xref: /netbsd-src/sys/dev/usb/if_rum.c (revision 46f5119e40af2e51998f686b2fdcc76b5488f7f3)
1 /*	$OpenBSD: if_rum.c,v 1.40 2006/09/18 16:20:20 damien Exp $	*/
2 /*	$NetBSD: if_rum.c,v 1.36 2011/02/22 00:58:08 jmcneill Exp $	*/
3 
4 /*-
5  * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini@free.fr>
6  * Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*-
22  * Ralink Technology RT2501USB/RT2601USB chipset driver
23  * http://www.ralinktech.com.tw/
24  */
25 
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: if_rum.c,v 1.36 2011/02/22 00:58:08 jmcneill Exp $");
28 
29 
30 #include <sys/param.h>
31 #include <sys/sockio.h>
32 #include <sys/sysctl.h>
33 #include <sys/mbuf.h>
34 #include <sys/kernel.h>
35 #include <sys/socket.h>
36 #include <sys/systm.h>
37 #include <sys/malloc.h>
38 #include <sys/conf.h>
39 #include <sys/device.h>
40 
41 #include <sys/bus.h>
42 #include <machine/endian.h>
43 #include <sys/intr.h>
44 
45 #include <net/bpf.h>
46 #include <net/if.h>
47 #include <net/if_arp.h>
48 #include <net/if_dl.h>
49 #include <net/if_ether.h>
50 #include <net/if_media.h>
51 #include <net/if_types.h>
52 
53 #include <netinet/in.h>
54 #include <netinet/in_systm.h>
55 #include <netinet/in_var.h>
56 #include <netinet/ip.h>
57 
58 #include <net80211/ieee80211_netbsd.h>
59 #include <net80211/ieee80211_var.h>
60 #include <net80211/ieee80211_amrr.h>
61 #include <net80211/ieee80211_radiotap.h>
62 
63 #include <dev/firmload.h>
64 
65 #include <dev/usb/usb.h>
66 #include <dev/usb/usbdi.h>
67 #include <dev/usb/usbdi_util.h>
68 #include <dev/usb/usbdevs.h>
69 
70 #include <dev/usb/if_rumreg.h>
71 #include <dev/usb/if_rumvar.h>
72 
73 #ifdef USB_DEBUG
74 #define RUM_DEBUG
75 #endif
76 
77 #ifdef RUM_DEBUG
78 #define DPRINTF(x)	do { if (rum_debug) printf x; } while (0)
79 #define DPRINTFN(n, x)	do { if (rum_debug >= (n)) printf x; } while (0)
80 int rum_debug = 1;
81 #else
82 #define DPRINTF(x)
83 #define DPRINTFN(n, x)
84 #endif
85 
86 /* various supported device vendors/products */
87 static const struct usb_devno rum_devs[] = {
88 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_HWU54DM },
89 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573_2 },
90 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573_3 },
91 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573_4 },
92 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_WUG2700 },
93 	{ USB_VENDOR_AMIT,		USB_PRODUCT_AMIT_CGWLUSB2GO },
94 	{ USB_VENDOR_ASUSTEK,		USB_PRODUCT_ASUSTEK_WL167G_2 },
95 	{ USB_VENDOR_ASUSTEK,		USB_PRODUCT_ASUSTEK_WL167G_3 },
96 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D7050A },
97 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D9050V3 },
98 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GC },
99 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GR },
100 	{ USB_VENDOR_CONCEPTRONIC,	USB_PRODUCT_CONCEPTRONIC_C54RU2 },
101 	{ USB_VENDOR_COREGA,		USB_PRODUCT_COREGA_CGWLUSB2GL },
102 	{ USB_VENDOR_COREGA,		USB_PRODUCT_COREGA_CGWLUSB2GPX },
103 	{ USB_VENDOR_DICKSMITH,		USB_PRODUCT_DICKSMITH_CWD854F },
104 	{ USB_VENDOR_DICKSMITH,		USB_PRODUCT_DICKSMITH_RT2573 },
105 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWLG122C1 },
106 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_WUA1340 },
107 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWA111 },
108 	{ USB_VENDOR_GIGABYTE,		USB_PRODUCT_GIGABYTE_GNWB01GS },
109 	{ USB_VENDOR_GIGABYTE,		USB_PRODUCT_GIGABYTE_GNWI05GS },
110 	{ USB_VENDOR_GIGASET,		USB_PRODUCT_GIGASET_RT2573 },
111 	{ USB_VENDOR_GOODWAY,		USB_PRODUCT_GOODWAY_RT2573 },
112 	{ USB_VENDOR_GUILLEMOT,		USB_PRODUCT_GUILLEMOT_HWGUSB254LB },
113 	{ USB_VENDOR_GUILLEMOT,		USB_PRODUCT_GUILLEMOT_HWGUSB254V2AP },
114 	{ USB_VENDOR_HUAWEI3COM,	USB_PRODUCT_HUAWEI3COM_RT2573 },
115 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_G54HP },
116 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_SG54HP },
117 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_WLIUCG },
118 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573 },
119 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_2 },
120 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_3 },
121 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_4 },
122 	{ USB_VENDOR_NOVATECH,		USB_PRODUCT_NOVATECH_RT2573 },
123 	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUS54HP },
124 	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUS54MINI2 },
125 	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUSMM },
126 	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573 },
127 	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573_2 },
128 	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573_3 },
129 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2573 },
130 	{ USB_VENDOR_RALINK_2,          USB_PRODUCT_RALINK_2_RT2573 },
131 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2671 },
132 	{ USB_VENDOR_SITECOMEU,		USB_PRODUCT_SITECOMEU_WL113R2 },
133 	{ USB_VENDOR_SITECOMEU,		USB_PRODUCT_SITECOMEU_WL172 },
134 	{ USB_VENDOR_SURECOM,		USB_PRODUCT_SURECOM_RT2573 }
135 };
136 
137 static int		rum_attachhook(void *);
138 static int		rum_alloc_tx_list(struct rum_softc *);
139 static void		rum_free_tx_list(struct rum_softc *);
140 static int		rum_alloc_rx_list(struct rum_softc *);
141 static void		rum_free_rx_list(struct rum_softc *);
142 static int		rum_media_change(struct ifnet *);
143 static void		rum_next_scan(void *);
144 static void		rum_task(void *);
145 static int		rum_newstate(struct ieee80211com *,
146 			    enum ieee80211_state, int);
147 static void		rum_txeof(usbd_xfer_handle, usbd_private_handle,
148 			    usbd_status);
149 static void		rum_rxeof(usbd_xfer_handle, usbd_private_handle,
150 			    usbd_status);
151 static uint8_t		rum_rxrate(const struct rum_rx_desc *);
152 static int		rum_ack_rate(struct ieee80211com *, int);
153 static uint16_t		rum_txtime(int, int, uint32_t);
154 static uint8_t		rum_plcp_signal(int);
155 static void		rum_setup_tx_desc(struct rum_softc *,
156 			    struct rum_tx_desc *, uint32_t, uint16_t, int,
157 			    int);
158 static int		rum_tx_data(struct rum_softc *, struct mbuf *,
159 			    struct ieee80211_node *);
160 static void		rum_start(struct ifnet *);
161 static void		rum_watchdog(struct ifnet *);
162 static int		rum_ioctl(struct ifnet *, u_long, void *);
163 static void		rum_eeprom_read(struct rum_softc *, uint16_t, void *,
164 			    int);
165 static uint32_t		rum_read(struct rum_softc *, uint16_t);
166 static void		rum_read_multi(struct rum_softc *, uint16_t, void *,
167 			    int);
168 static void		rum_write(struct rum_softc *, uint16_t, uint32_t);
169 static void		rum_write_multi(struct rum_softc *, uint16_t, void *,
170 			    size_t);
171 static void		rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
172 static uint8_t		rum_bbp_read(struct rum_softc *, uint8_t);
173 static void		rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
174 static void		rum_select_antenna(struct rum_softc *);
175 static void		rum_enable_mrr(struct rum_softc *);
176 static void		rum_set_txpreamble(struct rum_softc *);
177 static void		rum_set_basicrates(struct rum_softc *);
178 static void		rum_select_band(struct rum_softc *,
179 			    struct ieee80211_channel *);
180 static void		rum_set_chan(struct rum_softc *,
181 			    struct ieee80211_channel *);
182 static void		rum_enable_tsf_sync(struct rum_softc *);
183 static void		rum_update_slot(struct rum_softc *);
184 static void		rum_set_bssid(struct rum_softc *, const uint8_t *);
185 static void		rum_set_macaddr(struct rum_softc *, const uint8_t *);
186 static void		rum_update_promisc(struct rum_softc *);
187 static const char	*rum_get_rf(int);
188 static void		rum_read_eeprom(struct rum_softc *);
189 static int		rum_bbp_init(struct rum_softc *);
190 static int		rum_init(struct ifnet *);
191 static void		rum_stop(struct ifnet *, int);
192 static int		rum_load_microcode(struct rum_softc *, const u_char *,
193 			    size_t);
194 static int		rum_prepare_beacon(struct rum_softc *);
195 static void		rum_newassoc(struct ieee80211_node *, int);
196 static void		rum_amrr_start(struct rum_softc *,
197 			    struct ieee80211_node *);
198 static void		rum_amrr_timeout(void *);
199 static void		rum_amrr_update(usbd_xfer_handle, usbd_private_handle,
200 			    usbd_status status);
201 
202 /*
203  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
204  */
205 static const struct ieee80211_rateset rum_rateset_11a =
206 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
207 
208 static const struct ieee80211_rateset rum_rateset_11b =
209 	{ 4, { 2, 4, 11, 22 } };
210 
211 static const struct ieee80211_rateset rum_rateset_11g =
212 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
213 
214 static const struct {
215 	uint32_t	reg;
216 	uint32_t	val;
217 } rum_def_mac[] = {
218 	RT2573_DEF_MAC
219 };
220 
221 static const struct {
222 	uint8_t	reg;
223 	uint8_t	val;
224 } rum_def_bbp[] = {
225 	RT2573_DEF_BBP
226 };
227 
228 static const struct rfprog {
229 	uint8_t		chan;
230 	uint32_t	r1, r2, r3, r4;
231 }  rum_rf5226[] = {
232 	RT2573_RF5226
233 }, rum_rf5225[] = {
234 	RT2573_RF5225
235 };
236 
237 static int rum_match(device_t, cfdata_t, void *);
238 static void rum_attach(device_t, device_t, void *);
239 static int rum_detach(device_t, int);
240 static int rum_activate(device_t, enum devact);
241 extern struct cfdriver rum_cd;
242 CFATTACH_DECL_NEW(rum, sizeof(struct rum_softc), rum_match, rum_attach,
243     rum_detach, rum_activate);
244 
245 static int
246 rum_match(device_t parent, cfdata_t match, void *aux)
247 {
248 	struct usb_attach_arg *uaa = aux;
249 
250 	return (usb_lookup(rum_devs, uaa->vendor, uaa->product) != NULL) ?
