1 /* $OpenBSD: if_rum.c,v 1.40 2006/09/18 16:20:20 damien Exp $ */ 2 /* $NetBSD: if_rum.c,v 1.51 2015/08/30 13:09:48 ryoon Exp $ */ 3 4 /*- 5 * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini@free.fr> 6 * Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org> 7 * 8 * Permission to use, copy, modify, and distribute this software for any 9 * purpose with or without fee is hereby granted, provided that the above 10 * copyright notice and this permission notice appear in all copies. 11 * 12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 */ 20 21 /*- 22 * Ralink Technology RT2501USB/RT2601USB chipset driver 23 * http://www.ralinktech.com.tw/ 24 */ 25 26 #include <sys/cdefs.h> 27 __KERNEL_RCSID(0, "$NetBSD: if_rum.c,v 1.51 2015/08/30 13:09:48 ryoon Exp $"); 28 29 #include <sys/param.h> 30 #include <sys/sockio.h> 31 #include <sys/sysctl.h> 32 #include <sys/mbuf.h> 33 #include <sys/kernel.h> 34 #include <sys/socket.h> 35 #include <sys/systm.h> 36 #include <sys/malloc.h> 37 #include <sys/module.h> 38 #include <sys/conf.h> 39 #include <sys/device.h> 40 41 #include <sys/bus.h> 42 #include <machine/endian.h> 43 #include <sys/intr.h> 44 45 #include <net/bpf.h> 46 #include <net/if.h> 47 #include <net/if_arp.h> 48 #include <net/if_dl.h> 49 #include <net/if_ether.h> 50 #include <net/if_media.h> 51 #include <net/if_types.h> 52 53 #include <netinet/in.h> 54 #include <netinet/in_systm.h> 55 #include <netinet/in_var.h> 56 #include <netinet/ip.h> 57 58 #include <net80211/ieee80211_netbsd.h> 59 #include <net80211/ieee80211_var.h> 60 #include <net80211/ieee80211_amrr.h> 61 #include <net80211/ieee80211_radiotap.h> 62 63 #include <dev/firmload.h> 64 65 #include <dev/usb/usb.h> 66 #include <dev/usb/usbdi.h> 67 #include <dev/usb/usbdi_util.h> 68 #include <dev/usb/usbdevs.h> 69 70 #include <dev/usb/if_rumreg.h> 71 #include <dev/usb/if_rumvar.h> 72 73 #ifdef RUM_DEBUG 74 #define DPRINTF(x) do { if (rum_debug) printf x; } while (0) 75 #define DPRINTFN(n, x) do { if (rum_debug >= (n)) printf x; } while (0) 76 int rum_debug = 1; 77 #else 78 #define DPRINTF(x) 79 #define DPRINTFN(n, x) 80 #endif 81 82 /* various supported device vendors/products */ 83 static const struct usb_devno rum_devs[] = { 84 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_HWU54DM }, 85 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_2 }, 86 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_3 }, 87 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_4 }, 88 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_WUG2700 }, 89 { USB_VENDOR_AMIT, USB_PRODUCT_AMIT_CGWLUSB2GO }, 90 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G_2 }, 91 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G_3 }, 92 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050A }, 93 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D9050V3 }, 94 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D9050C }, 95 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB200 }, 96 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GC }, 97 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GR }, 98 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_C54RU2 }, 99 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_RT2573 }, 100 { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GL }, 101 { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GPX }, 102 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_CWD854F }, 103 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_RT2573 }, 104 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWLG122C1 }, 105 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_WUA1340 }, 106 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA110 }, 107 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA111 }, 108 { USB_VENDOR_EDIMAX, USB_PRODUCT_EDIMAX_EW7318 }, 109 { USB_VENDOR_EDIMAX, USB_PRODUCT_EDIMAX_EW7618 }, 110 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWB01GS }, 111 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWI05GS }, 112 { USB_VENDOR_GIGASET, USB_PRODUCT_GIGASET_RT2573 }, 113 { USB_VENDOR_GOODWAY, USB_PRODUCT_GOODWAY_RT2573 }, 114 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254LB }, 115 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254V2AP }, 116 { USB_VENDOR_HUAWEI3COM, USB_PRODUCT_HUAWEI3COM_RT2573 }, 117 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_G54HP }, 118 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_SG54HP }, 119 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_SG54HG }, 120 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_WLIUCG }, 121 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573 }, 122 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_2 }, 123 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_3 }, 124 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_4 }, 125 { USB_VENDOR_NOVATECH, USB_PRODUCT_NOVATECH_RT2573 }, 126 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54HP }, 127 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54MINI2 }, 128 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUSMM }, 129 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573 }, 130 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_2 }, 131 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_3 }, 132 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2573 }, 133 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2671 }, 134 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL113R2 }, 135 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL172 }, 136 { USB_VENDOR_SPARKLAN, USB_PRODUCT_SPARKLAN_RT2573 }, 137 { USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_RT2573 }, 138 { USB_VENDOR_ZYXEL, USB_PRODUCT_ZYXEL_RT2573 } 139 }; 140 141 static int rum_attachhook(void *); 142 static int rum_alloc_tx_list(struct rum_softc *); 143 static void rum_free_tx_list(struct rum_softc *); 144 static int rum_alloc_rx_list(struct rum_softc *); 145 static void rum_free_rx_list(struct rum_softc *); 146 static int rum_media_change(struct ifnet *); 147 static void rum_next_scan(void *); 148 static void rum_task(void *); 149 static int rum_newstate(struct ieee80211com *, 150 enum ieee80211_state, int); 151 static void rum_txeof(usbd_xfer_handle, usbd_private_handle, 152 usbd_status); 153 static void rum_rxeof(usbd_xfer_handle, usbd_private_handle, 154 usbd_status); 155 static uint8_t rum_rxrate(const struct rum_rx_desc *); 156 static int rum_ack_rate(struct ieee80211com *, int); 157 static uint16_t rum_txtime(int, int, uint32_t); 158 static uint8_t rum_plcp_signal(int); 159 static void rum_setup_tx_desc(struct rum_softc *, 160 struct rum_tx_desc *, uint32_t, uint16_t, int, 161 int); 162 static int rum_tx_data(struct rum_softc *, struct mbuf *, 163 struct ieee80211_node *); 164 static void rum_start(struct ifnet *); 165 static void rum_watchdog(struct ifnet *); 166 static int rum_ioctl(struct ifnet *, u_long, void *); 167 static void rum_eeprom_read(struct rum_softc *, uint16_t, void *, 168 int); 169 static uint32_t rum_read(struct rum_softc *, uint16_t); 170 static void rum_read_multi(struct rum_softc *, uint16_t, void *, 171 int); 172 static void rum_write(struct rum_softc *, uint16_t, uint32_t); 173 static void rum_write_multi(struct rum_softc *, uint16_t, void *, 174 size_t); 175 static void rum_bbp_write(struct rum_softc *, uint8_t, uint8_t); 176 static uint8_t rum_bbp_read(struct rum_softc *, uint8_t); 177 static void rum_rf_write(struct rum_softc *, uint8_t, uint32_t); 178 static void rum_select_antenna(struct rum_softc *); 179 static void rum_enable_mrr(struct rum_softc *); 180 static void rum_set_txpreamble(struct rum_softc *); 181 static void rum_set_basicrates(struct rum_softc *); 182 static void rum_select_band(struct rum_softc *, 183 struct ieee80211_channel *); 184 static void rum_set_chan(struct rum_softc *, 185 struct ieee80211_channel *); 186 static void rum_enable_tsf_sync(struct rum_softc *); 187 static void rum_update_slot(struct rum_softc *); 188 static void rum_set_bssid(struct rum_softc *, const uint8_t *); 189 static void rum_set_macaddr(struct rum_softc *, const uint8_t *); 190 static void rum_update_promisc(struct rum_softc *); 191 static const char *rum_get_rf(int); 192 static void rum_read_eeprom(struct rum_softc *); 193 static int rum_bbp_init(struct rum_softc *); 194 static int rum_init(struct ifnet *); 195 static void rum_stop(struct ifnet *, int); 196 static int rum_load_microcode(struct rum_softc *, const u_char *, 197 size_t); 198 static int rum_prepare_beacon(struct rum_softc *); 199 static void rum_newassoc(struct ieee80211_node *, int); 200 static void rum_amrr_start(struct rum_softc *, 201 struct ieee80211_node *); 202 static void rum_amrr_timeout(void *); 203 static void rum_amrr_update(usbd_xfer_handle, usbd_private_handle, 204 usbd_status status); 205 206 /* 207 * Supported rates for 802.11a/b/g modes (in 500Kbps unit). 