xref: /netbsd-src/sys/dev/usb/if_rum.c (revision 5bbd2a12505d72a8177929a37b5cee489d0a1cfd)
1 /*	$OpenBSD: if_rum.c,v 1.40 2006/09/18 16:20:20 damien Exp $	*/
2 /*	$NetBSD: if_rum.c,v 1.42 2012/06/01 12:38:25 nonaka Exp $	*/
3 
4 /*-
5  * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini@free.fr>
6  * Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*-
22  * Ralink Technology RT2501USB/RT2601USB chipset driver
23  * http://www.ralinktech.com.tw/
24  */
25 
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: if_rum.c,v 1.42 2012/06/01 12:38:25 nonaka Exp $");
28 
29 
30 #include <sys/param.h>
31 #include <sys/sockio.h>
32 #include <sys/sysctl.h>
33 #include <sys/mbuf.h>
34 #include <sys/kernel.h>
35 #include <sys/socket.h>
36 #include <sys/systm.h>
37 #include <sys/malloc.h>
38 #include <sys/module.h>
39 #include <sys/conf.h>
40 #include <sys/device.h>
41 
42 #include <sys/bus.h>
43 #include <machine/endian.h>
44 #include <sys/intr.h>
45 
46 #include <net/bpf.h>
47 #include <net/if.h>
48 #include <net/if_arp.h>
49 #include <net/if_dl.h>
50 #include <net/if_ether.h>
51 #include <net/if_media.h>
52 #include <net/if_types.h>
53 
54 #include <netinet/in.h>
55 #include <netinet/in_systm.h>
56 #include <netinet/in_var.h>
57 #include <netinet/ip.h>
58 
59 #include <net80211/ieee80211_netbsd.h>
60 #include <net80211/ieee80211_var.h>
61 #include <net80211/ieee80211_amrr.h>
62 #include <net80211/ieee80211_radiotap.h>
63 
64 #include <dev/firmload.h>
65 
66 #include <dev/usb/usb.h>
67 #include <dev/usb/usbdi.h>
68 #include <dev/usb/usbdi_util.h>
69 #include <dev/usb/usbdevs.h>
70 
71 #include <dev/usb/if_rumreg.h>
72 #include <dev/usb/if_rumvar.h>
73 
74 #ifdef USB_DEBUG
75 #define RUM_DEBUG
76 #endif
77 
78 #ifdef RUM_DEBUG
79 #define DPRINTF(x)	do { if (rum_debug) printf x; } while (0)
80 #define DPRINTFN(n, x)	do { if (rum_debug >= (n)) printf x; } while (0)
81 int rum_debug = 1;
82 #else
83 #define DPRINTF(x)
84 #define DPRINTFN(n, x)
85 #endif
86 
87 /* various supported device vendors/products */
88 static const struct usb_devno rum_devs[] = {
89 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_HWU54DM },
90 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573_2 },
91 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573_3 },
92 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573_4 },
93 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_WUG2700 },
94 	{ USB_VENDOR_AMIT,		USB_PRODUCT_AMIT_CGWLUSB2GO },
95 	{ USB_VENDOR_ASUSTEK,		USB_PRODUCT_ASUSTEK_WL167G_2 },
96 	{ USB_VENDOR_ASUSTEK,		USB_PRODUCT_ASUSTEK_WL167G_3 },
97 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D7050A },
98 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D9050V3 },
99 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GC },
100 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GR },
101 	{ USB_VENDOR_CONCEPTRONIC,	USB_PRODUCT_CONCEPTRONIC_C54RU2 },
102 	{ USB_VENDOR_COREGA,		USB_PRODUCT_COREGA_CGWLUSB2GL },
103 	{ USB_VENDOR_COREGA,		USB_PRODUCT_COREGA_CGWLUSB2GPX },
104 	{ USB_VENDOR_DICKSMITH,		USB_PRODUCT_DICKSMITH_CWD854F },
105 	{ USB_VENDOR_DICKSMITH,		USB_PRODUCT_DICKSMITH_RT2573 },
106 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWLG122C1 },
107 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_WUA1340 },
108 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWA110 },
109 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWA111 },
110 	{ USB_VENDOR_GIGABYTE,		USB_PRODUCT_GIGABYTE_GNWB01GS },
111 	{ USB_VENDOR_GIGABYTE,		USB_PRODUCT_GIGABYTE_GNWI05GS },
112 	{ USB_VENDOR_GIGASET,		USB_PRODUCT_GIGASET_RT2573 },
113 	{ USB_VENDOR_GOODWAY,		USB_PRODUCT_GOODWAY_RT2573 },
114 	{ USB_VENDOR_GUILLEMOT,		USB_PRODUCT_GUILLEMOT_HWGUSB254LB },
115 	{ USB_VENDOR_GUILLEMOT,		USB_PRODUCT_GUILLEMOT_HWGUSB254V2AP },
116 	{ USB_VENDOR_HUAWEI3COM,	USB_PRODUCT_HUAWEI3COM_RT2573 },
117 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_G54HP },
118 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_SG54HP },
119 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_WLIUCG },
120 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573 },
121 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_2 },
122 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_3 },
123 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_4 },
124 	{ USB_VENDOR_NOVATECH,		USB_PRODUCT_NOVATECH_RT2573 },
125 	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUS54HP },
126 	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUS54MINI2 },
127 	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUSMM },
128 	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573 },
129 	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573_2 },
130 	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573_3 },
131 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2573 },
132 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2671 },
133 	{ USB_VENDOR_SITECOMEU,		USB_PRODUCT_SITECOMEU_WL113R2 },
134 	{ USB_VENDOR_SITECOMEU,		USB_PRODUCT_SITECOMEU_WL172 },
135 	{ USB_VENDOR_SURECOM,		USB_PRODUCT_SURECOM_RT2573 }
136 };
137 
138 static int		rum_attachhook(void *);
139 static int		rum_alloc_tx_list(struct rum_softc *);
140 static void		rum_free_tx_list(struct rum_softc *);
141 static int		rum_alloc_rx_list(struct rum_softc *);
142 static void		rum_free_rx_list(struct rum_softc *);
143 static int		rum_media_change(struct ifnet *);
144 static void		rum_next_scan(void *);
145 static void		rum_task(void *);
146 static int		rum_newstate(struct ieee80211com *,
147 			    enum ieee80211_state, int);
148 static void		rum_txeof(usbd_xfer_handle, usbd_private_handle,
149 			    usbd_status);
150 static void		rum_rxeof(usbd_xfer_handle, usbd_private_handle,
151 			    usbd_status);
152 static uint8_t		rum_rxrate(const struct rum_rx_desc *);
153 static int		rum_ack_rate(struct ieee80211com *, int);
154 static uint16_t		rum_txtime(int, int, uint32_t);
155 static uint8_t		rum_plcp_signal(int);
156 static void		rum_setup_tx_desc(struct rum_softc *,
157 			    struct rum_tx_desc *, uint32_t, uint16_t, int,
158 			    int);
159 static int		rum_tx_data(struct rum_softc *, struct mbuf *,
160 			    struct ieee80211_node *);
161 static void		rum_start(struct ifnet *);
162 static void		rum_watchdog(struct ifnet *);
163 static int		rum_ioctl(struct ifnet *, u_long, void *);
164 static void		rum_eeprom_read(struct rum_softc *, uint16_t, void *,
165 			    int);
166 static uint32_t		rum_read(struct rum_softc *, uint16_t);
167 static void		rum_read_multi(struct rum_softc *, uint16_t, void *,
168 			    int);
169 static void		rum_write(struct rum_softc *, uint16_t, uint32_t);
170 static void		rum_write_multi(struct rum_softc *, uint16_t, void *,
171 			    size_t);
172 static void		rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
173 static uint8_t		rum_bbp_read(struct rum_softc *, uint8_t);
174 static void		rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
175 static void		rum_select_antenna(struct rum_softc *);
176 static void		rum_enable_mrr(struct rum_softc *);
177 static void		rum_set_txpreamble(struct rum_softc *);
178 static void		rum_set_basicrates(struct rum_softc *);
179 static void		rum_select_band(struct rum_softc *,
180 			    struct ieee80211_channel *);
181 static void		rum_set_chan(struct rum_softc *,
182 			    struct ieee80211_channel *);
183 static void		rum_enable_tsf_sync(struct rum_softc *);
184 static void		rum_update_slot(struct rum_softc *);
185 static void		rum_set_bssid(struct rum_softc *, const uint8_t *);
186 static void		rum_set_macaddr(struct rum_softc *, const uint8_t *);
187 static void		rum_update_promisc(struct rum_softc *);
188 static const char	*rum_get_rf(int);
189 static void		rum_read_eeprom(struct rum_softc *);
190 static int		rum_bbp_init(struct rum_softc *);
191 static int		rum_init(struct ifnet *);
192 static void		rum_stop(struct ifnet *, int);
193 static int		rum_load_microcode(struct rum_softc *, const u_char *,
194 			    size_t);
195 static int		rum_prepare_beacon(struct rum_softc *);
196 static void		rum_newassoc(struct ieee80211_node *, int);
197 static void		rum_amrr_start(struct rum_softc *,
198 			    struct ieee80211_node *);
199 static void		rum_amrr_timeout(void *);
200 static void		rum_amrr_update(usbd_xfer_handle, usbd_private_handle,
201 			    usbd_status status);
202 
203 /*
204  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
205  */
206 static const struct ieee80211_rateset rum_rateset_11a =
207 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
208 
209 static const struct ieee80211_rateset rum_rateset_11b =
210 	{ 4, { 2, 4, 11, 22 } };
211 
212 static const struct ieee80211_rateset rum_rateset_11g =
213 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
214 
215 static const struct {
216 	uint32_t	reg;
217 	uint32_t	val;
218 } rum_def_mac[] = {
219 	RT2573_DEF_MAC
220 };
221 
222 static const struct {
223 	uint8_t	reg;
224 	uint8_t	val;
225 } rum_def_bbp[] = {
226 	RT2573_DEF_BBP
227 };
228 
229 static const struct rfprog {
230 	uint8_t		chan;
231 	uint32_t	r1, r2, r3, r4;
232 }  rum_rf5226[] = {
233 	RT2573_RF5226
234 }, rum_rf5225[] = {
235 	RT2573_RF5225
236 };
237 
238 static int rum_match(device_t, cfdata_t, void *);
239 static void rum_attach(device_t, device_t, void *);
240 static int rum_detach(device_t, int);
241 static int rum_activate(device_t, enum devact);
242 extern struct cfdriver rum_cd;
243 CFATTACH_DECL_NEW(rum, sizeof(struct rum_softc), rum_match, rum_attach,
244     rum_detach, rum_activate);
245 
246 static int
247 rum_match(device_t parent, cfdata_t match, void *aux)
248 {
249 	struct usb_attach_arg *uaa = aux;
250 
251 	return (usb_lookup(rum_devs, uaa->vendor, uaa->product) != NULL) ?
