1 /* $OpenBSD: if_rum.c,v 1.40 2006/09/18 16:20:20 damien Exp $ */ 2 /* $NetBSD: if_rum.c,v 1.36 2011/02/22 00:58:08 jmcneill Exp $ */ 3 4 /*- 5 * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini@free.fr> 6 * Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org> 7 * 8 * Permission to use, copy, modify, and distribute this software for any 9 * purpose with or without fee is hereby granted, provided that the above 10 * copyright notice and this permission notice appear in all copies. 11 * 12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 */ 20 21 /*- 22 * Ralink Technology RT2501USB/RT2601USB chipset driver 23 * http://www.ralinktech.com.tw/ 24 */ 25 26 #include <sys/cdefs.h> 27 __KERNEL_RCSID(0, "$NetBSD: if_rum.c,v 1.36 2011/02/22 00:58:08 jmcneill Exp $"); 28 29 30 #include <sys/param.h> 31 #include <sys/sockio.h> 32 #include <sys/sysctl.h> 33 #include <sys/mbuf.h> 34 #include <sys/kernel.h> 35 #include <sys/socket.h> 36 #include <sys/systm.h> 37 #include <sys/malloc.h> 38 #include <sys/conf.h> 39 #include <sys/device.h> 40 41 #include <sys/bus.h> 42 #include <machine/endian.h> 43 #include <sys/intr.h> 44 45 #include <net/bpf.h> 46 #include <net/if.h> 47 #include <net/if_arp.h> 48 #include <net/if_dl.h> 49 #include <net/if_ether.h> 50 #include <net/if_media.h> 51 #include <net/if_types.h> 52 53 #include <netinet/in.h> 54 #include <netinet/in_systm.h> 55 #include <netinet/in_var.h> 56 #include <netinet/ip.h> 57 58 #include <net80211/ieee80211_netbsd.h> 59 #include <net80211/ieee80211_var.h> 60 #include <net80211/ieee80211_amrr.h> 61 #include <net80211/ieee80211_radiotap.h> 62 63 #include <dev/firmload.h> 64 65 #include <dev/usb/usb.h> 66 #include <dev/usb/usbdi.h> 67 #include <dev/usb/usbdi_util.h> 68 #include <dev/usb/usbdevs.h> 69 70 #include <dev/usb/if_rumreg.h> 71 #include <dev/usb/if_rumvar.h> 72 73 #ifdef USB_DEBUG 74 #define RUM_DEBUG 75 #endif 76 77 #ifdef RUM_DEBUG 78 #define DPRINTF(x) do { if (rum_debug) printf x; } while (0) 79 #define DPRINTFN(n, x) do { if (rum_debug >= (n)) printf x; } while (0) 80 int rum_debug = 1; 81 #else 82 #define DPRINTF(x) 83 #define DPRINTFN(n, x) 84 #endif 85 86 /* various supported device vendors/products */ 87 static const struct usb_devno rum_devs[] = { 88 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_HWU54DM }, 89 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_2 }, 90 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_3 }, 91 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_4 }, 92 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_WUG2700 }, 93 { USB_VENDOR_AMIT, USB_PRODUCT_AMIT_CGWLUSB2GO }, 94 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G_2 }, 95 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G_3 }, 96 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050A }, 97 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D9050V3 }, 98 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GC }, 99 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GR }, 100 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_C54RU2 }, 101 { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GL }, 102 { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GPX }, 103 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_CWD854F }, 104 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_RT2573 }, 105 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWLG122C1 }, 106 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_WUA1340 }, 107 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA111 }, 108 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWB01GS }, 109 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWI05GS }, 110 { USB_VENDOR_GIGASET, USB_PRODUCT_GIGASET_RT2573 }, 111 { USB_VENDOR_GOODWAY, USB_PRODUCT_GOODWAY_RT2573 }, 112 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254LB }, 113 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254V2AP }, 114 { USB_VENDOR_HUAWEI3COM, USB_PRODUCT_HUAWEI3COM_RT2573 }, 115 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_G54HP }, 116 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_SG54HP }, 117 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_WLIUCG }, 118 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573 }, 119 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_2 }, 120 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_3 }, 121 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_4 }, 122 { USB_VENDOR_NOVATECH, USB_PRODUCT_NOVATECH_RT2573 }, 123 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54HP }, 124 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54MINI2 }, 125 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUSMM }, 126 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573 }, 127 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_2 }, 128 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_3 }, 129 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2573 }, 130 { USB_VENDOR_RALINK_2, USB_PRODUCT_RALINK_2_RT2573 }, 131 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2671 }, 132 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL113R2 }, 133 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL172 }, 134 { USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_RT2573 } 135 }; 136 137 static int rum_attachhook(void *); 138 static int rum_alloc_tx_list(struct rum_softc *); 139 static void rum_free_tx_list(struct rum_softc *); 140 static int rum_alloc_rx_list(struct rum_softc *); 141 static void rum_free_rx_list(struct rum_softc *); 142 static int rum_media_change(struct ifnet *); 143 static void rum_next_scan(void *); 144 static void rum_task(void *); 145 static int rum_newstate(struct ieee80211com *, 146 enum ieee80211_state, int); 147 static void rum_txeof(usbd_xfer_handle, usbd_private_handle, 148 usbd_status); 149 static void rum_rxeof(usbd_xfer_handle, usbd_private_handle, 150 usbd_status); 151 static uint8_t rum_rxrate(const struct rum_rx_desc *); 152 static int rum_ack_rate(struct ieee80211com *, int); 153 static uint16_t rum_txtime(int, int, uint32_t); 154 static uint8_t rum_plcp_signal(int); 155 static void rum_setup_tx_desc(struct rum_softc *, 156 struct rum_tx_desc *, uint32_t, uint16_t, int, 157 int); 158 static int rum_tx_data(struct rum_softc *, struct mbuf *, 159 struct ieee80211_node *); 160 static void rum_start(struct ifnet *); 161 static void rum_watchdog(struct ifnet *); 162 static int rum_ioctl(struct ifnet *, u_long, void *); 163 static void rum_eeprom_read(struct rum_softc *, uint16_t, void *, 164 int); 165 static uint32_t rum_read(struct rum_softc *, uint16_t); 166 static void rum_read_multi(struct rum_softc *, uint16_t, void *, 167 int); 168 static void rum_write(struct rum_softc *, uint16_t, uint32_t); 169 static void rum_write_multi(struct rum_softc *, uint16_t, void *, 170 size_t); 171 static void rum_bbp_write(struct rum_softc *, uint8_t, uint8_t); 172 static uint8_t rum_bbp_read(struct rum_softc *, uint8_t); 173 static void rum_rf_write(struct rum_softc *, uint8_t, uint32_t); 174 static void rum_select_antenna(struct rum_softc *); 175 static void rum_enable_mrr(struct rum_softc *); 176 static void rum_set_txpreamble(struct rum_softc *); 177 static void rum_set_basicrates(struct rum_softc *); 178 static void rum_select_band(struct rum_softc *, 179 struct ieee80211_channel *); 180 static void rum_set_chan(struct rum_softc *, 181 struct ieee80211_channel *); 182 static void rum_enable_tsf_sync(struct rum_softc *); 183 static void rum_update_slot(struct rum_softc *); 184 static void rum_set_bssid(struct rum_softc *, const uint8_t *); 185 static void rum_set_macaddr(struct rum_softc *, const uint8_t *); 186 static void rum_update_promisc(struct rum_softc *); 187 static const char *rum_get_rf(int); 188 static void rum_read_eeprom(struct rum_softc *); 189 static int rum_bbp_init(struct rum_softc *); 190 static int rum_init(struct ifnet *); 191 static void rum_stop(struct ifnet *, int); 192 static int rum_load_microcode(struct rum_softc *, const u_char *, 193 size_t); 194 static int rum_prepare_beacon(struct rum_softc *); 195 static void rum_newassoc(struct ieee80211_node *, int); 196 static void rum_amrr_start(struct rum_softc *, 197 struct ieee80211_node *); 198 static void rum_amrr_timeout(void *); 199 static void rum_amrr_update(usbd_xfer_handle, usbd_private_handle, 200 usbd_status status); 201 202 /* 203 * Supported rates for 802.11a/b/g modes (in 500Kbps unit). 