1 /* $OpenBSD: if_rum.c,v 1.40 2006/09/18 16:20:20 damien Exp $ */ 2 /* $NetBSD: if_rum.c,v 1.42 2012/06/01 12:38:25 nonaka Exp $ */ 3 4 /*- 5 * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini@free.fr> 6 * Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org> 7 * 8 * Permission to use, copy, modify, and distribute this software for any 9 * purpose with or without fee is hereby granted, provided that the above 10 * copyright notice and this permission notice appear in all copies. 11 * 12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 */ 20 21 /*- 22 * Ralink Technology RT2501USB/RT2601USB chipset driver 23 * http://www.ralinktech.com.tw/ 24 */ 25 26 #include <sys/cdefs.h> 27 __KERNEL_RCSID(0, "$NetBSD: if_rum.c,v 1.42 2012/06/01 12:38:25 nonaka Exp $"); 28 29 30 #include <sys/param.h> 31 #include <sys/sockio.h> 32 #include <sys/sysctl.h> 33 #include <sys/mbuf.h> 34 #include <sys/kernel.h> 35 #include <sys/socket.h> 36 #include <sys/systm.h> 37 #include <sys/malloc.h> 38 #include <sys/module.h> 39 #include <sys/conf.h> 40 #include <sys/device.h> 41 42 #include <sys/bus.h> 43 #include <machine/endian.h> 44 #include <sys/intr.h> 45 46 #include <net/bpf.h> 47 #include <net/if.h> 48 #include <net/if_arp.h> 49 #include <net/if_dl.h> 50 #include <net/if_ether.h> 51 #include <net/if_media.h> 52 #include <net/if_types.h> 53 54 #include <netinet/in.h> 55 #include <netinet/in_systm.h> 56 #include <netinet/in_var.h> 57 #include <netinet/ip.h> 58 59 #include <net80211/ieee80211_netbsd.h> 60 #include <net80211/ieee80211_var.h> 61 #include <net80211/ieee80211_amrr.h> 62 #include <net80211/ieee80211_radiotap.h> 63 64 #include <dev/firmload.h> 65 66 #include <dev/usb/usb.h> 67 #include <dev/usb/usbdi.h> 68 #include <dev/usb/usbdi_util.h> 69 #include <dev/usb/usbdevs.h> 70 71 #include <dev/usb/if_rumreg.h> 72 #include <dev/usb/if_rumvar.h> 73 74 #ifdef USB_DEBUG 75 #define RUM_DEBUG 76 #endif 77 78 #ifdef RUM_DEBUG 79 #define DPRINTF(x) do { if (rum_debug) printf x; } while (0) 80 #define DPRINTFN(n, x) do { if (rum_debug >= (n)) printf x; } while (0) 81 int rum_debug = 1; 82 #else 83 #define DPRINTF(x) 84 #define DPRINTFN(n, x) 85 #endif 86 87 /* various supported device vendors/products */ 88 static const struct usb_devno rum_devs[] = { 89 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_HWU54DM }, 90 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_2 }, 91 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_3 }, 92 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_4 }, 93 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_WUG2700 }, 94 { USB_VENDOR_AMIT, USB_PRODUCT_AMIT_CGWLUSB2GO }, 95 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G_2 }, 96 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G_3 }, 97 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050A }, 98 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D9050V3 }, 99 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GC }, 100 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GR }, 101 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_C54RU2 }, 102 { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GL }, 103 { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GPX }, 104 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_CWD854F }, 105 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_RT2573 }, 106 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWLG122C1 }, 107 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_WUA1340 }, 108 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA110 }, 109 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA111 }, 110 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWB01GS }, 111 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWI05GS }, 112 { USB_VENDOR_GIGASET, USB_PRODUCT_GIGASET_RT2573 }, 113 { USB_VENDOR_GOODWAY, USB_PRODUCT_GOODWAY_RT2573 }, 114 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254LB }, 115 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254V2AP }, 116 { USB_VENDOR_HUAWEI3COM, USB_PRODUCT_HUAWEI3COM_RT2573 }, 117 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_G54HP }, 118 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_SG54HP }, 119 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_WLIUCG }, 120 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573 }, 121 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_2 }, 122 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_3 }, 123 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_4 }, 124 { USB_VENDOR_NOVATECH, USB_PRODUCT_NOVATECH_RT2573 }, 125 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54HP }, 126 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54MINI2 }, 127 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUSMM }, 128 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573 }, 129 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_2 }, 130 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_3 }, 131 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2573 }, 132 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2671 }, 133 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL113R2 }, 134 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL172 }, 135 { USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_RT2573 } 136 }; 137 138 static int rum_attachhook(void *); 139 static int rum_alloc_tx_list(struct rum_softc *); 140 static void rum_free_tx_list(struct rum_softc *); 141 static int rum_alloc_rx_list(struct rum_softc *); 142 static void rum_free_rx_list(struct rum_softc *); 143 static int rum_media_change(struct ifnet *); 144 static void rum_next_scan(void *); 145 static void rum_task(void *); 146 static int rum_newstate(struct ieee80211com *, 147 enum ieee80211_state, int); 148 static void rum_txeof(usbd_xfer_handle, usbd_private_handle, 149 usbd_status); 150 static void rum_rxeof(usbd_xfer_handle, usbd_private_handle, 151 usbd_status); 152 static uint8_t rum_rxrate(const struct rum_rx_desc *); 153 static int rum_ack_rate(struct ieee80211com *, int); 154 static uint16_t rum_txtime(int, int, uint32_t); 155 static uint8_t rum_plcp_signal(int); 156 static void rum_setup_tx_desc(struct rum_softc *, 157 struct rum_tx_desc *, uint32_t, uint16_t, int, 158 int); 159 static int rum_tx_data(struct rum_softc *, struct mbuf *, 160 struct ieee80211_node *); 161 static void rum_start(struct ifnet *); 162 static void rum_watchdog(struct ifnet *); 163 static int rum_ioctl(struct ifnet *, u_long, void *); 164 static void rum_eeprom_read(struct rum_softc *, uint16_t, void *, 165 int); 166 static uint32_t rum_read(struct rum_softc *, uint16_t); 167 static void rum_read_multi(struct rum_softc *, uint16_t, void *, 168 int); 169 static void rum_write(struct rum_softc *, uint16_t, uint32_t); 170 static void rum_write_multi(struct rum_softc *, uint16_t, void *, 171 size_t); 172 static void rum_bbp_write(struct rum_softc *, uint8_t, uint8_t); 173 static uint8_t rum_bbp_read(struct rum_softc *, uint8_t); 174 static void rum_rf_write(struct rum_softc *, uint8_t, uint32_t); 175 static void rum_select_antenna(struct rum_softc *); 176 static void rum_enable_mrr(struct rum_softc *); 177 static void rum_set_txpreamble(struct rum_softc *); 178 static void rum_set_basicrates(struct rum_softc *); 179 static void rum_select_band(struct rum_softc *, 180 struct ieee80211_channel *); 181 static void rum_set_chan(struct rum_softc *, 182 struct ieee80211_channel *); 183 static void rum_enable_tsf_sync(struct rum_softc *); 184 static void rum_update_slot(struct rum_softc *); 185 static void rum_set_bssid(struct rum_softc *, const uint8_t *); 186 static void rum_set_macaddr(struct rum_softc *, const uint8_t *); 187 static void rum_update_promisc(struct rum_softc *); 188 static const char *rum_get_rf(int); 189 static void rum_read_eeprom(struct rum_softc *); 190 static int rum_bbp_init(struct rum_softc *); 191 static int rum_init(struct ifnet *); 192 static void rum_stop(struct ifnet *, int); 193 static int rum_load_microcode(struct rum_softc *, const u_char *, 194 size_t); 195 static int rum_prepare_beacon(struct rum_softc *); 196 static void rum_newassoc(struct ieee80211_node *, int); 197 static void rum_amrr_start(struct rum_softc *, 198 struct ieee80211_node *); 199 static void rum_amrr_timeout(void *); 200 static void rum_amrr_update(usbd_xfer_handle, usbd_private_handle, 201 usbd_status status); 202 203 /* 204 * Supported rates for 802.11a/b/g modes (in 500Kbps unit). 