252 	    UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
253 }
254 
255 static int
256 rum_attachhook(void *xsc)
257 {
258 	struct rum_softc *sc = xsc;
259 	firmware_handle_t fwh;
260 	const char *name = "rum-rt2573";
261 	u_char *ucode;
262 	size_t size;
263 	int error;
264 
265 	if ((error = firmware_open("rum", name, &fwh)) != 0) {
266 		printf("%s: failed loadfirmware of file %s (error %d)\n",
267 		    device_xname(sc->sc_dev), name, error);
268 		return error;
269 	}
270 	size = firmware_get_size(fwh);
271 	ucode = firmware_malloc(size);
272 	if (ucode == NULL) {
273 		printf("%s: failed to allocate firmware memory\n",
274 		    device_xname(sc->sc_dev));
275 		firmware_close(fwh);
276 		return ENOMEM;
277 	}
278 	error = firmware_read(fwh, 0, ucode, size);
279 	firmware_close(fwh);
280 	if (error != 0) {
281 		printf("%s: failed to read firmware (error %d)\n",
282 		    device_xname(sc->sc_dev), error);
283 		firmware_free(ucode, 0);
284 		return error;
285 	}
286 
287 	if (rum_load_microcode(sc, ucode, size) != 0) {
288 		printf("%s: could not load 8051 microcode\n",
289 		    device_xname(sc->sc_dev));
290 		firmware_free(ucode, 0);
291 		return ENXIO;
292 	}
293 
294 	firmware_free(ucode, 0);
295 	sc->sc_flags |= RT2573_FWLOADED;
296 
297 	return 0;
298 }
299 
300 static void
301 rum_attach(device_t parent, device_t self, void *aux)
302 {
303 	struct rum_softc *sc = device_private(self);
304 	struct usb_attach_arg *uaa = aux;
305 	struct ieee80211com *ic = &sc->sc_ic;
306 	struct ifnet *ifp = &sc->sc_if;
307 	usb_interface_descriptor_t *id;
308 	usb_endpoint_descriptor_t *ed;
309 	usbd_status error;
310 	char *devinfop;
311 	int i, ntries;
312 	uint32_t tmp;
313 
314 	sc->sc_dev = self;
315 	sc->sc_udev = uaa->device;
316 	sc->sc_flags = 0;
317 
318 	aprint_naive("\n");
319 	aprint_normal("\n");
320 
321 	devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
322 	aprint_normal_dev(self, "%s\n", devinfop);
323 	usbd_devinfo_free(devinfop);
324 
325 	if (usbd_set_config_no(sc->sc_udev, RT2573_CONFIG_NO, 0) != 0) {
326 		aprint_error_dev(self, "could not set configuration no\n");
327 		return;
328 	}
329 
330 	/* get the first interface handle */
331 	error = usbd_device2interface_handle(sc->sc_udev, RT2573_IFACE_INDEX,
332 	    &sc->sc_iface);
333 	if (error != 0) {
334 		aprint_error_dev(self, "could not get interface handle\n");
335 		return;
336 	}
337 
338 	/*
339 	 * Find endpoints.
340 	 */
341 	id = usbd_get_interface_descriptor(sc->sc_iface);
342 
343 	sc->sc_rx_no = sc->sc_tx_no = -1;
344 	for (i = 0; i < id->bNumEndpoints; i++) {
345 		ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
346 		if (ed == NULL) {
347 			aprint_error_dev(self,
348 			    "no endpoint descriptor for iface %d\n", i);
349 			return;
350 		}
351 
352 		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
353 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
354 			sc->sc_rx_no = ed->bEndpointAddress;
355 		else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
356 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
357 			sc->sc_tx_no = ed->bEndpointAddress;
358 	}
359 	if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
360 		aprint_error_dev(self, "missing endpoint\n");
361 		return;
362 	}
363 
364 	usb_init_task(&sc->sc_task, rum_task, sc);
365 	callout_init(&sc->sc_scan_ch, 0);
366 
367 	sc->amrr.amrr_min_success_threshold =  1;
368 	sc->amrr.amrr_max_success_threshold = 10;
369 	callout_init(&sc->sc_amrr_ch, 0);
370 
371 	/* retrieve RT2573 rev. no */
372 	for (ntries = 0; ntries < 1000; ntries++) {
373 		if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
374 			break;
375 		DELAY(1000);
376 	}
377 	if (ntries == 1000) {
378 		aprint_error_dev(self, "timeout waiting for chip to settle\n");
379 		return;
380 	}
381 
382 	/* retrieve MAC address and various other things from EEPROM */
383 	rum_read_eeprom(sc);
384 
385 	aprint_normal_dev(self,
386 	    "MAC/BBP RT%04x (rev 0x%05x), RF %s, address %s\n",
387 	    sc->macbbp_rev, tmp,
388 	    rum_get_rf(sc->rf_rev), ether_sprintf(ic->ic_myaddr));
389 
390 	ic->ic_ifp = ifp;
391 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
392 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
393 	ic->ic_state = IEEE80211_S_INIT;
394 
395 	/* set device capabilities */
396 	ic->ic_caps =
397 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
398 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
399 	    IEEE80211_C_HOSTAP |	/* HostAp mode supported */
400 	    IEEE80211_C_TXPMGT |	/* tx power management */
401 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
402 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
403 	    IEEE80211_C_WPA;		/* 802.11i */
404 
405 	if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) {
406 		/* set supported .11a rates */
407 		ic->ic_sup_rates[IEEE80211_MODE_11A] = rum_rateset_11a;
408 
409 		/* set supported .11a channels */
410 		for (i = 34; i <= 46; i += 4) {
411 			ic->ic_channels[i].ic_freq =
412 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
413 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
414 		}
415 		for (i = 36; i <= 64; i += 4) {
416 			ic->ic_channels[i].ic_freq =
417 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
418 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
419 		}
420 		for (i = 100; i <= 140; i += 4) {
421 			ic->ic_channels[i].ic_freq =
422 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
423 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
424 		}
425 		for (i = 149; i <= 165; i += 4) {
426 			ic->ic_channels[i].ic_freq =
427 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
428 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
429 		}
430 	}
431 
432 	/* set supported .11b and .11g rates */
433 	ic->ic_sup_rates[IEEE80211_MODE_11B] = rum_rateset_11b;
434 	ic->ic_sup_rates[IEEE80211_MODE_11G] = rum_rateset_11g;
435 
436 	/* set supported .11b and .11g channels (1 through 14) */
437 	for (i = 1; i <= 14; i++) {
438 		ic->ic_channels[i].ic_freq =
439 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
440 		ic->ic_channels[i].ic_flags =
441 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
442 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
443 	}
444 
445 	ifp->if_softc = sc;
446 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
447 	ifp->if_init = rum_init;
448 	ifp->if_ioctl = rum_ioctl;
449 	ifp->if_start = rum_start;
450 	ifp->if_watchdog = rum_watchdog;
451 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
452 	IFQ_SET_READY(&ifp->if_snd);
453 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
454 
455 	if_attach(ifp);
456 	ieee80211_ifattach(ic);
457 	ic->ic_newassoc = rum_newassoc;
458 
459 	/* override state transition machine */
460 	sc->sc_newstate = ic->ic_newstate;
461 	ic->ic_newstate = rum_newstate;
462 	ieee80211_media_init(ic, rum_media_change, ieee80211_media_status);
463 
464 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
465 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
466 	    &sc->sc_drvbpf);
467 
468 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
469 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
470 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT);
471 
472 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
473 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
474 	sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT);
475 
476 	ieee80211_announce(ic);
477 
478 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev,
479 	    sc->sc_dev);
480 
481 	return;
482 }
483 
484 static int
485 rum_detach(device_t self, int flags)
486 {
487 	struct rum_softc *sc = device_private(self);
488 	struct ieee80211com *ic = &sc->sc_ic;
489 	struct ifnet *ifp = &sc->sc_if;
490 	int s;
491 
492 	if (!ifp->if_softc)
493 		return 0;
494 
495 	s = splusb();
496 
497 	rum_stop(ifp, 1);
498 	usb_rem_task(sc->sc_udev, &sc->sc_task);
499 	callout_stop(&sc->sc_scan_ch);
500 	callout_stop(&sc->sc_amrr_ch);
501 
502 	if (sc->amrr_xfer != NULL) {
503 		usbd_free_xfer(sc->amrr_xfer);
504 		sc->amrr_xfer = NULL;
505 	}
506 
507 	if (sc->sc_rx_pipeh != NULL) {
508 		usbd_abort_pipe(sc->sc_rx_pipeh);
509 		usbd_close_pipe(sc->sc_rx_pipeh);
510 	}
511 
512 	if (sc->sc_tx_pipeh != NULL) {
513 		usbd_abort_pipe(sc->sc_tx_pipeh);
514 		usbd_close_pipe(sc->sc_tx_pipeh);
515 	}
516 
517 	bpf_detach(ifp);
518 	ieee80211_ifdetach(ic);	/* free all nodes */