204 */ 205 static const struct ieee80211_rateset rum_rateset_11a = 206 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } }; 207 208 static const struct ieee80211_rateset rum_rateset_11b = 209 { 4, { 2, 4, 11, 22 } }; 210 211 static const struct ieee80211_rateset rum_rateset_11g = 212 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } }; 213 214 static const struct { 215 uint32_t reg; 216 uint32_t val; 217 } rum_def_mac[] = { 218 RT2573_DEF_MAC 219 }; 220 221 static const struct { 222 uint8_t reg; 223 uint8_t val; 224 } rum_def_bbp[] = { 225 RT2573_DEF_BBP 226 }; 227 228 static const struct rfprog { 229 uint8_t chan; 230 uint32_t r1, r2, r3, r4; 231 } rum_rf5226[] = { 232 RT2573_RF5226 233 }, rum_rf5225[] = { 234 RT2573_RF5225 235 }; 236 237 static int rum_match(device_t, cfdata_t, void *); 238 static void rum_attach(device_t, device_t, void *); 239 static int rum_detach(device_t, int); 240 static int rum_activate(device_t, enum devact); 241 extern struct cfdriver rum_cd; 242 CFATTACH_DECL_NEW(rum, sizeof(struct rum_softc), rum_match, rum_attach, 243 rum_detach, rum_activate); 244 245 static int 246 rum_match(device_t parent, cfdata_t match, void *aux) 247 { 248 struct usb_attach_arg *uaa = aux; 249 250 return (usb_lookup(rum_devs, uaa->vendor, uaa->product) != NULL) ? 251 UMATCH_VENDOR_PRODUCT : UMATCH_NONE; 252 } 253 254 static int 255 rum_attachhook(void *xsc) 256 { 257 struct rum_softc *sc = xsc; 258 firmware_handle_t fwh; 259 const char *name = "rum-rt2573"; 260 u_char *ucode; 261 size_t size; 262 int error; 263 264 if ((error = firmware_open("rum", name, &fwh)) != 0) { 265 printf("%s: failed loadfirmware of file %s (error %d)\n", 266 device_xname(sc->sc_dev), name, error); 267 return error; 268 } 269 size = firmware_get_size(fwh); 270 ucode = firmware_malloc(size); 271 if (ucode == NULL) { 272 printf("%s: failed to allocate firmware memory\n", 273 device_xname(sc->sc_dev)); 274 firmware_close(fwh); 275 return ENOMEM; 276 } 277 error = firmware_read(fwh, 0, ucode, size); 278 firmware_close(fwh); 279 if (error != 0) { 280 printf("%s: failed to read firmware (error %d)\n", 281 device_xname(sc->sc_dev), error); 282 firmware_free(ucode, 0); 283 return error; 284 } 285 286 if (rum_load_microcode(sc, ucode, size) != 0) { 287 printf("%s: could not load 8051 microcode\n", 288 device_xname(sc->sc_dev)); 289 firmware_free(ucode, 0); 290 return ENXIO; 291 } 292 293 firmware_free(ucode, 0); 294 sc->sc_flags |= RT2573_FWLOADED; 295 296 return 0; 297 } 298 299 static void 300 rum_attach(device_t parent, device_t self, void *aux) 301 { 302 struct rum_softc *sc = device_private(self); 303 struct usb_attach_arg *uaa = aux; 304 struct ieee80211com *ic = &sc->sc_ic; 305 struct ifnet *ifp = &sc->sc_if; 306 usb_interface_descriptor_t *id; 307 usb_endpoint_descriptor_t *ed; 308 usbd_status error; 309 char *devinfop; 310 int i, ntries; 311 uint32_t tmp; 312 313 sc->sc_dev = self; 314 sc->sc_udev = uaa->device; 315 sc->sc_flags = 0; 316 317 aprint_naive("\n"); 318 aprint_normal("\n"); 319 320 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0); 321 aprint_normal_dev(self, "%s\n", devinfop); 322 usbd_devinfo_free(devinfop); 323 324 if (usbd_set_config_no(sc->sc_udev, RT2573_CONFIG_NO, 0) != 0) { 325 aprint_error_dev(self, "could not set configuration no\n"); 326 return; 327 } 328 329 /* get the first interface handle */ 330 error = usbd_device2interface_handle(sc->sc_udev, RT2573_IFACE_INDEX, 331 &sc->sc_iface); 332 if (error != 0) { 333 aprint_error_dev(self, "could not get interface handle\n"); 334 return; 335 } 336 337 /* 338 * Find endpoints. 339 */ 340 id = usbd_get_interface_descriptor(sc->sc_iface); 341 342 sc->sc_rx_no = sc->sc_tx_no = -1; 343 for (i = 0; i < id->bNumEndpoints; i++) { 344 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i); 345 if (ed == NULL) { 346 aprint_error_dev(self, 347 "no endpoint descriptor for iface %d\n", i); 348 return; 349 } 350 351 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN && 352 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) 353 sc->sc_rx_no = ed->bEndpointAddress; 354 else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT && 355 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) 356 sc->sc_tx_no = ed->bEndpointAddress; 357 } 358 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) { 359 aprint_error_dev(self, "missing endpoint\n"); 360 return; 361 } 362 363 usb_init_task(&sc->sc_task, rum_task, sc); 364 callout_init(&sc->sc_scan_ch, 0); 365 366 sc->amrr.amrr_min_success_threshold = 1; 367 sc->amrr.amrr_max_success_threshold = 10; 368 callout_init(&sc->sc_amrr_ch, 0); 369 370 /* retrieve RT2573 rev. no */ 371 for (ntries = 0; ntries < 1000; ntries++) { 372 if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0) 373 break; 374 DELAY(1000); 375 } 376 if (ntries == 1000) { 377 aprint_error_dev(self, "timeout waiting for chip to settle\n"); 378 return; 379 } 380 381 /* retrieve MAC address and various other things from EEPROM */ 382 rum_read_eeprom(sc); 383 384 aprint_normal_dev(self, 385 "MAC/BBP RT%04x (rev 0x%05x), RF %s, address %s\n", 386 sc->macbbp_rev, tmp, 387 rum_get_rf(sc->rf_rev), ether_sprintf(ic->ic_myaddr)); 388 389 ic->ic_ifp = ifp; 390 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 391 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 392 ic->ic_state = IEEE80211_S_INIT; 393 394 /* set device capabilities */ 395 ic->ic_caps = 396 IEEE80211_C_IBSS | /* IBSS mode supported */ 397 IEEE80211_C_MONITOR | /* monitor mode supported */ 398 IEEE80211_C_HOSTAP | /* HostAp mode supported */ 399 IEEE80211_C_TXPMGT | /* tx power management */ 400 IEEE80211_C_SHPREAMBLE | /* short preamble supported */ 401 IEEE80211_C_SHSLOT | /* short slot time supported */ 402 IEEE80211_C_WPA; /* 802.11i */ 403 404 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) { 405 /* set supported .11a rates */ 406 ic->ic_sup_rates[IEEE80211_MODE_11A] = rum_rateset_11a; 407 408 /* set supported .11a channels */ 409 for (i = 34; i <= 46; i += 4) { 410 ic->ic_channels[i].ic_freq = 411 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 412 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 413 } 414 for (i = 36; i <= 64; i += 4) { 415 ic->ic_channels[i].ic_freq = 416 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 417 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 418 } 419 for (i = 100; i <= 140; i += 4) { 420 ic->ic_channels[i].ic_freq = 421 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 422 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 423 } 424 for (i = 149; i <= 165; i += 4) { 425 ic->ic_channels[i].ic_freq = 426 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 427 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 428 } 429 } 430 431 /* set supported .11b and .11g rates */ 432 ic->ic_sup_rates[IEEE80211_MODE_11B] = rum_rateset_11b; 433 ic->ic_sup_rates[IEEE80211_MODE_11G] = rum_rateset_11g; 434 435 /* set supported .11b and .11g channels (1 through 14) */ 436 for (i = 1; i <= 14; i++) { 437 ic->ic_channels[i].ic_freq = 438 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ); 439 ic->ic_channels[i].ic_flags = 440 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | 441 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 442 } 443 444 ifp->if_softc = sc; 445 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 446 ifp->if_init = rum_init; 447 ifp->if_ioctl = rum_ioctl; 448 ifp->if_start = rum_start; 449 ifp->if_watchdog = rum_watchdog; 450 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); 451 IFQ_SET_READY(&ifp->if_snd); 452 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ); 453 454 if_attach(ifp); 455 ieee80211_ifattach(ic); 456 ic->ic_newassoc = rum_newassoc; 457 458 /* override state transition machine */ 459 sc->sc_newstate = ic->ic_newstate; 460 ic->ic_newstate = rum_newstate; 461 ieee80211_media_init(ic, rum_media_change, ieee80211_media_status); 462 463 bpf_attach2(ifp, DLT_IEEE802_11_RADIO, 464 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN, 465 &sc->sc_drvbpf); 466 467 sc->sc_rxtap_len = sizeof sc->sc_rxtapu; 468 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 469 sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT); 470 471 sc->sc_txtap_len = sizeof sc->sc_txtapu; 472 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 473 sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT); 474 475 ieee80211_announce(ic); 476 477 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, 478 sc->sc_dev); 479 480 return; 481 } 482 483 static int 484 rum_detach(device_t self, int flags) 485 { 486 struct rum_softc *sc = device_private(self); 487 struct ieee80211com *ic = &sc->sc_ic; 488 struct ifnet *ifp = &sc->sc_if; 489 int s; 490 491 if (!ifp->if_softc) 492 return 0; 493 494 s = splusb(); 495 496 rum_stop(ifp, 1); 497 usb_rem_task(sc->sc_udev, &sc->sc_task); 498 callout_stop(&sc->sc_scan_ch); 499 callout_stop(&sc->sc_amrr_ch); 500 501 if (sc->amrr_xfer != NULL) { 502 usbd_free_xfer(sc->amrr_xfer); 503 sc->amrr_xfer = NULL; 504 } 505 506 if (sc->sc_rx_pipeh != NULL) { 507 usbd_abort_pipe(sc->sc_rx_pipeh); 508 usbd_close_pipe(sc->sc_rx_pipeh); 509 } 510 511 if (sc->sc_tx_pipeh != NULL) { 512 usbd_abort_pipe(sc->sc_tx_pipeh); 513 usbd_close_pipe(sc->sc_tx_pipeh); 514 } 515 516 bpf_detach(ifp); 517 ieee80211_ifdetach(ic); /* free all nodes */ 518 if_detach(ifp); 519 520 splx(s); 521 522 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev); 523 524 return 0; 525 } 526 527 static int 528 rum_alloc_tx_list(struct rum_softc *sc) 529 { 530 struct rum_tx_data *data; 531 int i, error; 532 533 sc->tx_cur = sc->tx_queued = 0; 534 535 for (i = 0; i < RUM_TX_LIST_COUNT; i++) { 536 data = &sc->tx_data[i]; 537 538 data->sc = sc; 539 540 data->xfer = usbd_alloc_xfer(sc->sc_udev); 541 if (data->xfer == NULL) { 542 printf("%s: could not allocate tx xfer\n", 543 device_xname(sc->sc_dev)); 544 error = ENOMEM; 545 goto fail; 546 } 547 548 data->buf = usbd_alloc_buffer(data->xfer, 549 RT2573_TX_DESC_SIZE + IEEE80211_MAX_LEN); 550 if (data->buf == NULL) { 551 printf("%s: could not allocate tx buffer\n", 552 device_xname(sc->sc_dev)); 553 error = ENOMEM; 554 goto fail; 555 } 556 557 /* clean Tx descriptor */ 558 memset(data->buf, 0, RT2573_TX_DESC_SIZE); 559 } 560 561 return 0; 562 563 fail: rum_free_tx_list(sc); 564 return error; 565 } 566 567 static void 568 rum_free_tx_list(struct rum_softc *sc) 569 { 570 struct rum_tx_data *data; 571 int i; 572 573 for (i = 0; i < RUM_TX_LIST_COUNT; i++) { 574 data = &sc->tx_data[i]; 575 576 if (data->xfer != NULL) { 577 usbd_free_xfer(data->xfer); 578 data->xfer = NULL; 579 } 580 581 if (data->ni != NULL) { 582 ieee80211_free_node(data->ni); 583 data->ni = NULL; 584 } 585 } 586 } 587 588 static int 589 rum_alloc_rx_list(struct rum_softc *sc) 590 { 591 struct rum_rx_data *data; 592 int i, error; 593 594 for (i = 0; i < RUM_RX_LIST_COUNT; i++) { 595 data = &sc->rx_data[i]; 596 597 data->sc = sc; 598 599 data->xfer = usbd_alloc_xfer(sc->sc_udev); 600 if (data->xfer == NULL) { 601 printf("%s: could not allocate rx xfer\n", 602 device_xname(sc->sc_dev)); 603 error = ENOMEM; 604 goto fail; 605 } 606 607 if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) { 608 printf("%s: could not allocate rx buffer\n", 609 device_xname(sc->sc_dev)); 610 error = ENOMEM; 611 goto fail; 612 } 613 614 MGETHDR(data->m, M_DONTWAIT, MT_DATA); 615 if (data->m == NULL) { 616 printf("%s: could not allocate rx mbuf\n", 617 device_xname(sc->sc_dev)); 618 error = ENOMEM; 619 goto fail; 620 } 621 622 MCLGET(data->m, M_DONTWAIT); 623 if (!(data->m->m_flags & M_EXT)) { 624 printf("%s: could not allocate rx mbuf cluster\n", 625 device_xname(sc->sc_dev)); 626 error = ENOMEM; 627 goto fail; 628 } 629 630 data->buf = mtod(data->m, uint8_t *); 631 } 632 633 return 0; 634 635 fail: rum_free_rx_list(sc); 636 return error; 637 } 638 639 static void 640 rum_free_rx_list(struct rum_softc *sc) 641 { 642 struct rum_rx_data *data; 643 int i; 644 645 for (i = 0; i < RUM_RX_LIST_COUNT; i++) { 646 data = &sc->rx_data[i]; 647 648 if (data->xfer != NULL) { 649 usbd_free_xfer(data->xfer); 650 data->xfer = NULL; 651 } 652 653 if (data->m != NULL) { 654 m_freem(data->m); 655 data->m = NULL; 656 } 657 } 658 } 659 660 static int 661 rum_media_change(struct ifnet *ifp) 662 { 663 int error; 664 665 error = ieee80211_media_change(ifp); 666 if (error != ENETRESET) 667 return error; 668 669 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) 670 rum_init(ifp); 671 672 return 0; 673 } 674 675 /* 676 * This function is called periodically (every 200ms) during scanning to 677 * switch from one channel to another. 678 */ 679 static void 680 rum_next_scan(void *arg) 681 { 682 struct rum_softc *sc = arg; 683 struct ieee80211com *ic = &sc->sc_ic; 684 int s; 685 686 s = splnet(); 687 if (ic->ic_state == IEEE80211_S_SCAN) 688 ieee80211_next_scan(ic); 689 splx(s); 690 } 691 692 static void 693 rum_task(void *arg) 694 { 695 struct rum_softc *sc = arg; 696 struct ieee80211com *ic = &sc->sc_ic; 697 enum ieee80211_state ostate; 698 struct ieee80211_node *ni; 699 uint32_t tmp; 700 701 ostate = ic->ic_state; 702 703 switch (sc->sc_state) { 704 case IEEE80211_S_INIT: 705 if (ostate == IEEE80211_S_RUN) { 706 /* abort TSF synchronization */ 707 tmp = rum_read(sc, RT2573_TXRX_CSR9); 708 rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff); 709 } 710 break; 711 712 case IEEE80211_S_SCAN: 713 rum_set_chan(sc, ic->ic_curchan); 714 callout_reset(&sc->sc_scan_ch, hz / 5, rum_next_scan, sc); 715 break; 716 717 case IEEE80211_S_AUTH: 718 rum_set_chan(sc, ic->ic_curchan); 719 break; 720 721 case IEEE80211_S_ASSOC: 722 rum_set_chan(sc, ic->ic_curchan); 723 break; 724 725 case IEEE80211_S_RUN: 726 rum_set_chan(sc, ic->ic_curchan); 727 728 ni = ic->ic_bss; 729 730 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 731 rum_update_slot(sc); 732 rum_enable_mrr(sc); 733 rum_set_txpreamble(sc); 734 rum_set_basicrates(sc); 735 rum_set_bssid(sc, ni->ni_bssid); 736 } 737 738 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 739 ic->ic_opmode == IEEE80211_M_IBSS) 740 rum_prepare_beacon(sc); 741 742 if (ic->ic_opmode != IEEE80211_M_MONITOR) 743 rum_enable_tsf_sync(sc); 744 745 if (ic->ic_opmode == IEEE80211_M_STA) { 746 /* fake a join to init the tx rate */ 747 rum_newassoc(ic->ic_bss, 1); 748 749 /* enable automatic rate adaptation in STA mode */ 750 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) 751 rum_amrr_start(sc, ni); 752 } 753 754 break; 755 } 756 757 sc->sc_newstate(ic, sc->sc_state, sc->sc_arg); 758 } 759 760 static int 761 rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 762 { 763 struct rum_softc *sc = ic->ic_ifp->if_softc; 764 765 usb_rem_task(sc->sc_udev, &sc->sc_task); 766 callout_stop(&sc->sc_scan_ch); 767 callout_stop(&sc->sc_amrr_ch); 768 769 /* do it in a process context */ 770 sc->sc_state = nstate; 771 sc->sc_arg = arg; 772 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER); 773 774 return 0; 775 } 776 777 /* quickly determine if a given rate is CCK or OFDM */ 778 #define RUM_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22) 779 780 #define RUM_ACK_SIZE 14 /* 10 + 4(FCS) */ 781 #define RUM_CTS_SIZE 14 /* 10 + 4(FCS) */ 782 783 static void 784 rum_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) 785 { 786 struct rum_tx_data *data = priv; 787 struct rum_softc *sc = data->sc; 788 struct ifnet *ifp = &sc->sc_if; 789 int s; 790 791 if (status != USBD_NORMAL_COMPLETION) { 792 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 793 return; 794 795 printf("%s: could not transmit buffer: %s\n", 796 device_xname(sc->sc_dev), usbd_errstr(status)); 797 798 if (status == USBD_STALLED) 799 usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh); 800 801 ifp->if_oerrors++; 802 return; 803 } 804 805 s = splnet(); 806 807 ieee80211_free_node(data->ni); 808 data->ni = NULL; 809 810 sc->tx_queued--; 811 ifp->if_opackets++; 812 813 DPRINTFN(10, ("tx done\n")); 814 815 sc->sc_tx_timer = 0; 816 ifp->if_flags &= ~IFF_OACTIVE; 817 rum_start(ifp); 818 819 splx(s); 820 } 821 822 static void 823 rum_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) 824 { 825 struct rum_rx_data *data = priv; 826 struct rum_softc *sc = data->sc; 827 struct ieee80211com *ic = &sc->sc_ic; 828 struct ifnet *ifp = &sc->sc_if; 829 struct rum_rx_desc *desc; 830 struct ieee80211_frame *wh; 831 struct ieee80211_node *ni; 832 struct mbuf *mnew, *m; 833 int s, len; 834 835 if (status != USBD_NORMAL_COMPLETION) { 836 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 837 return; 838 839 if (status == USBD_STALLED) 840 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh); 841 goto skip; 842 } 843 844 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL); 845 846 if (len < RT2573_RX_DESC_SIZE + sizeof (struct ieee80211_frame_min)) { 847 DPRINTF(("%s: xfer too short %d\n", device_xname(sc->sc_dev), 848 len)); 849 ifp->if_ierrors++; 850 goto skip; 851 } 852 853 desc = (struct rum_rx_desc *)data->buf; 854 855 if (le32toh(desc->flags) & RT2573_RX_CRC_ERROR) { 856 /* 857 * This should not happen since we did not request to receive 858 * those frames when we filled RT2573_TXRX_CSR0. 