1 /* $OpenBSD: if_rum.c,v 1.40 2006/09/18 16:20:20 damien Exp $ */ 2 /* $NetBSD: if_rum.c,v 1.69 2020/03/15 23:04:50 thorpej Exp $ */ 3 4 /*- 5 * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini@free.fr> 6 * Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org> 7 * 8 * Permission to use, copy, modify, and distribute this software for any 9 * purpose with or without fee is hereby granted, provided that the above 10 * copyright notice and this permission notice appear in all copies. 11 * 12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 */ 20 21 /*- 22 * Ralink Technology RT2501USB/RT2601USB chipset driver 23 * http://www.ralinktech.com.tw/ 24 */ 25 26 #include <sys/cdefs.h> 27 __KERNEL_RCSID(0, "$NetBSD: if_rum.c,v 1.69 2020/03/15 23:04:50 thorpej Exp $"); 28 29 #ifdef _KERNEL_OPT 30 #include "opt_usb.h" 31 #endif 32 33 #include <sys/param.h> 34 #include <sys/sockio.h> 35 #include <sys/sysctl.h> 36 #include <sys/mbuf.h> 37 #include <sys/kernel.h> 38 #include <sys/socket.h> 39 #include <sys/systm.h> 40 #include <sys/module.h> 41 #include <sys/conf.h> 42 #include <sys/device.h> 43 44 #include <sys/bus.h> 45 #include <machine/endian.h> 46 #include <sys/intr.h> 47 48 #include <net/bpf.h> 49 #include <net/if.h> 50 #include <net/if_arp.h> 51 #include <net/if_dl.h> 52 #include <net/if_ether.h> 53 #include <net/if_media.h> 54 #include <net/if_types.h> 55 56 #include <netinet/in.h> 57 #include <netinet/in_systm.h> 58 #include <netinet/in_var.h> 59 #include <netinet/ip.h> 60 61 #include <net80211/ieee80211_netbsd.h> 62 #include <net80211/ieee80211_var.h> 63 #include <net80211/ieee80211_amrr.h> 64 #include <net80211/ieee80211_radiotap.h> 65 66 #include <dev/firmload.h> 67 68 #include <dev/usb/usb.h> 69 #include <dev/usb/usbdi.h> 70 #include <dev/usb/usbdi_util.h> 71 #include <dev/usb/usbdevs.h> 72 73 #include <dev/usb/if_rumreg.h> 74 #include <dev/usb/if_rumvar.h> 75 76 #ifdef RUM_DEBUG 77 #define DPRINTF(x) do { if (rum_debug) printf x; } while (0) 78 #define DPRINTFN(n, x) do { if (rum_debug >= (n)) printf x; } while (0) 79 int rum_debug = 1; 80 #else 81 #define DPRINTF(x) 82 #define DPRINTFN(n, x) 83 #endif 84 85 /* various supported device vendors/products */ 86 static const struct usb_devno rum_devs[] = { 87 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_HWU54DM }, 88 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_2 }, 89 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_3 }, 90 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_4 }, 91 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_WUG2700 }, 92 { USB_VENDOR_AMIT, USB_PRODUCT_AMIT_CGWLUSB2GO }, 93 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G_2 }, 94 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G_3 }, 95 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050A }, 96 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D9050V3 }, 97 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D9050C }, 98 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB200 }, 99 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GC }, 100 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GR }, 101 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_C54RU2 }, 102 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_RT2573 }, 103 { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GL }, 104 { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GPX }, 105 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_CWD854F }, 106 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_RT2573 }, 107 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWLG122C1 }, 108 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_WUA1340 }, 109 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA110 }, 110 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA111 }, 111 { USB_VENDOR_EDIMAX, USB_PRODUCT_EDIMAX_EW7318 }, 112 { USB_VENDOR_EDIMAX, USB_PRODUCT_EDIMAX_EW7618 }, 113 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWB01GS }, 114 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWI05GS }, 115 { USB_VENDOR_GIGASET, USB_PRODUCT_GIGASET_RT2573 }, 116 { USB_VENDOR_GOODWAY, USB_PRODUCT_GOODWAY_RT2573 }, 117 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254LB }, 118 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254V2AP }, 119 { USB_VENDOR_HUAWEI3COM, USB_PRODUCT_HUAWEI3COM_RT2573 }, 120 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_G54HP }, 121 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_SG54HP }, 122 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_SG54HG }, 123 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_WLIUCG }, 124 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573 }, 125 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_2 }, 126 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_3 }, 127 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_4 }, 128 { USB_VENDOR_NOVATECH, USB_PRODUCT_NOVATECH_RT2573 }, 129 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54HP }, 130 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54MINI2 }, 131 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUSMM }, 132 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573 }, 133 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_2 }, 134 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_3 }, 135 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2573 }, 136 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2671 }, 137 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL113R2 }, 138 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL172 }, 139 { USB_VENDOR_SPARKLAN, USB_PRODUCT_SPARKLAN_RT2573 }, 140 { USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_RT2573 }, 141 { USB_VENDOR_SYNET, USB_PRODUCT_SYNET_MWP54SS }, 142 { USB_VENDOR_ZYXEL, USB_PRODUCT_ZYXEL_RT2573 } 143 }; 144 145 static int rum_attachhook(void *); 146 static int rum_alloc_tx_list(struct rum_softc *); 147 static void rum_free_tx_list(struct rum_softc *); 148 static int rum_alloc_rx_list(struct rum_softc *); 149 static void rum_free_rx_list(struct rum_softc *); 150 static int rum_media_change(struct ifnet *); 151 static void rum_next_scan(void *); 152 static void rum_task(void *); 153 static int rum_newstate(struct ieee80211com *, 154 enum ieee80211_state, int); 155 static void rum_txeof(struct usbd_xfer *, void *, 156 usbd_status); 157 static void rum_rxeof(struct usbd_xfer *, void *, 158 usbd_status); 159 static uint8_t rum_rxrate(const struct rum_rx_desc *); 160 static int rum_ack_rate(struct ieee80211com *, int); 161 static uint16_t rum_txtime(int, int, uint32_t); 162 static uint8_t rum_plcp_signal(int); 163 static void rum_setup_tx_desc(struct rum_softc *, 164 struct rum_tx_desc *, uint32_t, uint16_t, int, 165 int); 166 static int rum_tx_data(struct rum_softc *, struct mbuf *, 167 struct ieee80211_node *); 168 static void rum_start(struct ifnet *); 169 static void rum_watchdog(struct ifnet *); 170 static int rum_ioctl(struct ifnet *, u_long, void *); 171 static void rum_eeprom_read(struct rum_softc *, uint16_t, void *, 172 int); 173 static uint32_t rum_read(struct rum_softc *, uint16_t); 174 static void rum_read_multi(struct rum_softc *, uint16_t, void *, 175 int); 176 static void rum_write(struct rum_softc *, uint16_t, uint32_t); 177 static void rum_write_multi(struct rum_softc *, uint16_t, void *, 178 size_t); 179 static void rum_bbp_write(struct rum_softc *, uint8_t, uint8_t); 180 static uint8_t rum_bbp_read(struct rum_softc *, uint8_t); 181 static void rum_rf_write(struct rum_softc *, uint8_t, uint32_t); 182 static void rum_select_antenna(struct rum_softc *); 183 static void rum_enable_mrr(struct rum_softc *); 184 static void rum_set_txpreamble(struct rum_softc *); 185 static void rum_set_basicrates(struct rum_softc *); 186 static void rum_select_band(struct rum_softc *, 187 struct ieee80211_channel *); 188 static void rum_set_chan(struct rum_softc *, 189 struct ieee80211_channel *); 190 static void rum_enable_tsf_sync(struct rum_softc *); 191 static void rum_update_slot(struct rum_softc *); 192 static void rum_set_bssid(struct rum_softc *, const uint8_t *); 193 static void rum_set_macaddr(struct rum_softc *, const uint8_t *); 194 static void rum_update_promisc(struct rum_softc *); 195 static const char *rum_get_rf(int); 196 static void rum_read_eeprom(struct rum_softc *); 197 static int rum_bbp_init(struct