251 	    UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
252 }
253 
254 static int
255 rum_attachhook(void *xsc)
256 {
257 	struct rum_softc *sc = xsc;
258 	firmware_handle_t fwh;
259 	const char *name = "rum-rt2573";
260 	u_char *ucode;
261 	size_t size;
262 	int error;
263 
264 	if ((error = firmware_open("rum", name, &fwh)) != 0) {
265 		printf("%s: failed loadfirmware of file %s (error %d)\n",
266 		    device_xname(sc->sc_dev), name, error);
267 		return error;
268 	}
269 	size = firmware_get_size(fwh);
270 	ucode = firmware_malloc(size);
271 	if (ucode == NULL) {
272 		printf("%s: failed to allocate firmware memory\n",
273 		    device_xname(sc->sc_dev));
274 		firmware_close(fwh);
275 		return ENOMEM;
276 	}
277 	error = firmware_read(fwh, 0, ucode, size);
278 	firmware_close(fwh);
279 	if (error != 0) {
280 		printf("%s: failed to read firmware (error %d)\n",
281 		    device_xname(sc->sc_dev), error);
282 		firmware_free(ucode, 0);
283 		return error;
284 	}
285 
286 	if (rum_load_microcode(sc, ucode, size) != 0) {
287 		printf("%s: could not load 8051 microcode\n",
288 		    device_xname(sc->sc_dev));
289 		firmware_free(ucode, 0);
290 		return ENXIO;
291 	}
292 
293 	firmware_free(ucode, 0);
294 	sc->sc_flags |= RT2573_FWLOADED;
295 
296 	return 0;
297 }
298 
299 static void
300 rum_attach(device_t parent, device_t self, void *aux)
301 {
302 	struct rum_softc *sc = device_private(self);
303 	struct usb_attach_arg *uaa = aux;
304 	struct ieee80211com *ic = &sc->sc_ic;
305 	struct ifnet *ifp = &sc->sc_if;
306 	usb_interface_descriptor_t *id;
307 	usb_endpoint_descriptor_t *ed;
308 	usbd_status error;
309 	char *devinfop;
310 	int i, ntries;
311 	uint32_t tmp;
312 
313 	sc->sc_dev = self;
314 	sc->sc_udev = uaa->device;
315 	sc->sc_flags = 0;
316 
317 	aprint_naive("\n");
318 	aprint_normal("\n");
319 
320 	devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
321 	aprint_normal_dev(self, "%s\n", devinfop);
322 	usbd_devinfo_free(devinfop);
323 
324 	if (usbd_set_config_no(sc->sc_udev, RT2573_CONFIG_NO, 0) != 0) {
325 		aprint_error_dev(self, "could not set configuration no\n");
326 		return;
327 	}
328 
329 	/* get the first interface handle */
330 	error = usbd_device2interface_handle(sc->sc_udev, RT2573_IFACE_INDEX,
331 	    &sc->sc_iface);
332 	if (error != 0) {
333 		aprint_error_dev(self, "could not get interface handle\n");
334 		return;
335 	}
336 
337 	/*
338 	 * Find endpoints.
339 	 */
340 	id = usbd_get_interface_descriptor(sc->sc_iface);
341 
342 	sc->sc_rx_no = sc->sc_tx_no = -1;
343 	for (i = 0; i < id->bNumEndpoints; i++) {
344 		ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
345 		if (ed == NULL) {
346 			aprint_error_dev(self,
347 			    "no endpoint descriptor for iface %d\n", i);
348 			return;
349 		}
350 
351 		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
352 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
353 			sc->sc_rx_no = ed->bEndpointAddress;
354 		else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
355 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
356 			sc->sc_tx_no = ed->bEndpointAddress;
357 	}
358 	if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
359 		aprint_error_dev(self, "missing endpoint\n");
360 		return;
361 	}
362 
363 	usb_init_task(&sc->sc_task, rum_task, sc);
364 	callout_init(&sc->sc_scan_ch, 0);
365 
366 	sc->amrr.amrr_min_success_threshold =  1;
367 	sc->amrr.amrr_max_success_threshold = 10;
368 	callout_init(&sc->sc_amrr_ch, 0);
369 
370 	/* retrieve RT2573 rev. no */
371 	for (ntries = 0; ntries < 1000; ntries++) {
372 		if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
373 			break;
374 		DELAY(1000);
375 	}
376 	if (ntries == 1000) {
377 		aprint_error_dev(self, "timeout waiting for chip to settle\n");
378 		return;
379 	}
380 
381 	/* retrieve MAC address and various other things from EEPROM */
382 	rum_read_eeprom(sc);
383 
384 	aprint_normal_dev(self,
385 	    "MAC/BBP RT%04x (rev 0x%05x), RF %s, address %s\n",
386 	    sc->macbbp_rev, tmp,
387 	    rum_get_rf(sc->rf_rev), ether_sprintf(ic->ic_myaddr));
388 
389 	ic->ic_ifp = ifp;
390 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
391 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
392 	ic->ic_state = IEEE80211_S_INIT;
393 
394 	/* set device capabilities */
395 	ic->ic_caps =
396 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
397 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
398 	    IEEE80211_C_HOSTAP |	/* HostAp mode supported */
399 	    IEEE80211_C_TXPMGT |	/* tx power management */
400 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
401 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
402 	    IEEE80211_C_WPA;		/* 802.11i */
403 
404 	if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) {
405 		/* set supported .11a rates */
406 		ic->ic_sup_rates[IEEE80211_MODE_11A] = rum_rateset_11a;
407 
408 		/* set supported .11a channels */
409 		for (i = 34; i <= 46; i += 4) {
410 			ic->ic_channels[i].ic_freq =
411 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
412 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
413 		}
414 		for (i = 36; i <= 64; i += 4) {
415 			ic->ic_channels[i].ic_freq =
416 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
417 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
418 		}
419 		for (i = 100; i <= 140; i += 4) {
420 			ic->ic_channels[i].ic_freq =
421 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
422 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
423 		}
424 		for (i = 149; i <= 165; i += 4) {
425 			ic->ic_channels[i].ic_freq =
426 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
427 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
428 		}
429 	}
430 
431 	/* set supported .11b and .11g rates */
432 	ic->ic_sup_rates[IEEE80211_MODE_11B] = rum_rateset_11b;
433 	ic->ic_sup_rates[IEEE80211_MODE_11G] = rum_rateset_11g;
434 
435 	/* set supported .11b and .11g channels (1 through 14) */
436 	for (i = 1; i <= 14; i++) {
437 		ic->ic_channels[i].ic_freq =
438 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
439 		ic->ic_channels[i].ic_flags =
440 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
441 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
442 	}
443 
444 	ifp->if_softc = sc;
445 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
446 	ifp->if_init = rum_init;
447 	ifp->if_ioctl = rum_ioctl;
448 	ifp->if_start = rum_start;
449 	ifp->if_watchdog = rum_watchdog;
450 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
451 	IFQ_SET_READY(&ifp->if_snd);
452 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
453 
454 	if_attach(ifp);
455 	ieee80211_ifattach(ic);
456 	ic->ic_newassoc = rum_newassoc;
457 
458 	/* override state transition machine */
459 	sc->sc_newstate = ic->ic_newstate;
460 	ic->ic_newstate = rum_newstate;
461 	ieee80211_media_init(ic, rum_media_change, ieee80211_media_status);
462 
463 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
464 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
465 	    &sc->sc_drvbpf);
466 
467 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
468 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
469 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT);
470 
471 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
472 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
473 	sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT);
474 
475 	ieee80211_announce(ic);
476 
477 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev,
478 	    sc->sc_dev);
479 
480 	return;
481 }
482 
483 static int
484 rum_detach(device_t self, int flags)
485 {
486 	struct rum_softc *sc = device_private(self);
487 	struct ieee80211com *ic = &sc->sc_ic;
488 	struct ifnet *ifp = &sc->sc_if;
489 	int s;
490 
491 	if (!ifp->if_softc)
492 		return 0;
493 
494 	s = splusb();
495 
496 	rum_stop(ifp, 1);
497 	usb_rem_task(sc->sc_udev, &sc->sc_task);
498 	callout_stop(&sc->sc_scan_ch);
499 	callout_stop(&sc->sc_amrr_ch);
500 
501 	if (sc->amrr_xfer != NULL) {
502 		usbd_free_xfer(sc->amrr_xfer);
503 		sc->amrr_xfer = NULL;
504 	}
505 
506 	if (sc->sc_rx_pipeh != NULL) {
507 		usbd_abort_pipe(sc->sc_rx_pipeh);
508 		usbd_close_pipe(sc->sc_rx_pipeh);
509 	}
510 
511 	if (sc->sc_tx_pipeh != NULL) {
512 		usbd_abort_pipe(sc->sc_tx_pipeh);
513 		usbd_close_pipe(sc->sc_tx_pipeh);
514 	}
515 
516 	bpf_detach(ifp);
517 	ieee80211_ifdetach(ic);	/* free all nodes */
