xref: /netbsd-src/sys/dev/usb/if_mue.c (revision 181254a7b1bdde6873432bffef2d2decc4b5c22f)
1 /*	$NetBSD: if_mue.c,v 1.60 2020/06/27 13:33:26 jmcneill Exp $	*/
2 /*	$OpenBSD: if_mue.c,v 1.3 2018/08/04 16:42:46 jsg Exp $	*/
3 
4 /*
5  * Copyright (c) 2018 Kevin Lo <kevlo@openbsd.org>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 /* Driver for Microchip LAN7500/LAN7800 chipsets. */
21 
22 #include <sys/cdefs.h>
23 __KERNEL_RCSID(0, "$NetBSD: if_mue.c,v 1.60 2020/06/27 13:33:26 jmcneill Exp $");
24 
25 #ifdef _KERNEL_OPT
26 #include "opt_usb.h"
27 #include "opt_inet.h"
28 #endif
29 
30 #include <sys/param.h>
31 
32 #include <dev/usb/usbnet.h>
33 
34 #include <dev/usb/if_muereg.h>
35 #include <dev/usb/if_muevar.h>
36 
37 #define MUE_PRINTF(un, fmt, args...)					\
38 	device_printf((un)->un_dev, "%s: " fmt, __func__, ##args);
39 
40 #ifdef USB_DEBUG
41 int muedebug = 0;
42 #define DPRINTF(un, fmt, args...)					\
43 	do {								\
44 		if (muedebug)						\
45 			MUE_PRINTF(un, fmt, ##args);			\
46 	} while (0 /* CONSTCOND */)
47 #else
48 #define DPRINTF(un, fmt, args...)	__nothing
49 #endif
50 
51 /*
52  * Various supported device vendors/products.
53  */
54 struct mue_type {
55 	struct usb_devno	mue_dev;
56 	uint16_t		mue_flags;
57 #define LAN7500		0x0001	/* LAN7500 */
58 #define LAN7800		0x0002	/* LAN7800 */
59 #define LAN7801		0x0004	/* LAN7801 */
60 #define LAN7850		0x0008	/* LAN7850 */
61 };
62 
63 static const struct mue_type mue_devs[] = {
64 	{ { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_LAN7500 }, LAN7500 },
65 	{ { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_LAN7505 }, LAN7500 },
66 	{ { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_LAN7800 }, LAN7800 },
67 	{ { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_LAN7801 }, LAN7801 },
68 	{ { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_LAN7850 }, LAN7850 }
69 };
70 
71 #define MUE_LOOKUP(uaa)	((const struct mue_type *)usb_lookup(mue_devs, \
72     uaa->uaa_vendor, uaa->uaa_product))
73 
74 #define MUE_ENADDR_LO(enaddr) \
75     ((enaddr[3] << 24) | (enaddr[2] << 16) | (enaddr[1] << 8) | enaddr[0])
76 #define MUE_ENADDR_HI(enaddr) \
77     ((enaddr[5] << 8) | enaddr[4])
78 
79 static int	mue_match(device_t, cfdata_t, void *);
80 static void	mue_attach(device_t, device_t, void *);
81 
82 static uint32_t	mue_csr_read(struct usbnet *, uint32_t);
83 static int	mue_csr_write(struct usbnet *, uint32_t, uint32_t);
84 static int	mue_wait_for_bits(struct usbnet *, uint32_t, uint32_t,
85 		    uint32_t, uint32_t);
86 static uint8_t	mue_eeprom_getbyte(struct usbnet *, int, uint8_t *);
87 static bool	mue_eeprom_present(struct usbnet *);
88 static void	mue_dataport_write(struct usbnet *, uint32_t, uint32_t,
89 		    uint32_t, uint32_t *);
90 static void	mue_init_ltm(struct usbnet *);
91 static int	mue_chip_init(struct usbnet *);
92 static void	mue_set_macaddr(struct usbnet *);
93 static int	mue_get_macaddr(struct usbnet *, prop_dictionary_t);
94 static int	mue_prepare_tso(struct usbnet *, struct mbuf *);
95 static void	mue_setiff_locked(struct usbnet *);
96 static void	mue_sethwcsum_locked(struct usbnet *);
97 static void	mue_setmtu_locked(struct usbnet *);
98 static void	mue_reset(struct usbnet *);
99 
100 static void	mue_uno_stop(struct ifnet *, int);
101 static int	mue_uno_ioctl(struct ifnet *, u_long, void *);
102 static int	mue_uno_mii_read_reg(struct usbnet *, int, int, uint16_t *);
103 static int	mue_uno_mii_write_reg(struct usbnet *, int, int, uint16_t);
104 static void	mue_uno_mii_statchg(struct ifnet *);
105 static void	mue_uno_rx_loop(struct usbnet *, struct usbnet_chain *,
106 				uint32_t);
107 static unsigned	mue_uno_tx_prepare(struct usbnet *, struct mbuf *,
108 				   struct usbnet_chain *);
109 static int	mue_uno_init(struct ifnet *);
110 
111 static const struct usbnet_ops mue_ops = {
112 	.uno_stop = mue_uno_stop,
113 	.uno_ioctl = mue_uno_ioctl,
114 	.uno_read_reg = mue_uno_mii_read_reg,
115 	.uno_write_reg = mue_uno_mii_write_reg,
116 	.uno_statchg = mue_uno_mii_statchg,
117 	.uno_tx_prepare = mue_uno_tx_prepare,
118 	.uno_rx_loop = mue_uno_rx_loop,
119 	.uno_init = mue_uno_init,
120 };
121 
122 #define MUE_SETBIT(un, reg, x)	\
123 	mue_csr_write(un, reg, mue_csr_read(un, reg) | (x))
124 
125 #define MUE_CLRBIT(un, reg, x)	\
126 	mue_csr_write(un, reg, mue_csr_read(un, reg) & ~(x))
127 
128 #define MUE_WAIT_SET(un, reg, set, fail)	\
129 	mue_wait_for_bits(un, reg, set, ~0, fail)
130 
131 #define MUE_WAIT_CLR(un, reg, clear, fail)	\
132 	mue_wait_for_bits(un, reg, 0, clear, fail)
133 
134 #define ETHER_IS_VALID(addr) \
135 	(!ETHER_IS_MULTICAST(addr) && !ETHER_IS_ZERO(addr))
136 
137 #define ETHER_IS_ZERO(addr) \
138 	(!(addr[0] | addr[1] | addr[2] | addr[3] | addr[4] | addr[5]))
139 
140 CFATTACH_DECL_NEW(mue, sizeof(struct usbnet), mue_match, mue_attach,
141     usbnet_detach, usbnet_activate);
142 
143 static uint32_t
144 mue_csr_read(struct usbnet *un, uint32_t reg)
145 {
146 	usb_device_request_t req;
147 	usbd_status err;
