    IEEE80211_C_TXPMGT |	/* tx power management */
406 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
407 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
408 	    IEEE80211_C_WPA;		/* 802.11i */
409 
410 	if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) {
411 		/* set supported .11a rates */
412 		ic->ic_sup_rates[IEEE80211_MODE_11A] = rum_rateset_11a;
413 
414 		/* set supported .11a channels */
415 		for (i = 34; i <= 46; i += 4) {
416 			ic->ic_channels[i].ic_freq =
417 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
418 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
419 		}
420 		for (i = 36; i <= 64; i += 4) {
421 			ic->ic_channels[i].ic_freq =
422 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
423 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
424 		}
425 		for (i = 100; i <= 140; i += 4) {
426 			ic->ic_channels[i].ic_freq =
427 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
428 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
429 		}
430 		for (i = 149; i <= 165; i += 4) {
431 			ic->ic_channels[i].ic_freq =
432 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
433 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
434 		}
435 	}
436 
437 	/* set supported .11b and .11g rates */
438 	ic->ic_sup_rates[IEEE80211_MODE_11B] = rum_rateset_11b;
439 	ic->ic_sup_rates[IEEE80211_MODE_11G] = rum_rateset_11g;
440 
441 	/* set supported .11b and .11g channels (1 through 14) */
442 	for (i = 1; i <= 14; i++) {
443 		ic->ic_channels[i].ic_freq =
444 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
445 		ic->ic_channels[i].ic_flags =
446 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
447 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
448 	}
449 
450 	ifp->if_softc = sc;
451 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
452 	ifp->if_init = rum_init;
453 	ifp->if_ioctl = rum_ioctl;
454 	ifp->if_start = rum_start;
455 	ifp->if_watchdog = rum_watchdog;
456 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
457 	IFQ_SET_READY(&ifp->if_snd);
458 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
459 
460 	if_attach(ifp);
461 	ieee80211_ifattach(ic);
462 	ic->ic_newassoc = rum_newassoc;
463 
464 	/* override state transition machine */
465 	sc->sc_newstate = ic->ic_newstate;
466 	ic->ic_newstate = rum_newstate;
467 	ieee80211_media_init(ic, rum_media_change, ieee80211_media_status);
468 
469 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
470 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
471 	    &sc->sc_drvbpf);
472 
473 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
474 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
475 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT);
476 
477 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
478 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
479 	sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT);
480 
481 	ieee80211_announce(ic);
482 
483 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev,
484 	    sc->sc_dev);
485 
486 	if (!pmf_device_register(self, NULL, NULL))
487 		aprint_error_dev(self, "couldn't establish power handler\n");
488 
489 	return;
490 }
491 
492 static int
493 rum_detach(device_t self, int flags)
494 {
495 	struct rum_softc *sc = device_private(self);
496 	struct ieee80211com *ic = &sc->sc_ic;
497 	struct ifnet *ifp = &sc->sc_if;
498 	int s;
499 
500 	if (!ifp->if_softc)
501 		return 0;
502 
503 	pmf_device_deregister(self);
504 
505 	s = splusb();
506 
507 	rum_stop(ifp, 1);
508 	usb_rem_task(sc->sc_udev, &sc->sc_task);
509 	callout_stop(&sc->sc_scan_ch);
510 	callout_stop(&sc->sc_amrr_ch);
511 
512 	if (sc->amrr_xfer != NULL) {
513 		usbd_free_xfer(sc->amrr_xfer);
514 		sc->amrr_xfer = NULL;
515 	}
516 
517 	if (sc->sc_rx_pipeh != NULL) {
518 		usbd_abort_pipe(sc->sc_rx_pipeh);
519 		usbd_close_pipe(sc->sc_rx_pipeh);
520 	}
521 
522 	if (sc->sc_tx_pipeh != NULL) {
523 		usbd_abort_pipe(sc->sc_tx_pipeh);
524 		usbd_close_pipe(sc->sc_tx_pipeh);
525 	}
526 
527 	bpf_detach(ifp);
528 	ieee80211_ifdetach(ic);	/* free all nodes */
529 	if_detach(ifp);
530 
531 	splx(s);
532 
533 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
534 
535 	return 0;
536 }
537 
538 static int
539 rum_alloc_tx_list(struct rum_softc *sc)
540 {
541 	struct rum_tx_data *data;
542 	int i, error;
543 
544 	sc->tx_cur = sc->tx_queued = 0;
545 
546 	for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
547 		data = &sc->tx_data[i];
548 
549 		data->sc = sc;
550 
551 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
552 		if (data->xfer == NULL) {
553 			printf("%s: could not allocate tx xfer\n",
554 			    device_xname(sc->sc_dev));
555 			error = ENOMEM;
556 			goto fail;
557 		}
558 
559 		data->buf = usbd_alloc_buffer(data->xfer,
560 		    RT2573_TX_DESC_SIZE + IEEE80211_MAX_LEN);
561 		if (data->buf == NULL) {
562 			printf("%s: could not allocate tx buffer\n",
563 			    device_xname(sc->sc_dev));
564 			error = ENOMEM;
565 			goto fail;
566 		}
567 
568 		/* clean Tx descriptor */
569 		memset(data->buf, 0, RT2573_TX_DESC_SIZE);
570 	}
571 
572 	return 0;
573 
574 fail:	rum_free_tx_list(sc);
575 	return error;
576 }
577 
578 static void
579 rum_free_tx_list(struct rum_softc *sc)
580 {
581 	struct rum_tx_data *data;
582 	int i;
583 
584 	for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
585 		data = &sc->tx_data[i];
586 
587 		if (data->xfer != NULL) {
588 			usbd_free_xfer(data->xfer);
589 			data->xfer = NULL;
590 		}
591 
592 		if (data->ni != NULL) {
593 			ieee80211_free_node(data->ni);
594 			data->ni = NULL;
595 		}
596 	}
597 }
598 
599 static int
600 rum_alloc_rx_list(struct rum_softc *sc)
601 {
602 	struct rum_rx_data *data;
603 	int i, error;
604 
605 	for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
606 		data = &sc->rx_data[i];
607 
608 		data->sc = sc;
609 
610 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
611 		if (data->xfer == NULL) {
612 			printf("%s: could not allocate rx xfer\n",
613 			    device_xname(sc->sc_dev));
614 			error = ENOMEM;
615 			goto fail;
616 		}
617 
618 		if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) {
619 			printf("%s: could not allocate rx buffer\n",
620 			    device_xname(sc->sc_dev));
621 			error = ENOMEM;
622 			goto fail;
623 		}
624 
625 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
626 		if (data->m == NULL) {
627 			printf("%s: could not allocate rx mbuf\n",
628 			    device_xname(sc->sc_dev));
629 			error = ENOMEM;
630 			goto fail;
631 		}
632 
633 		MCLGET(data->m, M_DONTWAIT);
634 		if (!(data->m->m_flags & M_EXT)) {
635 			printf("%s: could not allocate rx mbuf cluster\n",
636 			    device_xname(sc->sc_dev));
637 			error = ENOMEM;
638 			goto fail;
639 		}
640 
641 		data->buf = mtod(data->m, uint8_t *);
642 	}
643 
644 	return 0;
645 
646 fail:	rum_free_rx_list(sc);
647 	return error;
648 }
649 
650 static void
651 rum_free_rx_list(struct rum_softc *sc)
652 {
653 	struct rum_rx_data *data;
654 	int i;
655 
656 	for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
657 		data = &sc->rx_data[i];
658 
659 		if (data->xfer != NULL) {
660 			usbd_free_xfer(data->xfer);
661 			data->xfer = NULL;
662 		}
663 
664 		if (data->m != NULL) {
665 			m_freem(data->m);
666 			data->m = NULL;
667 		}
668 	}
669 }
670 
671 static int
672 rum_media_change(struct ifnet *ifp)
673 {
674 	int error;
675 
676 	error = ieee80211_media_change(ifp);
677 	if (error != ENETRESET)
678 		return error;
679 
680 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
681 		rum_init(ifp);
682 
683 	return 0;
684 }
685 
686 /*
687  * This function is called periodically (every 200ms) during scanning to
688  * switch from one channel to another.