518 	if_detach(ifp);
519 
520 	splx(s);
521 
522 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
523 
524 	return 0;
525 }
526 
527 static int
528 rum_alloc_tx_list(struct rum_softc *sc)
529 {
530 	struct rum_tx_data *data;
531 	int i, error;
532 
533 	sc->tx_cur = sc->tx_queued = 0;
534 
535 	for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
536 		data = &sc->tx_data[i];
537 
538 		data->sc = sc;
539 
540 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
541 		if (data->xfer == NULL) {
542 			printf("%s: could not allocate tx xfer\n",
543 			    device_xname(sc->sc_dev));
544 			error = ENOMEM;
545 			goto fail;
546 		}
547 
548 		data->buf = usbd_alloc_buffer(data->xfer,
549 		    RT2573_TX_DESC_SIZE + IEEE80211_MAX_LEN);
550 		if (data->buf == NULL) {
551 			printf("%s: could not allocate tx buffer\n",
552 			    device_xname(sc->sc_dev));
553 			error = ENOMEM;
554 			goto fail;
555 		}
556 
557 		/* clean Tx descriptor */
558 		memset(data->buf, 0, RT2573_TX_DESC_SIZE);
559 	}
560 
561 	return 0;
562 
563 fail:	rum_free_tx_list(sc);
564 	return error;
565 }
566 
567 static void
568 rum_free_tx_list(struct rum_softc *sc)
569 {
570 	struct rum_tx_data *data;
571 	int i;
572 
573 	for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
574 		data = &sc->tx_data[i];
575 
576 		if (data->xfer != NULL) {
577 			usbd_free_xfer(data->xfer);
578 			data->xfer = NULL;
579 		}
580 
581 		if (data->ni != NULL) {
582 			ieee80211_free_node(data->ni);
583 			data->ni = NULL;
584 		}
585 	}
586 }
587 
588 static int
589 rum_alloc_rx_list(struct rum_softc *sc)
590 {
591 	struct rum_rx_data *data;
592 	int i, error;
593 
594 	for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
595 		data = &sc->rx_data[i];
596 
597 		data->sc = sc;
598 
599 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
600 		if (data->xfer == NULL) {
601 			printf("%s: could not allocate rx xfer\n",
602 			    device_xname(sc->sc_dev));
603 			error = ENOMEM;
604 			goto fail;
605 		}
606 
607 		if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) {
608 			printf("%s: could not allocate rx buffer\n",
609 			    device_xname(sc->sc_dev));
610 			error = ENOMEM;
611 			goto fail;
612 		}
613 
614 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
615 		if (data->m == NULL) {
616 			printf("%s: could not allocate rx mbuf\n",
617 			    device_xname(sc->sc_dev));
618 			error = ENOMEM;
619 			goto fail;
620 		}
621 
622 		MCLGET(data->m, M_DONTWAIT);
623 		if (!(data->m->m_flags & M_EXT)) {
624 			printf("%s: could not allocate rx mbuf cluster\n",
625 			    device_xname(sc->sc_dev));
626 			error = ENOMEM;
627 			goto fail;
628 		}
629 
630 		data->buf = mtod(data->m, uint8_t *);
631 	}
632 
633 	return 0;
634 
635 fail:	rum_free_rx_list(sc);
636 	return error;
637 }
638 
639 static void
640 rum_free_rx_list(struct rum_softc *sc)
641 {
642 	struct rum_rx_data *data;
643 	int i;
644 
645 	for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
646 		data = &sc->rx_data[i];
647 
648 		if (data->xfer != NULL) {
649 			usbd_free_xfer(data->xfer);
650 			data->xfer = NULL;
651 		}
652 
653 		if (data->m != NULL) {
654 			m_freem(data->m);
655 			data->m = NULL;
656 		}
657 	}
658 }
659 
660 static int
661 rum_media_change(struct ifnet *ifp)
662 {
663 	int error;
664 
665 	error = ieee80211_media_change(ifp);
666 	if (error != ENETRESET)
667 		return error;
668 
669 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
670 		rum_init(ifp);
671 
672 	return 0;
673 }
674 
675 /*
676  * This function is called periodically (every 200ms) during scanning to
677  * switch from one channel to another.
678  */
679 static void
680 rum_next_scan(void *arg)
681 {
682 	struct rum_softc *sc = arg;
683 	struct ieee80211com *ic = &sc->sc_ic;
684 	int s;
685 
686 	s = splnet();
687 	if (ic->ic_state == IEEE80211_S_SCAN)
688 		ieee80211_next_scan(ic);
689 	splx(s);
690 }
691 
692 static void
693 rum_task(void *arg)
694 {
695 	struct rum_softc *sc = arg;
696 	struct ieee80211com *ic = &sc->sc_ic;
697 	enum ieee80211_state ostate;
698 	struct ieee80211_node *ni;
699 	uint32_t tmp;
700 
701 	ostate = ic->ic_state;
702 
703 	switch (sc->sc_state) {
704 	case IEEE80211_S_INIT:
705 		if (ostate == IEEE80211_S_RUN) {
706 			/* abort TSF synchronization */
707 			tmp = rum_read(sc, RT2573_TXRX_CSR9);
708 			rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
709 		}
710 		break;
711 
712 	case IEEE80211_S_SCAN:
713 		rum_set_chan(sc, ic->ic_curchan);
714 		callout_reset(&sc->sc_scan_ch, hz / 5, rum_next_scan, sc);
715 		break;
716 
717 	case IEEE80211_S_AUTH:
718 		rum_set_chan(sc, ic->ic_curchan);
719 		break;
720 
721 	case IEEE80211_S_ASSOC:
722 		rum_set_chan(sc, ic->ic_curchan);
723 		break;
724 
725 	case IEEE80211_S_RUN:
726 		rum_set_chan(sc, ic->ic_curchan);
727 
728 		ni = ic->ic_bss;
729 
730 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
731 			rum_update_slot(sc);
732 			rum_enable_mrr(sc);
733 			rum_set_txpreamble(sc);
734 			rum_set_basicrates(sc);
735 			rum_set_bssid(sc, ni->ni_bssid);
736 		}
737 
738 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
739 		    ic->ic_opmode == IEEE80211_M_IBSS)
740 			rum_prepare_beacon(sc);
741 
742 		if (ic->ic_opmode != IEEE80211_M_MONITOR)
743 			rum_enable_tsf_sync(sc);
744 
745 		if (ic->ic_opmode == IEEE80211_M_STA) {
746 			/* fake a join to init the tx rate */
747 			rum_newassoc(ic->ic_bss, 1);
748 
749 			/* enable automatic rate adaptation in STA mode */
750 			if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
751 				rum_amrr_start(sc, ni);
752 		}
753 
754 		break;
755 	}
756 
757 	sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
758 }
759 
760 static int
761 rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
762 {
763 	struct rum_softc *sc = ic->ic_ifp->if_softc;
764 
765 	usb_rem_task(sc->sc_udev, &sc->sc_task);
766 	callout_stop(&sc->sc_scan_ch);
767 	callout_stop(&sc->sc_amrr_ch);
768 
769 	/* do it in a process context */
770 	sc->sc_state = nstate;
771 	sc->sc_arg = arg;
772 	usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
773 
774 	return 0;
775 }
776 
777 /* quickly determine if a given rate is CCK or OFDM */
778 #define RUM_RATE_IS_OFDM(rate)	((rate) >= 12 && (rate) != 22)
779 
780 #define RUM_ACK_SIZE	14	/* 10 + 4(FCS) */
781 #define RUM_CTS_SIZE	14	/* 10 + 4(FCS) */
782 
783 static void
784 rum_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
785 {
786 	struct rum_tx_data *data = priv;
787 	struct rum_softc *sc = data->sc;
788 	struct ifnet *ifp = &sc->sc_if;
789 	int s;
790 
791 	if (status != USBD_NORMAL_COMPLETION) {
792 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
793 			return;
794 
795 		printf("%s: could not transmit buffer: %s\n",
796 		    device_xname(sc->sc_dev), usbd_errstr(status));
797 
798 		if (status == USBD_STALLED)
799 			usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
800 
801 		ifp->if_oerrors++;
802 		return;
803 	}
804 
805 	s = splnet();
806 
807 	ieee80211_free_node(data->ni);
808 	data->ni = NULL;
809 
810 	sc->tx_queued--;
811 	ifp->if_opackets++;
812 
813 	DPRINTFN(10, ("tx done\n"));
814 
815 	sc->sc_tx_timer = 0;
816 	ifp->if_flags &= ~IFF_OACTIVE;
817 	rum_start(ifp);
818 
819 	splx(s);
820 }
821 
822 static void
823 rum_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
824 {
825 	struct rum_rx_data *data = priv;
826 	struct rum_softc *sc = data->sc;
827 	struct ieee80211com *ic = &sc->sc_ic;
828 	struct ifnet *ifp = &sc->sc_if;
829 	struct rum_rx_desc *desc;
830 	struct ieee80211_frame *wh;
831 	struct ieee80211_node *ni;
832 	struct mbuf *mnew, *m;
833 	int s, len;
834 
835 	if (status != USBD_NORMAL_COMPLETION) {
836 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
837 			return;
838 
839 		if (status == USBD_STALLED)
840 			usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
841 		goto skip;
842 	}
843 
844 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
845 
846 	if (len < RT2573_RX_DESC_SIZE + sizeof (struct ieee80211_frame_min)) {
847 		DPRINTF(("%s: xfer too short %d\n", device_xname(sc->sc_dev),
848 		    len));
849 		ifp->if_ierrors++;
850 		goto skip;
851 	}
852 
853 	desc = (struct rum_rx_desc *)data->buf;
854 
855 	if (le32toh(desc->flags) & RT2573_RX_CRC_ERROR) {
856 		/*
857 		 * This should not happen since we did not request to receive
858 		 * those frames when we filled RT2573_TXRX_CSR0.