148 	uDWord val;
149 
150 	if (usbnet_isdying(un))
151 		return 0;
152 
153 	USETDW(val, 0);
154 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
155 	req.bRequest = MUE_UR_READREG;
156 	USETW(req.wValue, 0);
157 	USETW(req.wIndex, reg);
158 	USETW(req.wLength, 4);
159 
160 	err = usbd_do_request(un->un_udev, &req, &val);
161 	if (err) {
162 		MUE_PRINTF(un, "reg = %#x: %s\n", reg, usbd_errstr(err));
163 		return 0;
164 	}
165 
166 	return UGETDW(val);
167 }
168 
169 static int
170 mue_csr_write(struct usbnet *un, uint32_t reg, uint32_t aval)
171 {
172 	usb_device_request_t req;
173 	usbd_status err;
174 	uDWord val;
175 
176 	if (usbnet_isdying(un))
177 		return 0;
178 
179 	USETDW(val, aval);
180 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
181 	req.bRequest = MUE_UR_WRITEREG;
182 	USETW(req.wValue, 0);
183 	USETW(req.wIndex, reg);
184 	USETW(req.wLength, 4);
185 
186 	err = usbd_do_request(un->un_udev, &req, &val);
187 	if (err) {
188 		MUE_PRINTF(un, "reg = %#x: %s\n", reg, usbd_errstr(err));
189 		return -1;
190 	}
191 
192 	return 0;
193 }
194 
195 static int
196 mue_wait_for_bits(struct usbnet *un, uint32_t reg,
197     uint32_t set, uint32_t clear, uint32_t fail)
198 {
199 	uint32_t val;
200 	int ntries;
201 
202 	for (ntries = 0; ntries < 1000; ntries++) {
203 		val = mue_csr_read(un, reg);
204 		if ((val & set) || !(val & clear))
205 			return 0;
206 		if (val & fail)
207 			return 1;
208 		usbd_delay_ms(un->un_udev, 1);
209 	}
210 
211 	return 1;
212 }
213 
214 static int
215 mue_uno_mii_read_reg(struct usbnet *un, int phy, int reg, uint16_t *val)
216 {
217 	uint32_t data;
218 
219 	if (un->un_phyno != phy)
220 		return EINVAL;
221 
222 	if (MUE_WAIT_CLR(un, MUE_MII_ACCESS, MUE_MII_ACCESS_BUSY, 0)) {
223 		MUE_PRINTF(un, "not ready\n");
224 		return EBUSY;
225 	}
226 
227 	mue_csr_write(un, MUE_MII_ACCESS, MUE_MII_ACCESS_READ |
228 	    MUE_MII_ACCESS_BUSY | MUE_MII_ACCESS_REGADDR(reg) |
229 	    MUE_MII_ACCESS_PHYADDR(phy));
230 
231 	if (MUE_WAIT_CLR(un, MUE_MII_ACCESS, MUE_MII_ACCESS_BUSY, 0)) {
232 		MUE_PRINTF(un, "timed out\n");
233 		return ETIMEDOUT;
234 	}
235 
236 	data = mue_csr_read(un, MUE_MII_DATA);
237 	*val = data & 0xffff;
238 
239 	return 0;
240 }
241 
242 static int
243 mue_uno_mii_write_reg(struct usbnet *un, int phy, int reg, uint16_t val)
244 {
245 
246 	if (un->un_phyno != phy)
247 		return EINVAL;
248 
249 	if (MUE_WAIT_CLR(un, MUE_MII_ACCESS, MUE_MII_ACCESS_BUSY, 0)) {
250 		MUE_PRINTF(un, "not ready\n");
251 		return EBUSY;
252 	}
253 
254 	mue_csr_write(un, MUE_MII_DATA, val);
255 	mue_csr_write(un, MUE_MII_ACCESS, MUE_MII_ACCESS_WRITE |
256 	    MUE_MII_ACCESS_BUSY | MUE_MII_ACCESS_REGADDR(reg) |
257 	    MUE_MII_ACCESS_PHYADDR(phy));
258 
259 	if (MUE_WAIT_CLR(un, MUE_MII_ACCESS, MUE_MII_ACCESS_BUSY, 0)) {
260 		MUE_PRINTF(un, "timed out\n");
261 		return ETIMEDOUT;
262 	}
263 
264 	return 0;
265 }
266 
267 static void
268 mue_uno_mii_statchg(struct ifnet *ifp)
269 {
270 	struct usbnet * const un = ifp->if_softc;
271 	struct mii_data * const mii = usbnet_mii(un);
272 	uint32_t flow, threshold;
273 
274 	if (usbnet_isdying(un))
275 		return;
276 
277 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
278 	    (IFM_ACTIVE | IFM_AVALID)) {
279 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
280 		case IFM_10_T:
281 		case IFM_100_TX:
282 		case IFM_1000_T:
283 			usbnet_set_link(un, true);
284 			break;
285 		default:
286 			break;
287 		}
288 	}
289 
290 	/* Lost link, do nothing. */
291 	if (!usbnet_havelink(un)) {
292 		DPRINTF(un, "mii_media_status = %#x\n", mii->mii_media_status);
293 		return;
294 	}
295 
296 	if (!(un->un_flags & LAN7500)) {
297 		if (un->un_udev->ud_speed == USB_SPEED_SUPER) {
298 			if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
299 				/* Disable U2 and enable U1. */
300 				MUE_CLRBIT(un, MUE_USB_CFG1,
301 				    MUE_USB_CFG1_DEV_U2_INIT_EN);
302 				MUE_SETBIT(un, MUE_USB_CFG1,
303 				    MUE_USB_CFG1_DEV_U1_INIT_EN);
304 			} else {
305 				/* Enable U1 and U2. */
306 				MUE_SETBIT(un, MUE_USB_CFG1,
307 				    MUE_USB_CFG1_DEV_U1_INIT_EN |
308 				    MUE_USB_CFG1_DEV_U2_INIT_EN);
309 			}
310 		}
311 	}
312 
313 	flow = 0;
314 	/* XXX Linux does not check IFM_FDX flag for 7800. */
315 	if (IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) {
316 		if (IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE)
317 			flow |= MUE_FLOW_TX_FCEN | MUE_FLOW_PAUSE_TIME;
318 		if (IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE)
319 			flow |= MUE_FLOW_RX_FCEN;
320 	}
321 
322 	/* XXX Magic numbers taken from Linux driver. */
323 	if (un->un_flags & LAN7500)
324 		threshold = 0x820;
325 	else
326 		switch (un->un_udev->ud_speed) {
327 		case USB_SPEED_SUPER:
328 			threshold = 0x817;
329 			break;
330 		case USB_SPEED_HIGH:
331 			threshold = 0x211;
332 			break;
333 		default:
334 			threshold = 0;
335 			break;
336 		}
337 
338 	/* Threshold value should be set before enabling flow. */
339 	mue_csr_write(un, (un->un_flags & LAN7500) ?