205 */ 206 static const struct ieee80211_rateset rum_rateset_11a = 207 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } }; 208 209 static const struct ieee80211_rateset rum_rateset_11b = 210 { 4, { 2, 4, 11, 22 } }; 211 212 static const struct ieee80211_rateset rum_rateset_11g = 213 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } }; 214 215 static const struct { 216 uint32_t reg; 217 uint32_t val; 218 } rum_def_mac[] = { 219 RT2573_DEF_MAC 220 }; 221 222 static const struct { 223 uint8_t reg; 224 uint8_t val; 225 } rum_def_bbp[] = { 226 RT2573_DEF_BBP 227 }; 228 229 static const struct rfprog { 230 uint8_t chan; 231 uint32_t r1, r2, r3, r4; 232 } rum_rf5226[] = { 233 RT2573_RF5226 234 }, rum_rf5225[] = { 235 RT2573_RF5225 236 }; 237 238 static int rum_match(device_t, cfdata_t, void *); 239 static void rum_attach(device_t, device_t, void *); 240 static int rum_detach(device_t, int); 241 static int rum_activate(device_t, enum devact); 242 extern struct cfdriver rum_cd; 243 CFATTACH_DECL_NEW(rum, sizeof(struct rum_softc), rum_match, rum_attach, 244 rum_detach, rum_activate); 245 246 static int 247 rum_match(device_t parent, cfdata_t match, void *aux) 248 { 249 struct usb_attach_arg *uaa = aux; 250 251 return (usb_lookup(rum_devs, uaa->vendor, uaa->product) != NULL) ? 252 UMATCH_VENDOR_PRODUCT : UMATCH_NONE; 253 } 254 255 static int 256 rum_attachhook(void *xsc) 257 { 258 struct rum_softc *sc = xsc; 259 firmware_handle_t fwh; 260 const char *name = "rum-rt2573"; 261 u_char *ucode; 262 size_t size; 263 int error; 264 265 if ((error = firmware_open("rum", name, &fwh)) != 0) { 266 printf("%s: failed loadfirmware of file %s (error %d)\n", 267 device_xname(sc->sc_dev), name, error); 268 return error; 269 } 270 size = firmware_get_size(fwh); 271 ucode = firmware_malloc(size); 272 if (ucode == NULL) { 273 printf("%s: failed to allocate firmware memory\n", 274 device_xname(sc->sc_dev)); 275 firmware_close(fwh); 276 return ENOMEM; 277 } 278 error = firmware_read(fwh, 0, ucode, size); 279 firmware_close(fwh); 280 if (error != 0) { 281 printf("%s: failed to read firmware (error %d)\n", 282 device_xname(sc->sc_dev), error); 283 firmware_free(ucode, 0); 284 return error; 285 } 286 287 if (rum_load_microcode(sc, ucode, size) != 0) { 288 printf("%s: could not load 8051 microcode\n", 289 device_xname(sc->sc_dev)); 290 firmware_free(ucode, 0); 291 return ENXIO; 292 } 293 294 firmware_free(ucode, 0); 295 sc->sc_flags |= RT2573_FWLOADED; 296 297 return 0; 298 } 299 300 static void 301 rum_attach(device_t parent, device_t self, void *aux) 302 { 303 struct rum_softc *sc = device_private(self); 304 struct usb_attach_arg *uaa = aux; 305 struct ieee80211com *ic = &sc->sc_ic; 306 struct ifnet *ifp = &sc->sc_if; 307 usb_interface_descriptor_t *id; 308 usb_endpoint_descriptor_t *ed; 309 usbd_status error; 310 char *devinfop; 311 int i, ntries; 312 uint32_t tmp; 313 314 sc->sc_dev = self; 315 sc->sc_udev = uaa->device; 316 sc->sc_flags = 0; 317 318 aprint_naive("\n"); 319 aprint_normal("\n"); 320 321 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0); 322 aprint_normal_dev(self, "%s\n", devinfop); 323 usbd_devinfo_free(devinfop); 324 325 if (usbd_set_config_no(sc->sc_udev, RT2573_CONFIG_NO, 0) != 0) { 326 aprint_error_dev(self, "could not set configuration no\n"); 327 return; 328 } 329 330 /* get the first interface handle */ 331 error = usbd_device2interface_handle(sc->sc_udev, RT2573_IFACE_INDEX, 332 &sc->sc_iface); 333 if (error != 0) { 334 aprint_error_dev(self, "could not get interface handle\n"); 335 return; 336 } 337 338 /* 339 * Find endpoints. 340 */ 341 id = usbd_get_interface_descriptor(sc->sc_iface); 342 343 sc->sc_rx_no = sc->sc_tx_no = -1; 344 for (i = 0; i < id->bNumEndpoints; i++) { 345 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i); 346 if (ed == NULL) { 347 aprint_error_dev(self, 348 "no endpoint descriptor for iface %d\n", i); 349 return; 350 } 351 352 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN && 353 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) 354 sc->sc_rx_no = ed->bEndpointAddress; 355 else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT && 356 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) 357 sc->sc_tx_no = ed->bEndpointAddress; 358 } 359 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) { 360 aprint_error_dev(self, "missing endpoint\n"); 361 return; 362 } 363 364 usb_init_task(&sc->sc_task, rum_task, sc); 365 callout_init(&sc->sc_scan_ch, 0); 366 367 sc->amrr.amrr_min_success_threshold = 1; 368 sc->amrr.amrr_max_success_threshold = 10; 369 callout_init(&sc->sc_amrr_ch, 0); 370 371 /* retrieve RT2573 rev. no */ 372 for (ntries = 0; ntries < 1000; ntries++) { 373 if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0) 374 break; 375 DELAY(1000); 376 } 377 if (ntries == 1000) { 378 aprint_error_dev(self, "timeout waiting for chip to settle\n"); 379 return; 380 } 381 382 /* retrieve MAC address and various other things from EEPROM */ 383 rum_read_eeprom(sc); 384 385 aprint_normal_dev(self, 386 "MAC/BBP RT%04x (rev 0x%05x), RF %s, address %s\n", 387 sc->macbbp_rev, tmp, 388 rum_get_rf(sc->rf_rev), ether_sprintf(ic->ic_myaddr)); 389 390 ic->ic_ifp = ifp; 391 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 392 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 393 ic->ic_state = IEEE80211_S_INIT; 394 395 /* set device capabilities */ 396 ic->ic_caps = 397 IEEE80211_C_IBSS | /* IBSS mode supported */ 398 IEEE80211_C_MONITOR | /* monitor mode supported */ 399 IEEE80211_C_HOSTAP | /* HostAp mode supported */ 400 IEEE80211_C_TXPMGT | /* tx power management */ 401 IEEE80211_C_SHPREAMBLE | /* short preamble supported */ 402 IEEE80211_C_SHSLOT | /* short slot time supported */ 403 IEEE80211_C_WPA; /* 802.11i */ 404 405 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) { 406 /* set supported .11a rates */ 407 ic->ic_sup_rates[IEEE80211_MODE_11A] = rum_rateset_11a; 408 409 /* set supported .11a channels */ 410 for (i = 34; i <= 46; i += 4) { 411 ic->ic_channels[i].ic_freq = 412 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 413 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 414 } 415 for (i = 36; i <= 64; i += 4) { 416 ic->ic_channels[i].ic_freq = 417 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 418 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 419 } 420 for (i = 100; i <= 140; i += 4) { 421 ic->ic_channels[i].ic_freq = 422 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 423 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 424 } 425 for (i = 149; i <= 165; i += 4) { 426 ic->ic_channels[i].ic_freq = 427 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 428 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 429 } 430 } 431 432 /* set supported .11b and .11g rates */ 433 ic->ic_sup_rates[IEEE80211_MODE_11B] = rum_rateset_11b; 434 ic->ic_sup_rates[IEEE80211_MODE_11G] = rum_rateset_11g; 435 436 /* set supported .11b and .11g channels (1 through 14) */ 437 for (i = 1; i <= 14; i++) { 438 ic->ic_channels[i].ic_freq = 439 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ); 440 ic->ic_channels[i].ic_flags = 441 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | 442 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 443 } 444 445 ifp->if_softc = sc; 446 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 447 ifp->if_init = rum_init; 448 ifp->if_ioctl = rum_ioctl; 449 ifp->if_start = rum_start; 450 ifp->if_watchdog = rum_watchdog; 451 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); 452 IFQ_SET_READY(&ifp->if_snd); 453 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ); 454 455 if_attach(ifp); 456 ieee80211_ifattach(ic); 457 ic->ic_newassoc = rum_newassoc; 458 459 /* override state transition machine */ 460 sc->sc_newstate = ic->ic_newstate; 461 ic->ic_newstate = rum_newstate; 462 ieee80211_media_init(ic, rum_media_change, ieee80211_media_status); 463 464 bpf_attach2(ifp, DLT_IEEE802_11_RADIO, 465 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN, 466 &sc->sc_drvbpf); 467 468 sc->sc_rxtap_len = sizeof sc->sc_rxtapu; 469 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 470 sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT); 