1 /* $NetBSD: sysmon_envsys.c,v 1.125 2012/09/06 12:21:40 pgoyette Exp $ */ 2 3 /*- 4 * Copyright (c) 2007, 2008 Juan Romero Pardines. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 */ 27 28 /*- 29 * Copyright (c) 2000 Zembu Labs, Inc. 30 * All rights reserved. 31 * 32 * Author: Jason R. Thorpe <thorpej@zembu.com> 33 * 34 * Redistribution and use in source and binary forms, with or without 35 * modification, are permitted provided that the following conditions 36 * are met: 37 * 1. Redistributions of source code must retain the above copyright 38 * notice, this list of conditions and the following disclaimer. 39 * 2. Redistributions in binary form must reproduce the above copyright 40 * notice, this list of conditions and the following disclaimer in the 41 * documentation and/or other materials provided with the distribution. 42 * 3. All advertising materials mentioning features or use of this software 43 * must display the following acknowledgement: 44 * This product includes software developed by Zembu Labs, Inc. 45 * 4. Neither the name of Zembu Labs nor the names of its employees may 46 * be used to endorse or promote products derived from this software 47 * without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY ZEMBU LABS, INC. ``AS IS'' AND ANY EXPRESS 50 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR- 51 * RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS- 52 * CLAIMED. IN NO EVENT SHALL ZEMBU LABS BE LIABLE FOR ANY DIRECT, INDIRECT, 53 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 54 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 55 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 56 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 57 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 58 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 59 */ 60 61 /* 62 * Environmental sensor framework for sysmon, exported to userland 63 * with proplib(3). 64 */ 65 66 #include <sys/cdefs.h> 67 __KERNEL_RCSID(0, "$NetBSD: sysmon_envsys.c,v 1.125 2012/09/06 12:21:40 pgoyette Exp $"); 68 69 #include <sys/param.h> 70 #include <sys/types.h> 71 #include <sys/conf.h> 72 #include <sys/errno.h> 73 #include <sys/fcntl.h> 74 #include <sys/kernel.h> 75 #include <sys/systm.h> 76 #include <sys/proc.h> 77 #include <sys/mutex.h> 78 #include <sys/kmem.h> 79 #include <sys/rnd.h> 80 81 #include <dev/sysmon/sysmonvar.h> 82 #include <dev/sysmon/sysmon_envsysvar.h> 83 #include <dev/sysmon/sysmon_taskq.h> 84 85 kmutex_t sme_global_mtx; 86 87 prop_dictionary_t sme_propd; 88 89 struct sysmon_envsys_lh sysmon_envsys_list; 90 91 static uint32_t sysmon_envsys_next_sensor_index; 92 static struct sysmon_envsys *sysmon_envsys_find_40(u_int); 93 94 static void sysmon_envsys_destroy_plist(prop_array_t); 95 static void sme_remove_userprops(void); 96 static int sme_add_property_dictionary(struct sysmon_envsys *, prop_array_t, 97 prop_dictionary_t); 98 static sme_event_drv_t * sme_add_sensor_dictionary(struct sysmon_envsys *, 99 prop_array_t, prop_dictionary_t, envsys_data_t *); 100 static void sme_initial_refresh(void *); 101 static uint32_t sme_get_max_value(struct sysmon_envsys *, 102 bool (*)(const envsys_data_t*), bool); 103 104 /* 105 * sysmon_envsys_init: 106 * 107 * + Initialize global mutex, dictionary and the linked list. 108 */ 109 void 110 sysmon_envsys_init(void) 111 { 112 LIST_INIT(&sysmon_envsys_list); 113 mutex_init(&sme_global_mtx, MUTEX_DEFAULT, IPL_NONE); 114 sme_propd = prop_dictionary_create(); 115 } 116 117 /* 118 * sysmonopen_envsys: 119 * 120 * + Open the system monitor device. 