340 	    MUE_7500_FCT_FLOW : MUE_7800_FCT_FLOW, threshold);
341 	mue_csr_write(un, MUE_FLOW, flow);
342 
343 	DPRINTF(un, "done\n");
344 }
345 
346 static uint8_t
347 mue_eeprom_getbyte(struct usbnet *un, int off, uint8_t *dest)
348 {
349 	uint32_t val;
350 
351 	if (MUE_WAIT_CLR(un, MUE_E2P_CMD, MUE_E2P_CMD_BUSY, 0)) {
352 		MUE_PRINTF(un, "not ready\n");
353 		return ETIMEDOUT;
354 	}
355 
356 	KASSERT((off & ~MUE_E2P_CMD_ADDR_MASK) == 0);
357 	mue_csr_write(un, MUE_E2P_CMD, MUE_E2P_CMD_READ | MUE_E2P_CMD_BUSY |
358 	    off);
359 
360 	if (MUE_WAIT_CLR(un, MUE_E2P_CMD, MUE_E2P_CMD_BUSY,
361 	    MUE_E2P_CMD_TIMEOUT)) {
362 		MUE_PRINTF(un, "timed out\n");
363 		return ETIMEDOUT;
364 	}
365 
366 	val = mue_csr_read(un, MUE_E2P_DATA);
367 	*dest = val & 0xff;
368 
369 	return 0;
370 }
371 
372 static int
373 mue_read_eeprom(struct usbnet *un, uint8_t *dest, int off, int cnt)
374 {
375 	uint32_t val = 0; /* XXX gcc */
376 	uint8_t byte;
377 	int i, err = 0;
378 
379 	/*
380 	 * EEPROM pins are muxed with the LED function on LAN7800 device.
381 	 */
382 	if (un->un_flags & LAN7800) {
383 		val = mue_csr_read(un, MUE_HW_CFG);
384 		mue_csr_write(un, MUE_HW_CFG,
385 		    val & ~(MUE_HW_CFG_LED0_EN | MUE_HW_CFG_LED1_EN));
386 	}
387 
388 	for (i = 0; i < cnt; i++) {
389 		err = mue_eeprom_getbyte(un, off + i, &byte);
390 		if (err)
391 			break;
392 		*(dest + i) = byte;
393 	}
394 
395 	if (un->un_flags & LAN7800)
396 		mue_csr_write(un, MUE_HW_CFG, val);
397 
398 	return err ? 1 : 0;
399 }
400 
401 static bool
402 mue_eeprom_present(struct usbnet *un)
403 {
404 	uint32_t val;
405 	uint8_t sig;
406 	int ret;
407 
408 	if (un->un_flags & LAN7500) {
409 		val = mue_csr_read(un, MUE_E2P_CMD);
410 		return val & MUE_E2P_CMD_LOADED;
411 	} else {
412 		ret = mue_read_eeprom(un, &sig, MUE_E2P_IND_OFFSET, 1);
413 		return (ret == 0) && (sig == MUE_E2P_IND);
414 	}
415 }
416 
417 static int
418 mue_read_otp_raw(struct usbnet *un, uint8_t *dest, int off, int cnt)
419 {
420 	uint32_t val;
421 	int i, err;
422 
423 	val = mue_csr_read(un, MUE_OTP_PWR_DN);
424 
425 	/* Checking if bit is set. */
426 	if (val & MUE_OTP_PWR_DN_PWRDN_N) {
427 		/* Clear it, then wait for it to be cleared. */
428 		mue_csr_write(un, MUE_OTP_PWR_DN, 0);
429 		err = MUE_WAIT_CLR(un, MUE_OTP_PWR_DN, MUE_OTP_PWR_DN_PWRDN_N,
430 		    0);
431 		if (err) {
432 			MUE_PRINTF(un, "not ready\n");
433 			return 1;
434 		}
435 	}
436 
437 	/* Start reading the bytes, one at a time. */
438 	for (i = 0; i < cnt; i++) {
439 		mue_csr_write(un, MUE_OTP_ADDR1,
440 		    ((off + i) >> 8) & MUE_OTP_ADDR1_MASK);
441 		mue_csr_write(un, MUE_OTP_ADDR2,
442 		    ((off + i) & MUE_OTP_ADDR2_MASK));
443 		mue_csr_write(un, MUE_OTP_FUNC_CMD, MUE_OTP_FUNC_CMD_READ);
444 		mue_csr_write(un, MUE_OTP_CMD_GO, MUE_OTP_CMD_GO_GO);
445 
446 		err = MUE_WAIT_CLR(un, MUE_OTP_STATUS, MUE_OTP_STATUS_BUSY, 0);
447 		if (err) {
448 			MUE_PRINTF(un, "timed out\n");
449 			return 1;
450 		}
451 		val = mue_csr_read(un, MUE_OTP_RD_DATA);
452 		*(dest + i) = (uint8_t)(val & 0xff);
453 	}
454 
455 	return 0;
456 }
457 
458 static int
459 mue_read_otp(struct usbnet *un, uint8_t *dest, int off, int cnt)
460 {
461 	uint8_t sig;
462 	int err;
463 
464 	if (un->un_flags & LAN7500)
465 		return 1;
466 
467 	err = mue_read_otp_raw(un, &sig, MUE_OTP_IND_OFFSET, 1);
468 	if (err)
469 		return 1;
470 	switch (sig) {
471 	case MUE_OTP_IND_1:
472 		break;
473 	case MUE_OTP_IND_2:
474 		off += 0x100;
475 		break;
476 	default:
477 		DPRINTF(un, "OTP not found\n");
478 		return 1;
479 	}
480 	err = mue_read_otp_raw(un, dest, off, cnt);
481 	return err;
482 }
483 
484 static void
485 mue_dataport_write(struct usbnet *un, uint32_t sel, uint32_t addr,
486     uint32_t cnt, uint32_t *data)
487 {
488 	uint32_t i;
489 
490 	if (MUE_WAIT_SET(un, MUE_DP_SEL, MUE_DP_SEL_DPRDY, 0)) {
491 		MUE_PRINTF(un, "not ready\n");
492 		return;
493 	}
494 
495 	mue_csr_write(un, MUE_DP_SEL,
496 	    (mue_csr_read(un, MUE_DP_SEL) & ~MUE_DP_SEL_RSEL_MASK) | sel);
497 
498 	for (i = 0; i < cnt; i++) {
499 		mue_csr_write(un, MUE_DP_ADDR, addr + i);
500 		mue_csr_write(un, MUE_DP_DATA, data[i]);
501 		mue_csr_write(un, MUE_DP_CMD, MUE_DP_CMD_WRITE);
502 		if (MUE_WAIT_SET(un, MUE_DP_SEL, MUE_DP_SEL_DPRDY, 0)) {