471 472 sc->sc_txtap_len = sizeof sc->sc_txtapu; 473 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 474 sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT); 475 476 ieee80211_announce(ic); 477 478 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, 479 sc->sc_dev); 480 481 return; 482 } 483 484 static int 485 rum_detach(device_t self, int flags) 486 { 487 struct rum_softc *sc = device_private(self); 488 struct ieee80211com *ic = &sc->sc_ic; 489 struct ifnet *ifp = &sc->sc_if; 490 int s; 491 492 if (!ifp->if_softc) 493 return 0; 494 495 s = splusb(); 496 497 rum_stop(ifp, 1); 498 usb_rem_task(sc->sc_udev, &sc->sc_task); 499 callout_stop(&sc->sc_scan_ch); 500 callout_stop(&sc->sc_amrr_ch); 501 502 if (sc->amrr_xfer != NULL) { 503 usbd_free_xfer(sc->amrr_xfer); 504 sc->amrr_xfer = NULL; 505 } 506 507 if (sc->sc_rx_pipeh != NULL) { 508 usbd_abort_pipe(sc->sc_rx_pipeh); 509 usbd_close_pipe(sc->sc_rx_pipeh); 510 } 511 512 if (sc->sc_tx_pipeh != NULL) { 513 usbd_abort_pipe(sc->sc_tx_pipeh); 514 usbd_close_pipe(sc->sc_tx_pipeh); 515 } 516 517 bpf_detach(ifp); 518 ieee80211_ifdetach(ic); /* free all nodes */ 519 if_detach(ifp); 520 521 splx(s); 522 523 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev); 524 525 return 0; 526 } 527 528 static int 529 rum_alloc_tx_list(struct rum_softc *sc) 530 { 531 struct rum_tx_data *data; 532 int i, error; 533 534 sc->tx_cur = sc->tx_queued = 0; 535 536 for (i = 0; i < RUM_TX_LIST_COUNT; i++) { 537 data = &sc->tx_data[i]; 538 539 data->sc = sc; 540 541 data->xfer = usbd_alloc_xfer(sc->sc_udev); 542 if (data->xfer == NULL) { 543 printf("%s: could not allocate tx xfer\n", 544 device_xname(sc->sc_dev)); 545 error = ENOMEM; 546 goto fail; 547 } 548 549 data->buf = usbd_alloc_buffer(data->xfer, 550 RT2573_TX_DESC_SIZE + IEEE80211_MAX_LEN); 551 if (data->buf == NULL) { 552 printf("%s: could not allocate tx buffer\n", 553 device_xname(sc->sc_dev)); 554 error = ENOMEM; 555 goto fail; 556 } 557 558 /* clean Tx descriptor */ 559 memset(data->buf, 0, RT2573_TX_DESC_SIZE); 560 } 561 562 return 0; 563 564 fail: rum_free_tx_list(sc); 565 return error; 566 } 567 568 static void 569 rum_free_tx_list(struct rum_softc *sc) 570 { 571 struct rum_tx_data *data; 572 int i; 573 574 for (i = 0; i < RUM_TX_LIST_COUNT; i++) { 575 data = &sc->tx_data[i]; 576 577 if (data->xfer != NULL) { 578 usbd_free_xfer(data->xfer); 579 data->xfer = NULL; 580 } 581 582 if (data->ni != NULL) { 583 ieee80211_free_node(data->ni); 584 data->ni = NULL; 585 } 586 } 587 } 588 589 static int 590 rum_alloc_rx_list(struct rum_softc *sc) 591 { 592 struct rum_rx_data *data; 593 int i, error; 594 595 for (i = 0; i < RUM_RX_LIST_COUNT; i++) { 596 data = &sc->rx_data[i]; 597 598 data->sc = sc; 599 600 data->xfer = usbd_alloc_xfer(sc->sc_udev); 601 if (data->xfer == NULL) { 602 printf("%s: could not allocate rx xfer\n", 603 device_xname(sc->sc_dev)); 604 error = ENOMEM; 605 goto fail; 606 } 607 608 if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) { 609 printf("%s: could not allocate rx buffer\n", 610 device_xname(sc->sc_dev)); 611 error = ENOMEM; 612 goto fail; 613 } 614 615 MGETHDR(data->m, M_DONTWAIT, MT_DATA); 616 if (data->m == NULL) { 617 printf("%s: could not allocate rx mbuf\n", 618 device_xname(sc->sc_dev)); 619 error = ENOMEM; 620 goto fail; 621 } 622 623 MCLGET(data->m, M_DONTWAIT); 624 if (!(data->m->m_flags & M_EXT)) { 625 printf("%s: could not allocate rx mbuf cluster\n", 626 device_xname(sc->sc_dev)); 627 error = ENOMEM; 628 goto fail; 629 } 630 631 data->buf = mtod(data->m, uint8_t *); 632 } 633 634 return 0; 635 636 fail: rum_free_rx_list(sc); 637 return error; 638 } 639 640 static void 641 rum_free_rx_list(struct rum_softc *sc) 642 { 643 struct rum_rx_data *data; 644 int i; 645 646 for (i = 0; i < RUM_RX_LIST_COUNT; i++) { 647 data = &sc->rx_data[i]; 648 649 if (data->xfer != NULL) { 650 usbd_free_xfer(data->xfer); 651 data->xfer = NULL; 652 } 653 654 if (data->m != NULL) { 655 m_freem(data->m); 656 data->m = NULL; 657 } 658 } 659 } 660 661 static int 662 rum_media_change(struct ifnet *ifp) 663 { 664 int error; 665 666 error = ieee80211_media_change(ifp); 667 if (error != ENETRESET) 668 return error; 669 670 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) 671 rum_init(ifp); 672 673 return 0; 674 } 675 676 /* 677 * This function is called periodically (every 200ms) during scanning to 678 * switch from one channel to another. 679 */ 680 static void 681 rum_next_scan(void *arg) 682 { 683 struct rum_softc *sc = arg; 684 struct ieee80211com *ic = &sc->sc_ic; 685 int s; 686 687 s = splnet(); 688 if (ic->ic_state == IEEE80211_S_SCAN) 689 ieee80211_next_scan(ic); 690 splx(s); 691 } 692 693 static void 694 rum_task(void *arg) 695 { 696 struct rum_softc *sc = arg; 697 struct ieee80211com *ic = &sc->sc_ic; 698 enum ieee80211_state ostate; 699 struct ieee80211_node *ni; 700 uint32_t tmp; 701 702 ostate = ic->ic_state; 703 704 switch (sc->sc_state) { 705 case IEEE80211_S_INIT: 706 if (ostate == IEEE80211_S_RUN) { 707 /* abort TSF synchronization */ 708 tmp = rum_read(sc, RT2573_TXRX_CSR9); 709 rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff); 710 } 711 break; 712 713 case IEEE80211_S_SCAN: 714 rum_set_chan(sc, ic->ic_curchan); 715 callout_reset(&sc->sc_scan_ch, hz / 5, rum_next_scan, sc); 716 break; 717 718 case IEEE80211_S_AUTH: 719 rum_set_chan(sc, ic->ic_curchan); 720 break; 721 722 case IEEE80211_S_ASSOC: 723 rum_set_chan(sc, ic->ic_curchan); 724 break; 725 726 case IEEE80211_S_RUN: 727 rum_set_chan(sc, ic->ic_curchan); 728 729 ni = ic->ic_bss; 730 731 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 732 rum_update_slot(sc); 733 rum_enable_mrr(sc); 734 rum_set_txpreamble(sc); 735 rum_set_basicrates(sc); 736 rum_set_bssid(sc, ni->ni_bssid); 737 } 738 739 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 740 ic->ic_opmode == IEEE80211_M_IBSS) 741 rum_prepare_beacon(sc); 742 743 if (ic->ic_opmode != IEEE80211_M_MONITOR) 744 rum_enable_tsf_sync(sc); 745 746 if (ic->ic_opmode == IEEE80211_M_STA) { 747 /* fake a join to init the tx rate */ 748 rum_newassoc(ic->ic_bss, 1); 749 750 /* enable automatic rate adaptation in STA mode */ 751 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) 752 rum_amrr_start(sc, ni); 753 } 754 755 break; 756 } 757 758 sc->sc_newstate(ic, sc->sc_state, sc->sc_arg); 759 } 760 761 static int 762 rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 763 { 764 struct rum_softc *sc = ic->ic_ifp->if_softc; 765 766 usb_rem_task(sc->sc_udev, &sc->sc_task); 767 callout_stop(&sc->sc_scan_ch); 768 callout_stop(&sc->sc_amrr_ch); 769 770 /* do it in a process context */ 771 sc->sc_state = nstate; 772 sc->sc_arg = arg; 773 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER); 774 775 return 0; 776 } 777 778 /* quickly determine if a given rate is CCK or OFDM */ 779 #define RUM_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22) 780 781 #define RUM_ACK_SIZE 14 /* 10 + 4(FCS) */ 782 #define RUM_CTS_SIZE 14 /* 10 + 4(FCS) */ 783 784 static void 785 rum_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) 786 { 787 struct rum_tx_data *data = priv; 788 struct rum_softc *sc = data->sc; 789 struct ifnet *ifp = &sc->sc_if; 790 int s; 791 792 if (status != USBD_NORMAL_COMPLETION) { 793 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 794 return; 795 796 printf("%s: could not transmit buffer: %s\n", 797 device_xname(sc->sc_dev), usbd_errstr(status)); 798 799 if (status == USBD_STALLED) 800 usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh); 801 802 ifp->if_oerrors++; 803 return; 804 } 805 806 s = splnet(); 807 808 ieee80211_free_node(data->ni); 809 data->ni = NULL; 810 811 sc->tx_queued--; 812 ifp->if_opackets++; 813 814 DPRINTFN(10, ("tx done\n")); 815 816 sc->sc_tx_timer = 0; 817 ifp->if_flags &= ~IFF_OACTIVE; 818 rum_start(ifp); 819 820 splx(s); 821 } 822 823 static void 824 rum_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) 825 { 826 struct rum_rx_data *data = priv; 827 struct rum_softc *sc = data->sc; 828 struct ieee80211com *ic = &sc->sc_ic; 829 struct ifnet *ifp = &sc->sc_if; 830 struct rum_rx_desc *desc; 831 struct ieee80211_frame *wh; 832 struct ieee80211_node *ni; 833 struct mbuf *mnew, *m; 834 int s, len; 835 836 if (status != USBD_NORMAL_COMPLETION) { 837 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 838 return; 839 840 if (status == USBD_STALLED) 841 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh); 842 goto skip; 843 } 844 845 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL); 846 847 if (len < (int)(RT2573_RX_DESC_SIZE + 848 sizeof(struct ieee80211_frame_min))) { 849 DPRINTF(("%s: xfer too short %d\n", device_xname(sc->sc_dev), 850 len)); 851 ifp->if_ierrors++; 852 goto skip; 853 } 854 855 desc = (struct rum_rx_desc *)data->buf; 856 857 if (le32toh(desc->flags) & RT2573_RX_CRC_ERROR) { 858 /* 859 * This should not happen since we did not request to receive 860 * those frames when we filled RT2573_TXRX_CSR0. 