1 /* $OpenBSD: if_rum.c,v 1.40 2006/09/18 16:20:20 damien Exp $ */ 2 /* $NetBSD: if_rum.c,v 1.21 2008/05/24 16:40:58 cube Exp $ */ 3 4 /*- 5 * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini@free.fr> 6 * Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org> 7 * 8 * Permission to use, copy, modify, and distribute this software for any 9 * purpose with or without fee is hereby granted, provided that the above 10 * copyright notice and this permission notice appear in all copies. 11 * 12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 */ 20 21 /*- 22 * Ralink Technology RT2501USB/RT2601USB chipset driver 23 * http://www.ralinktech.com.tw/ 24 */ 25 26 #include <sys/cdefs.h> 27 __KERNEL_RCSID(0, "$NetBSD: if_rum.c,v 1.21 2008/05/24 16:40:58 cube Exp $"); 28 29 #include "bpfilter.h" 30 31 #include <sys/param.h> 32 #include <sys/sockio.h> 33 #include <sys/sysctl.h> 34 #include <sys/mbuf.h> 35 #include <sys/kernel.h> 36 #include <sys/socket.h> 37 #include <sys/systm.h> 38 #include <sys/malloc.h> 39 #include <sys/conf.h> 40 #include <sys/device.h> 41 42 #include <sys/bus.h> 43 #include <machine/endian.h> 44 #include <sys/intr.h> 45 46 #if NBPFILTER > 0 47 #include <net/bpf.h> 48 #endif 49 #include <net/if.h> 50 #include <net/if_arp.h> 51 #include <net/if_dl.h> 52 #include <net/if_ether.h> 53 #include <net/if_media.h> 54 #include <net/if_types.h> 55 56 #include <netinet/in.h> 57 #include <netinet/in_systm.h> 58 #include <netinet/in_var.h> 59 #include <netinet/ip.h> 60 61 #include <net80211/ieee80211_netbsd.h> 62 #include <net80211/ieee80211_var.h> 63 #include <net80211/ieee80211_amrr.h> 64 #include <net80211/ieee80211_radiotap.h> 65 66 #include <dev/firmload.h> 67 68 #include <dev/usb/usb.h> 69 #include <dev/usb/usbdi.h> 70 #include <dev/usb/usbdi_util.h> 71 #include <dev/usb/usbdevs.h> 72 73 #include <dev/usb/if_rumreg.h> 74 #include <dev/usb/if_rumvar.h> 75 76 #ifdef USB_DEBUG 77 #define RUM_DEBUG 78 #endif 79 80 #ifdef RUM_DEBUG 81 #define DPRINTF(x) do { if (rum_debug) logprintf x; } while (0) 82 #define DPRINTFN(n, x) do { if (rum_debug >= (n)) logprintf x; } while (0) 83 int rum_debug = 1; 84 #else 85 #define DPRINTF(x) 86 #define DPRINTFN(n, x) 87 #endif 88 89 /* various supported device vendors/products */ 90 static const struct usb_devno rum_devs[] = { 91 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_HWU54DM }, 92 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_2 }, 93 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_3 }, 94 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_4 }, 95 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_WUG2700 }, 96 { USB_VENDOR_AMIT, USB_PRODUCT_AMIT_CGWLUSB2GO }, 97 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G_2 }, 98 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G_3 }, 99 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050A }, 100 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D9050V3 }, 101 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GC }, 102 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GR }, 103 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_C54RU2 }, 104 { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GL }, 105 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_CWD854F }, 106 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_RT2573 }, 107 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWLG122C1 }, 108 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_WUA1340 }, 109 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWB01GS }, 110 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWI05GS }, 111 { USB_VENDOR_GIGASET, USB_PRODUCT_GIGASET_RT2573 }, 112 { USB_VENDOR_GOODWAY, USB_PRODUCT_GOODWAY_RT2573 }, 113 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254LB }, 114 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254V2AP }, 115 { USB_VENDOR_HUAWEI3COM, USB_PRODUCT_HUAWEI3COM_RT2573 }, 116 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_G54HP }, 117 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_SG54HP }, 118 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573 }, 119 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_2 }, 120 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_3 }, 121 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_4 }, 122 { USB_VENDOR_NOVATECH, USB_PRODUCT_NOVATECH_RT2573 }, 123 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54HP }, 124 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54MINI2 }, 125 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUSMM }, 126 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573 }, 127 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_2 }, 128 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2573 }, 129 { USB_VENDOR_RALINK_2, USB_PRODUCT_RALINK_2_RT2573 }, 130 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2671 }, 131 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL113R2 }, 132 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL172 }, 133 { USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_RT2573 } 134 }; 135 136 Static int rum_attachhook(void *); 137 Static int rum_alloc_tx_list(struct rum_softc *); 138 Static void rum_free_tx_list(struct rum_softc *); 139 Static int rum_alloc_rx_list(struct rum_softc *); 140 Static void rum_free_rx_list(struct rum_softc *); 141 Static int rum_media_change(struct ifnet *); 142 Static void rum_next_scan(void *); 143 Static void rum_task(void *); 144 Static int rum_newstate(struct ieee80211com *, 145 enum ieee80211_state, int); 146 Static void rum_txeof(usbd_xfer_handle, usbd_private_handle, 147 usbd_status); 148 Static void rum_rxeof(usbd_xfer_handle, usbd_private_handle, 149 usbd_status); 150 #if NBPFILTER > 0 151 Static uint8_t rum_rxrate(const struct rum_rx_desc *); 152 #endif 153 Static int rum_ack_rate(struct ieee80211com *, int); 154 Static uint16_t rum_txtime(int, int, uint32_t); 155 Static uint8_t rum_plcp_signal(int); 156 Static void rum_setup_tx_desc(struct rum_softc *, 157 struct rum_tx_desc *, uint32_t, uint16_t, int, 158 int); 159 Static int rum_tx_mgt(struct rum_softc *, struct mbuf *, 160 struct ieee80211_node *); 161 Static int rum_tx_data(struct rum_softc *, struct mbuf *, 162 struct ieee80211_node *); 163 Static void rum_start(struct ifnet *); 164 Static void rum_watchdog(struct ifnet *); 165 Static int rum_ioctl(struct ifnet *, u_long, void *); 166 Static void rum_eeprom_read(struct rum_softc *, uint16_t, void *, 167 int); 168 Static uint32_t rum_read(struct rum_softc *, uint16_t); 169 Static void rum_read_multi(struct rum_softc *, uint16_t, void *, 170 int); 171 Static void rum_write(struct rum_softc *, uint16_t, uint32_t); 172 Static void rum_write_multi(struct rum_softc *, uint16_t, void *, 173 size_t); 174 Static void rum_bbp_write(struct rum_softc *, uint8_t, uint8_t); 175 Static uint8_t rum_bbp_read(struct rum_softc *, uint8_t); 176 Static void rum_rf_write(struct rum_softc *, uint8_t, uint32_t); 177 Static void rum_select_antenna(struct rum_softc *); 178 Static void rum_enable_mrr(struct rum_softc *); 179 Static void rum_set_txpreamble(struct rum_softc *); 180 Static void rum_set_basicrates(struct rum_softc *); 181 Static void rum_select_band(struct rum_softc *, 182 struct ieee80211_channel *); 183 Static void rum_set_chan(struct rum_softc *, 184 struct ieee80211_channel *); 185 Static void rum_enable_tsf_sync(struct rum_softc *); 186 Static void rum_update_slot(struct rum_softc *); 187 Static void rum_set_bssid(struct rum_softc *, const uint8_t *); 188 Static void rum_set_macaddr(struct rum_softc *, const uint8_t *); 189 Static void rum_update_promisc(struct rum_softc *); 190 Static const char *rum_get_rf(int); 191 Static void rum_read_eeprom(struct rum_softc *); 192 Static int rum_bbp_init(struct rum_softc *); 193 Static int rum_init(struct ifnet *); 194 Static void rum_stop(struct ifnet *, int); 195 Static int rum_load_microcode(struct rum_softc *, const u_char *, 196 size_t); 197 Static int rum_prepare_beacon(struct rum_softc *); 198 Static void rum_newassoc(struct ieee80211_node *, int); 199 Static void rum_amrr_start(struct rum_softc *, 200 struct ieee80211_node *); 201 Static void rum_amrr_timeout(void *); 202 Static void rum_amrr_update(usbd_xfer_handle, usbd_private_handle, 203 usbd_status status); 204 205 /* 206 * Supported rates for 802.11a/b/g modes (in 500Kbps unit). 