rum_softc *); 198 static int rum_init(struct ifnet *); 199 static void rum_stop(struct ifnet *, int); 200 static int rum_load_microcode(struct rum_softc *, const u_char *, 201 size_t); 202 static int rum_prepare_beacon(struct rum_softc *); 203 static void rum_newassoc(struct ieee80211_node *, int); 204 static void rum_amrr_start(struct rum_softc *, 205 struct ieee80211_node *); 206 static void rum_amrr_timeout(void *); 207 static void rum_amrr_update(struct usbd_xfer *, void *, 208 usbd_status); 209 210 static const struct { 211 uint32_t reg; 212 uint32_t val; 213 } rum_def_mac[] = { 214 RT2573_DEF_MAC 215 }; 216 217 static const struct { 218 uint8_t reg; 219 uint8_t val; 220 } rum_def_bbp[] = { 221 RT2573_DEF_BBP 222 }; 223 224 static const struct rfprog { 225 uint8_t chan; 226 uint32_t r1, r2, r3, r4; 227 } rum_rf5226[] = { 228 RT2573_RF5226 229 }, rum_rf5225[] = { 230 RT2573_RF5225 231 }; 232 233 static int rum_match(device_t, cfdata_t, void *); 234 static void rum_attach(device_t, device_t, void *); 235 static int rum_detach(device_t, int); 236 static int rum_activate(device_t, enum devact); 237 238 CFATTACH_DECL_NEW(rum, sizeof(struct rum_softc), rum_match, rum_attach, 239 rum_detach, rum_activate); 240 241 static int 242 rum_match(device_t parent, cfdata_t match, void *aux) 243 { 244 struct usb_attach_arg *uaa = aux; 245 246 return (usb_lookup(rum_devs, uaa->uaa_vendor, uaa->uaa_product) != NULL) ? 247 UMATCH_VENDOR_PRODUCT : UMATCH_NONE; 248 } 249 250 static int 251 rum_attachhook(void *xsc) 252 { 253 struct rum_softc *sc = xsc; 254 firmware_handle_t fwh; 255 const char *name = "rum-rt2573"; 256 u_char *ucode; 257 size_t size; 258 int error; 259 260 if ((error = firmware_open("rum", name, &fwh)) != 0) { 261 printf("%s: failed firmware_open of file %s (error %d)\n", 262 device_xname(sc->sc_dev), name, error); 263 return error; 264 } 265 size = firmware_get_size(fwh); 266 ucode = firmware_malloc(size); 267 if (ucode == NULL) { 268 printf("%s: failed to allocate firmware memory\n", 269 device_xname(sc->sc_dev)); 270 firmware_close(fwh); 271 return ENOMEM; 272 } 273 error = firmware_read(fwh, 0, ucode, size); 274 firmware_close(fwh); 275 if (error != 0) { 276 printf("%s: failed to read firmware (error %d)\n", 277 device_xname(sc->sc_dev), error); 278 firmware_free(ucode, size); 279 return error; 280 } 281 282 if (rum_load_microcode(sc, ucode, size) != 0) { 283 printf("%s: could not load 8051 microcode\n", 284 device_xname(sc->sc_dev)); 285 firmware_free(ucode, size); 286 return ENXIO; 287 } 288 289 firmware_free(ucode, size); 290 sc->sc_flags |= RT2573_FWLOADED; 291 292 return 0; 293 } 294 295 static void 296 rum_attach(device_t parent, device_t self, void *aux) 297 { 298 struct rum_softc *sc = device_private(self); 299 struct usb_attach_arg *uaa = aux; 300 struct ieee80211com *ic = &sc->sc_ic; 301 struct ifnet *ifp = &sc->sc_if; 302 usb_interface_descriptor_t *id; 303 usb_endpoint_descriptor_t *ed; 304 usbd_status error; 305 char *devinfop; 306 int i, ntries; 307 uint32_t tmp; 308 309 sc->sc_dev = self; 310 sc->sc_udev = uaa->uaa_device; 311 sc->sc_flags = 0; 312 313 aprint_naive("\n"); 314 aprint_normal("\n"); 315 316 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0); 317 aprint_normal_dev(self, "%s\n", devinfop); 318 usbd_devinfo_free(devinfop); 319 320 error = usbd_set_config_no(sc->sc_udev, RT2573_CONFIG_NO, 0); 321 if (error != 0) { 322 aprint_error_dev(self, "failed to set configuration" 323 ", err=%s\n", usbd_errstr(error)); 324 return; 325 } 326 327 /* get the first interface handle */ 328 error = usbd_device2interface_handle(sc->sc_udev, RT2573_IFACE_INDEX, 329 &sc->sc_iface); 330 if (error != 0) { 331 aprint_error_dev(self, "could not get interface handle\n"); 332 return; 333 } 334 335 /* 336 * Find endpoints. 337 */ 338 id = usbd_get_interface_descriptor(sc->sc_iface); 339 340 sc->sc_rx_no = sc->sc_tx_no = -1; 341 for (i = 0; i < id->bNumEndpoints; i++) { 342 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i); 343 if (ed == NULL) { 344 aprint_error_dev(self, 345 "no endpoint descriptor for iface %d\n", i); 346 return; 347 } 348 349 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN && 350 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) 351 sc->sc_rx_no = ed->bEndpointAddress; 352 else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT && 353 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) 354 sc->sc_tx_no = ed->bEndpointAddress; 355 } 356 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) { 357 aprint_error_dev(self, "missing endpoint\n"); 358 return; 359 } 360 361 usb_init_task(&sc->sc_task, rum_task, sc, 0); 362 callout_init(&sc->sc_scan_ch, 0); 363 364 sc->amrr.amrr_min_success_threshold = 1; 365 sc->amrr.amrr_max_success_threshold = 10; 366 callout_init(&sc->sc_amrr_ch, 0); 367 368 /* retrieve RT2573 rev. no */ 369 for (ntries = 0; ntries < 1000; ntries++) { 370 if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0) 371 break; 372 DELAY(1000); 373 } 374 if (ntries == 1000) { 375 aprint_error_dev(self, "timeout waiting for chip to settle\n"); 376 return; 377 } 378 379 /* retrieve MAC address and various other things from EEPROM */ 380 rum_read_eeprom(sc); 381 382 aprint_normal_dev(self, 383 "MAC/BBP RT%04x (rev 0x%05x), RF %s, address %s\n", 384 sc->macbbp_rev, tmp, 385 rum_get_rf(sc->rf_rev), ether_sprintf(ic->ic_myaddr)); 386 387 ic->ic_ifp = ifp; 388 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 389 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 390 ic->ic_state = IEEE80211_S_INIT; 391 392 /* set device capabilities */ 393 ic->ic_caps = 394 IEEE80211_C_IBSS | /* IBSS mode supported */ 395 IEEE80211_C_MONITOR | /* monitor mode supported */ 396 IEEE80211_C_HOSTAP | /* HostAp mode supported */ 397 IEEE80211_C_TXPMGT | /* tx power management */ 398 IEEE80211_C_SHPREAMBLE | /* short preamble supported */ 399 IEEE80211_C_SHSLOT | /* short slot time supported */ 400 IEEE80211_C_WPA; /* 802.11i */ 401 402 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) { 403 /* set supported .11a rates */ 404 ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a; 405 406 /* set supported .11a channels */ 407 for (i = 34; i <= 46; i += 4) { 408 ic->ic_channels[i].ic_freq = 409 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 410 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 411 } 412 for (i = 36; i <= 64; i += 4) { 413 ic->ic_channels[i].ic_freq = 414 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 415 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 416 } 417 for (i = 100; i <= 140; i += 4) { 418 ic->ic_channels[i].ic_freq = 419 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 420 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 421 } 422 for (i = 149; i <= 165; i += 4) { 423 ic->ic_channels[i].ic_freq = 424 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 425 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 426 } 427 } 428 429 /* set supported .11b and .11g rates */ 430 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b; 431 ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g; 432 433 /* set supported .11b and .11g channels (1 through 14) */ 434 for (i = 1; i <= 14; i++) { 435 ic->ic_channels[i].ic_freq = 436 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ); 437 ic->ic_channels[i].ic_flags = 438 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | 439 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 440 } 441 442 ifp->if_softc = sc; 443 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 444 ifp->if_init = rum_init; 445 ifp->if_ioctl = rum_ioctl; 446 ifp->if_start = rum_start; 447 ifp->if_watchdog = rum_watchdog; 448 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); 449 IFQ_SET_READY(&ifp->if_snd); 450 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ); 451 452 if_attach(ifp); 453 ieee80211_ifattach(ic); 454 ic->ic_newassoc = rum_newassoc; 455 456 /* override state transition machine */ 457 sc->sc_newstate = ic->ic_newstate; 458 ic->ic_newstate = rum_newstate; 459 460 /* XXX media locking needs revisiting */ 461 mutex_init(&sc->sc_media_mtx, MUTEX_DEFAULT, IPL_SOFTUSB); 462 ieee80211_media_init_with_lock(ic, 463 rum_media_change, ieee80211_media_status, &sc->sc_media_mtx); 464 465 bpf_attach2(ifp, DLT_IEEE802_11_RADIO, 466 sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN, 467 &sc->sc_drvbpf); 468 469 sc->sc_rxtap_len = sizeof(sc->sc_rxtapu); 470 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 471 sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT); 472 473 sc->sc_txtap_len = sizeof(sc->sc_txtapu); 474 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 475 sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT); 476 477 ieee80211_announce(ic); 478 479 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev); 480 481 if (!pmf_device_register(self, NULL, NULL)) 482 aprint_error_dev(self, "couldn't establish power handler\n"); 483 484 return; 485 } 486 487 static int 488 rum_detach(device_t self, int flags) 489 { 490 struct rum_softc *sc = device_private(self); 491 struct ieee80211com *ic = &sc->sc_ic; 492 struct ifnet *ifp = &sc->sc_if; 493 int s; 494 495 if (!ifp->if_softc) 496 return 0; 497 498 pmf_device_deregister(self); 499 500 s = splusb(); 501 502 rum_stop(ifp, 1); 503 callout_halt(&sc->sc_scan_ch, NULL); 504 callout_halt(&sc->sc_amrr_ch, NULL); 505 usb_rem_task_wait(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER, NULL); 506 507 bpf_detach(ifp); 508 ieee80211_ifdetach(ic); /* free all nodes */ 509 if_detach(ifp); 510 511 splx(s); 512 513 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev); 514 515 return 0; 516 } 517 518 static int 519 rum_alloc_tx_list(struct rum_softc *sc) 520 { 521 struct rum_tx_data *data; 522 int i, error; 523 524 sc->tx_cur = sc->tx_queued = 0; 525 526 for (i = 0; i < RUM_TX_LIST_COUNT; i++) { 527 data = &sc->tx_data[i]; 528 529 data->sc = sc; 530 531 error = usbd_create_xfer(sc->sc_tx_pipeh, 532 RT2573_TX_DESC_SIZE + IEEE80211_MAX_LEN, 533 USBD_FORCE_SHORT_XFER, 0, &data->xfer); 534 if (error) { 535 printf("%s: could not allocate tx xfer\n", 536 device_xname(sc->sc_dev)); 537 goto fail; 538 } 539 data->buf = usbd_get_buffer(data->xfer); 540 541 /* clean Tx descriptor */ 542 memset(data->buf, 0, RT2573_TX_DESC_SIZE); 543 } 544 545 return 0; 546 547 fail: rum_free_tx_list(sc); 548 return error; 549 } 550 551 static void 552 rum_free_tx_list(struct rum_softc *sc) 553 { 554 struct rum_tx_data *data; 555 int i; 556 557 for (i = 0; i < RUM_TX_LIST_COUNT; i++) { 558 data = &sc->tx_data[i]; 559 560 if (data->xfer != NULL) { 561 usbd_destroy_xfer(data->xfer); 562 data->xfer = NULL; 563 } 564 565 if (data->ni != NULL) { 566 ieee80211_free_node(data->ni); 567 data->ni = NULL; 568 } 569 } 570 } 571 572 static int 573 rum_alloc_rx_list(struct rum_softc *sc) 574 { 575 struct rum_rx_data *data; 576 int i, error; 577 578 for (i = 0; i < RUM_RX_LIST_COUNT; i++) { 579 data = &sc->rx_data[i]; 580 581 data->sc = sc; 582 583 error = usbd_create_xfer(sc->sc_rx_pipeh, MCLBYTES, 584 0, 0, &data->xfer); 585 if (error) { 586 printf("%s: could not allocate rx xfer\n", 587 device_xname(sc->sc_dev)); 588 goto fail; 589 } 590 591 MGETHDR(data->m, M_DONTWAIT, MT_DATA); 592 if (data->m == NULL) { 593 printf("%s: could not allocate rx mbuf\n", 594 device_xname(sc->sc_dev)); 595 error = ENOMEM; 596 goto fail; 597 } 598 599 MCLGET(data->m, M_DONTWAIT); 600 if (!(data->m->m_flags & M_EXT)) { 601 printf("%s: could not allocate rx mbuf cluster\n", 602 device_xname(sc->sc_dev)); 603 error = ENOMEM; 604 goto fail; 605 } 606 607 data->buf = mtod(data->m, uint8_t *); 608 } 609 610 return 0; 611 612 fail: rum_free_rx_list(sc); 613 return error; 614 } 615 616 static void 617 rum_free_rx_list(struct rum_softc *sc) 618 { 619 struct rum_rx_data *data; 620 int i; 621 622 for (i = 0; i < RUM_RX_LIST_COUNT; i++) { 623 data = &sc->rx_data[i]; 624 625 if (data->xfer != NULL) { 626 usbd_destroy_xfer(data->xfer); 627 data->xfer = NULL; 628 } 629 630 if (data->m != NULL) { 631 m_freem(data->m); 632 data->m = NULL; 633 } 634 } 635 } 636 637 static int 638 rum_media_change(struct ifnet *ifp) 639 { 640 int error; 641 642 error = ieee80211_media_change(ifp); 643 if (error != ENETRESET) 644 return error; 645 646 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) 647 rum_init(ifp); 648 649 return 0; 650 } 651 652 /* 653 * This function is called periodically (every 200ms) during scanning to 654 * switch from one channel to another. 655 */ 656 static void 657 rum_next_scan(void *arg) 658 { 659 struct rum_softc *sc = arg; 660 struct ieee80211com *ic = &sc->sc_ic; 661 int s; 662 663 s = splnet(); 664 if (ic->ic_state == IEEE80211_S_SCAN) 665 ieee80211_next_scan(ic); 666 splx(s); 667 } 668 669 static void 670 rum_task(void *arg) 671 { 672 struct rum_softc *sc = arg; 673 struct ieee80211com *ic = &sc->sc_ic; 674 enum ieee80211_state ostate; 675 struct ieee80211_node *ni; 676 uint32_t tmp; 677 678 ostate = ic->ic_state; 679 680 switch (sc->sc_state) { 681 case IEEE80211_S_INIT: 682 if (ostate == IEEE80211_S_RUN) { 683 /* abort TSF synchronization */ 684 tmp = rum_read(sc, RT2573_TXRX_CSR9); 685 rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff); 686 } 687 break; 688 689 case IEEE80211_S_SCAN: 690 rum_set_chan(sc, ic->ic_curchan); 691 callout_reset(&sc->sc_scan_ch, hz / 5, rum_next_scan, sc); 692 break; 693 694 case IEEE80211_S_AUTH: 695 rum_set_chan(sc, ic->ic_curchan); 696 break; 697 698 case IEEE80211_S_ASSOC: 699 rum_set_chan(sc, ic->ic_curchan); 700 break; 701 702 case IEEE80211_S_RUN: 703 rum_set_chan(sc, ic->ic_curchan); 704 705 ni = ic->ic_bss; 706 707 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 708 rum_update_slot(sc); 709 rum_enable_mrr(sc); 710 rum_set_txpreamble(sc); 711 rum_set_basicrates(sc); 712 rum_set_bssid(sc, ni->ni_bssid); 713 } 714 715 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 716 ic->ic_opmode == IEEE80211_M_IBSS) 717 rum_prepare_beacon(sc); 718 719 if (ic->ic_opmode != IEEE80211_M_MONITOR) 720 rum_enable_tsf_sync(sc); 721 722 if (ic->ic_opmode == IEEE80211_M_STA) { 723 /* fake a join to init the tx rate */ 724 rum_newassoc(ic->ic_bss, 1); 725 726 /* enable automatic rate adaptation in STA mode */ 727 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) 728 rum_amrr_start(sc, ni); 729 } 730 731 break; 732 } 733 734 sc->sc_newstate(ic, sc->sc_state, sc->sc_arg); 735 } 736 737 static int 738 rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 739 { 740 struct rum_softc *sc = ic->ic_ifp->if_softc; 741 742 /* 743 * XXXSMP: This does not wait for the task, if it is in flight, 744 * to complete. If this code works at all, it must rely on the 745 * kernel lock to serialize with the USB task thread. 746 */ 747 usb_rem_task(sc->sc_udev, &sc->sc_task); 748 callout_stop(&sc->sc_scan_ch); 749 callout_stop(&sc->sc_amrr_ch); 750 751 /* do it in a process context */ 752 sc->sc_state = nstate; 753 sc->sc_arg = arg; 754 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER); 755 756 return 0; 757 } 758 759 /* quickly determine if a given rate is CCK or OFDM */ 760 #define RUM_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22) 761 762 #define RUM_ACK_SIZE 14 /* 10 + 4(FCS) */ 763 #define RUM_CTS_SIZE 14 /* 10 + 4(FCS) */ 764 765 static void 766 rum_txeof(struct usbd_xfer *xfer, void *priv, usbd_status status) 767 { 768 struct rum_tx_data *data = priv; 769 struct rum_softc *sc = data->sc; 770 struct ifnet *ifp = &sc->sc_if; 771 int s; 772 773 if (status != USBD_NORMAL_COMPLETION) { 774 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 775 return; 776 777 printf("%s: could not transmit buffer: %s\n", 778 device_xname(sc->sc_dev), usbd_errstr(status)); 779 780 if (status == USBD_STALLED) 781 usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh); 782 783 if_statinc(ifp, if_oerrors); 784 return; 785 } 786 787 s = splnet(); 788 789 ieee80211_free_node(data->ni); 790 data->ni = NULL; 791 792 sc->tx_queued--; 793 if_statinc(ifp, if_opackets); 794 795 DPRINTFN(10, ("tx done\n")); 796 797 sc->sc_tx_timer = 0; 798 ifp->if_flags &= ~IFF_OACTIVE; 799 rum_start(ifp); 800 801 splx(s); 802 } 803 804 static void 805 rum_rxeof(struct usbd_xfer *xfer, void *priv, usbd_status status) 806 { 807 struct rum_rx_data *data = priv; 808 struct rum_softc *sc = data->sc; 809 struct ieee80211com *ic = &sc->sc_ic; 810 struct ifnet *ifp = &sc->sc_if; 811 struct rum_rx_desc *desc; 812 struct ieee80211_frame *wh; 813 struct ieee80211_node *ni; 814 struct mbuf *mnew, *m; 815 int s, len; 816 817 if (status != USBD_NORMAL_COMPLETION) { 818 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 819 return; 820 821 if (status == USBD_STALLED) 822 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh); 823 goto skip; 824 } 825 826 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL); 827 828 if (len < (int)(RT2573_RX_DESC_SIZE + 829 sizeof(struct ieee80211_frame_min))) { 830 DPRINTF(("%s: xfer too short %d\n", device_xname(sc->sc_dev), 831 len)); 832 if_statinc(ifp, if_ierrors); 833 goto skip; 834 } 835 836 desc = (struct rum_rx_desc *)data->buf; 837 838 if (le32toh(desc->flags) & RT2573_RX_CRC_ERROR) { 839 /* 840 * This should not happen since we did not request to receive 841 * those frames when we filled RT2573_TXRX_CSR0. 