208 */ 209 static const struct ieee80211_rateset rum_rateset_11a = 210 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } }; 211 212 static const struct ieee80211_rateset rum_rateset_11b = 213 { 4, { 2, 4, 11, 22 } }; 214 215 static const struct ieee80211_rateset rum_rateset_11g = 216 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } }; 217 218 static const struct { 219 uint32_t reg; 220 uint32_t val; 221 } rum_def_mac[] = { 222 RT2573_DEF_MAC 223 }; 224 225 static const struct { 226 uint8_t reg; 227 uint8_t val; 228 } rum_def_bbp[] = { 229 RT2573_DEF_BBP 230 }; 231 232 static const struct rfprog { 233 uint8_t chan; 234 uint32_t r1, r2, r3, r4; 235 } rum_rf5226[] = { 236 RT2573_RF5226 237 }, rum_rf5225[] = { 238 RT2573_RF5225 239 }; 240 241 static int rum_match(device_t, cfdata_t, void *); 242 static void rum_attach(device_t, device_t, void *); 243 static int rum_detach(device_t, int); 244 static int rum_activate(device_t, enum devact); 245 extern struct cfdriver rum_cd; 246 CFATTACH_DECL_NEW(rum, sizeof(struct rum_softc), rum_match, rum_attach, 247 rum_detach, rum_activate); 248 249 static int 250 rum_match(device_t parent, cfdata_t match, void *aux) 251 { 252 struct usb_attach_arg *uaa = aux; 253 254 return (usb_lookup(rum_devs, uaa->vendor, uaa->product) != NULL) ? 255 UMATCH_VENDOR_PRODUCT : UMATCH_NONE; 256 } 257 258 static int 259 rum_attachhook(void *xsc) 260 { 261 struct rum_softc *sc = xsc; 262 firmware_handle_t fwh; 263 const char *name = "rum-rt2573"; 264 u_char *ucode; 265 size_t size; 266 int error; 267 268 if ((error = firmware_open("rum", name, &fwh)) != 0) { 269 printf("%s: failed firmware_open of file %s (error %d)\n", 270 device_xname(sc->sc_dev), name, error); 271 return error; 272 } 273 size = firmware_get_size(fwh); 274 ucode = firmware_malloc(size); 275 if (ucode == NULL) { 276 printf("%s: failed to allocate firmware memory\n", 277 device_xname(sc->sc_dev)); 278 firmware_close(fwh); 279 return ENOMEM; 280 } 281 error = firmware_read(fwh, 0, ucode, size); 282 firmware_close(fwh); 283 if (error != 0) { 284 printf("%s: failed to read firmware (error %d)\n", 285 device_xname(sc->sc_dev), error); 286 firmware_free(ucode, size); 287 return error; 288 } 289 290 if (rum_load_microcode(sc, ucode, size) != 0) { 291 printf("%s: could not load 8051 microcode\n", 292 device_xname(sc->sc_dev)); 293 firmware_free(ucode, size); 294 return ENXIO; 295 } 296 297 firmware_free(ucode, size); 298 sc->sc_flags |= RT2573_FWLOADED; 299 300 return 0; 301 } 302 303 static void 304 rum_attach(device_t parent, device_t self, void *aux) 305 { 306 struct rum_softc *sc = device_private(self); 307 struct usb_attach_arg *uaa = aux; 308 struct ieee80211com *ic = &sc->sc_ic; 309 struct ifnet *ifp = &sc->sc_if; 310 usb_interface_descriptor_t *id; 311 usb_endpoint_descriptor_t *ed; 312 usbd_status error; 313 char *devinfop; 314 int i, ntries; 315 uint32_t tmp; 316 317 sc->sc_dev = self; 318 sc->sc_udev = uaa->device; 319 sc->sc_flags = 0; 320 321 aprint_naive("\n"); 322 aprint_normal("\n"); 323 324 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0); 325 aprint_normal_dev(self, "%s\n", devinfop); 326 usbd_devinfo_free(devinfop); 327 328 error = usbd_set_config_no(sc->sc_udev, RT2573_CONFIG_NO, 0); 329 if (error != 0) { 330 aprint_error_dev(self, "failed to set configuration" 331 ", err=%s\n", usbd_errstr(error)); 332 return; 333 } 334 335 /* get the first interface handle */ 336 error = usbd_device2interface_handle(sc->sc_udev, RT2573_IFACE_INDEX, 337 &sc->sc_iface); 338 if (error != 0) { 339 aprint_error_dev(self, "could not get interface handle\n"); 340 return; 341 } 342 343 /* 344 * Find endpoints. 345 */ 346 id = usbd_get_interface_descriptor(sc->sc_iface); 347 348 sc->sc_rx_no = sc->sc_tx_no = -1; 349 for (i = 0; i < id->bNumEndpoints; i++) { 350 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i); 351 if (ed == NULL) { 352 aprint_error_dev(self, 353 "no endpoint descriptor for iface %d\n", i); 354 return; 355 } 356 357 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN && 358 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) 359 sc->sc_rx_no = ed->bEndpointAddress; 360 else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT && 361 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) 362 sc->sc_tx_no = ed->bEndpointAddress; 363 } 364 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) { 365 aprint_error_dev(self, "missing endpoint\n"); 366 return; 367 } 368 369 usb_init_task(&sc->sc_task, rum_task, sc, 0); 370 callout_init(&sc->sc_scan_ch, 0); 371 372 sc->amrr.amrr_min_success_threshold = 1; 373 sc->amrr.amrr_max_success_threshold = 10; 374 callout_init(&sc->sc_amrr_ch, 0); 375 376 /* retrieve RT2573 rev. no */ 377 for (ntries = 0; ntries < 1000; ntries++) { 378 if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0) 379 break; 380 DELAY(1000); 381 } 382 if (ntries == 1000) { 383 aprint_error_dev(self, "timeout waiting for chip to settle\n"); 384 return; 385 } 386 387 /* retrieve MAC address and various other things from EEPROM */ 388 rum_read_eeprom(sc); 389 390 aprint_normal_dev(self, 391 "MAC/BBP RT%04x (rev 0x%05x), RF %s, address %s\n", 392 sc->macbbp_rev, tmp, 393 rum_get_rf(sc->rf_rev), ether_sprintf(ic->ic_myaddr)); 394 395 ic->ic_ifp = ifp; 396 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 397 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 398 ic->ic_state = IEEE80211_S_INIT; 399 400 /* set device capabilities */ 401 ic->ic_caps = 402 IEEE80211_C_IBSS | /* IBSS mode supported */ 403 IEEE80211_C_MONITOR | /* monitor mode supported */ 404 IEEE80211_C_HOSTAP | /* HostAp mode supported */ 405 IEEE80211_C_TXPMGT | /* tx power management */ 406 IEEE80211_C_SHPREAMBLE | /* short preamble supported */ 407 IEEE80211_C_SHSLOT | /* short slot time supported */ 408 IEEE80211_C_WPA; /* 802.11i */ 409 410 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) { 411 /* set supported .11a rates */ 412 ic->ic_sup_rates[IEEE80211_MODE_11A] = rum_rateset_11a; 413 414 /* set supported .11a channels */ 415 for (i = 34; i <= 46; i += 4) { 416 ic->ic_channels[i].ic_freq = 417 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 418 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 419 } 420 for (i = 36; i <= 64; i += 4) { 421 ic->ic_channels[i].ic_freq = 422 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 423 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 424 } 425 for (i = 100; i <= 140; i += 4) { 426 ic->ic_channels[i].ic_freq = 427 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 428 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 429 } 430 for (i = 149; i <= 165; i += 4) { 431 ic->ic_channels[i].ic_freq = 432 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 433 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 434 } 435 } 436 437 /* set supported .11b and .11g rates */ 438 ic->ic_sup_rates[IEEE80211_MODE_11B] = rum_rateset_11b; 439 ic->ic_sup_rates[IEEE80211_MODE_11G] = rum_rateset_11g; 440 441 /* set supported .11b and .11g channels (1 through 14) */ 442 for (i = 1; i <= 14; i++) { 443 ic->ic_channels[i].ic_freq = 444 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ); 445 ic->ic_channels[i].ic_flags = 446 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | 447 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 448 } 449 450 ifp->if_softc = sc; 451 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 452 ifp->if_init = rum_init; 453 ifp->if_ioctl = rum_ioctl; 454 ifp->if_start = rum_start; 455 ifp->if_watchdog = rum_watchdog; 456 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); 457 IFQ_SET_READY(&ifp->if_snd); 458 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ); 459 460 if_attach(ifp); 461 ieee80211_ifattach(ic); 462 ic->ic_newassoc = rum_newassoc; 463 464 /* override state transition machine */ 465 sc->sc_newstate = ic->ic_newstate; 466 ic->ic_newstate = rum_newstate; 467 ieee80211_media_init(ic, rum_media_change, ieee80211_media_status); 468 469 