689  */
690 static void
691 rum_next_scan(void *arg)
692 {
693 	struct rum_softc *sc = arg;
694 	struct ieee80211com *ic = &sc->sc_ic;
695 	int s;
696 
697 	s = splnet();
698 	if (ic->ic_state == IEEE80211_S_SCAN)
699 		ieee80211_next_scan(ic);
700 	splx(s);
701 }
702 
703 static void
704 rum_task(void *arg)
705 {
706 	struct rum_softc *sc = arg;
707 	struct ieee80211com *ic = &sc->sc_ic;
708 	enum ieee80211_state ostate;
709 	struct ieee80211_node *ni;
710 	uint32_t tmp;
711 
712 	ostate = ic->ic_state;
713 
714 	switch (sc->sc_state) {
715 	case IEEE80211_S_INIT:
716 		if (ostate == IEEE80211_S_RUN) {
717 			/* abort TSF synchronization */
718 			tmp = rum_read(sc, RT2573_TXRX_CSR9);
719 			rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
720 		}
721 		break;
722 
723 	case IEEE80211_S_SCAN:
724 		rum_set_chan(sc, ic->ic_curchan);
725 		callout_reset(&sc->sc_scan_ch, hz / 5, rum_next_scan, sc);
726 		break;
727 
728 	case IEEE80211_S_AUTH:
729 		rum_set_chan(sc, ic->ic_curchan);
730 		break;
731 
732 	case IEEE80211_S_ASSOC:
733 		rum_set_chan(sc, ic->ic_curchan);
734 		break;
735 
736 	case IEEE80211_S_RUN:
737 		rum_set_chan(sc, ic->ic_curchan);
738 
739 		ni = ic->ic_bss;
740 
741 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
742 			rum_update_slot(sc);
743 			rum_enable_mrr(sc);
744 			rum_set_txpreamble(sc);
745 			rum_set_basicrates(sc);
746 			rum_set_bssid(sc, ni->ni_bssid);
747 		}
748 
749 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
750 		    ic->ic_opmode == IEEE80211_M_IBSS)
751 			rum_prepare_beacon(sc);
752 
753 		if (ic->ic_opmode != IEEE80211_M_MONITOR)
754 			rum_enable_tsf_sync(sc);
755 
756 		if (ic->ic_opmode == IEEE80211_M_STA) {
757 			/* fake a join to init the tx rate */
758 			rum_newassoc(ic->ic_bss, 1);
759 
760 			/* enable automatic rate adaptation in STA mode */
761 			if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
762 				rum_amrr_start(sc, ni);
763 		}
764 
765 		break;
766 	}
767 
768 	sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
769 }
770 
771 static int
772 rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
773 {
774 	struct rum_softc *sc = ic->ic_ifp->if_softc;
775 
776 	usb_rem_task(sc->sc_udev, &sc->sc_task);
777 	callout_stop(&sc->sc_scan_ch);
778 	callout_stop(&sc->sc_amrr_ch);
779 
780 	/* do it in a process context */
781 	sc->sc_state = nstate;
782 	sc->sc_arg = arg;
783 	usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
784 
785 	return 0;
786 }
787 
788 /* quickly determine if a given rate is CCK or OFDM */
789 #define RUM_RATE_IS_OFDM(rate)	((rate) >= 12 && (rate) != 22)
790 
791 #define RUM_ACK_SIZE	14	/* 10 + 4(FCS) */
792 #define RUM_CTS_SIZE	14	/* 10 + 4(FCS) */
793 
794 static void
795 rum_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
796 {
797 	struct rum_tx_data *data = priv;
798 	struct rum_softc *sc = data->sc;
799 	struct ifnet *ifp = &sc->sc_if;
800 	int s;
801 
802 	if (status != USBD_NORMAL_COMPLETION) {
803 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
804 			return;
805 
806 		printf("%s: could not transmit buffer: %s\n",
807 		    device_xname(sc->sc_dev), usbd_errstr(status));
808 
809 		if (status == USBD_STALLED)
810 			usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
811 
812 		ifp->if_oerrors++;
813 		return;
814 	}
815 
816 	s = splnet();
817 
818 	ieee80211_free_node(data->ni);
819 	data->ni = NULL;
820 
821 	sc->tx_queued--;
822 	ifp->if_opackets++;
823 
824 	DPRINTFN(10, ("tx done\n"));
825 
826 	sc->sc_tx_timer = 0;
827 	ifp->if_flags &= ~IFF_OACTIVE;
828 	rum_start(ifp);
829 
830 	splx(s);
831 }
832 
833 static void
834 rum_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
835 {
836 	struct rum_rx_data *data = priv;
837 	struct rum_softc *sc = data->sc;
838 	struct ieee80211com *ic = &sc->sc_ic;
839 	struct ifnet *ifp = &sc->sc_if;
840 	struct rum_rx_desc *desc;
841 	struct ieee80211_frame *wh;
842 	struct ieee80211_node *ni;
843 	struct mbuf *mnew, *m;
844 	int s, len;
845 
846 	if (status != USBD_NORMAL_COMPLETION) {
847 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
848 			return;
849 
850 		if (status == USBD_STALLED)
851 			usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
852 		goto skip;
853 	}
854 
855 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
856 
857 	if (len < (int)(RT2573_RX_DESC_SIZE +
858 		        sizeof(struct ieee80211_frame_min))) {
859 		DPRINTF(("%s: xfer too short %d\n", device_xname(sc->sc_dev),
860 		    len));
861 		ifp->if_ierrors++;
862 		goto skip;
863 	}
864 
865 	desc = (struct rum_rx_desc *)data->buf;
866 
867 	if (le32toh(desc->flags) & RT2573_RX_CRC_ERROR) {
868 		/*
869 		 * This should not happen since we did not request to receive
870 		 * those frames when we filled RT2573_TXRX_CSR0.
871 		 */
872 		DPRINTFN(5, ("CRC error\n"));
873 		ifp->if_ierrors++;
874 		goto skip;
875 	}
876 
877 	MGETHDR(mnew, M_DONTWAIT, MT_DATA);
878 	if (mnew == NULL) {
879 		printf("%s: could not allocate rx mbuf\n",
880 		    device_xname(sc->sc_dev));
881 		ifp->if_ierrors++;
882 		goto skip;
883 	}
884 
885 	MCLGET(mnew, M_DONTWAIT);
886 	if (!(mnew->m_flags & M_EXT)) {
887 		printf("%s: could not allocate rx mbuf cluster\n",
888 		    device_xname(sc->sc_dev));
889 		m_freem(mnew);
890 		ifp->if_ierrors++;
891 		goto skip;
892 	}
893 
894 	m = data->m;
895 	data->m = mnew;
896 	data->buf = mtod(data->m, uint8_t *);
897 
898 	/* finalize mbuf */
899 	m->m_pkthdr.rcvif = ifp;
900 	m->m_data = (void *)(desc + 1);
901 	m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
902 
903 	s = splnet();
904 
905 	if (sc->sc_drvbpf != NULL) {
906 		struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
907 
908 		tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
909 		tap->wr_rate = rum_rxrate(desc);
910 		tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
911 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
912 		tap->wr_antenna = sc->rx_ant;
913 		tap->wr_antsignal = desc->rssi;
914 
915 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
916 	}
917 
918 	wh = mtod(m, struct ieee80211_frame *);
919 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
920 
921 	/* send the frame to the 802.11 layer */
922 	ieee80211_input(ic, m, ni, desc->rssi, 0);
923 
924 	/* node is no longer needed */
925 	ieee80211_free_node(ni);
926 
927 	splx(s);
928 
929 	DPRINTFN(15, ("rx done\n"));
930 
931 skip:	/* setup a new transfer */
932 	usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES,
933 	    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
934 	usbd_transfer(xfer);
935 }
936 
937 /*
938  * This function is only used by the Rx radiotap code. It returns the rate at
939  * which a given frame was received.
