xref: /netbsd-src/sys/dev/usb/if_rum.c (revision 3816d47b2c42fcd6e549e3407f842a5b1a1d23ad)
1 /*	$OpenBSD: if_rum.c,v 1.40 2006/09/18 16:20:20 damien Exp $	*/
2 /*	$NetBSD: if_rum.c,v 1.30 2009/12/06 20:20:12 dyoung Exp $	*/
3 
4 /*-
5  * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini@free.fr>
6  * Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*-
22  * Ralink Technology RT2501USB/RT2601USB chipset driver
23  * http://www.ralinktech.com.tw/
24  */
25 
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: if_rum.c,v 1.30 2009/12/06 20:20:12 dyoung Exp $");
28 
29 #include "bpfilter.h"
30 
31 #include <sys/param.h>
32 #include <sys/sockio.h>
33 #include <sys/sysctl.h>
34 #include <sys/mbuf.h>
35 #include <sys/kernel.h>
36 #include <sys/socket.h>
37 #include <sys/systm.h>
38 #include <sys/malloc.h>
39 #include <sys/conf.h>
40 #include <sys/device.h>
41 
42 #include <sys/bus.h>
43 #include <machine/endian.h>
44 #include <sys/intr.h>
45 
46 #if NBPFILTER > 0
47 #include <net/bpf.h>
48 #endif
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/if_dl.h>
52 #include <net/if_ether.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55 
56 #include <netinet/in.h>
57 #include <netinet/in_systm.h>
58 #include <netinet/in_var.h>
59 #include <netinet/ip.h>
60 
61 #include <net80211/ieee80211_netbsd.h>
62 #include <net80211/ieee80211_var.h>
63 #include <net80211/ieee80211_amrr.h>
64 #include <net80211/ieee80211_radiotap.h>
65 
66 #include <dev/firmload.h>
67 
68 #include <dev/usb/usb.h>
69 #include <dev/usb/usbdi.h>
70 #include <dev/usb/usbdi_util.h>
71 #include <dev/usb/usbdevs.h>
72 
73 #include <dev/usb/if_rumreg.h>
74 #include <dev/usb/if_rumvar.h>
75 
76 #ifdef USB_DEBUG
77 #define RUM_DEBUG
78 #endif
79 
80 #ifdef RUM_DEBUG
81 #define DPRINTF(x)	do { if (rum_debug) logprintf x; } while (0)
82 #define DPRINTFN(n, x)	do { if (rum_debug >= (n)) logprintf x; } while (0)
83 int rum_debug = 1;
84 #else
85 #define DPRINTF(x)
86 #define DPRINTFN(n, x)
87 #endif
88 
89 /* various supported device vendors/products */
90 static const struct usb_devno rum_devs[] = {
91 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_HWU54DM },
92 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573_2 },
93 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573_3 },
94 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573_4 },
95 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_WUG2700 },
96 	{ USB_VENDOR_AMIT,		USB_PRODUCT_AMIT_CGWLUSB2GO },
97 	{ USB_VENDOR_ASUSTEK,		USB_PRODUCT_ASUSTEK_WL167G_2 },
98 	{ USB_VENDOR_ASUSTEK,		USB_PRODUCT_ASUSTEK_WL167G_3 },
99 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D7050A },
100 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D9050V3 },
101 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GC },
102 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GR },
103 	{ USB_VENDOR_CONCEPTRONIC,	USB_PRODUCT_CONCEPTRONIC_C54RU2 },
104 	{ USB_VENDOR_COREGA,		USB_PRODUCT_COREGA_CGWLUSB2GL },
105 	{ USB_VENDOR_COREGA,		USB_PRODUCT_COREGA_CGWLUSB2GPX },
106 	{ USB_VENDOR_DICKSMITH,		USB_PRODUCT_DICKSMITH_CWD854F },
107 	{ USB_VENDOR_DICKSMITH,		USB_PRODUCT_DICKSMITH_RT2573 },
108 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWLG122C1 },
109 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_WUA1340 },
110 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWA111 },
111 	{ USB_VENDOR_GIGABYTE,		USB_PRODUCT_GIGABYTE_GNWB01GS },
112 	{ USB_VENDOR_GIGABYTE,		USB_PRODUCT_GIGABYTE_GNWI05GS },
113 	{ USB_VENDOR_GIGASET,		USB_PRODUCT_GIGASET_RT2573 },
114 	{ USB_VENDOR_GOODWAY,		USB_PRODUCT_GOODWAY_RT2573 },
115 	{ USB_VENDOR_GUILLEMOT,		USB_PRODUCT_GUILLEMOT_HWGUSB254LB },
116 	{ USB_VENDOR_GUILLEMOT,		USB_PRODUCT_GUILLEMOT_HWGUSB254V2AP },
117 	{ USB_VENDOR_HUAWEI3COM,	USB_PRODUCT_HUAWEI3COM_RT2573 },
118 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_G54HP },
119 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_SG54HP },
120 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_WLIUCG },
121 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573 },
122 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_2 },
123 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_3 },
124 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_4 },
125 	{ USB_VENDOR_NOVATECH,		USB_PRODUCT_NOVATECH_RT2573 },
126 	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUS54HP },
127 	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUS54MINI2 },
128 	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUSMM },
129 	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573 },
130 	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573_2 },
131 	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573_3 },
132 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2573 },
133 	{ USB_VENDOR_RALINK_2,          USB_PRODUCT_RALINK_2_RT2573 },
134 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2671 },
135 	{ USB_VENDOR_SITECOMEU,		USB_PRODUCT_SITECOMEU_WL113R2 },
136 	{ USB_VENDOR_SITECOMEU,		USB_PRODUCT_SITECOMEU_WL172 },
137 	{ USB_VENDOR_SURECOM,		USB_PRODUCT_SURECOM_RT2573 }
138 };
139 
140 Static int		rum_attachhook(void *);
141 Static int		rum_alloc_tx_list(struct rum_softc *);
142 Static void		rum_free_tx_list(struct rum_softc *);
143 Static int		rum_alloc_rx_list(struct rum_softc *);
144 Static void		rum_free_rx_list(struct rum_softc *);
145 Static int		rum_media_change(struct ifnet *);
146 Static void		rum_next_scan(void *);
147 Static void		rum_task(void *);
148 Static int		rum_newstate(struct ieee80211com *,
149 			    enum ieee80211_state, int);
150 Static void		rum_txeof(usbd_xfer_handle, usbd_private_handle,
151 			    usbd_status);
152 Static void		rum_rxeof(usbd_xfer_handle, usbd_private_handle,
153 			    usbd_status);
154 #if NBPFILTER > 0
155 Static uint8_t		rum_rxrate(const struct rum_rx_desc *);
156 #endif
157 Static int		rum_ack_rate(struct ieee80211com *, int);
158 Static uint16_t		rum_txtime(int, int, uint32_t);
159 Static uint8_t		rum_plcp_signal(int);
160 Static void		rum_setup_tx_desc(struct rum_softc *,
161 			    struct rum_tx_desc *, uint32_t, uint16_t, int,
162 			    int);
163 Static int		rum_tx_mgt(struct rum_softc *, struct mbuf *,
164 			    struct ieee80211_node *);
165 Static int		rum_tx_data(struct rum_softc *, struct mbuf *,
166 			    struct ieee80211_node *);
167 Static void		rum_start(struct ifnet *);
168 Static void		rum_watchdog(struct ifnet *);
169 Static int		rum_ioctl(struct ifnet *, u_long, void *);
170 Static void		rum_eeprom_read(struct rum_softc *, uint16_t, void *,
171 			    int);
172 Static uint32_t		rum_read(struct rum_softc *, uint16_t);
173 Static void		rum_read_multi(struct rum_softc *, uint16_t, void *,
174 			    int);
175 Static void		rum_write(struct rum_softc *, uint16_t, uint32_t);
176 Static void		rum_write_multi(struct rum_softc *, uint16_t, void *,
177 			    size_t);
178 Static void		rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
179 Static uint8_t		rum_bbp_read(struct rum_softc *, uint8_t);
180 Static void		rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
181 Static void		rum_select_antenna(struct rum_softc *);
182 Static void		rum_enable_mrr(struct rum_softc *);
183 Static void		rum_set_txpreamble(struct rum_softc *);
184 Static void		rum_set_basicrates(struct rum_softc *);
185 Static void		rum_select_band(struct rum_softc *,
186 			    struct ieee80211_channel *);
187 Static void		rum_set_chan(struct rum_softc *,
188 			    struct ieee80211_channel *);
189 Static void		rum_enable_tsf_sync(struct rum_softc *);
190 Static void		rum_update_slot(struct rum_softc *);
191 Static void		rum_set_bssid(struct rum_softc *, const uint8_t *);
192 Static void		rum_set_macaddr(struct rum_softc *, const uint8_t *);
193 Static void		rum_update_promisc(struct rum_softc *);
194 Static const char	*rum_get_rf(int);
195 Static void		rum_read_eeprom(struct rum_softc *);
196 Static int		rum_bbp_init(struct rum_softc *);
197 Static int		rum_init(struct ifnet *);
198 Static void		rum_stop(struct ifnet *, int);
199 Static int		rum_load_microcode(struct rum_softc *, const u_char *,
200 			    size_t);
201 Static int		rum_prepare_beacon(struct rum_softc *);
202 Static void		rum_newassoc(struct ieee80211_node *, int);
203 Static void		rum_amrr_start(struct rum_softc *,
204 			    struct ieee80211_node *);
205 Static void		rum_amrr_timeout(void *);
206 Static void		rum_amrr_update(usbd_xfer_handle, usbd_private_handle,
207 			    usbd_status status);
208 
209 /*
210  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
211  */
212 static const struct ieee80211_rateset rum_rateset_11a =
213 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
214 
215 static const struct ieee80211_rateset rum_rateset_11b =
216 	{ 4, { 2, 4, 11, 22 } };
217 
218 static const struct ieee80211_rateset rum_rateset_11g =
219 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
220 
221 static const struct {
222 	uint32_t	reg;
223 	uint32_t	val;
224 } rum_def_mac[] = {
225 	RT2573_DEF_MAC
226 };
227 
228 static const struct {
229 	uint8_t	reg;
230 	uint8_t	val;
231 } rum_def_bbp[] = {
232 	RT2573_DEF_BBP
233 };
234 
235 static const struct rfprog {
236 	uint8_t		chan;
237 	uint32_t	r1, r2, r3, r4;
238 }  rum_rf5226[] = {
239 	RT2573_RF5226
240 }, rum_rf5225[] = {
241 	RT2573_RF5225
242 };
243 
244 USB_DECLARE_DRIVER(rum);
245 
246 USB_MATCH(rum)
247 {
248 	USB_MATCH_START(rum, uaa);
249 
250 	return (usb_lookup(rum_devs, uaa->vendor, uaa->product) != NULL) ?