859 		 */
860 		DPRINTFN(5, ("CRC error\n"));
861 		ifp->if_ierrors++;
862 		goto skip;
863 	}
864 
865 	MGETHDR(mnew, M_DONTWAIT, MT_DATA);
866 	if (mnew == NULL) {
867 		printf("%s: could not allocate rx mbuf\n",
868 		    device_xname(sc->sc_dev));
869 		ifp->if_ierrors++;
870 		goto skip;
871 	}
872 
873 	MCLGET(mnew, M_DONTWAIT);
874 	if (!(mnew->m_flags & M_EXT)) {
875 		printf("%s: could not allocate rx mbuf cluster\n",
876 		    device_xname(sc->sc_dev));
877 		m_freem(mnew);
878 		ifp->if_ierrors++;
879 		goto skip;
880 	}
881 
882 	m = data->m;
883 	data->m = mnew;
884 	data->buf = mtod(data->m, uint8_t *);
885 
886 	/* finalize mbuf */
887 	m->m_pkthdr.rcvif = ifp;
888 	m->m_data = (void *)(desc + 1);
889 	m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
890 
891 	s = splnet();
892 
893 	if (sc->sc_drvbpf != NULL) {
894 		struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
895 
896 		tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
897 		tap->wr_rate = rum_rxrate(desc);
898 		tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
899 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
900 		tap->wr_antenna = sc->rx_ant;
901 		tap->wr_antsignal = desc->rssi;
902 
903 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
904 	}
905 
906 	wh = mtod(m, struct ieee80211_frame *);
907 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
908 
909 	/* send the frame to the 802.11 layer */
910 	ieee80211_input(ic, m, ni, desc->rssi, 0);
911 
912 	/* node is no longer needed */
913 	ieee80211_free_node(ni);
914 
915 	splx(s);
916 
917 	DPRINTFN(15, ("rx done\n"));
918 
919 skip:	/* setup a new transfer */
920 	usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES,
921 	    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
922 	usbd_transfer(xfer);
923 }
924 
925 /*
926  * This function is only used by the Rx radiotap code. It returns the rate at
927  * which a given frame was received.
928  */
929 static uint8_t
930 rum_rxrate(const struct rum_rx_desc *desc)
931 {
932 	if (le32toh(desc->flags) & RT2573_RX_OFDM) {
933 		/* reverse function of rum_plcp_signal */
934 		switch (desc->rate) {
935 		case 0xb:	return 12;
936 		case 0xf:	return 18;
937 		case 0xa:	return 24;
938 		case 0xe:	return 36;
939 		case 0x9:	return 48;
940 		case 0xd:	return 72;
941 		case 0x8:	return 96;
942 		case 0xc:	return 108;
943 		}
944 	} else {
945 		if (desc->rate == 10)
946 			return 2;
947 		if (desc->rate == 20)
948 			return 4;
949 		if (desc->rate == 55)
950 			return 11;
951 		if (desc->rate == 110)
952 			return 22;
953 	}
954 	return 2;	/* should not get there */
955 }
956 
957 /*
958  * Return the expected ack rate for a frame transmitted at rate `rate'.
959  * XXX: this should depend on the destination node basic rate set.
960  */
961 static int
962 rum_ack_rate(struct ieee80211com *ic, int rate)
963 {
964 	switch (rate) {
965 	/* CCK rates */
966 	case 2:
967 		return 2;
968 	case 4:
969 	case 11:
970 	case 22:
971 		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
972 
973 	/* OFDM rates */
974 	case 12:
975 	case 18:
976 		return 12;
977 	case 24:
978 	case 36:
979 		return 24;
980 	case 48:
981 	case 72:
982 	case 96:
983 	case 108:
984 		return 48;
985 	}
986 
987 	/* default to 1Mbps */
988 	return 2;
989 }
990 
991 /*
992  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
993  * The function automatically determines the operating mode depending on the
994  * given rate. `flags' indicates whether short preamble is in use or not.
995  */
996 static uint16_t
997 rum_txtime(int len, int rate, uint32_t flags)
998 {
999 	uint16_t txtime;
1000 
1001 	if (RUM_RATE_IS_OFDM(rate)) {
1002 		/* IEEE Std 802.11a-1999, pp. 37 */
1003 		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1004 		txtime = 16 + 4 + 4 * txtime + 6;
1005 	} else {
1006 		/* IEEE Std 802.11b-1999, pp. 28 */
1007 		txtime = (16 * len + rate - 1) / rate;
1008 		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1009 			txtime +=  72 + 24;
1010 		else
1011 			txtime += 144 + 48;
1012 	}
1013 	return txtime;
1014 }
1015 
1016 static uint8_t
1017 rum_plcp_signal(int rate)
1018 {
1019 	switch (rate) {
1020 	/* CCK rates (returned values are device-dependent) */
1021 	case 2:		return 0x0;
1022 	case 4:		return 0x1;
1023 	case 11:	return 0x2;
1024 	case 22:	return 0x3;
1025 
1026 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1027 	case 12:	return 0xb;
1028 	case 18:	return 0xf;
1029 	case 24:	return 0xa;
1030 	case 36:	return 0xe;
1031 	case 48:	return 0x9;
1032 	case 72:	return 0xd;
1033 	case 96:	return 0x8;
1034 	case 108:	return 0xc;
1035 
1036 	/* unsupported rates (should not get there) */
1037 	default:	return 0xff;
1038 	}
1039 }
1040 
1041 static void
1042 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
1043     uint32_t flags, uint16_t xflags, int len, int rate)
1044 {
1045 	struct ieee80211com *ic = &sc->sc_ic;
1046 	uint16_t plcp_length;
1047 	int remainder;
1048 
1049 	desc->flags = htole32(flags);
1050 	desc->flags |= htole32(RT2573_TX_VALID);
1051 	desc->flags |= htole32(len << 16);
1052 
1053 	desc->xflags = htole16(xflags);
1054 
1055 	desc->wme = htole16(
1056 	    RT2573_QID(0) |
1057 	    RT2573_AIFSN(2) |
1058 	    RT2573_LOGCWMIN(4) |
1059 	    RT2573_LOGCWMAX(10));
1060 
1061 	/* setup PLCP fields */
1062 	desc->plcp_signal  = rum_plcp_signal(rate);
1063 	desc->plcp_service = 4;
1064 
1065 	len += IEEE80211_CRC_LEN;
1066 	if (RUM_RATE_IS_OFDM(rate)) {
1067 		desc->flags |= htole32(RT2573_TX_OFDM);
1068 
1069 		plcp_length = len & 0xfff;
1070 		desc->plcp_length_hi = plcp_length >> 6;
1071 		desc->plcp_length_lo = plcp_length & 0x3f;
1072 	} else {
1073 		plcp_length = (16 * len + rate - 1) / rate;
1074 		if (rate == 22) {
1075 			remainder = (16 * len) % 22;
1076 			if (remainder != 0 && remainder < 7)
1077 				desc->plcp_service |= RT2573_PLCP_LENGEXT;
1078 		}
1079 		desc->plcp_length_hi = plcp_length >> 8;
1080 		desc->plcp_length_lo = plcp_length & 0xff;
1081 
1082 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1083 			desc->plcp_signal |= 0x08;
1084 	}
1085 }
1086 
1087 #define RUM_TX_TIMEOUT	5000
1088 
1089 static int
1090 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1091 {
1092 	struct ieee80211com *ic = &sc->sc_ic;
1093 	struct rum_tx_desc *desc;
1094 	struct rum_tx_data *data;
1095 	struct ieee80211_frame *wh;
1096 	struct ieee80211_key *k;
1097 	uint32_t flags = 0;
1098 	uint16_t dur;
1099 	usbd_status error;
1100 	int rate, xferlen, pktlen, needrts = 0, needcts = 0;
1101 
1102 	wh = mtod(m0, struct ieee80211_frame *);
1103 
1104 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1105 		k = ieee80211_crypto_encap(ic, ni, m0);
1106 		if (k == NULL) {
1107 			m_freem(m0);
1108 			return ENOBUFS;
1109 		}
1110 
1111 		/* packet header may have moved, reset our local pointer */
1112 		wh = mtod(m0, struct ieee80211_frame *);
1113 	}
1114 
1115 	/* compute actual packet length (including CRC and crypto overhead) */
1116 	pktlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
1117 
1118 	/* pickup a rate */
1119 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
1120 	    ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1121 	     IEEE80211_FC0_TYPE_MGT)) {
1122 		/* mgmt/multicast frames are sent at the lowest avail. rate */
1123 		rate = ni->ni_rates.rs_rates[0];
1124 	} else if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
1125 		rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
1126 	} else
1127 		rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1128 	if (rate == 0)
1129 		rate = 2;	/* XXX should not happen */
1130 	rate &= IEEE80211_RATE_VAL;
1131 
1132 	/* check if RTS/CTS or CTS-to-self protection must be used */
1133 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1134 		/* multicast frames are not sent at OFDM rates in 802.11b/g */
1135 		if (pktlen > ic->ic_rtsthreshold) {
1136 			needrts = 1;	/* RTS/CTS based on frame length */
1137 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1138 		    RUM_RATE_IS_OFDM(rate)) {
1139 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
1140 				needcts = 1;	/* CTS-to-self */
1141 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
1142 				needrts = 1;	/* RTS/CTS */