940  */
941 static uint8_t
942 rum_rxrate(const struct rum_rx_desc *desc)
943 {
944 	if (le32toh(desc->flags) & RT2573_RX_OFDM) {
945 		/* reverse function of rum_plcp_signal */
946 		switch (desc->rate) {
947 		case 0xb:	return 12;
948 		case 0xf:	return 18;
949 		case 0xa:	return 24;
950 		case 0xe:	return 36;
951 		case 0x9:	return 48;
952 		case 0xd:	return 72;
953 		case 0x8:	return 96;
954 		case 0xc:	return 108;
955 		}
956 	} else {
957 		if (desc->rate == 10)
958 			return 2;
959 		if (desc->rate == 20)
960 			return 4;
961 		if (desc->rate == 55)
962 			return 11;
963 		if (desc->rate == 110)
964 			return 22;
965 	}
966 	return 2;	/* should not get there */
967 }
968 
969 /*
970  * Return the expected ack rate for a frame transmitted at rate `rate'.
971  * XXX: this should depend on the destination node basic rate set.
972  */
973 static int
974 rum_ack_rate(struct ieee80211com *ic, int rate)
975 {
976 	switch (rate) {
977 	/* CCK rates */
978 	case 2:
979 		return 2;
980 	case 4:
981 	case 11:
982 	case 22:
983 		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
984 
985 	/* OFDM rates */
986 	case 12:
987 	case 18:
988 		return 12;
989 	case 24:
990 	case 36:
991 		return 24;
992 	case 48:
993 	case 72:
994 	case 96:
995 	case 108:
996 		return 48;
997 	}
998 
999 	/* default to 1Mbps */
1000 	return 2;
1001 }
1002 
1003 /*
1004  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1005  * The function automatically determines the operating mode depending on the
1006  * given rate. `flags' indicates whether short preamble is in use or not.
1007  */
1008 static uint16_t
1009 rum_txtime(int len, int rate, uint32_t flags)
1010 {
1011 	uint16_t txtime;
1012 
1013 	if (RUM_RATE_IS_OFDM(rate)) {
1014 		/* IEEE Std 802.11a-1999, pp. 37 */
1015 		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1016 		txtime = 16 + 4 + 4 * txtime + 6;
1017 	} else {
1018 		/* IEEE Std 802.11b-1999, pp. 28 */
1019 		txtime = (16 * len + rate - 1) / rate;
1020 		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1021 			txtime +=  72 + 24;
1022 		else
1023 			txtime += 144 + 48;
1024 	}
1025 	return txtime;
1026 }
1027 
1028 static uint8_t
1029 rum_plcp_signal(int rate)
1030 {
1031 	switch (rate) {
1032 	/* CCK rates (returned values are device-dependent) */
1033 	case 2:		return 0x0;
1034 	case 4:		return 0x1;
1035 	case 11:	return 0x2;
1036 	case 22:	return 0x3;
1037 
1038 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1039 	case 12:	return 0xb;
1040 	case 18:	return 0xf;
1041 	case 24:	return 0xa;
1042 	case 36:	return 0xe;
1043 	case 48:	return 0x9;
1044 	case 72:	return 0xd;
1045 	case 96:	return 0x8;
1046 	case 108:	return 0xc;
1047 
1048 	/* unsupported rates (should not get there) */
1049 	default:	return 0xff;
1050 	}
1051 }
1052 
1053 static void
1054 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
1055     uint32_t flags, uint16_t xflags, int len, int rate)
1056 {
1057 	struct ieee80211com *ic = &sc->sc_ic;
1058 	uint16_t plcp_length;
1059 	int remainder;
1060 
1061 	desc->flags = htole32(flags);
1062 	desc->flags |= htole32(RT2573_TX_VALID);
1063 	desc->flags |= htole32(len << 16);
1064 
1065 	desc->xflags = htole16(xflags);
1066 
1067 	desc->wme = htole16(
1068 	    RT2573_QID(0) |
1069 	    RT2573_AIFSN(2) |
1070 	    RT2573_LOGCWMIN(4) |
1071 	    RT2573_LOGCWMAX(10));
1072 
1073 	/* setup PLCP fields */
1074 	desc->plcp_signal  = rum_plcp_signal(rate);
1075 	desc->plcp_service = 4;
1076 
1077 	len += IEEE80211_CRC_LEN;
1078 	if (RUM_RATE_IS_OFDM(rate)) {
1079 		desc->flags |= htole32(RT2573_TX_OFDM);
1080 
1081 		plcp_length = len & 0xfff;
1082 		desc->plcp_length_hi = plcp_length >> 6;
1083 		desc->plcp_length_lo = plcp_length & 0x3f;
1084 	} else {
1085 		plcp_length = (16 * len + rate - 1) / rate;
1086 		if (rate == 22) {
1087 			remainder = (16 * len) % 22;
1088 			if (remainder != 0 && remainder < 7)
1089 				desc->plcp_service |= RT2573_PLCP_LENGEXT;
1090 		}
1091 		desc->plcp_length_hi = plcp_length >> 8;
1092 		desc->plcp_length_lo = plcp_length & 0xff;
1093 
1094 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1095 			desc->plcp_signal |= 0x08;
1096 	}
1097 }
1098 
1099 #define RUM_TX_TIMEOUT	5000
1100 
1101 static int
1102 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1103 {
1104 	struct ieee80211com *ic = &sc->sc_ic;
1105 	struct rum_tx_desc *desc;
1106 	struct rum_tx_data *data;
1107 	struct ieee80211_frame *wh;
1108 	struct ieee80211_key *k;
1109 	uint32_t flags = 0;
1110 	uint16_t dur;
1111 	usbd_status error;
1112 	int rate, xferlen, pktlen, needrts = 0, needcts = 0;
1113 
1114 	wh = mtod(m0, struct ieee80211_frame *);
1115 
1116 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1117 		k = ieee80211_crypto_encap(ic, ni, m0);
1118 		if (k == NULL) {
1119 			m_freem(m0);
1120 			return ENOBUFS;
1121 		}
1122 
1123 		/* packet header may have moved, reset our local pointer */
1124 		wh = mtod(m0, struct ieee80211_frame *);
1125 	}
1126 
1127 	/* compute actual packet length (including CRC and crypto overhead) */
1128 	pktlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
1129 
1130 	/* pickup a rate */
1131 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
1132 	    ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1133 	     IEEE80211_FC0_TYPE_MGT)) {
1134 		/* mgmt/multicast frames are sent at the lowest avail. rate */
1135 		rate = ni->ni_rates.rs_rates[0];
1136 	} else if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
1137 		rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
1138 	} else
1139 		rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1140 	if (rate == 0)
1141 		rate = 2;	/* XXX should not happen */
1142 	rate &= IEEE80211_RATE_VAL;
1143 
1144 	/* check if RTS/CTS or CTS-to-self protection must be used */
1145 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1146 		/* multicast frames are not sent at OFDM rates in 802.11b/g */
1147 		if (pktlen > ic->ic_rtsthreshold) {
1148 			needrts = 1;	/* RTS/CTS based on frame length */
1149 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1150 		    RUM_RATE_IS_OFDM(rate)) {
1151 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
1152 				needcts = 1;	/* CTS-to-self */
1153 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
1154 				needrts = 1;	/* RTS/CTS */
1155 		}
1156 	}
1157 	if (needrts || needcts) {
1158 		struct mbuf *mprot;
1159 		int protrate, ackrate;
1160 
1161 		protrate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1162 		ackrate  = rum_ack_rate(ic, rate);
1163 
1164 		dur = rum_txtime(pktlen, rate, ic->ic_flags) +
1165 		      rum_txtime(RUM_ACK_SIZE, ackrate, ic->ic_flags) +
1166 		      2 * sc->sifs;
1167 		if (needrts) {
1168 			dur += rum_txtime(RUM_CTS_SIZE, rum_ack_rate(ic,