519 	if_detach(ifp);
520 
521 	splx(s);
522 
523 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
524 
525 	return 0;
526 }
527 
528 static int
529 rum_alloc_tx_list(struct rum_softc *sc)
530 {
531 	struct rum_tx_data *data;
532 	int i, error;
533 
534 	sc->tx_cur = sc->tx_queued = 0;
535 
536 	for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
537 		data = &sc->tx_data[i];
538 
539 		data->sc = sc;
540 
541 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
542 		if (data->xfer == NULL) {
543 			printf("%s: could not allocate tx xfer\n",
544 			    device_xname(sc->sc_dev));
545 			error = ENOMEM;
546 			goto fail;
547 		}
548 
549 		data->buf = usbd_alloc_buffer(data->xfer,
550 		    RT2573_TX_DESC_SIZE + IEEE80211_MAX_LEN);
551 		if (data->buf == NULL) {
552 			printf("%s: could not allocate tx buffer\n",
553 			    device_xname(sc->sc_dev));
554 			error = ENOMEM;
555 			goto fail;
556 		}
557 
558 		/* clean Tx descriptor */
559 		memset(data->buf, 0, RT2573_TX_DESC_SIZE);
560 	}
561 
562 	return 0;
563 
564 fail:	rum_free_tx_list(sc);
565 	return error;
566 }
567 
568 static void
569 rum_free_tx_list(struct rum_softc *sc)
570 {
571 	struct rum_tx_data *data;
572 	int i;
573 
574 	for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
575 		data = &sc->tx_data[i];
576 
577 		if (data->xfer != NULL) {
578 			usbd_free_xfer(data->xfer);
579 			data->xfer = NULL;
580 		}
581 
582 		if (data->ni != NULL) {
583 			ieee80211_free_node(data->ni);
584 			data->ni = NULL;
585 		}
586 	}
587 }
588 
589 static int
590 rum_alloc_rx_list(struct rum_softc *sc)
591 {
592 	struct rum_rx_data *data;
593 	int i, error;
594 
595 	for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
596 		data = &sc->rx_data[i];
597 
598 		data->sc = sc;
599 
600 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
601 		if (data->xfer == NULL) {
602 			printf("%s: could not allocate rx xfer\n",
603 			    device_xname(sc->sc_dev));
604 			error = ENOMEM;
605 			goto fail;
606 		}
607 
608 		if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) {
609 			printf("%s: could not allocate rx buffer\n",
610 			    device_xname(sc->sc_dev));
611 			error = ENOMEM;
612 			goto fail;
613 		}
614 
615 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
616 		if (data->m == NULL) {
617 			printf("%s: could not allocate rx mbuf\n",
618 			    device_xname(sc->sc_dev));
619 			error = ENOMEM;
620 			goto fail;
621 		}
622 
623 		MCLGET(data->m, M_DONTWAIT);
624 		if (!(data->m->m_flags & M_EXT)) {
625 			printf("%s: could not allocate rx mbuf cluster\n",
626 			    device_xname(sc->sc_dev));
627 			error = ENOMEM;
628 			goto fail;
629 		}
630 
631 		data->buf = mtod(data->m, uint8_t *);
632 	}
633 
634 	return 0;
635 
636 fail:	rum_free_rx_list(sc);
637 	return error;
638 }
639 
640 static void
641 rum_free_rx_list(struct rum_softc *sc)
642 {
643 	struct rum_rx_data *data;
644 	int i;
645 
646 	for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
647 		data = &sc->rx_data[i];
648 
649 		if (data->xfer != NULL) {
650 			usbd_free_xfer(data->xfer);
651 			data->xfer = NULL;
652 		}
653 
654 		if (data->m != NULL) {
655 			m_freem(data->m);
656 			data->m = NULL;
657 		}
658 	}
659 }
660 
661 static int
662 rum_media_change(struct ifnet *ifp)
663 {
664 	int error;
665 
666 	error = ieee80211_media_change(ifp);
667 	if (error != ENETRESET)
668 		return error;
669 
670 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
671 		rum_init(ifp);
672 
673 	return 0;
674 }
675 
676 /*
677  * This function is called periodically (every 200ms) during scanning to
678  * switch from one channel to another.
679  */
680 static void
681 rum_next_scan(void *arg)
682 {
683 	struct rum_softc *sc = arg;
684 	struct ieee80211com *ic = &sc->sc_ic;
685 	int s;
686 
687 	s = splnet();
688 	if (ic->ic_state == IEEE80211_S_SCAN)
689 		ieee80211_next_scan(ic);
690 	splx(s);
691 }
692 
693 static void
694 rum_task(void *arg)
695 {
696 	struct rum_softc *sc = arg;
697 	struct ieee80211com *ic = &sc->sc_ic;
698 	enum ieee80211_state ostate;
699 	struct ieee80211_node *ni;
700 	uint32_t tmp;
701 
702 	ostate = ic->ic_state;
703 
704 	switch (sc->sc_state) {
705 	case IEEE80211_S_INIT:
706 		if (ostate == IEEE80211_S_RUN) {
707 			/* abort TSF synchronization */
708 			tmp = rum_read(sc, RT2573_TXRX_CSR9);
709 			rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
710 		}
711 		break;
712 
713 	case IEEE80211_S_SCAN:
714 		rum_set_chan(sc, ic->ic_curchan);
715 		callout_reset(&sc->sc_scan_ch, hz / 5, rum_next_scan, sc);
716 		break;
717 
718 	case IEEE80211_S_AUTH:
719 		rum_set_chan(sc, ic->ic_curchan);
720 		break;
721 
722 	case IEEE80211_S_ASSOC:
723 		rum_set_chan(sc, ic->ic_curchan);
724 		break;
725 
726 	case IEEE80211_S_RUN:
727 		rum_set_chan(sc, ic->ic_curchan);
728 
729 		ni = ic->ic_bss;
730 
731 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
732 			rum_update_slot(sc);
733 			rum_enable_mrr(sc);
734 			rum_set_txpreamble(sc);
735 			rum_set_basicrates(sc);
736 			rum_set_bssid(sc, ni->ni_bssid);
737 		}
738 
739 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
740 		    ic->ic_opmode == IEEE80211_M_IBSS)
741 			rum_prepare_beacon(sc);
742 
743 		if (ic->ic_opmode != IEEE80211_M_MONITOR)
744 			rum_enable_tsf_sync(sc);
745 
746 		if (ic->ic_opmode == IEEE80211_M_STA) {
747 			/* fake a join to init the tx rate */
748 			rum_newassoc(ic->ic_bss, 1);
749 
750 			/* enable automatic rate adaptation in STA mode */
751 			if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
752 				rum_amrr_start(sc, ni);
753 		}
754 
755 		break;
756 	}
757 
758 	sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
759 }
760 
761 static int
762 rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
763 {
764 	struct rum_softc *sc = ic->ic_ifp->if_softc;
765 
766 	usb_rem_task(sc->sc_udev, &sc->sc_task);
767 	callout_stop(&sc->sc_scan_ch);
768 	callout_stop(&sc->sc_amrr_ch);
769 
770 	/* do it in a process context */
771 	sc->sc_state = nstate;
772 	sc->sc_arg = arg;
773 	usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
774 
775 	return 0;
776 }
777 
778 /* quickly determine if a given rate is CCK or OFDM */
779 #define RUM_RATE_IS_OFDM(rate)	((rate) >= 12 && (rate) != 22)
780 
781 #define RUM_ACK_SIZE	14	/* 10 + 4(FCS) */
782 #define RUM_CTS_SIZE	14	/* 10 + 4(FCS) */
783 
784 static void
785 rum_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
786 {
787 	struct rum_tx_data *data = priv;
788 	struct rum_softc *sc = data->sc;
789 	struct ifnet *ifp = &sc->sc_if;
790 	int s;
791 
792 	if (status != USBD_NORMAL_COMPLETION) {
793 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
794 			return;
795 
796 		printf("%s: could not transmit buffer: %s\n",
797 		    device_xname(sc->sc_dev), usbd_errstr(status));
798 
799 		if (status == USBD_STALLED)
800 			usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
801 
802 		ifp->if_oerrors++;
803 		return;
804 	}
805 
806 	s = splnet();
807 
808 	ieee80211_free_node(data->ni);
809 	data->ni = NULL;
810 
811 	sc->tx_queued--;
812 	ifp->if_opackets++;
813 
814 	DPRINTFN(10, ("tx done\n"));
815 
816 	sc->sc_tx_timer = 0;
817 	ifp->if_flags &= ~IFF_OACTIVE;
818 	rum_start(ifp);
819 
820 	splx(s);
821 }
822 
823 static void
824 rum_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
825 {
826 	struct rum_rx_data *data = priv;
827 	struct rum_softc *sc = data->sc;
828 	struct ieee80211com *ic = &sc->sc_ic;
829 	struct ifnet *ifp = &sc->sc_if;
830 	struct rum_rx_desc *desc;
831 	struct ieee80211_frame *wh;
832 	struct ieee80211_node *ni;
833 	struct mbuf *mnew, *m;
834 	int s, len;
835 
836 	if (status != USBD_NORMAL_COMPLETION) {
837 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
838 			return;
839 
840 		if (status == USBD_STALLED)
841 			usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
842 		goto skip;
843 	}
844 
845 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
846 
847 	if (len < (int)(RT2573_RX_DESC_SIZE +
848 		        sizeof(struct ieee80211_frame_min))) {
849 		DPRINTF(("%s: xfer too short %d\n", device_xname(sc->sc_dev),
850 		    len));
851 		ifp->if_ierrors++;
852 		goto skip;
853 	}
854 
855 	desc = (struct rum_rx_desc *)data->buf;
856 
857 	if (le32toh(desc->flags) & RT2573_RX_CRC_ERROR) {
858 		/*
859 		 * This should not happen since we did not request to receive
860 		 * those frames when we filled RT2573_TXRX_CSR0.
