xref: /netbsd-src/sys/dev/sysmon/sysmon_envsys.c (revision 5bbd2a12505d72a8177929a37b5cee489d0a1cfd)
1 /*	$NetBSD: sysmon_envsys.c,v 1.125 2012/09/06 12:21:40 pgoyette Exp $	*/
2 
3 /*-
4  * Copyright (c) 2007, 2008 Juan Romero Pardines.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 /*-
29  * Copyright (c) 2000 Zembu Labs, Inc.
30  * All rights reserved.
31  *
32  * Author: Jason R. Thorpe <thorpej@zembu.com>
33  *
34  * Redistribution and use in source and binary forms, with or without
35  * modification, are permitted provided that the following conditions
36  * are met:
37  * 1. Redistributions of source code must retain the above copyright
38  *    notice, this list of conditions and the following disclaimer.
39  * 2. Redistributions in binary form must reproduce the above copyright
40  *    notice, this list of conditions and the following disclaimer in the
41  *    documentation and/or other materials provided with the distribution.
42  * 3. All advertising materials mentioning features or use of this software
43  *    must display the following acknowledgement:
44  *	This product includes software developed by Zembu Labs, Inc.
45  * 4. Neither the name of Zembu Labs nor the names of its employees may
46  *    be used to endorse or promote products derived from this software
47  *    without specific prior written permission.
48  *
49  * THIS SOFTWARE IS PROVIDED BY ZEMBU LABS, INC. ``AS IS'' AND ANY EXPRESS
50  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
51  * RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
52  * CLAIMED.  IN NO EVENT SHALL ZEMBU LABS BE LIABLE FOR ANY DIRECT, INDIRECT,
53  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
54  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
55  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
56  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
57  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
58  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
59  */
60 
61 /*
62  * Environmental sensor framework for sysmon, exported to userland
63  * with proplib(3).
64  */
65 
66 #include <sys/cdefs.h>
67 __KERNEL_RCSID(0, "$NetBSD: sysmon_envsys.c,v 1.125 2012/09/06 12:21:40 pgoyette Exp $");
68 
69 #include <sys/param.h>
70 #include <sys/types.h>
71 #include <sys/conf.h>
72 #include <sys/errno.h>
73 #include <sys/fcntl.h>
74 #include <sys/kernel.h>
75 #include <sys/systm.h>
76 #include <sys/proc.h>
77 #include <sys/mutex.h>
78 #include <sys/kmem.h>
79 #include <sys/rnd.h>
80 
81 #include <dev/sysmon/sysmonvar.h>
82 #include <dev/sysmon/sysmon_envsysvar.h>
83 #include <dev/sysmon/sysmon_taskq.h>
84 
85 kmutex_t sme_global_mtx;
86 
87 prop_dictionary_t sme_propd;
88 
89 struct sysmon_envsys_lh sysmon_envsys_list;
90 
91 static uint32_t sysmon_envsys_next_sensor_index;
92 static struct sysmon_envsys *sysmon_envsys_find_40(u_int);
93 
94 static void sysmon_envsys_destroy_plist(prop_array_t);
95 static void sme_remove_userprops(void);
96 static int sme_add_property_dictionary(struct sysmon_envsys *, prop_array_t,
97 				       prop_dictionary_t);
98 static sme_event_drv_t * sme_add_sensor_dictionary(struct sysmon_envsys *,
99 	prop_array_t, prop_dictionary_t, envsys_data_t *);
100 static void sme_initial_refresh(void *);
101 static uint32_t sme_get_max_value(struct sysmon_envsys *,
102      bool (*)(const envsys_data_t*), bool);
103 
104 /*
105  * sysmon_envsys_init:
106  *
107  * 	+ Initialize global mutex, dictionary and the linked list.
108  */
109 void
110 sysmon_envsys_init(void)
111 {
112 	LIST_INIT(&sysmon_envsys_list);
113 	mutex_init(&sme_global_mtx, MUTEX_DEFAULT, IPL_NONE);
114 	sme_propd = prop_dictionary_create();
115 }
116 
117 /*
118  * sysmonopen_envsys:
119  *
120  *	+ Open the system monitor device.
121  */
122 int
123 sysmonopen_envsys(dev_t dev, int flag, int mode, struct lwp *l)
124 {
125 	return 0;
126 }
127 
128 /*
129  * sysmonclose_envsys:
130  *
131  *	+ Close the system monitor device.
132  */
133 int
134 sysmonclose_envsys(dev_t dev, int flag, int mode, struct lwp *l)
135 {
136 	return 0;
137 }
138 
139 /*
140  * sysmonioctl_envsys:
141  *
142  *	+ Perform a sysmon envsys control request.
143  */
144 int
145 sysmonioctl_envsys(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
146 {
147 	struct sysmon_envsys *sme = NULL;
148 	int error = 0;
149 	u_int oidx;
150 
151 	switch (cmd) {
152 	/*
153 	 * To update the global dictionary with latest data from devices.
154 	 */
155 	case ENVSYS_GETDICTIONARY:
156 	    {
157 		struct plistref *plist = (struct plistref *)data;
158 
159 		/*
160 		 * Update dictionaries on all sysmon envsys devices
161 		 * registered.
162 		 */
163 		mutex_enter(&sme_global_mtx);
164 		LIST_FOREACH(sme, &sysmon_envsys_list, sme_list) {
165 			sysmon_envsys_acquire(sme, false);
166 			error = sme_update_dictionary(sme);
167 			if (error) {
168 				DPRINTF(("%s: sme_update_dictionary, "
169 				    "error=%d\n", __func__, error));
170 				sysmon_envsys_release(sme, false);
171 				mutex_exit(&sme_global_mtx);
172 				return error;
173 			}
174 			sysmon_envsys_release(sme, false);
175 		}
176 		mutex_exit(&sme_global_mtx);
177 		/*
178 		 * Copy global dictionary to userland.
179 		 */
180 		error = prop_dictionary_copyout_ioctl(plist, cmd, sme_propd);
181 		break;
182 	    }
183 	/*
184 	 * To set properties on multiple devices.
185 	 */
186 	case ENVSYS_SETDICTIONARY:
187 	    {
188 		const struct plistref *plist = (const struct plistref *)data;
189 		prop_dictionary_t udict;
190 		prop_object_iterator_t iter, iter2;
191 		prop_object_t obj, obj2;
192 		prop_array_t array_u, array_k;
193 		const char *devname = NULL;
194 
195 		if ((flag & FWRITE) == 0)
196 			return EPERM;
197 
198 		/*
199 		 * Get dictionary from userland.
200 		 */
201 		error = prop_dictionary_copyin_ioctl(plist, cmd, &udict);
202 		if (error) {
203 			DPRINTF(("%s: copyin_ioctl error=%d\n",
204 			    __func__, error));
205 			break;
206 		}
207 
208 		iter = prop_dictionary_iterator(udict);
209 		if (!iter) {
210 			prop_object_release(udict);
211 			return ENOMEM;
212 		}
213 
214 		/*
215 		 * Iterate over the userland dictionary and process
216 		 * the list of devices.
217 		 */
218 		while ((obj = prop_object_iterator_next(iter))) {
219 			array_u = prop_dictionary_get_keysym(udict, obj);
220 			if (prop_object_type(array_u) != PROP_TYPE_ARRAY) {
221 				prop_object_iterator_release(iter);
222 				prop_object_release(udict);
223 				return EINVAL;
224 			}
225 
226 			devname = prop_dictionary_keysym_cstring_nocopy(obj);
227 			DPRINTF(("%s: processing the '%s' array requests\n",
228 			    __func__, devname));
229 
230 			/*
231 			 * find the correct sme device.
232 			 */
233 			sme = sysmon_envsys_find(devname);
234 			if (!sme) {
235 				DPRINTF(("%s: NULL sme\n", __func__));
236 				prop_object_iterator_release(iter);
237 				prop_object_release(udict);
238 				return EINVAL;
239 			}
240 
241 			/*
242 			 * Find the correct array object with the string
243 			 * supplied by the userland dictionary.
244 			 */
245 			array_k = prop_dictionary_get(sme_propd, devname);
246 			if (prop_object_type(array_k) != PROP_TYPE_ARRAY) {
247 				DPRINTF(("%s: array device failed\n",
248 				    __func__));
249 				sysmon_envsys_release(sme, false);
250 				prop_object_iterator_release(iter);
251 				prop_object_release(udict);
252 				return EINVAL;
253 			}
254 
255 			iter2 = prop_array_iterator(array_u);
256 			if (!iter2) {
257 				sysmon_envsys_release(sme, false);
258 				prop_object_iterator_release(iter);
259 				prop_object_release(udict);
260 				return ENOMEM;
261 			}
262 
263 			/*
264 			 * Iterate over the array of dictionaries to
265 			 * process the list of sensors and properties.
266 			 */
267 			while ((obj2 = prop_object_iterator_next(iter2))) {
268 				/*
269 				 * do the real work now.