1169 			    protrate), ic->ic_flags) + sc->sifs;
1170 			mprot = ieee80211_get_rts(ic, wh, dur);
1171 		} else {
1172 			mprot = ieee80211_get_cts_to_self(ic, dur);
1173 		}
1174 		if (mprot == NULL) {
1175 			aprint_error_dev(sc->sc_dev,
1176 			    "couldn't allocate protection frame\n");
1177 			m_freem(m0);
1178 			return ENOBUFS;
1179 		}
1180 
1181 		data = &sc->tx_data[sc->tx_cur];
1182 		desc = (struct rum_tx_desc *)data->buf;
1183 
1184 		/* avoid multiple free() of the same node for each fragment */
1185 		data->ni = ieee80211_ref_node(ni);
1186 
1187 		m_copydata(mprot, 0, mprot->m_pkthdr.len,
1188 		    data->buf + RT2573_TX_DESC_SIZE);
1189 		rum_setup_tx_desc(sc, desc,
1190 		    (needrts ? RT2573_TX_NEED_ACK : 0) | RT2573_TX_MORE_FRAG,
1191 		    0, mprot->m_pkthdr.len, protrate);
1192 
1193 		/* no roundup necessary here */
1194 		xferlen = RT2573_TX_DESC_SIZE + mprot->m_pkthdr.len;
1195 
1196 		/* XXX may want to pass the protection frame to BPF */
1197 
1198 		/* mbuf is no longer needed */
1199 		m_freem(mprot);
1200 
1201 		usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf,
1202 		    xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY,
1203 		    RUM_TX_TIMEOUT, rum_txeof);
1204 		error = usbd_transfer(data->xfer);
1205 		if (error != USBD_NORMAL_COMPLETION &&
1206 		    error != USBD_IN_PROGRESS) {
1207 			m_freem(m0);
1208 			return error;
1209 		}
1210 
1211 		sc->tx_queued++;
1212 		sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT;
1213 
1214 		flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS;
1215 	}
1216 
1217 	data = &sc->tx_data[sc->tx_cur];
1218 	desc = (struct rum_tx_desc *)data->buf;
1219 
1220 	data->ni = ni;
1221 
1222 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1223 		flags |= RT2573_TX_NEED_ACK;
1224 
1225 		dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
1226 		    ic->ic_flags) + sc->sifs;
1227 		*(uint16_t *)wh->i_dur = htole16(dur);
1228 
1229 		/* tell hardware to set timestamp in probe responses */
1230 		if ((wh->i_fc[0] &
1231 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1232 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1233 			flags |= RT2573_TX_TIMESTAMP;
1234 	}
1235 
1236 	if (sc->sc_drvbpf != NULL) {
1237 		struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1238 
1239 		tap->wt_flags = 0;
1240 		tap->wt_rate = rate;
1241 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1242 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1243 		tap->wt_antenna = sc->tx_ant;
1244 
1245 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1246 	}
1247 
1248 	m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
1249 	rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1250 
1251 	/* align end on a 4-bytes boundary */
1252 	xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1253 
1254 	/*
1255 	 * No space left in the last URB to store the extra 4 bytes, force
1256 	 * sending of another URB.
1257 	 */
1258 	if ((xferlen % 64) == 0)
1259 		xferlen += 4;
1260 
1261 	DPRINTFN(10, ("sending data frame len=%zu rate=%u xfer len=%u\n",
1262 	    (size_t)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE,
1263 	    rate, xferlen));
1264 
1265 	/* mbuf is no longer needed */
1266 	m_freem(m0);
1267 
1268 	usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen,
1269 	    USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof);
1270 	error = usbd_transfer(data->xfer);
1271 	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
1272 		return error;
1273 
1274 	sc->tx_queued++;
1275 	sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT;
1276 
1277 	return 0;
1278 }
1279 
1280 static void
1281 rum_start(struct ifnet *ifp)
1282 {
1283 	struct rum_softc *sc = ifp->if_softc;
1284 	struct ieee80211com *ic = &sc->sc_ic;
1285 	struct ether_header *eh;
1286 	struct ieee80211_node *ni;
1287 	struct mbuf *m0;
1288 
1289 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1290 		return;
1291 
1292 	for (;;) {
1293 		IF_POLL(&ic->ic_mgtq, m0);
1294 		if (m0 != NULL) {
1295 			if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) {
1296 				ifp->if_flags |= IFF_OACTIVE;
1297 				break;
1298 			}
1299 			IF_DEQUEUE(&ic->ic_mgtq, m0);
1300 
1301 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1302 			m0->m_pkthdr.rcvif = NULL;
1303 			bpf_mtap3(ic->ic_rawbpf, m0);
1304 			if (rum_tx_data(sc, m0, ni) != 0)
1305 				break;
1306 
1307 		} else {
1308 			if (ic->ic_state != IEEE80211_S_RUN)
1309 				break;
1310 			IFQ_POLL(&ifp->if_snd, m0);
1311 			if (m0 == NULL)
1312 				break;
1313 			if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) {
1314 				ifp->if_flags |= IFF_OACTIVE;
1315 				break;
1316 			}
1317 			IFQ_DEQUEUE(&ifp->if_snd, m0);
1318 			if (m0->m_len < (int)sizeof(struct ether_header) &&
1319 			    !(m0 = m_pullup(m0, sizeof(struct ether_header))))
1320 				continue;
1321 
1322 			eh = mtod(m0, struct ether_header *);
1323 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1324 			if (ni == NULL) {
1325 				m_freem(m0);
1326 				continue;
1327 			}
1328 			bpf_mtap(ifp, m0);
1329 			m0 = ieee80211_encap(ic, m0, ni);
1330 			if (m0 == NULL) {
1331 				ieee80211_free_node(ni);
1332 				continue;
1333 			}
1334 			bpf_mtap3(ic->ic_rawbpf, m0);
1335 			if (rum_tx_data(sc, m0, ni) != 0) {
1336 				ieee80211_free_node(ni);
1337 				ifp->if_oerrors++;
1338 				break;
1339 			}
1340 		}
1341 
1342 		sc->sc_tx_timer = 5;
1343 		ifp->if_timer = 1;
1344 	}
1345 }
1346 
1347 static void
1348 rum_watchdog(struct ifnet *ifp)
1349 {
1350 	struct rum_softc *sc = ifp->if_softc;
1351 	struct ieee80211com *ic = &sc->sc_ic;
1352 
1353 	ifp->if_timer = 0;
1354 
1355 	if (sc->sc_tx_timer > 0) {
1356 		if (--sc->sc_tx_timer == 0) {
1357 			printf("%s: device timeout\n", device_xname(sc->sc_dev));
1358 			/*rum_init(ifp); XXX needs a process context! */
1359 			ifp->if_oerrors++;
1360 			return;
1361 		}
1362 		ifp->if_timer = 1;
1363 	}
1364 
1365 	ieee80211_watchdog(ic);
1366 }
1367 
1368 static int
1369 rum_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1370 {
1371 #define IS_RUNNING(ifp) \
1372 	(((ifp)->if_flags & IFF_UP) && ((ifp)->if_flags & IFF_RUNNING))
1373 
1374 	struct rum_softc *sc = ifp->if_softc;
1375 	struct ieee80211com *ic = &sc->sc_ic;
1376 	int s, error = 0;
1377 
1378 	s = splnet();
1379 
1380 	switch (cmd) {
1381 	case SIOCSIFFLAGS:
1382 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1383 			break;
1384 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
1385 		case IFF_UP|IFF_RUNNING:
1386 			rum_update_promisc(sc);
1387 			break;
1388 		case IFF_UP:
1389 			rum_init(ifp);
1390 			break;
1391 		case IFF_RUNNING:
1392 			rum_stop(ifp, 1);
1393 			break;
1394 		case 0:
1395 			break;
1396 		}
1397 		break;
1398 
1399 	case SIOCADDMULTI:
1400 	case SIOCDELMULTI:
1401 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1402 			error = 0;
1403 		}
1404 		break;
1405 
1406 	default:
1407 		error = ieee80211_ioctl(ic, cmd, data);
1408 	}
1409 
1410 	if (error == ENETRESET) {
1411 		if (IS_RUNNING(ifp) &&
1412 			(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
1413 			rum_init(ifp);
1414 		error = 0;
1415 	}
1416 
1417 	splx(s);
1418 
1419 	return error;
1420 #undef IS_RUNNING
1421 }
1422 
1423 static void
1424 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
1425 {
1426 	usb_device_request_t req;
1427 	usbd_status error;
1428 
1429 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1430 	req.bRequest = RT2573_READ_EEPROM;
1431 	USETW(req.wValue, 0);
1432 	USETW(req.wIndex, addr);
1433 	USETW(req.wLength, len);
1434 
1435 	error = usbd_do_request(sc->sc_udev, &req, buf);
1436 	if (error != 0) {
1437 		printf("%s: could not read EEPROM: %s\n",
1438 		    device_xname(sc->sc_dev), usbd_errstr(error));
1439 	}
1440 }
1441 
1442 static uint32_t
1443 rum_read(struct rum_softc *sc, uint16_t reg)
1444 {
1445 	uint32_t val;
1446 
1447 	rum_read_multi(sc, reg, &val, sizeof val);
1448 
1449 	return le32toh(val);
1450 }
1451 
1452 static void
1453 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
1454 {
1455 	usb_device_request_t req;
1456 	usbd_status error;
1457 
1458 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1459 	req.bRequest = RT2573_READ_MULTI_MAC;
1460 	USETW(req.wValue, 0);
1461 	USETW(req.wIndex, reg);
1462 	USETW(req.wLength, len);
1463 
1464 	error = usbd_do_request(sc->sc_udev, &req, buf);
1465 	if (error != 0) {
1466 		printf("%s: could not multi read MAC register: %s\n",
1467 		    device_xname(sc->sc_dev), usbd_errstr(error));
1468 	}
1469 }
1470 
1471 static void
1472 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
1473 {
1474 	uint32_t tmp = htole32(val);
1475 
1476 	rum_write_multi(sc, reg, &tmp, sizeof tmp);
1477 }
1478 
1479 static void
1480 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
1481 {
1482 	usb_device_request_t req;
1483 	usbd_status error;
1484 	int offset;
1485 
1486 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1487 	req.bRequest = RT2573_WRITE_MULTI_MAC;
1488 	USETW(req.wValue, 0);
1489 
1490 	/* write at most 64 bytes at a time */
1491 	for (offset = 0; offset < len; offset += 64) {
1492 		USETW(req.wIndex, reg + offset);
1493 		USETW(req.wLength, MIN(len - offset, 64));
1494 
1495 		error = usbd_do_request(sc->sc_udev, &req, (char *)buf + offset);
1496 		if (error != 0) {
1497 			printf("%s: could not multi write MAC register: %s\n",
1498 			    device_xname(sc->sc_dev), usbd_errstr(error));
1499 		}
1500 	}
1501 }
1502 
1503 static void
1504 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
1505 {
1506 	uint32_t tmp;
1507 	int ntries;
1508 
1509 	for (ntries = 0; ntries < 5; ntries++) {
1510 		if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1511 			break;
1512 	}
1513 	if (ntries == 5) {
1514 		printf("%s: could not write to BBP\n", device_xname(sc->sc_dev));
1515 		return;
1516 	}
1517 
1518 	tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
1519 	rum_write(sc, RT2573_PHY_CSR3, tmp);
1520 }
1521 
1522 static uint8_t
1523 rum_bbp_read(struct rum_softc *sc, uint8_t reg)
1524 {
1525 	uint32_t val;
1526 	int ntries;
1527 
1528 	for (ntries = 0; ntries < 5; ntries++) {
1529 		if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1530 			break;
1531 	}
1532 	if (ntries == 5) {
1533 		printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
1534 		return 0;
1535 	}
1536 
1537 	val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
1538 	rum_write(sc, RT2573_PHY_CSR3, val);
1539 
1540 	for (ntries = 0; ntries < 100; ntries++) {
1541 		val = rum_read(sc, RT2573_PHY_CSR3);
1542 		if (!(val & RT2573_BBP_BUSY))
1543 			return val & 0xff;
1544 		DELAY(1);
1545 	}
1546 
1547 	printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
1548 	return 0;
1549 }
1550 
1551 static void
1552 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
1553 {
1554 	uint32_t tmp;
1555 	int ntries;
1556 
1557 	for (ntries = 0; ntries < 5; ntries++) {
1558 		if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
1559 			break;
1560 	}
1561 	if (ntries == 5) {
1562 		printf("%s: could not write to RF\n", device_xname(sc->sc_dev));
1563 		return;
1564 	}
1565 
1566 	tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
1567 	    (reg & 3);
1568 	rum_write(sc, RT2573_PHY_CSR4, tmp);
1569 
1570 	/* remember last written value in sc */
1571 	sc->rf_regs[reg] = val;
1572 
1573 	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff));
1574 }
1575 
1576 static void
1577 rum_select_antenna(struct rum_softc *sc)
1578 {
1579 	uint8_t bbp4, bbp77;
1580 	uint32_t tmp;
1581 
1582 	bbp4  = rum_bbp_read(sc, 4);
1583 	bbp77 = rum_bbp_read(sc, 77);
1584 
1585 	/* TBD */
1586 
1587 	/* make sure Rx is disabled before switching antenna */
1588 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
1589 	rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
1590 
1591 	rum_bbp_write(sc,  4, bbp4);
1592 	rum_bbp_write(sc, 77, bbp77);
1593 
1594 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
1595 }
1596 
1597 /*
1598  * Enable multi-rate retries for frames sent at OFDM rates.
1599  * In 802.11b/g mode, allow fallback to CCK rates.
1600  */
1601 static void
1602 rum_enable_mrr(struct rum_softc *sc)
1603 {
1604 	struct ieee80211com *ic = &sc->sc_ic;
1605 	uint32_t tmp;
1606 
1607 	tmp = rum_read(sc, RT2573_TXRX_CSR4);
1608 
1609 	tmp &= ~RT2573_MRR_CCK_FALLBACK;
1610 	if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
1611 		tmp |= RT2573_MRR_CCK_FALLBACK;
1612 	tmp |= RT2573_MRR_ENABLED;
1613 
1614 	rum_write(sc, RT2573_TXRX_CSR4, tmp);
1615 }
1616 
1617 static void
1618 rum_set_txpreamble(struct rum_softc *sc)
1619 {
1620 	uint32_t tmp;
1621 
1622 	tmp = rum_read(sc, RT2573_TXRX_CSR4);
1623 
1624 	tmp &= ~RT2573_SHORT_PREAMBLE;
1625 	if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1626 		tmp |= RT2573_SHORT_PREAMBLE;
1627 
1628 	rum_write(sc, RT2573_TXRX_CSR4, tmp);
1629 }
1630 
1631 static void
1632 rum_set_basicrates(struct rum_softc *sc)
1633 {
1634 	struct ieee80211com *ic = &sc->sc_ic;
1635 
1636 	/* update basic rate set */
1637 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1638 		/* 11b basic rates: 1, 2Mbps */
1639 		rum_write(sc, RT2573_TXRX_CSR5, 0x3);
1640 	} else if (ic->ic_curmode == IEEE80211_MODE_11A) {
1641 		/* 11a basic rates: 6, 12, 24Mbps */
1642 		rum_write(sc, RT2573_TXRX_CSR5, 0x150);
1643 	} else {
1644 		/* 11b/g basic rates: 1, 2, 5.5, 11Mbps */
1645 		rum_write(sc, RT2573_TXRX_CSR5, 0xf);
1646 	}
1647 }
1648 
1649 /*
1650  * Reprogram MAC/BBP to switch to a new band.  Values taken from the reference
1651  * driver.