251 	    UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
252 }
253 
254 Static int
255 rum_attachhook(void *xsc)
256 {
257 	struct rum_softc *sc = xsc;
258 	firmware_handle_t fwh;
259 	const char *name = "rum-rt2573";
260 	u_char *ucode;
261 	size_t size;
262 	int error;
263 
264 	if ((error = firmware_open("rum", name, &fwh)) != 0) {
265 		printf("%s: failed loadfirmware of file %s (error %d)\n",
266 		    USBDEVNAME(sc->sc_dev), name, error);
267 		return error;
268 	}
269 	size = firmware_get_size(fwh);
270 	ucode = firmware_malloc(size);
271 	if (ucode == NULL) {
272 		printf("%s: failed to allocate firmware memory\n",
273 		    USBDEVNAME(sc->sc_dev));
274 		firmware_close(fwh);
275 		return ENOMEM;
276 	}
277 	error = firmware_read(fwh, 0, ucode, size);
278 	firmware_close(fwh);
279 	if (error != 0) {
280 		printf("%s: failed to read firmware (error %d)\n",
281 		    USBDEVNAME(sc->sc_dev), error);
282 		firmware_free(ucode, 0);
283 		return error;
284 	}
285 
286 	if (rum_load_microcode(sc, ucode, size) != 0) {
287 		printf("%s: could not load 8051 microcode\n",
288 		    USBDEVNAME(sc->sc_dev));
289 		firmware_free(ucode, 0);
290 		return ENXIO;
291 	}
292 
293 	firmware_free(ucode, 0);
294 	sc->sc_flags |= RT2573_FWLOADED;
295 
296 	return 0;
297 }
298 
299 USB_ATTACH(rum)
300 {
301 	USB_ATTACH_START(rum, sc, uaa);
302 	struct ieee80211com *ic = &sc->sc_ic;
303 	struct ifnet *ifp = &sc->sc_if;
304 	usb_interface_descriptor_t *id;
305 	usb_endpoint_descriptor_t *ed;
306 	usbd_status error;
307 	char *devinfop;
308 	int i, ntries;
309 	uint32_t tmp;
310 
311 	sc->sc_dev = self;
312 	sc->sc_udev = uaa->device;
313 	sc->sc_flags = 0;
314 
315 	aprint_naive("\n");
316 	aprint_normal("\n");
317 
318 	devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
319 	aprint_normal_dev(self, "%s\n", devinfop);
320 	usbd_devinfo_free(devinfop);
321 
322 	if (usbd_set_config_no(sc->sc_udev, RT2573_CONFIG_NO, 0) != 0) {
323 		aprint_error_dev(self, "could not set configuration no\n");
324 		USB_ATTACH_ERROR_RETURN;
325 	}
326 
327 	/* get the first interface handle */
328 	error = usbd_device2interface_handle(sc->sc_udev, RT2573_IFACE_INDEX,
329 	    &sc->sc_iface);
330 	if (error != 0) {
331 		aprint_error_dev(self, "could not get interface handle\n");
332 		USB_ATTACH_ERROR_RETURN;
333 	}
334 
335 	/*
336 	 * Find endpoints.
337 	 */
338 	id = usbd_get_interface_descriptor(sc->sc_iface);
339 
340 	sc->sc_rx_no = sc->sc_tx_no = -1;
341 	for (i = 0; i < id->bNumEndpoints; i++) {
342 		ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
343 		if (ed == NULL) {
344 			aprint_error_dev(self,
345 			    "no endpoint descriptor for iface %d\n", i);
346 			USB_ATTACH_ERROR_RETURN;
347 		}
348 
349 		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
350 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
351 			sc->sc_rx_no = ed->bEndpointAddress;
352 		else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
353 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
354 			sc->sc_tx_no = ed->bEndpointAddress;
355 	}
356 	if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
357 		aprint_error_dev(self, "missing endpoint\n");
358 		USB_ATTACH_ERROR_RETURN;
359 	}
360 
361 	usb_init_task(&sc->sc_task, rum_task, sc);
362 	usb_callout_init(sc->sc_scan_ch);
363 
364 	sc->amrr.amrr_min_success_threshold =  1;
365 	sc->amrr.amrr_max_success_threshold = 10;
366 	usb_callout_init(sc->sc_amrr_ch);
367 
368 	/* retrieve RT2573 rev. no */
369 	for (ntries = 0; ntries < 1000; ntries++) {
370 		if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
371 			break;
372 		DELAY(1000);
373 	}
374 	if (ntries == 1000) {
375 		aprint_error_dev(self, "timeout waiting for chip to settle\n");
376 		USB_ATTACH_ERROR_RETURN;
377 	}
378 
379 	/* retrieve MAC address and various other things from EEPROM */
380 	rum_read_eeprom(sc);
381 
382 	aprint_normal_dev(self,
383 	    "MAC/BBP RT%04x (rev 0x%05x), RF %s, address %s\n",
384 	    sc->macbbp_rev, tmp,
385 	    rum_get_rf(sc->rf_rev), ether_sprintf(ic->ic_myaddr));
386 
387 	ic->ic_ifp = ifp;
388 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
389 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
390 	ic->ic_state = IEEE80211_S_INIT;
391 
392 	/* set device capabilities */
393 	ic->ic_caps =
394 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
395 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
396 	    IEEE80211_C_HOSTAP |	/* HostAp mode supported */
397 	    IEEE80211_C_TXPMGT |	/* tx power management */
398 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
399 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
400 	    IEEE80211_C_WPA;		/* 802.11i */
401 
402 	if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) {
403 		/* set supported .11a rates */
404 		ic->ic_sup_rates[IEEE80211_MODE_11A] = rum_rateset_11a;
405 
406 		/* set supported .11a channels */
407 		for (i = 34; i <= 46; i += 4) {
408 			ic->ic_channels[i].ic_freq =
409 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
410 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
411 		}
412 		for (i = 36; i <= 64; i += 4) {
413 			ic->ic_channels[i].ic_freq =
414 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
415 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
416 		}
417 		for (i = 100; i <= 140; i += 4) {
418 			ic->ic_channels[i].ic_freq =
419 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
420 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
421 		}
422 		for (i = 149; i <= 165; i += 4) {
423 			ic->ic_channels[i].ic_freq =
424 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
425 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
426 		}
427 	}
428 
429 	/* set supported .11b and .11g rates */
430 	ic->ic_sup_rates[IEEE80211_MODE_11B] = rum_rateset_11b;
431 	ic->ic_sup_rates[IEEE80211_MODE_11G] = rum_rateset_11g;
432 
433 	/* set supported .11b and .11g channels (1 through 14) */
434 	for (i = 1; i <= 14; i++) {
435 		ic->ic_channels[i].ic_freq =
436 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
437 		ic->ic_channels[i].ic_flags =
438 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
439 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
440 	}
441 
442 	ifp->if_softc = sc;
443 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
444 	ifp->if_init = rum_init;
445 	ifp->if_ioctl = rum_ioctl;
446 	ifp->if_start = rum_start;
447 	ifp->if_watchdog = rum_watchdog;
448 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
449 	IFQ_SET_READY(&ifp->if_snd);
450 	memcpy(ifp->if_xname, USBDEVNAME(sc->sc_dev), IFNAMSIZ);
451 
452 	if_attach(ifp);
453 	ieee80211_ifattach(ic);
454 	ic->ic_newassoc = rum_newassoc;
455 
456 	/* override state transition machine */
457 	sc->sc_newstate = ic->ic_newstate;
458 	ic->ic_newstate = rum_newstate;
459 	ieee80211_media_init(ic, rum_media_change, ieee80211_media_status);
460 
461 #if NBPFILTER > 0
462 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
463 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN, &sc->sc_drvbpf);
464 
465 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
466 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
467 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT);
468 
469 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
470 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
471 	sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT);
472 #endif
473 
474 	ieee80211_announce(ic);
475 
476 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev,
477 	    USBDEV(sc->sc_dev));
478 
479 	USB_ATTACH_SUCCESS_RETURN;
480 }
481 
482 USB_DETACH(rum)
483 {
484 	USB_DETACH_START(rum, sc);
485 	struct ieee80211com *ic = &sc->sc_ic;
486 	struct ifnet *ifp = &sc->sc_if;
487 	int s;
488 
489 	if (!ifp->if_softc)
490 		return 0;
491 
492 	s = splusb();
493 
494 	rum_stop(ifp, 1);
495 	usb_rem_task(sc->sc_udev, &sc->sc_task);
496 	usb_uncallout(sc->sc_scan_ch, rum_next_scan, sc);
497 	usb_uncallout(sc->sc_amrr_ch, rum_amrr_timeout, sc);
498 
499 	if (sc->amrr_xfer != NULL) {
500 		usbd_free_xfer(sc->amrr_xfer);
501 		sc->amrr_xfer = NULL;
502 	}
503 
504 	if (sc->sc_rx_pipeh != NULL) {
505 		usbd_abort_pipe(sc->sc_rx_pipeh);
506 		usbd_close_pipe(sc->sc_rx_pipeh);
507 	}
508 
509 	if (sc->sc_tx_pipeh != NULL) {
510 		usbd_abort_pipe(sc->sc_tx_pipeh);
511 		usbd_close_pipe(sc->sc_tx_pipeh);
512 	}
513 
514 #if NBPFILTER > 0