270 				 */
271 				error = sme_userset_dictionary(sme,
272 							       obj2,
273 							       array_k);
274 				if (error) {
275 					sysmon_envsys_release(sme, false);
276 					prop_object_iterator_release(iter2);
277 					prop_object_iterator_release(iter);
278 					prop_object_release(udict);
279 					return error;
280 				}
281 			}
282 
283 			sysmon_envsys_release(sme, false);
284 			prop_object_iterator_release(iter2);
285 		}
286 
287 		prop_object_iterator_release(iter);
288 		prop_object_release(udict);
289 		break;
290 	    }
291 	/*
292 	 * To remove all properties from all devices registered.
293 	 */
294 	case ENVSYS_REMOVEPROPS:
295 	    {
296 		const struct plistref *plist = (const struct plistref *)data;
297 		prop_dictionary_t udict;
298 		prop_object_t obj;
299 
300 		if ((flag & FWRITE) == 0)
301 			return EPERM;
302 
303 		error = prop_dictionary_copyin_ioctl(plist, cmd, &udict);
304 		if (error) {
305 			DPRINTF(("%s: copyin_ioctl error=%d\n",
306 			    __func__, error));
307 			break;
308 		}
309 
310 		obj = prop_dictionary_get(udict, "envsys-remove-props");
311 		if (!obj || !prop_bool_true(obj)) {
312 			DPRINTF(("%s: invalid 'envsys-remove-props'\n",
313 			     __func__));
314 			return EINVAL;
315 		}
316 
317 		prop_object_release(udict);
318 		sme_remove_userprops();
319 
320 		break;
321 	    }
322 	/*
323 	 * Compatibility ioctls with the old interface, only implemented
324 	 * ENVSYS_GTREDATA and ENVSYS_GTREINFO; enough to make old
325 	 * applications work.
326 	 */
327 	case ENVSYS_GTREDATA:
328 	    {
329 		struct envsys_tre_data *tred = (void *)data;
330 		envsys_data_t *edata = NULL;
331 		bool found = false;
332 
333 		tred->validflags = 0;
334 
335 		sme = sysmon_envsys_find_40(tred->sensor);
336 		if (!sme)
337 			break;
338 
339 		oidx = tred->sensor;
340 		tred->sensor = SME_SENSOR_IDX(sme, tred->sensor);
341 
342 		DPRINTFOBJ(("%s: sensor=%d oidx=%d dev=%s nsensors=%d\n",
343 		    __func__, tred->sensor, oidx, sme->sme_name,
344 		    sme->sme_nsensors));
345 
346 		TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
347 			if (edata->sensor == tred->sensor) {
348 				found = true;
349 				break;
350 			}
351 		}
352 
353 		if (!found) {
354 			sysmon_envsys_release(sme, false);
355 			error = ENODEV;
356 			break;
357 		}
358 
359 		if (tred->sensor < sme->sme_nsensors) {
360 			if ((sme->sme_flags & SME_POLL_ONLY) == 0) {
361 				mutex_enter(&sme->sme_mtx);
362 				sysmon_envsys_refresh_sensor(sme, edata);
363 				mutex_exit(&sme->sme_mtx);
364 			}
365 
366 			/*
367 			 * copy required values to the old interface.
368 			 */
369 			tred->sensor = edata->sensor;
370 			tred->cur.data_us = edata->value_cur;
371 			tred->cur.data_s = edata->value_cur;
372 			tred->max.data_us = edata->value_max;
373 			tred->max.data_s = edata->value_max;
374 			tred->min.data_us = edata->value_min;
375 			tred->min.data_s = edata->value_min;
376 			tred->avg.data_us = 0;
377 			tred->avg.data_s = 0;
378 			if (edata->units == ENVSYS_BATTERY_CHARGE)
379 				tred->units = ENVSYS_INDICATOR;
380 			else
381 				tred->units = edata->units;
382 
383 			tred->validflags |= ENVSYS_FVALID;
384 			tred->validflags |= ENVSYS_FCURVALID;
385 
386 			if (edata->flags & ENVSYS_FPERCENT) {
387 				tred->validflags |= ENVSYS_FMAXVALID;
388 				tred->validflags |= ENVSYS_FFRACVALID;
389 			}
390 
391 			if (edata->state == ENVSYS_SINVALID) {
392 				tred->validflags &= ~ENVSYS_FCURVALID;
393 				tred->cur.data_us = tred->cur.data_s = 0;
394 			}
395 
396 			DPRINTFOBJ(("%s: sensor=%s tred->cur.data_s=%d\n",
397 			    __func__, edata->desc, tred->cur.data_s));
398 			DPRINTFOBJ(("%s: tred->validflags=%d tred->units=%d"
399 			    " tred->sensor=%d\n", __func__, tred->validflags,
400 			    tred->units, tred->sensor));
401 		}
402 		tred->sensor = oidx;
403 		sysmon_envsys_release(sme, false);
404 
405 		break;
406 	    }
407 	case ENVSYS_GTREINFO:
408 	    {
409 		struct envsys_basic_info *binfo = (void *)data;
410 		envsys_data_t *edata = NULL;
411 		bool found = false;
412 
413 		binfo->validflags = 0;
414 
415 		sme = sysmon_envsys_find_40(binfo->sensor);
416 		if (!sme)
417 			break;
418 
419 		oidx = binfo->sensor;
420 		binfo->sensor = SME_SENSOR_IDX(sme, binfo->sensor);
421 
422 		TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
423 			if (edata->sensor == binfo->sensor) {
424 				found = true;
425 				break;
426 			}
427 		}
428 
429 		if (!found) {
430 			sysmon_envsys_release(sme, false);
431 			error = ENODEV;
432 			break;
433 		}
434 
435 		binfo->validflags |= ENVSYS_FVALID;
436 
437 		if (binfo->sensor < sme->sme_nsensors) {
438 			if (edata->units == ENVSYS_BATTERY_CHARGE)
439 				binfo->units = ENVSYS_INDICATOR;
440 			else
441 				binfo->units = edata->units;
442 
443 			/*
444 			 * previously, the ACPI sensor names included the
445 			 * device name. Include that in compatibility code.
446 			 */
447 			if (strncmp(sme->sme_name, "acpi", 4) == 0)
448 				(void)snprintf(binfo->desc, sizeof(binfo->desc),
449 				    "%s %s", sme->sme_name, edata->desc);
450 			else
451 				(void)strlcpy(binfo->desc, edata->desc,
452 				    sizeof(binfo->desc));
453 		}
454 
455 		DPRINTFOBJ(("%s: binfo->units=%d binfo->validflags=%d\n",
456 		    __func__, binfo->units, binfo->validflags));
457 		DPRINTFOBJ(("%s: binfo->desc=%s binfo->sensor=%d\n",
458 		    __func__, binfo->desc, binfo->sensor));
459 
460 		binfo->sensor = oidx;
461 		sysmon_envsys_release(sme, false);
462 
463 		break;
464 	    }
465 	default:
466 		error = ENOTTY;
467 		break;
468 	}
469 
470 	return error;
471 }
472 
473 /*
474  * sysmon_envsys_create:
475  *
476  * 	+ Allocates a new sysmon_envsys object and initializes the
477  * 	  stuff for sensors and events.
478  */
479 struct sysmon_envsys *
480 sysmon_envsys_create(void)
481 {
482 	struct sysmon_envsys *sme;
483 
484 	sme = kmem_zalloc(sizeof(*sme), KM_SLEEP);
485 	TAILQ_INIT(&sme->sme_sensors_list);
486 	LIST_INIT(&sme->sme_events_list);
487 	mutex_init(&sme->sme_mtx, MUTEX_DEFAULT, IPL_NONE);
488 	cv_init(&sme->sme_condvar, "sme_wait");
489 
490 	return sme;
491 }
492 
493 /*
494  * sysmon_envsys_destroy:
495  *
496  * 	+ Removes all sensors from the tail queue, destroys the callout
497  * 	  and frees the sysmon_envsys object.
498  */
499 void
500 sysmon_envsys_destroy(struct sysmon_envsys *sme)
501 {
502 	envsys_data_t *edata;
503 
504 	KASSERT(sme != NULL);
505 
506 	while (!TAILQ_EMPTY(&sme->sme_sensors_list)) {
507 		edata = TAILQ_FIRST(&sme->sme_sensors_list);
508 		TAILQ_REMOVE(&sme->sme_sensors_list, edata, sensors_head);
509 	}
510 	mutex_destroy(&sme->sme_mtx);
511 	cv_destroy(&sme->sme_condvar);
512 	kmem_free(sme, sizeof(*sme));
513 }
514 
515 /*
516  * sysmon_envsys_sensor_attach:
517  *
518  * 	+ Attaches a sensor into a sysmon_envsys device checking that units
519  * 	  is set to a valid type and description is unique and not empty.
520  */
521 int
522 sysmon_envsys_sensor_attach(struct sysmon_envsys *sme, envsys_data_t *edata)
523 {
524 	const struct sme_descr_entry *sdt_units;
525 	envsys_data_t *oedata;
526 
527 	KASSERT(sme != NULL || edata != NULL);
528 
529 	/*
530 	 * Find the correct units for this sensor.