1652  */
1653 static void
1654 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
1655 {
1656 	uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
1657 	uint32_t tmp;
1658 
1659 	/* update all BBP registers that depend on the band */
1660 	bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
1661 	bbp35 = 0x50; bbp97 = 0x48; bbp98  = 0x48;
1662 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
1663 		bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
1664 		bbp35 += 0x10; bbp97 += 0x10; bbp98  += 0x10;
1665 	}
1666 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1667 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1668 		bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
1669 	}
1670 
1671 	sc->bbp17 = bbp17;
1672 	rum_bbp_write(sc,  17, bbp17);
1673 	rum_bbp_write(sc,  96, bbp96);
1674 	rum_bbp_write(sc, 104, bbp104);
1675 
1676 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1677 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1678 		rum_bbp_write(sc, 75, 0x80);
1679 		rum_bbp_write(sc, 86, 0x80);
1680 		rum_bbp_write(sc, 88, 0x80);
1681 	}
1682 
1683 	rum_bbp_write(sc, 35, bbp35);
1684 	rum_bbp_write(sc, 97, bbp97);
1685 	rum_bbp_write(sc, 98, bbp98);
1686 
1687 	tmp = rum_read(sc, RT2573_PHY_CSR0);
1688 	tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ);
1689 	if (IEEE80211_IS_CHAN_2GHZ(c))
1690 		tmp |= RT2573_PA_PE_2GHZ;
1691 	else
1692 		tmp |= RT2573_PA_PE_5GHZ;
1693 	rum_write(sc, RT2573_PHY_CSR0, tmp);
1694 
1695 	/* 802.11a uses a 16 microseconds short interframe space */
1696 	sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
1697 }
1698 
1699 static void
1700 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
1701 {
1702 	struct ieee80211com *ic = &sc->sc_ic;
1703 	const struct rfprog *rfprog;
1704 	uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
1705 	int8_t power;
1706 	u_int i, chan;
1707 
1708 	chan = ieee80211_chan2ieee(ic, c);
1709 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1710 		return;
1711 
1712 	/* select the appropriate RF settings based on what EEPROM says */
1713 	rfprog = (sc->rf_rev == RT2573_RF_5225 ||
1714 		  sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
1715 
1716 	/* find the settings for this channel (we know it exists) */
1717 	for (i = 0; rfprog[i].chan != chan; i++);
1718 
1719 	power = sc->txpow[i];
1720 	if (power < 0) {
1721 		bbp94 += power;
1722 		power = 0;
1723 	} else if (power > 31) {
1724 		bbp94 += power - 31;
1725 		power = 31;
1726 	}
1727 
1728 	/*
1729 	 * If we are switching from the 2GHz band to the 5GHz band or
1730 	 * vice-versa, BBP registers need to be reprogrammed.
1731 	 */
1732 	if (c->ic_flags != ic->ic_curchan->ic_flags) {
1733 		rum_select_band(sc, c);
1734 		rum_select_antenna(sc);
1735 	}
1736 	ic->ic_curchan = c;
1737 
1738 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1739 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1740 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1741 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1742 
1743 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1744 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1745 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
1746 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1747 
1748 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1749 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1750 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1751 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1752 
1753 	DELAY(10);
1754 
1755 	/* enable smart mode for MIMO-capable RFs */
1756 	bbp3 = rum_bbp_read(sc, 3);
1757 
1758 	bbp3 &= ~RT2573_SMART_MODE;
1759 	if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
1760 		bbp3 |= RT2573_SMART_MODE;
1761 
1762 	rum_bbp_write(sc, 3, bbp3);
1763 
1764 	if (bbp94 != RT2573_BBPR94_DEFAULT)
1765 		rum_bbp_write(sc, 94, bbp94);
1766 }
1767 
1768 /*
1769  * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
1770  * and HostAP operating modes.
1771  */
1772 static void
1773 rum_enable_tsf_sync(struct rum_softc *sc)
1774 {
1775 	struct ieee80211com *ic = &sc->sc_ic;
1776 	uint32_t tmp;
1777 
1778 	if (ic->ic_opmode != IEEE80211_M_STA) {
1779 		/*
1780 		 * Change default 16ms TBTT adjustment to 8ms.
1781 		 * Must be done before enabling beacon generation.
1782 		 */
1783 		rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8);
1784 	}
1785 
1786 	tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
1787 
1788 	/* set beacon interval (in 1/16ms unit) */
1789 	tmp |= ic->ic_bss->ni_intval * 16;
1790 
1791 	tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT;
1792 	if (ic->ic_opmode == IEEE80211_M_STA)
1793 		tmp |= RT2573_TSF_MODE(1);
1794 	else
1795 		tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON;
1796 
1797 	rum_write(sc, RT2573_TXRX_CSR9, tmp);
1798 }
1799 
1800 static void
1801 rum_update_slot(struct rum_softc *sc)
1802 {
1803 	struct ieee80211com *ic = &sc->sc_ic;
1804 	uint8_t slottime;
1805 	uint32_t tmp;
1806 
1807 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1808 
1809 	tmp = rum_read(sc, RT2573_MAC_CSR9);
1810 	tmp = (tmp & ~0xff) | slottime;
1811 	rum_write(sc, RT2573_MAC_CSR9, tmp);
1812 
1813 	DPRINTF(("setting slot time to %uus\n", slottime));
1814 }
1815 
1816 static void
1817 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
1818 {
1819 	uint32_t tmp;
1820 
1821 	tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
1822 	rum_write(sc, RT2573_MAC_CSR4, tmp);
1823 
1824 	tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16;
1825 	rum_write(sc, RT2573_MAC_CSR5, tmp);
1826 }
1827 
1828 static void
1829 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
1830 {
1831 	uint32_t tmp;
1832 
1833 	tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
1834 	rum_write(sc, RT2573_MAC_CSR2, tmp);
1835 
1836 	tmp = addr[4] | addr[5] << 8 | 0xff << 16;
1837 	rum_write(sc, RT2573_MAC_CSR3, tmp);
1838 }
1839 
1840 static void
1841 rum_update_promisc(struct rum_softc *sc)
1842 {
1843 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1844 	uint32_t tmp;
1845 
1846 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
1847 
1848 	tmp &= ~RT2573_DROP_NOT_TO_ME;
1849 	if (!(ifp->if_flags & IFF_PROMISC))
1850 		tmp |= RT2573_DROP_NOT_TO_ME;
1851 
1852 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
1853 
1854 	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1855 	    "entering" : "leaving"));
1856 }
1857 
1858 static const char *
1859 rum_get_rf(int rev)
1860 {
1861 	switch (rev) {
1862 	case RT2573_RF_2527:	return "RT2527 (MIMO XR)";
1863 	case RT2573_RF_2528:	return "RT2528";