859 */ 860 DPRINTFN(5, ("CRC error\n")); 861 ifp->if_ierrors++; 862 goto skip; 863 } 864 865 MGETHDR(mnew, M_DONTWAIT, MT_DATA); 866 if (mnew == NULL) { 867 printf("%s: could not allocate rx mbuf\n", 868 device_xname(sc->sc_dev)); 869 ifp->if_ierrors++; 870 goto skip; 871 } 872 873 MCLGET(mnew, M_DONTWAIT); 874 if (!(mnew->m_flags & M_EXT)) { 875 printf("%s: could not allocate rx mbuf cluster\n", 876 device_xname(sc->sc_dev)); 877 m_freem(mnew); 878 ifp->if_ierrors++; 879 goto skip; 880 } 881 882 m = data->m; 883 data->m = mnew; 884 data->buf = mtod(data->m, uint8_t *); 885 886 /* finalize mbuf */ 887 m->m_pkthdr.rcvif = ifp; 888 m->m_data = (void *)(desc + 1); 889 m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff; 890 891 s = splnet(); 892 893 if (sc->sc_drvbpf != NULL) { 894 struct rum_rx_radiotap_header *tap = &sc->sc_rxtap; 895 896 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS; 897 tap->wr_rate = rum_rxrate(desc); 898 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq); 899 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags); 900 tap->wr_antenna = sc->rx_ant; 901 tap->wr_antsignal = desc->rssi; 902 903 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m); 904 } 905 906 wh = mtod(m, struct ieee80211_frame *); 907 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); 908 909 /* send the frame to the 802.11 layer */ 910 ieee80211_input(ic, m, ni, desc->rssi, 0); 911 912 /* node is no longer needed */ 913 ieee80211_free_node(ni); 914 915 splx(s); 916 917 DPRINTFN(15, ("rx done\n")); 918 919 skip: /* setup a new transfer */ 920 usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES, 921 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof); 922 usbd_transfer(xfer); 923 } 924 925 /* 926 * This function is only used by the Rx radiotap code. It returns the rate at 927 * which a given frame was received. 928 */ 929 static uint8_t 930 rum_rxrate(const struct rum_rx_desc *desc) 931 { 932 if (le32toh(desc->flags) & RT2573_RX_OFDM) { 933 /* reverse function of rum_plcp_signal */ 934 switch (desc->rate) { 935 case 0xb: return 12; 936 case 0xf: return 18; 937 case 0xa: return 24; 938 case 0xe: return 36; 939 case 0x9: return 48; 940 case 0xd: return 72; 941 case 0x8: return 96; 942 case 0xc: return 108; 943 } 944 } else { 945 if (desc->rate == 10) 946 return 2; 947 if (desc->rate == 20) 948 return 4; 949 if (desc->rate == 55) 950 return 11; 951 if (desc->rate == 110) 952 return 22; 953 } 954 return 2; /* should not get there */ 955 } 956 957 /* 958 * Return the expected ack rate for a frame transmitted at rate `rate'. 959 * XXX: this should depend on the destination node basic rate set. 960 */ 961 static int 962 rum_ack_rate(struct ieee80211com *ic, int rate) 963 { 964 switch (rate) { 965 /* CCK rates */ 966 case 2: 967 return 2; 968 case 4: 969 case 11: 970 case 22: 971 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate; 972 973 /* OFDM rates */ 974 case 12: 975 case 18: 976 return 12; 977 case 24: 978 case 36: 979 return 24; 980 case 48: 981 case 72: 982 case 96: 983 case 108: 984 return 48; 985 } 986 987 /* default to 1Mbps */ 988 return 2; 989 } 990 991 /* 992 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'. 993 * The function automatically determines the operating mode depending on the 994 * given rate. `flags' indicates whether short preamble is in use or not. 995 */ 996 static uint16_t 997 rum_txtime(int len, int rate, uint32_t flags) 998 { 999 uint16_t txtime; 1000 1001 if (RUM_RATE_IS_OFDM(rate)) { 1002 /* IEEE Std 802.11a-1999, pp. 37 */ 1003 txtime = (8 + 4 * len + 3 + rate - 1) / rate; 1004 txtime = 16 + 4 + 4 * txtime + 6; 1005 } else { 1006 /* IEEE Std 802.11b-1999, pp. 28 */ 1007 txtime = (16 * len + rate - 1) / rate; 1008 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE)) 1009 txtime += 72 + 24; 1010 else 1011 txtime += 144 + 48; 1012 } 1013 return txtime; 1014 } 1015 1016 static uint8_t 1017 rum_plcp_signal(int rate) 1018 { 1019 switch (rate) { 1020 /* CCK rates (returned values are device-dependent) */ 1021 case 2: return 0x0; 1022 case 4: return 0x1; 1023 case 11: return 0x2; 1024 case 22: return 0x3; 1025 1026 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 1027 case 12: return 0xb; 1028 case 18: return 0xf; 1029 case 24: return 0xa; 1030 case 36: return 0xe; 1031 case 48: return 0x9; 1032 case 72: return 0xd; 1033 case 96: return 0x8; 1034 case 108: return 0xc; 1035 1036 /* unsupported rates (should not get there) */ 1037 default: return 0xff; 1038 } 1039 } 1040 1041 static void 1042 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc, 1043 uint32_t flags, uint16_t xflags, int len, int rate) 1044 { 1045 struct ieee80211com *ic = &sc->sc_ic; 1046 uint16_t plcp_length; 1047 int remainder; 1048 1049 desc->flags = htole32(flags); 1050 desc->flags |= htole32(RT2573_TX_VALID); 1051 desc->flags |= htole32(len << 16); 1052 1053 desc->xflags = htole16(xflags); 1054 1055 desc->wme = htole16( 1056 RT2573_QID(0) | 1057 RT2573_AIFSN(2) | 1058 RT2573_LOGCWMIN(4) | 1059 RT2573_LOGCWMAX(10)); 1060 1061 /* setup PLCP fields */ 1062 desc->plcp_signal = rum_plcp_signal(rate); 1063 desc->plcp_service = 4; 1064 1065 len += IEEE80211_CRC_LEN; 1066 if (RUM_RATE_IS_OFDM(rate)) { 1067 desc->flags |= htole32(RT2573_TX_OFDM); 1068 1069 plcp_length = len & 0xfff; 1070 desc->plcp_length_hi = plcp_length >> 6; 1071 desc->plcp_length_lo = plcp_length & 0x3f; 1072 } else { 1073 plcp_length = (16 * len + rate - 1) / rate; 1074 if (rate == 22) { 1075 remainder = (16 * len) % 22; 1076 if (remainder != 0 && remainder < 7) 1077 desc->plcp_service |= RT2573_PLCP_LENGEXT; 1078 } 1079 desc->plcp_length_hi = plcp_length >> 8; 1080 desc->plcp_length_lo = plcp_length & 0xff; 1081 1082 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 1083 desc->plcp_signal |= 0x08; 1084 } 1085 } 1086 1087 #define RUM_TX_TIMEOUT 5000 1088 1089 static int 1090 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1091 { 1092 struct ieee80211com *ic = &sc->sc_ic; 1093 struct rum_tx_desc *desc; 1094 struct rum_tx_data *data; 1095 struct ieee80211_frame *wh; 1096 struct ieee80211_key *k; 1097 uint32_t flags = 0; 1098 uint16_t dur; 1099 usbd_status error; 1100 int rate, xferlen, pktlen, needrts = 0, needcts = 0; 1101 1102 wh = mtod(m0, struct ieee80211_frame *); 1103 1104 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1105 k = ieee80211_crypto_encap(ic, ni, m0); 1106 if (k == NULL) { 1107 m_freem(m0); 1108 return ENOBUFS; 1109 } 1110 1111 /* packet header may have moved, reset our local pointer */ 1112 wh = mtod(m0, struct ieee80211_frame *); 1113 } 1114 1115 /* compute actual packet length (including CRC and crypto overhead) */ 1116 pktlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN; 1117 1118 /* pickup a rate */ 1119 if (IEEE80211_IS_MULTICAST(wh->i_addr1) || 1120 ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == 1121 IEEE80211_FC0_TYPE_MGT)) { 1122 /* mgmt/multicast frames are sent at the lowest avail. rate */ 1123 rate = ni->ni_rates.rs_rates[0]; 1124 } else if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) { 1125 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate]; 1126 } else 1127 rate = ni->ni_rates.rs_rates[ni->ni_txrate]; 1128 if (rate == 0) 1129 rate = 2; /* XXX should not happen */ 1130 rate &= IEEE80211_RATE_VAL; 1131 1132 /* check if RTS/CTS or CTS-to-self protection must be used */ 1133 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1134 /* multicast frames are not sent at OFDM rates in 802.11b/g */ 1135 if (pktlen > ic->ic_rtsthreshold) { 1136 needrts = 1; /* RTS/CTS based on frame length */ 1137 } else if ((ic->ic_flags & IEEE80211_F_USEPROT) && 1138 RUM_RATE_IS_OFDM(rate)) { 1139 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 1140 needcts = 1; /* CTS-to-self */ 1141 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 1142 needrts = 1; /* RTS/CTS */ 1143 } 1144 } 1145 if (needrts || needcts) { 1146 struct mbuf *mprot; 1147 int protrate, ackrate; 1148 1149 protrate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2; 1150 ackrate = rum_ack_rate(ic, rate); 1151 1152 dur = rum_txtime(pktlen, rate, ic->ic_flags) + 1153 rum_txtime(RUM_ACK_SIZE, ackrate, ic->ic_flags) + 1154 2 * sc->sifs; 1155 if (needrts) { 1156 dur += rum_txtime(RUM_CTS_SIZE, rum_ack_rate(ic, 1157 protrate), ic->ic_flags) + sc->sifs; 1158 mprot = ieee80211_get_rts(ic, wh, dur); 1159 } else { 1160 mprot = ieee80211_get_cts_to_self(ic, dur); 1161 } 1162 if (mprot == NULL) { 1163 aprint_error_dev(sc->sc_dev, 1164 "couldn't allocate protection frame\n"); 1165 m_freem(m0); 1166 return ENOBUFS; 1167 } 1168 1169 data = &sc->tx_data[sc->tx_cur]; 1170 desc = (struct rum_tx_desc *)data->buf; 1171 1172 /* avoid multiple free() of the same node for each fragment */ 1173 data->ni = ieee80211_ref_node(ni); 1174 1175 m_copydata(mprot, 0, mprot->m_pkthdr.len, 1176 data->buf + RT2573_TX_DESC_SIZE); 1177 rum_setup_tx_desc(sc, desc, 1178 (needrts ? RT2573_TX_NEED_ACK : 0) | RT2573_TX_MORE_FRAG, 1179 0, mprot->m_pkthdr.len, protrate); 1180 1181 /* no roundup necessary here */ 1182 xferlen = RT2573_TX_DESC_SIZE + mprot->m_pkthdr.len; 1183 1184 /* XXX may want to pass the protection frame to BPF */ 1185 1186 /* mbuf is no longer needed */ 1187 m_freem(mprot); 1188 1189 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, 1190 xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, 1191 RUM_TX_TIMEOUT, rum_txeof); 1192 error = usbd_transfer(data->xfer); 1193 if (error != USBD_NORMAL_COMPLETION && 1194 error != USBD_IN_PROGRESS) { 1195 m_freem(m0); 1196 return error; 1197 } 1198 1199 sc->tx_queued++; 1200 sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT; 1201 1202 flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS; 1203 } 1204 1205 data = &sc->tx_data[sc->tx_cur]; 1206 desc = (struct rum_tx_desc *)data->buf; 1207 1208 data->ni = ni; 1209 1210 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1211 flags |= RT2573_TX_NEED_ACK; 1212 1213 dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate), 1214 ic->ic_flags) + sc->sifs; 1215 *(uint16_t *)wh->i_dur = htole16(dur); 1216 1217 /* tell hardware to set timestamp in probe responses */ 1218 if ((wh->i_fc[0] & 1219 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 1220 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP)) 1221 flags |= RT2573_TX_TIMESTAMP; 1222 } 1223 1224 if (sc->sc_drvbpf != NULL) { 1225 struct rum_tx_radiotap_header *tap = &sc->sc_txtap; 1226 1227 tap->wt_flags = 0; 1228 tap->wt_rate = rate; 1229 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); 1230 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); 1231 tap->wt_antenna = sc->tx_ant; 1232 1233 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); 1234 } 1235 1236 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE); 1237 rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate); 1238 1239 /* align end on a 4-bytes boundary */ 1240 xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3; 1241 1242 /* 1243 * No space left in the last URB to store the extra 4 bytes, force 1244 * sending of another URB. 1245 */ 1246 if ((xferlen % 64) == 0) 1247 xferlen += 4; 1248 1249 DPRINTFN(10, ("sending data frame len=%zu rate=%u xfer len=%u\n", 1250 (size_t)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE, 1251 rate, xferlen)); 1252 1253 /* mbuf is no longer needed */ 1254 m_freem(m0); 1255 1256 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen, 1257 USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof); 1258 error = usbd_transfer(data->xfer); 1259 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) 1260 return error; 1261 1262 sc->tx_queued++; 1263 sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT; 1264 1265 return 0; 1266 } 1267 1268 static void 1269 rum_start(struct ifnet *ifp) 1270 { 1271 struct rum_softc *sc = ifp->if_softc; 1272 struct ieee80211com *ic = &sc->sc_ic; 1273 struct ether_header *eh; 1274 struct ieee80211_node *ni; 1275 struct mbuf *m0; 1276 1277 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) 1278 return; 1279 1280 for (;;) { 1281 IF_POLL(&ic->ic_mgtq, m0); 1282 if (m0 != NULL) { 1283 if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) { 1284 ifp->if_flags |= IFF_OACTIVE; 1285 break; 1286 } 1287 IF_DEQUEUE(&ic->ic_mgtq, m0); 1288 1289 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif; 1290 m0->m_pkthdr.rcvif = NULL; 1291 bpf_mtap3(ic->ic_rawbpf, m0); 1292 if (rum_tx_data(sc, m0, ni) != 0) 1293 break; 1294 1295 } else { 1296 if (ic->ic_state != IEEE80211_S_RUN) 1297 break; 1298 IFQ_POLL(&ifp->if_snd, m0); 1299 if (m0 == NULL) 1300 break; 1301 if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) { 1302 ifp->if_flags |= IFF_OACTIVE; 1303 break; 1304 } 1305 IFQ_DEQUEUE(&ifp->if_snd, m0); 1306 if (m0->m_len < sizeof(struct ether_header) && 1307 !(m0 = m_pullup(m0, sizeof(struct ether_header)))) 1308 continue; 1309 1310 eh = mtod(m0, struct ether_header *); 1311 ni = ieee80211_find_txnode(ic, eh->ether_dhost); 1312 if (ni == NULL) { 1313 m_freem(m0); 1314 continue; 1315 } 1316 bpf_mtap(ifp, m0); 1317 m0 = ieee80211_encap(ic, m0, ni); 1318 if (m0 == NULL) { 1319 ieee80211_free_node(ni); 1320 continue; 1321 } 1322 bpf_mtap3(ic->ic_rawbpf, m0); 1323 if (rum_tx_data(sc, m0, ni) != 0) { 1324 ieee80211_free_node(ni); 1325 ifp->if_oerrors++; 1326 break; 1327 } 1328 } 1329 1330 sc->sc_tx_timer = 5; 1331 ifp->if_timer = 1; 1332 } 1333 } 1334 1335 static void 1336 rum_watchdog(struct ifnet *ifp) 1337 { 1338 struct rum_softc *sc = ifp->if_softc; 1339 struct ieee80211com *ic = &sc->sc_ic; 1340 1341 ifp->if_timer = 0; 1342 1343 if (sc->sc_tx_timer > 0) { 1344 if (--sc->sc_tx_timer == 0) { 1345 printf("%s: device timeout\n", device_xname(sc->sc_dev)); 1346 /*rum_init(ifp); XXX needs a process context! */ 1347 ifp->if_oerrors++; 1348 return; 1349 } 1350 ifp->if_timer = 1; 1351 } 1352 1353 ieee80211_watchdog(ic); 1354 } 1355 1356 static int 1357 rum_ioctl(struct ifnet *ifp, u_long cmd, void *data) 1358 { 1359 #define IS_RUNNING(ifp) \ 1360 (((ifp)->if_flags & IFF_UP) && ((ifp)->if_flags & IFF_RUNNING)) 1361 1362 struct rum_softc *sc = ifp->if_softc; 1363 struct ieee80211com *ic = &sc->sc_ic; 1364 int s, error = 0; 1365 1366 s = splnet(); 1367 1368 switch (cmd) { 1369 case SIOCSIFFLAGS: 1370 if ((error = ifioctl_common(ifp, cmd, data)) != 0) 1371 break; 1372 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) { 1373 case IFF_UP|IFF_RUNNING: 1374 rum_update_promisc(sc); 1375 break; 1376 case IFF_UP: 1377 rum_init(ifp); 1378 break; 1379 case IFF_RUNNING: 1380 rum_stop(ifp, 1); 1381 break; 1382 case 0: 1383 break; 1384 } 1385 break; 1386 1387 case SIOCADDMULTI: 1388 case SIOCDELMULTI: 1389 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) { 1390 error = 0; 1391 } 1392 break; 1393 1394 default: 1395 error = ieee80211_ioctl(ic, cmd, data); 1396 } 1397 1398 if (error == ENETRESET) { 1399 if (IS_RUNNING(ifp) && 1400 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)) 1401 rum_init(ifp); 1402 error = 0; 1403 } 1404 1405 splx(s); 1406 1407 return error; 1408 #undef IS_RUNNING 1409 } 1410 1411 static void 1412 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len) 1413 { 1414 usb_device_request_t req; 1415 usbd_status error; 1416 1417 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1418 req.bRequest = RT2573_READ_EEPROM; 1419 USETW(req.wValue, 0); 1420 USETW(req.wIndex, addr); 1421 USETW(req.wLength, len); 1422 1423 error = usbd_do_request(sc->sc_udev, &req, buf); 1424 if (error != 0) { 1425 printf("%s: could not read EEPROM: %s\n", 1426 device_xname(sc->sc_dev), usbd_errstr(error)); 1427 } 1428 } 1429 1430 static uint32_t 1431 rum_read(struct rum_softc *sc, uint16_t