861 		 */
862 		DPRINTFN(5, ("CRC error\n"));
863 		ifp->if_ierrors++;
864 		goto skip;
865 	}
866 
867 	MGETHDR(mnew, M_DONTWAIT, MT_DATA);
868 	if (mnew == NULL) {
869 		printf("%s: could not allocate rx mbuf\n",
870 		    device_xname(sc->sc_dev));
871 		ifp->if_ierrors++;
872 		goto skip;
873 	}
874 
875 	MCLGET(mnew, M_DONTWAIT);
876 	if (!(mnew->m_flags & M_EXT)) {
877 		printf("%s: could not allocate rx mbuf cluster\n",
878 		    device_xname(sc->sc_dev));
879 		m_freem(mnew);
880 		ifp->if_ierrors++;
881 		goto skip;
882 	}
883 
884 	m = data->m;
885 	data->m = mnew;
886 	data->buf = mtod(data->m, uint8_t *);
887 
888 	/* finalize mbuf */
889 	m->m_pkthdr.rcvif = ifp;
890 	m->m_data = (void *)(desc + 1);
891 	m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
892 
893 	s = splnet();
894 
895 	if (sc->sc_drvbpf != NULL) {
896 		struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
897 
898 		tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
899 		tap->wr_rate = rum_rxrate(desc);
900 		tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
901 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
902 		tap->wr_antenna = sc->rx_ant;
903 		tap->wr_antsignal = desc->rssi;
904 
905 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
906 	}
907 
908 	wh = mtod(m, struct ieee80211_frame *);
909 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
910 
911 	/* send the frame to the 802.11 layer */
912 	ieee80211_input(ic, m, ni, desc->rssi, 0);
913 
914 	/* node is no longer needed */
915 	ieee80211_free_node(ni);
916 
917 	splx(s);
918 
919 	DPRINTFN(15, ("rx done\n"));
920 
921 skip:	/* setup a new transfer */
922 	usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES,
923 	    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
924 	usbd_transfer(xfer);
925 }
926 
927 /*
928  * This function is only used by the Rx radiotap code. It returns the rate at
929  * which a given frame was received.
930  */
931 static uint8_t
932 rum_rxrate(const struct rum_rx_desc *desc)
933 {
934 	if (le32toh(desc->flags) & RT2573_RX_OFDM) {
935 		/* reverse function of rum_plcp_signal */
936 		switch (desc->rate) {
937 		case 0xb:	return 12;
938 		case 0xf:	return 18;
939 		case 0xa:	return 24;
940 		case 0xe:	return 36;
941 		case 0x9:	return 48;
942 		case 0xd:	return 72;
943 		case 0x8:	return 96;
944 		case 0xc:	return 108;
945 		}
946 	} else {
947 		if (desc->rate == 10)
948 			return 2;
949 		if (desc->rate == 20)
950 			return 4;
951 		if (desc->rate == 55)
952 			return 11;
953 		if (desc->rate == 110)
954 			return 22;
955 	}
956 	return 2;	/* should not get there */
957 }
958 
959 /*
960  * Return the expected ack rate for a frame transmitted at rate `rate'.
961  * XXX: this should depend on the destination node basic rate set.
962  */
963 static int
964 rum_ack_rate(struct ieee80211com *ic, int rate)
965 {
966 	switch (rate) {
967 	/* CCK rates */
968 	case 2:
969 		return 2;
970 	case 4:
971 	case 11:
972 	case 22:
973 		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
974 
975 	/* OFDM rates */
976 	case 12:
977 	case 18:
978 		return 12;
979 	case 24:
980 	case 36:
981 		return 24;
982 	case 48:
983 	case 72:
984 	case 96:
985 	case 108:
986 		return 48;
987 	}
988 
989 	/* default to 1Mbps */
990 	return 2;
991 }
992 
993 /*
994  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
995  * The function automatically determines the operating mode depending on the
996  * given rate. `flags' indicates whether short preamble is in use or not.
997  */
998 static uint16_t
999 rum_txtime(int len, int rate, uint32_t flags)
1000 {
1001 	uint16_t txtime;
1002 
1003 	if (RUM_RATE_IS_OFDM(rate)) {
1004 		/* IEEE Std 802.11a-1999, pp. 37 */
1005 		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1006 		txtime = 16 + 4 + 4 * txtime + 6;
1007 	} else {
1008 		/* IEEE Std 802.11b-1999, pp. 28 */
1009 		txtime = (16 * len + rate - 1) / rate;
1010 		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1011 			txtime +=  72 + 24;
1012 		else
1013 			txtime += 144 + 48;
1014 	}
1015 	return txtime;
1016 }
1017 
1018 static uint8_t
1019 rum_plcp_signal(int rate)
1020 {
1021 	switch (rate) {
1022 	/* CCK rates (returned values are device-dependent) */
1023 	case 2:		return 0x0;
1024 	case 4:		return 0x1;
1025 	case 11:	return 0x2;
1026 	case 22:	return 0x3;
1027 
1028 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1029 	case 12:	return 0xb;
1030 	case 18:	return 0xf;
1031 	case 24:	return 0xa;
1032 	case 36:	return 0xe;
1033 	case 48:	return 0x9;
1034 	case 72:	return 0xd;
1035 	case 96:	return 0x8;
1036 	case 108:	return 0xc;
1037 
1038 	/* unsupported rates (should not get there) */
1039 	default:	return 0xff;
1040 	}
1041 }
1042 
1043 static void
1044 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
1045     uint32_t flags, uint16_t xflags, int len, int rate)
1046 {
1047 	struct ieee80211com *ic = &sc->sc_ic;
1048 	uint16_t plcp_length;
1049 	int remainder;
1050 
1051 	desc->flags = htole32(flags);
1052 	desc->flags |= htole32(RT2573_TX_VALID);
1053 	desc->flags |= htole32(len << 16);
1054 
1055 	desc->xflags = htole16(xflags);
1056 
1057 	desc->wme = htole16(
1058 	    RT2573_QID(0) |
1059 	    RT2573_AIFSN(2) |
1060 	    RT2573_LOGCWMIN(4) |
1061 	    RT2573_LOGCWMAX(10));
1062 
1063 	/* setup PLCP fields */
1064 	desc->plcp_signal  = rum_plcp_signal(rate);
1065 	desc->plcp_service = 4;
1066 
1067 	len += IEEE80211_CRC_LEN;
1068 	if (RUM_RATE_IS_OFDM(rate)) {
1069 		desc->flags |= htole32(RT2573_TX_OFDM);
1070 
1071 		plcp_length = len & 0xfff;
1072 		desc->plcp_length_hi = plcp_length >> 6;
1073 		desc->plcp_length_lo = plcp_length & 0x3f;
1074 	} else {
1075 		plcp_length = (16 * len + rate - 1) / rate;
1076 		if (rate == 22) {
1077 			remainder = (16 * len) % 22;
1078 			if (remainder != 0 && remainder < 7)
1079 				desc->plcp_service |= RT2573_PLCP_LENGEXT;
1080 		}
1081 		desc->plcp_length_hi = plcp_length >> 8;
1082 		desc->plcp_length_lo = plcp_length & 0xff;
1083 
1084 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1085 			desc->plcp_signal |= 0x08;
1086 	}
1087 }
1088 
1089 #define RUM_TX_TIMEOUT	5000
1090 
1091 static int
1092 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1093 {
1094 	struct ieee80211com *ic = &sc->sc_ic;
1095 	struct rum_tx_desc *desc;
1096 	struct rum_tx_data *data;
1097 	struct ieee80211_frame *wh;
1098 	struct ieee80211_key *k;
1099 	uint32_t flags = 0;
1100 	uint16_t dur;
1101 	usbd_status error;
1102 	int rate, xferlen, pktlen, needrts = 0, needcts = 0;
1103 
1104 	wh = mtod(m0, struct ieee80211_frame *);
1105 
1106 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1107 		k = ieee80211_crypto_encap(ic, ni, m0);
1108 		if (k == NULL) {
1109 			m_freem(m0);
1110 			return ENOBUFS;
1111 		}
1112 
1113 		/* packet header may have moved, reset our local pointer */
1114 		wh = mtod(m0, struct ieee80211_frame *);
1115 	}
1116 
1117 	/* compute actual packet length (including CRC and crypto overhead) */
1118 	pktlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
1119 
1120 	/* pickup a rate */
1121 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
1122 	    ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1123 	     IEEE80211_FC0_TYPE_MGT)) {
1124 		/* mgmt/multicast frames are sent at the lowest avail. rate */
1125 		rate = ni->ni_rates.rs_rates[0];
1126 	} else if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
1127 		rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
1128 	} else
1129 		rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1130 	if (rate == 0)
1131 		rate = 2;	/* XXX should not happen */
1132 	rate &= IEEE80211_RATE_VAL;
1133 
1134 	/* check if RTS/CTS or CTS-to-self protection must be used */
1135 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1136 		/* multicast frames are not sent at OFDM rates in 802.11b/g */
1137 		if (pktlen > ic->ic_rtsthreshold) {
1138 			needrts = 1;	/* RTS/CTS based on frame length */
1139 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1140 		    RUM_RATE_IS_OFDM(rate)) {
1141 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
1142 				needcts = 1;	/* CTS-to-self */
1143 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
1144 				needrts = 1;	/* RTS/CTS */
1145 		}
1146 	}
1147 	if (needrts || needcts) {
1148 		struct mbuf *mprot;
1149 		int protrate, ackrate;
1150 
1151 		protrate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1152 		ackrate  = rum_ack_rate(ic, rate);
1153 
1154 		dur = rum_txtime(pktlen, rate, ic->ic_flags) +
1155 		      rum_txtime(RUM_ACK_SIZE, ackrate, ic->ic_flags) +
1156 		      2 * sc->sifs;
1157 		if (needrts) {
1158 			dur += rum_txtime(RUM_CTS_SIZE, rum_ack_rate(ic,