842 */ 843 DPRINTFN(5, ("CRC error\n")); 844 if_statinc(ifp, if_ierrors); 845 goto skip; 846 } 847 848 MGETHDR(mnew, M_DONTWAIT, MT_DATA); 849 if (mnew == NULL) { 850 printf("%s: could not allocate rx mbuf\n", 851 device_xname(sc->sc_dev)); 852 if_statinc(ifp, if_ierrors); 853 goto skip; 854 } 855 856 MCLGET(mnew, M_DONTWAIT); 857 if (!(mnew->m_flags & M_EXT)) { 858 printf("%s: could not allocate rx mbuf cluster\n", 859 device_xname(sc->sc_dev)); 860 m_freem(mnew); 861 if_statinc(ifp, if_ierrors); 862 goto skip; 863 } 864 865 m = data->m; 866 data->m = mnew; 867 data->buf = mtod(data->m, uint8_t *); 868 869 /* finalize mbuf */ 870 m_set_rcvif(m, ifp); 871 m->m_data = (void *)(desc + 1); 872 m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff; 873 874 s = splnet(); 875 876 if (sc->sc_drvbpf != NULL) { 877 struct rum_rx_radiotap_header *tap = &sc->sc_rxtap; 878 879 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS; 880 tap->wr_rate = rum_rxrate(desc); 881 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq); 882 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags); 883 tap->wr_antenna = sc->rx_ant; 884 tap->wr_antsignal = desc->rssi; 885 886 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN); 887 } 888 889 wh = mtod(m, struct ieee80211_frame *); 890 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); 891 892 /* send the frame to the 802.11 layer */ 893 ieee80211_input(ic, m, ni, desc->rssi, 0); 894 895 /* node is no longer needed */ 896 ieee80211_free_node(ni); 897 898 splx(s); 899 900 DPRINTFN(15, ("rx done\n")); 901 902 skip: /* setup a new transfer */ 903 usbd_setup_xfer(xfer, data, data->buf, MCLBYTES, USBD_SHORT_XFER_OK, 904 USBD_NO_TIMEOUT, rum_rxeof); 905 usbd_transfer(xfer); 906 } 907 908 /* 909 * This function is only used by the Rx radiotap code. It returns the rate at 910 * which a given frame was received. 911 */ 912 static uint8_t 913 rum_rxrate(const struct rum_rx_desc *desc) 914 { 915 if (le32toh(desc->flags) & RT2573_RX_OFDM) { 916 /* reverse function of rum_plcp_signal */ 917 switch (desc->rate) { 918 case 0xb: return 12; 919 case 0xf: return 18; 920 case 0xa: return 24; 921 case 0xe: return 36; 922 case 0x9: return 48; 923 case 0xd: return 72; 924 case 0x8: return 96; 925 case 0xc: return 108; 926 } 927 } else { 928 if (desc->rate == 10) 929 return 2; 930 if (desc->rate == 20) 931 return 4; 932 if (desc->rate == 55) 933 return 11; 934 if (desc->rate == 110) 935 return 22; 936 } 937 return 2; /* should not get there */ 938 } 939 940 /* 941 * Return the expected ack rate for a frame transmitted at rate `rate'. 942 * XXX: this should depend on the destination node basic rate set. 943 */ 944 static int 945 rum_ack_rate(struct ieee80211com *ic, int rate) 946 { 947 switch (rate) { 948 /* CCK rates */ 949 case 2: 950 return 2; 951 case 4: 952 case 11: 953 case 22: 954 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate; 955 956 /* OFDM rates */ 957 case 12: 958 case 18: 959 return 12; 960 case 24: 961 case 36: 962 return 24; 963 case 48: 964 case 72: 965 case 96: 966 case 108: 967 return 48; 968 } 969 970 /* default to 1Mbps */ 971 return 2; 972 } 973 974 /* 975 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'. 976 * The function automatically determines the operating mode depending on the 977 * given rate. `flags' indicates whether short preamble is in use or not. 978 */ 979 static uint16_t 980 rum_txtime(int len, int rate, uint32_t flags) 981 { 982 uint16_t txtime; 983 984 if (RUM_RATE_IS_OFDM(rate)) { 985 /* IEEE Std 802.11a-1999, pp. 37 */ 986 txtime = (8 + 4 * len + 3 + rate - 1) / rate; 987 txtime = 16 + 4 + 4 * txtime + 6; 988 } else { 989 /* IEEE Std 802.11b-1999, pp. 28 */ 990 txtime = (16 * len + rate - 1) / rate; 991 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE)) 992 txtime += 72 + 24; 993 else 994 txtime += 144 + 48; 995 } 996 return txtime; 997 } 998 999 static uint8_t 1000 rum_plcp_signal(int rate) 1001 { 1002 switch (rate) { 1003 /* CCK rates (returned values are device-dependent) */ 1004 case 2: return 0x0; 1005 case 4: return 0x1; 1006 case 11: return 0x2; 1007 case 22: return 0x3; 1008 1009 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 1010 case 12: return 0xb; 1011 case 18: return 0xf; 1012 case 24: return 0xa; 1013 case 36: return 0xe; 1014 case 48: return 0x9; 1015 case 72: return 0xd; 1016 case 96: return 0x8; 1017 case 108: return 0xc; 1018 1019 /* unsupported rates (should not get there) */ 1020 default: return 0xff; 1021 } 1022 } 1023 1024 static void 1025 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc, 1026 uint32_t flags, uint16_t xflags, int len, int rate) 1027 { 1028 struct ieee80211com *ic = &sc->sc_ic; 1029 uint16_t plcp_length; 1030 int remainder; 1031 1032 desc->flags = htole32(flags); 1033 desc->flags |= htole32(RT2573_TX_VALID); 1034 desc->flags |= htole32(len << 16); 1035 1036 desc->xflags = htole16(xflags); 1037 1038 desc->wme = htole16( 1039 RT2573_QID(0) | 1040 RT2573_AIFSN(2) | 1041 RT2573_LOGCWMIN(4) | 1042 RT2573_LOGCWMAX(10)); 1043 1044 /* setup PLCP fields */ 1045 desc->plcp_signal = rum_plcp_signal(rate); 1046 desc->plcp_service = 4; 1047 1048 len += IEEE80211_CRC_LEN; 1049 if (RUM_RATE_IS_OFDM(rate)) { 1050 desc->flags |= htole32(RT2573_TX_OFDM); 1051 1052 plcp_length = len & 0xfff; 1053 desc->plcp_length_hi = plcp_length >> 6; 1054 desc->plcp_length_lo = plcp_length & 0x3f; 1055 } else { 1056 plcp_length = (16 * len + rate - 1) / rate; 1057 if (rate == 22) { 1058 remainder = (16 * len) % 22; 1059 if (remainder != 0 && remainder < 7) 1060 desc->plcp_service |= RT2573_PLCP_LENGEXT; 1061 } 1062 desc->plcp_length_hi = plcp_length >> 8; 1063 desc->plcp_length_lo = plcp_length & 0xff; 1064 1065 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 1066 desc->plcp_signal |= 0x08; 1067 } 1068 } 1069 1070 #define RUM_TX_TIMEOUT 5000 1071 1072 static int 1073 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1074 { 1075 struct ieee80211com *ic = &sc->sc_ic; 1076 struct rum_tx_desc *desc; 1077 struct rum_tx_data *data; 1078 struct ieee80211_frame *wh; 1079 struct ieee80211_key *k; 1080 uint32_t flags = 0; 1081 uint16_t dur; 1082 usbd_status error; 1083 int rate, xferlen, pktlen, needrts = 0, needcts = 0; 1084 1085 wh = mtod(m0, struct ieee80211_frame *); 1086 1087 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1088 k = ieee80211_crypto_encap(ic, ni, m0); 1089 if (k == NULL) { 1090 m_freem(m0); 1091 return ENOBUFS; 1092 } 1093 1094 /* packet header may have moved, reset our local pointer */ 1095 wh = mtod(m0, struct ieee80211_frame *); 1096 } 1097 1098 /* compute actual packet length (including CRC and crypto overhead) */ 1099 pktlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN; 1100 1101 /* pickup a rate */ 1102 if (IEEE80211_IS_MULTICAST(wh->i_addr1) || 1103 ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == 1104 IEEE80211_FC0_TYPE_MGT)) { 1105 /* mgmt/multicast frames are sent at the lowest avail. rate */ 1106 rate = ni->ni_rates.rs_rates[0]; 1107 } else if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) { 1108 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate]; 1109 } else 1110 rate = ni->ni_rates.rs_rates[ni->ni_txrate]; 1111 if (rate == 0) 1112 rate = 2; /* XXX should not happen */ 1113 rate &= IEEE80211_RATE_VAL; 1114 1115 /* check if RTS/CTS or CTS-to-self protection must be used */ 1116 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1117 /* multicast frames are not sent at OFDM rates in 802.11b/g */ 1118 if (pktlen > ic->ic_rtsthreshold) { 1119 needrts = 1; /* RTS/CTS based on frame length */ 1120 } else if ((ic->ic_flags & IEEE80211_F_USEPROT) && 1121 RUM_RATE_IS_OFDM(rate)) { 1122 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 1123 needcts = 1; /* CTS-to-self */ 1124 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 1125 needrts = 