861 */ 862 DPRINTFN(5, ("CRC error\n")); 863 ifp->if_ierrors++; 864 goto skip; 865 } 866 867 MGETHDR(mnew, M_DONTWAIT, MT_DATA); 868 if (mnew == NULL) { 869 printf("%s: could not allocate rx mbuf\n", 870 device_xname(sc->sc_dev)); 871 ifp->if_ierrors++; 872 goto skip; 873 } 874 875 MCLGET(mnew, M_DONTWAIT); 876 if (!(mnew->m_flags & M_EXT)) { 877 printf("%s: could not allocate rx mbuf cluster\n", 878 device_xname(sc->sc_dev)); 879 m_freem(mnew); 880 ifp->if_ierrors++; 881 goto skip; 882 } 883 884 m = data->m; 885 data->m = mnew; 886 data->buf = mtod(data->m, uint8_t *); 887 888 /* finalize mbuf */ 889 m->m_pkthdr.rcvif = ifp; 890 m->m_data = (void *)(desc + 1); 891 m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff; 892 893 s = splnet(); 894 895 if (sc->sc_drvbpf != NULL) { 896 struct rum_rx_radiotap_header *tap = &sc->sc_rxtap; 897 898 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS; 899 tap->wr_rate = rum_rxrate(desc); 900 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq); 901 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags); 902 tap->wr_antenna = sc->rx_ant; 903 tap->wr_antsignal = desc->rssi; 904 905 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m); 906 } 907 908 wh = mtod(m, struct ieee80211_frame *); 909 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); 910 911 /* send the frame to the 802.11 layer */ 912 ieee80211_input(ic, m, ni, desc->rssi, 0); 913 914 /* node is no longer needed */ 915 ieee80211_free_node(ni); 916 917 splx(s); 918 919 DPRINTFN(15, ("rx done\n")); 920 921 skip: /* setup a new transfer */ 922 usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES, 923 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof); 924 usbd_transfer(xfer); 925 } 926 927 /* 928 * This function is only used by the Rx radiotap code. It returns the rate at 929 * which a given frame was received. 930 */ 931 static uint8_t 932 rum_rxrate(const struct rum_rx_desc *desc) 933 { 934 if (le32toh(desc->flags) & RT2573_RX_OFDM) { 935 /* reverse function of rum_plcp_signal */ 936 switch (desc->rate) { 937 case 0xb: return 12; 938 case 0xf: return 18; 939 case 0xa: return 24; 940 case 0xe: return 36; 941 case 0x9: return 48; 942 case 0xd: return 72; 943 case 0x8: return 96; 944 case 0xc: return 108; 945 } 946 } else { 947 if (desc->rate == 10) 948 return 2; 949 if (desc->rate == 20) 950 return 4; 951 if (desc->rate == 55) 952 return 11; 953 if (desc->rate == 110) 954 return 22; 955 } 956 return 2; /* should not get there */ 957 } 958 959 /* 960 * Return the expected ack rate for a frame transmitted at rate `rate'. 961 * XXX: this should depend on the destination node basic rate set. 962 */ 963 static int 964 rum_ack_rate(struct ieee80211com *ic, int rate) 965 { 966 switch (rate) { 967 /* CCK rates */ 968 case 2: 969 return 2; 970 case 4: 971 case 11: 972 case 22: 973 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate; 974 975 /* OFDM rates */ 976 case 12: 977 case 18: 978 return 12; 979 case 24: 980 case 36: 981 return 24; 982 case 48: 983 case 72: 984 case 96: 985 case 108: 986 return 48; 987 } 988 989 /* default to 1Mbps */ 990 return 2; 991 } 992 993 /* 994 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'. 995 * The function automatically determines the operating mode depending on the 996 * given rate. `flags' indicates whether short preamble is in use or not. 997 */ 998 static uint16_t 999 rum_txtime(int len, int rate, uint32_t flags) 1000 { 1001 uint16_t txtime; 1002 1003 if (RUM_RATE_IS_OFDM(rate)) { 1004 /* IEEE Std 802.11a-1999, pp. 37 */ 1005 txtime = (8 + 4 * len + 3 + rate - 1) / rate; 1006 txtime = 16 + 4 + 4 * txtime + 6; 1007 } else { 1008 /* IEEE Std 802.11b-1999, pp. 28 */ 1009 txtime = (16 * len + rate - 1) / rate; 1010 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE)) 1011 txtime += 72 + 24; 1012 else 1013 txtime += 144 + 48; 1014 } 1015 return txtime; 1016 } 1017 1018 static uint8_t 1019 rum_plcp_signal(int rate) 1020 { 1021 switch (rate) { 1022 /* CCK rates (returned values are device-dependent) */ 1023 case 2: return 0x0; 1024 case 4: return 0x1; 1025 case 11: return 0x2; 1026 case 22: return 0x3; 1027 1028 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 1029 case 12: return 0xb; 1030 case 18: return 0xf; 1031 case 24: return 0xa; 1032 case 36: return 0xe; 1033 case 48: return 0x9; 1034 case 72: return 0xd; 1035 case 96: return 0x8; 1036 case 108: return 0xc; 1037 1038 /* unsupported rates (should not get there) */ 1039 default: return 0xff; 1040 } 1041 } 1042 1043 static void 1044 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc, 1045 uint32_t flags, uint16_t xflags, int len, int rate) 1046 { 1047 struct ieee80211com *ic = &sc->sc_ic; 1048 uint16_t plcp_length; 1049 int remainder; 1050 1051 desc->flags = htole32(flags); 1052 desc->flags |= htole32(RT2573_TX_VALID); 1053 desc->flags |= htole32(len << 16); 1054 1055 desc->xflags = htole16(xflags); 1056 1057 desc->wme = htole16( 1058 RT2573_QID(0) | 1059 RT2573_AIFSN(2) | 1060 RT2573_LOGCWMIN(4) | 1061 RT2573_LOGCWMAX(10)); 1062 1063 /* setup PLCP fields */ 1064 desc->plcp_signal = rum_plcp_signal(rate); 1065 desc->plcp_service = 4; 1066 1067 len += IEEE80211_CRC_LEN; 1068 if (RUM_RATE_IS_OFDM(rate)) { 1069 desc->flags |= htole32(RT2573_TX_OFDM); 1070 1071 plcp_length = len & 0xfff; 1072 desc->plcp_length_hi = plcp_length >> 6; 1073 desc->plcp_length_lo = plcp_length & 0x3f; 1074 } else { 1075 plcp_length = (16 * len + rate - 1) / rate; 1076 if (rate == 22) { 1077 remainder = (16 * len) % 22; 1078 if (remainder != 0 && remainder < 7) 1079 desc->plcp_service |= RT2573_PLCP_LENGEXT; 1080 } 1081 desc->plcp_length_hi = plcp_length >> 8; 1082 desc->plcp_length_lo = plcp_length & 0xff; 1083 1084 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 1085 desc->plcp_signal |= 0x08; 1086 } 1087 } 1088 1089 #define RUM_TX_TIMEOUT 5000 1090 1091 static int 1092 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1093 { 1094 struct ieee80211com *ic = &sc->sc_ic; 1095 struct rum_tx_desc *desc; 1096 struct rum_tx_data *data; 1097 struct ieee80211_frame *wh; 1098 struct ieee80211_key *k; 1099 uint32_t flags = 0; 1100 uint16_t dur; 1101 usbd_status error; 1102 int rate, xferlen, pktlen, needrts = 0, needcts = 0; 1103 1104 wh = mtod(m0, struct ieee80211_frame *); 1105 1106 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1107 k = ieee80211_crypto_encap(ic, ni, m0); 1108 if (k == NULL) { 1109 m_freem(m0); 1110 return ENOBUFS; 1111 } 1112 1113 /* packet header may have moved, reset our local pointer */ 1114 wh = mtod(m0, struct ieee80211_frame *); 1115 } 1116 1117 /* compute actual packet length (including CRC and crypto overhead) */ 1118 pktlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN; 1119 1120 /* pickup a rate */ 1121 if (IEEE80211_IS_MULTICAST(wh->i_addr1) || 1122 ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == 1123 IEEE80211_FC0_TYPE_MGT)) { 1124 /* mgmt/multicast frames are sent at the lowest avail. rate */ 1125 rate = ni->ni_rates.rs_rates[0]; 1126 } else if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) { 1127 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate]; 1128 } else 1129 rate = ni->ni_rates.rs_rates[ni->ni_txrate]; 1130 if (rate == 0) 1131 rate = 2; /* XXX should not happen */ 1132 rate &= IEEE80211_RATE_VAL; 1133 1134 /* check if RTS/CTS or CTS-to-self protection must be used */ 1135 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1136 /* multicast frames are not sent at OFDM rates in 802.11b/g */ 1137 if (pktlen > ic->ic_rtsthreshold) { 1138 needrts = 1; /* RTS/CTS based on frame length */ 1139 } else if ((ic->ic_flags & IEEE80211_F_USEPROT) && 1140 RUM_RATE_IS_OFDM(rate)) { 1141 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 