1159 			    protrate), ic->ic_flags) + sc->sifs;
1160 			mprot = ieee80211_get_rts(ic, wh, dur);
1161 		} else {
1162 			mprot = ieee80211_get_cts_to_self(ic, dur);
1163 		}
1164 		if (mprot == NULL) {
1165 			aprint_error_dev(sc->sc_dev,
1166 			    "couldn't allocate protection frame\n");
1167 			m_freem(m0);
1168 			return ENOBUFS;
1169 		}
1170 
1171 		data = &sc->tx_data[sc->tx_cur];
1172 		desc = (struct rum_tx_desc *)data->buf;
1173 
1174 		/* avoid multiple free() of the same node for each fragment */
1175 		data->ni = ieee80211_ref_node(ni);
1176 
1177 		m_copydata(mprot, 0, mprot->m_pkthdr.len,
1178 		    data->buf + RT2573_TX_DESC_SIZE);
1179 		rum_setup_tx_desc(sc, desc,
1180 		    (needrts ? RT2573_TX_NEED_ACK : 0) | RT2573_TX_MORE_FRAG,
1181 		    0, mprot->m_pkthdr.len, protrate);
1182 
1183 		/* no roundup necessary here */
1184 		xferlen = RT2573_TX_DESC_SIZE + mprot->m_pkthdr.len;
1185 
1186 		/* XXX may want to pass the protection frame to BPF */
1187 
1188 		/* mbuf is no longer needed */
1189 		m_freem(mprot);
1190 
1191 		usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf,
1192 		    xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY,
1193 		    RUM_TX_TIMEOUT, rum_txeof);
1194 		error = usbd_transfer(data->xfer);
1195 		if (error != USBD_NORMAL_COMPLETION &&
1196 		    error != USBD_IN_PROGRESS) {
1197 			m_freem(m0);
1198 			return error;
1199 		}
1200 
1201 		sc->tx_queued++;
1202 		sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT;
1203 
1204 		flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS;
1205 	}
1206 
1207 	data = &sc->tx_data[sc->tx_cur];
1208 	desc = (struct rum_tx_desc *)data->buf;
1209 
1210 	data->ni = ni;
1211 
1212 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1213 		flags |= RT2573_TX_NEED_ACK;
1214 
1215 		dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
1216 		    ic->ic_flags) + sc->sifs;
1217 		*(uint16_t *)wh->i_dur = htole16(dur);
1218 
1219 		/* tell hardware to set timestamp in probe responses */
1220 		if ((wh->i_fc[0] &
1221 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1222 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1223 			flags |= RT2573_TX_TIMESTAMP;
1224 	}
1225 
1226 	if (sc->sc_drvbpf != NULL) {
1227 		struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1228 
1229 		tap->wt_flags = 0;
1230 		tap->wt_rate = rate;
1231 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1232 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1233 		tap->wt_antenna = sc->tx_ant;
1234 
1235 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1236 	}
1237 
1238 	m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
1239 	rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1240 
1241 	/* align end on a 4-bytes boundary */
1242 	xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1243 
1244 	/*
1245 	 * No space left in the last URB to store the extra 4 bytes, force
1246 	 * sending of another URB.
1247 	 */
1248 	if ((xferlen % 64) == 0)
1249 		xferlen += 4;
1250 
1251 	DPRINTFN(10, ("sending data frame len=%zu rate=%u xfer len=%u\n",
1252 	    (size_t)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE,
1253 	    rate, xferlen));
1254 
1255 	/* mbuf is no longer needed */
1256 	m_freem(m0);
1257 
1258 	usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen,
1259 	    USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof);
1260 	error = usbd_transfer(data->xfer);
1261 	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
1262 		return error;
1263 
1264 	sc->tx_queued++;
1265 	sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT;
1266 
1267 	return 0;
1268 }
1269 
1270 static void
1271 rum_start(struct ifnet *ifp)
1272 {
1273 	struct rum_softc *sc = ifp->if_softc;
1274 	struct ieee80211com *ic = &sc->sc_ic;
1275 	struct ether_header *eh;
1276 	struct ieee80211_node *ni;
1277 	struct mbuf *m0;
1278 
1279 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1280 		return;
1281 
1282 	for (;;) {
1283 		IF_POLL(&ic->ic_mgtq, m0);
1284 		if (m0 != NULL) {
1285 			if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) {
1286 				ifp->if_flags |= IFF_OACTIVE;
1287 				break;
1288 			}
1289 			IF_DEQUEUE(&ic->ic_mgtq, m0);
1290 
1291 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1292 			m0->m_pkthdr.rcvif = NULL;
1293 			bpf_mtap3(ic->ic_rawbpf, m0);
1294 			if (rum_tx_data(sc, m0, ni) != 0)
1295 				break;
1296 
1297 		} else {
1298 			if (ic->ic_state != IEEE80211_S_RUN)
1299 				break;
1300 			IFQ_POLL(&ifp->if_snd, m0);
1301 			if (m0 == NULL)
1302 				break;
1303 			if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) {
1304 				ifp->if_flags |= IFF_OACTIVE;
1305 				break;
1306 			}
1307 			IFQ_DEQUEUE(&ifp->if_snd, m0);
1308 			if (m0->m_len < (int)sizeof(struct ether_header) &&
1309 			    !(m0 = m_pullup(m0, sizeof(struct ether_header))))
1310 				continue;
1311 
1312 			eh = mtod(m0, struct ether_header *);
1313 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1314 			if (ni == NULL) {
1315 				m_freem(m0);
1316 				continue;
1317 			}
1318 			bpf_mtap(ifp, m0);
1319 			m0 = ieee80211_encap(ic, m0, ni);
1320 			if (m0 == NULL) {
1321 				ieee80211_free_node(ni);
1322 				continue;
1323 			}
1324 			bpf_mtap3(ic->ic_rawbpf, m0);
1325 			if (rum_tx_data(sc, m0, ni) != 0) {
1326 				ieee80211_free_node(ni);
1327 				ifp->if_oerrors++;
1328 				break;
1329 			}
1330 		}
1331 
1332 		sc->sc_tx_timer = 5;
1333 		ifp->if_timer = 1;
1334 	}
1335 }
1336 
1337 static void
1338 rum_watchdog(struct ifnet *ifp)
1339 {
1340 	struct rum_softc *sc = ifp->if_softc;
1341 	struct ieee80211com *ic = &sc->sc_ic;
1342 
1343 	ifp->if_timer = 0;
1344 
1345 	if (sc->sc_tx_timer > 0) {
1346 		if (--sc->sc_tx_timer == 0) {
1347 			printf("%s: device timeout\n", device_xname(sc->sc_dev));
1348 			/*rum_init(ifp); XXX needs a process context! */
1349 			ifp->if_oerrors++;
1350 			return;
1351 		}
1352 		ifp->if_timer = 1;
1353 	}
1354 
1355 	ieee80211_watchdog(ic);
1356 }
1357 
1358 static int
1359 rum_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1360 {
1361 #define IS_RUNNING(ifp) \
1362 	(((ifp)->if_flags & IFF_UP) && ((ifp)->if_flags & IFF_RUNNING))
1363 
1364 	struct rum_softc *sc = ifp->if_softc;
1365 	struct ieee80211com *ic = &sc->sc_ic;
1366 	int s, error = 0;
1367 
1368 	s = splnet();
1369 
1370 	switch (cmd) {
1371 	case SIOCSIFFLAGS:
1372 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1373 			break;
1374 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
1375 		case IFF_UP|IFF_RUNNING:
1376 			rum_update_promisc(sc);
1377 			break;
1378 		case IFF_UP:
1379 			rum_init(ifp);
1380 			break;
1381 		case IFF_RUNNING:
1382 			rum_stop(ifp, 1);
1383 			break;
1384 		case 0:
1385 			break;
1386 		}
1387 		break;
1388 
1389 	case SIOCADDMULTI:
1390 	case SIOCDELMULTI:
1391 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1392 			error = 0;
1393 		}
1394 		break;
1395 
1396 	default:
1397 		error = ieee80211_ioctl(ic, cmd, data);
1398 	}
1399 
1400 	if (error == ENETRESET) {
1401 		if (IS_RUNNING(ifp) &&
1402 			(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
1403 			rum_init(ifp);
1404 		error = 0;
1405 	}
1406 
1407 	splx(s);
1408 
1409 	return error;
1410 #undef IS_RUNNING
1411 }
1412 
1413 static void
1414 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
1415 {
1416 	usb_device_request_t req;
1417 	usbd_status error;
1418 
1419 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1420 	req.bRequest = RT2573_READ_EEPROM;
1421 	USETW(req.wValue, 0);
1422 	USETW(req.wIndex, addr);
1423 	USETW(req.wLength, len);
1424 
1425 	error = usbd_do_request(sc->sc_udev, &req, buf);
1426 	if (error != 0) {
1427 		printf("%s: could not read EEPROM: %s\n",
1428 		    device_xname(sc->sc_dev), usbd_errstr(error));
1429 	}
1430 }
1431 
1432 static uint32_t
1433 rum_read(struct rum_softc *sc, uint16_t reg)
1434 {
1435 	uint32_t val;
1436 
1437 	rum_read_multi(sc, reg, &val, sizeof val);
1438 
1439 	return le32toh(val);
1440 }
1441 
1442 static void
1443 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
1444 {
1445 	usb_device_request_t req;
1446 	usbd_status error;
1447 
1448 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1449 	req.bRequest = RT2573_READ_MULTI_MAC;
1450 	USETW(req.wValue, 0);
1451 	USETW(req.wIndex, reg);
1452 	USETW(req.wLength, len);
1453 
1454 	error = usbd_do_request(sc->sc_udev, &req, buf);
1455 	if (error != 0) {
1456 		printf("%s: could not multi read MAC register: %s\n",
1457 		    device_xname(sc->sc_dev), usbd_errstr(error));
1458 	}
1459 }
1460 
1461 static void
1462 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
1463 {
1464 	uint32_t tmp = htole32(val);
1465 
1466 	rum_write_multi(sc, reg, &tmp, sizeof tmp);