1143 		}
1144 	}
1145 	if (needrts || needcts) {
1146 		struct mbuf *mprot;
1147 		int protrate, ackrate;
1148 
1149 		protrate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1150 		ackrate  = rum_ack_rate(ic, rate);
1151 
1152 		dur = rum_txtime(pktlen, rate, ic->ic_flags) +
1153 		      rum_txtime(RUM_ACK_SIZE, ackrate, ic->ic_flags) +
1154 		      2 * sc->sifs;
1155 		if (needrts) {
1156 			dur += rum_txtime(RUM_CTS_SIZE, rum_ack_rate(ic,
1157 			    protrate), ic->ic_flags) + sc->sifs;
1158 			mprot = ieee80211_get_rts(ic, wh, dur);
1159 		} else {
1160 			mprot = ieee80211_get_cts_to_self(ic, dur);
1161 		}
1162 		if (mprot == NULL) {
1163 			aprint_error_dev(sc->sc_dev,
1164 			    "couldn't allocate protection frame\n");
1165 			m_freem(m0);
1166 			return ENOBUFS;
1167 		}
1168 
1169 		data = &sc->tx_data[sc->tx_cur];
1170 		desc = (struct rum_tx_desc *)data->buf;
1171 
1172 		/* avoid multiple free() of the same node for each fragment */
1173 		data->ni = ieee80211_ref_node(ni);
1174 
1175 		m_copydata(mprot, 0, mprot->m_pkthdr.len,
1176 		    data->buf + RT2573_TX_DESC_SIZE);
1177 		rum_setup_tx_desc(sc, desc,
1178 		    (needrts ? RT2573_TX_NEED_ACK : 0) | RT2573_TX_MORE_FRAG,
1179 		    0, mprot->m_pkthdr.len, protrate);
1180 
1181 		/* no roundup necessary here */
1182 		xferlen = RT2573_TX_DESC_SIZE + mprot->m_pkthdr.len;
1183 
1184 		/* XXX may want to pass the protection frame to BPF */
1185 
1186 		/* mbuf is no longer needed */
1187 		m_freem(mprot);
1188 
1189 		usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf,
1190 		    xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY,
1191 		    RUM_TX_TIMEOUT, rum_txeof);
1192 		error = usbd_transfer(data->xfer);
1193 		if (error != USBD_NORMAL_COMPLETION &&
1194 		    error != USBD_IN_PROGRESS) {
1195 			m_freem(m0);
1196 			return error;
1197 		}
1198 
1199 		sc->tx_queued++;
1200 		sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT;
1201 
1202 		flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS;
1203 	}
1204 
1205 	data = &sc->tx_data[sc->tx_cur];
1206 	desc = (struct rum_tx_desc *)data->buf;
1207 
1208 	data->ni = ni;
1209 
1210 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1211 		flags |= RT2573_TX_NEED_ACK;
1212 
1213 		dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
1214 		    ic->ic_flags) + sc->sifs;
1215 		*(uint16_t *)wh->i_dur = htole16(dur);
1216 
1217 		/* tell hardware to set timestamp in probe responses */
1218 		if ((wh->i_fc[0] &
1219 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1220 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1221 			flags |= RT2573_TX_TIMESTAMP;
1222 	}
1223 
1224 	if (sc->sc_drvbpf != NULL) {
1225 		struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1226 
1227 		tap->wt_flags = 0;
1228 		tap->wt_rate = rate;
1229 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1230 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1231 		tap->wt_antenna = sc->tx_ant;
1232 
1233 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1234 	}
1235 
1236 	m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
1237 	rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1238 
1239 	/* align end on a 4-bytes boundary */
1240 	xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1241 
1242 	/*
1243 	 * No space left in the last URB to store the extra 4 bytes, force
1244 	 * sending of another URB.
1245 	 */
1246 	if ((xferlen % 64) == 0)
1247 		xferlen += 4;
1248 
1249 	DPRINTFN(10, ("sending data frame len=%zu rate=%u xfer len=%u\n",
1250 	    (size_t)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE,
1251 	    rate, xferlen));
1252 
1253 	/* mbuf is no longer needed */
1254 	m_freem(m0);
1255 
1256 	usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen,
1257 	    USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof);
1258 	error = usbd_transfer(data->xfer);
1259 	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
1260 		return error;
1261 
1262 	sc->tx_queued++;
1263 	sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT;
1264 
1265 	return 0;
1266 }
1267 
1268 static void
1269 rum_start(struct ifnet *ifp)
1270 {
1271 	struct rum_softc *sc = ifp->if_softc;
1272 	struct ieee80211com *ic = &sc->sc_ic;
1273 	struct ether_header *eh;
1274 	struct ieee80211_node *ni;
1275 	struct mbuf *m0;
1276 
1277 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1278 		return;
1279 
1280 	for (;;) {
1281 		IF_POLL(&ic->ic_mgtq, m0);
1282 		if (m0 != NULL) {
1283 			if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) {
1284 				ifp->if_flags |= IFF_OACTIVE;
1285 				break;
1286 			}
1287 			IF_DEQUEUE(&ic->ic_mgtq, m0);
1288 
1289 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1290 			m0->m_pkthdr.rcvif = NULL;
1291 			bpf_mtap3(ic->ic_rawbpf, m0);
1292 			if (rum_tx_data(sc, m0, ni) != 0)
1293 				break;
1294 
1295 		} else {
1296 			if (ic->ic_state != IEEE80211_S_RUN)
1297 				break;
1298 			IFQ_POLL(&ifp->if_snd, m0);
1299 			if (m0 == NULL)
1300 				break;
1301 			if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) {
1302 				ifp->if_flags |= IFF_OACTIVE;
1303 				break;
1304 			}
1305 			IFQ_DEQUEUE(&ifp->if_snd, m0);
1306 			if (m0->m_len < sizeof(struct ether_header) &&
1307 			    !(m0 = m_pullup(m0, sizeof(struct ether_header))))
1308 				continue;
1309 
1310 			eh = mtod(m0, struct ether_header *);
1311 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1312 			if (ni == NULL) {
1313 				m_freem(m0);
1314 				continue;
1315 			}
1316 			bpf_mtap(ifp, m0);
1317 			m0 = ieee80211_encap(ic, m0, ni);
1318 			if (m0 == NULL) {
1319 				ieee80211_free_node(ni);
1320 				continue;
1321 			}
1322 			bpf_mtap3(ic->ic_rawbpf, m0);
1323 			if (rum_tx_data(sc, m0, ni) != 0) {
1324 				ieee80211_free_node(ni);
1325 				ifp->if_oerrors++;
1326 				break;
1327 			}
1328 		}
1329 
1330 		sc->sc_tx_timer = 5;
1331 		ifp->if_timer = 1;
1332 	}
1333 }
1334 
1335 static void
1336 rum_watchdog(struct ifnet *ifp)
1337 {
1338 	struct rum_softc *sc = ifp->if_softc;
1339 	struct ieee80211com *ic = &sc->sc_ic;
1340 
1341 	ifp->if_timer = 0;
1342 
1343 	if (sc->sc_tx_timer > 0) {
1344 		if (--sc->sc_tx_timer == 0) {
1345 			printf("%s: device timeout\n", device_xname(sc->sc_dev));
1346 			/*rum_init(ifp); XXX needs a process context! */
1347 			ifp->if_oerrors++;
1348 			return;
1349 		}
1350 		ifp->if_timer = 1;
1351 	}
1352 
1353 	ieee80211_watchdog(ic);
1354 }
1355 
1356 static int
1357 rum_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1358 {
1359 #define IS_RUNNING(ifp) \
1360 	(((ifp)->if_flags & IFF_UP) && ((ifp)->if_flags & IFF_RUNNING))
1361 
1362 	struct rum_softc *sc = ifp->if_softc;
1363 	struct ieee80211com *ic = &sc->sc_ic;
1364 	int s, error = 0;
1365 
1366 	s = splnet();
1367 
1368 	switch (cmd) {
1369 	case SIOCSIFFLAGS:
1370 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1371 			break;
1372 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
1373 		case IFF_UP|IFF_RUNNING:
1374 			rum_update_promisc(sc);
1375 			break;
1376 		case IFF_UP:
1377 			rum_init(ifp);
1378 			break;
1379 		case IFF_RUNNING:
1380 			rum_stop(ifp, 1);
1381 			break;
1382 		case 0:
1383 			break;
1384 		}
1385 		break;
1386 
1387 	case SIOCADDMULTI:
1388 	case SIOCDELMULTI:
1389 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1390 			error = 0;
1391 		}
1392 		break;
1393 
1394 	default:
1395 		error = ieee80211_ioctl(ic, cmd, data);
1396 	}
1397 
1398 	if (error == ENETRESET) {
1399 		if (IS_RUNNING(ifp) &&
1400 			(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
1401 			rum_init(ifp);
1402 		error = 0;
1403 	}
1404 
1405 	splx(s);
1406 
1407 	return error;
1408 #undef IS_RUNNING
1409 }
1410 
1411 static void
1412 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
1413 {
1414 	usb_device_request_t req;
1415 	usbd_status error;
1416 
1417 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1418 	req.bRequest = RT2573_READ_EEPROM;
1419 	USETW(req.wValue, 0);
1420 	USETW(req.wIndex, addr);
1421 	USETW(req.wLength, len);
1422 
1423 	error = usbd_do_request(sc->sc_udev, &req, buf);
1424 	if (error != 0) {
1425 		printf("%s: could not read EEPROM: %s\n",
1426 		    device_xname(sc->sc_dev), usbd_errstr(error));
1427 	}
1428 }
1429 