1864 	case RT2573_RF_5225:	return "RT5225 (MIMO XR)";
1865 	case RT2573_RF_5226:	return "RT5226";
1866 	default:		return "unknown";
1867 	}
1868 }
1869 
1870 static void
1871 rum_read_eeprom(struct rum_softc *sc)
1872 {
1873 	struct ieee80211com *ic = &sc->sc_ic;
1874 	uint16_t val;
1875 #ifdef RUM_DEBUG
1876 	int i;
1877 #endif
1878 
1879 	/* read MAC/BBP type */
1880 	rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2);
1881 	sc->macbbp_rev = le16toh(val);
1882 
1883 	/* read MAC address */
1884 	rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6);
1885 
1886 	rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
1887 	val = le16toh(val);
1888 	sc->rf_rev =   (val >> 11) & 0x1f;
1889 	sc->hw_radio = (val >> 10) & 0x1;
1890 	sc->rx_ant =   (val >> 4)  & 0x3;
1891 	sc->tx_ant =   (val >> 2)  & 0x3;
1892 	sc->nb_ant =   val & 0x3;
1893 
1894 	DPRINTF(("RF revision=%d\n", sc->rf_rev));
1895 
1896 	rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
1897 	val = le16toh(val);
1898 	sc->ext_5ghz_lna = (val >> 6) & 0x1;
1899 	sc->ext_2ghz_lna = (val >> 4) & 0x1;
1900 
1901 	DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
1902 	    sc->ext_2ghz_lna, sc->ext_5ghz_lna));
1903 
1904 	rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
1905 	val = le16toh(val);
1906 	if ((val & 0xff) != 0xff)
1907 		sc->rssi_2ghz_corr = (int8_t)(val & 0xff);	/* signed */
1908 
1909 	rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
1910 	val = le16toh(val);
1911 	if ((val & 0xff) != 0xff)
1912 		sc->rssi_5ghz_corr = (int8_t)(val & 0xff);	/* signed */
1913 
1914 	DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
1915 	    sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
1916 
1917 	rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
1918 	val = le16toh(val);
1919 	if ((val & 0xff) != 0xff)
1920 		sc->rffreq = val & 0xff;
1921 
1922 	DPRINTF(("RF freq=%d\n", sc->rffreq));
1923 
1924 	/* read Tx power for all a/b/g channels */
1925 	rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
1926 	/* XXX default Tx power for 802.11a channels */
1927 	memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14);
1928 #ifdef RUM_DEBUG
1929 	for (i = 0; i < 14; i++)
1930 		DPRINTF(("Channel=%d Tx power=%d\n", i + 1,  sc->txpow[i]));
1931 #endif
1932 
1933 	/* read default values for BBP registers */
1934 	rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1935 #ifdef RUM_DEBUG
1936 	for (i = 0; i < 14; i++) {
1937 		if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1938 			continue;
1939 		DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
1940 		    sc->bbp_prom[i].val));
1941 	}
1942 #endif
1943 }
1944 
1945 static int
1946 rum_bbp_init(struct rum_softc *sc)
1947 {
1948 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
1949 	unsigned int i, ntries;
1950 	uint8_t val;
1951 
1952 	/* wait for BBP to be ready */
1953 	for (ntries = 0; ntries < 100; ntries++) {
1954 		val = rum_bbp_read(sc, 0);
1955 		if (val != 0 && val != 0xff)
1956 			break;
1957 		DELAY(1000);
1958 	}
1959 	if (ntries == 100) {
1960 		printf("%s: timeout waiting for BBP\n",
1961 		    device_xname(sc->sc_dev));
1962 		return EIO;
1963 	}
1964 
1965 	/* initialize BBP registers to default values */
1966 	for (i = 0; i < N(rum_def_bbp); i++)
1967 		rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
1968 
1969 	/* write vendor-specific BBP values (from EEPROM) */
1970 	for (i = 0; i < 16; i++) {
1971 		if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1972 			continue;
1973 		rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
1974 	}
1975 
1976 	return 0;
1977 #undef N
1978 }
1979 
1980 static int
1981 rum_init(struct ifnet *ifp)
1982 {
1983 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
1984 	struct rum_softc *sc = ifp->if_softc;
1985 	struct ieee80211com *ic = &sc->sc_ic;
1986 	struct rum_rx_data *data;
1987 	uint32_t tmp;
1988 	usbd_status error = 0;
1989 	unsigned int i, ntries;
1990 
1991 	if ((sc->sc_flags & RT2573_FWLOADED) == 0) {
1992 		if (rum_attachhook(sc))
1993 			goto fail;
1994 	}
1995 
1996 	rum_stop(ifp, 0);
1997 
1998 	/* initialize MAC registers to default values */
1999 	for (i = 0; i < N(rum_def_mac); i++)
2000 		rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
2001 
2002 	/* set host ready */
2003 	rum_write(sc, RT2573_MAC_CSR1, 3);
2004 	rum_write(sc, RT2573_MAC_CSR1, 0);
2005 
2006 	/* wait for BBP/RF to wakeup */
2007 	for (ntries = 0; ntries < 1000; ntries++) {
2008 		if (rum_read(sc, RT2573_MAC_CSR12) & 8)
2009 			break;
2010 		rum_write(sc, RT2573_MAC_CSR12, 4);	/* force wakeup */
2011 		DELAY(1000);
2012 	}
2013 	if (ntries == 1000) {
2014 		printf("%s: timeout waiting for BBP/RF to wakeup\n",
2015 		    device_xname(sc->sc_dev));
2016 		goto fail;
2017 	}
2018 
2019 	if ((error = rum_bbp_init(sc)) != 0)
2020 		goto fail;
2021 
2022 	/* select default channel */
2023 	rum_select_band(sc, ic->ic_curchan);
2024 	rum_select_antenna(sc);
2025 	rum_set_chan(sc, ic->ic_curchan);
2026 
2027 	/* clear STA registers */
2028 	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
2029 
2030 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2031 	rum_set_macaddr(sc, ic->ic_myaddr);
2032 
2033 	/* initialize ASIC */
2034 	rum_write(sc, RT2573_MAC_CSR1, 4);
2035 
2036 	/*
2037 	 * Allocate xfer for AMRR statistics requests.
2038 	 */
2039 	sc->amrr_xfer = usbd_alloc_xfer(sc->sc_udev);
2040 	if (sc->amrr_xfer == NULL) {
2041 		printf("%s: could not allocate AMRR xfer\n",
2042 		    device_xname(sc->sc_dev));
2043 		goto fail;
2044 	}
2045 
2046 	/*
2047 	 * Open Tx and Rx USB bulk pipes.
2048 	 */
2049 	error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2050 	    &sc->sc_tx_pipeh);
2051 	if (error != 0) {
2052 		printf("%s: could not open Tx pipe: %s\n",
2053 		    device_xname(sc->sc_dev), usbd_errstr(error));
2054 		goto fail;
2055 	}
2056 
2057 	error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2058 	    &sc->sc_rx_pipeh);
2059 	if (error != 0) {
2060 		printf("%s: could not open Rx pipe: %s\n",
2061 		    device_xname(sc->sc_dev), usbd_errstr(error));
2062 		goto fail;
2063 	}
2064 
2065 	/*
2066 	 * Allocate Tx and Rx xfer queues.
2067 	 */
2068 	error = rum_alloc_tx_list(sc);
2069 	if (error != 0) {
2070 		printf("%s: could not allocate Tx list\n",
2071 		    device_xname(sc->sc_dev));
2072 		goto fail;
2073 	}
2074 
2075 	error = rum_alloc_rx_list(sc);
2076 	if (error != 0) {
2077 		printf("%s: could not allocate Rx list\n",
2078 		    device_xname(sc->sc_dev));
2079 		goto fail;
2080 	}
2081 
2082 	/*
2083 	 * Start up the receive pipe.