1; /* RTS/CTS */ 1126 } 1127 } 1128 if (needrts || needcts) { 1129 struct mbuf *mprot; 1130 int protrate, ackrate; 1131 1132 protrate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2; 1133 ackrate = rum_ack_rate(ic, rate); 1134 1135 dur = rum_txtime(pktlen, rate, ic->ic_flags) + 1136 rum_txtime(RUM_ACK_SIZE, ackrate, ic->ic_flags) + 1137 2 * sc->sifs; 1138 if (needrts) { 1139 dur += rum_txtime(RUM_CTS_SIZE, rum_ack_rate(ic, 1140 protrate), ic->ic_flags) + sc->sifs; 1141 mprot = ieee80211_get_rts(ic, wh, dur); 1142 } else { 1143 mprot = ieee80211_get_cts_to_self(ic, dur); 1144 } 1145 if (mprot == NULL) { 1146 aprint_error_dev(sc->sc_dev, 1147 "couldn't allocate protection frame\n"); 1148 m_freem(m0); 1149 return ENOBUFS; 1150 } 1151 1152 data = &sc->tx_data[sc->tx_cur]; 1153 desc = (struct rum_tx_desc *)data->buf; 1154 1155 /* avoid multiple free() of the same node for each fragment */ 1156 data->ni = ieee80211_ref_node(ni); 1157 1158 m_copydata(mprot, 0, mprot->m_pkthdr.len, 1159 data->buf + RT2573_TX_DESC_SIZE); 1160 rum_setup_tx_desc(sc, desc, 1161 (needrts ? RT2573_TX_NEED_ACK : 0) | RT2573_TX_MORE_FRAG, 1162 0, mprot->m_pkthdr.len, protrate); 1163 1164 /* no roundup necessary here */ 1165 xferlen = RT2573_TX_DESC_SIZE + mprot->m_pkthdr.len; 1166 1167 /* XXX may want to pass the protection frame to BPF */ 1168 1169 /* mbuf is no longer needed */ 1170 m_freem(mprot); 1171 1172 usbd_setup_xfer(data->xfer, data, data->buf, 1173 xferlen, USBD_FORCE_SHORT_XFER, 1174 RUM_TX_TIMEOUT, rum_txeof); 1175 error = usbd_transfer(data->xfer); 1176 if (error != USBD_NORMAL_COMPLETION && 1177 error != USBD_IN_PROGRESS) { 1178 m_freem(m0); 1179 return error; 1180 } 1181 1182 sc->tx_queued++; 1183 sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT; 1184 1185 flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS; 1186 } 1187 1188 data = &sc->tx_data[sc->tx_cur]; 1189 desc = (struct rum_tx_desc *)data->buf; 1190 1191 data->ni = ni; 1192 1193 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1194 flags |= RT2573_TX_NEED_ACK; 1195 1196 dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate), 1197 ic->ic_flags) + sc->sifs; 1198 *(uint16_t *)wh->i_dur = htole16(dur); 1199 1200 /* tell hardware to set timestamp in probe responses */ 1201 if ((wh->i_fc[0] & 1202 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 1203 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP)) 1204 flags |= RT2573_TX_TIMESTAMP; 1205 } 1206 1207 if (sc->sc_drvbpf != NULL) { 1208 struct rum_tx_radiotap_header *tap = &sc->sc_txtap; 1209 1210 tap->wt_flags = 0; 1211 tap->wt_rate = rate; 1212 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); 1213 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); 1214 tap->wt_antenna = sc->tx_ant; 1215 1216 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT); 1217 } 1218 1219 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE); 1220 rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate); 1221 1222 /* align end on a 4-bytes boundary */ 1223 xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3; 1224 1225 /* 1226 * No space left in the last URB to store the extra 4 bytes, force 1227 * sending of another URB. 1228 */ 1229 if ((xferlen % 64) == 0) 1230 xferlen += 4; 1231 1232 DPRINTFN(10, ("sending data frame len=%zu rate=%u xfer len=%u\n", 1233 (size_t)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE, 1234 rate, xferlen)); 1235 1236 /* mbuf is no longer needed */ 1237 m_freem(m0); 1238 1239 usbd_setup_xfer(data->xfer, data, data->buf, xferlen, 1240 USBD_FORCE_SHORT_XFER, RUM_TX_TIMEOUT, rum_txeof); 1241 error = usbd_transfer(data->xfer); 1242 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) 1243 return error; 1244 1245 sc->tx_queued++; 1246 sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT; 1247 1248 return 0; 1249 } 1250 1251 static void 1252 rum_start(struct ifnet *ifp) 1253 { 1254 struct rum_softc *sc = ifp->if_softc; 1255 struct ieee80211com *ic = &sc->sc_ic; 1256 struct ether_header *eh; 1257 struct ieee80211_node *ni; 1258 struct mbuf *m0; 1259 1260 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) 1261 return; 1262 1263 for (;;) { 1264 IF_POLL(&ic->ic_mgtq, m0); 1265 if (m0 != NULL) { 1266 if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) { 1267 ifp->if_flags |= IFF_OACTIVE; 1268 break; 1269 } 1270 IF_DEQUEUE(&ic->ic_mgtq, m0); 1271 1272 ni = M_GETCTX(m0, struct ieee80211_node *); 1273 M_CLEARCTX(m0); 1274 bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT); 1275 if (rum_tx_data(sc, m0, ni) != 0) 1276 break; 1277 1278 } else { 1279 if (ic->ic_state != IEEE80211_S_RUN) 1280 break; 1281 IFQ_POLL(&ifp->if_snd, m0); 1282 if (m0 == NULL) 1283 break; 1284 if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) { 1285 ifp->if_flags |= IFF_OACTIVE; 1286 break; 1287 } 1288 IFQ_DEQUEUE(&ifp->if_snd, m0); 1289 if (m0->m_len < (int)sizeof(struct ether_header) && 1290 !(m0 = m_pullup(m0, sizeof(struct ether_header)))) 1291 continue; 1292 1293 eh = mtod(m0, struct ether_header *); 1294 ni = ieee80211_find_txnode(ic, eh->ether_dhost); 1295 if (ni == NULL) { 1296 m_freem(m0); 1297 continue; 1298 } 1299 bpf_mtap(ifp, m0, BPF_D_OUT); 1300 m0 = ieee80211_encap(ic, m0, ni); 1301 if (m0 == NULL) { 1302 ieee80211_free_node(ni); 1303 continue; 1304 } 1305 bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT); 1306 if (rum_tx_data(sc, m0, ni) != 0) { 1307 ieee80211_free_node(ni); 1308 if_statinc(ifp, if_oerrors); 1309 break; 1310 } 1311 } 1312 1313 sc->sc_tx_timer = 5; 1314 ifp->if_timer = 1; 1315 } 1316 } 1317 1318 static void 1319 rum_watchdog(struct ifnet *ifp) 1320 { 1321 struct rum_softc *sc = ifp->if_softc; 1322 struct ieee80211com *ic = &sc->sc_ic; 1323 1324 ifp->if_timer = 0; 1325 1326 if (sc->sc_tx_timer > 0) { 1327 if (--sc->sc_tx_timer == 0) { 1328 printf("%s: device timeout\n", device_xname(sc->sc_dev)); 1329 /*rum_init(ifp); XXX needs a process context! */ 1330 if_statinc(ifp, if_oerrors); 1331 return; 1332 } 1333 ifp->if_timer = 1; 1334 } 1335 1336 ieee80211_watchdog(ic); 1337 } 1338 1339 static int 1340 rum_ioctl(struct ifnet *ifp, u_long cmd, void *data) 1341 { 1342 #define IS_RUNNING(ifp) \ 1343 (((ifp)->if_flags & IFF_UP) && ((ifp)->if_flags & IFF_RUNNING)) 1344 1345 struct rum_softc *sc = ifp->if_softc; 1346 struct ieee80211com *ic = &sc->sc_ic; 1347 int s, error = 0; 1348 1349 s = splnet(); 1350 1351 switch (cmd) { 1352 case SIOCSIFFLAGS: 1353 if ((error = ifioctl_common(ifp, cmd, data)) != 0) 1354 break; 1355 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) { 1356 case IFF_UP|IFF_RUNNING: 1357 rum_update_promisc(sc); 1358 break; 1359 case IFF_UP: 1360 rum_init(ifp); 1361 break; 1362 case IFF_RUNNING: 1363 rum_stop(ifp, 1); 1364 break; 1365 case 0: 1366 break; 1367 } 1368 break; 1369 1370 case SIOCADDMULTI: 1371 case SIOCDELMULTI: 1372 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) { 1373 error = 0; 1374 } 1375 break; 1376 1377 default: 1378 error = ieee80211_ioctl(ic, cmd, data); 1379 } 1380 1381 if (error == ENETRESET) { 1382 if (IS_RUNNING(ifp) && 1383 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)) 1384 rum_init(ifp); 1385 error = 0; 1386 } 1387 1388 splx(s); 1389 1390 return error; 1391 #undef IS_RUNNING 1392 } 1393 1394 static void 1395 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len) 1396 { 1397 usb_device_request_t req; 1398 usbd_status error; 1399 1400 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1401 req.bRequest = RT2573_READ_EEPROM; 1402 USETW(req.wValue, 0); 1403 USETW(req.wIndex, addr); 1404 USETW(req.wLength, len); 1405 1406 error = usbd_do_request(sc->sc_udev, &req, buf); 1407 if (error != 0) { 1408 printf("%s: could not read EEPROM: %s\n", 1409 device_xname(sc->sc_dev), usbd_errstr(error)); 1410 } 1411 } 1412 1413 static uint32_t 1414 rum_read(struct rum_softc *sc, uint16_t reg) 1415 { 1416 uint32_t val; 1417 1418 rum_read_multi(sc, reg, &val, sizeof(val)); 1419 1420 return le32toh(val); 1421 } 1422 1423 static void 1424 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len) 1425 { 1426 usb_device_request_t req; 1427 usbd_status error; 1428 1429 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1430 req.bRequest = RT2573_READ_MULTI_MAC; 1431 USETW(req.wValue, 0); 1432 USETW(req.wIndex, reg); 1433 USETW(req.wLength, len); 1434 1435 error = usbd_do_request(sc->sc_udev, &req, buf); 1436 if (error != 