1430 static uint32_t
1431 rum_read(struct rum_softc *sc, uint16_t reg)
1432 {
1433 	uint32_t val;
1434 
1435 	rum_read_multi(sc, reg, &val, sizeof val);
1436 
1437 	return le32toh(val);
1438 }
1439 
1440 static void
1441 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
1442 {
1443 	usb_device_request_t req;
1444 	usbd_status error;
1445 
1446 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1447 	req.bRequest = RT2573_READ_MULTI_MAC;
1448 	USETW(req.wValue, 0);
1449 	USETW(req.wIndex, reg);
1450 	USETW(req.wLength, len);
1451 
1452 	error = usbd_do_request(sc->sc_udev, &req, buf);
1453 	if (error != 0) {
1454 		printf("%s: could not multi read MAC register: %s\n",
1455 		    device_xname(sc->sc_dev), usbd_errstr(error));
1456 	}
1457 }
1458 
1459 static void
1460 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
1461 {
1462 	uint32_t tmp = htole32(val);
1463 
1464 	rum_write_multi(sc, reg, &tmp, sizeof tmp);
1465 }
1466 
1467 static void
1468 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
1469 {
1470 	usb_device_request_t req;
1471 	usbd_status error;
1472 
1473 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1474 	req.bRequest = RT2573_WRITE_MULTI_MAC;
1475 	USETW(req.wValue, 0);
1476 	USETW(req.wIndex, reg);
1477 	USETW(req.wLength, len);
1478 
1479 	error = usbd_do_request(sc->sc_udev, &req, buf);
1480 	if (error != 0) {
1481 		printf("%s: could not multi write MAC register: %s\n",
1482 		    device_xname(sc->sc_dev), usbd_errstr(error));
1483 	}
1484 }
1485 
1486 static void
1487 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
1488 {
1489 	uint32_t tmp;
1490 	int ntries;
1491 
1492 	for (ntries = 0; ntries < 5; ntries++) {
1493 		if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1494 			break;
1495 	}
1496 	if (ntries == 5) {
1497 		printf("%s: could not write to BBP\n", device_xname(sc->sc_dev));
1498 		return;
1499 	}
1500 
1501 	tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
1502 	rum_write(sc, RT2573_PHY_CSR3, tmp);
1503 }
1504 
1505 static uint8_t
1506 rum_bbp_read(struct rum_softc *sc, uint8_t reg)
1507 {
1508 	uint32_t val;
1509 	int ntries;
1510 
1511 	for (ntries = 0; ntries < 5; ntries++) {
1512 		if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1513 			break;
1514 	}
1515 	if (ntries == 5) {
1516 		printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
1517 		return 0;
1518 	}
1519 
1520 	val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
1521 	rum_write(sc, RT2573_PHY_CSR3, val);
1522 
1523 	for (ntries = 0; ntries < 100; ntries++) {
1524 		val = rum_read(sc, RT2573_PHY_CSR3);
1525 		if (!(val & RT2573_BBP_BUSY))
1526 			return val & 0xff;
1527 		DELAY(1);
1528 	}
1529 
1530 	printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
1531 	return 0;
1532 }
1533 
1534 static void
1535 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
1536 {
1537 	uint32_t tmp;
1538 	int ntries;
1539 
1540 	for (ntries = 0; ntries < 5; ntries++) {
1541 		if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
1542 			break;
1543 	}
1544 	if (ntries == 5) {
1545 		printf("%s: could not write to RF\n", device_xname(sc->sc_dev));
1546 		return;
1547 	}
1548 
1549 	tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
1550 	    (reg & 3);
1551 	rum_write(sc, RT2573_PHY_CSR4, tmp);
1552 
1553 	/* remember last written value in sc */
1554 	sc->rf_regs[reg] = val;
1555 
1556 	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff));
1557 }
1558 
1559 static void
1560 rum_select_antenna(struct rum_softc *sc)
1561 {
1562 	uint8_t bbp4, bbp77;
1563 	uint32_t tmp;
1564 
1565 	bbp4  = rum_bbp_read(sc, 4);
1566 	bbp77 = rum_bbp_read(sc, 77);
1567 
1568 	/* TBD */
1569 
1570 	/* make sure Rx is disabled before switching antenna */
1571 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
1572 	rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
1573 
1574 	rum_bbp_write(sc,  4, bbp4);
1575 	rum_bbp_write(sc, 77, bbp77);
1576 
1577 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
1578 }
1579 
1580 /*
1581  * Enable multi-rate retries for frames sent at OFDM rates.
1582  * In 802.11b/g mode, allow fallback to CCK rates.
1583  */
1584 static void
1585 rum_enable_mrr(struct rum_softc *sc)
1586 {
1587 	struct ieee80211com *ic = &sc->sc_ic;
1588 	uint32_t tmp;
1589 
1590 	tmp = rum_read(sc, RT2573_TXRX_CSR4);
1591 
1592 	tmp &= ~RT2573_MRR_CCK_FALLBACK;
1593 	if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
1594 		tmp |= RT2573_MRR_CCK_FALLBACK;
1595 	tmp |= RT2573_MRR_ENABLED;
1596 
1597 	rum_write(sc, RT2573_TXRX_CSR4, tmp);
1598 }
1599 
1600 static void
1601 rum_set_txpreamble(struct rum_softc *sc)
1602 {
1603 	uint32_t tmp;
1604 
1605 	tmp = rum_read(sc, RT2573_TXRX_CSR4);
1606 
1607 	tmp &= ~RT2573_SHORT_PREAMBLE;
1608 	if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1609 		tmp |= RT2573_SHORT_PREAMBLE;
1610 
1611 	rum_write(sc, RT2573_TXRX_CSR4, tmp);
1612 }
1613 
1614 static void
1615 rum_set_basicrates(struct rum_softc *sc)
1616 {
1617 	struct ieee80211com *ic = &sc->sc_ic;
1618 
1619 	/* update basic rate set */
1620 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1621 		/* 11b basic rates: 1, 2Mbps */
1622 		rum_write(sc, RT2573_TXRX_CSR5, 0x3);
1623 	} else if (ic->ic_curmode == IEEE80211_MODE_11A) {
1624 		/* 11a basic rates: 6, 12, 24Mbps */
1625 		rum_write(sc, RT2573_TXRX_CSR5, 0x150);
1626 	} else {
1627 		/* 11b/g basic rates: 1, 2, 5.5, 11Mbps */
1628 		rum_write(sc, RT2573_TXRX_CSR5, 0xf);
1629 	}
1630 }
1631 
1632 /*
1633  * Reprogram MAC/BBP to switch to a new band.  Values taken from the reference
1634  * driver.
1635  */
1636 static void
1637 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
1638 {
1639 	uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
1640 	uint32_t tmp;
1641 
1642 	/* update all BBP registers that depend on the band */
1643 	bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
1644 	bbp35 = 0x50; bbp97 = 0x48; bbp98  = 0x48;
1645 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
1646 		bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
1647 		bbp35 += 0x10; bbp97 += 0x10; bbp98  += 0x10;
1648 	}
1649 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1650 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1651 		bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
1652 	}
1653 
1654 	sc->bbp17 = bbp17;
1655 	rum_bbp_write(sc,  17, bbp17);
1656 	rum_bbp_write(sc,  96, bbp96);
1657 	rum_bbp_write(sc, 104, bbp104);
1658 
1659 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1660 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1661 		rum_bbp_write(sc, 75, 0x80);
1662 		rum_bbp_write(sc, 86, 0x80);
1663 		rum_bbp_write(sc, 88, 0x80);
1664 	}
1665 
1666 	rum_bbp_write(sc, 35, bbp35);
1667 	rum_bbp_write(sc, 97, bbp97);
1668 	rum_bbp_write(sc, 98, bbp98);
1669 
1670 	tmp = rum_read(sc, RT2573_PHY_CSR0);
1671 	tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ);
1672 	if (IEEE80211_IS_CHAN_2GHZ(c))
1673 		tmp |= RT2573_PA_PE_2GHZ;
1674 	else
1675 		tmp |= RT2573_PA_PE_5GHZ;
1676 	rum_write(sc, RT2573_PHY_CSR0, tmp);
1677 
1678 	/* 802.11a uses a 16 microseconds short interframe space */
1679 	sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
1680 }
1681 
1682 static void
1683 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
1684 {
1685 	struct ieee80211com *ic = &sc->sc_ic;
1686 	const struct rfprog *rfprog;
1687 	uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
1688 	int8_t power;
1689 	u_int i, chan;
1690 
1691 	chan = ieee80211_chan2ieee(ic, c);
1692 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1693 		return;
1694 
1695 	/* select the appropriate RF settings based on what EEPROM says */
1696 	rfprog = (sc->rf_rev == RT2573_RF_5225 ||
1697 		  sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
1698 
1699 	/* find the settings for this channel (we know it exists) */
1700 	for (i = 0; rfprog[i].chan != chan; i++);
1701 
1702 	power = sc->txpow[i];
1703 	if (power < 0) {
1704 		bbp94 += power;
1705 		power = 0;
1706 	} else if (power > 31) {
1707 		bbp94 += power - 31;
1708 		power = 31;
1709 	}
1710 
1711 	/*
1712 	 * If we are switching from the 2GHz band to the 5GHz band or
1713 	 * vice-versa, BBP registers need to be reprogrammed.