reg) 1432 { 1433 uint32_t val; 1434 1435 rum_read_multi(sc, reg, &val, sizeof val); 1436 1437 return le32toh(val); 1438 } 1439 1440 static void 1441 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len) 1442 { 1443 usb_device_request_t req; 1444 usbd_status error; 1445 1446 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1447 req.bRequest = RT2573_READ_MULTI_MAC; 1448 USETW(req.wValue, 0); 1449 USETW(req.wIndex, reg); 1450 USETW(req.wLength, len); 1451 1452 error = usbd_do_request(sc->sc_udev, &req, buf); 1453 if (error != 0) { 1454 printf("%s: could not multi read MAC register: %s\n", 1455 device_xname(sc->sc_dev), usbd_errstr(error)); 1456 } 1457 } 1458 1459 static void 1460 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val) 1461 { 1462 uint32_t tmp = htole32(val); 1463 1464 rum_write_multi(sc, reg, &tmp, sizeof tmp); 1465 } 1466 1467 static void 1468 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len) 1469 { 1470 usb_device_request_t req; 1471 usbd_status error; 1472 1473 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 1474 req.bRequest = RT2573_WRITE_MULTI_MAC; 1475 USETW(req.wValue, 0); 1476 USETW(req.wIndex, reg); 1477 USETW(req.wLength, len); 1478 1479 error = usbd_do_request(sc->sc_udev, &req, buf); 1480 if (error != 0) { 1481 printf("%s: could not multi write MAC register: %s\n", 1482 device_xname(sc->sc_dev), usbd_errstr(error)); 1483 } 1484 } 1485 1486 static void 1487 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val) 1488 { 1489 uint32_t tmp; 1490 int ntries; 1491 1492 for (ntries = 0; ntries < 5; ntries++) { 1493 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY)) 1494 break; 1495 } 1496 if (ntries == 5) { 1497 printf("%s: could not write to BBP\n", device_xname(sc->sc_dev)); 1498 return; 1499 } 1500 1501 tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val; 1502 rum_write(sc, RT2573_PHY_CSR3, tmp); 1503 } 1504 1505 static uint8_t 1506 rum_bbp_read(struct rum_softc *sc, uint8_t reg) 1507 { 1508 uint32_t val; 1509 int ntries; 1510 1511 for (ntries = 0; ntries < 5; ntries++) { 1512 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY)) 1513 break; 1514 } 1515 if (ntries == 5) { 1516 printf("%s: could not read BBP\n", device_xname(sc->sc_dev)); 1517 return 0; 1518 } 1519 1520 val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8; 1521 rum_write(sc, RT2573_PHY_CSR3, val); 1522 1523 for (ntries = 0; ntries < 100; ntries++) { 1524 val = rum_read(sc, RT2573_PHY_CSR3); 1525 if (!(val & RT2573_BBP_BUSY)) 1526 return val & 0xff; 1527 DELAY(1); 1528 } 1529 1530 printf("%s: could not read BBP\n", device_xname(sc->sc_dev)); 1531 return 0; 1532 } 1533 1534 static void 1535 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val) 1536 { 1537 uint32_t tmp; 1538 int ntries; 1539 1540 for (ntries = 0; ntries < 5; ntries++) { 1541 if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY)) 1542 break; 1543 } 1544 if (ntries == 5) { 1545 printf("%s: could not write to RF\n", device_xname(sc->sc_dev)); 1546 return; 1547 } 1548 1549 tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 | 1550 (reg & 3); 1551 rum_write(sc, RT2573_PHY_CSR4, tmp); 1552 1553 /* remember last written value in sc */ 1554 sc->rf_regs[reg] = val; 1555 1556 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff)); 1557 } 1558 1559 static void 1560 rum_select_antenna(struct rum_softc *sc) 1561 { 1562 uint8_t bbp4, bbp77; 1563 uint32_t tmp; 1564 1565 bbp4 = rum_bbp_read(sc, 4); 1566 bbp77 = rum_bbp_read(sc, 77); 1567 1568 /* TBD */ 1569 1570 /* make sure Rx is disabled before switching antenna */ 1571 tmp = rum_read(sc, RT2573_TXRX_CSR0); 1572 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX); 1573 1574 rum_bbp_write(sc, 4, bbp4); 1575 rum_bbp_write(sc, 77, bbp77); 1576 1577 rum_write(sc, RT2573_TXRX_CSR0, tmp); 1578 } 1579 1580 /* 1581 * Enable multi-rate retries for frames sent at OFDM rates. 1582 * In 802.11b/g mode, allow fallback to CCK rates. 1583 */ 1584 static void 1585 rum_enable_mrr(struct rum_softc *sc) 1586 { 1587 struct ieee80211com *ic = &sc->sc_ic; 1588 uint32_t tmp; 1589 1590 tmp = rum_read(sc, RT2573_TXRX_CSR4); 1591 1592 tmp &= ~RT2573_MRR_CCK_FALLBACK; 1593 if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) 1594 tmp |= RT2573_MRR_CCK_FALLBACK; 1595 tmp |= RT2573_MRR_ENABLED; 1596 1597 rum_write(sc, RT2573_TXRX_CSR4, tmp); 1598 } 1599 1600 static void 1601 rum_set_txpreamble(struct rum_softc *sc) 1602 { 1603 uint32_t tmp; 1604 1605 tmp = rum_read(sc, RT2573_TXRX_CSR4); 1606 1607 tmp &= ~RT2573_SHORT_PREAMBLE; 1608 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE) 1609 tmp |= RT2573_SHORT_PREAMBLE; 1610 1611 rum_write(sc, RT2573_TXRX_CSR4, tmp); 1612 } 1613 1614 static void 1615 rum_set_basicrates(struct rum_softc *sc) 1616 { 1617 struct ieee80211com *ic = &sc->sc_ic; 1618 1619 /* update basic rate set */ 1620 if (ic->ic_curmode == IEEE80211_MODE_11B) { 1621 /* 11b basic rates: 1, 2Mbps */ 1622 rum_write(sc, RT2573_TXRX_CSR5, 0x3); 1623 } else if (ic->ic_curmode == IEEE80211_MODE_11A) { 1624 /* 11a basic rates: 6, 12, 24Mbps */ 1625 rum_write(sc, RT2573_TXRX_CSR5, 0x150); 1626 } else { 1627 /* 11b/g basic rates: 1, 2, 5.5, 11Mbps */ 1628 rum_write(sc, RT2573_TXRX_CSR5, 0xf); 1629 } 1630 } 1631 1632 /* 1633 * Reprogram MAC/BBP to switch to a new band. Values taken from the reference 1634 * driver. 1635 */ 1636 static void 1637 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c) 1638 { 1639 uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104; 1640 uint32_t tmp; 1641 1642 /* update all BBP registers that depend on the band */ 1643 bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c; 1644 bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48; 1645 if (IEEE80211_IS_CHAN_5GHZ(c)) { 1646 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c; 1647 bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10; 1648 } 1649 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || 1650 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { 1651 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10; 1652 } 1653 1654 sc->bbp17 = bbp17; 1655 rum_bbp_write(sc, 17, bbp17); 1656 rum_bbp_write(sc, 96, bbp96); 1657 rum_bbp_write(sc, 104, bbp104); 1658 1659 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || 1660 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { 1661 rum_bbp_write(sc, 75, 0x80); 1662 rum_bbp_write(sc, 86, 0x80); 1663 rum_bbp_write(sc, 88, 0x80); 1664 } 1665 1666 rum_bbp_write(sc, 35, bbp35); 1667 rum_bbp_write(sc, 97, bbp97); 1668 rum_bbp_write(sc, 98, bbp98); 1669 1670 tmp = rum_read(sc, RT2573_PHY_CSR0); 1671 tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ); 1672 if (IEEE80211_IS_CHAN_2GHZ(c)) 1673 tmp |= RT2573_PA_PE_2GHZ; 1674 else 1675 tmp |= RT2573_PA_PE_5GHZ; 1676 rum_write(sc, RT2573_PHY_CSR0, tmp); 1677 1678 /* 802.11a uses a 16 microseconds short interframe space */ 1679 sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10; 1680 } 1681 1682 static void 1683 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c) 1684 { 1685 struct ieee80211com *ic = &sc->sc_ic; 1686 const struct rfprog *rfprog; 1687 uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT; 1688 int8_t power; 1689 u_int i, chan; 1690 1691 chan = ieee80211_chan2ieee(ic, c); 1692 if (chan == 0 || chan == IEEE80211_CHAN_ANY) 1693 return; 1694 1695 /* select the appropriate RF settings based on what EEPROM says */ 1696 rfprog = (sc->rf_rev == RT2573_RF_5225 || 1697 sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226; 1698 1699 /* find the settings for this channel (we know it exists) */ 1700 for (i = 0; rfprog[i].chan != chan; i++); 1701 1702 power = sc->txpow[i]; 1703 if (power < 0) { 1704 bbp94 += power; 1705 power = 0; 1706 } else if (power > 31) { 1707 bbp94 += power - 31; 1708 power = 31; 1709 } 1710 1711 /* 1712 * If we are switching from the 2GHz band to the 5GHz band or 1713 * vice-versa, BBP registers need to be reprogrammed. 