515 	bpfdetach(ifp);
516 #endif
517 	ieee80211_ifdetach(ic);	/* free all nodes */
518 	if_detach(ifp);
519 
520 	splx(s);
521 
522 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
523 	    USBDEV(sc->sc_dev));
524 
525 	return 0;
526 }
527 
528 Static int
529 rum_alloc_tx_list(struct rum_softc *sc)
530 {
531 	struct rum_tx_data *data;
532 	int i, error;
533 
534 	sc->tx_queued = 0;
535 
536 	for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
537 		data = &sc->tx_data[i];
538 
539 		data->sc = sc;
540 
541 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
542 		if (data->xfer == NULL) {
543 			printf("%s: could not allocate tx xfer\n",
544 			    USBDEVNAME(sc->sc_dev));
545 			error = ENOMEM;
546 			goto fail;
547 		}
548 
549 		data->buf = usbd_alloc_buffer(data->xfer,
550 		    RT2573_TX_DESC_SIZE + MCLBYTES);
551 		if (data->buf == NULL) {
552 			printf("%s: could not allocate tx buffer\n",
553 			    USBDEVNAME(sc->sc_dev));
554 			error = ENOMEM;
555 			goto fail;
556 		}
557 
558 		/* clean Tx descriptor */
559 		memset(data->buf, 0, RT2573_TX_DESC_SIZE);
560 	}
561 
562 	return 0;
563 
564 fail:	rum_free_tx_list(sc);
565 	return error;
566 }
567 
568 Static void
569 rum_free_tx_list(struct rum_softc *sc)
570 {
571 	struct rum_tx_data *data;
572 	int i;
573 
574 	for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
575 		data = &sc->tx_data[i];
576 
577 		if (data->xfer != NULL) {
578 			usbd_free_xfer(data->xfer);
579 			data->xfer = NULL;
580 		}
581 
582 		if (data->ni != NULL) {
583 			ieee80211_free_node(data->ni);
584 			data->ni = NULL;
585 		}
586 	}
587 }
588 
589 Static int
590 rum_alloc_rx_list(struct rum_softc *sc)
591 {
592 	struct rum_rx_data *data;
593 	int i, error;
594 
595 	for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
596 		data = &sc->rx_data[i];
597 
598 		data->sc = sc;
599 
600 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
601 		if (data->xfer == NULL) {
602 			printf("%s: could not allocate rx xfer\n",
603 			    USBDEVNAME(sc->sc_dev));
604 			error = ENOMEM;
605 			goto fail;
606 		}
607 
608 		if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) {
609 			printf("%s: could not allocate rx buffer\n",
610 			    USBDEVNAME(sc->sc_dev));
611 			error = ENOMEM;
612 			goto fail;
613 		}
614 
615 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
616 		if (data->m == NULL) {
617 			printf("%s: could not allocate rx mbuf\n",
618 			    USBDEVNAME(sc->sc_dev));
619 			error = ENOMEM;
620 			goto fail;
621 		}
622 
623 		MCLGET(data->m, M_DONTWAIT);
624 		if (!(data->m->m_flags & M_EXT)) {
625 			printf("%s: could not allocate rx mbuf cluster\n",
626 			    USBDEVNAME(sc->sc_dev));
627 			error = ENOMEM;
628 			goto fail;
629 		}
630 
631 		data->buf = mtod(data->m, uint8_t *);
632 	}
633 
634 	return 0;
635 
636 fail:	rum_free_tx_list(sc);
637 	return error;
638 }
639 
640 Static void
641 rum_free_rx_list(struct rum_softc *sc)
642 {
643 	struct rum_rx_data *data;
644 	int i;
645 
646 	for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
647 		data = &sc->rx_data[i];
648 
649 		if (data->xfer != NULL) {
650 			usbd_free_xfer(data->xfer);
651 			data->xfer = NULL;
652 		}
653 
654 		if (data->m != NULL) {
655 			m_freem(data->m);
656 			data->m = NULL;
657 		}
658 	}
659 }
660 
661 Static int
662 rum_media_change(struct ifnet *ifp)
663 {
664 	int error;
665 
666 	error = ieee80211_media_change(ifp);
667 	if (error != ENETRESET)
668 		return error;
669 
670 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
671 		rum_init(ifp);
672 
673 	return 0;
674 }
675 
676 /*
677  * This function is called periodically (every 200ms) during scanning to
678  * switch from one channel to another.
679  */
680 Static void
681 rum_next_scan(void *arg)
682 {
683 	struct rum_softc *sc = arg;
684 	struct ieee80211com *ic = &sc->sc_ic;
685 
686 	if (ic->ic_state == IEEE80211_S_SCAN)
687 		ieee80211_next_scan(ic);
688 }
689 
690 Static void
691 rum_task(void *arg)
692 {
693 	struct rum_softc *sc = arg;
694 	struct ieee80211com *ic = &sc->sc_ic;
695 	enum ieee80211_state ostate;
696 	struct ieee80211_node *ni;
697 	uint32_t tmp;
698 
699 	ostate = ic->ic_state;
700 
701 	switch (sc->sc_state) {
702 	case IEEE80211_S_INIT:
703 		if (ostate == IEEE80211_S_RUN) {
704 			/* abort TSF synchronization */
705 			tmp = rum_read(sc, RT2573_TXRX_CSR9);
706 			rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
707 		}
708 		break;
709 
710 	case IEEE80211_S_SCAN:
711 		rum_set_chan(sc, ic->ic_curchan);
712 		usb_callout(sc->sc_scan_ch, hz / 5, rum_next_scan, sc);
713 		break;
714 
715 	case IEEE80211_S_AUTH:
716 		rum_set_chan(sc, ic->ic_curchan);
717 		break;
718 
719 	case IEEE80211_S_ASSOC:
720 		rum_set_chan(sc, ic->ic_curchan);
721 		break;
722 
723 	case IEEE80211_S_RUN:
724 		rum_set_chan(sc, ic->ic_curchan);
725 
726 		ni = ic->ic_bss;
727 
728 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
729 			rum_update_slot(sc);
730 			rum_enable_mrr(sc);
731 			rum_set_txpreamble(sc);
732 			rum_set_basicrates(sc);
733 			rum_set_bssid(sc, ni->ni_bssid);
734 		}
735 
736 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
737 		    ic->ic_opmode == IEEE80211_M_IBSS)
738 			rum_prepare_beacon(sc);
739 
740 		if (ic->ic_opmode != IEEE80211_M_MONITOR)
741 			rum_enable_tsf_sync(sc);
742 
743 		if (ic->ic_opmode == IEEE80211_M_STA) {
744 			/* fake a join to init the tx rate */
745 			rum_newassoc(ic->ic_bss, 1);
746 
747 			/* enable automatic rate adaptation in STA mode */
748 			if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
749 				rum_amrr_start(sc, ni);
750 		}
751 
752 		break;
753 	}
754 
755 	sc->sc_newstate(ic, sc->sc_state, -1);
756 }
757 
758 Static int
759 rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
760 {
761 	struct rum_softc *sc = ic->ic_ifp->if_softc;
762 
763 	usb_rem_task(sc->sc_udev, &sc->sc_task);
764 	usb_uncallout(sc->sc_scan_ch, rum_next_scan, sc);
765 	usb_uncallout(sc->sc_amrr_ch, rum_amrr_timeout, sc);
766 
767 	/* do it in a process context */
768 	sc->sc_state = nstate;
769 	usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
770 
771 	return 0;
772 }
773 
774 /* quickly determine if a given rate is CCK or OFDM */
775 #define RUM_RATE_IS_OFDM(rate)	((rate) >= 12 && (rate) != 22)
776 
777 #define RUM_ACK_SIZE	14	/* 10 + 4(FCS) */
778 #define RUM_CTS_SIZE	14	/* 10 + 4(FCS) */
779 
780 Static void
781 rum_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
782 {
783 	struct rum_tx_data *data = priv;
784 	struct rum_softc *sc = data->sc;
785 	struct ifnet *ifp = &sc->sc_if;
786 	int s;
787 
788 	if (status != USBD_NORMAL_COMPLETION) {
789 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
790 			return;
791 
792 		printf("%s: could not transmit buffer: %s\n",
793 		    USBDEVNAME(sc->sc_dev), usbd_errstr(status));
794 
795 		if (status == USBD_STALLED)
796 			usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
797 
798 		ifp->if_oerrors++;
799 		return;
800 	}
801 
802 	s = splnet();
803 
804 	ieee80211_free_node(data->ni);
805 	data->ni = NULL;
806 
807 	sc->tx_queued--;
808 	ifp->if_opackets++;
809 
810 	DPRINTFN(10, ("tx done\n"));
811 
812 	sc->sc_tx_timer = 0;
813 	ifp->if_flags &= ~IFF_OACTIVE;
814 	rum_start(ifp);
815 
816 	splx(s);
817 }
818 
819 Static void
820 rum_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
821 {
822 	struct rum_rx_data *data = priv;
823 	struct rum_softc *sc = data->sc;
824 	struct ieee80211com *ic = &sc->sc_ic;
825 	struct ifnet *ifp = &sc->sc_if;
826 	struct rum_rx_desc *desc;
827 	struct ieee80211_frame *wh;
828 	struct ieee80211_node *ni;
829 	struct mbuf *mnew, *m;
830 	int s, len;
831 
832 	if (status != USBD_NORMAL_COMPLETION) {
833 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
834 			return;
835 
836 		if (status == USBD_STALLED)
837 			usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
838 		goto skip;
839 	}
840 
841 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
842 
843 	if (len < RT2573_RX_DESC_SIZE + sizeof (struct ieee80211_frame_min)) {
844 		DPRINTF(("%s: xfer too short %d\n", USBDEVNAME(sc->sc_dev),
845 		    len));
846 		ifp->if_ierrors++;
847 		goto skip;
848 	}
849 
850 	desc = (struct rum_rx_desc *)data->buf;
851 
852 	if (le32toh(desc->flags) & RT2573_RX_CRC_ERROR) {
853 		/*
854 		 * This should not happen since we did not request to receive
855 		 * those frames when we filled RT2573_TXRX_CSR0.