1467 }
1468 
1469 static void
1470 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
1471 {
1472 	usb_device_request_t req;
1473 	usbd_status error;
1474 
1475 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1476 	req.bRequest = RT2573_WRITE_MULTI_MAC;
1477 	USETW(req.wValue, 0);
1478 	USETW(req.wIndex, reg);
1479 	USETW(req.wLength, len);
1480 
1481 	error = usbd_do_request(sc->sc_udev, &req, buf);
1482 	if (error != 0) {
1483 		printf("%s: could not multi write MAC register: %s\n",
1484 		    device_xname(sc->sc_dev), usbd_errstr(error));
1485 	}
1486 }
1487 
1488 static void
1489 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
1490 {
1491 	uint32_t tmp;
1492 	int ntries;
1493 
1494 	for (ntries = 0; ntries < 5; ntries++) {
1495 		if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1496 			break;
1497 	}
1498 	if (ntries == 5) {
1499 		printf("%s: could not write to BBP\n", device_xname(sc->sc_dev));
1500 		return;
1501 	}
1502 
1503 	tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
1504 	rum_write(sc, RT2573_PHY_CSR3, tmp);
1505 }
1506 
1507 static uint8_t
1508 rum_bbp_read(struct rum_softc *sc, uint8_t reg)
1509 {
1510 	uint32_t val;
1511 	int ntries;
1512 
1513 	for (ntries = 0; ntries < 5; ntries++) {
1514 		if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1515 			break;
1516 	}
1517 	if (ntries == 5) {
1518 		printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
1519 		return 0;
1520 	}
1521 
1522 	val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
1523 	rum_write(sc, RT2573_PHY_CSR3, val);
1524 
1525 	for (ntries = 0; ntries < 100; ntries++) {
1526 		val = rum_read(sc, RT2573_PHY_CSR3);
1527 		if (!(val & RT2573_BBP_BUSY))
1528 			return val & 0xff;
1529 		DELAY(1);
1530 	}
1531 
1532 	printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
1533 	return 0;
1534 }
1535 
1536 static void
1537 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
1538 {
1539 	uint32_t tmp;
1540 	int ntries;
1541 
1542 	for (ntries = 0; ntries < 5; ntries++) {
1543 		if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
1544 			break;
1545 	}
1546 	if (ntries == 5) {
1547 		printf("%s: could not write to RF\n", device_xname(sc->sc_dev));
1548 		return;
1549 	}
1550 
1551 	tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
1552 	    (reg & 3);
1553 	rum_write(sc, RT2573_PHY_CSR4, tmp);
1554 
1555 	/* remember last written value in sc */
1556 	sc->rf_regs[reg] = val;
1557 
1558 	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff));
1559 }
1560 
1561 static void
1562 rum_select_antenna(struct rum_softc *sc)
1563 {
1564 	uint8_t bbp4, bbp77;
1565 	uint32_t tmp;
1566 
1567 	bbp4  = rum_bbp_read(sc, 4);
1568 	bbp77 = rum_bbp_read(sc, 77);
1569 
1570 	/* TBD */
1571 
1572 	/* make sure Rx is disabled before switching antenna */
1573 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
1574 	rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
1575 
1576 	rum_bbp_write(sc,  4, bbp4);
1577 	rum_bbp_write(sc, 77, bbp77);
1578 
1579 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
1580 }
1581 
1582 /*
1583  * Enable multi-rate retries for frames sent at OFDM rates.
1584  * In 802.11b/g mode, allow fallback to CCK rates.
1585  */
1586 static void
1587 rum_enable_mrr(struct rum_softc *sc)
1588 {
1589 	struct ieee80211com *ic = &sc->sc_ic;
1590 	uint32_t tmp;
1591 
1592 	tmp = rum_read(sc, RT2573_TXRX_CSR4);
1593 
1594 	tmp &= ~RT2573_MRR_CCK_FALLBACK;
1595 	if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
1596 		tmp |= RT2573_MRR_CCK_FALLBACK;
1597 	tmp |= RT2573_MRR_ENABLED;
1598 
1599 	rum_write(sc, RT2573_TXRX_CSR4, tmp);
1600 }
1601 
1602 static void
1603 rum_set_txpreamble(struct rum_softc *sc)
1604 {
1605 	uint32_t tmp;
1606 
1607 	tmp = rum_read(sc, RT2573_TXRX_CSR4);
1608 
1609 	tmp &= ~RT2573_SHORT_PREAMBLE;
1610 	if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1611 		tmp |= RT2573_SHORT_PREAMBLE;
1612 
1613 	rum_write(sc, RT2573_TXRX_CSR4, tmp);
1614 }
1615 
1616 static void
1617 rum_set_basicrates(struct rum_softc *sc)
1618 {
1619 	struct ieee80211com *ic = &sc->sc_ic;
1620 
1621 	/* update basic rate set */
1622 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1623 		/* 11b basic rates: 1, 2Mbps */
1624 		rum_write(sc, RT2573_TXRX_CSR5, 0x3);
1625 	} else if (ic->ic_curmode == IEEE80211_MODE_11A) {
1626 		/* 11a basic rates: 6, 12, 24Mbps */
1627 		rum_write(sc, RT2573_TXRX_CSR5, 0x150);
1628 	} else {
1629 		/* 11b/g basic rates: 1, 2, 5.5, 11Mbps */
1630 		rum_write(sc, RT2573_TXRX_CSR5, 0xf);
1631 	}
1632 }
1633 
1634 /*
1635  * Reprogram MAC/BBP to switch to a new band.  Values taken from the reference
1636  * driver.
1637  */
1638 static void
1639 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
1640 {
1641 	uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
1642 	uint32_t tmp;
1643 
1644 	/* update all BBP registers that depend on the band */
1645 	bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
1646 	bbp35 = 0x50; bbp97 = 0x48; bbp98  = 0x48;
1647 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
1648 		bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
1649 		bbp35 += 0x10; bbp97 += 0x10; bbp98  += 0x10;
1650 	}
1651 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1652 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1653 		bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
1654 	}
1655 
1656 	sc->bbp17 = bbp17;
1657 	rum_bbp_write(sc,  17, bbp17);
1658 	rum_bbp_write(sc,  96, bbp96);
1659 	rum_bbp_write(sc, 104, bbp104);
1660 
1661 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1662 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1663 		rum_bbp_write(sc, 75, 0x80);
1664 		rum_bbp_write(sc, 86, 0x80);
1665 		rum_bbp_write(sc, 88, 0x80);
1666 	}
1667 
1668 	rum_bbp_write(sc, 35, bbp35);
1669 	rum_bbp_write(sc, 97, bbp97);
1670 	rum_bbp_write(sc, 98, bbp98);
1671 
1672 	tmp = rum_read(sc, RT2573_PHY_CSR0);
1673 	tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ);
1674 	if (IEEE80211_IS_CHAN_2GHZ(c))
1675 		tmp |= RT2573_PA_PE_2GHZ;
1676 	else
1677 		tmp |= RT2573_PA_PE_5GHZ;
1678 	rum_write(sc, RT2573_PHY_CSR0, tmp);
1679 
1680 	/* 802.11a uses a 16 microseconds short interframe space */
1681 	sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
1682 }
1683 
1684 static void
1685 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
1686 {
1687 	struct ieee80211com *ic = &sc->sc_ic;
1688 	const struct rfprog *rfprog;
1689 	uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
1690 	int8_t power;
1691 	u_int i, chan;
1692 
1693 	chan = ieee80211_chan2ieee(ic, c);
1694 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1695 		return;
1696 
1697 	/* select the appropriate RF settings based on what EEPROM says */
1698 	rfprog = (sc->rf_rev == RT2573_RF_5225 ||
1699 		  sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
1700 
1701 	/* find the settings for this channel (we know it exists) */
1702 	for (i = 0; rfprog[i].chan != chan; i++);
1703 
1704 	power = sc->txpow[i];
1705 	if (power < 0) {
1706 		bbp94 += power;
1707 		power = 0;
1708 	} else if (power > 31) {
1709 		bbp94 += power - 31;
1710 		power = 31;
1711 	}
1712 
1713 	/*
1714 	 * If we are switching from the 2GHz band to the 5GHz band or
1715 	 * vice-versa, BBP registers need to be reprogrammed.
1716 	 */
1717 	if (c->ic_flags != ic->ic_curchan->ic_flags) {
1718 		rum_select_band(sc, c);
1719 		rum_select_antenna(sc);
1720 	}
1721 	ic->ic_curchan = c;
1722 
1723 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1724 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1725 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1726 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1727 
1728 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1729 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1730 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
1731 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1732 
1733 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1734 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1735 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1736 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1737 
1738 	DELAY(10);
1739 
1740 	/* enable smart mode for MIMO-capable RFs */
1741 	bbp3 = rum_bbp_read(sc, 3);
1742 
1743 	bbp3 &= ~RT2573_SMART_MODE;
1744 	if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
1745 		bbp3 |= RT2573_SMART_MODE;
1746 
1747 	rum_bbp_write(sc, 3, bbp3);
1748 
1749 	if (bbp94 != RT2573_BBPR94_DEFAULT)
1750 		rum_bbp_write(sc, 94, bbp94);
1751 }
1752 
1753 /*
1754  * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
1755  * and HostAP operating modes.