531 	 */
532 	sdt_units = sme_find_table_entry(SME_DESC_UNITS, edata->units);
533 	if (sdt_units->type == -1)
534 		return EINVAL;
535 
536 	/*
537 	 * Check that description is not empty or duplicate.
538 	 */
539 	if (strlen(edata->desc) == 0)
540 		return EINVAL;
541 
542 	mutex_enter(&sme->sme_mtx);
543 	sysmon_envsys_acquire(sme, true);
544 	TAILQ_FOREACH(oedata, &sme->sme_sensors_list, sensors_head) {
545 		if (strcmp(oedata->desc, edata->desc) == 0) {
546 			sysmon_envsys_release(sme, true);
547 			mutex_exit(&sme->sme_mtx);
548 			return EEXIST;
549 		}
550 	}
551 	/*
552 	 * Ok, the sensor has been added into the device queue.
553 	 */
554 	TAILQ_INSERT_TAIL(&sme->sme_sensors_list, edata, sensors_head);
555 
556 	/*
557 	 * Give the sensor an index position.
558 	 */
559 	edata->sensor = sme->sme_nsensors;
560 	sme->sme_nsensors++;
561 	sysmon_envsys_release(sme, true);
562 	mutex_exit(&sme->sme_mtx);
563 
564 	DPRINTF(("%s: attached #%d (%s), units=%d (%s)\n",
565 	    __func__, edata->sensor, edata->desc,
566 	    sdt_units->type, sdt_units->desc));
567 
568 	return 0;
569 }
570 
571 /*
572  * sysmon_envsys_sensor_detach:
573  *
574  * 	+ Detachs a sensor from a sysmon_envsys device and decrements the
575  * 	  sensors count on success.
576  */
577 int
578 sysmon_envsys_sensor_detach(struct sysmon_envsys *sme, envsys_data_t *edata)
579 {
580 	envsys_data_t *oedata;
581 	bool found = false;
582 
583 	KASSERT(sme != NULL || edata != NULL);
584 
585 	/*
586 	 * Check the sensor is already on the list.
587 	 */
588 	mutex_enter(&sme->sme_mtx);
589 	sysmon_envsys_acquire(sme, true);
590 	TAILQ_FOREACH(oedata, &sme->sme_sensors_list, sensors_head) {
591 		if (oedata->sensor == edata->sensor) {
592 			found = true;
593 			break;
594 		}
595 	}
596 
597 	if (!found) {
598 		sysmon_envsys_release(sme, true);
599 		mutex_exit(&sme->sme_mtx);
600 		return EINVAL;
601 	}
602 
603 	/*
604 	 * remove it, unhook from rnd(4), and decrement the sensors count.
605 	 */
606 	sme_event_unregister_sensor(sme, edata);
607 	TAILQ_REMOVE(&sme->sme_sensors_list, edata, sensors_head);
608 	sme->sme_nsensors--;
609 	sysmon_envsys_release(sme, true);
610 	mutex_exit(&sme->sme_mtx);
611 
612 	return 0;
613 }
614 
615 
616 /*
617  * sysmon_envsys_register:
618  *
619  *	+ Register a sysmon envsys device.
620  *	+ Create array of dictionaries for a device.
621  */
622 int
623 sysmon_envsys_register(struct sysmon_envsys *sme)
624 {
625 	struct sme_evdrv {
626 		SLIST_ENTRY(sme_evdrv) evdrv_head;
627 		sme_event_drv_t *evdrv;
628 	};
629 	SLIST_HEAD(, sme_evdrv) sme_evdrv_list;
630 	struct sme_evdrv *evdv = NULL;
631 	struct sysmon_envsys *lsme;
632 	prop_array_t array = NULL;
633 	prop_dictionary_t dict, dict2;
634 	envsys_data_t *edata = NULL;
635 	sme_event_drv_t *this_evdrv;
636 	int nevent;
637 	int error = 0;
638 	char rnd_name[sizeof(edata->rnd_src.name)];
639 
640 	KASSERT(sme != NULL);
641 	KASSERT(sme->sme_name != NULL);
642 
643 	/*
644 	 * Check if requested sysmon_envsys device is valid
645 	 * and does not exist already in the list.
646 	 */
647 	mutex_enter(&sme_global_mtx);
648 	LIST_FOREACH(lsme, &sysmon_envsys_list, sme_list) {
649 	       if (strcmp(lsme->sme_name, sme->sme_name) == 0) {
650 		       mutex_exit(&sme_global_mtx);
651 		       return EEXIST;
652 	       }
653 	}
654 	mutex_exit(&sme_global_mtx);
655 
656 	/*
657 	 * sanity check: if SME_DISABLE_REFRESH is not set,
658 	 * the sme_refresh function callback must be non NULL.
659 	 */
660 	if ((sme->sme_flags & SME_DISABLE_REFRESH) == 0)
661 		if (!sme->sme_refresh)
662 			return EINVAL;
663 
664 	/*
665 	 * If the list of sensors is empty, there's no point to continue...
666 	 */
667 	if (TAILQ_EMPTY(&sme->sme_sensors_list)) {
668 		DPRINTF(("%s: sensors list empty for %s\n", __func__,
669 		    sme->sme_name));
670 		return ENOTSUP;
671 	}
672 
673 	/*
674 	 * Initialize the singly linked list for driver events.
675 	 */
676 	SLIST_INIT(&sme_evdrv_list);
677 
678 	array = prop_array_create();
679 	if (!array)
680 		return ENOMEM;
681 
682 	/*
683 	 * Iterate over all sensors and create a dictionary per sensor.
684 	 * We must respect the order in which the sensors were added.
685 	 */
686 	TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
687 		dict = prop_dictionary_create();
688 		if (!dict) {
689 			error = ENOMEM;
690 			goto out2;
691 		}
692 
693 		/*
694 		 * Create all objects in sensor's dictionary.
695 		 */
696 		this_evdrv = sme_add_sensor_dictionary(sme, array,
697 						       dict, edata);
698 		if (this_evdrv) {
699 			evdv = kmem_zalloc(sizeof(*evdv), KM_SLEEP);
700 			evdv->evdrv = this_evdrv;
701 			SLIST_INSERT_HEAD(&sme_evdrv_list, evdv, evdrv_head);
702 		}
703 	}
704 
705 	/*
706 	 * If the array does not contain any object (sensor), there's
707 	 * no need to attach the driver.
708 	 */
709 	if (prop_array_count(array) == 0) {
710 		error = EINVAL;
711 		DPRINTF(("%s: empty array for '%s'\n", __func__,
712 		    sme->sme_name));
713 		goto out;
714 	}
715 
716 	/*
717 	 * Add the dictionary for the global properties of this device.
718 	 */
719 	dict2 = prop_dictionary_create();
720 	if (!dict2) {
721 		error = ENOMEM;
722 		goto out;
723 	}
724 
725 	error = sme_add_property_dictionary(sme, array, dict2);
726 	if (error) {
727 		prop_object_release(dict2);
728 		goto out;
729 	}
730 
731 	/*
732 	 * Add the array into the global dictionary for the driver.
733 	 *
734 	 * <dict>
735 	 * 	<key>foo0</key>
736 	 * 	<array>
737 	 * 		...
738 	 */
739 	mutex_enter(&sme_global_mtx);
740 	if (!prop_dictionary_set(sme_propd, sme->sme_name, array)) {
741 		error = EINVAL;
742 		DPRINTF(("%s: prop_dictionary_set for '%s'\n", __func__,
743 		    sme->sme_name));
744 		goto out;
745 	}
746 
747 	/*
748 	 * Add the device into the list.
749 	 */
750 	LIST_INSERT_HEAD(&sysmon_envsys_list, sme, sme_list);
751 	sme->sme_fsensor = sysmon_envsys_next_sensor_index;
752 	sysmon_envsys_next_sensor_index += sme->sme_nsensors;
753 	mutex_exit(&sme_global_mtx);
754 
755 out:
756 	/*
757 	 * No errors?  Make an initial data refresh if was requested,
758 	 * then register the events that were set in the driver.  Do
759 	 * the refresh first in case it is needed to establish the
760 	 * limits or max_value needed by some events.