207 */ 208 static const struct ieee80211_rateset rum_rateset_11a = 209 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } }; 210 211 static const struct ieee80211_rateset rum_rateset_11b = 212 { 4, { 2, 4, 11, 22 } }; 213 214 static const struct ieee80211_rateset rum_rateset_11g = 215 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } }; 216 217 static const struct { 218 uint32_t reg; 219 uint32_t val; 220 } rum_def_mac[] = { 221 RT2573_DEF_MAC 222 }; 223 224 static const struct { 225 uint8_t reg; 226 uint8_t val; 227 } rum_def_bbp[] = { 228 RT2573_DEF_BBP 229 }; 230 231 static const struct rfprog { 232 uint8_t chan; 233 uint32_t r1, r2, r3, r4; 234 } rum_rf5226[] = { 235 RT2573_RF5226 236 }, rum_rf5225[] = { 237 RT2573_RF5225 238 }; 239 240 USB_DECLARE_DRIVER(rum); 241 242 USB_MATCH(rum) 243 { 244 USB_MATCH_START(rum, uaa); 245 246 return (usb_lookup(rum_devs, uaa->vendor, uaa->product) != NULL) ? 247 UMATCH_VENDOR_PRODUCT : UMATCH_NONE; 248 } 249 250 Static int 251 rum_attachhook(void *xsc) 252 { 253 struct rum_softc *sc = xsc; 254 firmware_handle_t fwh; 255 const char *name = "rum-rt2573"; 256 u_char *ucode; 257 size_t size; 258 int error; 259 260 if ((error = firmware_open("rum", name, &fwh)) != 0) { 261 printf("%s: failed loadfirmware of file %s (error %d)\n", 262 USBDEVNAME(sc->sc_dev), name, error); 263 return error; 264 } 265 size = firmware_get_size(fwh); 266 ucode = firmware_malloc(size); 267 if (ucode == NULL) { 268 printf("%s: failed to allocate firmware memory\n", 269 USBDEVNAME(sc->sc_dev)); 270 firmware_close(fwh); 271 return ENOMEM;; 272 } 273 error = firmware_read(fwh, 0, ucode, size); 274 firmware_close(fwh); 275 if (error != 0) { 276 printf("%s: failed to read firmware (error %d)\n", 277 USBDEVNAME(sc->sc_dev), error); 278 firmware_free(ucode, 0); 279 return error; 280 } 281 282 if (rum_load_microcode(sc, ucode, size) != 0) { 283 printf("%s: could not load 8051 microcode\n", 284 USBDEVNAME(sc->sc_dev)); 285 firmware_free(ucode, 0); 286 return ENXIO; 287 } 288 289 firmware_free(ucode, 0); 290 sc->sc_flags |= RT2573_FWLOADED; 291 292 return 0; 293 } 294 295 USB_ATTACH(rum) 296 { 297 USB_ATTACH_START(rum, sc, uaa); 298 struct ieee80211com *ic = &sc->sc_ic; 299 struct ifnet *ifp = &sc->sc_if; 300 usb_interface_descriptor_t *id; 301 usb_endpoint_descriptor_t *ed; 302 usbd_status error; 303 char *devinfop; 304 int i, ntries; 305 uint32_t tmp; 306 307 sc->sc_dev = self; 308 sc->sc_udev = uaa->device; 309 sc->sc_flags = 0; 310 311 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0); 312 USB_ATTACH_SETUP; 313 aprint_normal_dev(self, "%s\n", devinfop); 314 usbd_devinfo_free(devinfop); 315 316 if (usbd_set_config_no(sc->sc_udev, RT2573_CONFIG_NO, 0) != 0) { 317 aprint_error_dev(self, "could not set configuration no\n"); 318 USB_ATTACH_ERROR_RETURN; 319 } 320 321 /* get the first interface handle */ 322 error = usbd_device2interface_handle(sc->sc_udev, RT2573_IFACE_INDEX, 323 &sc->sc_iface); 324 if (error != 0) { 325 aprint_error_dev(self, "could not get interface handle\n"); 326 USB_ATTACH_ERROR_RETURN; 327 } 328 329 /* 330 * Find endpoints. 331 */ 332 id = usbd_get_interface_descriptor(sc->sc_iface); 333 334 sc->sc_rx_no = sc->sc_tx_no = -1; 335 for (i = 0; i < id->bNumEndpoints; i++) { 336 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i); 337 if (ed == NULL) { 338 aprint_error_dev(self, 339 "no endpoint descriptor for iface %d\n", i); 340 USB_ATTACH_ERROR_RETURN; 341 } 342 343 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN && 344 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) 345 sc->sc_rx_no = ed->bEndpointAddress; 346 else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT && 347 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) 348 sc->sc_tx_no = ed->bEndpointAddress; 349 } 350 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) { 351 aprint_error_dev(self, "missing endpoint\n"); 352 USB_ATTACH_ERROR_RETURN; 353 } 354 355 usb_init_task(&sc->sc_task, rum_task, sc); 356 usb_callout_init(sc->sc_scan_ch); 357 358 sc->amrr.amrr_min_success_threshold = 1; 359 sc->amrr.amrr_max_success_threshold = 10; 360 usb_callout_init(sc->sc_amrr_ch); 361 362 /* retrieve RT2573 rev. no */ 363 for (ntries = 0; ntries < 1000; ntries++) { 364 if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0) 365 break; 366 DELAY(1000); 367 } 368 if (ntries == 1000) { 369 aprint_error_dev(self, "timeout waiting for chip to settle\n"); 370 USB_ATTACH_ERROR_RETURN; 371 } 372 373 /* retrieve MAC address and various other things from EEPROM */ 374 rum_read_eeprom(sc); 375 376 aprint_normal_dev(self, 377 "MAC/BBP RT%04x (rev 0x%05x), RF %s, address %s\n", 378 sc->macbbp_rev, tmp, 379 rum_get_rf(sc->rf_rev), ether_sprintf(ic->ic_myaddr)); 380 381 ic->ic_ifp = ifp; 382 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 383 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 384 ic->ic_state = IEEE80211_S_INIT; 385 386 /* set device capabilities */ 387 ic->ic_caps = 388 IEEE80211_C_IBSS | /* IBSS mode supported */ 389 IEEE80211_C_MONITOR | /* monitor mode supported */ 390 IEEE80211_C_HOSTAP | /* HostAp mode supported */ 391 IEEE80211_C_TXPMGT | /* tx power management */ 392 IEEE80211_C_SHPREAMBLE | /* short preamble supported */ 393 IEEE80211_C_SHSLOT | /* short slot time supported */ 394 IEEE80211_C_WPA; /* 802.11i */ 395 396 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) { 397 /* set supported .11a rates */ 398 ic->ic_sup_rates[IEEE80211_MODE_11A] = rum_rateset_11a; 399 400 /* set supported .11a channels */ 401 for (i = 34; i <= 46; i += 4) { 402 ic->ic_channels[i].ic_freq = 403 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 404 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 405 } 406 for (i = 36; i <= 64; i += 4) { 407 ic->ic_channels[i].ic_freq = 408 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 409 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 410 } 411 for (i = 100; i <= 140; i += 4) { 412 ic->ic_channels[i].ic_freq = 413 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 414 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 415 } 416 for (i = 149; i <= 165; i += 4) { 417 ic->ic_channels[i].ic_freq = 418 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 419 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 420 } 421 } 422 423 /* set supported .11b and .11g rates */ 424 ic->ic_sup_rates[IEEE80211_MODE_11B] = rum_rateset_11b; 425 ic->ic_sup_rates[IEEE80211_MODE_11G] = rum_rateset_11g; 426 427 /* set supported .11b and .11g channels (1 through 14) */ 428 for (i = 1; i <= 14; i++) { 429 ic->ic_channels[i].ic_freq = 430 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ); 431 ic->ic_channels[i].ic_flags = 432 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | 433 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 434 } 435 436 ifp->if_softc = sc; 437 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 438 ifp->if_init = rum_init; 439 ifp->if_ioctl = rum_ioctl; 440 ifp->if_start = rum_start; 441 ifp->if_watchdog = rum_watchdog; 442 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); 443 IFQ_SET_READY(&ifp->if_snd); 444 memcpy(ifp->if_xname, USBDEVNAME(sc->sc_dev), IFNAMSIZ); 445 446 if_attach(ifp); 447 ieee80211_ifattach(ic); 448 ic->ic_newassoc = rum_newassoc; 449 450 /* override state transition machine */ 451 sc->sc_newstate = ic->ic_newstate; 452 ic->ic_newstate = rum_newstate; 453 ieee80211_media_init(ic, rum_media_change, ieee80211_media_status); 454 455 #if NBPFILTER > 0 456 bpfattach2(ifp, DLT_IEEE802_11_RADIO, 457 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN, &sc->sc_drvbpf); 458 459 sc->sc_rxtap_len = sizeof sc->sc_rxtapu; 460 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 461 sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT); 462 