856 		 */
857 		DPRINTFN(5, ("CRC error\n"));
858 		ifp->if_ierrors++;
859 		goto skip;
860 	}
861 
862 	MGETHDR(mnew, M_DONTWAIT, MT_DATA);
863 	if (mnew == NULL) {
864 		printf("%s: could not allocate rx mbuf\n",
865 		    USBDEVNAME(sc->sc_dev));
866 		ifp->if_ierrors++;
867 		goto skip;
868 	}
869 
870 	MCLGET(mnew, M_DONTWAIT);
871 	if (!(mnew->m_flags & M_EXT)) {
872 		printf("%s: could not allocate rx mbuf cluster\n",
873 		    USBDEVNAME(sc->sc_dev));
874 		m_freem(mnew);
875 		ifp->if_ierrors++;
876 		goto skip;
877 	}
878 
879 	m = data->m;
880 	data->m = mnew;
881 	data->buf = mtod(data->m, uint8_t *);
882 
883 	/* finalize mbuf */
884 	m->m_pkthdr.rcvif = ifp;
885 	m->m_data = (void *)(desc + 1);
886 	m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
887 
888 	s = splnet();
889 
890 #if NBPFILTER > 0
891 	if (sc->sc_drvbpf != NULL) {
892 		struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
893 
894 		tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
895 		tap->wr_rate = rum_rxrate(desc);
896 		tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
897 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
898 		tap->wr_antenna = sc->rx_ant;
899 		tap->wr_antsignal = desc->rssi;
900 
901 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
902 	}
903 #endif
904 
905 	wh = mtod(m, struct ieee80211_frame *);
906 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
907 
908 	/* send the frame to the 802.11 layer */
909 	ieee80211_input(ic, m, ni, desc->rssi, 0);
910 
911 	/* node is no longer needed */
912 	ieee80211_free_node(ni);
913 
914 	splx(s);
915 
916 	DPRINTFN(15, ("rx done\n"));
917 
918 skip:	/* setup a new transfer */
919 	usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES,
920 	    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
921 	usbd_transfer(xfer);
922 }
923 
924 /*
925  * This function is only used by the Rx radiotap code. It returns the rate at
926  * which a given frame was received.
927  */
928 #if NBPFILTER > 0
929 Static uint8_t
930 rum_rxrate(const struct rum_rx_desc *desc)
931 {
932 	if (le32toh(desc->flags) & RT2573_RX_OFDM) {
933 		/* reverse function of rum_plcp_signal */
934 		switch (desc->rate) {
935 		case 0xb:	return 12;
936 		case 0xf:	return 18;
937 		case 0xa:	return 24;
938 		case 0xe:	return 36;
939 		case 0x9:	return 48;
940 		case 0xd:	return 72;
941 		case 0x8:	return 96;
942 		case 0xc:	return 108;
943 		}
944 	} else {
945 		if (desc->rate == 10)
946 			return 2;
947 		if (desc->rate == 20)
948 			return 4;
949 		if (desc->rate == 55)
950 			return 11;
951 		if (desc->rate == 110)
952 			return 22;
953 	}
954 	return 2;	/* should not get there */
955 }
956 #endif
957 
958 /*
959  * Return the expected ack rate for a frame transmitted at rate `rate'.
960  * XXX: this should depend on the destination node basic rate set.
961  */
962 Static int
963 rum_ack_rate(struct ieee80211com *ic, int rate)
964 {
965 	switch (rate) {
966 	/* CCK rates */
967 	case 2:
968 		return 2;
969 	case 4:
970 	case 11:
971 	case 22:
972 		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
973 
974 	/* OFDM rates */
975 	case 12:
976 	case 18:
977 		return 12;
978 	case 24:
979 	case 36:
980 		return 24;
981 	case 48:
982 	case 72:
983 	case 96:
984 	case 108:
985 		return 48;
986 	}
987 
988 	/* default to 1Mbps */
989 	return 2;
990 }
991 
992 /*
993  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
994  * The function automatically determines the operating mode depending on the
995  * given rate. `flags' indicates whether short preamble is in use or not.
996  */
997 Static uint16_t
998 rum_txtime(int len, int rate, uint32_t flags)
999 {
1000 	uint16_t txtime;
1001 
1002 	if (RUM_RATE_IS_OFDM(rate)) {
1003 		/* IEEE Std 802.11a-1999, pp. 37 */
1004 		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1005 		txtime = 16 + 4 + 4 * txtime + 6;
1006 	} else {
1007 		/* IEEE Std 802.11b-1999, pp. 28 */
1008 		txtime = (16 * len + rate - 1) / rate;
1009 		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1010 			txtime +=  72 + 24;
1011 		else
1012 			txtime += 144 + 48;
1013 	}
1014 	return txtime;
1015 }
1016 
1017 Static uint8_t
1018 rum_plcp_signal(int rate)
1019 {
1020 	switch (rate) {
1021 	/* CCK rates (returned values are device-dependent) */
1022 	case 2:		return 0x0;
1023 	case 4:		return 0x1;
1024 	case 11:	return 0x2;
1025 	case 22:	return 0x3;
1026 
1027 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1028 	case 12:	return 0xb;
1029 	case 18:	return 0xf;
1030 	case 24:	return 0xa;
1031 	case 36:	return 0xe;
1032 	case 48:	return 0x9;
1033 	case 72:	return 0xd;
1034 	case 96:	return 0x8;
1035 	case 108:	return 0xc;
1036 
1037 	/* unsupported rates (should not get there) */
1038 	default:	return 0xff;
1039 	}
1040 }
1041 
1042 Static void
1043 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
1044     uint32_t flags, uint16_t xflags, int len, int rate)
1045 {
1046 	struct ieee80211com *ic = &sc->sc_ic;
1047 	uint16_t plcp_length;
1048 	int remainder;
1049 
1050 	desc->flags = htole32(flags);
1051 	desc->flags |= htole32(RT2573_TX_VALID);
1052 	desc->flags |= htole32(len << 16);
1053 
1054 	desc->xflags = htole16(xflags);
1055 
1056 	desc->wme = htole16(
1057 	    RT2573_QID(0) |
1058 	    RT2573_AIFSN(2) |
1059 	    RT2573_LOGCWMIN(4) |
1060 	    RT2573_LOGCWMAX(10));
1061 
1062 	/* setup PLCP fields */
1063 	desc->plcp_signal  = rum_plcp_signal(rate);
1064 	desc->plcp_service = 4;
1065 
1066 	len += IEEE80211_CRC_LEN;
1067 	if (RUM_RATE_IS_OFDM(rate)) {
1068 		desc->flags |= htole32(RT2573_TX_OFDM);
1069 
1070 		plcp_length = len & 0xfff;
1071 		desc->plcp_length_hi = plcp_length >> 6;
1072 		desc->plcp_length_lo = plcp_length & 0x3f;
1073 	} else {
1074 		plcp_length = (16 * len + rate - 1) / rate;
1075 		if (rate == 22) {
1076 			remainder = (16 * len) % 22;
1077 			if (remainder != 0 && remainder < 7)
1078 				desc->plcp_service |= RT2573_PLCP_LENGEXT;
1079 		}
1080 		desc->plcp_length_hi = plcp_length >> 8;
1081 		desc->plcp_length_lo = plcp_length & 0xff;
1082 
1083 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1084 			desc->plcp_signal |= 0x08;
1085 	}
1086 }
1087 
1088 #define RUM_TX_TIMEOUT	5000
1089 
1090 Static int
1091 rum_tx_mgt(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1092 {
1093 	struct ieee80211com *ic = &sc->sc_ic;
1094 	struct rum_tx_desc *desc;
1095 	struct rum_tx_data *data;
1096 	struct ieee80211_frame *wh;
1097 	struct ieee80211_key *k;
1098 	uint32_t flags = 0;
1099 	uint16_t dur;
1100 	usbd_status error;
1101 	int xferlen, rate;
1102 
1103 	data = &sc->tx_data[0];
1104 	desc = (struct rum_tx_desc *)data->buf;
1105 
1106 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1107 
1108 	data->m = m0;
1109 	data->ni = ni;
1110 
1111 	wh = mtod(m0, struct ieee80211_frame *);
1112 
1113 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1114 		k = ieee80211_crypto_encap(ic, ni, m0);
1115 		if (k == NULL) {
1116 			m_freem(m0);
1117 			return ENOBUFS;
1118 		}
1119 	}
1120 
1121 	wh = mtod(m0, struct ieee80211_frame *);
1122 
1123 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1124 		flags |= RT2573_TX_NEED_ACK;
1125 
1126 		dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
1127 		    ic->ic_flags) + sc->sifs;
1128 		*(uint16_t *)wh->i_dur = htole16(dur);
1129 
1130 		/* tell hardware to set timestamp in probe responses */
1131 		if ((wh->i_fc[0] &
1132 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1133 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1134 			flags |= RT2573_TX_TIMESTAMP;
1135 	}
1136 
1137 #if NBPFILTER > 0
1138 	if (sc->sc_drvbpf != NULL) {
1139 		struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1140 
1141 		tap->wt_flags = 0;
1142 		tap->wt_rate = rate;
1143 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1144 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1145 		tap->wt_antenna = sc->tx_ant;
1146 
1147 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1148 	}
1149 #endif
1150 
1151 	m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
1152 	rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1153 
1154 	/* align end on a 4-bytes boundary */
1155 	xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1156 
1157 	/*
1158 	 * No space left in the last URB to store the extra 4 bytes, force
1159 	 * sending of another URB.