1142 needcts = 1; /* CTS-to-self */ 1143 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 1144 needrts = 1; /* RTS/CTS */ 1145 } 1146 } 1147 if (needrts || needcts) { 1148 struct mbuf *mprot; 1149 int protrate, ackrate; 1150 1151 protrate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2; 1152 ackrate = rum_ack_rate(ic, rate); 1153 1154 dur = rum_txtime(pktlen, rate, ic->ic_flags) + 1155 rum_txtime(RUM_ACK_SIZE, ackrate, ic->ic_flags) + 1156 2 * sc->sifs; 1157 if (needrts) { 1158 dur += rum_txtime(RUM_CTS_SIZE, rum_ack_rate(ic, 1159 protrate), ic->ic_flags) + sc->sifs; 1160 mprot = ieee80211_get_rts(ic, wh, dur); 1161 } else { 1162 mprot = ieee80211_get_cts_to_self(ic, dur); 1163 } 1164 if (mprot == NULL) { 1165 aprint_error_dev(sc->sc_dev, 1166 "couldn't allocate protection frame\n"); 1167 m_freem(m0); 1168 return ENOBUFS; 1169 } 1170 1171 data = &sc->tx_data[sc->tx_cur]; 1172 desc = (struct rum_tx_desc *)data->buf; 1173 1174 /* avoid multiple free() of the same node for each fragment */ 1175 data->ni = ieee80211_ref_node(ni); 1176 1177 m_copydata(mprot, 0, mprot->m_pkthdr.len, 1178 data->buf + RT2573_TX_DESC_SIZE); 1179 rum_setup_tx_desc(sc, desc, 1180 (needrts ? RT2573_TX_NEED_ACK : 0) | RT2573_TX_MORE_FRAG, 1181 0, mprot->m_pkthdr.len, protrate); 1182 1183 /* no roundup necessary here */ 1184 xferlen = RT2573_TX_DESC_SIZE + mprot->m_pkthdr.len; 1185 1186 /* XXX may want to pass the protection frame to BPF */ 1187 1188 /* mbuf is no longer needed */ 1189 m_freem(mprot); 1190 1191 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, 1192 xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, 1193 RUM_TX_TIMEOUT, rum_txeof); 1194 error = usbd_transfer(data->xfer); 1195 if (error != USBD_NORMAL_COMPLETION && 1196 error != USBD_IN_PROGRESS) { 1197 m_freem(m0); 1198 return error; 1199 } 1200 1201 sc->tx_queued++; 1202 sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT; 1203 1204 flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS; 1205 } 1206 1207 data = &sc->tx_data[sc->tx_cur]; 1208 desc = (struct rum_tx_desc *)data->buf; 1209 1210 data->ni = ni; 1211 1212 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1213 flags |= RT2573_TX_NEED_ACK; 1214 1215 dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate), 1216 ic->ic_flags) + sc->sifs; 1217 *(uint16_t *)wh->i_dur = htole16(dur); 1218 1219 /* tell hardware to set timestamp in probe responses */ 1220 if ((wh->i_fc[0] & 1221 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 1222 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP)) 1223 flags |= RT2573_TX_TIMESTAMP; 1224 } 1225 1226 if (sc->sc_drvbpf != NULL) { 1227 struct rum_tx_radiotap_header *tap = &sc->sc_txtap; 1228 1229 tap->wt_flags = 0; 1230 tap->wt_rate = rate; 1231 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); 1232 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); 1233 tap->wt_antenna = sc->tx_ant; 1234 1235 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); 1236 } 1237 1238 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE); 1239 rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate); 1240 1241 /* align end on a 4-bytes boundary */ 1242 xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3; 1243 1244 /* 1245 * No space left in the last URB to store the extra 4 bytes, force 1246 * sending of another URB. 1247 */ 1248 if ((xferlen % 64) == 0) 1249 xferlen += 4; 1250 1251 DPRINTFN(10, ("sending data frame len=%zu rate=%u xfer len=%u\n", 1252 (size_t)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE, 1253 rate, xferlen)); 1254 1255 /* mbuf is no longer needed */ 1256 m_freem(m0); 1257 1258 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen, 1259 USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof); 1260 error = usbd_transfer(data->xfer); 1261 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) 1262 return error; 1263 1264 sc->tx_queued++; 1265 sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT; 1266 1267 return 0; 1268 } 1269 1270 static void 1271 rum_start(struct ifnet *ifp) 1272 { 1273 struct rum_softc *sc = ifp->if_softc; 1274 struct ieee80211com *ic = &sc->sc_ic; 1275 struct ether_header *eh; 1276 struct ieee80211_node *ni; 1277 struct mbuf *m0; 1278 1279 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) 1280 return; 1281 1282 for (;;) { 1283 IF_POLL(&ic->ic_mgtq, m0); 1284 if (m0 != NULL) { 1285 if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) { 1286 ifp->if_flags |= IFF_OACTIVE; 1287 break; 1288 } 1289 IF_DEQUEUE(&ic->ic_mgtq, m0); 1290 1291 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif; 1292 m0->m_pkthdr.rcvif = NULL; 1293 bpf_mtap3(ic->ic_rawbpf, m0); 1294 if (rum_tx_data(sc, m0, ni) != 0) 1295 break; 1296 1297 } else { 1298 if (ic->ic_state != IEEE80211_S_RUN) 1299 break; 1300 IFQ_POLL(&ifp->if_snd, m0); 1301 if (m0 == NULL) 1302 break; 1303 if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) { 1304 ifp->if_flags |= IFF_OACTIVE; 1305 break; 1306 } 1307 IFQ_DEQUEUE(&ifp->if_snd, m0); 1308 if (m0->m_len < (int)sizeof(struct ether_header) && 1309 !(m0 = m_pullup(m0, sizeof(struct ether_header)))) 1310 continue; 1311 1312 eh = mtod(m0, struct ether_header *); 1313 ni = ieee80211_find_txnode(ic, eh->ether_dhost); 1314 if (ni == NULL) { 1315 m_freem(m0); 1316 continue; 1317 } 1318 bpf_mtap(ifp, m0); 1319 m0 = ieee80211_encap(ic, m0, ni); 1320 if (m0 == NULL) { 1321 ieee80211_free_node(ni); 1322 continue; 1323 } 1324 bpf_mtap3(ic->ic_rawbpf, m0); 1325 if (rum_tx_data(sc, m0, ni) != 0) { 1326 ieee80211_free_node(ni); 1327 ifp->if_oerrors++; 1328 break; 1329 } 1330 } 1331 1332 sc->sc_tx_timer = 5; 1333 ifp->if_timer = 1; 1334 } 1335 } 1336 1337 static void 1338 rum_watchdog(struct ifnet *ifp) 1339 { 1340 struct rum_softc *sc = ifp->if_softc; 1341 struct ieee80211com *ic = &sc->sc_ic; 1342 1343 ifp->if_timer = 0; 1344 1345 if (sc->sc_tx_timer > 0) { 1346 if (--sc->sc_tx_timer == 0) { 1347 printf("%s: device timeout\n", device_xname(sc->sc_dev)); 1348 /*rum_init(ifp); XXX needs a process context! */ 1349 ifp->if_oerrors++; 1350 return; 1351 } 1352 ifp->if_timer = 1; 1353 } 1354 1355 ieee80211_watchdog(ic); 1356 } 1357 1358 static int 1359 rum_ioctl(struct ifnet *ifp, u_long cmd, void *data) 1360 { 1361 #define IS_RUNNING(ifp) \ 1362 (((ifp)->if_flags & IFF_UP) && ((ifp)->if_flags & IFF_RUNNING)) 1363 1364 struct rum_softc *sc = ifp->if_softc; 1365 struct ieee80211com *ic = &sc->sc_ic; 1366 int s, error = 0; 1367 1368 s = splnet(); 1369 1370 switch (cmd) { 1371 case SIOCSIFFLAGS: 1372 if ((error = ifioctl_common(ifp, cmd, data)) != 0) 1373 break; 1374 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) { 1375 case IFF_UP|IFF_RUNNING: 1376 rum_update_promisc(sc); 1377 break; 1378 case IFF_UP: 1379 rum_init(ifp); 1380 break; 1381 case IFF_RUNNING: 1382 rum_stop(ifp, 1); 1383 break; 1384 case 0: 1385 break; 1386 } 1387 break; 1388 1389 case SIOCADDMULTI: 1390 case SIOCDELMULTI: 1391 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) { 1392 error = 0; 1393 } 1394 break; 1395 1396 default: 1397 error = ieee80211_ioctl(ic, cmd, data); 1398 } 1399 1400 if (error == ENETRESET) { 1401 if (IS_RUNNING(ifp) && 1402 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)) 1403 rum_init(ifp); 1404 error = 0; 1405 } 1406 1407 splx(s); 1408 1409 return error; 1410 #undef IS_RUNNING 1411 } 1412 1413 static void 1414 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len) 1415 { 1416 usb_device_request_t req; 1417 usbd_status error; 1418 1419 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1420 req.bRequest = RT2573_READ_EEPROM; 1421 USETW(req.wValue, 0); 1422 USETW(req.wIndex, addr); 1423 USETW(req.wLength, len); 1424 1425 error = usbd_do_request(sc->sc_udev, &req, buf); 1426 if (error != 0) { 1427 printf("%s: could not read EEPROM: %s\n", 1428 device_xname(sc->sc_dev), usbd_errstr(error)); 1429 } 1430 } 1431 1432 static uint32_t 1433 rum_read(struct rum_softc *sc, uint16_t reg) 1434 { 1435 uint32_t val; 1436 1437 rum_read_multi(sc, reg, &val, sizeof val); 1438 1439 return le32toh(val); 1440 } 1441 1442 static void 1443 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len) 1444 { 1445 usb_device_request_t req; 1446 usbd_status error; 1447 1448 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1449 req.bRequest = RT2573_READ_MULTI_MAC; 1450 USETW(req.wValue, 