503 			MUE_PRINTF(un, "timed out\n");
504 			return;
505 		}
506 	}
507 }
508 
509 static void
510 mue_init_ltm(struct usbnet *un)
511 {
512 	uint32_t idx[MUE_NUM_LTM_INDEX] = { 0, 0, 0, 0, 0, 0 };
513 	uint8_t temp[2];
514 	size_t i;
515 
516 	if (mue_csr_read(un, MUE_USB_CFG1) & MUE_USB_CFG1_LTM_ENABLE) {
517 		if (mue_eeprom_present(un) &&
518 		    (mue_read_eeprom(un, temp, MUE_E2P_LTM_OFFSET, 2) == 0)) {
519 			if (temp[0] != sizeof(idx)) {
520 				DPRINTF(un, "EEPROM: unexpected size\n");
521 				goto done;
522 			}
523 			if (mue_read_eeprom(un, (uint8_t *)idx, temp[1] << 1,
524 				sizeof(idx))) {
525 				DPRINTF(un, "EEPROM: failed to read\n");
526 				goto done;
527 			}
528 			DPRINTF(un, "success\n");
529 		} else if (mue_read_otp(un, temp, MUE_E2P_LTM_OFFSET, 2) == 0) {
530 			if (temp[0] != sizeof(idx)) {
531 				DPRINTF(un, "OTP: unexpected size\n");
532 				goto done;
533 			}
534 			if (mue_read_otp(un, (uint8_t *)idx, temp[1] << 1,
535 				sizeof(idx))) {
536 				DPRINTF(un, "OTP: failed to read\n");
537 				goto done;
538 			}
539 			DPRINTF(un, "success\n");
540 		} else
541 			DPRINTF(un, "nothing to do\n");
542 	} else
543 		DPRINTF(un, "nothing to do\n");
544 done:
545 	for (i = 0; i < __arraycount(idx); i++)
546 		mue_csr_write(un, MUE_LTM_INDEX(i), idx[i]);
547 }
548 
549 static int
550 mue_chip_init(struct usbnet *un)
551 {
552 	uint32_t val;
553 
554 	if ((un->un_flags & LAN7500) &&
555 	    MUE_WAIT_SET(un, MUE_PMT_CTL, MUE_PMT_CTL_READY, 0)) {
556 		MUE_PRINTF(un, "not ready\n");
557 			return ETIMEDOUT;
558 	}
559 
560 	MUE_SETBIT(un, MUE_HW_CFG, MUE_HW_CFG_LRST);
561 	if (MUE_WAIT_CLR(un, MUE_HW_CFG, MUE_HW_CFG_LRST, 0)) {
562 		MUE_PRINTF(un, "timed out\n");
563 		return ETIMEDOUT;
564 	}
565 
566 	/* Respond to the IN token with a NAK. */
567 	if (un->un_flags & LAN7500)
568 		MUE_SETBIT(un, MUE_HW_CFG, MUE_HW_CFG_BIR);
569 	else
570 		MUE_SETBIT(un, MUE_USB_CFG0, MUE_USB_CFG0_BIR);
571 
572 	if (un->un_flags & LAN7500) {
573 		if (un->un_udev->ud_speed == USB_SPEED_HIGH)
574 			val = MUE_7500_HS_RX_BUFSIZE /
575 			    MUE_HS_USB_PKT_SIZE;
576 		else
577 			val = MUE_7500_FS_RX_BUFSIZE /
578 			    MUE_FS_USB_PKT_SIZE;
579 		mue_csr_write(un, MUE_7500_BURST_CAP, val);
580 		mue_csr_write(un, MUE_7500_BULKIN_DELAY,
581 		    MUE_7500_DEFAULT_BULKIN_DELAY);
582 
583 		MUE_SETBIT(un, MUE_HW_CFG, MUE_HW_CFG_BCE | MUE_HW_CFG_MEF);
584 
585 		/* Set FIFO sizes. */
586 		val = (MUE_7500_MAX_RX_FIFO_SIZE - 512) / 512;
587 		mue_csr_write(un, MUE_7500_FCT_RX_FIFO_END, val);
588 		val = (MUE_7500_MAX_TX_FIFO_SIZE - 512) / 512;
589 		mue_csr_write(un, MUE_7500_FCT_TX_FIFO_END, val);
590 	} else {
591 		/* Init LTM. */
592 		mue_init_ltm(un);
593 
594 		val = MUE_7800_RX_BUFSIZE;
595 		switch (un->un_udev->ud_speed) {
596 		case USB_SPEED_SUPER:
597 			val /= MUE_SS_USB_PKT_SIZE;
598 			break;
599 		case USB_SPEED_HIGH:
600 			val /= MUE_HS_USB_PKT_SIZE;
601 			break;
602 		default:
603 			val /= MUE_FS_USB_PKT_SIZE;
604 			break;
605 		}
606 		mue_csr_write(un, MUE_7800_BURST_CAP, val);
607 		mue_csr_write(un, MUE_7800_BULKIN_DELAY,
608 		    MUE_7800_DEFAULT_BULKIN_DELAY);
609 
610 		MUE_SETBIT(un, MUE_HW_CFG, MUE_HW_CFG_MEF);
611 		MUE_SETBIT(un, MUE_USB_CFG0, MUE_USB_CFG0_BCE);
612 
613 		/*
614 		 * Set FCL's RX and TX FIFO sizes: according to data sheet this
615 		 * is already the default value. But we initialize it to the
616 		 * same value anyways, as that's what the Linux driver does.
617 		 */
618 		val = (MUE_7800_MAX_RX_FIFO_SIZE - 512) / 512;
619 		mue_csr_write(un, MUE_7800_FCT_RX_FIFO_END, val);
620 		val = (MUE_7800_MAX_TX_FIFO_SIZE - 512) / 512;
621 		mue_csr_write(un, MUE_7800_FCT_TX_FIFO_END, val);
622 	}
623 
624 	/* Enabling interrupts. */
625 	mue_csr_write(un, MUE_INT_STATUS, ~0);
626 
627 	mue_csr_write(un, (un->un_flags & LAN7500) ?
628 	    MUE_7500_FCT_FLOW : MUE_7800_FCT_FLOW, 0);
629 	mue_csr_write(un, MUE_FLOW, 0);
630 
631 	/* Reset PHY. */
632 	MUE_SETBIT(un, MUE_PMT_CTL, MUE_PMT_CTL_PHY_RST);
633 	if (MUE_WAIT_CLR(un, MUE_PMT_CTL, MUE_PMT_CTL_PHY_RST, 0)) {
634 		MUE_PRINTF(un, "PHY not ready\n");
635 		return ETIMEDOUT;
636 	}
637 
638 	/* LAN7801 only has RGMII mode. */
639 	if (un->un_flags & LAN7801)