1160 	 */
1161 	if ((xferlen % 64) == 0)
1162 		xferlen += 4;
1163 
1164 	DPRINTFN(10, ("sending msg frame len=%zu rate=%u xfer len=%u\n",
1165 	    (size_t)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE,
1166 	    rate, xferlen));
1167 
1168 	usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen,
1169 	    USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof);
1170 
1171 	error = usbd_transfer(data->xfer);
1172 	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1173 		m_freem(m0);
1174 		return error;
1175 	}
1176 
1177 	sc->tx_queued++;
1178 
1179 	return 0;
1180 }
1181 
1182 Static int
1183 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1184 {
1185 	struct ieee80211com *ic = &sc->sc_ic;
1186 	struct rum_tx_desc *desc;
1187 	struct rum_tx_data *data;
1188 	struct ieee80211_frame *wh;
1189 	struct ieee80211_key *k;
1190 	uint32_t flags = 0;
1191 	uint16_t dur;
1192 	usbd_status error;
1193 	int xferlen, rate;
1194 
1195 	wh = mtod(m0, struct ieee80211_frame *);
1196 
1197 	if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
1198 		rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
1199 	else
1200 		rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1201 	if (rate == 0)
1202 		rate = 2;	/* XXX should not happen */
1203 	rate &= IEEE80211_RATE_VAL;
1204 
1205 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1206 		k = ieee80211_crypto_encap(ic, ni, m0);
1207 		if (k == NULL) {
1208 			m_freem(m0);
1209 			return ENOBUFS;
1210 		}
1211 
1212 		/* packet header may have moved, reset our local pointer */
1213 		wh = mtod(m0, struct ieee80211_frame *);
1214 	}
1215 
1216 	data = &sc->tx_data[0];
1217 	desc = (struct rum_tx_desc *)data->buf;
1218 
1219 	data->ni = ni;
1220 
1221 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1222 		flags |= RT2573_TX_NEED_ACK;
1223 
1224 		dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
1225 		    ic->ic_flags) + sc->sifs;
1226 		*(uint16_t *)wh->i_dur = htole16(dur);
1227 	}
1228 
1229 #if NBPFILTER > 0
1230 	if (sc->sc_drvbpf != NULL) {
1231 		struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1232 
1233 		tap->wt_flags = 0;
1234 		tap->wt_rate = rate;
1235 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1236 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1237 		tap->wt_antenna = sc->tx_ant;
1238 
1239 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1240 	}
1241 #endif
1242 
1243 	m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
1244 	rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1245 
1246 	/* align end on a 4-bytes boundary */
1247 	xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1248 
1249 	/*
1250 	 * No space left in the last URB to store the extra 4 bytes, force
1251 	 * sending of another URB.
1252 	 */
1253 	if ((xferlen % 64) == 0)
1254 		xferlen += 4;
1255 
1256 	DPRINTFN(10, ("sending data frame len=%zu rate=%u xfer len=%u\n",
1257 	    (size_t)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE,
1258 	    rate, xferlen));
1259 
1260 	/* mbuf is no longer needed */
1261 	m_freem(m0);
1262 
1263 	usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen,
1264 	    USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof);
1265 
1266 	error = usbd_transfer(data->xfer);
1267 	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
1268 		return error;
1269 
1270 	sc->tx_queued++;
1271 
1272 	return 0;
1273 }
1274 
1275 Static void
1276 rum_start(struct ifnet *ifp)
1277 {
1278 	struct rum_softc *sc = ifp->if_softc;
1279 	struct ieee80211com *ic = &sc->sc_ic;
1280 	struct ether_header *eh;
1281 	struct ieee80211_node *ni;
1282 	struct mbuf *m0;
1283 
1284 	for (;;) {
1285 		IF_POLL(&ic->ic_mgtq, m0);
1286 		if (m0 != NULL) {
1287 			if (sc->tx_queued >= RUM_TX_LIST_COUNT) {
1288 				ifp->if_flags |= IFF_OACTIVE;
1289 				break;
1290 			}
1291 			IF_DEQUEUE(&ic->ic_mgtq, m0);
1292 
1293 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1294 			m0->m_pkthdr.rcvif = NULL;
1295 #if NBPFILTER > 0
1296 			if (ic->ic_rawbpf != NULL)
1297 				bpf_mtap(ic->ic_rawbpf, m0);
1298 #endif
1299 			if (rum_tx_mgt(sc, m0, ni) != 0)
1300 				break;
1301 
1302 		} else {
1303 			if (ic->ic_state != IEEE80211_S_RUN)
1304 				break;
1305 			IFQ_POLL(&ifp->if_snd, m0);
1306 			if (m0 == NULL)
1307 				break;
1308 			if (sc->tx_queued >= RUM_TX_LIST_COUNT) {
1309 				ifp->if_flags |= IFF_OACTIVE;
1310 				break;
1311 			}
1312 			IFQ_DEQUEUE(&ifp->if_snd, m0);
1313 			if (m0->m_len < sizeof(struct ether_header) &&
1314 			    !(m0 = m_pullup(m0, sizeof(struct ether_header))))
1315 				continue;
1316 
1317 			eh = mtod(m0, struct ether_header *);
1318 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1319 			if (ni == NULL) {
1320 				m_freem(m0);
1321 				continue;
1322 			}
1323 #if NBPFILTER > 0
1324 			if (ifp->if_bpf != NULL)
1325 				bpf_mtap(ifp->if_bpf, m0);
1326 #endif
1327 			m0 = ieee80211_encap(ic, m0, ni);
1328 			if (m0 == NULL) {
1329 				ieee80211_free_node(ni);
1330 				continue;
1331 			}
1332 #if NBPFILTER > 0
1333 			if (ic->ic_rawbpf != NULL)
1334 				bpf_mtap(ic->ic_rawbpf, m0);
1335 #endif
1336 			if (rum_tx_data(sc, m0, ni) != 0) {
1337 				ieee80211_free_node(ni);
1338 				ifp->if_oerrors++;
1339 				break;
1340 			}
1341 		}
1342 
1343 		sc->sc_tx_timer = 5;
1344 		ifp->if_timer = 1;
1345 	}
1346 }
1347 
1348 Static void
1349 rum_watchdog(struct ifnet *ifp)
1350 {
1351 	struct rum_softc *sc = ifp->if_softc;
1352 	struct ieee80211com *ic = &sc->sc_ic;
1353 
1354 	ifp->if_timer = 0;
1355 
1356 	if (sc->sc_tx_timer > 0) {
1357 		if (--sc->sc_tx_timer == 0) {
1358 			printf("%s: device timeout\n", USBDEVNAME(sc->sc_dev));
1359 			/*rum_init(ifp); XXX needs a process context! */
1360 			ifp->if_oerrors++;
1361 			return;
1362 		}
1363 		ifp->if_timer = 1;
1364 	}
1365 
1366 	ieee80211_watchdog(ic);
1367 }
1368 
1369 Static int
1370 rum_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1371 {
1372 	struct rum_softc *sc = ifp->if_softc;
1373 	struct ieee80211com *ic = &sc->sc_ic;
1374 	int s, error = 0;
1375 
1376 	s = splnet();
1377 
1378 	switch (cmd) {
1379 	case SIOCSIFFLAGS:
1380 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1381 			break;
1382 		/* XXX re-use ether_ioctl() */
1383 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
1384 		case IFF_UP|IFF_RUNNING:
1385 			rum_update_promisc(sc);
1386 			break;
1387 		case IFF_UP:
1388 			rum_init(ifp);
1389 			break;
1390 		case IFF_RUNNING:
1391 			rum_stop(ifp, 1);
1392 			break;
1393 		case 0:
1394 			break;
1395 		}
1396 		break;
1397 
1398 	default:
1399 		error = ieee80211_ioctl(ic, cmd, data);
1400 	}
1401 
1402 	if (error == ENETRESET) {
1403 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1404 		    (IFF_UP | IFF_RUNNING))
1405 			rum_init(ifp);
1406 		error = 0;
1407 	}
1408 
1409 	splx(s);
1410 
1411 	return error;
1412 }
1413 
1414 Static void
1415 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
1416 {
1417 	usb_device_request_t req;
1418 	usbd_status error;
1419 
1420 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1421 	req.bRequest = RT2573_READ_EEPROM;
1422 	USETW(req.wValue, 0);
1423 	USETW(req.wIndex, addr);
1424 	USETW(req.wLength, len);
1425 
1426 	error = usbd_do_request(sc->sc_udev, &req, buf);
1427 	if (error != 0) {
1428 		printf("%s: could not read EEPROM: %s\n",
1429 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1430 	}
1431 }
1432 
1433 Static uint32_t
1434 rum_read(struct rum_softc *sc, uint16_t reg)
1435 {
1436 	uint32_t val;
1437 
1438 	rum_read_multi(sc, reg, &val, sizeof val);
1439 
1440 	return le32toh(val);
1441 }
1442 
1443 Static void
1444 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
1445 {
1446 	usb_device_request_t req;
1447 	usbd_status error;
1448 
1449 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1450 	req.bRequest = RT2573_READ_MULTI_MAC;