1714 	 */
1715 	if (c->ic_flags != ic->ic_curchan->ic_flags) {
1716 		rum_select_band(sc, c);
1717 		rum_select_antenna(sc);
1718 	}
1719 	ic->ic_curchan = c;
1720 
1721 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1722 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1723 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1724 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1725 
1726 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1727 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1728 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
1729 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1730 
1731 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1732 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1733 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1734 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1735 
1736 	DELAY(10);
1737 
1738 	/* enable smart mode for MIMO-capable RFs */
1739 	bbp3 = rum_bbp_read(sc, 3);
1740 
1741 	bbp3 &= ~RT2573_SMART_MODE;
1742 	if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
1743 		bbp3 |= RT2573_SMART_MODE;
1744 
1745 	rum_bbp_write(sc, 3, bbp3);
1746 
1747 	if (bbp94 != RT2573_BBPR94_DEFAULT)
1748 		rum_bbp_write(sc, 94, bbp94);
1749 }
1750 
1751 /*
1752  * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
1753  * and HostAP operating modes.
1754  */
1755 static void
1756 rum_enable_tsf_sync(struct rum_softc *sc)
1757 {
1758 	struct ieee80211com *ic = &sc->sc_ic;
1759 	uint32_t tmp;
1760 
1761 	if (ic->ic_opmode != IEEE80211_M_STA) {
1762 		/*
1763 		 * Change default 16ms TBTT adjustment to 8ms.
1764 		 * Must be done before enabling beacon generation.
1765 		 */
1766 		rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8);
1767 	}
1768 
1769 	tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
1770 
1771 	/* set beacon interval (in 1/16ms unit) */
1772 	tmp |= ic->ic_bss->ni_intval * 16;
1773 
1774 	tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT;
1775 	if (ic->ic_opmode == IEEE80211_M_STA)
1776 		tmp |= RT2573_TSF_MODE(1);
1777 	else
1778 		tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON;
1779 
1780 	rum_write(sc, RT2573_TXRX_CSR9, tmp);
1781 }
1782 
1783 static void
1784 rum_update_slot(struct rum_softc *sc)
1785 {
1786 	struct ieee80211com *ic = &sc->sc_ic;
1787 	uint8_t slottime;
1788 	uint32_t tmp;
1789 
1790 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1791 
1792 	tmp = rum_read(sc, RT2573_MAC_CSR9);
1793 	tmp = (tmp & ~0xff) | slottime;
1794 	rum_write(sc, RT2573_MAC_CSR9, tmp);
1795 
1796 	DPRINTF(("setting slot time to %uus\n", slottime));
1797 }
1798 
1799 static void
1800 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
1801 {
1802 	uint32_t tmp;
1803 
1804 	tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
1805 	rum_write(sc, RT2573_MAC_CSR4, tmp);
1806 
1807 	tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16;
1808 	rum_write(sc, RT2573_MAC_CSR5, tmp);
1809 }
1810 
1811 static void
1812 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
1813 {
1814 	uint32_t tmp;
1815 
1816 	tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
1817 	rum_write(sc, RT2573_MAC_CSR2, tmp);
1818 
1819 	tmp = addr[4] | addr[5] << 8 | 0xff << 16;
1820 	rum_write(sc, RT2573_MAC_CSR3, tmp);
1821 }
1822 
1823 static void
1824 rum_update_promisc(struct rum_softc *sc)
1825 {
1826 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1827 	uint32_t tmp;
1828 
1829 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
1830 
1831 	tmp &= ~RT2573_DROP_NOT_TO_ME;
1832 	if (!(ifp->if_flags & IFF_PROMISC))
1833 		tmp |= RT2573_DROP_NOT_TO_ME;
1834 
1835 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
1836 
1837 	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1838 	    "entering" : "leaving"));
1839 }
1840 
1841 static const char *
1842 rum_get_rf(int rev)
1843 {
1844 	switch (rev) {
1845 	case RT2573_RF_2527:	return "RT2527 (MIMO XR)";
1846 	case RT2573_RF_2528:	return "RT2528";
1847 	case RT2573_RF_5225:	return "RT5225 (MIMO XR)";
1848 	case RT2573_RF_5226:	return "RT5226";
1849 	default:		return "unknown";
1850 	}
1851 }
1852 
1853 static void
1854 rum_read_eeprom(struct rum_softc *sc)
1855 {
1856 	struct ieee80211com *ic = &sc->sc_ic;
1857 	uint16_t val;
1858 #ifdef RUM_DEBUG
1859 	int i;
1860 #endif
1861 
1862 	/* read MAC/BBP type */
1863 	rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2);
1864 	sc->macbbp_rev = le16toh(val);
1865 
1866 	/* read MAC address */
1867 	rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6);
1868 
1869 	rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
1870 	val = le16toh(val);
1871 	sc->rf_rev =   (val >> 11) & 0x1f;
1872 	sc->hw_radio = (val >> 10) & 0x1;
1873 	sc->rx_ant =   (val >> 4)  & 0x3;
1874 	sc->tx_ant =   (val >> 2)  & 0x3;
1875 	sc->nb_ant =   val & 0x3;
1876 
1877 	DPRINTF(("RF revision=%d\n", sc->rf_rev));
1878 
1879 	rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
1880 	val = le16toh(val);
1881 	sc->ext_5ghz_lna = (val >> 6) & 0x1;
1882 	sc->ext_2ghz_lna = (val >> 4) & 0x1;
1883 
1884 	DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
1885 	    sc->ext_2ghz_lna, sc->ext_5ghz_lna));
1886 
1887 	rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
1888 	val = le16toh(val);
1889 	if ((val & 0xff) != 0xff)
1890 		sc->rssi_2ghz_corr = (int8_t)(val & 0xff);	/* signed */
1891 
1892 	rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
1893 	val = le16toh(val);
1894 	if ((val & 0xff) != 0xff)
1895 		sc->rssi_5ghz_corr = (int8_t)(val & 0xff);	/* signed */
1896 
1897 	DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
1898 	    sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
1899 
1900 	rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
1901 	val = le16toh(val);
1902 	if ((val & 0xff) != 0xff)
1903 		sc->rffreq = val & 0xff;
1904 
1905 	DPRINTF(("RF freq=%d\n", sc->rffreq));
1906 
1907 	/* read Tx power for all a/b/g channels */
1908 	rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
1909 	/* XXX default Tx power for 802.11a channels */
1910 	memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14);
1911 #ifdef RUM_DEBUG
1912 	for (i = 0; i < 14; i++)
1913 		DPRINTF(("Channel=%d Tx power=%d\n", i + 1,  sc->txpow[i]));
1914 #endif
1915 
1916 	/* read default values for BBP registers */
1917 	rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1918 #ifdef RUM_DEBUG
1919 	for (i = 0; i < 14; i++) {
1920 		if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1921 			continue;
1922 		DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
1923 		    sc->bbp_prom[i].val));
1924 	}
1925 #endif
1926 }
1927 
1928 static int
1929 rum_bbp_init(struct rum_softc *sc)
1930 {
1931 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
1932 	int i, ntries;
1933 	uint8_t val;
1934 
1935 	/* wait for BBP to be ready */
1936 	for (ntries = 0; ntries < 100; ntries++) {
1937 		val = rum_bbp_read(sc, 0);
1938 		if (val != 0 && val != 0xff)
1939 			break;
1940 		DELAY(1000);
1941 	}
1942 	if (ntries == 100) {
1943 		printf("%s: timeout waiting for BBP\n",
1944 		    device_xname(sc->sc_dev));
1945 		return EIO;
1946 	}
1947 
1948 	/* initialize BBP registers to default values */
1949 	for (i = 0; i < N(rum_def_bbp); i++)
1950 		rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
1951 
1952 	/* write vendor-specific BBP values (from EEPROM) */
1953 	for (i = 0; i < 16; i++) {
1954 		if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1955 			continue;
1956 		rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
1957 	}
1958 
1959 	return 0;
1960 #undef N
1961 }
1962 
1963 static int
1964 rum_init(struct ifnet *ifp)
1965 {
1966 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
1967 	struct rum_softc *sc = ifp->if_softc;
1968 	struct ieee80211com *ic = &sc->sc_ic;
1969 	struct rum_rx_data *data;
1970 	uint32_t tmp;
1971 	usbd_status error = 0;
1972 	int i, ntries;
1973 
1974 	if ((sc->sc_flags & RT2573_FWLOADED) == 0) {
1975 		if (rum_attachhook(sc))
1976 			goto fail;
1977 	}
1978 
1979 	rum_stop(ifp, 0);
1980 
1981 	/* initialize MAC registers to default values */
1982 	for (i = 0; i < N(rum_def_mac); i++)
1983 		rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
1984 
1985 	/* set host ready */
1986 	rum_write(sc, RT2573_MAC_CSR1, 3);
1987 	rum_write(sc, RT2573_MAC_CSR1, 0);
1988 
1989 	/* wait for BBP/RF to wakeup */
1990 	for (ntries = 0; ntries < 1000; ntries++) {
1991 		if (rum_read(sc, RT2573_MAC_CSR12) & 8)
1992 			break;
1993 		rum_write(sc, RT2573_MAC_CSR12, 4);	/* force wakeup */
1994 		DELAY(1000);
1995 	}
1996 	if (ntries == 1000) {
1997 		printf("%s: timeout waiting for BBP/RF to wakeup\n",
1998 		    device_xname(sc->sc_dev));
1999 		goto fail;
2000 	}
2001 
2002 	if ((error = rum_bbp_init(sc)) != 0)
2003 		goto fail;
2004 
2005 	/* select default channel */
2006 	rum_select_band(sc, ic->ic_curchan);
2007 	rum_select_antenna(sc);
2008 	rum_set_chan(sc, ic->ic_curchan);
2009 
2010 	/* clear STA registers */
2011 	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
2012 
2013 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2014 	rum_set_macaddr(sc, ic->ic_myaddr);
2015 
2016 	/* initialize ASIC */
2017 	rum_write(sc, RT2573_MAC_CSR1, 4);
2018 
2019 	/*
2020 	 * Allocate xfer for AMRR statistics requests.