761 	 */
762 	if (error == 0) {
763 		nevent = 0;
764 		sysmon_task_queue_init();
765 
766 		if (sme->sme_flags & SME_INIT_REFRESH) {
767 			sysmon_task_queue_sched(0, sme_initial_refresh, sme);
768 			DPRINTF(("%s: scheduled initial refresh for '%s'\n",
769 				__func__, sme->sme_name));
770 		}
771 		SLIST_FOREACH(evdv, &sme_evdrv_list, evdrv_head) {
772 			sysmon_task_queue_sched(0,
773 			    sme_event_drvadd, evdv->evdrv);
774 			nevent++;
775 		}
776 		/*
777 		 * Hook the sensor into rnd(4) entropy pool if requested
778 		 */
779 		TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
780 			if (edata->flags & ENVSYS_FHAS_ENTROPY) {
781 				snprintf(rnd_name, sizeof(rnd_name), "%s-%s",
782 				    sme->sme_name, edata->desc);
783 				rnd_attach_source(&edata->rnd_src, rnd_name,
784 				    RND_TYPE_ENV, 0);
785 			}
786 		}
787 		DPRINTF(("%s: driver '%s' registered (nsens=%d nevent=%d)\n",
788 		    __func__, sme->sme_name, sme->sme_nsensors, nevent));
789 	}
790 
791 out2:
792 	while (!SLIST_EMPTY(&sme_evdrv_list)) {
793 		evdv = SLIST_FIRST(&sme_evdrv_list);
794 		SLIST_REMOVE_HEAD(&sme_evdrv_list, evdrv_head);
795 		kmem_free(evdv, sizeof(*evdv));
796 	}
797 	if (!error)
798 		return 0;
799 
800 	/*
801 	 * Ugh... something wasn't right; unregister all events and sensors
802 	 * previously assigned and destroy the array with all its objects.
803 	 */
804 	DPRINTF(("%s: failed to register '%s' (%d)\n", __func__,
805 	    sme->sme_name, error));
806 
807 	sme_event_unregister_all(sme);
808 	while (!TAILQ_EMPTY(&sme->sme_sensors_list)) {
809 		edata = TAILQ_FIRST(&sme->sme_sensors_list);
810 		TAILQ_REMOVE(&sme->sme_sensors_list, edata, sensors_head);
811 	}
812 	sysmon_envsys_destroy_plist(array);
813 	return error;
814 }
815 
816 /*
817  * sysmon_envsys_destroy_plist:
818  *
819  * 	+ Remove all objects from the array of dictionaries that is
820  * 	  created in a sysmon envsys device.
821  */
822 static void
823 sysmon_envsys_destroy_plist(prop_array_t array)
824 {
825 	prop_object_iterator_t iter, iter2;
826 	prop_dictionary_t dict;
827 	prop_object_t obj;
828 
829 	KASSERT(array != NULL);
830 	KASSERT(prop_object_type(array) == PROP_TYPE_ARRAY);
831 
832 	DPRINTFOBJ(("%s: objects in array=%d\n", __func__,
833 	    prop_array_count(array)));
834 
835 	iter = prop_array_iterator(array);
836 	if (!iter)
837 		return;
838 
839 	while ((dict = prop_object_iterator_next(iter))) {
840 		KASSERT(prop_object_type(dict) == PROP_TYPE_DICTIONARY);
841 		iter2 = prop_dictionary_iterator(dict);
842 		if (!iter2)
843 			goto out;
844 		DPRINTFOBJ(("%s: iterating over dictionary\n", __func__));
845 		while ((obj = prop_object_iterator_next(iter2)) != NULL) {
846 			DPRINTFOBJ(("%s: obj=%s\n", __func__,
847 			    prop_dictionary_keysym_cstring_nocopy(obj)));
848 			prop_dictionary_remove(dict,
849 			    prop_dictionary_keysym_cstring_nocopy(obj));
850 			prop_object_iterator_reset(iter2);
851 		}
852 		prop_object_iterator_release(iter2);
853 		DPRINTFOBJ(("%s: objects in dictionary:%d\n",
854 		    __func__, prop_dictionary_count(dict)));
855 		prop_object_release(dict);
856 	}
857 
858 out:
859 	prop_object_iterator_release(iter);
860 	prop_object_release(array);
861 }
862 
863 /*
864  * sysmon_envsys_unregister:
865  *
866  *	+ Unregister a sysmon envsys device.
867  */
868 void
869 sysmon_envsys_unregister(struct sysmon_envsys *sme)
870 {
871 	prop_array_t array;
872 	struct sysmon_envsys *osme;
873 
874 	KASSERT(sme != NULL);
875 
876 	/*
877 	 * Unregister all events associated with device.
878 	 */
879 	sme_event_unregister_all(sme);
880 	/*
881 	 * Decrement global sensors counter and the first_sensor index
882 	 * for remaining devices in the list (only used for compatibility
883 	 * with previous API), and remove the device from the list.
884 	 */
885 	mutex_enter(&sme_global_mtx);
886 	sysmon_envsys_next_sensor_index -= sme->sme_nsensors;
887 	LIST_FOREACH(osme, &sysmon_envsys_list, sme_list) {
888 		if (osme->sme_fsensor >= sme->sme_fsensor)
889 			osme->sme_fsensor -= sme->sme_nsensors;
890 	}
891 	LIST_REMOVE(sme, sme_list);
892 	mutex_exit(&sme_global_mtx);
893 
894 	/*
895 	 * Remove the device (and all its objects) from the global dictionary.
896 	 */
897 	array = prop_dictionary_get(sme_propd, sme->sme_name);
898 	if (array && prop_object_type(array) == PROP_TYPE_ARRAY) {
899 		mutex_enter(&sme_global_mtx);
900 		prop_dictionary_remove(sme_propd, sme->sme_name);
901 		mutex_exit(&sme_global_mtx);
902 		sysmon_envsys_destroy_plist(array);
903 	}
904 	/*
905 	 * And finally destroy the sysmon_envsys object.
906 	 */
907 	sysmon_envsys_destroy(sme);
908 }
909 
910 /*
911  * sysmon_envsys_find:
912  *
913  *	+ Find a sysmon envsys device and mark it as busy
914  *	  once it's available.
915  */
916 struct sysmon_envsys *
917 sysmon_envsys_find(const char *name)
918 {
919 	struct sysmon_envsys *sme;
920 
921 	mutex_enter(&sme_global_mtx);
922 	LIST_FOREACH(sme, &sysmon_envsys_list, sme_list) {
923 		if (strcmp(sme->sme_name, name) == 0) {
924 			sysmon_envsys_acquire(sme, false);
925 			break;
926 		}
927 	}
928 	mutex_exit(&sme_global_mtx);
929 
930 	return sme;
931 }
932 
933 /*
934  * Compatibility function with the old API.
935  */
936 struct sysmon_envsys *
937 sysmon_envsys_find_40(u_int idx)
938 {
939 	struct sysmon_envsys *sme;
940 
941 	mutex_enter(&sme_global_mtx);
942 	LIST_FOREACH(sme, &sysmon_envsys_list, sme_list) {
943 		if (idx >= sme->sme_fsensor &&
944 	    	    idx < (sme->sme_fsensor + sme->sme_nsensors)) {
945 			sysmon_envsys_acquire(sme, false);
946 			break;
947 		}
948 	}
949 	mutex_exit(&sme_global_mtx);
950 
951 	return sme;
952 }
953 
954 /*
955  * sysmon_envsys_acquire:
956  *
957  * 	+ Wait until a sysmon envsys device is available and mark
958  * 	  it as busy.
959  */
960 void
961 sysmon_envsys_acquire(struct sysmon_envsys *sme, bool locked)
962 {
963 	KASSERT(sme != NULL);
964 
965 	if (locked) {
966 		while (sme->sme_flags & SME_FLAG_BUSY)
967 			cv_wait(&sme->sme_condvar, &sme->sme_mtx);
968 		sme->sme_flags |= SME_FLAG_BUSY;
969 	} else {
970 		mutex_enter(&sme->sme_mtx);
971 		while (sme->sme_flags & SME_FLAG_BUSY)
972 			cv_wait(&sme->sme_condvar, &sme->sme_mtx);
973 		sme->sme_flags |= SME_FLAG_BUSY;
974 		mutex_exit(&sme->sme_mtx);
975 	}
976 }
977 
978 /*
979  * sysmon_envsys_release:
980  *
981  * 	+ Unmark a sysmon envsys device as busy, and notify
982  * 	  waiters.
983  */
984 void
985 sysmon_envsys_release(struct sysmon_envsys *sme, bool locked)
986 {
987 	KASSERT(sme != NULL);
988 
989 	if (locked) {
990 		sme->sme_flags &= ~SME_FLAG_BUSY;
991 		cv_broadcast(&sme->sme_condvar);
992 	} else {
993 		mutex_enter(&sme->sme_mtx);
994 		sme->sme_flags &= ~SME_FLAG_BUSY;
995 		cv_broadcast(&sme->sme_condvar);
996 		mutex_exit(&sme->sme_mtx);
997 	}
998 }
999 
1000 /*
1001  * sme_initial_refresh:
1002  *
1003  * 	+ Do an initial refresh of the sensors in a device just after
1004  * 	  interrupts are enabled in the autoconf(9) process.
1005  *
1006  */
1007 static void
1008 sme_initial_refresh(void *arg)
1009 {
1010 	struct sysmon_envsys *sme = arg;
1011 	envsys_data_t *edata;
1012 
1013 	mutex_enter(&sme->sme_mtx);
1014 	sysmon_envsys_acquire(sme, true);
1015 	TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head)
1016 		sysmon_envsys_refresh_sensor(sme, edata);
1017 	sysmon_envsys_release(sme, true);
1018 	mutex_exit(&sme->sme_mtx);
1019 }
1020 
1021 /*
1022  * sme_sensor_dictionary_get:
1023  *
1024  * 	+ Returns a dictionary of a device specified by its index
1025  * 	  position.