1451 	USETW(req.wValue, 0);
1452 	USETW(req.wIndex, reg);
1453 	USETW(req.wLength, len);
1454 
1455 	error = usbd_do_request(sc->sc_udev, &req, buf);
1456 	if (error != 0) {
1457 		printf("%s: could not multi read MAC register: %s\n",
1458 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1459 	}
1460 }
1461 
1462 Static void
1463 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
1464 {
1465 	uint32_t tmp = htole32(val);
1466 
1467 	rum_write_multi(sc, reg, &tmp, sizeof tmp);
1468 }
1469 
1470 Static void
1471 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
1472 {
1473 	usb_device_request_t req;
1474 	usbd_status error;
1475 
1476 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1477 	req.bRequest = RT2573_WRITE_MULTI_MAC;
1478 	USETW(req.wValue, 0);
1479 	USETW(req.wIndex, reg);
1480 	USETW(req.wLength, len);
1481 
1482 	error = usbd_do_request(sc->sc_udev, &req, buf);
1483 	if (error != 0) {
1484 		printf("%s: could not multi write MAC register: %s\n",
1485 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1486 	}
1487 }
1488 
1489 Static void
1490 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
1491 {
1492 	uint32_t tmp;
1493 	int ntries;
1494 
1495 	for (ntries = 0; ntries < 5; ntries++) {
1496 		if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1497 			break;
1498 	}
1499 	if (ntries == 5) {
1500 		printf("%s: could not write to BBP\n", USBDEVNAME(sc->sc_dev));
1501 		return;
1502 	}
1503 
1504 	tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
1505 	rum_write(sc, RT2573_PHY_CSR3, tmp);
1506 }
1507 
1508 Static uint8_t
1509 rum_bbp_read(struct rum_softc *sc, uint8_t reg)
1510 {
1511 	uint32_t val;
1512 	int ntries;
1513 
1514 	for (ntries = 0; ntries < 5; ntries++) {
1515 		if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1516 			break;
1517 	}
1518 	if (ntries == 5) {
1519 		printf("%s: could not read BBP\n", USBDEVNAME(sc->sc_dev));
1520 		return 0;
1521 	}
1522 
1523 	val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
1524 	rum_write(sc, RT2573_PHY_CSR3, val);
1525 
1526 	for (ntries = 0; ntries < 100; ntries++) {
1527 		val = rum_read(sc, RT2573_PHY_CSR3);
1528 		if (!(val & RT2573_BBP_BUSY))
1529 			return val & 0xff;
1530 		DELAY(1);
1531 	}
1532 
1533 	printf("%s: could not read BBP\n", USBDEVNAME(sc->sc_dev));
1534 	return 0;
1535 }
1536 
1537 Static void
1538 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
1539 {
1540 	uint32_t tmp;
1541 	int ntries;
1542 
1543 	for (ntries = 0; ntries < 5; ntries++) {
1544 		if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
1545 			break;
1546 	}
1547 	if (ntries == 5) {
1548 		printf("%s: could not write to RF\n", USBDEVNAME(sc->sc_dev));
1549 		return;
1550 	}
1551 
1552 	tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
1553 	    (reg & 3);
1554 	rum_write(sc, RT2573_PHY_CSR4, tmp);
1555 
1556 	/* remember last written value in sc */
1557 	sc->rf_regs[reg] = val;
1558 
1559 	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff));
1560 }
1561 
1562 Static void
1563 rum_select_antenna(struct rum_softc *sc)
1564 {
1565 	uint8_t bbp4, bbp77;
1566 	uint32_t tmp;
1567 
1568 	bbp4  = rum_bbp_read(sc, 4);
1569 	bbp77 = rum_bbp_read(sc, 77);
1570 
1571 	/* TBD */
1572 
1573 	/* make sure Rx is disabled before switching antenna */
1574 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
1575 	rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
1576 
1577 	rum_bbp_write(sc,  4, bbp4);
1578 	rum_bbp_write(sc, 77, bbp77);
1579 
1580 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
1581 }
1582 
1583 /*
1584  * Enable multi-rate retries for frames sent at OFDM rates.
1585  * In 802.11b/g mode, allow fallback to CCK rates.
1586  */
1587 Static void
1588 rum_enable_mrr(struct rum_softc *sc)
1589 {
1590 	struct ieee80211com *ic = &sc->sc_ic;
1591 	uint32_t tmp;
1592 
1593 	tmp = rum_read(sc, RT2573_TXRX_CSR4);
1594 
1595 	tmp &= ~RT2573_MRR_CCK_FALLBACK;
1596 	if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
1597 		tmp |= RT2573_MRR_CCK_FALLBACK;
1598 	tmp |= RT2573_MRR_ENABLED;
1599 
1600 	rum_write(sc, RT2573_TXRX_CSR4, tmp);
1601 }
1602 
1603 Static void
1604 rum_set_txpreamble(struct rum_softc *sc)
1605 {
1606 	uint32_t tmp;
1607 
1608 	tmp = rum_read(sc, RT2573_TXRX_CSR4);
1609 
1610 	tmp &= ~RT2573_SHORT_PREAMBLE;
1611 	if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1612 		tmp |= RT2573_SHORT_PREAMBLE;
1613 
1614 	rum_write(sc, RT2573_TXRX_CSR4, tmp);
1615 }
1616 
1617 Static void
1618 rum_set_basicrates(struct rum_softc *sc)
1619 {
1620 	struct ieee80211com *ic = &sc->sc_ic;
1621 
1622 	/* update basic rate set */
1623 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1624 		/* 11b basic rates: 1, 2Mbps */
1625 		rum_write(sc, RT2573_TXRX_CSR5, 0x3);
1626 	} else if (ic->ic_curmode == IEEE80211_MODE_11A) {
1627 		/* 11a basic rates: 6, 12, 24Mbps */
1628 		rum_write(sc, RT2573_TXRX_CSR5, 0x150);
1629 	} else {
1630 		/* 11b/g basic rates: 1, 2, 5.5, 11Mbps */
1631 		rum_write(sc, RT2573_TXRX_CSR5, 0xf);
1632 	}
1633 }
1634 
1635 /*
1636  * Reprogram MAC/BBP to switch to a new band.  Values taken from the reference
1637  * driver.
1638  */
1639 Static void
1640 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
1641 {
1642 	uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
1643 	uint32_t tmp;
1644 
1645 	/* update all BBP registers that depend on the band */
1646 	bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
1647 	bbp35 = 0x50; bbp97 = 0x48; bbp98  = 0x48;
1648 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
1649 		bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
1650 		bbp35 += 0x10; bbp97 += 0x10; bbp98  += 0x10;
1651 	}
1652 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1653 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1654 		bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
1655 	}
1656 
1657 	sc->bbp17 = bbp17;
1658 	rum_bbp_write(sc,  17, bbp17);
1659 	rum_bbp_write(sc,  96, bbp96);
1660 	rum_bbp_write(sc, 104, bbp104);
1661 
1662 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1663 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1664 		rum_bbp_write(sc, 75, 0x80);
1665 		rum_bbp_write(sc, 86, 0x80);
1666 		rum_bbp_write(sc, 88, 0x80);
1667 	}
1668 
1669 	rum_bbp_write(sc, 35, bbp35);
1670 	rum_bbp_write(sc, 97, bbp97);
1671 	rum_bbp_write(sc, 98, bbp98);
1672 
1673 	tmp = rum_read(sc, RT2573_PHY_CSR0);
1674 	tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ);
1675 	if (IEEE80211_IS_CHAN_2GHZ(c))
1676 		tmp |= RT2573_PA_PE_2GHZ;
1677 	else
1678 		tmp |= RT2573_PA_PE_5GHZ;
1679 	rum_write(sc, RT2573_PHY_CSR0, tmp);
1680 
1681 	/* 802.11a uses a 16 microseconds short interframe space */
1682 	sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
1683 }
1684 
1685 Static void
1686 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
1687 {
1688 	struct ieee80211com *ic = &sc->sc_ic;
1689 	const struct rfprog *rfprog;
1690 	uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
1691 	int8_t power;
1692 	u_int i, chan;
1693 
1694 	chan = ieee80211_chan2ieee(ic, c);
1695 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1696 		return;
1697 
1698 	/* select the appropriate RF settings based on what EEPROM says */
1699 	rfprog = (sc->rf_rev == RT2573_RF_5225 ||
1700 		  sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
1701 
1702 	/* find the settings for this channel (we know it exists) */
1703 	for (i = 0; rfprog[i].chan != chan; i++);
1704 
1705 	power = sc->txpow[i];
1706 	if (power < 0) {
1707 		bbp94 += power;
1708 		power = 0;
1709 	} else if (power > 31) {
1710 		bbp94 += power - 31;
1711 		power = 31;
1712 	}
1713 
1714 	/*
1715 	 * If we are switching from the 2GHz band to the 5GHz band or
1716 	 * vice-versa, BBP registers need to be reprogrammed.