0) { 1437 printf("%s: could not multi read MAC register: %s\n", 1438 device_xname(sc->sc_dev), usbd_errstr(error)); 1439 } 1440 } 1441 1442 static void 1443 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val) 1444 { 1445 uint32_t tmp = htole32(val); 1446 1447 rum_write_multi(sc, reg, &tmp, sizeof(tmp)); 1448 } 1449 1450 static void 1451 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len) 1452 { 1453 usb_device_request_t req; 1454 usbd_status error; 1455 int offset; 1456 1457 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 1458 req.bRequest = RT2573_WRITE_MULTI_MAC; 1459 USETW(req.wValue, 0); 1460 1461 /* write at most 64 bytes at a time */ 1462 for (offset = 0; offset < len; offset += 64) { 1463 USETW(req.wIndex, reg + offset); 1464 USETW(req.wLength, MIN(len - offset, 64)); 1465 1466 error = usbd_do_request(sc->sc_udev, &req, (char *)buf + offset); 1467 if (error != 0) { 1468 printf("%s: could not multi write MAC register: %s\n", 1469 device_xname(sc->sc_dev), usbd_errstr(error)); 1470 } 1471 } 1472 } 1473 1474 static void 1475 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val) 1476 { 1477 uint32_t tmp; 1478 int ntries; 1479 1480 for (ntries = 0; ntries < 5; ntries++) { 1481 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY)) 1482 break; 1483 } 1484 if (ntries == 5) { 1485 printf("%s: could not write to BBP\n", device_xname(sc->sc_dev)); 1486 return; 1487 } 1488 1489 tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val; 1490 rum_write(sc, RT2573_PHY_CSR3, tmp); 1491 } 1492 1493 static uint8_t 1494 rum_bbp_read(struct rum_softc *sc, uint8_t reg) 1495 { 1496 uint32_t val; 1497 int ntries; 1498 1499 for (ntries = 0; ntries < 5; ntries++) { 1500 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY)) 1501 break; 1502 } 1503 if (ntries == 5) { 1504 printf("%s: could not read BBP\n", device_xname(sc->sc_dev)); 1505 return 0; 1506 } 1507 1508 val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8; 1509 rum_write(sc, RT2573_PHY_CSR3, val); 1510 1511 for (ntries = 0; ntries < 100; ntries++) { 1512 val = rum_read(sc, RT2573_PHY_CSR3); 1513 if (!(val & RT2573_BBP_BUSY)) 1514 return val & 0xff; 1515 DELAY(1); 1516 } 1517 1518 printf("%s: could not read BBP\n", device_xname(sc->sc_dev)); 1519 return 0; 1520 } 1521 1522 static void 1523 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val) 1524 { 1525 uint32_t tmp; 1526 int ntries; 1527 1528 for (ntries = 0; ntries < 5; ntries++) { 1529 if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY)) 1530 break; 1531 } 1532 if (ntries == 5) { 1533 printf("%s: could not write to RF\n", device_xname(sc->sc_dev)); 1534 return; 1535 } 1536 1537 tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 | 1538 (reg & 3); 1539 rum_write(sc, RT2573_PHY_CSR4, tmp); 1540 1541 /* remember last written value in sc */ 1542 sc->rf_regs[reg] = val; 1543 1544 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff)); 1545 } 1546 1547 static void 1548 rum_select_antenna(struct rum_softc *sc) 1549 { 1550 uint8_t bbp4, bbp77; 1551 uint32_t tmp; 1552 1553 bbp4 = rum_bbp_read(sc, 4); 1554 bbp77 = rum_bbp_read(sc, 77); 1555 1556 /* TBD */ 1557 1558 /* make sure Rx is disabled before switching antenna */ 1559 tmp = rum_read(sc, RT2573_TXRX_CSR0); 1560 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX); 1561 1562 rum_bbp_write(sc, 4, bbp4); 1563 rum_bbp_write(sc, 77, bbp77); 1564 1565 rum_write(sc, RT2573_TXRX_CSR0, tmp); 1566 } 1567 1568 /* 1569 * Enable multi-rate retries for frames sent at OFDM rates. 1570 * In 802.11b/g mode, allow fallback to CCK rates. 1571 */ 1572 static void 1573 rum_enable_mrr(struct rum_softc *sc) 1574 { 1575 struct ieee80211com *ic = &sc->sc_ic; 1576 uint32_t tmp; 1577 1578 tmp = rum_read(sc, RT2573_TXRX_CSR4); 1579 1580 tmp &= ~RT2573_MRR_CCK_FALLBACK; 1581 if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) 1582 tmp |= RT2573_MRR_CCK_FALLBACK; 1583 tmp |= RT2573_MRR_ENABLED; 1584 1585 rum_write(sc, RT2573_TXRX_CSR4, tmp); 1586 } 1587 1588 static void 1589 rum_set_txpreamble(struct rum_softc *sc) 1590 { 1591 uint32_t tmp; 1592 1593 tmp = rum_read(sc, RT2573_TXRX_CSR4); 1594 1595 tmp &= ~RT2573_SHORT_PREAMBLE; 1596 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE) 1597 tmp |= RT2573_SHORT_PREAMBLE; 1598 1599 rum_write(sc, RT2573_TXRX_CSR4, tmp); 1600 } 1601 1602 static void 1603 rum_set_basicrates(struct rum_softc *sc) 1604 { 1605 struct ieee80211com *ic = &sc->sc_ic; 1606 1607 /* update basic rate set */ 1608 if (ic->ic_curmode == IEEE80211_MODE_11B) { 1609 /* 11b basic rates: 1, 2Mbps */ 1610 rum_write(sc, RT2573_TXRX_CSR5, 0x3); 1611 } else if (ic->ic_curmode == IEEE80211_MODE_11A) { 1612 /* 11a basic rates: 6, 12, 24Mbps */ 1613 rum_write(sc, RT2573_TXRX_CSR5, 0x150); 1614 } else { 1615 /* 11b/g basic rates: 1, 2, 5.5, 11Mbps */ 1616 rum_write(sc, RT2573_TXRX_CSR5, 0xf); 1617 } 1618 } 1619 1620 /* 1621 * Reprogram MAC/BBP to switch to a new band. Values taken from the reference 1622 * driver. 1623 */ 1624 static void 1625 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c) 1626 { 1627 uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104; 1628 uint32_t tmp; 1629 1630 /* update all BBP registers that depend on the band */ 1631 bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c; 1632 bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48; 1633 if (IEEE80211_IS_CHAN_5GHZ(c)) { 1634 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c; 1635 bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10; 1636 } 1637 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || 1638 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { 1639 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10; 1640 } 1641 1642 sc->bbp17 = bbp17; 1643 rum_bbp_write(sc, 17, bbp17); 1644 rum_bbp_write(sc, 96, bbp96); 1645 rum_bbp_write(sc, 104, bbp104); 1646 1647 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || 1648 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { 1649 rum_bbp_write(sc, 75, 0x80); 1650 rum_bbp_write(sc, 86, 0x80); 1651 rum_bbp_write(sc, 88, 0x80); 1652 } 1653 1654 rum_bbp_write(sc, 35, bbp35); 1655 rum_bbp_write(sc, 97, bbp97); 1656 rum_bbp_write(sc, 98, bbp98); 1657 1658 tmp = rum_read(sc, RT2573_PHY_CSR0); 1659 tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ); 1660 if (IEEE80211_IS_CHAN_2GHZ(c)) 1661 tmp |= RT2573_PA_PE_2GHZ; 1662 else 1663 tmp |= RT2573_PA_PE_5GHZ; 1664 rum_write(sc, RT2573_PHY_CSR0, tmp); 1665 1666 /* 802.11a uses a 16 microseconds short interframe space */ 1667 sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10; 1668 } 1669 1670 static void 1671 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c) 1672 { 1673 struct ieee80211com *ic = &sc->sc_ic; 1674 const struct rfprog *rfprog; 1675 uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT; 1676 int8_t power; 1677 u_int i, chan; 1678 1679 chan = ieee80211_chan2ieee(ic, c); 1680 if (chan == 0 || chan == IEEE80211_CHAN_ANY) 1681 return; 1682 1683 /* select the appropriate RF settings based on what EEPROM says */ 1684 rfprog = (sc->rf_rev == RT2573_RF_5225 || 1685 sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226; 1686 1687 /* find the settings for this channel (we know it exists) */ 1688 for (i = 0; rfprog[i].chan != chan; i++); 1689 1690 power = sc->txpow[i]; 1691 if (power < 0) { 1692 bbp94 += power; 1693 power = 0; 1694 } else if (power > 31) { 1695 bbp94 += power - 31; 1696 power = 31; 1697 } 1698 1699 /* 1700 * If we are switching from the 2GHz band to the 5GHz band or 1701 * vice-versa, BBP registers need to be reprogrammed. 1702 */ 1703 if (c->ic_flags != ic->ic_curchan->ic_flags) { 1704 rum_select_band(sc, c); 1705 rum_select_antenna(sc); 1706 } 1707 ic->ic_curchan = c; 1708 1709 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 1710 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 1711 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7); 1712 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 1713 1714 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 1715 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 1716 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1); 1717 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 1718 1719 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 1720 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 1721 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7); 1722 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 1723 1724 DELAY(10); 1725 1726 /* enable smart mode for MIMO-capable RFs */ 1727 bbp3 = rum_bbp_read(sc, 3); 1728 1729 bbp3 &= ~RT2573_SMART_MODE; 1730 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527) 1731 bbp3 |= RT2573_SMART_MODE; 1732 1733 rum_bbp_write(sc, 3, bbp3); 1734 1735 if (bbp94 != RT2573_BBPR94_DEFAULT) 1736 rum_bbp_write(sc, 94, bbp94); 1737 } 1738 1739 /* 1740 * Enable TSF synchronization and tell h/w to start sending beacons for IBSS 1741 * and HostAP operating modes. 