1026  */
1027 prop_dictionary_t
1028 sme_sensor_dictionary_get(prop_array_t array, const char *index)
1029 {
1030 	prop_object_iterator_t iter;
1031 	prop_dictionary_t dict;
1032 	prop_object_t obj;
1033 
1034 	KASSERT(array != NULL || index != NULL);
1035 
1036 	iter = prop_array_iterator(array);
1037 	if (!iter)
1038 		return NULL;
1039 
1040 	while ((dict = prop_object_iterator_next(iter))) {
1041 		obj = prop_dictionary_get(dict, "index");
1042 		if (prop_string_equals_cstring(obj, index))
1043 			break;
1044 	}
1045 
1046 	prop_object_iterator_release(iter);
1047 	return dict;
1048 }
1049 
1050 /*
1051  * sme_remove_userprops:
1052  *
1053  * 	+ Remove all properties from all devices that were set by
1054  * 	  the ENVSYS_SETDICTIONARY ioctl.
1055  */
1056 static void
1057 sme_remove_userprops(void)
1058 {
1059 	struct sysmon_envsys *sme;
1060 	prop_array_t array;
1061 	prop_dictionary_t sdict;
1062 	envsys_data_t *edata = NULL;
1063 	char tmp[ENVSYS_DESCLEN];
1064 	char rnd_name[sizeof(edata->rnd_src.name)];
1065 	sysmon_envsys_lim_t lims;
1066 	const struct sme_descr_entry *sdt_units;
1067 	uint32_t props;
1068 	int ptype;
1069 
1070 	mutex_enter(&sme_global_mtx);
1071 	LIST_FOREACH(sme, &sysmon_envsys_list, sme_list) {
1072 		sysmon_envsys_acquire(sme, false);
1073 		array = prop_dictionary_get(sme_propd, sme->sme_name);
1074 
1075 		TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
1076 			(void)snprintf(tmp, sizeof(tmp), "sensor%d",
1077 				       edata->sensor);
1078 			sdict = sme_sensor_dictionary_get(array, tmp);
1079 			KASSERT(sdict != NULL);
1080 
1081 			ptype = 0;
1082 			if (edata->upropset & PROP_BATTCAP) {
1083 				prop_dictionary_remove(sdict,
1084 				    "critical-capacity");
1085 				ptype = PENVSYS_EVENT_CAPACITY;
1086 			}
1087 
1088 			if (edata->upropset & PROP_BATTWARN) {
1089 				prop_dictionary_remove(sdict,
1090 				    "warning-capacity");
1091 				ptype = PENVSYS_EVENT_CAPACITY;
1092 			}
1093 
1094 			if (edata->upropset & PROP_BATTHIGH) {
1095 				prop_dictionary_remove(sdict,
1096 				    "high-capacity");
1097 				ptype = PENVSYS_EVENT_CAPACITY;
1098 			}
1099 
1100 			if (edata->upropset & PROP_BATTMAX) {
1101 				prop_dictionary_remove(sdict,
1102 				    "maximum-capacity");
1103 				ptype = PENVSYS_EVENT_CAPACITY;
1104 			}
1105 			if (edata->upropset & PROP_WARNMAX) {
1106 				prop_dictionary_remove(sdict, "warning-max");
1107 				ptype = PENVSYS_EVENT_LIMITS;
1108 			}
1109 
1110 			if (edata->upropset & PROP_WARNMIN) {
1111 				prop_dictionary_remove(sdict, "warning-min");
1112 				ptype = PENVSYS_EVENT_LIMITS;
1113 			}
1114 
1115 			if (edata->upropset & PROP_CRITMAX) {
1116 				prop_dictionary_remove(sdict, "critical-max");
1117 				ptype = PENVSYS_EVENT_LIMITS;
1118 			}
1119 
1120 			if (edata->upropset & PROP_CRITMIN) {
1121 				prop_dictionary_remove(sdict, "critical-min");
1122 				ptype = PENVSYS_EVENT_LIMITS;
1123 			}
1124 			if (edata->upropset & PROP_RFACT) {
1125 				(void)sme_sensor_upint32(sdict, "rfact", 0);
1126 				edata->rfact = 0;
1127 			}
1128 
1129 			if (edata->upropset & PROP_DESC)
1130 				(void)sme_sensor_upstring(sdict,
1131 			  	    "description", edata->desc);
1132 
1133 			if (ptype == 0)
1134 				continue;
1135 
1136 			/*
1137 			 * If there were any limit values removed, we
1138 			 * need to revert to initial limits.
1139 			 *
1140 			 * First, tell the driver that we need it to
1141 			 * restore any h/w limits which may have been
1142 			 * changed to stored, boot-time values.
1143 			 */
1144 			if (sme->sme_set_limits) {
1145 				DPRINTF(("%s: reset limits for %s %s\n",
1146 					__func__, sme->sme_name, edata->desc));
1147 				(*sme->sme_set_limits)(sme, edata, NULL, NULL);
1148 			}
1149 
1150 			/*
1151 			 * Next, we need to retrieve those initial limits.
1152 			 */
1153 			props = 0;
1154 			edata->upropset &= ~PROP_LIMITS;
1155 			if (sme->sme_get_limits) {
1156 				DPRINTF(("%s: retrieve limits for %s %s\n",
1157 					__func__, sme->sme_name, edata->desc));
1158 				lims = edata->limits;
1159 				(*sme->sme_get_limits)(sme, edata, &lims,
1160 						       &props);
1161 			}
1162 
1163 			/*
1164 			 * Finally, remove any old limits event, then
1165 			 * install a new event (which will update the
1166 			 * dictionary)
1167 			 */
1168 			sme_event_unregister(sme, edata->desc,
1169 			    PENVSYS_EVENT_LIMITS);
1170 
1171 			/*
1172 			 * Find the correct units for this sensor.
1173 			 */
1174 			sdt_units = sme_find_table_entry(SME_DESC_UNITS,
1175 			    edata->units);
1176 
1177 			if (props & PROP_LIMITS) {
1178 				DPRINTF(("%s: install limits for %s %s\n",
1179 					__func__, sme->sme_name, edata->desc));
1180 
1181 				sme_event_register(sdict, edata, sme,
1182 				    &lims, props, PENVSYS_EVENT_LIMITS,
1183 				    sdt_units->crittype);
1184 			}
1185 			if (edata->flags & ENVSYS_FHAS_ENTROPY) {
1186 				sme_event_register(sdict, edata, sme,
1187 				    &lims, props, PENVSYS_EVENT_NULL,
1188 				    sdt_units->crittype);
1189 				snprintf(rnd_name, sizeof(rnd_name), "%s-%s",
1190 				    sme->sme_name, edata->desc);
1191 				rnd_attach_source(&edata->rnd_src, rnd_name,
1192 				    RND_TYPE_ENV, 0);
1193 			}
1194 		}
1195 
1196 		/*
1197 		 * Restore default timeout value.
1198 		 */
1199 		sme->sme_events_timeout = SME_EVENTS_DEFTIMEOUT;
1200 		sme_schedule_callout(sme);
1201 		sysmon_envsys_release(sme, false);
1202 	}
1203 	mutex_exit(&sme_global_mtx);
1204 }
1205 
1206 /*
1207  * sme_add_property_dictionary:
1208  *
1209  * 	+ Add global properties into a device.
1210  */
1211 static int
1212 sme_add_property_dictionary(struct sysmon_envsys *sme, prop_array_t array,
1213 			    prop_dictionary_t dict)
1214 {
1215 	prop_dictionary_t pdict;
1216 	const char *class;
1217 	int error = 0;
1218 
1219 	pdict = prop_dictionary_create();
1220 	if (!pdict)
1221 		return EINVAL;
1222 
1223 	/*
1224 	 * Add the 'refresh-timeout' and 'dev-class' objects into the
1225 	 * 'device-properties' dictionary.
1226 	 *
1227 	 * 	...
1228 	 * 	<dict>
1229 	 * 		<key>device-properties</key>
1230 	 * 		<dict>
1231 	 * 			<key>refresh-timeout</key>
1232 	 * 			<integer>120</integer<
1233 	 *			<key>device-class</key>
1234 	 *			<string>class_name</string>
1235 	 * 		</dict>
1236 	 * 	</dict>
1237 	 * 	...