463 sc->sc_txtap_len = sizeof sc->sc_txtapu; 464 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 465 sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT); 466 #endif 467 468 ieee80211_announce(ic); 469 470 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, 471 USBDEV(sc->sc_dev)); 472 473 USB_ATTACH_SUCCESS_RETURN; 474 } 475 476 USB_DETACH(rum) 477 { 478 USB_DETACH_START(rum, sc); 479 struct ieee80211com *ic = &sc->sc_ic; 480 struct ifnet *ifp = &sc->sc_if; 481 int s; 482 483 if (!ifp->if_softc) 484 return 0; 485 486 s = splusb(); 487 488 rum_stop(ifp, 1); 489 usb_rem_task(sc->sc_udev, &sc->sc_task); 490 usb_uncallout(sc->sc_scan_ch, rum_next_scan, sc); 491 usb_uncallout(sc->sc_amrr_ch, rum_amrr_timeout, sc); 492 493 if (sc->amrr_xfer != NULL) { 494 usbd_free_xfer(sc->amrr_xfer); 495 sc->amrr_xfer = NULL; 496 } 497 498 if (sc->sc_rx_pipeh != NULL) { 499 usbd_abort_pipe(sc->sc_rx_pipeh); 500 usbd_close_pipe(sc->sc_rx_pipeh); 501 } 502 503 if (sc->sc_tx_pipeh != NULL) { 504 usbd_abort_pipe(sc->sc_tx_pipeh); 505 usbd_close_pipe(sc->sc_tx_pipeh); 506 } 507 508 #if NBPFILTER > 0 509 bpfdetach(ifp); 510 #endif 511 ieee80211_ifdetach(ic); /* free all nodes */ 512 if_detach(ifp); 513 514 splx(s); 515 516 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, 517 USBDEV(sc->sc_dev)); 518 519 return 0; 520 } 521 522 Static int 523 rum_alloc_tx_list(struct rum_softc *sc) 524 { 525 struct rum_tx_data *data; 526 int i, error; 527 528 sc->tx_queued = 0; 529 530 for (i = 0; i < RUM_TX_LIST_COUNT; i++) { 531 data = &sc->tx_data[i]; 532 533 data->sc = sc; 534 535 data->xfer = usbd_alloc_xfer(sc->sc_udev); 536 if (data->xfer == NULL) { 537 printf("%s: could not allocate tx xfer\n", 538 USBDEVNAME(sc->sc_dev)); 539 error = ENOMEM; 540 goto fail; 541 } 542 543 data->buf = usbd_alloc_buffer(data->xfer, 544 RT2573_TX_DESC_SIZE + MCLBYTES); 545 if (data->buf == NULL) { 546 printf("%s: could not allocate tx buffer\n", 547 USBDEVNAME(sc->sc_dev)); 548 error = ENOMEM; 549 goto fail; 550 } 551 552 /* clean Tx descriptor */ 553 bzero(data->buf, RT2573_TX_DESC_SIZE); 554 } 555 556 return 0; 557 558 fail: rum_free_tx_list(sc); 559 return error; 560 } 561 562 Static void 563 rum_free_tx_list(struct rum_softc *sc) 564 { 565 struct rum_tx_data *data; 566 int i; 567 568 for (i = 0; i < RUM_TX_LIST_COUNT; i++) { 569 data = &sc->tx_data[i]; 570 571 if (data->xfer != NULL) { 572 usbd_free_xfer(data->xfer); 573 data->xfer = NULL; 574 } 575 576 if (data->ni != NULL) { 577 ieee80211_free_node(data->ni); 578 data->ni = NULL; 579 } 580 } 581 } 582 583 Static int 584 rum_alloc_rx_list(struct rum_softc *sc) 585 { 586 struct rum_rx_data *data; 587 int i, error; 588 589 for (i = 0; i < RUM_RX_LIST_COUNT; i++) { 590 data = &sc->rx_data[i]; 591 592 data->sc = sc; 593 594 data->xfer = usbd_alloc_xfer(sc->sc_udev); 595 if (data->xfer == NULL) { 596 printf("%s: could not allocate rx xfer\n", 597 USBDEVNAME(sc->sc_dev)); 598 error = ENOMEM; 599 goto fail; 600 } 601 602 if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) { 603 printf("%s: could not allocate rx buffer\n", 604 USBDEVNAME(sc->sc_dev)); 605 error = ENOMEM; 606 goto fail; 607 } 608 609 MGETHDR(data->m, M_DONTWAIT, MT_DATA); 610 if (data->m == NULL) { 611 printf("%s: could not allocate rx mbuf\n", 612 USBDEVNAME(sc->sc_dev)); 613 error = ENOMEM; 614 goto fail; 615 } 616 617 MCLGET(data->m, M_DONTWAIT); 618 if (!(data->m->m_flags & M_EXT)) { 619 printf("%s: could not allocate rx mbuf cluster\n", 620 USBDEVNAME(sc->sc_dev)); 621 error = ENOMEM; 622 goto fail; 623 } 624 625 data->buf = mtod(data->m, uint8_t *); 626 } 627 628 return 0; 629 630 fail: rum_free_tx_list(sc); 631 return error; 632 } 633 634 Static void 635 rum_free_rx_list(struct rum_softc *sc) 636 { 637 struct rum_rx_data *data; 638 int i; 639 640 for (i = 0; i < RUM_RX_LIST_COUNT; i++) { 641 data = &sc->rx_data[i]; 642 643 if (data->xfer != NULL) { 644 usbd_free_xfer(data->xfer); 645 data->xfer = NULL; 646 } 647 648 if (data->m != NULL) { 649 m_freem(data->m); 650 data->m = NULL; 651 } 652 } 653 } 654 655 Static int 656 rum_media_change(struct ifnet *ifp) 657 { 658 int error; 659 660 error = ieee80211_media_change(ifp); 661 if (error != ENETRESET) 662 return error; 663 664 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) 665 rum_init(ifp); 666 667 return 0; 668 } 669 670 /* 671 * This function is called periodically (every 200ms) during scanning to 672 * switch from one channel to another. 673 */ 674 Static void 675 rum_next_scan(void *arg) 676 { 677 struct rum_softc *sc = arg; 678 struct ieee80211com *ic = &sc->sc_ic; 679 680 if (ic->ic_state == IEEE80211_S_SCAN) 681 ieee80211_next_scan(ic); 682 } 683 684 Static void 685 rum_task(void *arg) 686 { 687 struct rum_softc *sc = arg; 688 struct ieee80211com *ic = &sc->sc_ic; 689 enum ieee80211_state ostate; 690 struct ieee80211_node *ni; 691 uint32_t tmp; 692 693 ostate = ic->ic_state; 694 695 switch (sc->sc_state) { 696 case IEEE80211_S_INIT: 697 if (ostate == IEEE80211_S_RUN) { 698 /* abort TSF synchronization */ 699 tmp = rum_read(sc, RT2573_TXRX_CSR9); 700 rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff); 701 } 702 break; 703 704 case IEEE80211_S_SCAN: 705 rum_set_chan(sc, ic->ic_curchan); 706 usb_callout(sc->sc_scan_ch, hz / 5, rum_next_scan, sc); 707 break; 708 709 case IEEE80211_S_AUTH: 710 rum_set_chan(sc, ic->ic_curchan); 711 break; 712 713 case IEEE80211_S_ASSOC: 714 rum_set_chan(sc, ic->ic_curchan); 715 break; 716 717 case IEEE80211_S_RUN: 718 rum_set_chan(sc, ic->ic_curchan); 719 720 ni = ic->ic_bss; 721 722 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 723 rum_update_slot(sc); 724 rum_enable_mrr(sc); 725 rum_set_txpreamble(sc); 726 rum_set_basicrates(sc); 727 rum_set_bssid(sc, ni->ni_bssid); 728 } 729 730 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 731 ic->ic_opmode == IEEE80211_M_IBSS) 732 rum_prepare_beacon(sc); 733 734 if (ic->ic_opmode != IEEE80211_M_MONITOR) 735 rum_enable_tsf_sync(sc); 736 737 if (ic->ic_opmode == IEEE80211_M_STA) { 738 /* fake a join to init the tx rate */ 739 rum_newassoc(ic->ic_bss, 1); 740 741 /* enable automatic rate adaptation in STA mode */ 742 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) 743 rum_amrr_start(sc, ni); 744 } 745 746 break; 747 } 748 749 sc->sc_newstate(ic, sc->sc_state, -1); 750 } 751 752 Static int 753 rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 754 { 755 struct rum_softc *sc = ic->ic_ifp->if_softc; 756 757 usb_rem_task(sc->sc_udev, &sc->sc_task); 758 usb_uncallout(sc->sc_scan_ch, rum_next_scan, sc); 759 usb_uncallout(sc->sc_amrr_ch, rum_amrr_timeout, sc); 760 761 /* do it in a process context */ 762 sc->sc_state = nstate; 763 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER); 764 765 return 0; 766 } 767 768 /* quickly determine if a given rate is CCK or OFDM */ 769 #define RUM_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22) 770 771 #define RUM_ACK_SIZE 14 /* 10 + 4(FCS) */ 772 #define RUM_CTS_SIZE 14 /* 10 + 4(FCS) */ 773 774 Static void 775 rum_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) 776 { 777 struct rum_tx_data *data = priv; 778 struct rum_softc *sc = data->sc; 779 struct ifnet *ifp = &sc->sc_if; 780 int s; 781 782 if (status != USBD_NORMAL_COMPLETION) { 783 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 784 return; 785 786 printf("%s: could not transmit buffer: %s\n", 787 USBDEVNAME(sc->sc_dev), usbd_errstr(status)); 788 789 if (status == USBD_STALLED) 790 usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh); 791 792 ifp->if_oerrors++; 793 return; 794 } 795 796 s = splnet(); 797 798 ieee80211_free_node(data->ni); 799 data->ni = NULL; 800 801 sc->tx_queued--; 802 ifp->if_opackets++; 803 804 DPRINTFN(10, ("tx done\n")); 805 806 sc->sc_tx_timer = 0; 807 ifp->if_flags &= ~IFF_OACTIVE; 808 rum_start(ifp); 809 810 splx(s); 811 } 812 813 Static void 814 rum_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) 815 { 816 struct rum_rx_data *data = priv; 817 struct rum_softc *sc = data->sc; 818 struct ieee80211com *ic = &sc->sc_ic; 819 struct ifnet *ifp = &sc->sc_if; 820 struct rum_rx_desc *desc; 821 struct ieee80211_frame *wh; 822 struct ieee80211_node *ni; 823 struct mbuf *mnew, *m; 824 int s, len; 825 826 if (status != USBD_NORMAL_COMPLETION) { 827 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 828 return; 829 830 if (status == USBD_STALLED) 831 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh); 832 goto skip; 833 } 834 835 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL); 836 837 if (len < RT2573_RX_DESC_SIZE + sizeof (struct ieee80211_frame_min)) { 838 DPRINTF(("%s: xfer too short %d\n", USBDEVNAME(sc->sc_dev), 839 len)); 840 ifp->if_ierrors++; 841 goto skip; 842 } 843 844 desc = (struct rum_rx_desc *)data->buf; 845 846 if (le32toh(desc->flags) & RT2573_RX_CRC_ERROR) { 847 /* 848 * This should not happen since we did not request to receive 849 * those frames when we filled RT2573_TXRX_CSR0. 