0); 1451 USETW(req.wIndex, reg); 1452 USETW(req.wLength, len); 1453 1454 error = usbd_do_request(sc->sc_udev, &req, buf); 1455 if (error != 0) { 1456 printf("%s: could not multi read MAC register: %s\n", 1457 device_xname(sc->sc_dev), usbd_errstr(error)); 1458 } 1459 } 1460 1461 static void 1462 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val) 1463 { 1464 uint32_t tmp = htole32(val); 1465 1466 rum_write_multi(sc, reg, &tmp, sizeof tmp); 1467 } 1468 1469 static void 1470 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len) 1471 { 1472 usb_device_request_t req; 1473 usbd_status error; 1474 1475 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 1476 req.bRequest = RT2573_WRITE_MULTI_MAC; 1477 USETW(req.wValue, 0); 1478 USETW(req.wIndex, reg); 1479 USETW(req.wLength, len); 1480 1481 error = usbd_do_request(sc->sc_udev, &req, buf); 1482 if (error != 0) { 1483 printf("%s: could not multi write MAC register: %s\n", 1484 device_xname(sc->sc_dev), usbd_errstr(error)); 1485 } 1486 } 1487 1488 static void 1489 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val) 1490 { 1491 uint32_t tmp; 1492 int ntries; 1493 1494 for (ntries = 0; ntries < 5; ntries++) { 1495 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY)) 1496 break; 1497 } 1498 if (ntries == 5) { 1499 printf("%s: could not write to BBP\n", device_xname(sc->sc_dev)); 1500 return; 1501 } 1502 1503 tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val; 1504 rum_write(sc, RT2573_PHY_CSR3, tmp); 1505 } 1506 1507 static uint8_t 1508 rum_bbp_read(struct rum_softc *sc, uint8_t reg) 1509 { 1510 uint32_t val; 1511 int ntries; 1512 1513 for (ntries = 0; ntries < 5; ntries++) { 1514 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY)) 1515 break; 1516 } 1517 if (ntries == 5) { 1518 printf("%s: could not read BBP\n", device_xname(sc->sc_dev)); 1519 return 0; 1520 } 1521 1522 val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8; 1523 rum_write(sc, RT2573_PHY_CSR3, val); 1524 1525 for (ntries = 0; ntries < 100; ntries++) { 1526 val = rum_read(sc, RT2573_PHY_CSR3); 1527 if (!(val & RT2573_BBP_BUSY)) 1528 return val & 0xff; 1529 DELAY(1); 1530 } 1531 1532 printf("%s: could not read BBP\n", device_xname(sc->sc_dev)); 1533 return 0; 1534 } 1535 1536 static void 1537 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val) 1538 { 1539 uint32_t tmp; 1540 int ntries; 1541 1542 for (ntries = 0; ntries < 5; ntries++) { 1543 if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY)) 1544 break; 1545 } 1546 if (ntries == 5) { 1547 printf("%s: could not write to RF\n", device_xname(sc->sc_dev)); 1548 return; 1549 } 1550 1551 tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 | 1552 (reg & 3); 1553 rum_write(sc, RT2573_PHY_CSR4, tmp); 1554 1555 /* remember last written value in sc */ 1556 sc->rf_regs[reg] = val; 1557 1558 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff)); 1559 } 1560 1561 static void 1562 rum_select_antenna(struct rum_softc *sc) 1563 { 1564 uint8_t bbp4, bbp77; 1565 uint32_t tmp; 1566 1567 bbp4 = rum_bbp_read(sc, 4); 1568 bbp77 = rum_bbp_read(sc, 77); 1569 1570 /* TBD */ 1571 1572 /* make sure Rx is disabled before switching antenna */ 1573 tmp = rum_read(sc, RT2573_TXRX_CSR0); 1574 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX); 1575 1576 rum_bbp_write(sc, 4, bbp4); 1577 rum_bbp_write(sc, 77, bbp77); 1578 1579 rum_write(sc, RT2573_TXRX_CSR0, tmp); 1580 } 1581 1582 /* 1583 * Enable multi-rate retries for frames sent at OFDM rates. 1584 * In 802.11b/g mode, allow fallback to CCK rates. 1585 */ 1586 static void 1587 rum_enable_mrr(struct rum_softc *sc) 1588 { 1589 struct ieee80211com *ic = &sc->sc_ic; 1590 uint32_t tmp; 1591 1592 tmp = rum_read(sc, RT2573_TXRX_CSR4); 1593 1594 tmp &= ~RT2573_MRR_CCK_FALLBACK; 1595 if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) 1596 tmp |= RT2573_MRR_CCK_FALLBACK; 1597 tmp |= RT2573_MRR_ENABLED; 1598 1599 rum_write(sc, RT2573_TXRX_CSR4, tmp); 1600 } 1601 1602 static void 1603 rum_set_txpreamble(struct rum_softc *sc) 1604 { 1605 uint32_t tmp; 1606 1607 tmp = rum_read(sc, RT2573_TXRX_CSR4); 1608 1609 tmp &= ~RT2573_SHORT_PREAMBLE; 1610 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE) 1611 tmp |= RT2573_SHORT_PREAMBLE; 1612 1613 rum_write(sc, RT2573_TXRX_CSR4, tmp); 1614 } 1615 1616 static void 1617 rum_set_basicrates(struct rum_softc *sc) 1618 { 1619 struct ieee80211com *ic = &sc->sc_ic; 1620 1621 /* update basic rate set */ 1622 if (ic->ic_curmode == IEEE80211_MODE_11B) { 1623 /* 11b basic rates: 1, 2Mbps */ 1624 rum_write(sc, RT2573_TXRX_CSR5, 0x3); 1625 } else if (ic->ic_curmode == IEEE80211_MODE_11A) { 1626 /* 11a basic rates: 6, 12, 24Mbps */ 1627 rum_write(sc, RT2573_TXRX_CSR5, 0x150); 1628 } else { 1629 /* 11b/g basic rates: 1, 2, 5.5, 11Mbps */ 1630 rum_write(sc, RT2573_TXRX_CSR5, 0xf); 1631 } 1632 } 1633 1634 /* 1635 * Reprogram MAC/BBP to switch to a new band. Values taken from the reference 1636 * driver. 1637 */ 1638 static void 1639 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c) 1640 { 1641 uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104; 1642 uint32_t tmp; 1643 1644 /* update all BBP registers that depend on the band */ 1645 bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c; 1646 bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48; 1647 if (IEEE80211_IS_CHAN_5GHZ(c)) { 1648 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c; 1649 bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10; 1650 } 1651 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || 1652 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { 1653 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10; 1654 } 1655 1656 sc->bbp17 = bbp17; 1657 rum_bbp_write(sc, 17, bbp17); 1658 rum_bbp_write(sc, 96, bbp96); 1659 rum_bbp_write(sc, 104, bbp104); 1660 1661 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || 1662 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { 1663 rum_bbp_write(sc, 75, 0x80); 1664 rum_bbp_write(sc, 86, 0x80); 1665 rum_bbp_write(sc, 88, 0x80); 1666 } 1667 1668 rum_bbp_write(sc, 35, bbp35); 1669 rum_bbp_write(sc, 97, bbp97); 1670 rum_bbp_write(sc, 98, bbp98); 1671 1672 tmp = rum_read(sc, RT2573_PHY_CSR0); 1673 tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ); 1674 if (IEEE80211_IS_CHAN_2GHZ(c)) 1675 tmp |= RT2573_PA_PE_2GHZ; 1676 else 1677 tmp |= RT2573_PA_PE_5GHZ; 1678 rum_write(sc, RT2573_PHY_CSR0, tmp); 1679 1680 /* 802.11a uses a 16 microseconds short interframe space */ 1681 sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10; 1682 } 1683 1684 static void 1685 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c) 1686 { 1687 struct ieee80211com *ic = &sc->sc_ic; 1688 const struct rfprog *rfprog; 1689 uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT; 1690 int8_t power; 1691 u_int i, chan; 1692 1693 chan = ieee80211_chan2ieee(ic, c); 1694 if (chan == 0 || chan == IEEE80211_CHAN_ANY) 1695 return; 1696 1697 /* select the appropriate RF settings based on what EEPROM says */ 1698 rfprog = (sc->rf_rev == RT2573_RF_5225 || 1699 sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226; 1700 1701 /* find the settings for this channel (we know it exists) */ 1702 for (i = 0; rfprog[i].chan != chan; i++); 1703 1704 power = sc->txpow[i]; 1705 if (power < 0) { 1706 bbp94 += power; 1707 power = 0; 1708 } else if (power > 31) { 1709 bbp94 += power - 31; 1710 power = 31; 1711 } 1712 1713 /* 1714 * If we are switching from the 2GHz band to the 5GHz band or 1715 * vice-versa, BBP registers need to be reprogrammed. 1716 */ 1717 if (c->ic_flags != ic->ic_curchan->ic_flags) { 1718 rum_select_band(sc, c); 1719 rum_select_antenna(sc); 1720 } 1721 ic->ic_curchan = c; 1722 1723 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 1724 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 1725 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7); 1726 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 1727 1728 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 1729 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 1730 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1); 1731 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 1732 1733 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 1734 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 1735 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7); 1736 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 1737 1738 DELAY(10); 1739 1740 /* enable smart mode for MIMO-capable RFs */ 1741 bbp3 = rum_bbp_read(sc, 3); 1742 1743 bbp3 &= ~RT2573_SMART_MODE; 1744 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527) 1745 bbp3 |= RT2573_SMART_MODE; 1746 1747 rum_bbp_write(sc, 3, bbp3); 1748 1749 if (bbp94 != RT2573_BBPR94_DEFAULT) 1750 rum_bbp_write(sc, 94, bbp94); 1751 } 1752 1753 /* 1754 * Enable TSF synchronization and tell h/w to start sending beacons for IBSS 1755 * and HostAP operating modes. 