640 		MUE_CLRBIT(un, MUE_MAC_CR, MUE_MAC_CR_GMII_EN);
641 
642 	if ((un->un_flags & (LAN7500 | LAN7800)) ||
643 	    !mue_eeprom_present(un)) {
644 		/* Allow MAC to detect speed and duplex from PHY. */
645 		MUE_SETBIT(un, MUE_MAC_CR, MUE_MAC_CR_AUTO_SPEED |
646 		    MUE_MAC_CR_AUTO_DUPLEX);
647 	}
648 
649 	MUE_SETBIT(un, MUE_MAC_TX, MUE_MAC_TX_TXEN);
650 	MUE_SETBIT(un, (un->un_flags & LAN7500) ?
651 	    MUE_7500_FCT_TX_CTL : MUE_7800_FCT_TX_CTL, MUE_FCT_TX_CTL_EN);
652 
653 	MUE_SETBIT(un, (un->un_flags & LAN7500) ?
654 	    MUE_7500_FCT_RX_CTL : MUE_7800_FCT_RX_CTL, MUE_FCT_RX_CTL_EN);
655 
656 	/* Set default GPIO/LED settings only if no EEPROM is detected. */
657 	if ((un->un_flags & LAN7500) && !mue_eeprom_present(un)) {
658 		MUE_CLRBIT(un, MUE_LED_CFG, MUE_LED_CFG_LED10_FUN_SEL);
659 		MUE_SETBIT(un, MUE_LED_CFG,
660 		    MUE_LED_CFG_LEDGPIO_EN | MUE_LED_CFG_LED2_FUN_SEL);
661 	}
662 
663 	/* XXX We assume two LEDs at least when EEPROM is missing. */
664 	if (un->un_flags & LAN7800 &&
665 	    !mue_eeprom_present(un))
666 		MUE_SETBIT(un, MUE_HW_CFG,
667 		    MUE_HW_CFG_LED0_EN | MUE_HW_CFG_LED1_EN);
668 
669 	return 0;
670 }
671 
672 static void
673 mue_set_macaddr(struct usbnet *un)
674 {
675 	struct ifnet * const ifp = usbnet_ifp(un);
676 	const uint8_t *enaddr = CLLADDR(ifp->if_sadl);
677 	uint32_t lo, hi;
678 
679 	lo = MUE_ENADDR_LO(enaddr);
680 	hi = MUE_ENADDR_HI(enaddr);
681 
682 	mue_csr_write(un, MUE_RX_ADDRL, lo);
683 	mue_csr_write(un, MUE_RX_ADDRH, hi);
684 }
685 
686 static int
687 mue_get_macaddr(struct usbnet *un, prop_dictionary_t dict)
688 {
689 	prop_data_t eaprop;
690 	uint32_t low, high;
691 
692 	if (!(un->un_flags & LAN7500)) {
693 		low  = mue_csr_read(un, MUE_RX_ADDRL);
694 		high = mue_csr_read(un, MUE_RX_ADDRH);
695 		un->un_eaddr[5] = (uint8_t)((high >> 8) & 0xff);
696 		un->un_eaddr[4] = (uint8_t)((high) & 0xff);
697 		un->un_eaddr[3] = (uint8_t)((low >> 24) & 0xff);
698 		un->un_eaddr[2] = (uint8_t)((low >> 16) & 0xff);
699 		un->un_eaddr[1] = (uint8_t)((low >> 8) & 0xff);
700 		un->un_eaddr[0] = (uint8_t)((low) & 0xff);
701 		if (ETHER_IS_VALID(un->un_eaddr))
702 			return 0;
703 		else
704 			DPRINTF(un, "registers: %s\n",
705 			    ether_sprintf(un->un_eaddr));
706 	}
707 
708 	if (mue_eeprom_present(un) && !mue_read_eeprom(un, un->un_eaddr,
709 	    MUE_E2P_MAC_OFFSET, ETHER_ADDR_LEN)) {
710 		if (ETHER_IS_VALID(un->un_eaddr))
711 			return 0;
712 		else
713 			DPRINTF(un, "EEPROM: %s\n",
714 			    ether_sprintf(un->un_eaddr));
715 	}
716 
717 	if (mue_read_otp(un, un->un_eaddr, MUE_OTP_MAC_OFFSET,
718 	    ETHER_ADDR_LEN) == 0) {
719 		if (ETHER_IS_VALID(un->un_eaddr))
720 			return 0;
721 		else
722 			DPRINTF(un, "OTP: %s\n",
723 			    ether_sprintf(un->un_eaddr));
724 	}
725 
726 	/*
727 	 * Other MD methods. This should be tried only if other methods fail.
728 	 * Otherwise, MAC address for internal device can be assinged to
729 	 * external devices on Raspberry Pi, for example.
730 	 */
731 	eaprop = prop_dictionary_get(dict, "mac-address");
732 	if (eaprop != NULL) {
733 		KASSERT(prop_object_type(eaprop) == PROP_TYPE_DATA);
734 		KASSERT(prop_data_size(eaprop) == ETHER_ADDR_LEN);
735 		memcpy(un->un_eaddr, prop_data_value(eaprop),
736 		    ETHER_ADDR_LEN);
737 		if (ETHER_IS_VALID(un->un_eaddr))
738 			return 0;
739 		else
740 			DPRINTF(un, "prop_dictionary_get: %s\n",
741 			    ether_sprintf(un->un_eaddr));
742 	}
743 
744 	return 1;
745 }
746 
747 
748 /*
749  * Probe for a Microchip chip.
750  */
751 static int
752 mue_match(device_t parent, cfdata_t match, void *aux)
753 {
754 	struct usb_attach_arg *uaa = aux;
755 
756 	return (MUE_LOOKUP(uaa) != NULL) ?  UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
757 }
758 
759 static void
760 mue_attach(device_t parent, device_t self, void *aux)
761 {
762 	USBNET_MII_DECL_DEFAULT(unm);
763 	struct usbnet * const un = device_private(self);
764 	prop_dictionary_t dict = device_properties(self);
765 	struct usb_attach_arg *uaa = aux;
766 	struct usbd_device *dev = uaa->uaa_device;
767 	usb_interface_descriptor_t *id;
768 	usb_endpoint_descriptor_t *ed;
769 	char *devinfop;
770 	usbd_status err;
771 	const char *descr;
772 	uint32_t id_rev;
773 	uint8_t i;
774 	unsigned rx_list_cnt, tx_list_cnt;
775 	unsigned rx_bufsz;
776 
777 	aprint_naive("\n");
778 	aprint_normal("\n");
779 	devinfop = usbd_devinfo_alloc(dev, 0);
780 	aprint_normal_dev(self, "%s\n", devinfop);
781 	usbd_devinfo_free(devinfop);
782 
783 	un->un_dev = self;
784 	un->un_udev = dev;
785 	un->un_sc = un;
786 	un->un_ops = &mue_ops;
787 	un->un_rx_xfer_flags = USBD_SHORT_XFER_OK;
788 	un->un_tx_xfer_flags = USBD_FORCE_SHORT_XFER;
789 
790 #define MUE_CONFIG_NO	1
791 	err = usbd_set_config_no(dev, MUE_CONFIG_NO, 1);
792 	if (err) {
793 		aprint_error_dev(self, "failed to set configuration: %s\n",
794 		    usbd_errstr(err));
795 		return;
796 	}
797 
798 #define MUE_IFACE_IDX	0
799 	err = usbd_device2interface_handle(dev, MUE_IFACE_IDX, &un->un_iface);
800 	if (err) {
801 		aprint_error_dev(self, "failed to get interface handle: %s\n",
802 		    usbd_errstr(err));
803 		return;
804 	}
805 
806 	un->un_flags = MUE_LOOKUP(uaa)->mue_flags;
807 
808 	/* Decide on what our bufsize will be. */
809 	if (un->un_flags & LAN7500) {
810 		rx_bufsz = (un->un_udev->ud_speed == USB_SPEED_HIGH) ?