850 */ 851 DPRINTFN(5, ("CRC error\n")); 852 ifp->if_ierrors++; 853 goto skip; 854 } 855 856 MGETHDR(mnew, M_DONTWAIT, MT_DATA); 857 if (mnew == NULL) { 858 printf("%s: could not allocate rx mbuf\n", 859 USBDEVNAME(sc->sc_dev)); 860 ifp->if_ierrors++; 861 goto skip; 862 } 863 864 MCLGET(mnew, M_DONTWAIT); 865 if (!(mnew->m_flags & M_EXT)) { 866 printf("%s: could not allocate rx mbuf cluster\n", 867 USBDEVNAME(sc->sc_dev)); 868 m_freem(mnew); 869 ifp->if_ierrors++; 870 goto skip; 871 } 872 873 m = data->m; 874 data->m = mnew; 875 data->buf = mtod(data->m, uint8_t *); 876 877 /* finalize mbuf */ 878 m->m_pkthdr.rcvif = ifp; 879 m->m_data = (void *)(desc + 1); 880 m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff; 881 882 s = splnet(); 883 884 #if NBPFILTER > 0 885 if (sc->sc_drvbpf != NULL) { 886 struct rum_rx_radiotap_header *tap = &sc->sc_rxtap; 887 888 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS; 889 tap->wr_rate = rum_rxrate(desc); 890 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq); 891 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags); 892 tap->wr_antenna = sc->rx_ant; 893 tap->wr_antsignal = desc->rssi; 894 895 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m); 896 } 897 #endif 898 899 wh = mtod(m, struct ieee80211_frame *); 900 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); 901 902 /* send the frame to the 802.11 layer */ 903 ieee80211_input(ic, m, ni, desc->rssi, 0); 904 905 /* node is no longer needed */ 906 ieee80211_free_node(ni); 907 908 splx(s); 909 910 DPRINTFN(15, ("rx done\n")); 911 912 skip: /* setup a new transfer */ 913 usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES, 914 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof); 915 usbd_transfer(xfer); 916 } 917 918 /* 919 * This function is only used by the Rx radiotap code. It returns the rate at 920 * which a given frame was received. 921 */ 922 #if NBPFILTER > 0 923 Static uint8_t 924 rum_rxrate(const struct rum_rx_desc *desc) 925 { 926 if (le32toh(desc->flags) & RT2573_RX_OFDM) { 927 /* reverse function of rum_plcp_signal */ 928 switch (desc->rate) { 929 case 0xb: return 12; 930 case 0xf: return 18; 931 case 0xa: return 24; 932 case 0xe: return 36; 933 case 0x9: return 48; 934 case 0xd: return 72; 935 case 0x8: return 96; 936 case 0xc: return 108; 937 } 938 } else { 939 if (desc->rate == 10) 940 return 2; 941 if (desc->rate == 20) 942 return 4; 943 if (desc->rate == 55) 944 return 11; 945 if (desc->rate == 110) 946 return 22; 947 } 948 return 2; /* should not get there */ 949 } 950 #endif 951 952 /* 953 * Return the expected ack rate for a frame transmitted at rate `rate'. 954 * XXX: this should depend on the destination node basic rate set. 955 */ 956 Static int 957 rum_ack_rate(struct ieee80211com *ic, int rate) 958 { 959 switch (rate) { 960 /* CCK rates */ 961 case 2: 962 return 2; 963 case 4: 964 case 11: 965 case 22: 966 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate; 967 968 /* OFDM rates */ 969 case 12: 970 case 18: 971 return 12; 972 case 24: 973 case 36: 974 return 24; 975 case 48: 976 case 72: 977 case 96: 978 case 108: 979 return 48; 980 } 981 982 /* default to 1Mbps */ 983 return 2; 984 } 985 986 /* 987 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'. 988 * The function automatically determines the operating mode depending on the 989 * given rate. `flags' indicates whether short preamble is in use or not. 990 */ 991 Static uint16_t 992 rum_txtime(int len, int rate, uint32_t flags) 993 { 994 uint16_t txtime; 995 996 if (RUM_RATE_IS_OFDM(rate)) { 997 /* IEEE Std 802.11a-1999, pp. 37 */ 998 txtime = (8 + 4 * len + 3 + rate - 1) / rate; 999 txtime = 16 + 4 + 4 * txtime + 6; 1000 } else { 1001 /* IEEE Std 802.11b-1999, pp. 28 */ 1002 txtime = (16 * len + rate - 1) / rate; 1003 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE)) 1004 txtime += 72 + 24; 1005 else 1006 txtime += 144 + 48; 1007 } 1008 return txtime; 1009 } 1010 1011 Static uint8_t 1012 rum_plcp_signal(int rate) 1013 { 1014 switch (rate) { 1015 /* CCK rates (returned values are device-dependent) */ 1016 case 2: return 0x0; 1017 case 4: return 0x1; 1018 case 11: return 0x2; 1019 case 22: return 0x3; 1020 1021 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 1022 case 12: return 0xb; 1023 case 18: return 0xf; 1024 case 24: return 0xa; 1025 case 36: return 0xe; 1026 case 48: return 0x9; 1027 case 72: return 0xd; 1028 case 96: return 0x8; 1029 case 108: return 0xc; 1030 1031 /* unsupported rates (should not get there) */ 1032 default: return 0xff; 1033 } 1034 } 1035 1036 Static void 1037 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc, 1038 uint32_t flags, uint16_t xflags, int len, int rate) 1039 { 1040 struct ieee80211com *ic = &sc->sc_ic; 1041 uint16_t plcp_length; 1042 int remainder; 1043 1044 desc->flags = htole32(flags); 1045 desc->flags |= htole32(RT2573_TX_VALID); 1046 desc->flags |= htole32(len << 16); 1047 1048 desc->xflags = htole16(xflags); 1049 1050 desc->wme = htole16( 1051 RT2573_QID(0) | 1052 RT2573_AIFSN(2) | 1053 RT2573_LOGCWMIN(4) | 1054 RT2573_LOGCWMAX(10)); 1055 1056 /* setup PLCP fields */ 1057 desc->plcp_signal = rum_plcp_signal(rate); 1058 desc->plcp_service = 4; 1059 1060 len += IEEE80211_CRC_LEN; 1061 if (RUM_RATE_IS_OFDM(rate)) { 1062 desc->flags |= htole32(RT2573_TX_OFDM); 1063 1064 plcp_length = len & 0xfff; 1065 desc->plcp_length_hi = plcp_length >> 6; 1066 desc->plcp_length_lo = plcp_length & 0x3f; 1067 } else { 1068 plcp_length = (16 * len + rate - 1) / rate; 1069 if (rate == 22) { 1070 remainder = (16 * len) % 22; 1071 if (remainder != 0 && remainder < 7) 1072 desc->plcp_service |= RT2573_PLCP_LENGEXT; 1073 } 1074 desc->plcp_length_hi = plcp_length >> 8; 1075 desc->plcp_length_lo = plcp_length & 0xff; 1076 1077 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 1078 desc->plcp_signal |= 0x08; 1079 } 1080 } 1081 1082 #define RUM_TX_TIMEOUT 5000 1083 1084 Static int 1085 rum_tx_mgt(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1086 { 1087 struct ieee80211com *ic = &sc->sc_ic; 1088 struct rum_tx_desc *desc; 1089 struct rum_tx_data *data; 1090 struct ieee80211_frame *wh; 1091 struct ieee80211_key *k; 1092 uint32_t flags = 0; 1093 uint16_t dur; 1094 usbd_status error; 1095 int xferlen, rate; 1096 1097 data = &sc->tx_data[0]; 1098 desc = (struct rum_tx_desc *)data->buf; 1099 1100 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2; 1101 1102 data->m = m0; 1103 data->ni = ni; 1104 1105 wh = mtod(m0, struct ieee80211_frame *); 1106 1107 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1108 k = ieee80211_crypto_encap(ic, ni, m0); 1109 if (k == NULL) { 1110 m_freem(m0); 1111 return ENOBUFS; 1112 } 1113 } 1114 1115 wh = mtod(m0, struct ieee80211_frame *); 1116 1117 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1118 flags |= RT2573_TX_NEED_ACK; 1119 1120 dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate), 1121 ic->ic_flags) + sc->sifs; 1122 *(uint16_t *)wh->i_dur = htole16(dur); 1123 1124 /* tell hardware to set timestamp in probe responses */ 1125 if ((wh->i_fc[0] & 1126 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 1127 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP)) 1128 flags |= RT2573_TX_TIMESTAMP; 1129 } 1130 1131 #if NBPFILTER > 0 1132 if (sc->sc_drvbpf != NULL) { 1133 struct rum_tx_radiotap_header *tap = &sc->sc_txtap; 1134 1135 tap->wt_flags = 0; 1136 tap->wt_rate = rate; 1137 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); 1138 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); 1139 tap->wt_antenna = sc->tx_ant; 1140 1141 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); 1142 } 1143 #endif 1144 1145 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE); 1146 rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate); 1147 1148 /* align end on a 4-bytes boundary */ 1149 xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3; 1150 1151 /* 1152 * No space left in the last URB to store the extra 4 bytes, force 1153 * sending of another URB. 1154 */ 1155 if ((xferlen % 64) == 0) 1156 xferlen += 4; 1157 1158 DPRINTFN(10, ("sending msg frame len=%zu rate=%u xfer len=%u\n", 1159 (size_t)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE, 1160 rate, xferlen)); 1161 1162 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen, 1163 USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof); 1164 1165 error = usbd_transfer(data->xfer); 1166 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) { 1167 m_freem(m0); 1168 return error; 1169 } 1170 1171 sc->tx_queued++; 1172 1173 return 0; 1174 } 1175 1176 Static int 1177 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1178 { 1179 struct ieee80211com *ic = &sc->sc_ic; 1180 struct rum_tx_desc *desc; 1181 struct rum_tx_data *data; 1182 struct ieee80211_frame *wh; 1183 struct ieee80211_key *k; 1184 uint32_t flags = 0; 1185 uint16_t dur; 1186 usbd_status error; 1187 int xferlen, rate; 1188 1189 wh = mtod(m0, struct ieee80211_frame *); 1190 1191 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) 1192 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate]; 1193 else 1194 rate = ni->ni_rates.rs_rates[ni->ni_txrate]; 1195 if (rate == 0) 1196 rate = 2; /* XXX should not happen */ 1197 rate &= IEEE80211_RATE_VAL; 1198 1199 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1200 k = ieee80211_crypto_encap(ic, ni, m0); 1201 if (k == NULL) { 1202 m_freem(m0); 1203 return ENOBUFS; 1204 } 1205 1206 /* packet header may have moved, reset our local pointer */ 1207 wh = mtod(m0, struct ieee80211_frame *); 1208 } 1209 1210 data = &sc->tx_data[0]; 1211 desc = (struct rum_tx_desc *)data->buf; 1212 1213 data->ni = ni; 1214 1215 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1216 flags |= RT2573_TX_NEED_ACK; 1217 1218 dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate), 1219 ic->ic_flags) + sc->sifs; 1220 *(uint16_t *)wh->i_dur = htole16(dur); 1221 } 1222 1223 #if NBPFILTER > 0 1224 if (sc->sc_drvbpf != NULL) { 1225 struct rum_tx_radiotap_header *tap = &sc->sc_txtap; 1226 1227 tap->wt_flags = 0; 1228 tap->wt_rate = rate; 1229 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); 1230 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); 1231 tap->wt_antenna = sc->tx_ant; 1232 1233 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); 1234 } 1235 #endif 1236 1237 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE); 1238 rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate); 1239 1240 /* align end on a 4-bytes boundary */ 1241 xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3; 1242 1243 /* 1244 * No space left in the last URB to store the extra 4 bytes, force 1245 * sending of another URB. 1246 */ 1247 if ((xferlen % 64) == 0) 1248 xferlen += 4; 1249 1250 DPRINTFN(10, ("sending data frame len=%zu rate=%u xfer len=%u\n", 1251 (size_t)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE, 1252 rate, xferlen)); 1253 1254 /* mbuf is no longer needed */ 1255 m_freem(m0); 1256 1257 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen, 1258 USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof); 1259 1260 error = usbd_transfer(data->xfer); 1261 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) 1262 return error; 1263 1264 sc->tx_queued++; 1265 1266 return 0; 1267 } 1268 1269 Static void 1270 rum_start(struct ifnet *ifp) 1271 { 1272 struct rum_softc *sc = ifp->if_softc; 1273 struct ieee80211com *ic = &sc->sc_ic; 1274 struct ether_header *eh; 1275 struct ieee80211_node *ni; 1276 struct mbuf *m0; 1277 1278 for (;;) { 1279 IF_POLL(&ic->ic_mgtq, m0); 1280 if (m0 != NULL) { 1281 if (sc->tx_queued >= RUM_TX_LIST_COUNT) { 1282 ifp->if_flags |= IFF_OACTIVE; 1283 break; 1284 } 1285 IF_DEQUEUE(&ic->ic_mgtq, m0); 1286 1287 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif; 1288 m0->m_pkthdr.rcvif = NULL; 1289 #if NBPFILTER > 0 1290 if (ic->ic_rawbpf != NULL) 1291 bpf_mtap(ic->ic_rawbpf, m0); 1292 #endif 1293 if (rum_tx_mgt(sc, m0, ni) != 0) 1294 break; 1295 1296 } else { 1297 if (ic->ic_state != IEEE80211_S_RUN) 1298 break; 1299 IFQ_POLL(&ifp->if_snd, m0); 1300 if (m0 == NULL) 1301 break; 1302 if (sc->tx_queued >= RUM_TX_LIST_COUNT) { 1303 ifp->if_flags |= IFF_OACTIVE; 1304 break; 1305 } 1306 IFQ_DEQUEUE(&ifp->if_snd, m0); 1307 if (m0->m_len < sizeof(struct ether_header) && 1308 !(m0 = m_pullup(m0, sizeof(struct ether_header)))) 1309 continue; 1310 1311 eh = mtod(m0, struct ether_header *); 1312 ni = ieee80211_find_txnode(ic, eh->ether_dhost); 1313 if (ni == NULL) { 1314 m_freem(m0); 1315 continue; 1316 } 1317 #if NBPFILTER > 0 1318 if (ifp->if_bpf != NULL) 1319 bpf_mtap(ifp->if_bpf, m0); 1320 #endif 1321 m0 = ieee80211_encap(ic, m0, ni); 1322 if (m0 == NULL) { 1323 ieee80211_free_node(ni); 1324 continue; 1325 } 1326 #if NBPFILTER > 0 1327 if (ic->ic_rawbpf != NULL) 1328 bpf_mtap(ic->ic_rawbpf, m0); 1329 #endif 1330 if (rum_tx_data(sc, m0, ni) != 0) { 1331 ieee80211_free_node(ni); 1332 ifp->if_oerrors++; 1333 break; 1334 } 1335 } 1336 1337 sc->sc_tx_timer = 5; 1338 ifp->if_timer = 1; 1339 } 1340 } 1341 1342 Static void 1343 rum_watchdog(struct ifnet *ifp) 1344 { 1345 struct rum_softc *sc = ifp->if_softc; 1346 struct ieee80211com *ic = &sc->sc_ic; 1347 1348 ifp->if_timer = 0; 1349 1350 if (sc->sc_tx_timer > 0) { 1351 if (--sc->sc_tx_timer == 0) { 1352 printf("%s: device timeout\n", USBDEVNAME(sc->sc_dev)); 1353 /*rum_init(ifp); XXX needs a process context! */ 1354 ifp->if_oerrors++; 1355 return; 1356 } 1357 ifp->if_timer = 1; 1358 } 1359 1360 ieee80211_watchdog(ic); 1361 } 1362 1363 Static int 1364 rum_ioctl(struct ifnet *ifp, u_long cmd, void *data) 1365 { 1366 struct rum_softc *sc = ifp->if_softc; 1367 struct ieee80211com *ic = &sc->sc_ic; 1368 int s, error = 0; 1369 1370 s = splnet(); 1371 1372 switch (cmd) { 1373 case SIOCSIFFLAGS: 1374 if (ifp->if_flags & IFF_UP) { 1375 if (ifp->if_flags & IFF_RUNNING) 1376 rum_update_promisc(sc); 1377 else 1378 rum_init(ifp); 1379 } else { 1380 if (ifp->if_flags & IFF_RUNNING) 1381 rum_stop(ifp, 1); 1382 } 1383 break; 1384 1385 default: 1386 error = ieee80211_ioctl(ic, cmd, data); 1387 } 1388 1389 if (error == ENETRESET) { 1390 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == 1391 (IFF_UP | IFF_RUNNING)) 1392 rum_init(ifp); 1393 error = 0; 1394 } 1395 1396 splx(s); 1397 1398 return error; 1399 } 1400 1401 Static void 1402 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len) 1403 { 1404 usb_device_request_t req; 1405 usbd_status error; 1406 1407 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1408 req.bRequest = RT2573_READ_EEPROM; 1409 USETW(req.wValue, 0); 1410 USETW(req.wIndex, addr); 1411 USETW(req.wLength, len); 1412 1413 error = usbd_do_request(sc->sc_udev, &req, buf); 1414 if (error != 0) { 1415 printf("%s: could not read EEPROM: %s\n", 1416 USBDEVNAME(sc->sc_dev), usbd_errstr(error)); 1417 } 1418 } 1419 1420 Static uint32_t 1421 rum_read(struct rum_softc *sc, uint16_t reg) 1422 { 1423 uint32_t val; 1424 1425 rum_read_multi(sc, reg, &val, sizeof val); 1426 1427 return le32toh(val); 1428 } 1429 1430 Static void 1431 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len) 1432 { 1433 usb_device_request_t req; 1434 usbd_status error; 1435 1436 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1437 req.bRequest = RT2573_READ_MULTI_MAC; 1438 USETW(req.wValue, 0); 1439 