bpf_attach2(ifp, DLT_IEEE802_11_RADIO, 470 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN, 471 &sc->sc_drvbpf); 472 473 sc->sc_rxtap_len = sizeof sc->sc_rxtapu; 474 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 475 sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT); 476 477 sc->sc_txtap_len = sizeof sc->sc_txtapu; 478 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 479 sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT); 480 481 ieee80211_announce(ic); 482 483 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, 484 sc->sc_dev); 485 486 if (!pmf_device_register(self, NULL, NULL)) 487 aprint_error_dev(self, "couldn't establish power handler\n"); 488 489 return; 490 } 491 492 static int 493 rum_detach(device_t self, int flags) 494 { 495 struct rum_softc *sc = device_private(self); 496 struct ieee80211com *ic = &sc->sc_ic; 497 struct ifnet *ifp = &sc->sc_if; 498 int s; 499 500 if (!ifp->if_softc) 501 return 0; 502 503 pmf_device_deregister(self); 504 505 s = splusb(); 506 507 rum_stop(ifp, 1); 508 usb_rem_task(sc->sc_udev, &sc->sc_task); 509 callout_stop(&sc->sc_scan_ch); 510 callout_stop(&sc->sc_amrr_ch); 511 512 if (sc->amrr_xfer != NULL) { 513 usbd_free_xfer(sc->amrr_xfer); 514 sc->amrr_xfer = NULL; 515 } 516 517 if (sc->sc_rx_pipeh != NULL) { 518 usbd_abort_pipe(sc->sc_rx_pipeh); 519 usbd_close_pipe(sc->sc_rx_pipeh); 520 } 521 522 if (sc->sc_tx_pipeh != NULL) { 523 usbd_abort_pipe(sc->sc_tx_pipeh); 524 usbd_close_pipe(sc->sc_tx_pipeh); 525 } 526 527 bpf_detach(ifp); 528 ieee80211_ifdetach(ic); /* free all nodes */ 529 if_detach(ifp); 530 531 splx(s); 532 533 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev); 534 535 return 0; 536 } 537 538 static int 539 rum_alloc_tx_list(struct rum_softc *sc) 540 { 541 struct rum_tx_data *data; 542 int i, error; 543 544 sc->tx_cur = sc->tx_queued = 0; 545 546 for (i = 0; i < RUM_TX_LIST_COUNT; i++) { 547 data = &sc->tx_data[i]; 548 549 data->sc = sc; 550 551 data->xfer = usbd_alloc_xfer(sc->sc_udev); 552 if (data->xfer == NULL) { 553 printf("%s: could not allocate tx xfer\n", 554 device_xname(sc->sc_dev)); 555 error = ENOMEM; 556 goto fail; 557 } 558 559 data->buf = usbd_alloc_buffer(data->xfer, 560 RT2573_TX_DESC_SIZE + IEEE80211_MAX_LEN); 561 if (data->buf == NULL) { 562 printf("%s: could not allocate tx buffer\n", 563 device_xname(sc->sc_dev)); 564 error = ENOMEM; 565 goto fail; 566 } 567 568 /* clean Tx descriptor */ 569 memset(data->buf, 0, RT2573_TX_DESC_SIZE); 570 } 571 572 return 0; 573 574 fail: rum_free_tx_list(sc); 575 return error; 576 } 577 578 static void 579 rum_free_tx_list(struct rum_softc *sc) 580 { 581 struct rum_tx_data *data; 582 int i; 583 584 for (i = 0; i < RUM_TX_LIST_COUNT; i++) { 585 data = &sc->tx_data[i]; 586 587 if (data->xfer != NULL) { 588 usbd_free_xfer(data->xfer); 589 data->xfer = NULL; 590 } 591 592 if (data->ni != NULL) { 593 ieee80211_free_node(data->ni); 594 data->ni = NULL; 595 } 596 } 597 } 598 599 static int 600 rum_alloc_rx_list(struct rum_softc *sc) 601 { 602 struct rum_rx_data *data; 603 int i, error; 604 605 for (i = 0; i < RUM_RX_LIST_COUNT; i++) { 606 data = &sc->rx_data[i]; 607 608 data->sc = sc; 609 610 data->xfer = usbd_alloc_xfer(sc->sc_udev); 611 if (data->xfer == NULL) { 612 printf("%s: could not allocate rx xfer\n", 613 device_xname(sc->sc_dev)); 614 error = ENOMEM; 615 goto fail; 616 } 617 618 if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) { 619 printf("%s: could not allocate rx buffer\n", 620 device_xname(sc->sc_dev)); 621 error = ENOMEM; 622 goto fail; 623 } 624 625 MGETHDR(data->m, M_DONTWAIT, MT_DATA); 626 if (data->m == NULL) { 627 printf("%s: could not allocate rx mbuf\n", 628 device_xname(sc->sc_dev)); 629 error = ENOMEM; 630 goto fail; 631 } 632 633 MCLGET(data->m, M_DONTWAIT); 634 if (!(data->m->m_flags & M_EXT)) { 635 printf("%s: could not allocate rx mbuf cluster\n", 636 device_xname(sc->sc_dev)); 637 error = ENOMEM; 638 goto fail; 639 } 640 641 data->buf = mtod(data->m, uint8_t *); 642 } 643 644 return 0; 645 646 fail: rum_free_rx_list(sc); 647 return error; 648 } 649 650 static void 651 rum_free_rx_list(struct rum_softc *sc) 652 { 653 struct rum_rx_data *data; 654 int i; 655 656 for (i = 0; i < RUM_RX_LIST_COUNT; i++) { 657 data = &sc->rx_data[i]; 658 659 if (data->xfer != NULL) { 660 usbd_free_xfer(data->xfer); 661 data->xfer = NULL; 662 } 663 664 if (data->m != NULL) { 665 m_freem(data->m); 666 data->m = NULL; 667 } 668 } 669 } 670 671 static int 672 rum_media_change(struct ifnet *ifp) 673 { 674 int error; 675 676 error = ieee80211_media_change(ifp); 677 if (error != ENETRESET) 678 return error; 679 680 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) 681 rum_init(ifp); 682 683 return 0; 684 } 685 686 /* 687 * This function is called periodically (every 200ms) during scanning to 688 * switch from one channel to another. 689 */ 690 static void 691 rum_next_scan(void *arg) 692 { 693 struct rum_softc *sc = arg; 694 struct ieee80211com *ic = &sc->sc_ic; 695 int s; 696 697 s = splnet(); 698 if (ic->ic_state == IEEE80211_S_SCAN) 699 ieee80211_next_scan(ic); 700 splx(s); 701 } 702 703 static void 704 rum_task(void *arg) 705 { 706 struct rum_softc *sc = arg; 707 struct ieee80211com *ic = &sc->sc_ic; 708 enum ieee80211_state ostate; 709 struct ieee80211_node *ni; 710 uint32_t tmp; 711 712 ostate = ic->ic_state; 713 714 switch (sc->sc_state) { 715 case IEEE80211_S_INIT: 716 if (ostate == IEEE80211_S_RUN) { 717 /* abort TSF synchronization */ 718 tmp = rum_read(sc, RT2573_TXRX_CSR9); 719 rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff); 720 } 721 break; 722 723 case IEEE80211_S_SCAN: 724 rum_set_chan(sc, ic->ic_curchan); 725 callout_reset(&sc->sc_scan_ch, hz / 5, rum_next_scan, sc); 726 break; 727 728 case IEEE80211_S_AUTH: 729 rum_set_chan(sc, ic->ic_curchan); 730 break; 731 732 case IEEE80211_S_ASSOC: 733 rum_set_chan(sc, ic->ic_curchan); 734 break; 735 736 case IEEE80211_S_RUN: 737 rum_set_chan(sc, ic->ic_curchan); 738 739 ni = ic->ic_bss; 740 741 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 742 rum_update_slot(sc); 743 rum_enable_mrr(sc); 744 rum_set_txpreamble(sc); 745 rum_set_basicrates(sc); 746 rum_set_bssid(sc, ni->ni_bssid); 747 } 748 749 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 750 ic->ic_opmode == IEEE80211_M_IBSS) 751 rum_prepare_beacon(sc); 752 753 if (ic->ic_opmode != IEEE80211_M_MONITOR) 754 rum_enable_tsf_sync(sc); 755 756 if (ic->ic_opmode == IEEE80211_M_STA) { 757 /* fake a join to init the tx rate */ 758 rum_newassoc(ic->ic_bss, 1); 759 760 /* enable automatic rate adaptation in STA mode */ 761 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) 762 rum_amrr_start(sc, ni); 763 } 764 765 break; 766 } 767 768 sc->sc_newstate(ic, sc->sc_state, sc->sc_arg); 769 } 770 771 static int 772 rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 773 { 774 struct rum_softc *sc = ic->ic_ifp->if_softc; 775 776 usb_rem_task(sc->sc_udev, &sc->sc_task); 777 callout_stop(&sc->sc_scan_ch); 778 callout_stop(&sc->sc_amrr_ch); 779 780 /* do it in a process context */ 781 sc->sc_state = nstate; 782 sc->sc_arg = arg; 783 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER); 784 785 return 0; 786 } 787 788 /* quickly determine if a given rate is CCK or OFDM */ 789 #define RUM_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22) 790 791 #define RUM_ACK_SIZE 14 /* 10 + 4(FCS) */ 792 #define RUM_CTS_SIZE 14 /* 10 + 4(FCS) */ 793 794 static void 795 rum_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) 796 { 797 struct rum_tx_data *data = priv; 798 struct rum_softc *sc = data->sc; 799 struct ifnet *ifp = &sc->sc_if; 800 int s; 801 802 if (status != USBD_NORMAL_COMPLETION) { 803 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 804 return; 805 806 printf("%s: could not transmit buffer: %s\n", 807 device_xname(sc->sc_dev), usbd_errstr(status)); 808 809 if (status == USBD_STALLED) 810 usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh); 811 812 ifp->if_oerrors++; 813 return; 814 } 815 816 s = splnet(); 817 818 ieee80211_free_node(data->ni); 819 data->ni = NULL; 820 821 sc->tx_queued--; 822 ifp->if_opackets++; 823 824 DPRINTFN(10, ("tx done\n")); 825 826 sc->sc_tx_timer = 0; 827 ifp->if_flags &= ~IFF_OACTIVE; 828 rum_start(ifp); 829 830 splx(s); 831 } 832 833 static void 834 rum_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) 835 { 836 struct rum_rx_data *data = priv; 837 struct rum_softc *sc = data->sc; 838 struct ieee80211com *ic = &sc->sc_ic; 839 struct ifnet *ifp = &sc->sc_if; 840 struct rum_rx_desc *desc; 841 struct ieee80211_frame *wh; 842 struct ieee80211_node *ni; 843 struct mbuf *mnew, *m; 844 int s, len; 845 846 if (status != USBD_NORMAL_COMPLETION) { 847 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 848 return; 849 850 if (status == USBD_STALLED) 851 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh); 852 goto skip; 853 } 854 855 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL); 856 857 if (len < (int)(RT2573_RX_DESC_SIZE + 858 sizeof(struct ieee80211_frame_min))) { 859 DPRINTF(("%s: xfer too short %d\n", device_xname(sc->sc_dev), 860 len)); 861 ifp->if_ierrors++; 862 goto skip; 863 } 864 865 desc = (struct rum_rx_desc *)data->buf; 866 867 if (le32toh(desc->flags) & RT2573_RX_CRC_ERROR) { 868 /* 869 * This should not happen since we did not request to receive 870 * those frames when we filled RT2573_TXRX_CSR0. 