1742 */ 1743 static void 1744 rum_enable_tsf_sync(struct rum_softc *sc) 1745 { 1746 struct ieee80211com *ic = &sc->sc_ic; 1747 uint32_t tmp; 1748 1749 if (ic->ic_opmode != IEEE80211_M_STA) { 1750 /* 1751 * Change default 16ms TBTT adjustment to 8ms. 1752 * Must be done before enabling beacon generation. 1753 */ 1754 rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8); 1755 } 1756 1757 tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000; 1758 1759 /* set beacon interval (in 1/16ms unit) */ 1760 tmp |= ic->ic_bss->ni_intval * 16; 1761 1762 tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT; 1763 if (ic->ic_opmode == IEEE80211_M_STA) 1764 tmp |= RT2573_TSF_MODE(1); 1765 else 1766 tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON; 1767 1768 rum_write(sc, RT2573_TXRX_CSR9, tmp); 1769 } 1770 1771 static void 1772 rum_update_slot(struct rum_softc *sc) 1773 { 1774 struct ieee80211com *ic = &sc->sc_ic; 1775 uint8_t slottime; 1776 uint32_t tmp; 1777 1778 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20; 1779 1780 tmp = rum_read(sc, RT2573_MAC_CSR9); 1781 tmp = (tmp & ~0xff) | slottime; 1782 rum_write(sc, RT2573_MAC_CSR9, tmp); 1783 1784 DPRINTF(("setting slot time to %uus\n", slottime)); 1785 } 1786 1787 static void 1788 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid) 1789 { 1790 uint32_t tmp; 1791 1792 tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24; 1793 rum_write(sc, RT2573_MAC_CSR4, tmp); 1794 1795 tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16; 1796 rum_write(sc, RT2573_MAC_CSR5, tmp); 1797 } 1798 1799 static void 1800 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr) 1801 { 1802 uint32_t tmp; 1803 1804 tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24; 1805 rum_write(sc, RT2573_MAC_CSR2, tmp); 1806 1807 tmp = addr[4] | addr[5] << 8 | 0xff << 16; 1808 rum_write(sc, RT2573_MAC_CSR3, tmp); 1809 } 1810 1811 static void 1812 rum_update_promisc(struct rum_softc *sc) 1813 { 1814 struct ifnet *ifp = sc->sc_ic.ic_ifp; 1815 uint32_t tmp; 1816 1817 tmp = rum_read(sc, RT2573_TXRX_CSR0); 1818 1819 tmp &= ~RT2573_DROP_NOT_TO_ME; 1820 if (!(ifp->if_flags & IFF_PROMISC)) 1821 tmp |= RT2573_DROP_NOT_TO_ME; 1822 1823 rum_write(sc, RT2573_TXRX_CSR0, tmp); 1824 1825 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ? 1826 "entering" : "leaving")); 1827 } 1828 1829 static const char * 1830 rum_get_rf(int rev) 1831 { 1832 switch (rev) { 1833 case RT2573_RF_2527: return "RT2527 (MIMO XR)"; 1834 case RT2573_RF_2528: return "RT2528"; 1835 case RT2573_RF_5225: return "RT5225 (MIMO XR)"; 1836 case RT2573_RF_5226: return "RT5226"; 1837 default: return "unknown"; 1838 } 1839 } 1840 1841 static void 1842 rum_read_eeprom(struct rum_softc *sc) 1843 { 1844 struct ieee80211com *ic = &sc->sc_ic; 1845 uint16_t val; 1846 #ifdef RUM_DEBUG 1847 int i; 1848 #endif 1849 1850 /* read MAC/BBP type */ 1851 rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2); 1852 sc->macbbp_rev = le16toh(val); 1853 1854 /* read MAC address */ 1855 rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6); 1856 1857 rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2); 1858 val = le16toh(val); 1859 sc->rf_rev = (val >> 11) & 0x1f; 1860 sc->hw_radio = (val >> 10) & 0x1; 1861 sc->rx_ant = (val >> 4) & 0x3; 1862 sc->tx_ant = (val >> 2) & 0x3; 1863 sc->nb_ant = val & 0x3; 1864 1865 DPRINTF(("RF revision=%d\n", sc->rf_rev)); 1866 1867 rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2); 1868 val = le16toh(val); 1869 sc->ext_5ghz_lna = (val >> 6) & 0x1; 1870 sc->ext_2ghz_lna = (val >> 4) & 0x1; 1871 1872 DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n", 1873 sc->ext_2ghz_lna, sc->ext_5ghz_lna)); 1874 1875 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2); 1876 val = le16toh(val); 1877 if ((val & 0xff) != 0xff) 1878 sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */ 1879 1880 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2); 1881 val = le16toh(val); 1882 if ((val & 0xff) != 0xff) 1883 sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */ 1884 1885 DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n", 1886 sc->rssi_2ghz_corr, sc->rssi_5ghz_corr)); 1887 1888 rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2); 1889 val = le16toh(val); 1890 if ((val & 0xff) != 0xff) 1891 sc->rffreq = val & 0xff; 1892 1893 DPRINTF(("RF freq=%d\n", sc->rffreq)); 1894 1895 /* read Tx power for all a/b/g channels */ 1896 rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14); 1897 /* XXX default Tx power for 802.11a channels */ 1898 memset(sc->txpow + 14, 24, sizeof(sc->txpow) - 14); 1899 #ifdef RUM_DEBUG 1900 for (i = 0; i < 14; i++) 1901 DPRINTF(("Channel=%d Tx power=%d\n", i + 1, sc->txpow[i])); 1902 #endif 1903 1904 /* read default values for BBP registers */ 1905 rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16); 1906 #ifdef RUM_DEBUG 1907 for (i = 0; i < 14; i++) { 1908 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff) 1909 continue; 1910 DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg, 1911 sc->bbp_prom[i].val)); 1912 } 1913 #endif 1914 } 1915 1916 static int 1917 rum_bbp_init(struct rum_softc *sc) 1918 { 1919 unsigned int i, ntries; 1920 uint8_t val; 1921 1922 /* wait for BBP to be ready */ 1923 for (ntries = 0; ntries < 100; ntries++) { 1924 val = rum_bbp_read(sc, 0); 1925 if (val != 0 && val != 0xff) 1926 break; 1927 DELAY(1000); 1928 } 1929 if (ntries == 100) { 1930 printf("%s: timeout waiting for BBP\n", 1931 device_xname(sc->sc_dev)); 1932 return EIO; 1933 } 1934 1935 /* initialize BBP registers to default values */ 1936 for (i = 0; i < __arraycount(rum_def_bbp); i++) 1937 rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val); 1938 1939 /* write vendor-specific BBP values (from EEPROM) */ 1940 for (i = 0; i < 16; i++) { 1941 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff) 1942 continue; 1943 rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val); 1944 } 1945 1946 return 0; 1947 } 1948 1949 static int 1950 rum_init(struct ifnet *ifp) 1951 { 1952 struct rum_softc *sc = ifp->if_softc; 1953 struct ieee80211com *ic = &sc->sc_ic; 1954 uint32_t tmp; 1955 usbd_status error = 0; 1956 unsigned int i, ntries; 1957 1958 if ((sc->sc_flags & RT2573_FWLOADED) == 0) { 1959 if (rum_attachhook(sc)) 1960 goto fail; 1961 } 1962 1963 rum_stop(ifp, 0); 1964 1965 /* initialize MAC registers to default values */ 1966 for (i = 0; i < __arraycount(rum_def_mac); i++) 1967 rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val); 1968 1969 /* set host ready */ 1970 rum_write(sc, RT2573_MAC_CSR1, 3); 1971 rum_write(sc, RT2573_MAC_CSR1, 0); 1972 1973 /* wait for BBP/RF to wakeup */ 1974 for (ntries = 0; ntries < 1000; ntries++) { 1975 if (rum_read(sc, RT2573_MAC_CSR12) & 8) 1976 break; 1977 rum_write(sc, RT2573_MAC_CSR12, 4); /* force wakeup */ 1978 DELAY(1000); 1979 } 1980 if (ntries == 1000) { 1981 printf("%s: timeout waiting for BBP/RF to wakeup\n", 1982 device_xname(sc->sc_dev)); 1983 goto fail; 1984 } 1985 1986 if ((error = rum_bbp_init(sc)) != 0) 1987 goto fail; 1988 1989 /* select default channel */ 1990 rum_select_band(sc, ic->ic_curchan); 1991 rum_select_antenna(sc); 1992 rum_set_chan(sc, ic->ic_curchan); 1993 1994 /* clear STA registers */ 1995 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta)); 1996 1997 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl)); 1998 rum_set_macaddr(sc, ic->ic_myaddr); 1999 2000 /* initialize ASIC */ 2001 rum_write(sc, RT2573_MAC_CSR1, 4); 2002 2003 /* 2004 * Allocate xfer for AMRR statistics requests. 2005 */ 2006 struct usbd_pipe *pipe0 = usbd_get_pipe0(sc->sc_udev); 2007 error = usbd_create_xfer(pipe0, sizeof(sc->sta), 0, 0, 2008 &sc->amrr_xfer); 2009 if (error) { 2010 printf("%s: could not allocate AMRR xfer\n", 2011 device_xname(sc->sc_dev)); 2012 goto fail; 2013 } 2014 2015 /* 2016 * Open Tx and Rx USB bulk pipes. 