121 */ 122 int 123 sysmonopen_envsys(dev_t dev, int flag, int mode, struct lwp *l) 124 { 125 return 0; 126 } 127 128 /* 129 * sysmonclose_envsys: 130 * 131 * + Close the system monitor device. 132 */ 133 int 134 sysmonclose_envsys(dev_t dev, int flag, int mode, struct lwp *l) 135 { 136 return 0; 137 } 138 139 /* 140 * sysmonioctl_envsys: 141 * 142 * + Perform a sysmon envsys control request. 143 */ 144 int 145 sysmonioctl_envsys(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l) 146 { 147 struct sysmon_envsys *sme = NULL; 148 int error = 0; 149 u_int oidx; 150 151 switch (cmd) { 152 /* 153 * To update the global dictionary with latest data from devices. 154 */ 155 case ENVSYS_GETDICTIONARY: 156 { 157 struct plistref *plist = (struct plistref *)data; 158 159 /* 160 * Update dictionaries on all sysmon envsys devices 161 * registered. 162 */ 163 mutex_enter(&sme_global_mtx); 164 LIST_FOREACH(sme, &sysmon_envsys_list, sme_list) { 165 sysmon_envsys_acquire(sme, false); 166 error = sme_update_dictionary(sme); 167 if (error) { 168 DPRINTF(("%s: sme_update_dictionary, " 169 "error=%d\n", __func__, error)); 170 sysmon_envsys_release(sme, false); 171 mutex_exit(&sme_global_mtx); 172 return error; 173 } 174 sysmon_envsys_release(sme, false); 175 } 176 mutex_exit(&sme_global_mtx); 177 /* 178 * Copy global dictionary to userland. 179 */ 180 error = prop_dictionary_copyout_ioctl(plist, cmd, sme_propd); 181 break; 182 } 183 /* 184 * To set properties on multiple devices. 185 */ 186 case ENVSYS_SETDICTIONARY: 187 { 188 const struct plistref *plist = (const struct plistref *)data; 189 prop_dictionary_t udict; 190 prop_object_iterator_t iter, iter2; 191 prop_object_t obj, obj2; 192 prop_array_t array_u, array_k; 193 const char *devname = NULL; 194 195 if ((flag & FWRITE) == 0) 196 return EPERM; 197 198 /* 199 * Get dictionary from userland. 200 */ 201 error = prop_dictionary_copyin_ioctl(plist, cmd, &udict); 202 if (error) { 203 DPRINTF(("%s: copyin_ioctl error=%d\n", 204 __func__, error)); 205 break; 206 } 207 208 iter = prop_dictionary_iterator(udict); 209 if (!iter) { 210 prop_object_release(udict); 211 return ENOMEM; 212 } 213 214 /* 215 * Iterate over the userland dictionary and process 216 * the list of devices. 217 */ 218 while ((obj = prop_object_iterator_next(iter))) { 219 array_u = prop_dictionary_get_keysym(udict, obj); 220 if (prop_object_type(array_u) != PROP_TYPE_ARRAY) { 221 prop_object_iterator_release(iter); 222 prop_object_release(udict); 223 return EINVAL; 224 } 225 226 devname = prop_dictionary_keysym_cstring_nocopy(obj); 227 DPRINTF(("%s: processing the '%s' array requests\n", 228 __func__, devname)); 229 230 /* 231 * find the correct sme device. 232 */ 233 sme = sysmon_envsys_find(devname); 234 if (!sme) { 235 DPRINTF(("%s: NULL sme\n", __func__)); 236 prop_object_iterator_release(iter); 237 prop_object_release(udict); 238 return EINVAL; 239 } 240 241 /* 242 * Find the correct array object with the string 243 * supplied by the userland dictionary. 