1756 */ 1757 static void 1758 rum_enable_tsf_sync(struct rum_softc *sc) 1759 { 1760 struct ieee80211com *ic = &sc->sc_ic; 1761 uint32_t tmp; 1762 1763 if (ic->ic_opmode != IEEE80211_M_STA) { 1764 /* 1765 * Change default 16ms TBTT adjustment to 8ms. 1766 * Must be done before enabling beacon generation. 1767 */ 1768 rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8); 1769 } 1770 1771 tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000; 1772 1773 /* set beacon interval (in 1/16ms unit) */ 1774 tmp |= ic->ic_bss->ni_intval * 16; 1775 1776 tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT; 1777 if (ic->ic_opmode == IEEE80211_M_STA) 1778 tmp |= RT2573_TSF_MODE(1); 1779 else 1780 tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON; 1781 1782 rum_write(sc, RT2573_TXRX_CSR9, tmp); 1783 } 1784 1785 static void 1786 rum_update_slot(struct rum_softc *sc) 1787 { 1788 struct ieee80211com *ic = &sc->sc_ic; 1789 uint8_t slottime; 1790 uint32_t tmp; 1791 1792 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20; 1793 1794 tmp = rum_read(sc, RT2573_MAC_CSR9); 1795 tmp = (tmp & ~0xff) | slottime; 1796 rum_write(sc, RT2573_MAC_CSR9, tmp); 1797 1798 DPRINTF(("setting slot time to %uus\n", slottime)); 1799 } 1800 1801 static void 1802 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid) 1803 { 1804 uint32_t tmp; 1805 1806 tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24; 1807 rum_write(sc, RT2573_MAC_CSR4, tmp); 1808 1809 tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16; 1810 rum_write(sc, RT2573_MAC_CSR5, tmp); 1811 } 1812 1813 static void 1814 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr) 1815 { 1816 uint32_t tmp; 1817 1818 tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24; 1819 rum_write(sc, RT2573_MAC_CSR2, tmp); 1820 1821 tmp = addr[4] | addr[5] << 8 | 0xff << 16; 1822 rum_write(sc, RT2573_MAC_CSR3, tmp); 1823 } 1824 1825 static void 1826 rum_update_promisc(struct rum_softc *sc) 1827 { 1828 struct ifnet *ifp = sc->sc_ic.ic_ifp; 1829 uint32_t tmp; 1830 1831 tmp = rum_read(sc, RT2573_TXRX_CSR0); 1832 1833 tmp &= ~RT2573_DROP_NOT_TO_ME; 1834 if (!(ifp->if_flags & IFF_PROMISC)) 1835 tmp |= RT2573_DROP_NOT_TO_ME; 1836 1837 rum_write(sc, RT2573_TXRX_CSR0, tmp); 1838 1839 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ? 1840 "entering" : "leaving")); 1841 } 1842 1843 static const char * 1844 rum_get_rf(int rev) 1845 { 1846 switch (rev) { 1847 case RT2573_RF_2527: return "RT2527 (MIMO XR)"; 1848 case RT2573_RF_2528: return "RT2528"; 1849 case RT2573_RF_5225: return "RT5225 (MIMO XR)"; 1850 case RT2573_RF_5226: return "RT5226"; 1851 default: return "unknown"; 1852 } 1853 } 1854 1855 static void 1856 rum_read_eeprom(struct rum_softc *sc) 1857 { 1858 struct ieee80211com *ic = &sc->sc_ic; 1859 uint16_t val; 1860 #ifdef RUM_DEBUG 1861 int i; 1862 #endif 1863 1864 /* read MAC/BBP type */ 1865 rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2); 1866 sc->macbbp_rev = le16toh(val); 1867 1868 /* read MAC address */ 1869 rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6); 1870 1871 rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2); 1872 val = le16toh(val); 1873 sc->rf_rev = (val >> 11) & 0x1f; 1874 sc->hw_radio = (val >> 10) & 0x1; 1875 sc->rx_ant = (val >> 4) & 0x3; 1876 sc->tx_ant = (val >> 2) & 0x3; 1877 sc->nb_ant = val & 0x3; 1878 1879 DPRINTF(("RF revision=%d\n", sc->rf_rev)); 1880 1881 rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2); 1882 val = le16toh(val); 1883 sc->ext_5ghz_lna = (val >> 6) & 0x1; 1884 sc->ext_2ghz_lna = (val >> 4) & 0x1; 1885 1886 DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n", 1887 sc->ext_2ghz_lna, sc->ext_5ghz_lna)); 1888 1889 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2); 1890 val = le16toh(val); 1891 if ((val & 0xff) != 0xff) 1892 sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */ 1893 1894 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2); 1895 val = le16toh(val); 1896 if ((val & 0xff) != 0xff) 1897 sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */ 1898 1899 DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n", 1900 sc->rssi_2ghz_corr, sc->rssi_5ghz_corr)); 1901 1902 rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2); 1903 val = le16toh(val); 1904 if ((val & 0xff) != 0xff) 1905 sc->rffreq = val & 0xff; 1906 1907 DPRINTF(("RF freq=%d\n", sc->rffreq)); 1908 1909 /* read Tx power for all a/b/g channels */ 1910 rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14); 1911 /* XXX default Tx power for 802.11a channels */ 1912 memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14); 1913 #ifdef RUM_DEBUG 1914 for (i = 0; i < 14; i++) 1915 DPRINTF(("Channel=%d Tx power=%d\n", i + 1, sc->txpow[i])); 1916 #endif 1917 1918 /* read default values for BBP registers */ 1919 rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16); 1920 #ifdef RUM_DEBUG 1921 for (i = 0; i < 14; i++) { 1922 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff) 1923 continue; 1924 DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg, 1925 sc->bbp_prom[i].val)); 1926 } 1927 #endif 1928 } 1929 1930 static int 1931 rum_bbp_init(struct rum_softc *sc) 1932 { 1933 #define N(a) (sizeof (a) / sizeof ((a)[0])) 1934 unsigned int i, ntries; 1935 uint8_t val; 1936 1937 /* wait for BBP to be ready */ 1938 for (ntries = 0; ntries < 100; ntries++) { 1939 val = rum_bbp_read(sc, 0); 1940 if (val != 0 && val != 0xff) 1941 break; 1942 DELAY(1000); 1943 } 1944 if (ntries == 100) { 1945 printf("%s: timeout waiting for BBP\n", 1946 device_xname(sc->sc_dev)); 1947 return EIO; 1948 } 1949 1950 /* initialize BBP registers to default values */ 1951 for (i = 0; i < N(rum_def_bbp); i++) 1952 rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val); 1953 1954 /* write vendor-specific BBP values (from EEPROM) */ 1955 for (i = 0; i < 16; i++) { 1956 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff) 1957 continue; 1958 rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val); 1959 } 1960 1961 return 0; 1962 #undef N 1963 } 1964 1965 static int 1966 rum_init(struct ifnet *ifp) 1967 { 1968 #define N(a) (sizeof (a) / sizeof ((a)[0])) 1969 struct rum_softc *sc = ifp->if_softc; 1970 struct ieee80211com *ic = &sc->sc_ic; 1971 struct rum_rx_data *data; 1972 uint32_t tmp; 1973 usbd_status error = 0; 1974 unsigned int i, ntries; 1975 1976 if ((sc->sc_flags & RT2573_FWLOADED) == 0) { 1977 if (rum_attachhook(sc)) 1978 goto fail; 1979 } 1980 1981 rum_stop(ifp, 0); 1982 1983 /* initialize MAC registers to default values */ 1984 for (i = 0; i < N(rum_def_mac); i++) 1985 rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val); 1986 1987 /* set host ready */ 1988 rum_write(sc, RT2573_MAC_CSR1, 3); 1989 rum_write(sc, RT2573_MAC_CSR1, 0); 1990 1991 /* wait for BBP/RF to wakeup */ 1992 for (ntries = 0; ntries < 1000; ntries++) { 1993 if (rum_read(sc, RT2573_MAC_CSR12) & 8) 1994 break; 1995 rum_write(sc, RT2573_MAC_CSR12, 4); /* force wakeup */ 1996 DELAY(1000); 1997 } 1998 if (ntries == 1000) { 1999 printf("%s: timeout waiting for BBP/RF to wakeup\n", 2000 device_xname(sc->sc_dev)); 2001 goto fail; 2002 } 2003 2004 if ((error = rum_bbp_init(sc)) != 0) 2005 goto fail; 2006 2007 /* select default channel */ 2008 rum_select_band(sc, ic->ic_curchan); 2009 rum_select_antenna(sc); 2010 rum_set_chan(sc, ic->ic_curchan); 2011 2012 /* clear STA registers */ 2013 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta); 2014 2015 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl)); 2016 rum_set_macaddr(sc, ic->ic_myaddr); 2017 2018 /* initialize ASIC */ 2019 rum_write(sc, RT2573_MAC_CSR1, 4); 2020 2021 /* 2022 * Allocate xfer for AMRR statistics requests. 