871 */ 872 DPRINTFN(5, ("CRC error\n")); 873 ifp->if_ierrors++; 874 goto skip; 875 } 876 877 MGETHDR(mnew, M_DONTWAIT, MT_DATA); 878 if (mnew == NULL) { 879 printf("%s: could not allocate rx mbuf\n", 880 device_xname(sc->sc_dev)); 881 ifp->if_ierrors++; 882 goto skip; 883 } 884 885 MCLGET(mnew, M_DONTWAIT); 886 if (!(mnew->m_flags & M_EXT)) { 887 printf("%s: could not allocate rx mbuf cluster\n", 888 device_xname(sc->sc_dev)); 889 m_freem(mnew); 890 ifp->if_ierrors++; 891 goto skip; 892 } 893 894 m = data->m; 895 data->m = mnew; 896 data->buf = mtod(data->m, uint8_t *); 897 898 /* finalize mbuf */ 899 m->m_pkthdr.rcvif = ifp; 900 m->m_data = (void *)(desc + 1); 901 m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff; 902 903 s = splnet(); 904 905 if (sc->sc_drvbpf != NULL) { 906 struct rum_rx_radiotap_header *tap = &sc->sc_rxtap; 907 908 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS; 909 tap->wr_rate = rum_rxrate(desc); 910 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq); 911 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags); 912 tap->wr_antenna = sc->rx_ant; 913 tap->wr_antsignal = desc->rssi; 914 915 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m); 916 } 917 918 wh = mtod(m, struct ieee80211_frame *); 919 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); 920 921 /* send the frame to the 802.11 layer */ 922 ieee80211_input(ic, m, ni, desc->rssi, 0); 923 924 /* node is no longer needed */ 925 ieee80211_free_node(ni); 926 927 splx(s); 928 929 DPRINTFN(15, ("rx done\n")); 930 931 skip: /* setup a new transfer */ 932 usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES, 933 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof); 934 usbd_transfer(xfer); 935 } 936 937 /* 938 * This function is only used by the Rx radiotap code. It returns the rate at 939 * which a given frame was received. 940 */ 941 static uint8_t 942 rum_rxrate(const struct rum_rx_desc *desc) 943 { 944 if (le32toh(desc->flags) & RT2573_RX_OFDM) { 945 /* reverse function of rum_plcp_signal */ 946 switch (desc->rate) { 947 case 0xb: return 12; 948 case 0xf: return 18; 949 case 0xa: return 24; 950 case 0xe: return 36; 951 case 0x9: return 48; 952 case 0xd: return 72; 953 case 0x8: return 96; 954 case 0xc: return 108; 955 } 956 } else { 957 if (desc->rate == 10) 958 return 2; 959 if (desc->rate == 20) 960 return 4; 961 if (desc->rate == 55) 962 return 11; 963 if (desc->rate == 110) 964 return 22; 965 } 966 return 2; /* should not get there */ 967 } 968 969 /* 970 * Return the expected ack rate for a frame transmitted at rate `rate'. 971 * XXX: this should depend on the destination node basic rate set. 972 */ 973 static int 974 rum_ack_rate(struct ieee80211com *ic, int rate) 975 { 976 switch (rate) { 977 /* CCK rates */ 978 case 2: 979 return 2; 980 case 4: 981 case 11: 982 case 22: 983 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate; 984 985 /* OFDM rates */ 986 case 12: 987 case 18: 988 return 12; 989 case 24: 990 case 36: 991 return 24; 992 case 48: 993 case 72: 994 case 96: 995 case 108: 996 return 48; 997 } 998 999 /* default to 1Mbps */ 1000 return 2; 1001 } 1002 1003 /* 1004 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'. 1005 * The function automatically determines the operating mode depending on the 1006 * given rate. `flags' indicates whether short preamble is in use or not. 1007 */ 1008 static uint16_t 1009 rum_txtime(int len, int rate, uint32_t flags) 1010 { 1011 uint16_t txtime; 1012 1013 if (RUM_RATE_IS_OFDM(rate)) { 1014 /* IEEE Std 802.11a-1999, pp. 37 */ 1015 txtime = (8 + 4 * len + 3 + rate - 1) / rate; 1016 txtime = 16 + 4 + 4 * txtime + 6; 1017 } else { 1018 /* IEEE Std 802.11b-1999, pp. 28 */ 1019 txtime = (16 * len + rate - 1) / rate; 1020 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE)) 1021 txtime += 72 + 24; 1022 else 1023 txtime += 144 + 48; 1024 } 1025 return txtime; 1026 } 1027 1028 static uint8_t 1029 rum_plcp_signal(int rate) 1030 { 1031 switch (rate) { 1032 /* CCK rates (returned values are device-dependent) */ 1033 case 2: return 0x0; 1034 case 4: return 0x1; 1035 case 11: return 0x2; 1036 case 22: return 0x3; 1037 1038 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 1039 case 12: return 0xb; 1040 case 18: return 0xf; 1041 case 24: return 0xa; 1042 case 36: return 0xe; 1043 case 48: return 0x9; 1044 case 72: return 0xd; 1045 case 96: return 0x8; 1046 case 108: return 0xc; 1047 1048 /* unsupported rates (should not get there) */ 1049 default: return 0xff; 1050 } 1051 } 1052 1053 static void 1054 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc, 1055 uint32_t flags, uint16_t xflags, int len, int rate) 1056 { 1057 struct ieee80211com *ic = &sc->sc_ic; 1058 uint16_t plcp_length; 1059 int remainder; 1060 1061 desc->flags = htole32(flags); 1062 desc->flags |= htole32(RT2573_TX_VALID); 1063 desc->flags |= htole32(len << 16); 1064 1065 desc->xflags = htole16(xflags); 1066 1067 desc->wme = htole16( 1068 RT2573_QID(0) | 1069 RT2573_AIFSN(2) | 1070 RT2573_LOGCWMIN(4) | 1071 RT2573_LOGCWMAX(10)); 1072 1073 /* setup PLCP fields */ 1074 desc->plcp_signal = rum_plcp_signal(rate); 1075 desc->plcp_service = 4; 1076 1077 len += IEEE80211_CRC_LEN; 1078 if (RUM_RATE_IS_OFDM(rate)) { 1079 desc->flags |= htole32(RT2573_TX_OFDM); 1080 1081 plcp_length = len & 0xfff; 1082 desc->plcp_length_hi = plcp_length >> 6; 1083 desc->plcp_length_lo = plcp_length & 0x3f; 1084 } else { 1085 plcp_length = (16 * len + rate - 1) / rate; 1086 if (rate == 22) { 1087 remainder = (16 * len) % 22; 1088 if (remainder != 0 && remainder < 7) 1089 desc->plcp_service |= RT2573_PLCP_LENGEXT; 1090 } 1091 desc->plcp_length_hi = plcp_length >> 8; 1092 desc->plcp_length_lo = plcp_length & 0xff; 1093 1094 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 1095 desc->plcp_signal |= 0x08; 1096 } 1097 } 1098 1099 #define RUM_TX_TIMEOUT 5000 1100 1101 static int 1102 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1103 { 1104 struct ieee80211com *ic = &sc->sc_ic; 1105 struct rum_tx_desc *desc; 1106 struct rum_tx_data *data; 1107 struct ieee80211_frame *wh; 1108 struct ieee80211_key *k; 1109 uint32_t flags = 0; 1110 uint16_t dur; 1111 usbd_status error; 1112 int rate, xferlen, pktlen, needrts = 0, needcts = 0; 1113 1114 wh = mtod(m0, struct ieee80211_frame *); 1115 1116 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1117 k = ieee80211_crypto_encap(ic, ni, m0); 1118 if (k == NULL) { 1119 m_freem(m0); 1120 return ENOBUFS; 1121 } 1122 1123 /* packet header may have moved, reset our local pointer */ 1124 wh = mtod(m0, struct ieee80211_frame *); 1125 } 1126 1127 /* compute actual packet length (including CRC and crypto overhead) */ 1128 pktlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN; 1129 1130 /* pickup a rate */ 1131 if (IEEE80211_IS_MULTICAST(wh->i_addr1) || 1132 ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == 1133 IEEE80211_FC0_TYPE_MGT)) { 1134 /* mgmt/multicast frames are sent at the lowest avail. rate */ 1135 rate = ni->ni_rates.rs_rates[0]; 1136 } else if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) { 1137 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate]; 1138 } else 1139 rate = ni->ni_rates.rs_rates[ni->ni_txrate]; 1140 if (rate == 0) 1141 rate = 2; /* XXX should not happen */ 1142 rate &= IEEE80211_RATE_VAL; 1143 1144 /* check if RTS/CTS or CTS-to-self protection must be used */ 1145 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1146 /* multicast frames are not sent at OFDM