1714 */ 1715 if (c->ic_flags != ic->ic_curchan->ic_flags) { 1716 rum_select_band(sc, c); 1717 rum_select_antenna(sc); 1718 } 1719 ic->ic_curchan = c; 1720 1721 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 1722 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 1723 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7); 1724 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 1725 1726 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 1727 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 1728 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1); 1729 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 1730 1731 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 1732 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 1733 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7); 1734 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 1735 1736 DELAY(10); 1737 1738 /* enable smart mode for MIMO-capable RFs */ 1739 bbp3 = rum_bbp_read(sc, 3); 1740 1741 bbp3 &= ~RT2573_SMART_MODE; 1742 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527) 1743 bbp3 |= RT2573_SMART_MODE; 1744 1745 rum_bbp_write(sc, 3, bbp3); 1746 1747 if (bbp94 != RT2573_BBPR94_DEFAULT) 1748 rum_bbp_write(sc, 94, bbp94); 1749 } 1750 1751 /* 1752 * Enable TSF synchronization and tell h/w to start sending beacons for IBSS 1753 * and HostAP operating modes. 1754 */ 1755 static void 1756 rum_enable_tsf_sync(struct rum_softc *sc) 1757 { 1758 struct ieee80211com *ic = &sc->sc_ic; 1759 uint32_t tmp; 1760 1761 if (ic->ic_opmode != IEEE80211_M_STA) { 1762 /* 1763 * Change default 16ms TBTT adjustment to 8ms. 1764 * Must be done before enabling beacon generation. 1765 */ 1766 rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8); 1767 } 1768 1769 tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000; 1770 1771 /* set beacon interval (in 1/16ms unit) */ 1772 tmp |= ic->ic_bss->ni_intval * 16; 1773 1774 tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT; 1775 if (ic->ic_opmode == IEEE80211_M_STA) 1776 tmp |= RT2573_TSF_MODE(1); 1777 else 1778 tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON; 1779 1780 rum_write(sc, RT2573_TXRX_CSR9, tmp); 1781 } 1782 1783 static void 1784 rum_update_slot(struct rum_softc *sc) 1785 { 1786 struct ieee80211com *ic = &sc->sc_ic; 1787 uint8_t slottime; 1788 uint32_t tmp; 1789 1790 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20; 1791 1792 tmp = rum_read(sc, RT2573_MAC_CSR9); 1793 tmp = (tmp & ~0xff) | slottime; 1794 rum_write(sc, RT2573_MAC_CSR9, tmp); 1795 1796 DPRINTF(("setting slot time to %uus\n", slottime)); 1797 } 1798 1799 static void 1800 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid) 1801 { 1802 uint32_t tmp; 1803 1804 tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24; 1805 rum_write(sc, RT2573_MAC_CSR4, tmp); 1806 1807 tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16; 1808 rum_write(sc, RT2573_MAC_CSR5, tmp); 1809 } 1810 1811 static void 1812 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr) 1813 { 1814 uint32_t tmp; 1815 1816 tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24; 1817 rum_write(sc, RT2573_MAC_CSR2, tmp); 1818 1819 tmp = addr[4] | addr[5] << 8 | 0xff << 16; 1820 rum_write(sc, RT2573_MAC_CSR3, tmp); 1821 } 1822 1823 static void 1824 rum_update_promisc(struct rum_softc *sc) 1825 { 1826 struct ifnet *ifp = sc->sc_ic.ic_ifp; 1827 uint32_t tmp; 1828 1829 tmp = rum_read(sc, RT2573_TXRX_CSR0); 1830 1831 tmp &= ~RT2573_DROP_NOT_TO_ME; 1832 if (!(ifp->if_flags & IFF_PROMISC)) 1833 tmp |= RT2573_DROP_NOT_TO_ME; 1834 1835 rum_write(sc, RT2573_TXRX_CSR0, tmp); 1836 1837 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ? 1838 "entering" : "leaving")); 1839 } 1840 1841 static const char * 1842 rum_get_rf(int rev) 1843 { 1844 switch (rev) { 1845 case RT2573_RF_2527: return "RT2527 (MIMO XR)"; 1846 case RT2573_RF_2528: return "RT2528"; 1847 case RT2573_RF_5225: return "RT5225 (MIMO XR)"; 1848 case RT2573_RF_5226: return "RT5226"; 1849 default: return "unknown"; 1850 } 1851 } 1852 1853 static void 1854 rum_read_eeprom(struct rum_softc *sc) 1855 { 1856 struct ieee80211com *ic = &sc->sc_ic; 1857 uint16_t val; 1858 #ifdef RUM_DEBUG 1859 int i; 1860 #endif 1861 1862 /* read MAC/BBP type */ 1863 rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2); 1864 sc->macbbp_rev = le16toh(val); 1865 1866 /* read MAC address */ 1867 rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6); 1868 1869 rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2); 1870 val = le16toh(val); 1871 sc->rf_rev = (val >> 11) & 0x1f; 1872 sc->hw_radio = (val >> 10) & 0x1; 1873 sc->rx_ant = (val >> 4) & 0x3; 1874 sc->tx_ant = (val >> 2) & 0x3; 1875 sc->nb_ant = val & 0x3; 1876 1877 DPRINTF(("RF revision=%d\n", sc->rf_rev)); 1878 1879 rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2); 1880 val = le16toh(val); 1881 sc->ext_5ghz_lna = (val >> 6) & 0x1; 1882 sc->ext_2ghz_lna = (val >> 4) & 0x1; 1883 1884 DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n", 1885 sc->ext_2ghz_lna, sc->ext_5ghz_lna)); 1886 1887 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2); 1888 val = le16toh(val); 1889 if ((val & 0xff) != 0xff) 1890 sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */ 1891 1892 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2); 1893 val = le16toh(val); 1894 if ((val & 0xff) != 0xff) 1895 sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */ 1896 1897 DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n", 1898 sc->rssi_2ghz_corr, sc->rssi_5ghz_corr)); 1899 1900 rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2); 1901 val = le16toh(val); 1902 if ((val & 0xff) != 0xff) 1903 sc->rffreq = val & 0xff; 1904 1905 DPRINTF(("RF freq=%d\n", sc->rffreq)); 1906 1907 /* read Tx power for all a/b/g channels */ 1908 rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14); 1909 /* XXX default Tx power for 802.11a channels */ 1910 memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14); 1911 #ifdef RUM_DEBUG 1912 for (i = 0; i < 14; i++) 1913 DPRINTF(("Channel=%d Tx power=%d\n", i + 1, sc->txpow[i])); 1914 #endif 1915 1916 /* read default values for BBP registers */ 1917 rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16); 1918 #ifdef RUM_DEBUG 1919 for (i = 0; i < 14; i++) { 1920 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff) 1921 continue; 1922 DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg, 1923 sc->bbp_prom[i].val)); 1924 } 1925 #endif 1926 } 1927 1928 static int 1929 rum_bbp_init(struct rum_softc *sc) 1930 { 1931 #define N(a) (sizeof (a) / sizeof ((a)[0])) 1932 int i, ntries; 1933 uint8_t val; 1934 1935 /* wait for BBP to be ready */ 1936 for (ntries = 0; ntries < 100; ntries++) { 1937 val = rum_bbp_read(sc, 0); 1938 if (val != 0 && val != 0xff) 1939 break; 1940 DELAY(1000); 1941 } 1942 if (ntries == 100) { 1943 printf("%s: timeout waiting for BBP\n", 1944 device_xname(sc->sc_dev)); 1945 return EIO; 1946 } 1947 1948 /* initialize BBP registers to default values */ 1949 for (i = 0; i < N(rum_def_bbp); i++) 1950 rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val); 1951 1952 /* write vendor-specific BBP values (from EEPROM) */ 1953 for (i = 0; i < 16; i++) { 1954 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff) 1955 continue; 1956 rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val); 1957 } 1958 1959 return 0; 1960 #undef N 1961 } 1962 1963 static int 1964 rum_init(struct ifnet *ifp) 1965 { 1966 #define N(a) (sizeof (a) / sizeof ((a)[0])) 1967 struct rum_softc *sc = ifp->if_softc; 1968 struct ieee80211com *ic = &sc->sc_ic; 1969 struct rum_rx_data *data; 1970 uint32_t tmp; 1971 usbd_status error = 0; 1972 int i, ntries; 1973 1974 if ((sc->sc_flags & RT2573_FWLOADED) == 0) { 1975 if (rum_attachhook(sc)) 1976 goto fail; 1977 } 1978 1979 rum_stop(ifp, 0); 1980 1981 /* initialize MAC registers to default values */ 1982 for (i = 0; i < N(rum_def_mac); i++) 1983 rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val); 1984 1985 /* set host ready */ 1986 rum_write(sc, RT2573_MAC_CSR1, 3); 1987 rum_write(sc, RT2573_MAC_CSR1, 0); 1988 1989 /* wait for BBP/RF to wakeup */ 1990 for (ntries = 0; ntries < 1000; ntries++) { 1991 if (rum_read(sc, RT2573_MAC_CSR12) & 8) 1992 break; 1993 rum_write(sc, RT2573_MAC_CSR12, 4); /* force wakeup */ 1994 DELAY(1000); 1995 } 1996 if (ntries == 1000) { 1997 printf("%s: timeout waiting for BBP/RF to wakeup\n", 1998 device_xname(sc->sc_dev)); 1999 goto fail; 2000 } 2001 2002 if ((error = rum_bbp_init(sc)) != 0) 2003 goto fail; 2004 2005 /* select default channel */ 2006 rum_select_band(sc, ic->ic_curchan); 2007 rum_select_antenna(sc); 2008 rum_set_chan(sc, ic->ic_curchan); 2009 2010 /* clear STA registers */ 2011 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta); 2012 2013 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl)); 2014 rum_set_macaddr(sc, ic->ic_myaddr); 2015 2016 /* initialize ASIC */ 2017 rum_write(sc, RT2573_MAC_CSR1, 4); 2018 2019 /* 2020 * Allocate xfer for AMRR statistics requests. 