811 		    MUE_7500_HS_RX_BUFSIZE : MUE_7500_FS_RX_BUFSIZE;
812 		rx_list_cnt = 1;
813 		tx_list_cnt = 1;
814 	} else {
815 		rx_bufsz = MUE_7800_RX_BUFSIZE;
816 		rx_list_cnt = MUE_RX_LIST_CNT;
817 		tx_list_cnt = MUE_TX_LIST_CNT;
818 	}
819 
820 	un->un_rx_list_cnt = rx_list_cnt;
821 	un->un_tx_list_cnt = tx_list_cnt;
822 	un->un_rx_bufsz = rx_bufsz;
823 	un->un_tx_bufsz = MUE_TX_BUFSIZE;
824 
825 	/* Find endpoints. */
826 	id = usbd_get_interface_descriptor(un->un_iface);
827 	for (i = 0; i < id->bNumEndpoints; i++) {
828 		ed = usbd_interface2endpoint_descriptor(un->un_iface, i);
829 		if (ed == NULL) {
830 			aprint_error_dev(self, "failed to get ep %hhd\n", i);
831 			return;
832 		}
833 		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
834 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) {
835 			un->un_ed[USBNET_ENDPT_RX] = ed->bEndpointAddress;
836 		} else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
837 			   UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) {
838 			un->un_ed[USBNET_ENDPT_TX] = ed->bEndpointAddress;
839 		} else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
840 			   UE_GET_XFERTYPE(ed->bmAttributes) == UE_INTERRUPT) {
841 			un->un_ed[USBNET_ENDPT_INTR] = ed->bEndpointAddress;
842 		}
843 	}
844 	if (un->un_ed[USBNET_ENDPT_RX] == 0 ||
845 	    un->un_ed[USBNET_ENDPT_TX] == 0 ||
846 	    un->un_ed[USBNET_ENDPT_INTR] == 0) {
847 		aprint_error_dev(self, "failed to find endpoints\n");
848 		return;
849 	}
850 
851 	/* Set these up now for mue_cmd().  */
852 	usbnet_attach(un, "muedet");
853 
854 	un->un_phyno = 1;
855 
856 	if (mue_chip_init(un)) {
857 		aprint_error_dev(self, "failed to initialize chip\n");
858 		return;
859 	}
860 
861 	/* A Microchip chip was detected.  Inform the world. */
862 	id_rev = mue_csr_read(un, MUE_ID_REV);
863 	descr = (un->un_flags & LAN7500) ? "LAN7500" : "LAN7800";
864 	aprint_normal_dev(self, "%s id %#x rev %#x\n", descr,
865 		(unsigned)__SHIFTOUT(id_rev, MUE_ID_REV_ID),
866 		(unsigned)__SHIFTOUT(id_rev, MUE_ID_REV_REV));
867 
868 	if (mue_get_macaddr(un, dict)) {
869 		aprint_error_dev(self, "failed to read MAC address\n");
870 		return;
871 	}
872 
873 	struct ifnet *ifp = usbnet_ifp(un);
874 	ifp->if_capabilities = IFCAP_TSOv4 | IFCAP_TSOv6 |
875 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
876 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
877 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
878 	    IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_TCPv6_Rx |
879 	    IFCAP_CSUM_UDPv6_Tx | IFCAP_CSUM_UDPv6_Rx;
880 
881 	struct ethercom *ec = usbnet_ec(un);
882 	ec->ec_capabilities = ETHERCAP_VLAN_MTU;
883 #if 0 /* XXX not yet */
884 	ec->ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
885 #endif
886 
887 	usbnet_attach_ifp(un, IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST,
888 	    0, &unm);
889 }
890 
891 static unsigned
892 mue_uno_tx_prepare(struct usbnet *un, struct mbuf *m, struct usbnet_chain *c)
893 {
894 	struct ifnet * const ifp = usbnet_ifp(un);
895 	struct mue_txbuf_hdr hdr;
896 	uint32_t tx_cmd_a, tx_cmd_b;
897 	int csum, len, rv;
898 	bool tso, ipe, tpe;
899 
900 	if ((unsigned)m->m_pkthdr.len > un->un_tx_bufsz - sizeof(hdr))
901 		return 0;
902 
903 	csum = m->m_pkthdr.csum_flags;
904 	tso = csum & (M_CSUM_TSOv4 | M_CSUM_TSOv6);
905 	ipe = csum & M_CSUM_IPv4;
906 	tpe = csum & (M_CSUM_TCPv4 | M_CSUM_UDPv4 |
907 		      M_CSUM_TCPv6 | M_CSUM_UDPv6);
908 
909 	len = m->m_pkthdr.len;
910 	if (__predict_false((!tso && len > (int)MUE_FRAME_LEN(ifp->if_mtu)) ||
911 			    ( tso && len > MUE_TSO_FRAME_LEN))) {
912 		MUE_PRINTF(un, "packet length %d\n too long", len);
913 		return 0;
914 	}
915 
916 	KASSERT((len & ~MUE_TX_CMD_A_LEN_MASK) == 0);
917 	tx_cmd_a = len | MUE_TX_CMD_A_FCS;
918 
919 	if (tso) {
920 		tx_cmd_a |= MUE_TX_CMD_A_LSO;
921 		if (__predict_true(m->m_pkthdr.segsz > MUE_TX_MSS_MIN))
922 			tx_cmd_b = m->m_pkthdr.segsz;
923 		else
924 			tx_cmd_b = MUE_TX_MSS_MIN;
925 		tx_cmd_b <<= MUE_TX_CMD_B_MSS_SHIFT;
926 		KASSERT((tx_cmd_b & ~MUE_TX_CMD_B_MSS_MASK) == 0);
927 		rv = mue_prepare_tso(un, m);
928 		if (__predict_false(rv))
929 			return 0;
930 	} else {
931 		if (ipe)
932 			tx_cmd_a |= MUE_TX_CMD_A_IPE;
933 		if (tpe)
934 			tx_cmd_a |= MUE_TX_CMD_A_TPE;
935 		tx_cmd_b = 0;
936 	}
937 
938 	hdr.tx_cmd_a = htole32(tx_cmd_a);
939 	hdr.tx_cmd_b = htole32(tx_cmd_b);
940 
941 	memcpy(c->unc_buf, &hdr, sizeof(hdr));
942 	m_copydata(m, 0, len, c->unc_buf + sizeof(hdr));
943 
944 	return len + sizeof(hdr);
945 }
946 
947 /*
948  * L3 length field should be cleared.