USETW(req.wIndex, reg); 1440 USETW(req.wLength, len); 1441 1442 error = usbd_do_request(sc->sc_udev, &req, buf); 1443 if (error != 0) { 1444 printf("%s: could not multi read MAC register: %s\n", 1445 USBDEVNAME(sc->sc_dev), usbd_errstr(error)); 1446 } 1447 } 1448 1449 Static void 1450 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val) 1451 { 1452 uint32_t tmp = htole32(val); 1453 1454 rum_write_multi(sc, reg, &tmp, sizeof tmp); 1455 } 1456 1457 Static void 1458 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len) 1459 { 1460 usb_device_request_t req; 1461 usbd_status error; 1462 1463 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 1464 req.bRequest = RT2573_WRITE_MULTI_MAC; 1465 USETW(req.wValue, 0); 1466 USETW(req.wIndex, reg); 1467 USETW(req.wLength, len); 1468 1469 error = usbd_do_request(sc->sc_udev, &req, buf); 1470 if (error != 0) { 1471 printf("%s: could not multi write MAC register: %s\n", 1472 USBDEVNAME(sc->sc_dev), usbd_errstr(error)); 1473 } 1474 } 1475 1476 Static void 1477 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val) 1478 { 1479 uint32_t tmp; 1480 int ntries; 1481 1482 for (ntries = 0; ntries < 5; ntries++) { 1483 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY)) 1484 break; 1485 } 1486 if (ntries == 5) { 1487 printf("%s: could not write to BBP\n", USBDEVNAME(sc->sc_dev)); 1488 return; 1489 } 1490 1491 tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val; 1492 rum_write(sc, RT2573_PHY_CSR3, tmp); 1493 } 1494 1495 Static uint8_t 1496 rum_bbp_read(struct rum_softc *sc, uint8_t reg) 1497 { 1498 uint32_t val; 1499 int ntries; 1500 1501 for (ntries = 0; ntries < 5; ntries++) { 1502 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY)) 1503 break; 1504 } 1505 if (ntries == 5) { 1506 printf("%s: could not read BBP\n", USBDEVNAME(sc->sc_dev)); 1507 return 0; 1508 } 1509 1510 val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8; 1511 rum_write(sc, RT2573_PHY_CSR3, val); 1512 1513 for (ntries = 0; ntries < 100; ntries++) { 1514 val = rum_read(sc, RT2573_PHY_CSR3); 1515 if (!(val & RT2573_BBP_BUSY)) 1516 return val & 0xff; 1517 DELAY(1); 1518 } 1519 1520 printf("%s: could not read BBP\n", USBDEVNAME(sc->sc_dev)); 1521 return 0; 1522 } 1523 1524 Static void 1525 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val) 1526 { 1527 uint32_t tmp; 1528 int ntries; 1529 1530 for (ntries = 0; ntries < 5; ntries++) { 1531 if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY)) 1532 break; 1533 } 1534 if (ntries == 5) { 1535 printf("%s: could not write to RF\n", USBDEVNAME(sc->sc_dev)); 1536 return; 1537 } 1538 1539 tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 | 1540 (reg & 3); 1541 rum_write(sc, RT2573_PHY_CSR4, tmp); 1542 1543 /* remember last written value in sc */ 1544 sc->rf_regs[reg] = val; 1545 1546 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff)); 1547 } 1548 1549 Static void 1550 rum_select_antenna(struct rum_softc *sc) 1551 { 1552 uint8_t bbp4, bbp77; 1553 uint32_t tmp; 1554 1555 bbp4 = rum_bbp_read(sc, 4); 1556 bbp77 = rum_bbp_read(sc, 77); 1557 1558 /* TBD */ 1559 1560 /* make sure Rx is disabled before switching antenna */ 1561 tmp = rum_read(sc, RT2573_TXRX_CSR0); 1562 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX); 1563 1564 rum_bbp_write(sc, 4, bbp4); 1565 rum_bbp_write(sc, 77, bbp77); 1566 1567 rum_write(sc, RT2573_TXRX_CSR0, tmp); 1568 } 1569 1570 /* 1571 * Enable multi-rate retries for frames sent at OFDM rates. 1572 * In 802.11b/g mode, allow fallback to CCK rates. 1573 */ 1574 Static void 1575 rum_enable_mrr(struct rum_softc *sc) 1576 { 1577 struct ieee80211com *ic = &sc->sc_ic; 1578 uint32_t tmp; 1579 1580 tmp = rum_read(sc, RT2573_TXRX_CSR4); 1581 1582 tmp &= ~RT2573_MRR_CCK_FALLBACK; 1583 if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) 1584 tmp |= RT2573_MRR_CCK_FALLBACK; 1585 tmp |= RT2573_MRR_ENABLED; 1586 1587 rum_write(sc, RT2573_TXRX_CSR4, tmp); 1588 } 1589 1590 Static void 1591 rum_set_txpreamble(struct rum_softc *sc) 1592 { 1593 uint32_t tmp; 1594 1595 tmp = rum_read(sc, RT2573_TXRX_CSR4); 1596 1597 tmp &= ~RT2573_SHORT_PREAMBLE; 1598 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE) 1599 tmp |= RT2573_SHORT_PREAMBLE; 1600 1601 rum_write(sc, RT2573_TXRX_CSR4, tmp); 1602 } 1603 1604 Static void 1605 rum_set_basicrates(struct rum_softc *sc) 1606 { 1607 struct ieee80211com *ic = &sc->sc_ic; 1608 1609 /* update basic rate set */ 1610 if (ic->ic_curmode == IEEE80211_MODE_11B) { 1611 /* 11b basic rates: 1, 2Mbps */ 1612 rum_write(sc, RT2573_TXRX_CSR5, 0x3); 1613 } else if (ic->ic_curmode == IEEE80211_MODE_11A) { 1614 /* 11a basic rates: 6, 12, 24Mbps */ 1615 rum_write(sc, RT2573_TXRX_CSR5, 0x150); 1616 } else { 1617 /* 11b/g basic rates: 1, 2, 5.5, 11Mbps */ 1618 rum_write(sc, RT2573_TXRX_CSR5, 0xf); 1619 } 1620 } 1621 1622 /* 1623 * Reprogram MAC/BBP to switch to a new band. Values taken from the reference 1624 * driver. 1625 */ 1626 Static void 1627 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c) 1628 { 1629 uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104; 1630 uint32_t tmp; 1631 1632 /* update all BBP registers that depend on the band */ 1633 bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c; 1634 bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48; 1635 if (IEEE80211_IS_CHAN_5GHZ(c)) { 1636 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c; 1637 bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10; 1638 } 1639 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || 1640 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { 1641 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10; 1642 } 1643 1644 sc->bbp17 = bbp17; 1645 rum_bbp_write(sc, 17, bbp17); 1646 rum_bbp_write(sc, 96, bbp96); 1647 rum_bbp_write(sc, 104, bbp104); 1648 1649 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || 1650 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { 1651 rum_bbp_write(sc, 75, 0x80); 1652 rum_bbp_write(sc, 86, 0x80); 1653 rum_bbp_write(sc, 88, 0x80); 1654 } 1655 1656 rum_bbp_write(sc, 35, bbp35); 1657 rum_bbp_write(sc, 97, bbp97); 1658 rum_bbp_write(sc, 98, bbp98); 1659 1660 tmp = rum_read(sc, RT2573_PHY_CSR0); 1661 tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ); 1662 if (IEEE80211_IS_CHAN_2GHZ(c)) 1663 tmp |= RT2573_PA_PE_2GHZ; 1664 else 1665 tmp |= RT2573_PA_PE_5GHZ; 1666 rum_write(sc, RT2573_PHY_CSR0, tmp); 1667 1668 /* 802.11a uses a 16 microseconds short interframe space */ 1669 sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10; 1670 } 1671 1672 Static void 1673 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c) 1674 { 1675 struct ieee80211com *ic = &sc->sc_ic; 1676 const struct rfprog *rfprog; 1677 uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT; 1678 int8_t power; 1679 u_int i, chan; 1680 1681 chan = ieee80211_chan2ieee(ic, c); 1682 if (chan == 0 || chan == IEEE80211_CHAN_ANY) 1683 return; 1684 1685 /* select the appropriate RF settings based on what EEPROM says */ 1686 rfprog = (sc->rf_rev == RT2573_RF_5225 || 1687 sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226; 1688 1689 /* find the settings for this channel (we know it exists) */ 1690 for (i = 0; rfprog[i].chan != chan; i++); 1691 1692 power = sc->txpow[i]; 1693 if (power < 0) { 1694 bbp94 += power; 1695 power = 0; 1696 } else if (power > 31) { 1697 bbp94 += power - 31; 1698 power = 31; 1699 } 1700 1701 /* 1702 * If we are switching from the 2GHz band to the 5GHz band or 1703 * vice-versa, BBP registers need to be reprogrammed. 