rates in 802.11b/g */ 1147 if (pktlen > ic->ic_rtsthreshold) { 1148 needrts = 1; /* RTS/CTS based on frame length */ 1149 } else if ((ic->ic_flags & IEEE80211_F_USEPROT) && 1150 RUM_RATE_IS_OFDM(rate)) { 1151 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 1152 needcts = 1; /* CTS-to-self */ 1153 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 1154 needrts = 1; /* RTS/CTS */ 1155 } 1156 } 1157 if (needrts || needcts) { 1158 struct mbuf *mprot; 1159 int protrate, ackrate; 1160 1161 protrate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2; 1162 ackrate = rum_ack_rate(ic, rate); 1163 1164 dur = rum_txtime(pktlen, rate, ic->ic_flags) + 1165 rum_txtime(RUM_ACK_SIZE, ackrate, ic->ic_flags) + 1166 2 * sc->sifs; 1167 if (needrts) { 1168 dur += rum_txtime(RUM_CTS_SIZE, rum_ack_rate(ic, 1169 protrate), ic->ic_flags) + sc->sifs; 1170 mprot = ieee80211_get_rts(ic, wh, dur); 1171 } else { 1172 mprot = ieee80211_get_cts_to_self(ic, dur); 1173 } 1174 if (mprot == NULL) { 1175 aprint_error_dev(sc->sc_dev, 1176 "couldn't allocate protection frame\n"); 1177 m_freem(m0); 1178 return ENOBUFS; 1179 } 1180 1181 data = &sc->tx_data[sc->tx_cur]; 1182 desc = (struct rum_tx_desc *)data->buf; 1183 1184 /* avoid multiple free() of the same node for each fragment */ 1185 data->ni = ieee80211_ref_node(ni); 1186 1187 m_copydata(mprot, 0, mprot->m_pkthdr.len, 1188 data->buf + RT2573_TX_DESC_SIZE); 1189 rum_setup_tx_desc(sc, desc, 1190 (needrts ? RT2573_TX_NEED_ACK : 0) | RT2573_TX_MORE_FRAG, 1191 0, mprot->m_pkthdr.len, protrate); 1192 1193 /* no roundup necessary here */ 1194 xferlen = RT2573_TX_DESC_SIZE + mprot->m_pkthdr.len; 1195 1196 /* XXX may want to pass the protection frame to BPF */ 1197 1198 /* mbuf is no longer needed */ 1199 m_freem(mprot); 1200 1201 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, 1202 xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, 1203 RUM_TX_TIMEOUT, rum_txeof); 1204 error = usbd_transfer(data->xfer); 1205 if (error != USBD_NORMAL_COMPLETION && 1206 error != USBD_IN_PROGRESS) { 1207 m_freem(m0); 1208 return error; 1209 } 1210 1211 sc->tx_queued++; 1212 sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT; 1213 1214 flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS; 1215 } 1216 1217 data = &sc->tx_data[sc->tx_cur]; 1218 desc = (struct rum_tx_desc *)data->buf; 1219 1220 data->ni = ni; 1221 1222 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1223 flags |= RT2573_TX_NEED_ACK; 1224 1225 dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate), 1226 ic->ic_flags) + sc->sifs; 1227 *(uint16_t *)wh->i_dur = htole16(dur); 1228 1229 /* tell hardware to set timestamp in probe responses */ 1230 if ((wh->i_fc[0] & 1231 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 1232 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP)) 1233 flags |= RT2573_TX_TIMESTAMP; 1234 } 1235 1236 if (sc->sc_drvbpf != NULL) { 1237 struct rum_tx_radiotap_header *tap = &sc->sc_txtap; 1238 1239 tap->wt_flags = 0; 1240 tap->wt_rate = rate; 1241 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); 1242 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); 1243 tap->wt_antenna = sc->tx_ant; 1244 1245 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); 1246 } 1247 1248 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE); 1249 rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate); 1250 1251 /* align end on a 4-bytes boundary */ 1252 xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3; 1253 1254 /* 1255 * No space left in the last URB to store the extra 4 bytes, force 1256 * sending of another URB. 1257 */ 1258 if ((xferlen % 64) == 0) 1259 xferlen += 4; 1260 1261 DPRINTFN(10, ("sending data frame len=%zu rate=%u xfer len=%u\n", 1262 (size_t)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE, 1263 rate, xferlen)); 1264 1265 /* mbuf is no longer needed */ 1266 m_freem(m0); 1267 1268 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen, 1269 USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof); 1270 error = usbd_transfer(data->xfer); 1271 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) 1272 return error; 1273 1274 sc->tx_queued++; 1275 sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT; 1276 1277 return 0; 1278 } 1279 1280 static void 1281 rum_start(struct ifnet *ifp) 1282 { 1283 struct rum_softc *sc = ifp->if_softc; 1284 struct ieee80211com *ic = &sc->sc_ic; 1285 struct ether_header *eh; 1286 struct ieee80211_node *ni; 1287 struct mbuf *m0; 1288 1289 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) 1290 return; 1291 1292 for (;;) { 1293 IF_POLL(&ic->ic_mgtq, m0); 1294 if (m0 != NULL) { 1295 if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) { 1296 ifp->if_flags |= IFF_OACTIVE; 1297 break; 1298 } 1299 IF_DEQUEUE(&ic->ic_mgtq, m0); 1300 1301 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif; 1302 m0->m_pkthdr.rcvif = NULL; 1303 bpf_mtap3(ic->ic_rawbpf, m0); 1304 if (rum_tx_data(sc, m0, ni) != 0) 1305 break; 1306 1307 } else { 1308 if (ic->ic_state != IEEE80211_S_RUN) 1309 break; 1310 IFQ_POLL(&ifp->if_snd, m0); 1311 if (m0 == NULL) 1312 break; 1313 if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) { 1314 ifp->if_flags |= IFF_OACTIVE; 1315 break; 1316 } 1317 IFQ_DEQUEUE(&ifp->if_snd, m0); 1318 if (m0->m_len < (int)sizeof(struct ether_header) && 1319 !(m0 = m_pullup(m0, sizeof(struct ether_header)))) 1320 continue; 1321 1322 eh = mtod(m0, struct ether_header *); 1323 ni = ieee80211_find_txnode(ic, eh->ether_dhost); 1324 if (ni == NULL) { 1325 m_freem(m0); 1326 continue; 1327 } 1328 bpf_mtap(ifp, m0); 1329 m0 = ieee80211_encap(ic, m0, ni); 1330 if (m0 == NULL) { 1331 ieee80211_free_node(ni); 1332 continue; 1333 } 1334 bpf_mtap3(ic->ic_rawbpf, m0); 1335 if (rum_tx_data(sc, m0, ni) != 0) { 1336 ieee80211_free_node(ni); 1337 ifp->if_oerrors++; 1338 break; 1339 } 1340 } 1341 1342 sc->sc_tx_timer = 5; 1343 ifp->if_timer = 1; 1344 } 1345 } 1346 1347 static void 1348 rum_watchdog(struct ifnet *ifp) 1349 { 1350 struct rum_softc *sc = ifp->if_softc; 1351 struct ieee80211com *ic = &sc->sc_ic; 1352 1353 ifp->if_timer = 0; 1354 1355 if (sc->sc_tx_timer > 0) { 1356 if (--sc->sc_tx_timer == 0) { 1357 printf("%s: device timeout\n", device_xname(sc->sc_dev)); 1358 /*rum_init(ifp); XXX needs a process context! */ 1359 ifp->if_oerrors++; 1360 return; 1361 } 1362 ifp->if_timer = 1; 1363 } 1364 1365 ieee80211_watchdog(ic); 1366 } 1367 1368 static int 1369 rum_ioctl(struct ifnet *ifp, u_long cmd, void *data) 1370 { 1371 #define IS_RUNNING(ifp) \ 1372 (((ifp)->if_flags & IFF_UP) && ((ifp)->if_flags & IFF_RUNNING)) 1373 1374 struct rum_softc *sc = ifp->if_softc; 1375 struct ieee80211com *ic = &sc->sc_ic; 1376 int s, error = 0; 1377 1378 s = splnet(); 1379 1380 switch (cmd) { 1381 case SIOCSIFFLAGS: 1382 if ((error = ifioctl_common(ifp, cmd, data)) != 0) 1383 break; 1384 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) { 1385 case IFF_UP|IFF_RUNNING: 1386 rum_update_promisc(sc); 1387 break; 1388 case IFF_UP: 1389 rum_init(ifp); 1390 break; 1391 case IFF_RUNNING: 1392 rum_stop(ifp, 1); 1393 break; 1394 case 0: 1395 break; 1396 } 1397 break; 1398 1399 case SIOCADDMULTI: 1400 case SIOCDELMULTI: 1401 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) { 1402 error = 0; 1403 } 1404 break; 1405 1406 default: 1407 error = ieee80211_ioctl(ic, cmd, data); 1408 } 1409 1410 if (error == ENETRESET) { 1411 if (IS_RUNNING(ifp) && 1412 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)) 1413 rum_init(ifp); 1414 error = 0; 1415 } 1416 1417 splx(s); 1418 1419 return error; 1420 #undef IS_RUNNING 1421 } 1422 1423 static void 1424 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len) 1425 { 1426 usb_device_request_t req; 1427 usbd_status error; 1428 1429 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1430 req.bRequest = RT2573_READ_EEPROM; 1431 USETW(req.wValue, 0); 1432 USETW(req.wIndex, addr); 1433 USETW(req.wLength, len); 1434 1435 error = usbd_do_request(sc->sc_udev, &req, buf); 1436 if (error != 0) { 1437 printf("%s: could not read EEPROM: %s\n", 1438 device_xname(sc->sc_dev), usbd_errstr(error)); 1439 } 1440 } 1441 1442 static uint32_t 1443 rum_read(struct rum_softc *sc, uint16_t reg) 1444 { 1445 uint32_t val; 1446 1447 rum_read_multi(sc, reg, &val, sizeof val); 1448 1449 return le32toh(val); 1450 } 1451 1452 static void 1453 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len) 1454 { 1455 usb_device_request_t req; 1456 