1717 	 */
1718 	if (c->ic_flags != ic->ic_curchan->ic_flags) {
1719 		rum_select_band(sc, c);
1720 		rum_select_antenna(sc);
1721 	}
1722 	ic->ic_curchan = c;
1723 
1724 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1725 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1726 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1727 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1728 
1729 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1730 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1731 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
1732 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1733 
1734 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1735 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1736 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1737 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1738 
1739 	DELAY(10);
1740 
1741 	/* enable smart mode for MIMO-capable RFs */
1742 	bbp3 = rum_bbp_read(sc, 3);
1743 
1744 	bbp3 &= ~RT2573_SMART_MODE;
1745 	if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
1746 		bbp3 |= RT2573_SMART_MODE;
1747 
1748 	rum_bbp_write(sc, 3, bbp3);
1749 
1750 	if (bbp94 != RT2573_BBPR94_DEFAULT)
1751 		rum_bbp_write(sc, 94, bbp94);
1752 }
1753 
1754 /*
1755  * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
1756  * and HostAP operating modes.
1757  */
1758 Static void
1759 rum_enable_tsf_sync(struct rum_softc *sc)
1760 {
1761 	struct ieee80211com *ic = &sc->sc_ic;
1762 	uint32_t tmp;
1763 
1764 	if (ic->ic_opmode != IEEE80211_M_STA) {
1765 		/*
1766 		 * Change default 16ms TBTT adjustment to 8ms.
1767 		 * Must be done before enabling beacon generation.
1768 		 */
1769 		rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8);
1770 	}
1771 
1772 	tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
1773 
1774 	/* set beacon interval (in 1/16ms unit) */
1775 	tmp |= ic->ic_bss->ni_intval * 16;
1776 
1777 	tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT;
1778 	if (ic->ic_opmode == IEEE80211_M_STA)
1779 		tmp |= RT2573_TSF_MODE(1);
1780 	else
1781 		tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON;
1782 
1783 	rum_write(sc, RT2573_TXRX_CSR9, tmp);
1784 }
1785 
1786 Static void
1787 rum_update_slot(struct rum_softc *sc)
1788 {
1789 	struct ieee80211com *ic = &sc->sc_ic;
1790 	uint8_t slottime;
1791 	uint32_t tmp;
1792 
1793 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1794 
1795 	tmp = rum_read(sc, RT2573_MAC_CSR9);
1796 	tmp = (tmp & ~0xff) | slottime;
1797 	rum_write(sc, RT2573_MAC_CSR9, tmp);
1798 
1799 	DPRINTF(("setting slot time to %uus\n", slottime));
1800 }
1801 
1802 Static void
1803 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
1804 {
1805 	uint32_t tmp;
1806 
1807 	tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
1808 	rum_write(sc, RT2573_MAC_CSR4, tmp);
1809 
1810 	tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16;
1811 	rum_write(sc, RT2573_MAC_CSR5, tmp);
1812 }
1813 
1814 Static void
1815 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
1816 {
1817 	uint32_t tmp;
1818 
1819 	tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
1820 	rum_write(sc, RT2573_MAC_CSR2, tmp);
1821 
1822 	tmp = addr[4] | addr[5] << 8 | 0xff << 16;
1823 	rum_write(sc, RT2573_MAC_CSR3, tmp);
1824 }
1825 
1826 Static void
1827 rum_update_promisc(struct rum_softc *sc)
1828 {
1829 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1830 	uint32_t tmp;
1831 
1832 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
1833 
1834 	tmp &= ~RT2573_DROP_NOT_TO_ME;
1835 	if (!(ifp->if_flags & IFF_PROMISC))
1836 		tmp |= RT2573_DROP_NOT_TO_ME;
1837 
1838 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
1839 
1840 	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1841 	    "entering" : "leaving"));
1842 }
1843 
1844 Static const char *
1845 rum_get_rf(int rev)
1846 {
1847 	switch (rev) {
1848 	case RT2573_RF_2527:	return "RT2527 (MIMO XR)";
1849 	case RT2573_RF_2528:	return "RT2528";
1850 	case RT2573_RF_5225:	return "RT5225 (MIMO XR)";
1851 	case RT2573_RF_5226:	return "RT5226";
1852 	default:		return "unknown";
1853 	}
1854 }
1855 
1856 Static void
1857 rum_read_eeprom(struct rum_softc *sc)
1858 {
1859 	struct ieee80211com *ic = &sc->sc_ic;
1860 	uint16_t val;
1861 #ifdef RUM_DEBUG
1862 	int i;
1863 #endif
1864 
1865 	/* read MAC/BBP type */
1866 	rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2);
1867 	sc->macbbp_rev = le16toh(val);
1868 
1869 	/* read MAC address */
1870 	rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6);
1871 
1872 	rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
1873 	val = le16toh(val);
1874 	sc->rf_rev =   (val >> 11) & 0x1f;
1875 	sc->hw_radio = (val >> 10) & 0x1;
1876 	sc->rx_ant =   (val >> 4)  & 0x3;
1877 	sc->tx_ant =   (val >> 2)  & 0x3;
1878 	sc->nb_ant =   val & 0x3;
1879 
1880 	DPRINTF(("RF revision=%d\n", sc->rf_rev));
1881 
1882 	rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
1883 	val = le16toh(val);
1884 	sc->ext_5ghz_lna = (val >> 6) & 0x1;
1885 	sc->ext_2ghz_lna = (val >> 4) & 0x1;
1886 
1887 	DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
1888 	    sc->ext_2ghz_lna, sc->ext_5ghz_lna));
1889 
1890 	rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
1891 	val = le16toh(val);
1892 	if ((val & 0xff) != 0xff)
1893 		sc->rssi_2ghz_corr = (int8_t)(val & 0xff);	/* signed */
1894 
1895 	rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
1896 	val = le16toh(val);
1897 	if ((val & 0xff) != 0xff)
1898 		sc->rssi_5ghz_corr = (int8_t)(val & 0xff);	/* signed */
1899 
1900 	DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
1901 	    sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
1902 
1903 	rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
1904 	val = le16toh(val);
1905 	if ((val & 0xff) != 0xff)
1906 		sc->rffreq = val & 0xff;
1907 
1908 	DPRINTF(("RF freq=%d\n", sc->rffreq));
1909 
1910 	/* read Tx power for all a/b/g channels */
1911 	rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
1912 	/* XXX default Tx power for 802.11a channels */
1913 	memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14);
1914 #ifdef RUM_DEBUG
1915 	for (i = 0; i < 14; i++)
1916 		DPRINTF(("Channel=%d Tx power=%d\n", i + 1,  sc->txpow[i]));
1917 #endif
1918 
1919 	/* read default values for BBP registers */
1920 	rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1921 #ifdef RUM_DEBUG
1922 	for (i = 0; i < 14; i++) {
1923 		if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1924 			continue;
1925 		DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
1926 		    sc->bbp_prom[i].val));
1927 	}
1928 #endif
1929 }
1930 
1931 Static int
1932 rum_bbp_init(struct rum_softc *sc)
1933 {
1934 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
1935 	int i, ntries;
1936 	uint8_t val;
1937 
1938 	/* wait for BBP to be ready */
1939 	for (ntries = 0; ntries < 100; ntries++) {
1940 		val = rum_bbp_read(sc, 0);
1941 		if (val != 0 && val != 0xff)
1942 			break;
1943 		DELAY(1000);
1944 	}
1945 	if (ntries == 100) {
1946 		printf("%s: timeout waiting for BBP\n",
1947 		    USBDEVNAME(sc->sc_dev));
1948 		return EIO;
1949 	}
1950 
1951 	/* initialize BBP registers to default values */
1952 	for (i = 0; i < N(rum_def_bbp); i++)
1953 		rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
1954 
1955 	/* write vendor-specific BBP values (from EEPROM) */
1956 	for (i = 0; i < 16; i++) {
1957 		if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1958 			continue;
1959 		rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
1960 	}
1961 
1962 	return 0;
1963 #undef N
1964 }
1965 
1966 Static int
1967 rum_init(struct ifnet *ifp)
1968 {
1969 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
1970 	struct rum_softc *sc = ifp->if_softc;
1971 	struct ieee80211com *ic = &sc->sc_ic;
1972 	struct rum_rx_data *data;
1973 	uint32_t tmp;
1974 	usbd_status error = 0;
1975 	int i, ntries;
1976 
1977 	if ((sc->sc_flags & RT2573_FWLOADED) == 0) {
1978 		if (rum_attachhook(sc))
1979 			goto fail;
1980 	}
1981 
1982 	rum_stop(ifp, 0);
1983 
1984 	/* initialize MAC registers to default values */
1985 	for (i = 0; i < N(rum_def_mac); i++)
1986 		rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
1987 
1988 	/* set host ready */
1989 	rum_write(sc, RT2573_MAC_CSR1, 3);
1990 	rum_write(sc, RT2573_MAC_CSR1, 0);
1991 
1992 	/* wait for BBP/RF to wakeup */
1993 	for (ntries = 0; ntries < 1000; ntries++) {
1994 		if (rum_read(sc, RT2573_MAC_CSR12) & 8)
1995 			break;
1996 		rum_write(sc, RT2573_MAC_CSR12, 4);	/* force wakeup */
1997 		DELAY(1000);
1998 	}
1999 	if (ntries == 1000) {
2000 		printf("%s: timeout waiting for BBP/RF to wakeup\n",
2001 		    USBDEVNAME(sc->sc_dev));
2002 		goto fail;
2003 	}
2004 
2005 	if ((error = rum_bbp_init(sc)) != 0)
2006 		goto fail;
2007 
2008 	/* select default channel */
2009 	rum_select_band(sc, ic->ic_curchan);
2010 	rum_select_antenna(sc);
2011 	rum_set_chan(sc, ic->ic_curchan);
2012 
2013 	/* clear STA registers */
2014 	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
2015 
2016 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2017 	rum_set_macaddr(sc, ic->ic_myaddr);
2018 
2019 	/* initialize ASIC */
2020 	rum_write(sc, RT2573_MAC_CSR1, 4);
2021 
2022 	/*
2023 	 * Allocate xfer for AMRR statistics requests.