1756  */
1757 static void
1758 rum_enable_tsf_sync(struct rum_softc *sc)
1759 {
1760 	struct ieee80211com *ic = &sc->sc_ic;
1761 	uint32_t tmp;
1762 
1763 	if (ic->ic_opmode != IEEE80211_M_STA) {
1764 		/*
1765 		 * Change default 16ms TBTT adjustment to 8ms.
1766 		 * Must be done before enabling beacon generation.
1767 		 */
1768 		rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8);
1769 	}
1770 
1771 	tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
1772 
1773 	/* set beacon interval (in 1/16ms unit) */
1774 	tmp |= ic->ic_bss->ni_intval * 16;
1775 
1776 	tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT;
1777 	if (ic->ic_opmode == IEEE80211_M_STA)
1778 		tmp |= RT2573_TSF_MODE(1);
1779 	else
1780 		tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON;
1781 
1782 	rum_write(sc, RT2573_TXRX_CSR9, tmp);
1783 }
1784 
1785 static void
1786 rum_update_slot(struct rum_softc *sc)
1787 {
1788 	struct ieee80211com *ic = &sc->sc_ic;
1789 	uint8_t slottime;
1790 	uint32_t tmp;
1791 
1792 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1793 
1794 	tmp = rum_read(sc, RT2573_MAC_CSR9);
1795 	tmp = (tmp & ~0xff) | slottime;
1796 	rum_write(sc, RT2573_MAC_CSR9, tmp);
1797 
1798 	DPRINTF(("setting slot time to %uus\n", slottime));
1799 }
1800 
1801 static void
1802 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
1803 {
1804 	uint32_t tmp;
1805 
1806 	tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
1807 	rum_write(sc, RT2573_MAC_CSR4, tmp);
1808 
1809 	tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16;
1810 	rum_write(sc, RT2573_MAC_CSR5, tmp);
1811 }
1812 
1813 static void
1814 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
1815 {
1816 	uint32_t tmp;
1817 
1818 	tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
1819 	rum_write(sc, RT2573_MAC_CSR2, tmp);
1820 
1821 	tmp = addr[4] | addr[5] << 8 | 0xff << 16;
1822 	rum_write(sc, RT2573_MAC_CSR3, tmp);
1823 }
1824 
1825 static void
1826 rum_update_promisc(struct rum_softc *sc)
1827 {
1828 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1829 	uint32_t tmp;
1830 
1831 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
1832 
1833 	tmp &= ~RT2573_DROP_NOT_TO_ME;
1834 	if (!(ifp->if_flags & IFF_PROMISC))
1835 		tmp |= RT2573_DROP_NOT_TO_ME;
1836 
1837 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
1838 
1839 	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1840 	    "entering" : "leaving"));
1841 }
1842 
1843 static const char *
1844 rum_get_rf(int rev)
1845 {
1846 	switch (rev) {
1847 	case RT2573_RF_2527:	return "RT2527 (MIMO XR)";
1848 	case RT2573_RF_2528:	return "RT2528";
1849 	case RT2573_RF_5225:	return "RT5225 (MIMO XR)";
1850 	case RT2573_RF_5226:	return "RT5226";
1851 	default:		return "unknown";
1852 	}
1853 }
1854 
1855 static void
1856 rum_read_eeprom(struct rum_softc *sc)
1857 {
1858 	struct ieee80211com *ic = &sc->sc_ic;
1859 	uint16_t val;
1860 #ifdef RUM_DEBUG
1861 	int i;
1862 #endif
1863 
1864 	/* read MAC/BBP type */
1865 	rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2);
1866 	sc->macbbp_rev = le16toh(val);
1867 
1868 	/* read MAC address */
1869 	rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6);
1870 
1871 	rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
1872 	val = le16toh(val);
1873 	sc->rf_rev =   (val >> 11) & 0x1f;
1874 	sc->hw_radio = (val >> 10) & 0x1;
1875 	sc->rx_ant =   (val >> 4)  & 0x3;
1876 	sc->tx_ant =   (val >> 2)  & 0x3;
1877 	sc->nb_ant =   val & 0x3;
1878 
1879 	DPRINTF(("RF revision=%d\n", sc->rf_rev));
1880 
1881 	rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
1882 	val = le16toh(val);
1883 	sc->ext_5ghz_lna = (val >> 6) & 0x1;
1884 	sc->ext_2ghz_lna = (val >> 4) & 0x1;
1885 
1886 	DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
1887 	    sc->ext_2ghz_lna, sc->ext_5ghz_lna));
1888 
1889 	rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
1890 	val = le16toh(val);
1891 	if ((val & 0xff) != 0xff)
1892 		sc->rssi_2ghz_corr = (int8_t)(val & 0xff);	/* signed */
1893 
1894 	rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
1895 	val = le16toh(val);
1896 	if ((val & 0xff) != 0xff)
1897 		sc->rssi_5ghz_corr = (int8_t)(val & 0xff);	/* signed */
1898 
1899 	DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
1900 	    sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
1901 
1902 	rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
1903 	val = le16toh(val);
1904 	if ((val & 0xff) != 0xff)
1905 		sc->rffreq = val & 0xff;
1906 
1907 	DPRINTF(("RF freq=%d\n", sc->rffreq));
1908 
1909 	/* read Tx power for all a/b/g channels */
1910 	rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
1911 	/* XXX default Tx power for 802.11a channels */
1912 	memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14);
1913 #ifdef RUM_DEBUG
1914 	for (i = 0; i < 14; i++)
1915 		DPRINTF(("Channel=%d Tx power=%d\n", i + 1,  sc->txpow[i]));
1916 #endif
1917 
1918 	/* read default values for BBP registers */
1919 	rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1920 #ifdef RUM_DEBUG
1921 	for (i = 0; i < 14; i++) {
1922 		if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1923 			continue;
1924 		DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
1925 		    sc->bbp_prom[i].val));
1926 	}
1927 #endif
1928 }
1929 
1930 static int
1931 rum_bbp_init(struct rum_softc *sc)
1932 {
1933 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
1934 	unsigned int i, ntries;
1935 	uint8_t val;
1936 
1937 	/* wait for BBP to be ready */
1938 	for (ntries = 0; ntries < 100; ntries++) {
1939 		val = rum_bbp_read(sc, 0);
1940 		if (val != 0 && val != 0xff)
1941 			break;
1942 		DELAY(1000);
1943 	}
1944 	if (ntries == 100) {
1945 		printf("%s: timeout waiting for BBP\n",
1946 		    device_xname(sc->sc_dev));
1947 		return EIO;
1948 	}
1949 
1950 	/* initialize BBP registers to default values */
1951 	for (i = 0; i < N(rum_def_bbp); i++)
1952 		rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
1953 
1954 	/* write vendor-specific BBP values (from EEPROM) */
1955 	for (i = 0; i < 16; i++) {
1956 		if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1957 			continue;
1958 		rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
1959 	}
1960 
1961 	return 0;
1962 #undef N
1963 }
1964 
1965 static int
1966 rum_init(struct ifnet *ifp)
1967 {
1968 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
1969 	struct rum_softc *sc = ifp->if_softc;
1970 	struct ieee80211com *ic = &sc->sc_ic;
1971 	struct rum_rx_data *data;
1972 	uint32_t tmp;
1973 	usbd_status error = 0;
1974 	unsigned int i, ntries;
1975 
1976 	if ((sc->sc_flags & RT2573_FWLOADED) == 0) {
1977 		if (rum_attachhook(sc))
1978 			goto fail;
1979 	}
1980 
1981 	rum_stop(ifp, 0);
1982 
1983 	/* initialize MAC registers to default values */
1984 	for (i = 0; i < N(rum_def_mac); i++)
1985 		rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
1986 
1987 	/* set host ready */
1988 	rum_write(sc, RT2573_MAC_CSR1, 3);
1989 	rum_write(sc, RT2573_MAC_CSR1, 0);
1990 
1991 	/* wait for BBP/RF to wakeup */
1992 	for (ntries = 0; ntries < 1000; ntries++) {
1993 		if (rum_read(sc, RT2573_MAC_CSR12) & 8)
1994 			break;
1995 		rum_write(sc, RT2573_MAC_CSR12, 4);	/* force wakeup */
1996 		DELAY(1000);
1997 	}
1998 	if (ntries == 1000) {
1999 		printf("%s: timeout waiting for BBP/RF to wakeup\n",
2000 		    device_xname(sc->sc_dev));
2001 		goto fail;
2002 	}
2003 
2004 	if ((error = rum_bbp_init(sc)) != 0)
2005 		goto fail;
2006 
2007 	/* select default channel */
2008 	rum_select_band(sc, ic->ic_curchan);
2009 	rum_select_antenna(sc);
2010 	rum_set_chan(sc, ic->ic_curchan);
2011 
2012 	/* clear STA registers */
2013 	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
2014 
2015 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2016 	rum_set_macaddr(sc, ic->ic_myaddr);
2017 
2018 	/* initialize ASIC */
2019 	rum_write(sc, RT2573_MAC_CSR1, 4);
2020 
2021 	/*
2022 	 * Allocate xfer for AMRR statistics requests.
2023 	 */
2024 	sc->amrr_xfer = usbd_alloc_xfer(sc->sc_udev);
2025 	if (sc->amrr_xfer == NULL) {
2026 		printf("%s: could not allocate AMRR xfer\n",
2027 		    device_xname(sc->sc_dev));
2028 		goto fail;
2029 	}
2030 
2031 	/*
2032 	 * Open Tx and Rx USB bulk pipes.