2023 */ 2024 sc->amrr_xfer = usbd_alloc_xfer(sc->sc_udev); 2025 if (sc->amrr_xfer == NULL) { 2026 printf("%s: could not allocate AMRR xfer\n", 2027 device_xname(sc->sc_dev)); 2028 goto fail; 2029 } 2030 2031 /* 2032 * Open Tx and Rx USB bulk pipes. 2033 */ 2034 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE, 2035 &sc->sc_tx_pipeh); 2036 if (error != 0) { 2037 printf("%s: could not open Tx pipe: %s\n", 2038 device_xname(sc->sc_dev), usbd_errstr(error)); 2039 goto fail; 2040 } 2041 2042 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE, 2043 &sc->sc_rx_pipeh); 2044 if (error != 0) { 2045 printf("%s: could not open Rx pipe: %s\n", 2046 device_xname(sc->sc_dev), usbd_errstr(error)); 2047 goto fail; 2048 } 2049 2050 /* 2051 * Allocate Tx and Rx xfer queues. 2052 */ 2053 error = rum_alloc_tx_list(sc); 2054 if (error != 0) { 2055 printf("%s: could not allocate Tx list\n", 2056 device_xname(sc->sc_dev)); 2057 goto fail; 2058 } 2059 2060 error = rum_alloc_rx_list(sc); 2061 if (error != 0) { 2062 printf("%s: could not allocate Rx list\n", 2063 device_xname(sc->sc_dev)); 2064 goto fail; 2065 } 2066 2067 /* 2068 * Start up the receive pipe. 2069 */ 2070 for (i = 0; i < RUM_RX_LIST_COUNT; i++) { 2071 data = &sc->rx_data[i]; 2072 2073 usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf, 2074 MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof); 2075 error = usbd_transfer(data->xfer); 2076 if (error != USBD_NORMAL_COMPLETION && 2077 error != USBD_IN_PROGRESS) { 2078 printf("%s: could not queue Rx transfer\n", 2079 device_xname(sc->sc_dev)); 2080 goto fail; 2081 } 2082 } 2083 2084 /* update Rx filter */ 2085 tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff; 2086 2087 tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR; 2088 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 2089 tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR | 2090 RT2573_DROP_ACKCTS; 2091 if (ic->ic_opmode != IEEE80211_M_HOSTAP) 2092 tmp |= RT2573_DROP_TODS; 2093 if (!(ifp->if_flags & IFF_PROMISC)) 2094 tmp |= RT2573_DROP_NOT_TO_ME; 2095 } 2096 rum_write(sc, RT2573_TXRX_CSR0, tmp); 2097 2098 ifp->if_flags &= ~IFF_OACTIVE; 2099 ifp->if_flags |= IFF_RUNNING; 2100 2101 if (ic->ic_opmode == IEEE80211_M_MONITOR) 2102 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 2103 else 2104 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 2105 2106 return 0; 2107 2108 fail: rum_stop(ifp, 1); 2109 return error; 2110 #undef N 2111 } 2112 2113 static void 2114 rum_stop(struct ifnet *ifp, int disable) 2115 { 2116 struct rum_softc *sc = ifp->if_softc; 2117 struct ieee80211com *ic = &sc->sc_ic; 2118 uint32_t tmp; 2119 2120 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */ 2121 2122 sc->sc_tx_timer = 0; 2123 ifp->if_timer = 0; 2124 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 2125 2126 /* disable Rx */ 2127 tmp = rum_read(sc, RT2573_TXRX_CSR0); 2128 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX); 2129 2130 /* reset ASIC */ 2131 rum_write(sc, RT2573_MAC_CSR1, 3); 2132 rum_write(sc, RT2573_MAC_CSR1, 0); 2133 2134 if (sc->amrr_xfer != NULL) { 2135 usbd_free_xfer(sc->amrr_xfer); 2136 sc->amrr_xfer = NULL; 2137 } 2138 2139 if (sc->sc_rx_pipeh != NULL) { 2140 usbd_abort_pipe(sc->sc_rx_pipeh); 2141 usbd_close_pipe(sc->sc_rx_pipeh); 2142 sc->sc_rx_pipeh = NULL; 2143 } 2144 2145 if (sc->sc_tx_pipeh != NULL) { 2146 usbd_abort_pipe(sc->sc_tx_pipeh); 2147 usbd_close_pipe(sc->sc_tx_pipeh); 2148 sc->sc_tx_pipeh = NULL; 2149 } 2150 2151 rum_free_rx_list(sc); 2152 rum_free_tx_list(sc); 2153 } 2154 2155 static int 2156 rum_load_microcode(struct rum_softc *sc, const u_char *ucode, size_t size) 2157 { 2158 usb_device_request_t req; 2159 uint16_t reg = RT2573_MCU_CODE_BASE; 2160 usbd_status error; 2161 2162 /* copy firmware image into NIC */ 2163 for (; size >= 4; reg += 4, ucode += 4, size -= 4) 2164 rum_write(sc, reg, UGETDW(ucode)); 2165 2166 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 2167 req.bRequest = RT2573_MCU_CNTL; 2168 USETW(req.wValue, RT2573_MCU_RUN); 2169 USETW(req.wIndex, 0); 2170 USETW(req.wLength, 0); 2171 2172 error = usbd_do_request(sc->sc_udev, &req, NULL); 2173 if (error != 0) { 2174 printf("%s: could not run firmware: %s\n", 2175 device_xname(sc->sc_dev), usbd_errstr(error)); 2176 } 2177 return error; 2178 } 2179 2180 static int 2181 rum_prepare_beacon(struct rum_softc *sc) 2182 { 2183 struct ieee80211com *ic = &sc->sc_ic; 2184 struct rum_tx_desc desc; 2185 struct mbuf *m0; 2186 int rate; 2187 2188 m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &sc->sc_bo); 2189 if (m0 == NULL) { 2190 aprint_error_dev(sc->sc_dev, 2191 "could not allocate beacon frame\n"); 2192 return ENOBUFS; 2193 } 2194 2195 /* send beacons at the lowest available rate */ 2196 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2; 2197 2198 rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ, 2199 m0->m_pkthdr.len, rate); 2200 2201 /* copy the first 24 bytes of Tx descriptor into NIC memory */ 2202 rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24); 2203 2204 /* copy beacon header and payload into NIC memory */ 2205 rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *), 2206 m0->m_pkthdr.len); 2207 2208 m_freem(m0); 2209 2210 return 0; 2211 } 2212 2213 static void 2214 rum_newassoc(struct ieee80211_node *ni, int isnew) 2215 { 2216 /* start with lowest Tx rate */ 2217 ni->ni_txrate = 0; 2218 } 2219 2220 static void 2221 rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni) 2222 { 2223 int i; 2224 2225 /* clear statistic registers (STA_CSR0 to STA_CSR5) */ 2226 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta); 2227 2228 ieee80211_amrr_node_init(&sc->amrr, &sc->amn); 2229 2230 /* set rate to some reasonable initial value */ 2231 for (i = ni->ni_rates.rs_nrates - 1; 2232 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72; 2233 i--); 2234 ni->ni_txrate = i; 2235 2236 callout_reset(&sc->sc_amrr_ch, hz, rum_amrr_timeout, sc); 2237 } 2238 2239 static void 2240 rum_amrr_timeout(void *arg) 2241 { 2242 struct rum_softc *sc = arg; 2243 usb_device_request_t req; 2244 2245 /* 2246 * Asynchronously read statistic registers (cleared by read). 2247 */ 2248 req.bmRequestType = UT_READ_VENDOR_DEVICE; 2249 req.bRequest = RT2573_READ_MULTI_MAC; 2250 USETW(req.wValue, 0); 2251 USETW(req.wIndex, RT2573_STA_CSR0); 2252 USETW(req.wLength, sizeof sc->sta); 2253 2254 usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc, 2255 USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0, 2256 rum_amrr_update); 2257 (void)usbd_transfer(sc->amrr_xfer); 2258 } 2259 2260 static void 2261 rum_amrr_update(usbd_xfer_handle xfer, usbd_private_handle priv, 2262 usbd_status status) 2263 { 2264 struct rum_softc *sc = (struct rum_softc *)priv; 2265 struct ifnet *ifp = sc->sc_ic.ic_ifp; 2266 2267 if (status != USBD_NORMAL_COMPLETION) { 2268 printf("%s: could not retrieve Tx statistics - cancelling " 2269 "automatic rate control\n", device_xname(sc->sc_dev)); 2270 return; 2271 } 2272 2273 /* count TX retry-fail as Tx errors */ 2274 ifp->if_oerrors += le32toh(sc->sta[5]) >> 16; 2275 2276 sc->amn.amn_retrycnt = 2277 (le32toh(sc->sta[4]) >> 16) + /* TX one-retry ok count */ 2278 (le32toh(sc->sta[5]) & 0xffff) + /* TX more-retry ok count */ 2279 (le32toh(sc->sta[5]) >> 16); /* TX retry-fail count */ 2280 2281 sc->amn.amn_txcnt = 2282 sc->amn.amn_retrycnt + 2283 (le32toh(sc->sta[4]) & 0xffff); /* TX no-retry ok count */ 2284 2285 ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn); 2286 2287 callout_reset(&sc->sc_amrr_ch, hz, rum_amrr_timeout, sc); 2288 } 2289 2290 static int 2291 rum_activate(device_t self, enum devact act) 2292 { 2293 switch (act) { 2294 case DVACT_DEACTIVATE: 2295 /*if_deactivate(&sc->sc_ic.ic_if);*/ 2296 return 0; 2297 default: 2298 return 0; 2299 } 2300 } 2301 2302 MODULE(MODULE_CLASS_DRIVER, if_rum, "bpf"); 2303 2304 #ifdef _MODULE 2305 #include "ioconf.c" 2306 #endif 2307 2308 static int 2309 if_rum_modcmd(modcmd_t cmd, void *aux) 2310 { 2311 int error = 0; 2312 2313 switch (cmd) { 2314 case MODULE_CMD_INIT: 2315 #ifdef _MODULE 2316 error = config_init_component(cfdriver_ioconf_rum, 2317 cfattach_ioconf_rum, cfdata_ioconf_rum); 2318 #endif 2319 return error; 2320 case MODULE_CMD_FINI: 2321 #ifdef _MODULE 2322 error = config_fini_component(cfdriver_ioconf_rum, 2323 cfattach_ioconf_rum, cfdata_ioconf_rum); 2324 #endif 2325 return error; 2326 default: 2327 return ENOTTY; 2328 } 2329 } 2330