2021 */ 2022 sc->amrr_xfer = usbd_alloc_xfer(sc->sc_udev); 2023 if (sc->amrr_xfer == NULL) { 2024 printf("%s: could not allocate AMRR xfer\n", 2025 device_xname(sc->sc_dev)); 2026 goto fail; 2027 } 2028 2029 /* 2030 * Open Tx and Rx USB bulk pipes. 2031 */ 2032 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE, 2033 &sc->sc_tx_pipeh); 2034 if (error != 0) { 2035 printf("%s: could not open Tx pipe: %s\n", 2036 device_xname(sc->sc_dev), usbd_errstr(error)); 2037 goto fail; 2038 } 2039 2040 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE, 2041 &sc->sc_rx_pipeh); 2042 if (error != 0) { 2043 printf("%s: could not open Rx pipe: %s\n", 2044 device_xname(sc->sc_dev), usbd_errstr(error)); 2045 goto fail; 2046 } 2047 2048 /* 2049 * Allocate Tx and Rx xfer queues. 2050 */ 2051 error = rum_alloc_tx_list(sc); 2052 if (error != 0) { 2053 printf("%s: could not allocate Tx list\n", 2054 device_xname(sc->sc_dev)); 2055 goto fail; 2056 } 2057 2058 error = rum_alloc_rx_list(sc); 2059 if (error != 0) { 2060 printf("%s: could not allocate Rx list\n", 2061 device_xname(sc->sc_dev)); 2062 goto fail; 2063 } 2064 2065 /* 2066 * Start up the receive pipe. 2067 */ 2068 for (i = 0; i < RUM_RX_LIST_COUNT; i++) { 2069 data = &sc->rx_data[i]; 2070 2071 usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf, 2072 MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof); 2073 error = usbd_transfer(data->xfer); 2074 if (error != USBD_NORMAL_COMPLETION && 2075 error != USBD_IN_PROGRESS) { 2076 printf("%s: could not queue Rx transfer\n", 2077 device_xname(sc->sc_dev)); 2078 goto fail; 2079 } 2080 } 2081 2082 /* update Rx filter */ 2083 tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff; 2084 2085 tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR; 2086 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 2087 tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR | 2088 RT2573_DROP_ACKCTS; 2089 if (ic->ic_opmode != IEEE80211_M_HOSTAP) 2090 tmp |= RT2573_DROP_TODS; 2091 if (!(ifp->if_flags & IFF_PROMISC)) 2092 tmp |= RT2573_DROP_NOT_TO_ME; 2093 } 2094 rum_write(sc, RT2573_TXRX_CSR0, tmp); 2095 2096 ifp->if_flags &= ~IFF_OACTIVE; 2097 ifp->if_flags |= IFF_RUNNING; 2098 2099 if (ic->ic_opmode == IEEE80211_M_MONITOR) 2100 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 2101 else 2102 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 2103 2104 return 0; 2105 2106 fail: rum_stop(ifp, 1); 2107 return error; 2108 #undef N 2109 } 2110 2111 static void 2112 rum_stop(struct ifnet *ifp, int disable) 2113 { 2114 struct rum_softc *sc = ifp->if_softc; 2115 struct ieee80211com *ic = &sc->sc_ic; 2116 uint32_t tmp; 2117 2118 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */ 2119 2120 sc->sc_tx_timer = 0; 2121 ifp->if_timer = 0; 2122 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 2123 2124 /* disable Rx */ 2125 tmp = rum_read(sc, RT2573_TXRX_CSR0); 2126 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX); 2127 2128 /* reset ASIC */ 2129 rum_write(sc, RT2573_MAC_CSR1, 3); 2130 rum_write(sc, RT2573_MAC_CSR1, 0); 2131 2132 if (sc->amrr_xfer != NULL) { 2133 usbd_free_xfer(sc->amrr_xfer); 2134 sc->amrr_xfer = NULL; 2135 } 2136 2137 if (sc->sc_rx_pipeh != NULL) { 2138 usbd_abort_pipe(sc->sc_rx_pipeh); 2139 usbd_close_pipe(sc->sc_rx_pipeh); 2140 sc->sc_rx_pipeh = NULL; 2141 } 2142 2143 if (sc->sc_tx_pipeh != NULL) { 2144 usbd_abort_pipe(sc->sc_tx_pipeh); 2145 usbd_close_pipe(sc->sc_tx_pipeh); 2146 sc->sc_tx_pipeh = NULL; 2147 } 2148 2149 rum_free_rx_list(sc); 2150 rum_free_tx_list(sc); 2151 } 2152 2153 static int 2154 rum_load_microcode(struct rum_softc *sc, const u_char *ucode, size_t size) 2155 { 2156 usb_device_request_t req; 2157 uint16_t reg = RT2573_MCU_CODE_BASE; 2158 usbd_status error; 2159 2160 /* copy firmware image into NIC */ 2161 for (; size >= 4; reg += 4, ucode += 4, size -= 4) 2162 rum_write(sc, reg, UGETDW(ucode)); 2163 2164 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 2165 req.bRequest = RT2573_MCU_CNTL; 2166 USETW(req.wValue, RT2573_MCU_RUN); 2167 USETW(req.wIndex, 0); 2168 USETW(req.wLength, 0); 2169 2170 error = usbd_do_request(sc->sc_udev, &req, NULL); 2171 if (error != 0) { 2172 printf("%s: could not run firmware: %s\n", 2173 device_xname(sc->sc_dev), usbd_errstr(error)); 2174 } 2175 return error; 2176 } 2177 2178 static int 2179 rum_prepare_beacon(struct rum_softc *sc) 2180 { 2181 struct ieee80211com *ic = &sc->sc_ic; 2182 struct rum_tx_desc desc; 2183 struct mbuf *m0; 2184 int rate; 2185 2186 m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &sc->sc_bo); 2187 if (m0 == NULL) { 2188 aprint_error_dev(sc->sc_dev, 2189 "could not allocate beacon frame\n"); 2190 return ENOBUFS; 2191 } 2192 2193 /* send beacons at the lowest available rate */ 2194 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2; 2195 2196 rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ, 2197 m0->m_pkthdr.len, rate); 2198 2199 /* copy the first 24 bytes of Tx descriptor into NIC memory */ 2200 rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24); 2201 2202 /* copy beacon header and payload into NIC memory */ 2203 rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *), 2204 m0->m_pkthdr.len); 2205 2206 m_freem(m0); 2207 2208 return 0; 2209 } 2210 2211 static void 2212 rum_newassoc(struct ieee80211_node *ni, int isnew) 2213 { 2214 /* start with lowest Tx rate */ 2215 ni->ni_txrate = 0; 2216 } 2217 2218 static void 2219 rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni) 2220 { 2221 int i; 2222 2223 /* clear statistic registers (STA_CSR0 to STA_CSR5) */ 2224 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta); 2225 2226 ieee80211_amrr_node_init(&sc->amrr, &sc->amn); 2227 2228 /* set rate to some reasonable initial value */ 2229 for (i = ni->ni_rates.rs_nrates - 1; 2230 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72; 2231 i--); 2232 ni->ni_txrate = i; 2233 2234 callout_reset(&sc->sc_amrr_ch, hz, rum_amrr_timeout, sc); 2235 } 2236 2237 static void 2238 rum_amrr_timeout(void *arg) 2239 { 2240 struct rum_softc *sc = arg; 2241 usb_device_request_t req; 2242 2243 /* 2244 * Asynchronously read statistic registers (cleared by read). 2245 */ 2246 req.bmRequestType = UT_READ_VENDOR_DEVICE; 2247 req.bRequest = RT2573_READ_MULTI_MAC; 2248 USETW(req.wValue, 0); 2249 USETW(req.wIndex, RT2573_STA_CSR0); 2250 USETW(req.wLength, sizeof sc->sta); 2251 2252 usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc, 2253 USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0, 2254 rum_amrr_update); 2255 (void)usbd_transfer(sc->amrr_xfer); 2256 } 2257 2258 static void 2259 rum_amrr_update(usbd_xfer_handle xfer, usbd_private_handle priv, 2260 usbd_status status) 2261 { 2262 struct rum_softc *sc = (struct rum_softc *)priv; 2263 struct ifnet *ifp = sc->sc_ic.ic_ifp; 2264 2265 if (status != USBD_NORMAL_COMPLETION) { 2266 printf("%s: could not retrieve Tx statistics - cancelling " 2267 "automatic rate control\n", device_xname(sc->sc_dev)); 2268 return; 2269 } 2270 2271 /* count TX retry-fail as Tx errors */ 2272 ifp->if_oerrors += le32toh(sc->sta[5]) >> 16; 2273 2274 sc->amn.amn_retrycnt = 2275 (le32toh(sc->sta[4]) >> 16) + /* TX one-retry ok count */ 2276 (le32toh(sc->sta[5]) & 0xffff) + /* TX more-retry ok count */ 2277 (le32toh(sc->sta[5]) >> 16); /* TX retry-fail count */ 2278 2279 sc->amn.amn_txcnt = 2280 sc->amn.amn_retrycnt + 2281 (le32toh(sc->sta[4]) & 0xffff); /* TX no-retry ok count */ 2282 2283 ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn); 2284 2285 callout_reset(&sc->sc_amrr_ch, hz, rum_amrr_timeout, sc); 2286 } 2287 2288 static int 2289 rum_activate(device_t self, enum devact act) 2290 { 2291 switch (act) { 2292 case DVACT_DEACTIVATE: 2293 /*if_deactivate(&sc->sc_ic.ic_if);*/ 2294 return 0; 2295 default: 2296 return 0; 2297 } 2298 } 2299