1704 */ 1705 if (c->ic_flags != ic->ic_curchan->ic_flags) { 1706 rum_select_band(sc, c); 1707 rum_select_antenna(sc); 1708 } 1709 ic->ic_curchan = c; 1710 1711 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 1712 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 1713 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7); 1714 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 1715 1716 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 1717 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 1718 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1); 1719 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 1720 1721 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 1722 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 1723 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7); 1724 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 1725 1726 DELAY(10); 1727 1728 /* enable smart mode for MIMO-capable RFs */ 1729 bbp3 = rum_bbp_read(sc, 3); 1730 1731 bbp3 &= ~RT2573_SMART_MODE; 1732 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527) 1733 bbp3 |= RT2573_SMART_MODE; 1734 1735 rum_bbp_write(sc, 3, bbp3); 1736 1737 if (bbp94 != RT2573_BBPR94_DEFAULT) 1738 rum_bbp_write(sc, 94, bbp94); 1739 } 1740 1741 /* 1742 * Enable TSF synchronization and tell h/w to start sending beacons for IBSS 1743 * and HostAP operating modes. 1744 */ 1745 Static void 1746 rum_enable_tsf_sync(struct rum_softc *sc) 1747 { 1748 struct ieee80211com *ic = &sc->sc_ic; 1749 uint32_t tmp; 1750 1751 if (ic->ic_opmode != IEEE80211_M_STA) { 1752 /* 1753 * Change default 16ms TBTT adjustment to 8ms. 1754 * Must be done before enabling beacon generation. 1755 */ 1756 rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8); 1757 } 1758 1759 tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000; 1760 1761 /* set beacon interval (in 1/16ms unit) */ 1762 tmp |= ic->ic_bss->ni_intval * 16; 1763 1764 tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT; 1765 if (ic->ic_opmode == IEEE80211_M_STA) 1766 tmp |= RT2573_TSF_MODE(1); 1767 else 1768 tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON; 1769 1770 rum_write(sc, RT2573_TXRX_CSR9, tmp); 1771 } 1772 1773 Static void 1774 rum_update_slot(struct rum_softc *sc) 1775 { 1776 struct ieee80211com *ic = &sc->sc_ic; 1777 uint8_t slottime; 1778 uint32_t tmp; 1779 1780 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20; 1781 1782 tmp = rum_read(sc, RT2573_MAC_CSR9); 1783 tmp = (tmp & ~0xff) | slottime; 1784 rum_write(sc, RT2573_MAC_CSR9, tmp); 1785 1786 DPRINTF(("setting slot time to %uus\n", slottime)); 1787 } 1788 1789 Static void 1790 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid) 1791 { 1792 uint32_t tmp; 1793 1794 tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24; 1795 rum_write(sc, RT2573_MAC_CSR4, tmp); 1796 1797 tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16; 1798 rum_write(sc, RT2573_MAC_CSR5, tmp); 1799 } 1800 1801 Static void 1802 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr) 1803 { 1804 uint32_t tmp; 1805 1806 tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24; 1807 rum_write(sc, RT2573_MAC_CSR2, tmp); 1808 1809 tmp = addr[4] | addr[5] << 8 | 0xff << 16; 1810 rum_write(sc, RT2573_MAC_CSR3, tmp); 1811 } 1812 1813 Static void 1814 rum_update_promisc(struct rum_softc *sc) 1815 { 1816 struct ifnet *ifp = sc->sc_ic.ic_ifp; 1817 uint32_t tmp; 1818 1819 tmp = rum_read(sc, RT2573_TXRX_CSR0); 1820 1821 tmp &= ~RT2573_DROP_NOT_TO_ME; 1822 if (!(ifp->if_flags & IFF_PROMISC)) 1823 tmp |= RT2573_DROP_NOT_TO_ME; 1824 1825 rum_write(sc, RT2573_TXRX_CSR0, tmp); 1826 1827 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ? 1828 "entering" : "leaving")); 1829 } 1830 1831 Static const char * 1832 rum_get_rf(int rev) 1833 { 1834 switch (rev) { 1835 case RT2573_RF_2527: return "RT2527 (MIMO XR)"; 1836 case RT2573_RF_2528: return "RT2528"; 1837 case RT2573_RF_5225: return "RT5225 (MIMO XR)"; 1838 case RT2573_RF_5226: return "RT5226"; 1839 default: return "unknown"; 1840 } 1841 } 1842 1843 Static void 1844 rum_read_eeprom(struct rum_softc *sc) 1845 { 1846 struct ieee80211com *ic = &sc->sc_ic; 1847 uint16_t val; 1848 #ifdef RUM_DEBUG 1849 int i; 1850 #endif 1851 1852 /* read MAC/BBP type */ 1853 rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2); 1854 sc->macbbp_rev = le16toh(val); 1855 1856 /* read MAC address */ 1857 rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6); 1858 1859 rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2); 1860 val = le16toh(val); 1861 sc->rf_rev = (val >> 11) & 0x1f; 1862 sc->hw_radio = (val >> 10) & 0x1; 1863 sc->rx_ant = (val >> 4) & 0x3; 1864 sc->tx_ant = (val >> 2) & 0x3; 1865 sc->nb_ant = val & 0x3; 1866 1867 DPRINTF(("RF revision=%d\n", sc->rf_rev)); 1868 1869 rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2); 1870 val = le16toh(val); 1871 sc->ext_5ghz_lna = (val >> 6) & 0x1; 1872 sc->ext_2ghz_lna = (val >> 4) & 0x1; 1873 1874 DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n", 1875 sc->ext_2ghz_lna, sc->ext_5ghz_lna)); 1876 1877 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2); 1878 val = le16toh(val); 1879 if ((val & 0xff) != 0xff) 1880 sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */ 1881 1882 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2); 1883 val = le16toh(val); 1884 if ((val & 0xff) != 0xff) 1885 sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */ 1886 1887 DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n", 1888 sc->rssi_2ghz_corr, sc->rssi_5ghz_corr)); 1889 1890 rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2); 1891 val = le16toh(val); 1892 if ((val & 0xff) != 0xff) 1893 sc->rffreq = val & 0xff; 1894 1895 DPRINTF(("RF freq=%d\n", sc->rffreq)); 1896 1897 /* read Tx power for all a/b/g channels */ 1898 rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14); 1899 /* XXX default Tx power for 802.11a channels */ 1900 memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14); 1901 #ifdef RUM_DEBUG 1902 for (i = 0; i < 14; i++) 1903 DPRINTF(("Channel=%d Tx power=%d\n", i + 1, sc->txpow[i])); 1904 #endif 1905 1906 /* read default values for BBP registers */ 1907 rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16); 1908 #ifdef RUM_DEBUG 1909 for (i = 0; i < 14; i++) { 1910 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff) 1911 continue; 1912 DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg, 1913 sc->bbp_prom[i].val)); 1914 } 1915 #endif 1916 } 1917 1918 Static int 1919 rum_bbp_init(struct rum_softc *sc) 1920 { 1921 #define N(a) (sizeof (a) / sizeof ((a)[0])) 1922 int i, ntries; 1923 uint8_t val; 1924 1925 /* wait for BBP to be ready */ 1926 for (ntries = 0; ntries < 100; ntries++) { 1927 val = rum_bbp_read(sc, 0); 1928 if (val != 0 && val != 0xff) 1929 break; 1930 DELAY(1000); 1931 } 1932 if (ntries == 100) { 1933 printf("%s: timeout waiting for BBP\n", 1934 USBDEVNAME(sc->sc_dev)); 1935 return EIO; 1936 } 1937 1938 /* initialize BBP registers to default values */ 1939 for (i = 0; i < N(rum_def_bbp); i++) 1940 rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val); 1941 1942 /* write vendor-specific BBP values (from EEPROM) */ 1943 for (i = 0; i < 16; i++) { 1944 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff) 1945 continue; 1946 rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val); 1947 } 1948 1949 return 0; 1950 #undef N 1951 } 1952 1953 Static int 1954 rum_init(struct ifnet *ifp) 1955 { 1956 #define N(a) (sizeof (a) / sizeof ((a)[0])) 1957 struct rum_softc *sc = ifp->if_softc; 1958 struct ieee80211com *ic = &sc->sc_ic; 1959 struct rum_rx_data *data; 1960 uint32_t tmp; 1961 usbd_status error = 0; 1962 int i, ntries; 1963 1964 if ((sc->sc_flags & RT2573_FWLOADED) == 0) { 1965 if (rum_attachhook(sc)) 1966 goto fail; 1967 } 1968 1969 rum_stop(ifp, 0); 1970 1971 /* initialize MAC registers to default values */ 1972 for (i = 0; i < N(rum_def_mac); i++) 1973 rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val); 1974 1975 /* set host ready */ 1976 rum_write(sc, RT2573_MAC_CSR1, 3); 1977 rum_write(sc, RT2573_MAC_CSR1, 0); 1978 1979 /* wait for BBP/RF to wakeup */ 1980 for (ntries = 0; ntries < 1000; ntries++) { 1981 if (rum_read(sc, RT2573_MAC_CSR12) & 8) 1982 break; 1983 rum_write(sc, RT2573_MAC_CSR12, 4); /* force wakeup */ 1984 DELAY(1000); 1985 } 1986 if (ntries == 1000) { 1987 printf("%s: timeout waiting for BBP/RF to wakeup\n", 1988 USBDEVNAME(sc->sc_dev)); 1989 goto fail; 1990 } 1991 1992 if ((error = rum_bbp_init(sc)) != 0) 1993 goto fail; 1994 1995 /* select default channel */ 1996 rum_select_band(sc, ic->ic_curchan); 1997 rum_select_antenna(sc); 1998 rum_set_chan(sc, ic->ic_curchan); 1999 2000 /* clear STA registers */ 2001 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta); 2002 2003 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl)); 2004 rum_set_macaddr(sc, ic->ic_myaddr); 2005 2006 /* initialize ASIC */ 2007 rum_write(sc, RT2573_MAC_CSR1, 4); 2008 2009 /* 2010 * Allocate xfer for AMRR statistics requests. 