1238 	 *
1239 	 */
1240 	if (sme->sme_events_timeout == 0) {
1241 		sme->sme_events_timeout = SME_EVENTS_DEFTIMEOUT;
1242 		sme_schedule_callout(sme);
1243 	}
1244 
1245 	if (!prop_dictionary_set_uint64(pdict, "refresh-timeout",
1246 					sme->sme_events_timeout)) {
1247 		error = EINVAL;
1248 		goto out;
1249 	}
1250 	if (sme->sme_class == SME_CLASS_BATTERY)
1251 		class = "battery";
1252 	else if (sme->sme_class == SME_CLASS_ACADAPTER)
1253 		class = "ac-adapter";
1254 	else
1255 		class = "other";
1256 	if (!prop_dictionary_set_cstring_nocopy(pdict, "device-class", class)) {
1257 		error = EINVAL;
1258 		goto out;
1259 	}
1260 
1261 	if (!prop_dictionary_set(dict, "device-properties", pdict)) {
1262 		error = EINVAL;
1263 		goto out;
1264 	}
1265 
1266 	/*
1267 	 * Add the device dictionary into the sysmon envsys array.
1268 	 */
1269 	if (!prop_array_add(array, dict))
1270 		error = EINVAL;
1271 
1272 out:
1273 	prop_object_release(pdict);
1274 	return error;
1275 }
1276 
1277 /*
1278  * sme_add_sensor_dictionary:
1279  *
1280  * 	+ Adds the sensor objects into the dictionary and returns a pointer
1281  * 	  to a sme_event_drv_t object if a monitoring flag was set
1282  * 	  (or NULL otherwise).
1283  */
1284 static sme_event_drv_t *
1285 sme_add_sensor_dictionary(struct sysmon_envsys *sme, prop_array_t array,
1286 		    	  prop_dictionary_t dict, envsys_data_t *edata)
1287 {
1288 	const struct sme_descr_entry *sdt;
1289 	int error;
1290 	sme_event_drv_t *sme_evdrv_t = NULL;
1291 	char indexstr[ENVSYS_DESCLEN];
1292 	bool mon_supported, allow_rfact;
1293 
1294 	/*
1295 	 * Add the index sensor string.
1296 	 *
1297 	 * 		...
1298 	 * 		<key>index</eyr
1299 	 * 		<string>sensor0</string>
1300 	 * 		...
1301 	 */
1302 	(void)snprintf(indexstr, sizeof(indexstr), "sensor%d", edata->sensor);
1303 	if (sme_sensor_upstring(dict, "index", indexstr))
1304 		goto bad;
1305 
1306 	/*
1307 	 * 		...
1308 	 * 		<key>description</key>
1309 	 * 		<string>blah blah</string>
1310 	 * 		...
1311 	 */
1312 	if (sme_sensor_upstring(dict, "description", edata->desc))
1313 		goto bad;
1314 
1315 	/*
1316 	 * Add the monitoring boolean object:
1317 	 *
1318 	 * 		...
1319 	 * 		<key>monitoring-supported</key>
1320 	 * 		<true/>
1321 	 *		...
1322 	 *
1323 	 * always false on Battery {capacity,charge}, Drive and Indicator types.
1324 	 * They cannot be monitored.
1325 	 *
1326 	 */
1327 	if ((edata->flags & ENVSYS_FMONNOTSUPP) ||
1328 	    (edata->units == ENVSYS_INDICATOR) ||
1329 	    (edata->units == ENVSYS_DRIVE) ||
1330 	    (edata->units == ENVSYS_BATTERY_CAPACITY) ||
1331 	    (edata->units == ENVSYS_BATTERY_CHARGE))
1332 		mon_supported = false;
1333 	else
1334 		mon_supported = true;
1335 	if (sme_sensor_upbool(dict, "monitoring-supported", mon_supported))
1336 		goto out;
1337 
1338 	/*
1339 	 * Add the allow-rfact boolean object, true if
1340 	 * ENVSYS_FCHANGERFACT is set, false otherwise.
1341 	 *
1342 	 * 		...
1343 	 * 		<key>allow-rfact</key>
1344 	 * 		<true/>
1345 	 * 		...
1346 	 */
1347 	if (edata->units == ENVSYS_SVOLTS_DC ||
1348 	    edata->units == ENVSYS_SVOLTS_AC) {
1349 		if (edata->flags & ENVSYS_FCHANGERFACT)
1350 			allow_rfact = true;
1351 		else
1352 			allow_rfact = false;
1353 		if (sme_sensor_upbool(dict, "allow-rfact", allow_rfact))
1354 			goto out;
1355 	}
1356 
1357 	error = sme_update_sensor_dictionary(dict, edata,
1358 			(edata->state == ENVSYS_SVALID));
1359 	if (error < 0)
1360 		goto bad;
1361 	else if (error)
1362 		goto out;
1363 
1364 	/*
1365 	 * 	...
1366 	 * </dict>
1367 	 *
1368 	 * Add the dictionary into the array.
1369 	 *
1370 	 */
1371 	if (!prop_array_add(array, dict)) {
1372 		DPRINTF(("%s: prop_array_add\n", __func__));
1373 		goto bad;
1374 	}
1375 
1376 	/*
1377 	 * Register new event(s) if any monitoring flag was set or if
1378 	 * the sensor provides entropy for rnd(4).
1379 	 */
1380 	if (edata->flags & (ENVSYS_FMONANY | ENVSYS_FHAS_ENTROPY)) {
1381 		sme_evdrv_t = kmem_zalloc(sizeof(*sme_evdrv_t), KM_SLEEP);
1382 		sme_evdrv_t->sed_sdict = dict;
1383 		sme_evdrv_t->sed_edata = edata;
1384 		sme_evdrv_t->sed_sme = sme;
1385 		sdt = sme_find_table_entry(SME_DESC_UNITS, edata->units);
1386 		sme_evdrv_t->sed_powertype = sdt->crittype;
1387 	}
1388 
1389 out:
1390 	return sme_evdrv_t;
1391 
1392 bad:
1393 	prop_object_release(dict);
1394 	return NULL;
1395 }
1396 
1397 /*
1398  * Find the maximum of all currently reported values.
1399  * The provided callback decides whether a sensor is part of the
1400  * maximum calculation (by returning true) or ignored (callback
1401  * returns false). Example usage: callback selects temperature
1402  * sensors in a given thermal zone, the function calculates the
1403  * maximum currently reported temperature in this zone.
1404  * If the parameter "refresh" is true, new values will be aquired
1405  * from the hardware, if not, the last reported value will be used.
1406  */
1407 uint32_t
1408 sysmon_envsys_get_max_value(bool (*predicate)(const envsys_data_t*),
1409 	bool refresh)
1410 {
1411 	struct sysmon_envsys *sme;
1412 	uint32_t maxv, v;
1413 
1414 	maxv = 0;
1415 	mutex_enter(&sme_global_mtx);
1416 	LIST_FOREACH(sme, &sysmon_envsys_list, sme_list) {
1417 		sysmon_envsys_acquire(sme, false);
1418 		v = sme_get_max_value(sme, predicate, refresh);
1419 		sysmon_envsys_release(sme, false);
1420 		if (v > maxv)
1421 			maxv = v;
1422 	}
1423 	mutex_exit(&sme_global_mtx);
1424 	return maxv;
1425 }
1426 
1427 static uint32_t
1428 sme_get_max_value(struct sysmon_envsys *sme,
1429     bool (*predicate)(const envsys_data_t*),
1430     bool refresh)
1431 {
1432 	envsys_data_t *edata;
1433 	uint32_t maxv, v;
1434 
1435 	/*
1436 	 * Iterate over all sensors that match the predicate
1437 	 */
1438 	maxv = 0;
1439 	TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
1440 		if (!(*predicate)(edata))
1441 			continue;
1442 
1443 		/*
1444 		 * refresh sensor data
1445 		 */
1446 		mutex_enter(&sme->sme_mtx);
1447 		sysmon_envsys_refresh_sensor(sme, edata);
1448 		mutex_exit(&sme->sme_mtx);
1449 
1450 		v = edata->value_cur;
1451 		if (v > maxv)
1452 			maxv = v;
1453 
1454 	}
1455 
1456 	return maxv;
1457 }
1458 
1459 /*
1460  * sme_update_dictionary:
1461  *
1462  * 	+ Update per-sensor dictionaries with new values if there were
1463  * 	  changes, otherwise the object in dictionary is untouched.
1464  */
1465 int
1466 sme_update_dictionary(struct sysmon_envsys *sme)
1467 {
1468 	envsys_data_t *edata;
1469 	prop_object_t array, dict, obj, obj2;
1470 	int error = 0;
1471 
1472 	/*
1473 	 * Retrieve the array of dictionaries in device.
1474 	 */
1475 	array = prop_dictionary_get(sme_propd, sme->sme_name);
1476 	if (prop_object_type(array) != PROP_TYPE_ARRAY) {
1477 		DPRINTF(("%s: not an array (%s)\n", __func__, sme->sme_name));
1478 		return EINVAL;
1479 	}
1480 
1481 	/*
1482 	 * Get the last dictionary on the array, this contains the
1483 	 * 'device-properties' sub-dictionary.
1484 	 */
1485 	obj = prop_array_get(array, prop_array_count(array) - 1);
1486 	if (!obj || prop_object_type(obj) != PROP_TYPE_DICTIONARY) {
1487 		DPRINTF(("%s: not a device-properties dictionary\n", __func__));
1488 		return EINVAL;
1489 	}
1490 
1491 	obj2 = prop_dictionary_get(obj, "device-properties");
1492 	if (!obj2)
1493 		return EINVAL;
1494 
1495 	/*
1496 	 * Update the 'refresh-timeout' property.