244 */ 245 array_k = prop_dictionary_get(sme_propd, devname); 246 if (prop_object_type(array_k) != PROP_TYPE_ARRAY) { 247 DPRINTF(("%s: array device failed\n", 248 __func__)); 249 sysmon_envsys_release(sme, false); 250 prop_object_iterator_release(iter); 251 prop_object_release(udict); 252 return EINVAL; 253 } 254 255 iter2 = prop_array_iterator(array_u); 256 if (!iter2) { 257 sysmon_envsys_release(sme, false); 258 prop_object_iterator_release(iter); 259 prop_object_release(udict); 260 return ENOMEM; 261 } 262 263 /* 264 * Iterate over the array of dictionaries to 265 * process the list of sensors and properties. 266 */ 267 while ((obj2 = prop_object_iterator_next(iter2))) { 268 /* 269 * do the real work now. 270 */ 271 error = sme_userset_dictionary(sme, 272 obj2, 273 array_k); 274 if (error) { 275 sysmon_envsys_release(sme, false); 276 prop_object_iterator_release(iter2); 277 prop_object_iterator_release(iter); 278 prop_object_release(udict); 279 return error; 280 } 281 } 282 283 sysmon_envsys_release(sme, false); 284 prop_object_iterator_release(iter2); 285 } 286 287 prop_object_iterator_release(iter); 288 prop_object_release(udict); 289 break; 290 } 291 /* 292 * To remove all properties from all devices registered. 293 */ 294 case ENVSYS_REMOVEPROPS: 295 { 296 const struct plistref *plist = (const struct plistref *)data; 297 prop_dictionary_t udict; 298 prop_object_t obj; 299 300 if ((flag & FWRITE) == 0) 301 return EPERM; 302 303 error = prop_dictionary_copyin_ioctl(plist, cmd, &udict); 304 if (error) { 305 DPRINTF(("%s: copyin_ioctl error=%d\n", 306 __func__, error)); 307 break; 308 } 309 310 obj = prop_dictionary_get(udict, "envsys-remove-props"); 311 if (!obj || !prop_bool_true(obj)) { 312 DPRINTF(("%s: invalid 'envsys-remove-props'\n", 313 __func__)); 314 return EINVAL; 315 } 316 317 prop_object_release(udict); 318 sme_remove_userprops(); 319 320 break; 321 } 322 /* 323 * Compatibility ioctls with the old interface, only implemented 324 * ENVSYS_GTREDATA and ENVSYS_GTREINFO; enough to make old 325 * applications work. 326 */ 327 case ENVSYS_GTREDATA: 328 { 329 struct envsys_tre_data *tred = (void *)data; 330 envsys_data_t *edata = NULL; 331 bool found = false; 332 333 tred->validflags = 0; 334 335 sme = sysmon_envsys_find_40(tred->sensor); 336 if (!sme) 337 break; 338 339 oidx = tred->sensor; 340 tred->sensor = SME_SENSOR_IDX(sme, tred->sensor); 341 342 DPRINTFOBJ(("%s: sensor=%d oidx=%d dev=%s nsensors=%d\n", 343 __func__, tred->sensor, oidx, sme->sme_name, 344 sme->sme_nsensors)); 345 346 TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) { 347 if (edata->sensor == tred->sensor) { 348 found = true; 349 break; 350 } 351 } 352 353 if (!found) { 354 sysmon_envsys_release(sme, false); 355 error = ENODEV; 356 break; 357 } 358 359 if (tred->sensor < sme->sme_nsensors) { 360 if ((sme->sme_flags & SME_POLL_ONLY) == 0) { 361 mutex_enter(&sme->sme_mtx); 362 sysmon_envsys_refresh_sensor(sme, edata); 363 mutex_exit(&sme->sme_mtx); 364 } 365 366 /* 367 * copy required values to the old interface. 