2011 */ 2012 sc->amrr_xfer = usbd_alloc_xfer(sc->sc_udev); 2013 if (sc->amrr_xfer == NULL) { 2014 printf("%s: could not allocate AMRR xfer\n", 2015 USBDEVNAME(sc->sc_dev)); 2016 goto fail; 2017 } 2018 2019 /* 2020 * Open Tx and Rx USB bulk pipes. 2021 */ 2022 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE, 2023 &sc->sc_tx_pipeh); 2024 if (error != 0) { 2025 printf("%s: could not open Tx pipe: %s\n", 2026 USBDEVNAME(sc->sc_dev), usbd_errstr(error)); 2027 goto fail; 2028 } 2029 2030 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE, 2031 &sc->sc_rx_pipeh); 2032 if (error != 0) { 2033 printf("%s: could not open Rx pipe: %s\n", 2034 USBDEVNAME(sc->sc_dev), usbd_errstr(error)); 2035 goto fail; 2036 } 2037 2038 /* 2039 * Allocate Tx and Rx xfer queues. 2040 */ 2041 error = rum_alloc_tx_list(sc); 2042 if (error != 0) { 2043 printf("%s: could not allocate Tx list\n", 2044 USBDEVNAME(sc->sc_dev)); 2045 goto fail; 2046 } 2047 2048 error = rum_alloc_rx_list(sc); 2049 if (error != 0) { 2050 printf("%s: could not allocate Rx list\n", 2051 USBDEVNAME(sc->sc_dev)); 2052 goto fail; 2053 } 2054 2055 /* 2056 * Start up the receive pipe. 2057 */ 2058 for (i = 0; i < RUM_RX_LIST_COUNT; i++) { 2059 data = &sc->rx_data[i]; 2060 2061 usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf, 2062 MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof); 2063 error = usbd_transfer(data->xfer); 2064 if (error != USBD_NORMAL_COMPLETION && 2065 error != USBD_IN_PROGRESS) { 2066 printf("%s: could not queue Rx transfer\n", 2067 USBDEVNAME(sc->sc_dev)); 2068 goto fail; 2069 } 2070 } 2071 2072 /* update Rx filter */ 2073 tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff; 2074 2075 tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR; 2076 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 2077 tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR | 2078 RT2573_DROP_ACKCTS; 2079 if (ic->ic_opmode != IEEE80211_M_HOSTAP) 2080 tmp |= RT2573_DROP_TODS; 2081 if (!(ifp->if_flags & IFF_PROMISC)) 2082 tmp |= RT2573_DROP_NOT_TO_ME; 2083 } 2084 rum_write(sc, RT2573_TXRX_CSR0, tmp); 2085 2086 ifp->if_flags &= ~IFF_OACTIVE; 2087 ifp->if_flags |= IFF_RUNNING; 2088 2089 if (ic->ic_opmode == IEEE80211_M_MONITOR) 2090 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 2091 else 2092 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 2093 2094 return 0; 2095 2096 fail: rum_stop(ifp, 1); 2097 return error; 2098 #undef N 2099 } 2100 2101 Static void 2102 rum_stop(struct ifnet *ifp, int disable) 2103 { 2104 struct rum_softc *sc = ifp->if_softc; 2105 struct ieee80211com *ic = &sc->sc_ic; 2106 uint32_t tmp; 2107 2108 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */ 2109 2110 sc->sc_tx_timer = 0; 2111 ifp->if_timer = 0; 2112 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 2113 2114 /* disable Rx */ 2115 tmp = rum_read(sc, RT2573_TXRX_CSR0); 2116 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX); 2117 2118 /* reset ASIC */ 2119 rum_write(sc, RT2573_MAC_CSR1, 3); 2120 rum_write(sc, RT2573_MAC_CSR1, 0); 2121 2122 if (sc->sc_rx_pipeh != NULL) { 2123 usbd_abort_pipe(sc->sc_rx_pipeh); 2124 usbd_close_pipe(sc->sc_rx_pipeh); 2125 sc->sc_rx_pipeh = NULL; 2126 } 2127 2128 if (sc->sc_tx_pipeh != NULL) { 2129 usbd_abort_pipe(sc->sc_tx_pipeh); 2130 usbd_close_pipe(sc->sc_tx_pipeh); 2131 sc->sc_tx_pipeh = NULL; 2132 } 2133 2134 rum_free_rx_list(sc); 2135 rum_free_tx_list(sc); 2136 } 2137 2138 Static int 2139 rum_load_microcode(struct rum_softc *sc, const u_char *ucode, size_t size) 2140 { 2141 usb_device_request_t req; 2142 uint16_t reg = RT2573_MCU_CODE_BASE; 2143 usbd_status error; 2144 2145 /* copy firmware image into NIC */ 2146 for (; size >= 4; reg += 4, ucode += 4, size -= 4) 2147 rum_write(sc, reg, UGETDW(ucode)); 2148 2149 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 2150 req.bRequest = RT2573_MCU_CNTL; 2151 USETW(req.wValue, RT2573_MCU_RUN); 2152 USETW(req.wIndex, 0); 2153 USETW(req.wLength, 0); 2154 2155 error = usbd_do_request(sc->sc_udev, &req, NULL); 2156 if (error != 0) { 2157 printf("%s: could not run firmware: %s\n", 2158 USBDEVNAME(sc->sc_dev), usbd_errstr(error)); 2159 } 2160 return error; 2161 } 2162 2163 Static int 2164 rum_prepare_beacon(struct rum_softc *sc) 2165 { 2166 struct ieee80211com *ic = &sc->sc_ic; 2167 struct rum_tx_desc desc; 2168 struct mbuf *m0; 2169 int rate; 2170 2171 m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &sc->sc_bo); 2172 if (m0 == NULL) { 2173 aprint_error_dev(sc->sc_dev, 2174 "could not allocate beacon frame\n"); 2175 return ENOBUFS; 2176 } 2177 2178 /* send beacons at the lowest available rate */ 2179 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2; 2180 2181 rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ, 2182 m0->m_pkthdr.len, rate); 2183 2184 /* copy the first 24 bytes of Tx descriptor into NIC memory */ 2185 rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24); 2186 2187 /* copy beacon header and payload into NIC memory */ 2188 rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *), 2189 m0->m_pkthdr.len); 2190 2191 m_freem(m0); 2192 2193 return 0; 2194 } 2195 2196 Static void 2197 rum_newassoc(struct ieee80211_node *ni, int isnew) 2198 { 2199 /* start with lowest Tx rate */ 2200 ni->ni_txrate = 0; 2201 } 2202 2203 Static void 2204 rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni) 2205 { 2206 int i; 2207 2208 /* clear statistic registers (STA_CSR0 to STA_CSR5) */ 2209 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta); 2210 2211 ieee80211_amrr_node_init(&sc->amrr, &sc->amn); 2212 2213 /* set rate to some reasonable initial value */ 2214 for (i = ni->ni_rates.rs_nrates - 1; 2215 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72; 2216 i--); 2217 ni->ni_txrate = i; 2218 2219 usb_callout(sc->sc_amrr_ch, hz, rum_amrr_timeout, sc); 2220 } 2221 2222 Static void 2223 rum_amrr_timeout(void *arg) 2224 { 2225 struct rum_softc *sc = arg; 2226 usb_device_request_t req; 2227 2228 /* 2229 * Asynchronously read statistic registers (cleared by read). 2230 */ 2231 req.bmRequestType = UT_READ_VENDOR_DEVICE; 2232 req.bRequest = RT2573_READ_MULTI_MAC; 2233 USETW(req.wValue, 0); 2234 USETW(req.wIndex, RT2573_STA_CSR0); 2235 USETW(req.wLength, sizeof sc->sta); 2236 2237 usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc, 2238 USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0, 2239 rum_amrr_update); 2240 (void)usbd_transfer(sc->amrr_xfer); 2241 } 2242 2243 Static void 2244 rum_amrr_update(usbd_xfer_handle xfer, usbd_private_handle priv, 2245 usbd_status status) 2246 { 2247 struct rum_softc *sc = (struct rum_softc *)priv; 2248 struct ifnet *ifp = sc->sc_ic.ic_ifp; 2249 2250 if (status != USBD_NORMAL_COMPLETION) { 2251 printf("%s: could not retrieve Tx statistics - cancelling " 2252 "automatic rate control\n", USBDEVNAME(sc->sc_dev)); 2253 return; 2254 } 2255 2256 /* count TX retry-fail as Tx errors */ 2257 ifp->if_oerrors += le32toh(sc->sta[5]) >> 16; 2258 2259 sc->amn.amn_retrycnt = 2260 (le32toh(sc->sta[4]) >> 16) + /* TX one-retry ok count */ 2261 (le32toh(sc->sta[5]) & 0xffff) + /* TX more-retry ok count */ 2262 (le32toh(sc->sta[5]) >> 16); /* TX retry-fail count */ 2263 2264 sc->amn.amn_txcnt = 2265 sc->amn.amn_retrycnt + 2266 (le32toh(sc->sta[4]) & 0xffff); /* TX no-retry ok count */ 2267 2268 ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn); 2269 2270 usb_callout(sc->sc_amrr_ch, hz, rum_amrr_timeout, sc); 2271 } 2272 2273 int 2274 rum_activate(device_ptr_t self, enum devact act) 2275 { 2276 switch (act) { 2277 case DVACT_ACTIVATE: 2278 return EOPNOTSUPP; 2279 2280 case DVACT_DEACTIVATE: 2281 /*if_deactivate(&sc->sc_ic.ic_if);*/ 2282 break; 2283 } 2284 2285 return 0; 2286 } 2287