usbd_status error; 1457 1458 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1459 req.bRequest = RT2573_READ_MULTI_MAC; 1460 USETW(req.wValue, 0); 1461 USETW(req.wIndex, reg); 1462 USETW(req.wLength, len); 1463 1464 error = usbd_do_request(sc->sc_udev, &req, buf); 1465 if (error != 0) { 1466 printf("%s: could not multi read MAC register: %s\n", 1467 device_xname(sc->sc_dev), usbd_errstr(error)); 1468 } 1469 } 1470 1471 static void 1472 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val) 1473 { 1474 uint32_t tmp = htole32(val); 1475 1476 rum_write_multi(sc, reg, &tmp, sizeof tmp); 1477 } 1478 1479 static void 1480 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len) 1481 { 1482 usb_device_request_t req; 1483 usbd_status error; 1484 int offset; 1485 1486 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 1487 req.bRequest = RT2573_WRITE_MULTI_MAC; 1488 USETW(req.wValue, 0); 1489 1490 /* write at most 64 bytes at a time */ 1491 for (offset = 0; offset < len; offset += 64) { 1492 USETW(req.wIndex, reg + offset); 1493 USETW(req.wLength, MIN(len - offset, 64)); 1494 1495 error = usbd_do_request(sc->sc_udev, &req, (char *)buf + offset); 1496 if (error != 0) { 1497 printf("%s: could not multi write MAC register: %s\n", 1498 device_xname(sc->sc_dev), usbd_errstr(error)); 1499 } 1500 } 1501 } 1502 1503 static void 1504 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val) 1505 { 1506 uint32_t tmp; 1507 int ntries; 1508 1509 for (ntries = 0; ntries < 5; ntries++) { 1510 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY)) 1511 break; 1512 } 1513 if (ntries == 5) { 1514 printf("%s: could not write to BBP\n", device_xname(sc->sc_dev)); 1515 return; 1516 } 1517 1518 tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val; 1519 rum_write(sc, RT2573_PHY_CSR3, tmp); 1520 } 1521 1522 static uint8_t 1523 rum_bbp_read(struct rum_softc *sc, uint8_t reg) 1524 { 1525 uint32_t val; 1526 int ntries; 1527 1528 for (ntries = 0; ntries < 5; ntries++) { 1529 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY)) 1530 break; 1531 } 1532 if (ntries == 5) { 1533 printf("%s: could not read BBP\n", device_xname(sc->sc_dev)); 1534 return 0; 1535 } 1536 1537 val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8; 1538 rum_write(sc, RT2573_PHY_CSR3, val); 1539 1540 for (ntries = 0; ntries < 100; ntries++) { 1541 val = rum_read(sc, RT2573_PHY_CSR3); 1542 if (!(val & RT2573_BBP_BUSY)) 1543 return val & 0xff; 1544 DELAY(1); 1545 } 1546 1547 printf("%s: could not read BBP\n", device_xname(sc->sc_dev)); 1548 return 0; 1549 } 1550 1551 static void 1552 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val) 1553 { 1554 uint32_t tmp; 1555 int ntries; 1556 1557 for (ntries = 0; ntries < 5; ntries++) { 1558 if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY)) 1559 break; 1560 } 1561 if (ntries == 5) { 1562 printf("%s: could not write to RF\n", device_xname(sc->sc_dev)); 1563 return; 1564 } 1565 1566 tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 | 1567 (reg & 3); 1568 rum_write(sc, RT2573_PHY_CSR4, tmp); 1569 1570 /* remember last written value in sc */ 1571 sc->rf_regs[reg] = val; 1572 1573 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff)); 1574 } 1575 1576 static void 1577 rum_select_antenna(struct rum_softc *sc) 1578 { 1579 uint8_t bbp4, bbp77; 1580 uint32_t tmp; 1581 1582 bbp4 = rum_bbp_read(sc, 4); 1583 bbp77 = rum_bbp_read(sc, 77); 1584 1585 /* TBD */ 1586 1587 /* make sure Rx is disabled before switching antenna */ 1588 tmp = rum_read(sc, RT2573_TXRX_CSR0); 1589 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX); 1590 1591 rum_bbp_write(sc, 4, bbp4); 1592 rum_bbp_write(sc, 77, bbp77); 1593 1594 rum_write(sc, RT2573_TXRX_CSR0, tmp); 1595 } 1596 1597 /* 1598 * Enable multi-rate retries for frames sent at OFDM rates. 1599 * In 802.11b/g mode, allow fallback to CCK rates. 1600 */ 1601 static void 1602 rum_enable_mrr(struct rum_softc *sc) 1603 { 1604 struct ieee80211com *ic = &sc->sc_ic; 1605 uint32_t tmp; 1606 1607 tmp = rum_read(sc, RT2573_TXRX_CSR4); 1608 1609 tmp &= ~RT2573_MRR_CCK_FALLBACK; 1610 if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) 1611 tmp |= RT2573_MRR_CCK_FALLBACK; 1612 tmp |= RT2573_MRR_ENABLED; 1613 1614 rum_write(sc, RT2573_TXRX_CSR4, tmp); 1615 } 1616 1617 static void 1618 rum_set_txpreamble(struct rum_softc *sc) 1619 { 1620 uint32_t tmp; 1621 1622 tmp = rum_read(sc, RT2573_TXRX_CSR4); 1623 1624 tmp &= ~RT2573_SHORT_PREAMBLE; 1625 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE) 1626 tmp |= RT2573_SHORT_PREAMBLE; 1627 1628 rum_write(sc, RT2573_TXRX_CSR4, tmp); 1629 } 1630 1631 static void 1632 rum_set_basicrates(struct rum_softc *sc) 1633 { 1634 struct ieee80211com *ic = &sc->sc_ic; 1635 1636 /* update basic rate set */ 1637 if (ic->ic_curmode == IEEE80211_MODE_11B) { 1638 /* 11b basic rates: 1, 2Mbps */ 1639 rum_write(sc, RT2573_TXRX_CSR5, 0x3); 1640 } else if (ic->ic_curmode == IEEE80211_MODE_11A) { 1641 /* 11a basic rates: 6, 12, 24Mbps */ 1642 rum_write(sc, RT2573_TXRX_CSR5, 0x150); 1643 } else { 1644 /* 11b/g basic rates: 1, 2, 5.5, 11Mbps */ 1645 rum_write(sc, RT2573_TXRX_CSR5, 0xf); 1646 } 1647 } 1648 1649 /* 1650 * Reprogram MAC/BBP to switch to a new band. Values taken from the reference 1651 * driver. 1652 */ 1653 static void 1654 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c) 1655 { 1656 uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104; 1657 uint32_t tmp; 1658 1659 /* update all BBP registers that depend on the band */ 1660 bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c; 1661 bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48; 1662 if (IEEE80211_IS_CHAN_5GHZ(c)) { 1663 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c; 1664 bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10; 1665 } 1666 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || 1667 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { 1668 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10; 1669 } 1670 1671 sc->bbp17 = bbp17; 1672 rum_bbp_write(sc, 17, bbp17); 1673 rum_bbp_write(sc, 96, bbp96); 1674 rum_bbp_write(sc, 104, bbp104); 1675 1676 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || 1677 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { 1678 rum_bbp_write(sc, 75, 0x80); 1679 rum_bbp_write(sc, 86, 0x80); 1680 rum_bbp_write(sc, 88, 0x80); 1681 } 1682 1683 rum_bbp_write(sc, 35, bbp35); 1684 rum_bbp_write(sc, 97, bbp97); 1685 rum_bbp_write(sc, 98, bbp98); 1686 1687 tmp = rum_read(sc, RT2573_PHY_CSR0); 1688 tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ); 1689 if (IEEE80211_IS_CHAN_2GHZ(c)) 1690 tmp |= RT2573_PA_PE_2GHZ; 1691 else 1692 tmp |= RT2573_PA_PE_5GHZ; 1693 rum_write(sc, RT2573_PHY_CSR0, tmp); 1694 1695 /* 802.11a uses a 16 microseconds short interframe space */ 1696 sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10; 1697 } 1698 1699 static void 1700 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c) 1701 { 1702 struct ieee80211com *ic = &sc->sc_ic; 1703 const struct rfprog *rfprog; 1704 uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT; 1705 int8_t power; 1706 u_int i, chan; 1707 1708 chan = ieee80211_chan2ieee(ic, c); 1709 if (chan == 0 || chan == IEEE80211_CHAN_ANY) 1710 return; 1711 1712 /* select the appropriate RF settings based on what EEPROM says */ 1713 rfprog = (sc->rf_rev == RT2573_RF_5225 || 1714 sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226; 1715 1716 /* find the settings for this channel (we know it exists) */ 1717 for (i = 0; rfprog[i].chan != chan; i++); 1718 1719 power = sc->txpow[i]; 1720 if (power < 0) { 1721 bbp94 += power; 1722 power = 0; 1723 } else if (power > 31) { 1724 bbp94 += power - 31; 1725 power = 31; 1726 } 1727 1728 /* 1729 * If we are switching from the 2GHz band to the 5GHz band or 1730 * vice-versa, BBP registers need to be reprogrammed. 