2021 	 */
2022 	sc->amrr_xfer = usbd_alloc_xfer(sc->sc_udev);
2023 	if (sc->amrr_xfer == NULL) {
2024 		printf("%s: could not allocate AMRR xfer\n",
2025 		    device_xname(sc->sc_dev));
2026 		goto fail;
2027 	}
2028 
2029 	/*
2030 	 * Open Tx and Rx USB bulk pipes.
2031 	 */
2032 	error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2033 	    &sc->sc_tx_pipeh);
2034 	if (error != 0) {
2035 		printf("%s: could not open Tx pipe: %s\n",
2036 		    device_xname(sc->sc_dev), usbd_errstr(error));
2037 		goto fail;
2038 	}
2039 
2040 	error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2041 	    &sc->sc_rx_pipeh);
2042 	if (error != 0) {
2043 		printf("%s: could not open Rx pipe: %s\n",
2044 		    device_xname(sc->sc_dev), usbd_errstr(error));
2045 		goto fail;
2046 	}
2047 
2048 	/*
2049 	 * Allocate Tx and Rx xfer queues.
2050 	 */
2051 	error = rum_alloc_tx_list(sc);
2052 	if (error != 0) {
2053 		printf("%s: could not allocate Tx list\n",
2054 		    device_xname(sc->sc_dev));
2055 		goto fail;
2056 	}
2057 
2058 	error = rum_alloc_rx_list(sc);
2059 	if (error != 0) {
2060 		printf("%s: could not allocate Rx list\n",
2061 		    device_xname(sc->sc_dev));
2062 		goto fail;
2063 	}
2064 
2065 	/*
2066 	 * Start up the receive pipe.
2067 	 */
2068 	for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
2069 		data = &sc->rx_data[i];
2070 
2071 		usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf,
2072 		    MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
2073 		error = usbd_transfer(data->xfer);
2074 		if (error != USBD_NORMAL_COMPLETION &&
2075 		    error != USBD_IN_PROGRESS) {
2076 			printf("%s: could not queue Rx transfer\n",
2077 			    device_xname(sc->sc_dev));
2078 			goto fail;
2079 		}
2080 	}
2081 
2082 	/* update Rx filter */
2083 	tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
2084 
2085 	tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
2086 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2087 		tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
2088 		       RT2573_DROP_ACKCTS;
2089 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2090 			tmp |= RT2573_DROP_TODS;
2091 		if (!(ifp->if_flags & IFF_PROMISC))
2092 			tmp |= RT2573_DROP_NOT_TO_ME;
2093 	}
2094 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
2095 
2096 	ifp->if_flags &= ~IFF_OACTIVE;
2097 	ifp->if_flags |= IFF_RUNNING;
2098 
2099 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2100 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2101 	else
2102 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2103 
2104 	return 0;
2105 
2106 fail:	rum_stop(ifp, 1);
2107 	return error;
2108 #undef N
2109 }
2110 
2111 static void
2112 rum_stop(struct ifnet *ifp, int disable)
2113 {
2114 	struct rum_softc *sc = ifp->if_softc;
2115 	struct ieee80211com *ic = &sc->sc_ic;
2116 	uint32_t tmp;
2117 
2118 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);	/* free all nodes */
2119 
2120 	sc->sc_tx_timer = 0;
2121 	ifp->if_timer = 0;
2122 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2123 
2124 	/* disable Rx */
2125 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
2126 	rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
2127 
2128 	/* reset ASIC */
2129 	rum_write(sc, RT2573_MAC_CSR1, 3);
2130 	rum_write(sc, RT2573_MAC_CSR1, 0);
2131 
2132 	if (sc->amrr_xfer != NULL) {
2133 		usbd_free_xfer(sc->amrr_xfer);
2134 		sc->amrr_xfer = NULL;
2135 	}
2136 
2137 	if (sc->sc_rx_pipeh != NULL) {
2138 		usbd_abort_pipe(sc->sc_rx_pipeh);
2139 		usbd_close_pipe(sc->sc_rx_pipeh);
2140 		sc->sc_rx_pipeh = NULL;
2141 	}
2142 
2143 	if (sc->sc_tx_pipeh != NULL) {
2144 		usbd_abort_pipe(sc->sc_tx_pipeh);
2145 		usbd_close_pipe(sc->sc_tx_pipeh);
2146 		sc->sc_tx_pipeh = NULL;
2147 	}
2148 
2149 	rum_free_rx_list(sc);
2150 	rum_free_tx_list(sc);
2151 }
2152 
2153 static int
2154 rum_load_microcode(struct rum_softc *sc, const u_char *ucode, size_t size)
2155 {
2156 	usb_device_request_t req;
2157 	uint16_t reg = RT2573_MCU_CODE_BASE;
2158 	usbd_status error;
2159 
2160 	/* copy firmware image into NIC */
2161 	for (; size >= 4; reg += 4, ucode += 4, size -= 4)
2162 		rum_write(sc, reg, UGETDW(ucode));
2163 
2164 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2165 	req.bRequest = RT2573_MCU_CNTL;
2166 	USETW(req.wValue, RT2573_MCU_RUN);
2167 	USETW(req.wIndex, 0);
2168 	USETW(req.wLength, 0);
2169 
2170 	error = usbd_do_request(sc->sc_udev, &req, NULL);
2171 	if (error != 0) {
2172 		printf("%s: could not run firmware: %s\n",
2173 		    device_xname(sc->sc_dev), usbd_errstr(error));
2174 	}
2175 	return error;
2176 }
2177 
2178 static int
2179 rum_prepare_beacon(struct rum_softc *sc)
2180 {
2181 	struct ieee80211com *ic = &sc->sc_ic;
2182 	struct rum_tx_desc desc;
2183 	struct mbuf *m0;
2184 	int rate;
2185 
2186 	m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &sc->sc_bo);
2187 	if (m0 == NULL) {
2188 		aprint_error_dev(sc->sc_dev,
2189 		    "could not allocate beacon frame\n");
2190 		return ENOBUFS;
2191 	}
2192 
2193 	/* send beacons at the lowest available rate */
2194 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
2195 
2196 	rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ,
2197 	    m0->m_pkthdr.len, rate);
2198 
2199 	/* copy the first 24 bytes of Tx descriptor into NIC memory */
2200 	rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2201 
2202 	/* copy beacon header and payload into NIC memory */
2203 	rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *),
2204 	    m0->m_pkthdr.len);
2205 
2206 	m_freem(m0);
2207 
2208 	return 0;
2209 }
2210 
2211 static void
2212 rum_newassoc(struct ieee80211_node *ni, int isnew)
2213 {
2214 	/* start with lowest Tx rate */
2215 	ni->ni_txrate = 0;
2216 }
2217 
2218 static void
2219 rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni)
2220 {
2221 	int i;
2222 
2223 	/* clear statistic registers (STA_CSR0 to STA_CSR5) */
2224 	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
2225 
2226 	ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2227 
2228 	/* set rate to some reasonable initial value */
2229 	for (i = ni->ni_rates.rs_nrates - 1;
2230 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2231 	     i--);
2232 	ni->ni_txrate = i;
2233 
2234 	callout_reset(&sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
2235 }
2236 
2237 static void
2238 rum_amrr_timeout(void *arg)
2239 {
2240 	struct rum_softc *sc = arg;
2241 	usb_device_request_t req;
2242 
2243 	/*
2244 	 * Asynchronously read statistic registers (cleared by read).
2245 	 */
2246 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
2247 	req.bRequest = RT2573_READ_MULTI_MAC;
2248 	USETW(req.wValue, 0);
2249 	USETW(req.wIndex, RT2573_STA_CSR0);
2250 	USETW(req.wLength, sizeof sc->sta);
2251 
2252 	usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2253 	    USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0,
2254 	    rum_amrr_update);
2255 	(void)usbd_transfer(sc->amrr_xfer);
2256 }
2257 
2258 static void
2259 rum_amrr_update(usbd_xfer_handle xfer, usbd_private_handle priv,
2260     usbd_status status)
2261 {
2262 	struct rum_softc *sc = (struct rum_softc *)priv;
2263 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
2264 
2265 	if (status != USBD_NORMAL_COMPLETION) {
2266 		printf("%s: could not retrieve Tx statistics - cancelling "
2267 		    "automatic rate control\n", device_xname(sc->sc_dev));
2268 		return;
2269 	}
2270 
2271 	/* count TX retry-fail as Tx errors */
2272 	ifp->if_oerrors += le32toh(sc->sta[5]) >> 16;
2273 
2274 	sc->amn.amn_retrycnt =
2275 	    (le32toh(sc->sta[4]) >> 16) +	/* TX one-retry ok count */
2276 	    (le32toh(sc->sta[5]) & 0xffff) +	/* TX more-retry ok count */
2277 	    (le32toh(sc->sta[5]) >> 16);	/* TX retry-fail count */
2278 
2279 	sc->amn.amn_txcnt =
2280 	    sc->amn.amn_retrycnt +
2281 	    (le32toh(sc->sta[4]) & 0xffff);	/* TX no-retry ok count */
2282 
2283 	ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2284 
2285 	callout_reset(&sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
2286 }
2287 
2288 static int
2289 rum_activate(device_t self, enum devact act)
2290 {
2291 	switch (act) {
2292 	case DVACT_DEACTIVATE:
2293 		/*if_deactivate(&sc->sc_ic.ic_if);*/
2294 		return 0;
2295 	default:
2296 		return 0;
2297 	}
2298 }
2299