949  */
950 static int
951 mue_prepare_tso(struct usbnet *un, struct mbuf *m)
952 {
953 	struct ether_header *eh;
954 	struct ip *ip;
955 	struct ip6_hdr *ip6;
956 	uint16_t type, len = 0;
957 	int off;
958 
959 	if (__predict_true(m->m_len >= (int)sizeof(*eh))) {
960 		eh = mtod(m, struct ether_header *);
961 		type = eh->ether_type;
962 	} else
963 		m_copydata(m, offsetof(struct ether_header, ether_type),
964 		    sizeof(type), &type);
965 	switch (type = htons(type)) {
966 	case ETHERTYPE_IP:
967 	case ETHERTYPE_IPV6:
968 		off = ETHER_HDR_LEN;
969 		break;
970 	case ETHERTYPE_VLAN:
971 		off = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
972 		break;
973 	default:
974 		return EINVAL;
975 	}
976 
977 	if (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) {
978 		if (__predict_true(m->m_len >= off + (int)sizeof(*ip))) {
979 			ip = (void *)(mtod(m, char *) + off);
980 			ip->ip_len = 0;
981 		} else
982 			m_copyback(m, off + offsetof(struct ip, ip_len),
983 			    sizeof(len), &len);
984 	} else {
985 		if (__predict_true(m->m_len >= off + (int)sizeof(*ip6))) {
986 			ip6 = (void *)(mtod(m, char *) + off);
987 			ip6->ip6_plen = 0;
988 		} else
989 			m_copyback(m, off + offsetof(struct ip6_hdr, ip6_plen),
990 			    sizeof(len), &len);
991 	}
992 	return 0;
993 }
994 
995 static void
996 mue_setiff_locked(struct usbnet *un)
997 {
998 	struct ethercom *ec = usbnet_ec(un);
999 	struct ifnet * const ifp = usbnet_ifp(un);
1000 	const uint8_t *enaddr = CLLADDR(ifp->if_sadl);
1001 	struct ether_multi *enm;
1002 	struct ether_multistep step;
1003 	uint32_t pfiltbl[MUE_NUM_ADDR_FILTX][2];
1004 	uint32_t hashtbl[MUE_DP_SEL_VHF_HASH_LEN];
1005 	uint32_t reg, rxfilt, h, hireg, loreg;
1006 	size_t i;
1007 
1008 	if (usbnet_isdying(un))
1009 		return;
1010 
1011 	/* Clear perfect filter and hash tables. */
1012 	memset(pfiltbl, 0, sizeof(pfiltbl));
1013 	memset(hashtbl, 0, sizeof(hashtbl));
1014 
1015 	reg = (un->un_flags & LAN7500) ? MUE_7500_RFE_CTL : MUE_7800_RFE_CTL;
1016 	rxfilt = mue_csr_read(un, reg);
1017 	rxfilt &= ~(MUE_RFE_CTL_PERFECT | MUE_RFE_CTL_MULTICAST_HASH |
1018 	    MUE_RFE_CTL_UNICAST | MUE_RFE_CTL_MULTICAST);
1019 
1020 	/* Always accept broadcast frames. */
1021 	rxfilt |= MUE_RFE_CTL_BROADCAST;
1022 
1023 	if (ifp->if_flags & IFF_PROMISC) {
1024 		rxfilt |= MUE_RFE_CTL_UNICAST;
1025 allmulti:	rxfilt |= MUE_RFE_CTL_MULTICAST;
1026 		ifp->if_flags |= IFF_ALLMULTI;
1027 		if (ifp->if_flags & IFF_PROMISC)
1028 			DPRINTF(un, "promisc\n");
1029 		else
1030 			DPRINTF(un, "allmulti\n");
1031 	} else {
1032 		/* Now program new ones. */
1033 		pfiltbl[0][0] = MUE_ENADDR_HI(enaddr) | MUE_ADDR_FILTX_VALID;
1034 		pfiltbl[0][1] = MUE_ENADDR_LO(enaddr);
1035 		i = 1;
1036 		ETHER_LOCK(ec);
1037 		ETHER_FIRST_MULTI(step, ec, enm);
1038 		while (enm != NULL) {
1039 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1040 			    ETHER_ADDR_LEN)) {
1041 				memset(pfiltbl, 0, sizeof(pfiltbl));
1042 				memset(hashtbl, 0, sizeof(hashtbl));
1043 				rxfilt &= ~MUE_RFE_CTL_MULTICAST_HASH;
1044 				ETHER_UNLOCK(ec);
1045 				goto allmulti;
1046 			}
1047 			if (i < MUE_NUM_ADDR_FILTX) {
1048 				/* Use perfect address table if possible. */
1049 				pfiltbl[i][0] = MUE_ENADDR_HI(enm->enm_addrlo) |
1050 				    MUE_ADDR_FILTX_VALID;
1051 				pfiltbl[i][1] = MUE_ENADDR_LO(enm->enm_addrlo);
1052 			} else {
1053 				/* Otherwise, use hash table. */
1054 				rxfilt |= MUE_RFE_CTL_MULTICAST_HASH;
1055 				h = (ether_crc32_be(enm->enm_addrlo,
1056 				    ETHER_ADDR_LEN) >> 23) & 0x1ff;
1057 				hashtbl[h / 32] |= 1 << (h % 32);
1058 			}
1059 			i++;
1060 			ETHER_NEXT_MULTI(step, enm);
1061 		}
1062 		ETHER_UNLOCK(ec);
1063 		rxfilt |= MUE_RFE_CTL_PERFECT;
1064 		ifp->if_flags &= ~IFF_ALLMULTI;
1065 		if (rxfilt & MUE_RFE_CTL_MULTICAST_HASH)
1066 			DPRINTF(un, "perfect filter and hash tables\n");
1067 		else
1068 			DPRINTF(un, "perfect filter\n");
1069 	}
1070 
1071 	for (i = 0; i < MUE_NUM_ADDR_FILTX; i++) {
1072 		hireg = (un->un_flags & LAN7500) ?
1073 		    MUE_7500_ADDR_FILTX(i) : MUE_7800_ADDR_FILTX(i);
1074 		loreg = hireg + 4;
1075 		mue_csr_write(un, hireg, 0);
1076 		mue_csr_write(un, loreg, pfiltbl[i][1]);
1077 		mue_csr_write(un, hireg, pfiltbl[i][0]);
1078 	}
1079 
1080 	mue_dataport_write(un, MUE_DP_SEL_VHF, MUE_DP_SEL_VHF_VLAN_LEN,
1081 	    MUE_DP_SEL_VHF_HASH_LEN, hashtbl);
1082 
1083 	mue_csr_write(un, reg, rxfilt);
1084 }
1085 
1086 static void
1087 mue_sethwcsum_locked(struct usbnet *un)
1088 {
1089 	struct ifnet * const ifp = usbnet_ifp(un);
1090 	uint32_t reg, val;
1091 
1092 	reg = (un->un_flags & LAN7500) ? MUE_7500_RFE_CTL : MUE_7800_RFE_CTL;
1093 	val = mue_csr_read(un, reg);
1094 
1095 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
1096 		DPRINTF(un, "RX IPv4 hwcsum enabled\n");
1097 		val |= MUE_RFE_CTL_IP_COE;
1098 	} else {
1099 		DPRINTF(un, "RX IPv4 hwcsum disabled\n");
1100 		val &= ~MUE_RFE_CTL_IP_COE;
1101 	}
1102 
1103 	if (ifp->if_capenable &
1104 	    (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
1105 	     IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx)) {
1106 		DPRINTF(un, "RX L4 hwcsum enabled\n");
1107 		val |= MUE_RFE_CTL_TCPUDP_COE;
1108 	} else {
1109 		DPRINTF(un, "RX L4 hwcsum disabled\n");
1110 		val &= ~MUE_RFE_CTL_TCPUDP_COE;
1111 	}
1112 
1113 	val &= ~MUE_RFE_CTL_VLAN_FILTER;
1114 
1115 	mue_csr_write(un, reg, val);
1116 }
1117 
1118 static void
1119 mue_setmtu_locked(struct usbnet *un)
1120 {
1121 	struct ifnet * const ifp = usbnet_ifp(un);
1122 	uint32_t val;
1123 
1124 	/* Set the maximum frame size. */
1125 	MUE_CLRBIT(un, MUE_MAC_RX, MUE_MAC_RX_RXEN);
1126 	val = mue_csr_read(un, MUE_MAC_RX);
1127 	val &= ~MUE_MAC_RX_MAX_SIZE_MASK;
1128 	val |= MUE_MAC_RX_MAX_LEN(MUE_FRAME_LEN(ifp->if_mtu));
1129 	mue_csr_write(un, MUE_MAC_RX, val);
1130 	MUE_SETBIT(un, MUE_MAC_RX, MUE_MAC_RX_RXEN);
1131 }
1132 
1133 static void
1134 mue_uno_rx_loop(struct usbnet *un, struct usbnet_chain *c, uint32_t total_len)
1135 {
1136 	struct ifnet * const ifp = usbnet_ifp(un);
1137 	struct mue_rxbuf_hdr *hdrp;
1138 	uint32_t rx_cmd_a;
1139 	uint16_t pktlen;
1140 	int csum;
1141 	uint8_t *buf = c->unc_buf;
1142 	bool v6;
1143 
1144 	KASSERTMSG(total_len <= un->un_rx_bufsz, "%u vs %u",
1145 	    total_len, un->un_rx_bufsz);
1146 
1147 	do {
1148 		if (__predict_false(total_len < sizeof(*hdrp))) {
1149 			MUE_PRINTF(un, "packet length %u too short\n", total_len);
1150 			if_statinc(ifp, if_ierrors);
1151 			return;
1152 		}
1153 
1154 		hdrp = (struct mue_rxbuf_hdr *)buf;
1155 		rx_cmd_a = le32toh(hdrp->rx_cmd_a);
1156 
1157 		if (__predict_false(rx_cmd_a & MUE_RX_CMD_A_ERRORS)) {
1158 			/*
1159 			 * We cannot use MUE_RX_CMD_A_RED bit here;
1160 			 * it is turned on in the cases of L3/L4
1161 			 * checksum errors which we handle below.