1731 */ 1732 if (c->ic_flags != ic->ic_curchan->ic_flags) { 1733 rum_select_band(sc, c); 1734 rum_select_antenna(sc); 1735 } 1736 ic->ic_curchan = c; 1737 1738 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 1739 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 1740 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7); 1741 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 1742 1743 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 1744 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 1745 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1); 1746 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 1747 1748 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 1749 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 1750 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7); 1751 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 1752 1753 DELAY(10); 1754 1755 /* enable smart mode for MIMO-capable RFs */ 1756 bbp3 = rum_bbp_read(sc, 3); 1757 1758 bbp3 &= ~RT2573_SMART_MODE; 1759 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527) 1760 bbp3 |= RT2573_SMART_MODE; 1761 1762 rum_bbp_write(sc, 3, bbp3); 1763 1764 if (bbp94 != RT2573_BBPR94_DEFAULT) 1765 rum_bbp_write(sc, 94, bbp94); 1766 } 1767 1768 /* 1769 * Enable TSF synchronization and tell h/w to start sending beacons for IBSS 1770 * and HostAP operating modes. 1771 */ 1772 static void 1773 rum_enable_tsf_sync(struct rum_softc *sc) 1774 { 1775 struct ieee80211com *ic = &sc->sc_ic; 1776 uint32_t tmp; 1777 1778 if (ic->ic_opmode != IEEE80211_M_STA) { 1779 /* 1780 * Change default 16ms TBTT adjustment to 8ms. 1781 * Must be done before enabling beacon generation. 1782 */ 1783 rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8); 1784 } 1785 1786 tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000; 1787 1788 /* set beacon interval (in 1/16ms unit) */ 1789 tmp |= ic->ic_bss->ni_intval * 16; 1790 1791 tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT; 1792 if (ic->ic_opmode == IEEE80211_M_STA) 1793 tmp |= RT2573_TSF_MODE(1); 1794 else 1795 tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON; 1796 1797 rum_write(sc, RT2573_TXRX_CSR9, tmp); 1798 } 1799 1800 static void 1801 rum_update_slot(struct rum_softc *sc) 1802 { 1803 struct ieee80211com *ic = &sc->sc_ic; 1804 uint8_t slottime; 1805 uint32_t tmp; 1806 1807 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20; 1808 1809 tmp = rum_read(sc, RT2573_MAC_CSR9); 1810 tmp = (tmp & ~0xff) | slottime; 1811 rum_write(sc, RT2573_MAC_CSR9, tmp); 1812 1813 DPRINTF(("setting slot time to %uus\n", slottime)); 1814 } 1815 1816 static void 1817 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid) 1818 { 1819 uint32_t tmp; 1820 1821 tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24; 1822 rum_write(sc, RT2573_MAC_CSR4, tmp); 1823 1824 tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16; 1825 rum_write(sc, RT2573_MAC_CSR5, tmp); 1826 } 1827 1828 static void 1829 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr) 1830 { 1831 uint32_t tmp; 1832 1833 tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24; 1834 rum_write(sc, RT2573_MAC_CSR2, tmp); 1835 1836 tmp = addr[4] | addr[5] << 8 | 0xff << 16; 1837 rum_write(sc, RT2573_MAC_CSR3, tmp); 1838 } 1839 1840 static void 1841 rum_update_promisc(struct rum_softc *sc) 1842 { 1843 struct ifnet *ifp = sc->sc_ic.ic_ifp; 1844 uint32_t tmp; 1845 1846 tmp = rum_read(sc, RT2573_TXRX_CSR0); 1847 1848 tmp &= ~RT2573_DROP_NOT_TO_ME; 1849 if (!(ifp->if_flags & IFF_PROMISC)) 1850 tmp |= RT2573_DROP_NOT_TO_ME; 1851 1852 rum_write(sc, RT2573_TXRX_CSR0, tmp); 1853 1854 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ? 1855 "entering" : "leaving")); 1856 } 1857 1858 static const char * 1859 rum_get_rf(int rev) 1860 { 1861 switch (rev) { 1862 case RT2573_RF_2527: return "RT2527 (MIMO XR)"; 1863 case RT2573_RF_2528: return "RT2528"; 1864 case RT2573_RF_5225: return "RT5225 (MIMO XR)"; 1865 case RT2573_RF_5226: return "RT5226"; 1866 default: return "unknown"; 1867 } 1868 } 1869 1870 static void 1871 rum_read_eeprom(struct rum_softc *sc) 1872 { 1873 struct ieee80211com *ic = &sc->sc_ic; 1874 uint16_t val; 1875 #ifdef RUM_DEBUG 1876 int i; 1877 #endif 1878 1879 /* read MAC/BBP type */ 1880 rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2); 1881 sc->macbbp_rev = le16toh(val); 1882 1883 /* read MAC address */ 1884 rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6); 1885 1886 rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2); 1887 val = le16toh(val); 1888 sc->rf_rev = (val >> 11) & 0x1f; 1889 sc->hw_radio = (val >> 10) & 0x1; 1890 sc->rx_ant = (val >> 4) & 0x3; 1891 sc->tx_ant = (val >> 2) & 0x3; 1892 sc->nb_ant = val & 0x3; 1893 1894 DPRINTF(("RF revision=%d\n", sc->rf_rev)); 1895 1896 rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2); 1897 val = le16toh(val); 1898 sc->ext_5ghz_lna = (val >> 6) & 0x1; 1899 sc->ext_2ghz_lna = (val >> 4) & 0x1; 1900 1901 DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n", 1902 sc->ext_2ghz_lna, sc->ext_5ghz_lna)); 1903 1904 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2); 1905 val = le16toh(val); 1906 if ((val & 0xff) != 0xff) 1907 sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */ 1908 1909 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2); 1910 val = le16toh(val); 1911 if ((val & 0xff) != 0xff) 1912 sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */ 1913 1914 DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n", 1915 sc->rssi_2ghz_corr, sc->rssi_5ghz_corr)); 1916 1917 rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2); 1918 val = le16toh(val); 1919 if ((val & 0xff) != 0xff) 1920 sc->rffreq = val & 0xff; 1921 1922 DPRINTF(("RF freq=%d\n", sc->rffreq)); 1923 1924 /* read Tx power for all a/b/g channels */ 1925 rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14); 1926 /* XXX default Tx power for 802.11a channels */ 1927 memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14); 1928 #ifdef RUM_DEBUG 1929 for (i = 0; i < 14; i++) 1930 DPRINTF(("Channel=%d Tx power=%d\n", i + 1, sc->txpow[i])); 1931 #endif 1932 1933 /* read default values for BBP registers */ 1934 rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16); 1935 #ifdef RUM_DEBUG 1936 for (i = 0; i < 14; i++) { 1937 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff) 1938 continue; 1939 DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg, 1940 sc->bbp_prom[i].val)); 1941 } 1942 #endif 1943 } 1944 1945 static int 1946 rum_bbp_init(struct rum_softc *sc) 1947 { 1948 #define N(a) (sizeof (a) / sizeof ((a)[0])) 1949 unsigned int i, ntries; 1950 uint8_t val; 1951 1952 /* wait for BBP to be ready */ 1953 for (ntries = 0; ntries < 100; ntries++) { 1954 val = rum_bbp_read(sc, 0); 1955 if (val != 0 && val != 0xff) 1956 break; 1957 DELAY(1000); 1958 } 1959 if (ntries == 100) { 1960 printf("%s: timeout waiting for BBP\n", 1961 device_xname(sc->sc_dev)); 1962 return EIO; 1963 } 1964 1965 /* initialize BBP registers to default values */ 1966 for (i = 0; i < N(rum_def_bbp); i++) 1967 rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val); 1968 1969 /* write vendor-specific BBP values (from EEPROM) */ 1970 for (i = 0; i < 16; i++) { 1971 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff) 1972 continue; 1973 rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val); 1974 } 1975 1976 return 0; 1977 #undef N 1978 } 1979 1980 static int 1981 rum_init(struct ifnet *ifp) 1982 { 1983 #define N(a) (sizeof (a) / sizeof ((a)[0])) 1984 struct rum_softc *sc = ifp->if_softc; 1985 struct ieee80211com *ic = &sc->sc_ic; 1986 struct rum_rx_data *data; 1987 uint32_t tmp; 1988 usbd_status error = 0; 1989 unsigned int i, ntries; 1990 1991 if ((sc->sc_flags & RT2573_FWLOADED) == 0) { 1992 if (rum_attachhook(sc)) 1993 goto fail; 1994 } 1995 1996 rum_stop(ifp, 0); 1997 1998 /* initialize MAC registers to default values */ 1999 for (i = 0; i < N(rum_def_mac); i++) 2000 rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val); 2001 2002 /* set host ready */ 2003 rum_write(sc, RT2573_MAC_CSR1, 3); 2004 rum_write(sc, RT2573_MAC_CSR1, 0); 2005 2006 /* wait for BBP/RF to wakeup */ 2007 for (ntries = 0; ntries < 1000; ntries++) { 2008 if (rum_read(sc, RT2573_MAC_CSR12) & 8) 2009 break; 2010 rum_write(sc, RT2573_MAC_CSR12, 4); /* force wakeup */ 2011 DELAY(1000); 2012 } 2013 if (ntries == 1000) { 2014 printf("%s: timeout waiting for BBP/RF to wakeup\n", 2015 device_xname(sc->sc_dev)); 2016 goto fail; 2017 } 2018 2019 if ((error = rum_bbp_init(sc)) != 0) 2020 goto fail; 2021 2022 /* select default channel */ 2023 rum_select_band(sc, ic->ic_curchan); 2024 rum_select_antenna(sc); 2025 rum_set_chan(sc, ic->ic_curchan); 2026 2027 /* clear STA registers */ 2028 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta); 2029 2030 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl)); 2031 rum_set_macaddr(sc, ic->ic_myaddr); 2032 2033 /* initialize ASIC */ 2034 rum_write(sc, RT2573_MAC_CSR1, 4); 2035 2036 /* 2037 * Allocate xfer for AMRR statistics requests. 