1497 	 */
1498 	if (!prop_dictionary_set_uint64(obj2, "refresh-timeout",
1499 					sme->sme_events_timeout))
1500 		return EINVAL;
1501 
1502 	/*
1503 	 * - iterate over all sensors.
1504 	 * - fetch new data.
1505 	 * - check if data in dictionary is different than new data.
1506 	 * - update dictionary if there were changes.
1507 	 */
1508 	DPRINTF(("%s: updating '%s' with nsensors=%d\n", __func__,
1509 	    sme->sme_name, sme->sme_nsensors));
1510 
1511 	/*
1512 	 * Don't bother with locking when traversing the queue,
1513 	 * the device is already marked as busy; if a sensor
1514 	 * is going to be removed or added it will have to wait.
1515 	 */
1516 	TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
1517 		/*
1518 		 * refresh sensor data via sme_envsys_refresh_sensor
1519 		 */
1520 		mutex_enter(&sme->sme_mtx);
1521 		sysmon_envsys_refresh_sensor(sme, edata);
1522 		mutex_exit(&sme->sme_mtx);
1523 
1524 		/*
1525 		 * retrieve sensor's dictionary.
1526 		 */
1527 		dict = prop_array_get(array, edata->sensor);
1528 		if (prop_object_type(dict) != PROP_TYPE_DICTIONARY) {
1529 			DPRINTF(("%s: not a dictionary (%d:%s)\n",
1530 			    __func__, edata->sensor, sme->sme_name));
1531 			return EINVAL;
1532 		}
1533 
1534 		/*
1535 		 * update sensor's state.
1536 		 */
1537 		error = sme_update_sensor_dictionary(dict, edata, true);
1538 
1539 		if (error)
1540 			break;
1541 	}
1542 
1543 	return error;
1544 }
1545 
1546 int
1547 sme_update_sensor_dictionary(prop_object_t dict, envsys_data_t *edata,
1548 	bool value_update)
1549 {
1550 	const struct sme_descr_entry *sdt;
1551 	int error = 0;
1552 
1553 	sdt = sme_find_table_entry(SME_DESC_STATES, edata->state);
1554 	if (sdt == NULL) {
1555 		printf("sme_update_sensor_dictionary: can not update sensor "
1556 		    "state %d unknown\n", edata->state);
1557 		return EINVAL;
1558 	}
1559 
1560 	DPRINTFOBJ(("%s: sensor #%d type=%d (%s) flags=%d\n", __func__,
1561 	    edata->sensor, sdt->type, sdt->desc, edata->flags));
1562 
1563 	error = sme_sensor_upstring(dict, "state", sdt->desc);
1564 	if (error)
1565 		return (-error);
1566 
1567 	/*
1568 	 * update sensor's type.
1569 	 */
1570 	sdt = sme_find_table_entry(SME_DESC_UNITS, edata->units);
1571 
1572 	DPRINTFOBJ(("%s: sensor #%d units=%d (%s)\n", __func__, edata->sensor,
1573 	    sdt->type, sdt->desc));
1574 
1575 	error = sme_sensor_upstring(dict, "type", sdt->desc);
1576 	if (error)
1577 		return (-error);
1578 
1579 	if (value_update) {
1580 		/*
1581 		 * update sensor's current value.
1582 		 */
1583 		error = sme_sensor_upint32(dict, "cur-value", edata->value_cur);
1584 		if (error)
1585 			return error;
1586 	}
1587 
1588 	/*
1589 	 * Battery charge and Indicator types do not
1590 	 * need the remaining objects, so skip them.
1591 	 */
1592 	if (edata->units == ENVSYS_INDICATOR ||
1593 	    edata->units == ENVSYS_BATTERY_CHARGE)
1594 		return error;
1595 
1596 	/*
1597 	 * update sensor flags.
1598 	 */
1599 	if (edata->flags & ENVSYS_FPERCENT) {
1600 		error = sme_sensor_upbool(dict, "want-percentage", true);
1601 		if (error)
1602 			return error;
1603 	}
1604 
1605 	if (value_update) {
1606 		/*
1607 		 * update sensor's {max,min}-value.
1608 		 */
1609 		if (edata->flags & ENVSYS_FVALID_MAX) {
1610 			error = sme_sensor_upint32(dict, "max-value",
1611 						   edata->value_max);
1612 			if (error)
1613 				return error;
1614 		}
1615 
1616 		if (edata->flags & ENVSYS_FVALID_MIN) {
1617 			error = sme_sensor_upint32(dict, "min-value",
1618 						   edata->value_min);
1619 			if (error)
1620 				return error;
1621 		}
1622 
1623 		/*
1624 		 * update 'rpms' only for ENVSYS_SFANRPM sensors.
1625 		 */
1626 		if (edata->units == ENVSYS_SFANRPM) {
1627 			error = sme_sensor_upuint32(dict, "rpms", edata->rpms);
1628 			if (error)
1629 				return error;
1630 		}
1631 
1632 		/*
1633 		 * update 'rfact' only for ENVSYS_SVOLTS_[AD]C sensors.
1634 		 */
1635 		if (edata->units == ENVSYS_SVOLTS_AC ||
1636 		    edata->units == ENVSYS_SVOLTS_DC) {
1637 			error = sme_sensor_upint32(dict, "rfact", edata->rfact);
1638 			if (error)
1639 				return error;
1640 		}
1641 	}
1642 
1643 	/*
1644 	 * update 'drive-state' only for ENVSYS_DRIVE sensors.
1645 	 */
1646 	if (edata->units == ENVSYS_DRIVE) {
1647 		sdt = sme_find_table_entry(SME_DESC_DRIVE_STATES,
1648 					   edata->value_cur);
1649 		error = sme_sensor_upstring(dict, "drive-state", sdt->desc);
1650 		if (error)
1651 			return error;
1652 	}
1653 
1654 	/*
1655 	 * update 'battery-capacity' only for ENVSYS_BATTERY_CAPACITY
1656 	 * sensors.
1657 	 */
1658 	if (edata->units == ENVSYS_BATTERY_CAPACITY) {
1659 		sdt = sme_find_table_entry(SME_DESC_BATTERY_CAPACITY,
1660 		    edata->value_cur);
1661 		error = sme_sensor_upstring(dict, "battery-capacity",
1662 					    sdt->desc);
1663 		if (error)
1664 			return error;
1665 	}
1666 
1667 	return error;
1668 }
1669 
1670 /*
1671  * sme_userset_dictionary:
1672  *
1673  * 	+ Parse the userland dictionary and run the appropiate tasks
1674  * 	  that were specified.
1675  */
1676 int
1677 sme_userset_dictionary(struct sysmon_envsys *sme, prop_dictionary_t udict,
1678 		       prop_array_t array)
1679 {
1680 	const struct sme_descr_entry *sdt;
1681 	envsys_data_t *edata;
1682 	prop_dictionary_t dict, tdict = NULL;
1683 	prop_object_t obj, obj1, obj2, tobj = NULL;
1684 	uint32_t props;
1685 	uint64_t refresh_timo = 0;
1686 	sysmon_envsys_lim_t lims;
1687 	int i, error = 0;
1688 	const char *blah;
1689 	bool targetfound = false;
1690 
1691 	/*
1692 	 * The user wanted to change the refresh timeout value for this
1693 	 * device.
1694 	 *
1695 	 * Get the 'device-properties' object from the userland dictionary.
1696 	 */
1697 	obj = prop_dictionary_get(udict, "device-properties");
1698 	if (obj && prop_object_type(obj) == PROP_TYPE_DICTIONARY) {
1699 		/*
1700 		 * Get the 'refresh-timeout' property for this device.
1701 		 */
1702 		obj1 = prop_dictionary_get(obj, "refresh-timeout");
1703 		if (obj1 && prop_object_type(obj1) == PROP_TYPE_NUMBER) {
1704 			targetfound = true;
1705 			refresh_timo =
1706 			    prop_number_unsigned_integer_value(obj1);
1707 			if (refresh_timo < 1)
1708 				error = EINVAL;
1709 			else {
1710 				mutex_enter(&sme->sme_mtx);
1711 				if (sme->sme_events_timeout != refresh_timo) {
1712 					sme->sme_events_timeout = refresh_timo;
1713 					sme_schedule_callout(sme);
1714 				}
1715 				mutex_exit(&sme->sme_mtx);
1716 		}
1717 		}
1718 		return error;
1719 
1720 	} else if (!obj) {
1721 		/*
1722 		 * Get sensor's index from userland dictionary.