2084 	 */
2085 	for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
2086 		data = &sc->rx_data[i];
2087 
2088 		usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf,
2089 		    MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
2090 		error = usbd_transfer(data->xfer);
2091 		if (error != USBD_NORMAL_COMPLETION &&
2092 		    error != USBD_IN_PROGRESS) {
2093 			printf("%s: could not queue Rx transfer\n",
2094 			    device_xname(sc->sc_dev));
2095 			goto fail;
2096 		}
2097 	}
2098 
2099 	/* update Rx filter */
2100 	tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
2101 
2102 	tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
2103 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2104 		tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
2105 		       RT2573_DROP_ACKCTS;
2106 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2107 			tmp |= RT2573_DROP_TODS;
2108 		if (!(ifp->if_flags & IFF_PROMISC))
2109 			tmp |= RT2573_DROP_NOT_TO_ME;
2110 	}
2111 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
2112 
2113 	ifp->if_flags &= ~IFF_OACTIVE;
2114 	ifp->if_flags |= IFF_RUNNING;
2115 
2116 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2117 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2118 	else
2119 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2120 
2121 	return 0;
2122 
2123 fail:	rum_stop(ifp, 1);
2124 	return error;
2125 #undef N
2126 }
2127 
2128 static void
2129 rum_stop(struct ifnet *ifp, int disable)
2130 {
2131 	struct rum_softc *sc = ifp->if_softc;
2132 	struct ieee80211com *ic = &sc->sc_ic;
2133 	uint32_t tmp;
2134 
2135 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);	/* free all nodes */
2136 
2137 	sc->sc_tx_timer = 0;
2138 	ifp->if_timer = 0;
2139 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2140 
2141 	/* disable Rx */
2142 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
2143 	rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
2144 
2145 	/* reset ASIC */
2146 	rum_write(sc, RT2573_MAC_CSR1, 3);
2147 	rum_write(sc, RT2573_MAC_CSR1, 0);
2148 
2149 	if (sc->amrr_xfer != NULL) {
2150 		usbd_free_xfer(sc->amrr_xfer);
2151 		sc->amrr_xfer = NULL;
2152 	}
2153 
2154 	if (sc->sc_rx_pipeh != NULL) {
2155 		usbd_abort_pipe(sc->sc_rx_pipeh);
2156 		usbd_close_pipe(sc->sc_rx_pipeh);
2157 		sc->sc_rx_pipeh = NULL;
2158 	}
2159 
2160 	if (sc->sc_tx_pipeh != NULL) {
2161 		usbd_abort_pipe(sc->sc_tx_pipeh);
2162 		usbd_close_pipe(sc->sc_tx_pipeh);
2163 		sc->sc_tx_pipeh = NULL;
2164 	}
2165 
2166 	rum_free_rx_list(sc);
2167 	rum_free_tx_list(sc);
2168 }
2169 
2170 static int
2171 rum_load_microcode(struct rum_softc *sc, const u_char *ucode, size_t size)
2172 {
2173 	usb_device_request_t req;
2174 	uint16_t reg = RT2573_MCU_CODE_BASE;
2175 	usbd_status error;
2176 
2177 	/* copy firmware image into NIC */
2178 	for (; size >= 4; reg += 4, ucode += 4, size -= 4)
2179 		rum_write(sc, reg, UGETDW(ucode));
2180 
2181 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2182 	req.bRequest = RT2573_MCU_CNTL;
2183 	USETW(req.wValue, RT2573_MCU_RUN);
2184 	USETW(req.wIndex, 0);
2185 	USETW(req.wLength, 0);
2186 
2187 	error = usbd_do_request(sc->sc_udev, &req, NULL);
2188 	if (error != 0) {
2189 		printf("%s: could not run firmware: %s\n",
2190 		    device_xname(sc->sc_dev), usbd_errstr(error));
2191 	}
2192 	return error;
2193 }
2194 
2195 static int
2196 rum_prepare_beacon(struct rum_softc *sc)
2197 {
2198 	struct ieee80211com *ic = &sc->sc_ic;
2199 	struct rum_tx_desc desc;
2200 	struct mbuf *m0;
2201 	int rate;
2202 
2203 	m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &sc->sc_bo);
2204 	if (m0 == NULL) {
2205 		aprint_error_dev(sc->sc_dev,
2206 		    "could not allocate beacon frame\n");
2207 		return ENOBUFS;
2208 	}
2209 
2210 	/* send beacons at the lowest available rate */
2211 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
2212 
2213 	rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ,
2214 	    m0->m_pkthdr.len, rate);
2215 
2216 	/* copy the first 24 bytes of Tx descriptor into NIC memory */
2217 	rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2218 
2219 	/* copy beacon header and payload into NIC memory */
2220 	rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *),
2221 	    m0->m_pkthdr.len);
2222 
2223 	m_freem(m0);
2224 
2225 	return 0;
2226 }
2227 
2228 static void
2229 rum_newassoc(struct ieee80211_node *ni, int isnew)
2230 {
2231 	/* start with lowest Tx rate */
2232 	ni->ni_txrate = 0;
2233 }
2234 
2235 static void
2236 rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni)
2237 {
2238 	int i;
2239 
2240 	/* clear statistic registers (STA_CSR0 to STA_CSR5) */
2241 	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
2242 
2243 	ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2244 
2245 	/* set rate to some reasonable initial value */
2246 	for (i = ni->ni_rates.rs_nrates - 1;
2247 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2248 	     i--);
2249 	ni->ni_txrate = i;
2250 
2251 	callout_reset(&sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
2252 }
2253 
2254 static void
2255 rum_amrr_timeout(void *arg)
2256 {
2257 	struct rum_softc *sc = arg;
2258 	usb_device_request_t req;
2259 
2260 	/*
2261 	 * Asynchronously read statistic registers (cleared by read).
2262 	 */
2263 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
2264 	req.bRequest = RT2573_READ_MULTI_MAC;
2265 	USETW(req.wValue, 0);
2266 	USETW(req.wIndex, RT2573_STA_CSR0);
2267 	USETW(req.wLength, sizeof sc->sta);
2268 
2269 	usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2270 	    USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0,
2271 	    rum_amrr_update);
2272 	(void)usbd_transfer(sc->amrr_xfer);
2273 }
2274 
2275 static void
2276 rum_amrr_update(usbd_xfer_handle xfer, usbd_private_handle priv,
2277     usbd_status status)
2278 {
2279 	struct rum_softc *sc = (struct rum_softc *)priv;
2280 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
2281 
2282 	if (status != USBD_NORMAL_COMPLETION) {
2283 		printf("%s: could not retrieve Tx statistics - cancelling "
2284 		    "automatic rate control\n", device_xname(sc->sc_dev));
2285 		return;
2286 	}
2287 
2288 	/* count TX retry-fail as Tx errors */
2289 	ifp->if_oerrors += le32toh(sc->sta[5]) >> 16;
2290 
2291 	sc->amn.amn_retrycnt =
2292 	    (le32toh(sc->sta[4]) >> 16) +	/* TX one-retry ok count */
2293 	    (le32toh(sc->sta[5]) & 0xffff) +	/* TX more-retry ok count */
2294 	    (le32toh(sc->sta[5]) >> 16);	/* TX retry-fail count */
2295 
2296 	sc->amn.amn_txcnt =
2297 	    sc->amn.amn_retrycnt +
2298 	    (le32toh(sc->sta[4]) & 0xffff);	/* TX no-retry ok count */
2299 
2300 	ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2301 
2302 	callout_reset(&sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
2303 }
2304 
2305 static int
2306 rum_activate(device_t self, enum devact act)
2307 {
2308 	switch (act) {
2309 	case DVACT_DEACTIVATE:
2310 		/*if_deactivate(&sc->sc_ic.ic_if);*/
2311 		return 0;
2312 	default:
2313 		return 0;
2314 	}
2315 }
2316 
2317 MODULE(MODULE_CLASS_DRIVER, if_rum, "bpf");
2318 
2319 #ifdef _MODULE
2320 #include "ioconf.c"
2321 #endif
2322 
2323 static int
2324 if_rum_modcmd(modcmd_t cmd, void *aux)
2325 {
2326 	int error = 0;
2327 
2328 	switch (cmd) {
2329 	case MODULE_CMD_INIT:
2330 #ifdef _MODULE
2331 		error = config_init_component(cfdriver_ioconf_rum,
2332 		    cfattach_ioconf_rum, cfdata_ioconf_rum);
2333 #endif
2334 		return error;
2335 	case MODULE_CMD_FINI:
2336 #ifdef _MODULE
2337 		error = config_fini_component(cfdriver_ioconf_rum,
2338 		    cfattach_ioconf_rum, cfdata_ioconf_rum);
2339 #endif
2340 		return error;
2341 	default:
2342 		return ENOTTY;
2343 	}
2344 }
2345