2038 */ 2039 sc->amrr_xfer = usbd_alloc_xfer(sc->sc_udev); 2040 if (sc->amrr_xfer == NULL) { 2041 printf("%s: could not allocate AMRR xfer\n", 2042 device_xname(sc->sc_dev)); 2043 goto fail; 2044 } 2045 2046 /* 2047 * Open Tx and Rx USB bulk pipes. 2048 */ 2049 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE, 2050 &sc->sc_tx_pipeh); 2051 if (error != 0) { 2052 printf("%s: could not open Tx pipe: %s\n", 2053 device_xname(sc->sc_dev), usbd_errstr(error)); 2054 goto fail; 2055 } 2056 2057 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE, 2058 &sc->sc_rx_pipeh); 2059 if (error != 0) { 2060 printf("%s: could not open Rx pipe: %s\n", 2061 device_xname(sc->sc_dev), usbd_errstr(error)); 2062 goto fail; 2063 } 2064 2065 /* 2066 * Allocate Tx and Rx xfer queues. 2067 */ 2068 error = rum_alloc_tx_list(sc); 2069 if (error != 0) { 2070 printf("%s: could not allocate Tx list\n", 2071 device_xname(sc->sc_dev)); 2072 goto fail; 2073 } 2074 2075 error = rum_alloc_rx_list(sc); 2076 if (error != 0) { 2077 printf("%s: could not allocate Rx list\n", 2078 device_xname(sc->sc_dev)); 2079 goto fail; 2080 } 2081 2082 /* 2083 * Start up the receive pipe. 2084 */ 2085 for (i = 0; i < RUM_RX_LIST_COUNT; i++) { 2086 data = &sc->rx_data[i]; 2087 2088 usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf, 2089 MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof); 2090 error = usbd_transfer(data->xfer); 2091 if (error != USBD_NORMAL_COMPLETION && 2092 error != USBD_IN_PROGRESS) { 2093 printf("%s: could not queue Rx transfer\n", 2094 device_xname(sc->sc_dev)); 2095 goto fail; 2096 } 2097 } 2098 2099 /* update Rx filter */ 2100 tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff; 2101 2102 tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR; 2103 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 2104 tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR | 2105 RT2573_DROP_ACKCTS; 2106 if (ic->ic_opmode != IEEE80211_M_HOSTAP) 2107 tmp |= RT2573_DROP_TODS; 2108 if (!(ifp->if_flags & IFF_PROMISC)) 2109 tmp |= RT2573_DROP_NOT_TO_ME; 2110 } 2111 rum_write(sc, RT2573_TXRX_CSR0, tmp); 2112 2113 ifp->if_flags &= ~IFF_OACTIVE; 2114 ifp->if_flags |= IFF_RUNNING; 2115 2116 if (ic->ic_opmode == IEEE80211_M_MONITOR) 2117 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 2118 else 2119 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 2120 2121 return 0; 2122 2123 fail: rum_stop(ifp, 1); 2124 return error; 2125 #undef N 2126 } 2127 2128 static void 2129 rum_stop(struct ifnet *ifp, int disable) 2130 { 2131 struct rum_softc *sc = ifp->if_softc; 2132 struct ieee80211com *ic = &sc->sc_ic; 2133 uint32_t tmp; 2134 2135 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */ 2136 2137 sc->sc_tx_timer = 0; 2138 ifp->if_timer = 0; 2139 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 2140 2141 /* disable Rx */ 2142 tmp = rum_read(sc, RT2573_TXRX_CSR0); 2143 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX); 2144 2145 /* reset ASIC */ 2146 rum_write(sc, RT2573_MAC_CSR1, 3); 2147 rum_write(sc, RT2573_MAC_CSR1, 0); 2148 2149 if (sc->amrr_xfer != NULL) { 2150 usbd_free_xfer(sc->amrr_xfer); 2151 sc->amrr_xfer = NULL; 2152 } 2153 2154 if (sc->sc_rx_pipeh != NULL) { 2155 usbd_abort_pipe(sc->sc_rx_pipeh); 2156 usbd_close_pipe(sc->sc_rx_pipeh); 2157 sc->sc_rx_pipeh = NULL; 2158 } 2159 2160 if (sc->sc_tx_pipeh != NULL) { 2161 usbd_abort_pipe(sc->sc_tx_pipeh); 2162 usbd_close_pipe(sc->sc_tx_pipeh); 2163 sc->sc_tx_pipeh = NULL; 2164 } 2165 2166 rum_free_rx_list(sc); 2167 rum_free_tx_list(sc); 2168 } 2169 2170 static int 2171 rum_load_microcode(struct rum_softc *sc, const u_char *ucode, size_t size) 2172 { 2173 usb_device_request_t req; 2174 uint16_t reg = RT2573_MCU_CODE_BASE; 2175 usbd_status error; 2176 2177 /* copy firmware image into NIC */ 2178 for (; size >= 4; reg += 4, ucode += 4, size -= 4) 2179 rum_write(sc, reg, UGETDW(ucode)); 2180 2181 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 2182 req.bRequest = RT2573_MCU_CNTL; 2183 USETW(req.wValue, RT2573_MCU_RUN); 2184 USETW(req.wIndex, 0); 2185 USETW(req.wLength, 0); 2186 2187 error = usbd_do_request(sc->sc_udev, &req, NULL); 2188 if (error != 0) { 2189 printf("%s: could not run firmware: %s\n", 2190 device_xname(sc->sc_dev), usbd_errstr(error)); 2191 } 2192 return error; 2193 } 2194 2195 static int 2196 rum_prepare_beacon(struct rum_softc *sc) 2197 { 2198 struct ieee80211com *ic = &sc->sc_ic; 2199 struct rum_tx_desc desc; 2200 struct mbuf *m0; 2201 int rate; 2202 2203 m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &sc->sc_bo); 2204 if (m0 == NULL) { 2205 aprint_error_dev(sc->sc_dev, 2206 "could not allocate beacon frame\n"); 2207 return ENOBUFS; 2208 } 2209 2210 /* send beacons at the lowest available rate */ 2211 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2; 2212 2213 rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ, 2214 m0->m_pkthdr.len, rate); 2215 2216 /* copy the first 24 bytes of Tx descriptor into NIC memory */ 2217 rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24); 2218 2219 /* copy beacon header and payload into NIC memory */ 2220 rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *), 2221 m0->m_pkthdr.len); 2222 2223 m_freem(m0); 2224 2225 return 0; 2226 } 2227 2228 static void 2229 rum_newassoc(struct ieee80211_node *ni, int isnew) 2230 { 2231 /* start with lowest Tx rate */ 2232 ni->ni_txrate = 0; 2233 } 2234 2235 static void 2236 rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni) 2237 { 2238 int i; 2239 2240 /* clear statistic registers (STA_CSR0 to STA_CSR5) */ 2241 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta); 2242 2243 ieee80211_amrr_node_init(&sc->amrr, &sc->amn); 2244 2245 /* set rate to some reasonable initial value */ 2246 for (i = ni->ni_rates.rs_nrates - 1; 2247 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72; 2248 i--); 2249 ni->ni_txrate = i; 2250 2251 callout_reset(&sc->sc_amrr_ch, hz, rum_amrr_timeout, sc); 2252 } 2253 2254 static void 2255 rum_amrr_timeout(void *arg) 2256 { 2257 struct rum_softc *sc = arg; 2258 usb_device_request_t req; 2259 2260 /* 2261 * Asynchronously read statistic registers (cleared by read). 2262 */ 2263 req.bmRequestType = UT_READ_VENDOR_DEVICE; 2264 req.bRequest = RT2573_READ_MULTI_MAC; 2265 USETW(req.wValue, 0); 2266 USETW(req.wIndex, RT2573_STA_CSR0); 2267 USETW(req.wLength, sizeof sc->sta); 2268 2269 usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc, 2270 USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0, 2271 rum_amrr_update); 2272 (void)usbd_transfer(sc->amrr_xfer); 2273 } 2274 2275 static void 2276 rum_amrr_update(usbd_xfer_handle xfer, usbd_private_handle priv, 2277 usbd_status status) 2278 { 2279 struct rum_softc *sc = (struct rum_softc *)priv; 2280 struct ifnet *ifp = sc->sc_ic.ic_ifp; 2281 2282 if (status != USBD_NORMAL_COMPLETION) { 2283 printf("%s: could not retrieve Tx statistics - cancelling " 2284 "automatic rate control\n", device_xname(sc->sc_dev)); 2285 return; 2286 } 2287 2288 /* count TX retry-fail as Tx errors */ 2289 ifp->if_oerrors += le32toh(sc->sta[5]) >> 16; 2290 2291 sc->amn.amn_retrycnt = 2292 (le32toh(sc->sta[4]) >> 16) + /* TX one-retry ok count */ 2293 (le32toh(sc->sta[5]) & 0xffff) + /* TX more-retry ok count */ 2294 (le32toh(sc->sta[5]) >> 16); /* TX retry-fail count */ 2295 2296 sc->amn.amn_txcnt = 2297 sc->amn.amn_retrycnt + 2298 (le32toh(sc->sta[4]) & 0xffff); /* TX no-retry ok count */ 2299 2300 ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn); 2301 2302 callout_reset(&sc->sc_amrr_ch, hz, rum_amrr_timeout, sc); 2303 } 2304 2305 static int 2306 rum_activate(device_t self, enum devact act) 2307 { 2308 switch (act) { 2309 case DVACT_DEACTIVATE: 2310 /*if_deactivate(&sc->sc_ic.ic_if);*/ 2311 return 0; 2312 default: 2313 return 0; 2314 } 2315 } 2316 2317 MODULE(MODULE_CLASS_DRIVER, if_rum, "bpf"); 2318 2319 #ifdef _MODULE 2320 #include "ioconf.c" 2321 #endif 2322 2323 static int 2324 if_rum_modcmd(modcmd_t cmd, void *aux) 2325 { 2326 int error = 0; 2327 2328 switch (cmd) { 2329 case MODULE_CMD_INIT: 2330 #ifdef _MODULE 2331 error = config_init_component(cfdriver_ioconf_rum, 2332 cfattach_ioconf_rum, cfdata_ioconf_rum); 2333 #endif 2334 return error; 2335 case MODULE_CMD_FINI: 2336 #ifdef _MODULE 2337 error = config_fini_component(cfdriver_ioconf_rum, 2338 cfattach_ioconf_rum, cfdata_ioconf_rum); 2339 #endif 2340 return error; 2341 default: 2342 return ENOTTY; 2343 } 2344 } 2345