1723 		 */
1724 		obj = prop_dictionary_get(udict, "index");
1725 		if (!obj)
1726 			return EINVAL;
1727 		if (prop_object_type(obj) != PROP_TYPE_STRING) {
1728 			DPRINTF(("%s: 'index' not a string\n", __func__));
1729 			return EINVAL;
1730 		}
1731 	} else
1732 		return EINVAL;
1733 
1734 	/*
1735 	 * Don't bother with locking when traversing the queue,
1736 	 * the device is already marked as busy; if a sensor
1737 	 * is going to be removed or added it will have to wait.
1738 	 */
1739 	TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
1740 		/*
1741 		 * Get a dictionary and check if it's our sensor by checking
1742 		 * at its index position.
1743 		 */
1744 		dict = prop_array_get(array, edata->sensor);
1745 		obj1 = prop_dictionary_get(dict, "index");
1746 
1747 		/*
1748 		 * is it our sensor?
1749 		 */
1750 		if (!prop_string_equals(obj1, obj))
1751 			continue;
1752 
1753 		props = 0;
1754 
1755 		/*
1756 		 * Check if a new description operation was
1757 		 * requested by the user and set new description.
1758 		 */
1759 		obj2 = prop_dictionary_get(udict, "description");
1760 		if (obj2 && prop_object_type(obj2) == PROP_TYPE_STRING) {
1761 			targetfound = true;
1762 			blah = prop_string_cstring_nocopy(obj2);
1763 
1764 			/*
1765 			 * Check for duplicate description.
1766 			 */
1767 			for (i = 0; i < sme->sme_nsensors; i++) {
1768 				if (i == edata->sensor)
1769 					continue;
1770 				tdict = prop_array_get(array, i);
1771 				tobj =
1772 				    prop_dictionary_get(tdict, "description");
1773 				if (prop_string_equals(obj2, tobj)) {
1774 					error = EEXIST;
1775 					goto out;
1776 				}
1777 			}
1778 
1779 			/*
1780 			 * Update the object in dictionary.
1781 			 */
1782 			mutex_enter(&sme->sme_mtx);
1783 			error = sme_sensor_upstring(dict,
1784 						    "description",
1785 						    blah);
1786 			if (error) {
1787 				mutex_exit(&sme->sme_mtx);
1788 				goto out;
1789 			}
1790 
1791 			DPRINTF(("%s: sensor%d changed desc to: %s\n",
1792 			    __func__, edata->sensor, blah));
1793 			edata->upropset |= PROP_DESC;
1794 			mutex_exit(&sme->sme_mtx);
1795 		}
1796 
1797 		/*
1798 		 * did the user want to change the rfact?
1799 		 */
1800 		obj2 = prop_dictionary_get(udict, "rfact");
1801 		if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1802 			targetfound = true;
1803 			if (edata->flags & ENVSYS_FCHANGERFACT) {
1804 				mutex_enter(&sme->sme_mtx);
1805 				edata->rfact = prop_number_integer_value(obj2);
1806 				edata->upropset |= PROP_RFACT;
1807 				mutex_exit(&sme->sme_mtx);
1808 				DPRINTF(("%s: sensor%d changed rfact to %d\n",
1809 				    __func__, edata->sensor, edata->rfact));
1810 			} else {
1811 				error = ENOTSUP;
1812 				goto out;
1813 			}
1814 		}
1815 
1816 		sdt = sme_find_table_entry(SME_DESC_UNITS, edata->units);
1817 
1818 		/*
1819 		 * did the user want to set a critical capacity event?
1820 		 */
1821 		obj2 = prop_dictionary_get(udict, "critical-capacity");
1822 		if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1823 			targetfound = true;
1824 			lims.sel_critmin = prop_number_integer_value(obj2);
1825 			props |= PROP_BATTCAP;
1826 		}
1827 
1828 		/*
1829 		 * did the user want to set a warning capacity event?
1830 		 */
1831 		obj2 = prop_dictionary_get(udict, "warning-capacity");
1832 		if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1833 			targetfound = true;
1834 			lims.sel_warnmin = prop_number_integer_value(obj2);
1835 			props |= PROP_BATTWARN;
1836 		}
1837 
1838 		/*
1839 		 * did the user want to set a high capacity event?
1840 		 */
1841 		obj2 = prop_dictionary_get(udict, "high-capacity");
1842 		if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1843 			targetfound = true;
1844 			lims.sel_warnmin = prop_number_integer_value(obj2);
1845 			props |= PROP_BATTHIGH;
1846 		}
1847 
1848 		/*
1849 		 * did the user want to set a maximum capacity event?
1850 		 */
1851 		obj2 = prop_dictionary_get(udict, "maximum-capacity");
1852 		if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1853 			targetfound = true;
1854 			lims.sel_warnmin = prop_number_integer_value(obj2);
1855 			props |= PROP_BATTMAX;
1856 		}
1857 
1858 		/*
1859 		 * did the user want to set a critical max event?
1860 		 */
1861 		obj2 = prop_dictionary_get(udict, "critical-max");
1862 		if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1863 			targetfound = true;
1864 			lims.sel_critmax = prop_number_integer_value(obj2);
1865 			props |= PROP_CRITMAX;
1866 		}
1867 
1868 		/*
1869 		 * did the user want to set a warning max event?
1870 		 */
1871 		obj2 = prop_dictionary_get(udict, "warning-max");
1872 		if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1873 			targetfound = true;
1874 			lims.sel_warnmax = prop_number_integer_value(obj2);
1875 			props |= PROP_WARNMAX;
1876 		}
1877 
1878 		/*
1879 		 * did the user want to set a critical min event?
1880 		 */
1881 		obj2 = prop_dictionary_get(udict, "critical-min");
1882 		if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1883 			targetfound = true;
1884 			lims.sel_critmin = prop_number_integer_value(obj2);
1885 			props |= PROP_CRITMIN;
1886 		}
1887 
1888 		/*
1889 		 * did the user want to set a warning min event?
1890 		 */
1891 		obj2 = prop_dictionary_get(udict, "warning-min");
1892 		if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1893 			targetfound = true;
1894 			lims.sel_warnmin = prop_number_integer_value(obj2);
1895 			props |= PROP_WARNMIN;
1896 		}
1897 
1898 		if (props && (edata->flags & ENVSYS_FMONNOTSUPP) != 0) {
1899 			error = ENOTSUP;
1900 			goto out;
1901 		}
1902 		if (props || (edata->flags & ENVSYS_FHAS_ENTROPY) != 0) {
1903 			error = sme_event_register(dict, edata, sme, &lims,
1904 					props,
1905 					(edata->flags & ENVSYS_FPERCENT)?
1906 						PENVSYS_EVENT_CAPACITY:
1907 						PENVSYS_EVENT_LIMITS,
1908 					sdt->crittype);
1909 			if (error == EEXIST)
1910 				error = 0;
1911 			if (error)
1912 				goto out;
1913 		}
1914 
1915 		/*
1916 		 * All objects in dictionary were processed.
1917 		 */
1918 		break;
1919 	}
1920 
1921 out:
1922 	/*
1923 	 * invalid target? return the error.
1924 	 */
1925 	if (!targetfound)
1926 		error = EINVAL;
1927 
1928 	return error;
1929 }
1930 
1931 /*
1932  * + sysmon_envsys_foreach_sensor
1933  *
1934  *	Walk through the devices' sensor lists and execute the callback.
1935  *	If the callback returns false, the remainder of the current
1936  *	device's sensors are skipped.
1937  */
1938 void
1939 sysmon_envsys_foreach_sensor(sysmon_envsys_callback_t func, void *arg,
1940 			     bool refresh)
1941 {
1942 	struct sysmon_envsys *sme;
1943 	envsys_data_t *sensor;
1944 
1945 	mutex_enter(&sme_global_mtx);
1946 	LIST_FOREACH(sme, &sysmon_envsys_list, sme_list) {
1947 
1948 		sysmon_envsys_acquire(sme, false);
1949 		TAILQ_FOREACH(sensor, &sme->sme_sensors_list, sensors_head) {
1950 			if (refresh) {
1951 				mutex_enter(&sme->sme_mtx);
1952 				sysmon_envsys_refresh_sensor(sme, sensor);
1953 				mutex_exit(&sme->sme_mtx);
1954 			}
1955 			if (!(*func)(sme, sensor, arg))
1956 				break;
1957 		}
1958 		sysmon_envsys_release(sme, false);
1959 	}
1960 	mutex_exit(&sme_global_mtx);
1961 }
1962 
1963 /*
1964  * Call the sensor's refresh function, and collect/stir entropy
1965  */
1966 void
1967 sysmon_envsys_refresh_sensor(struct sysmon_envsys *sme, envsys_data_t *edata)
1968 {
1969 
1970 	if ((sme->sme_flags & SME_DISABLE_REFRESH) == 0)
1971 		(*sme->sme_refresh)(sme, edata);
1972 
1973 	if (edata->flags & ENVSYS_FHAS_ENTROPY &&
1974 	    edata->state != ENVSYS_SINVALID &&
1975 	    edata->value_prev != edata->value_cur)
1976 		rnd_add_uint32(&edata->rnd_src, edata->value_cur);
1977 	edata->value_prev = edata->value_cur;
1978 }
1979