1162 			 */
1163 			MUE_PRINTF(un, "rx_cmd_a: %#x\n", rx_cmd_a);
1164 			if_statinc(ifp, if_ierrors);
1165 			return;
1166 		}
1167 
1168 		pktlen = (uint16_t)(rx_cmd_a & MUE_RX_CMD_A_LEN_MASK);
1169 		if (un->un_flags & LAN7500)
1170 			pktlen -= 2;
1171 
1172 		if (__predict_false(pktlen < ETHER_HDR_LEN + ETHER_CRC_LEN ||
1173 		    pktlen > MCLBYTES - ETHER_ALIGN || /* XXX */
1174 		    pktlen + sizeof(*hdrp) > total_len)) {
1175 			MUE_PRINTF(un, "invalid packet length %d\n", pktlen);
1176 			if_statinc(ifp, if_ierrors);
1177 			return;
1178 		}
1179 
1180 		if (__predict_false(rx_cmd_a & MUE_RX_CMD_A_ICSM)) {
1181 			csum = 0;
1182 		} else {
1183 			v6 = rx_cmd_a & MUE_RX_CMD_A_IPV;
1184 			switch (rx_cmd_a & MUE_RX_CMD_A_PID) {
1185 			case MUE_RX_CMD_A_PID_TCP:
1186 				csum = v6 ?
1187 				    M_CSUM_TCPv6 : M_CSUM_IPv4 | M_CSUM_TCPv4;
1188 				break;
1189 			case MUE_RX_CMD_A_PID_UDP:
1190 				csum = v6 ?
1191 				    M_CSUM_UDPv6 : M_CSUM_IPv4 | M_CSUM_UDPv4;
1192 				break;
1193 			case MUE_RX_CMD_A_PID_IP:
1194 				csum = v6 ? 0 : M_CSUM_IPv4;
1195 				break;
1196 			default:
1197 				csum = 0;
1198 				break;
1199 			}
1200 			csum &= ifp->if_csum_flags_rx;
1201 			if (__predict_false((csum & M_CSUM_IPv4) &&
1202 			    (rx_cmd_a & MUE_RX_CMD_A_ICE)))
1203 				csum |= M_CSUM_IPv4_BAD;
1204 			if (__predict_false((csum & ~M_CSUM_IPv4) &&
1205 			    (rx_cmd_a & MUE_RX_CMD_A_TCE)))
1206 				csum |= M_CSUM_TCP_UDP_BAD;
1207 		}
1208 
1209 		usbnet_enqueue(un, buf + sizeof(*hdrp), pktlen, csum,
1210 			       0, M_HASFCS);
1211 
1212 		/* Attention: sizeof(hdr) = 10 */
1213 		pktlen = roundup(pktlen + sizeof(*hdrp), 4);
1214 		if (pktlen > total_len)
1215 			pktlen = total_len;
1216 		total_len -= pktlen;
1217 		buf += pktlen;
1218 	} while (total_len > 0);
1219 }
1220 
1221 static int
1222 mue_init_locked(struct ifnet *ifp)
1223 {
1224 	struct usbnet * const un = ifp->if_softc;
1225 
1226 	if (usbnet_isdying(un)) {
1227 		DPRINTF(un, "dying\n");
1228 		return EIO;
1229 	}
1230 
1231 	/* Cancel pending I/O and free all TX/RX buffers. */
1232 	if (ifp->if_flags & IFF_RUNNING)
1233 		usbnet_stop(un, ifp, 1);
1234 
1235 	mue_reset(un);
1236 
1237 	/* Set MAC address. */
1238 	mue_set_macaddr(un);
1239 
1240 	/* Load the multicast filter. */
1241 	mue_setiff_locked(un);
1242 
1243 	/* TCP/UDP checksum offload engines. */
1244 	mue_sethwcsum_locked(un);
1245 
1246 	/* Set MTU. */
1247 	mue_setmtu_locked(un);
1248 
1249 	return usbnet_init_rx_tx(un);
1250 }
1251 
1252 static int
1253 mue_uno_init(struct ifnet *ifp)
1254 {
1255 	struct usbnet * const	un = ifp->if_softc;
1256 	int rv;
1257 
1258 	usbnet_lock_core(un);
1259 	usbnet_busy(un);
1260 	rv = mue_init_locked(ifp);
1261 	usbnet_unbusy(un);
1262 	usbnet_unlock_core(un);
1263 
1264 	return rv;
1265 }
1266 
1267 static int
1268 mue_uno_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1269 {
1270 	struct usbnet * const un = ifp->if_softc;
1271 
1272 	usbnet_lock_core(un);
1273 	usbnet_busy(un);
1274 
1275 	switch (cmd) {
1276 	case SIOCSIFFLAGS:
1277 	case SIOCSETHERCAP:
1278 	case SIOCADDMULTI:
1279 	case SIOCDELMULTI:
1280 		mue_setiff_locked(un);
1281 		break;
1282 	case SIOCSIFCAP:
1283 		mue_sethwcsum_locked(un);
1284 		break;
1285 	case SIOCSIFMTU:
1286 		mue_setmtu_locked(un);
1287 		break;
1288 	default:
1289 		break;
1290 	}
1291 
1292 	usbnet_unbusy(un);
1293 	usbnet_unlock_core(un);
1294 
1295 	return 0;
1296 }
1297 
1298 static void
1299 mue_reset(struct usbnet *un)
1300 {
1301 	if (usbnet_isdying(un))
1302 		return;
1303 
1304 	/* Wait a little while for the chip to get its brains in order. */
1305 	usbd_delay_ms(un->un_udev, 1);
1306 
1307 //	mue_chip_init(un); /* XXX */
1308 }
1309 
1310 static void
1311 mue_uno_stop(struct ifnet *ifp, int disable)
1312 {
1313 	struct usbnet * const un = ifp->if_softc;
1314 
1315 	mue_reset(un);
1316 }
1317 
1318 #ifdef _MODULE
1319 #include "ioconf.c"
1320 #endif
1321 
1322 USBNET_MODULE(mue)
1323