2017 */ 2018 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE, 2019 &sc->sc_tx_pipeh); 2020 if (error != 0) { 2021 printf("%s: could not open Tx pipe: %s\n", 2022 device_xname(sc->sc_dev), usbd_errstr(error)); 2023 goto fail; 2024 } 2025 2026 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE, 2027 &sc->sc_rx_pipeh); 2028 if (error != 0) { 2029 printf("%s: could not open Rx pipe: %s\n", 2030 device_xname(sc->sc_dev), usbd_errstr(error)); 2031 goto fail; 2032 } 2033 2034 /* 2035 * Allocate Tx and Rx xfer queues. 2036 */ 2037 error = rum_alloc_tx_list(sc); 2038 if (error != 0) { 2039 printf("%s: could not allocate Tx list\n", 2040 device_xname(sc->sc_dev)); 2041 goto fail; 2042 } 2043 2044 error = rum_alloc_rx_list(sc); 2045 if (error != 0) { 2046 printf("%s: could not allocate Rx list\n", 2047 device_xname(sc->sc_dev)); 2048 goto fail; 2049 } 2050 2051 /* 2052 * Start up the receive pipe. 2053 */ 2054 for (i = 0; i < RUM_RX_LIST_COUNT; i++) { 2055 struct rum_rx_data *data; 2056 2057 data = &sc->rx_data[i]; 2058 2059 usbd_setup_xfer(data->xfer, data, data->buf, MCLBYTES, 2060 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof); 2061 error = usbd_transfer(data->xfer); 2062 if (error != USBD_NORMAL_COMPLETION && 2063 error != USBD_IN_PROGRESS) { 2064 printf("%s: could not queue Rx transfer\n", 2065 device_xname(sc->sc_dev)); 2066 goto fail; 2067 } 2068 } 2069 2070 /* update Rx filter */ 2071 tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff; 2072 2073 tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR; 2074 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 2075 tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR | 2076 RT2573_DROP_ACKCTS; 2077 if (ic->ic_opmode != IEEE80211_M_HOSTAP) 2078 tmp |= RT2573_DROP_TODS; 2079 if (!(ifp->if_flags & IFF_PROMISC)) 2080 tmp |= RT2573_DROP_NOT_TO_ME; 2081 } 2082 rum_write(sc, RT2573_TXRX_CSR0, tmp); 2083 2084 ifp->if_flags &= ~IFF_OACTIVE; 2085 ifp->if_flags |= IFF_RUNNING; 2086 2087 if (ic->ic_opmode == IEEE80211_M_MONITOR) 2088 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 2089 else 2090 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 2091 2092 return 0; 2093 2094 fail: rum_stop(ifp, 1); 2095 return error; 2096 } 2097 2098 static void 2099 rum_stop(struct ifnet *ifp, int disable) 2100 { 2101 struct rum_softc *sc = ifp->if_softc; 2102 struct ieee80211com *ic = &sc->sc_ic; 2103 uint32_t tmp; 2104 2105 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */ 2106 2107 sc->sc_tx_timer = 0; 2108 ifp->if_timer = 0; 2109 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 2110 2111 /* disable Rx */ 2112 tmp = rum_read(sc, RT2573_TXRX_CSR0); 2113 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX); 2114 2115 /* reset ASIC */ 2116 rum_write(sc, RT2573_MAC_CSR1, 3); 2117 rum_write(sc, RT2573_MAC_CSR1, 0); 2118 2119 if (sc->amrr_xfer != NULL) { 2120 usbd_destroy_xfer(sc->amrr_xfer); 2121 sc->amrr_xfer = NULL; 2122 } 2123 2124 if (sc->sc_rx_pipeh != NULL) { 2125 usbd_abort_pipe(sc->sc_rx_pipeh); 2126 } 2127 2128 if (sc->sc_tx_pipeh != NULL) { 2129 usbd_abort_pipe(sc->sc_tx_pipeh); 2130 } 2131 2132 rum_free_rx_list(sc); 2133 rum_free_tx_list(sc); 2134 2135 if (sc->sc_rx_pipeh != NULL) { 2136 usbd_close_pipe(sc->sc_rx_pipeh); 2137 sc->sc_rx_pipeh = NULL; 2138 } 2139 2140 if (sc->sc_tx_pipeh != NULL) { 2141 usbd_close_pipe(sc->sc_tx_pipeh); 2142 sc->sc_tx_pipeh = NULL; 2143 } 2144 } 2145 2146 static int 2147 rum_load_microcode(struct rum_softc *sc, const u_char *ucode, size_t size) 2148 { 2149 usb_device_request_t req; 2150 uint16_t reg = RT2573_MCU_CODE_BASE; 2151 usbd_status error; 2152 2153 /* copy firmware image into NIC */ 2154 for (; size >= 4; reg += 4, ucode += 4, size -= 4) 2155 rum_write(sc, reg, UGETDW(ucode)); 2156 2157 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 2158 req.bRequest = RT2573_MCU_CNTL; 2159 USETW(req.wValue, RT2573_MCU_RUN); 2160 USETW(req.wIndex, 0); 2161 USETW(req.wLength, 0); 2162 2163 error = usbd_do_request(sc->sc_udev, &req, NULL); 2164 if (error != 0) { 2165 printf("%s: could not run firmware: %s\n", 2166 device_xname(sc->sc_dev), usbd_errstr(error)); 2167 } 2168 return error; 2169 } 2170 2171 static int 2172 rum_prepare_beacon(struct rum_softc *sc) 2173 { 2174 struct ieee80211com *ic = &sc->sc_ic; 2175 struct rum_tx_desc desc; 2176 struct mbuf *m0; 2177 int rate; 2178 2179 m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &sc->sc_bo); 2180 if (m0 == NULL) { 2181 aprint_error_dev(sc->sc_dev, 2182 "could not allocate beacon frame\n"); 2183 return ENOBUFS; 2184 } 2185 2186 /* send beacons at the lowest available rate */ 2187 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2; 2188 2189 rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ, 2190 m0->m_pkthdr.len, rate); 2191 2192 /* copy the first 24 bytes of Tx descriptor into NIC memory */ 2193 rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24); 2194 2195 /* copy beacon header and payload into NIC memory */ 2196 rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *), 2197 m0->m_pkthdr.len); 2198 2199 m_freem(m0); 2200 2201 return 0; 2202 } 2203 2204 static void 2205 rum_newassoc(struct ieee80211_node *ni, int isnew) 2206 { 2207 /* start with lowest Tx rate */ 2208 ni->ni_txrate = 0; 2209 } 2210 2211 static void 2212 rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni) 2213 { 2214 int i; 2215 2216 /* clear statistic registers (STA_CSR0 to STA_CSR5) */ 2217 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta)); 2218 2219 ieee80211_amrr_node_init(&sc->amrr, &sc->amn); 2220 2221 /* set rate to some reasonable initial value */ 2222 for (i = ni->ni_rates.rs_nrates - 1; 2223 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72; 2224 i--); 2225 ni->ni_txrate = i; 2226 2227 callout_reset(&sc->sc_amrr_ch, hz, rum_amrr_timeout, sc); 2228 } 2229 2230 static void 2231 rum_amrr_timeout(void *arg) 2232 { 2233 struct rum_softc *sc = arg; 2234 usb_device_request_t req; 2235 2236 /* 2237 * Asynchronously read statistic registers (cleared by read). 2238 */ 2239 req.bmRequestType = UT_READ_VENDOR_DEVICE; 2240 req.bRequest = RT2573_READ_MULTI_MAC; 2241 USETW(req.wValue, 0); 2242 USETW(req.wIndex, RT2573_STA_CSR0); 2243 USETW(req.wLength, sizeof(sc->sta)); 2244 2245 usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc, 2246 USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof(sc->sta), 0, 2247 rum_amrr_update); 2248 (void)usbd_transfer(sc->amrr_xfer); 2249 } 2250 2251 static void 2252 rum_amrr_update(struct usbd_xfer *xfer, void *priv, 2253 usbd_status status) 2254 { 2255 struct rum_softc *sc = (struct rum_softc *)priv; 2256 struct ifnet *ifp = sc->sc_ic.ic_ifp; 2257 2258 if (status != USBD_NORMAL_COMPLETION) { 2259 printf("%s: could not retrieve Tx statistics - cancelling " 2260 "automatic rate control\n", device_xname(sc->sc_dev)); 2261 return; 2262 } 2263 2264 /* count TX retry-fail as Tx errors */ 2265 if_statadd(ifp, if_oerrors, le32toh(sc->sta[5]) >> 16); 2266 2267 sc->amn.amn_retrycnt = 2268 (le32toh(sc->sta[4]) >> 16) + /* TX one-retry ok count */ 2269 (le32toh(sc->sta[5]) & 0xffff) + /* TX more-retry ok count */ 2270 (le32toh(sc->sta[5]) >> 16); /* TX retry-fail count */ 2271 2272 sc->amn.amn_txcnt = 2273 sc->amn.amn_retrycnt + 2274 (le32toh(sc->sta[4]) & 0xffff); /* TX no-retry ok count */ 2275 2276 ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn); 2277 2278 callout_reset(&sc->sc_amrr_ch, hz, rum_amrr_timeout, sc); 2279 } 2280 2281 static int 2282 rum_activate(device_t self, enum devact act) 2283 { 2284 switch (act) { 2285 case DVACT_DEACTIVATE: 2286 /*if_deactivate(&sc->sc_ic.ic_if);*/ 2287 return 0; 2288 default: 2289 return 0; 2290 } 2291 } 2292 2293 MODULE(MODULE_CLASS_DRIVER, if_rum, NULL); 2294 2295 #ifdef _MODULE 2296 #include "ioconf.c" 2297 #endif 2298 2299 static int 2300 if_rum_modcmd(modcmd_t cmd, void *aux) 2301 { 2302 int error = 0; 2303 2304 switch (cmd) { 2305 case MODULE_CMD_INIT: 2306 #ifdef _MODULE 2307 error = config_init_component(cfdriver_ioconf_rum, 2308 cfattach_ioconf_rum, cfdata_ioconf_rum); 2309 #endif 2310 return error; 2311 case MODULE_CMD_FINI: 2312 #ifdef _MODULE 2313 error = config_fini_component(cfdriver_ioconf_rum, 2314 cfattach_ioconf_rum, cfdata_ioconf_rum); 2315 #endif 2316 return error; 2317 default: 2318 return ENOTTY; 2319 } 2320 } 2321