2024 	 */
2025 	sc->amrr_xfer = usbd_alloc_xfer(sc->sc_udev);
2026 	if (sc->amrr_xfer == NULL) {
2027 		printf("%s: could not allocate AMRR xfer\n",
2028 		    USBDEVNAME(sc->sc_dev));
2029 		goto fail;
2030 	}
2031 
2032 	/*
2033 	 * Open Tx and Rx USB bulk pipes.
2034 	 */
2035 	error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2036 	    &sc->sc_tx_pipeh);
2037 	if (error != 0) {
2038 		printf("%s: could not open Tx pipe: %s\n",
2039 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
2040 		goto fail;
2041 	}
2042 
2043 	error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2044 	    &sc->sc_rx_pipeh);
2045 	if (error != 0) {
2046 		printf("%s: could not open Rx pipe: %s\n",
2047 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
2048 		goto fail;
2049 	}
2050 
2051 	/*
2052 	 * Allocate Tx and Rx xfer queues.
2053 	 */
2054 	error = rum_alloc_tx_list(sc);
2055 	if (error != 0) {
2056 		printf("%s: could not allocate Tx list\n",
2057 		    USBDEVNAME(sc->sc_dev));
2058 		goto fail;
2059 	}
2060 
2061 	error = rum_alloc_rx_list(sc);
2062 	if (error != 0) {
2063 		printf("%s: could not allocate Rx list\n",
2064 		    USBDEVNAME(sc->sc_dev));
2065 		goto fail;
2066 	}
2067 
2068 	/*
2069 	 * Start up the receive pipe.
2070 	 */
2071 	for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
2072 		data = &sc->rx_data[i];
2073 
2074 		usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf,
2075 		    MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
2076 		error = usbd_transfer(data->xfer);
2077 		if (error != USBD_NORMAL_COMPLETION &&
2078 		    error != USBD_IN_PROGRESS) {
2079 			printf("%s: could not queue Rx transfer\n",
2080 			    USBDEVNAME(sc->sc_dev));
2081 			goto fail;
2082 		}
2083 	}
2084 
2085 	/* update Rx filter */
2086 	tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
2087 
2088 	tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
2089 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2090 		tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
2091 		       RT2573_DROP_ACKCTS;
2092 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2093 			tmp |= RT2573_DROP_TODS;
2094 		if (!(ifp->if_flags & IFF_PROMISC))
2095 			tmp |= RT2573_DROP_NOT_TO_ME;
2096 	}
2097 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
2098 
2099 	ifp->if_flags &= ~IFF_OACTIVE;
2100 	ifp->if_flags |= IFF_RUNNING;
2101 
2102 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2103 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2104 	else
2105 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2106 
2107 	return 0;
2108 
2109 fail:	rum_stop(ifp, 1);
2110 	return error;
2111 #undef N
2112 }
2113 
2114 Static void
2115 rum_stop(struct ifnet *ifp, int disable)
2116 {
2117 	struct rum_softc *sc = ifp->if_softc;
2118 	struct ieee80211com *ic = &sc->sc_ic;
2119 	uint32_t tmp;
2120 
2121 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);	/* free all nodes */
2122 
2123 	sc->sc_tx_timer = 0;
2124 	ifp->if_timer = 0;
2125 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2126 
2127 	/* disable Rx */
2128 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
2129 	rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
2130 
2131 	/* reset ASIC */
2132 	rum_write(sc, RT2573_MAC_CSR1, 3);
2133 	rum_write(sc, RT2573_MAC_CSR1, 0);
2134 
2135 	if (sc->sc_rx_pipeh != NULL) {
2136 		usbd_abort_pipe(sc->sc_rx_pipeh);
2137 		usbd_close_pipe(sc->sc_rx_pipeh);
2138 		sc->sc_rx_pipeh = NULL;
2139 	}
2140 
2141 	if (sc->sc_tx_pipeh != NULL) {
2142 		usbd_abort_pipe(sc->sc_tx_pipeh);
2143 		usbd_close_pipe(sc->sc_tx_pipeh);
2144 		sc->sc_tx_pipeh = NULL;
2145 	}
2146 
2147 	rum_free_rx_list(sc);
2148 	rum_free_tx_list(sc);
2149 }
2150 
2151 Static int
2152 rum_load_microcode(struct rum_softc *sc, const u_char *ucode, size_t size)
2153 {
2154 	usb_device_request_t req;
2155 	uint16_t reg = RT2573_MCU_CODE_BASE;
2156 	usbd_status error;
2157 
2158 	/* copy firmware image into NIC */
2159 	for (; size >= 4; reg += 4, ucode += 4, size -= 4)
2160 		rum_write(sc, reg, UGETDW(ucode));
2161 
2162 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2163 	req.bRequest = RT2573_MCU_CNTL;
2164 	USETW(req.wValue, RT2573_MCU_RUN);
2165 	USETW(req.wIndex, 0);
2166 	USETW(req.wLength, 0);
2167 
2168 	error = usbd_do_request(sc->sc_udev, &req, NULL);
2169 	if (error != 0) {
2170 		printf("%s: could not run firmware: %s\n",
2171 		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
2172 	}
2173 	return error;
2174 }
2175 
2176 Static int
2177 rum_prepare_beacon(struct rum_softc *sc)
2178 {
2179 	struct ieee80211com *ic = &sc->sc_ic;
2180 	struct rum_tx_desc desc;
2181 	struct mbuf *m0;
2182 	int rate;
2183 
2184 	m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &sc->sc_bo);
2185 	if (m0 == NULL) {
2186 		aprint_error_dev(sc->sc_dev,
2187 		    "could not allocate beacon frame\n");
2188 		return ENOBUFS;
2189 	}
2190 
2191 	/* send beacons at the lowest available rate */
2192 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
2193 
2194 	rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ,
2195 	    m0->m_pkthdr.len, rate);
2196 
2197 	/* copy the first 24 bytes of Tx descriptor into NIC memory */
2198 	rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2199 
2200 	/* copy beacon header and payload into NIC memory */
2201 	rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *),
2202 	    m0->m_pkthdr.len);
2203 
2204 	m_freem(m0);
2205 
2206 	return 0;
2207 }
2208 
2209 Static void
2210 rum_newassoc(struct ieee80211_node *ni, int isnew)
2211 {
2212 	/* start with lowest Tx rate */
2213 	ni->ni_txrate = 0;
2214 }
2215 
2216 Static void
2217 rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni)
2218 {
2219 	int i;
2220 
2221 	/* clear statistic registers (STA_CSR0 to STA_CSR5) */
2222 	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
2223 
2224 	ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2225 
2226 	/* set rate to some reasonable initial value */
2227 	for (i = ni->ni_rates.rs_nrates - 1;
2228 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2229 	     i--);
2230 	ni->ni_txrate = i;
2231 
2232 	usb_callout(sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
2233 }
2234 
2235 Static void
2236 rum_amrr_timeout(void *arg)
2237 {
2238 	struct rum_softc *sc = arg;
2239 	usb_device_request_t req;
2240 
2241 	/*
2242 	 * Asynchronously read statistic registers (cleared by read).
2243 	 */
2244 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
2245 	req.bRequest = RT2573_READ_MULTI_MAC;
2246 	USETW(req.wValue, 0);
2247 	USETW(req.wIndex, RT2573_STA_CSR0);
2248 	USETW(req.wLength, sizeof sc->sta);
2249 
2250 	usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2251 	    USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0,
2252 	    rum_amrr_update);
2253 	(void)usbd_transfer(sc->amrr_xfer);
2254 }
2255 
2256 Static void
2257 rum_amrr_update(usbd_xfer_handle xfer, usbd_private_handle priv,
2258     usbd_status status)
2259 {
2260 	struct rum_softc *sc = (struct rum_softc *)priv;
2261 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
2262 
2263 	if (status != USBD_NORMAL_COMPLETION) {
2264 		printf("%s: could not retrieve Tx statistics - cancelling "
2265 		    "automatic rate control\n", USBDEVNAME(sc->sc_dev));
2266 		return;
2267 	}
2268 
2269 	/* count TX retry-fail as Tx errors */
2270 	ifp->if_oerrors += le32toh(sc->sta[5]) >> 16;
2271 
2272 	sc->amn.amn_retrycnt =
2273 	    (le32toh(sc->sta[4]) >> 16) +	/* TX one-retry ok count */
2274 	    (le32toh(sc->sta[5]) & 0xffff) +	/* TX more-retry ok count */
2275 	    (le32toh(sc->sta[5]) >> 16);	/* TX retry-fail count */
2276 
2277 	sc->amn.amn_txcnt =
2278 	    sc->amn.amn_retrycnt +
2279 	    (le32toh(sc->sta[4]) & 0xffff);	/* TX no-retry ok count */
2280 
2281 	ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2282 
2283 	usb_callout(sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
2284 }
2285 
2286 int
2287 rum_activate(device_ptr_t self, enum devact act)
2288 {
2289 	switch (act) {
2290 	case DVACT_DEACTIVATE:
2291 		/*if_deactivate(&sc->sc_ic.ic_if);*/
2292 		return 0;
2293 	default:
2294 		return EOPNOTSUPP;
2295 	}
2296 }
2297