2033 	 */
2034 	error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2035 	    &sc->sc_tx_pipeh);
2036 	if (error != 0) {
2037 		printf("%s: could not open Tx pipe: %s\n",
2038 		    device_xname(sc->sc_dev), usbd_errstr(error));
2039 		goto fail;
2040 	}
2041 
2042 	error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2043 	    &sc->sc_rx_pipeh);
2044 	if (error != 0) {
2045 		printf("%s: could not open Rx pipe: %s\n",
2046 		    device_xname(sc->sc_dev), usbd_errstr(error));
2047 		goto fail;
2048 	}
2049 
2050 	/*
2051 	 * Allocate Tx and Rx xfer queues.
2052 	 */
2053 	error = rum_alloc_tx_list(sc);
2054 	if (error != 0) {
2055 		printf("%s: could not allocate Tx list\n",
2056 		    device_xname(sc->sc_dev));
2057 		goto fail;
2058 	}
2059 
2060 	error = rum_alloc_rx_list(sc);
2061 	if (error != 0) {
2062 		printf("%s: could not allocate Rx list\n",
2063 		    device_xname(sc->sc_dev));
2064 		goto fail;
2065 	}
2066 
2067 	/*
2068 	 * Start up the receive pipe.
2069 	 */
2070 	for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
2071 		data = &sc->rx_data[i];
2072 
2073 		usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf,
2074 		    MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
2075 		error = usbd_transfer(data->xfer);
2076 		if (error != USBD_NORMAL_COMPLETION &&
2077 		    error != USBD_IN_PROGRESS) {
2078 			printf("%s: could not queue Rx transfer\n",
2079 			    device_xname(sc->sc_dev));
2080 			goto fail;
2081 		}
2082 	}
2083 
2084 	/* update Rx filter */
2085 	tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
2086 
2087 	tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
2088 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2089 		tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
2090 		       RT2573_DROP_ACKCTS;
2091 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2092 			tmp |= RT2573_DROP_TODS;
2093 		if (!(ifp->if_flags & IFF_PROMISC))
2094 			tmp |= RT2573_DROP_NOT_TO_ME;
2095 	}
2096 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
2097 
2098 	ifp->if_flags &= ~IFF_OACTIVE;
2099 	ifp->if_flags |= IFF_RUNNING;
2100 
2101 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2102 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2103 	else
2104 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2105 
2106 	return 0;
2107 
2108 fail:	rum_stop(ifp, 1);
2109 	return error;
2110 #undef N
2111 }
2112 
2113 static void
2114 rum_stop(struct ifnet *ifp, int disable)
2115 {
2116 	struct rum_softc *sc = ifp->if_softc;
2117 	struct ieee80211com *ic = &sc->sc_ic;
2118 	uint32_t tmp;
2119 
2120 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);	/* free all nodes */
2121 
2122 	sc->sc_tx_timer = 0;
2123 	ifp->if_timer = 0;
2124 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2125 
2126 	/* disable Rx */
2127 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
2128 	rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
2129 
2130 	/* reset ASIC */
2131 	rum_write(sc, RT2573_MAC_CSR1, 3);
2132 	rum_write(sc, RT2573_MAC_CSR1, 0);
2133 
2134 	if (sc->amrr_xfer != NULL) {
2135 		usbd_free_xfer(sc->amrr_xfer);
2136 		sc->amrr_xfer = NULL;
2137 	}
2138 
2139 	if (sc->sc_rx_pipeh != NULL) {
2140 		usbd_abort_pipe(sc->sc_rx_pipeh);
2141 		usbd_close_pipe(sc->sc_rx_pipeh);
2142 		sc->sc_rx_pipeh = NULL;
2143 	}
2144 
2145 	if (sc->sc_tx_pipeh != NULL) {
2146 		usbd_abort_pipe(sc->sc_tx_pipeh);
2147 		usbd_close_pipe(sc->sc_tx_pipeh);
2148 		sc->sc_tx_pipeh = NULL;
2149 	}
2150 
2151 	rum_free_rx_list(sc);
2152 	rum_free_tx_list(sc);
2153 }
2154 
2155 static int
2156 rum_load_microcode(struct rum_softc *sc, const u_char *ucode, size_t size)
2157 {
2158 	usb_device_request_t req;
2159 	uint16_t reg = RT2573_MCU_CODE_BASE;
2160 	usbd_status error;
2161 
2162 	/* copy firmware image into NIC */
2163 	for (; size >= 4; reg += 4, ucode += 4, size -= 4)
2164 		rum_write(sc, reg, UGETDW(ucode));
2165 
2166 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2167 	req.bRequest = RT2573_MCU_CNTL;
2168 	USETW(req.wValue, RT2573_MCU_RUN);
2169 	USETW(req.wIndex, 0);
2170 	USETW(req.wLength, 0);
2171 
2172 	error = usbd_do_request(sc->sc_udev, &req, NULL);
2173 	if (error != 0) {
2174 		printf("%s: could not run firmware: %s\n",
2175 		    device_xname(sc->sc_dev), usbd_errstr(error));
2176 	}
2177 	return error;
2178 }
2179 
2180 static int
2181 rum_prepare_beacon(struct rum_softc *sc)
2182 {
2183 	struct ieee80211com *ic = &sc->sc_ic;
2184 	struct rum_tx_desc desc;
2185 	struct mbuf *m0;
2186 	int rate;
2187 
2188 	m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &sc->sc_bo);
2189 	if (m0 == NULL) {
2190 		aprint_error_dev(sc->sc_dev,
2191 		    "could not allocate beacon frame\n");
2192 		return ENOBUFS;
2193 	}
2194 
2195 	/* send beacons at the lowest available rate */
2196 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
2197 
2198 	rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ,
2199 	    m0->m_pkthdr.len, rate);
2200 
2201 	/* copy the first 24 bytes of Tx descriptor into NIC memory */
2202 	rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2203 
2204 	/* copy beacon header and payload into NIC memory */
2205 	rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *),
2206 	    m0->m_pkthdr.len);
2207 
2208 	m_freem(m0);
2209 
2210 	return 0;
2211 }
2212 
2213 static void
2214 rum_newassoc(struct ieee80211_node *ni, int isnew)
2215 {
2216 	/* start with lowest Tx rate */
2217 	ni->ni_txrate = 0;
2218 }
2219 
2220 static void
2221 rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni)
2222 {
2223 	int i;
2224 
2225 	/* clear statistic registers (STA_CSR0 to STA_CSR5) */
2226 	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
2227 
2228 	ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2229 
2230 	/* set rate to some reasonable initial value */
2231 	for (i = ni->ni_rates.rs_nrates - 1;
2232 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2233 	     i--);
2234 	ni->ni_txrate = i;
2235 
2236 	callout_reset(&sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
2237 }
2238 
2239 static void
2240 rum_amrr_timeout(void *arg)
2241 {
2242 	struct rum_softc *sc = arg;
2243 	usb_device_request_t req;
2244 
2245 	/*
2246 	 * Asynchronously read statistic registers (cleared by read).
2247 	 */
2248 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
2249 	req.bRequest = RT2573_READ_MULTI_MAC;
2250 	USETW(req.wValue, 0);
2251 	USETW(req.wIndex, RT2573_STA_CSR0);
2252 	USETW(req.wLength, sizeof sc->sta);
2253 
2254 	usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2255 	    USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0,
2256 	    rum_amrr_update);
2257 	(void)usbd_transfer(sc->amrr_xfer);
2258 }
2259 
2260 static void
2261 rum_amrr_update(usbd_xfer_handle xfer, usbd_private_handle priv,
2262     usbd_status status)
2263 {
2264 	struct rum_softc *sc = (struct rum_softc *)priv;
2265 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
2266 
2267 	if (status != USBD_NORMAL_COMPLETION) {
2268 		printf("%s: could not retrieve Tx statistics - cancelling "
2269 		    "automatic rate control\n", device_xname(sc->sc_dev));
2270 		return;
2271 	}
2272 
2273 	/* count TX retry-fail as Tx errors */
2274 	ifp->if_oerrors += le32toh(sc->sta[5]) >> 16;
2275 
2276 	sc->amn.amn_retrycnt =
2277 	    (le32toh(sc->sta[4]) >> 16) +	/* TX one-retry ok count */
2278 	    (le32toh(sc->sta[5]) & 0xffff) +	/* TX more-retry ok count */
2279 	    (le32toh(sc->sta[5]) >> 16);	/* TX retry-fail count */
2280 
2281 	sc->amn.amn_txcnt =
2282 	    sc->amn.amn_retrycnt +
2283 	    (le32toh(sc->sta[4]) & 0xffff);	/* TX no-retry ok count */
2284 
2285 	ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2286 
2287 	callout_reset(&sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
2288 }
2289 
2290 static int
2291 rum_activate(device_t self, enum devact act)
2292 {
2293 	switch (act) {
2294 	case DVACT_DEACTIVATE:
2295 		/*if_deactivate(&sc->sc_ic.ic_if);*/
2296 		return 0;
2297 	default:
2298 		return 0;
2299 	}
2300 }
2301 
2302 MODULE(MODULE_CLASS_DRIVER, if_rum, "bpf");
2303 
2304 #ifdef _MODULE
2305 #include "ioconf.c"
2306 #endif
2307 
2308 static int
2309 if_rum_modcmd(modcmd_t cmd, void *aux)
2310 {
2311 	int error = 0;
2312 
2313 	switch (cmd) {
2314 	case MODULE_CMD_INIT:
2315 #ifdef _MODULE
2316 		error = config_init_component(cfdriver_ioconf_rum,
2317 		    cfattach_ioconf_rum, cfdata_ioconf_rum);
2318 #endif
2319 		return error;
2320 	case MODULE_CMD_FINI:
2321 #ifdef _MODULE
2322 		error = config_fini_component(cfdriver_ioconf_rum,
2323 		    cfattach_ioconf_rum, cfdata_ioconf_rum);
2324 #endif
2325 		return error;
2326 	default:
2327 		return ENOTTY;
2328 	}
2329 }
2330