368 */ 369 tred->sensor = edata->sensor; 370 tred->cur.data_us = edata->value_cur; 371 tred->cur.data_s = edata->value_cur; 372 tred->max.data_us = edata->value_max; 373 tred->max.data_s = edata->value_max; 374 tred->min.data_us = edata->value_min; 375 tred->min.data_s = edata->value_min; 376 tred->avg.data_us = 0; 377 tred->avg.data_s = 0; 378 if (edata->units == ENVSYS_BATTERY_CHARGE) 379 tred->units = ENVSYS_INDICATOR; 380 else 381 tred->units = edata->units; 382 383 tred->validflags |= ENVSYS_FVALID; 384 tred->validflags |= ENVSYS_FCURVALID; 385 386 if (edata->flags & ENVSYS_FPERCENT) { 387 tred->validflags |= ENVSYS_FMAXVALID; 388 tred->validflags |= ENVSYS_FFRACVALID; 389 } 390 391 if (edata->state == ENVSYS_SINVALID) { 392 tred->validflags &= ~ENVSYS_FCURVALID; 393 tred->cur.data_us = tred->cur.data_s = 0; 394 } 395 396 DPRINTFOBJ(("%s: sensor=%s tred->cur.data_s=%d\n", 397 __func__, edata->desc, tred->cur.data_s)); 398 DPRINTFOBJ(("%s: tred->validflags=%d tred->units=%d" 399 " tred->sensor=%d\n", __func__, tred->validflags, 400 tred->units, tred->sensor)); 401 } 402 tred->sensor = oidx; 403 sysmon_envsys_release(sme, false); 404 405 break; 406 } 407 case ENVSYS_GTREINFO: 408 { 409 struct envsys_basic_info *binfo = (void *)data; 410 envsys_data_t *edata = NULL; 411 bool found = false; 412 413 binfo->validflags = 0; 414 415 sme = sysmon_envsys_find_40(binfo->sensor); 416 if (!sme) 417 break; 418 419 oidx = binfo->sensor; 420 binfo->sensor = SME_SENSOR_IDX(sme, binfo->sensor); 421 422 TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) { 423 if (edata->sensor == binfo->sensor) { 424 found = true; 425 break; 426 } 427 } 428 429 if (!found) { 430 sysmon_envsys_release(sme, false); 431 error = ENODEV; 432 break; 433 } 434 435 binfo->validflags |= ENVSYS_FVALID; 436 437 if (binfo->sensor < sme->sme_nsensors) { 438 if (edata->units == ENVSYS_BATTERY_CHARGE) 439 binfo->units = ENVSYS_INDICATOR; 440 else 441 binfo->units = edata->units; 442 443 /* 444 * previously, the ACPI sensor names included the 445 * device name. Include that in compatibility code. 446 */ 447 if (strncmp(sme->sme_name, "acpi", 4) == 0) 448 (void)snprintf(binfo->desc, sizeof(binfo->desc), 449 "%s %s", sme->sme_name, edata->desc); 450 else 451 (void)strlcpy(binfo->desc, edata->desc, 452 sizeof(binfo->desc)); 453 } 454 455 DPRINTFOBJ(("%s: binfo->units=%d binfo->validflags=%d\n", 456 __func__, binfo->units, binfo->validflags)); 457 DPRINTFOBJ(("%s: binfo->desc=%s binfo->sensor=%d\n", 458 __func__, binfo->desc, binfo->sensor)); 459 460 binfo->sensor = oidx; 461 sysmon_envsys_release(sme, false); 462 463 break; 464 } 465 default: 466 error = ENOTTY; 467 break; 468 } 469 470 return error; 471 } 472 473 /* 474 * sysmon_envsys_create: 475 * 476 * + Allocates a new sysmon_envsys object and initializes the 477 * stuff for sensors and events. 478 */ 479 struct sysmon_envsys * 480 sysmon_envsys_create(void) 481 { 482 struct sysmon_envsys *sme; 483 484 sme = kmem_zalloc(sizeof(*sme), KM_SLEEP); 485 TAILQ_INIT(&sme->sme_sensors_list); 486 LIST_INIT(&sme->sme_events_list); 487 mutex_init(&sme->sme_mtx, MUTEX_DEFAULT, IPL_NONE); 488 cv_init(&sme->sme_condvar, "sme_wait"); 489 490 return sme; 491 } 492 493 /* 494 * sysmon_envsys_destroy: 495 * 496 * + Removes all sensors from the tail queue, destroys the callout 497 * and frees the sysmon_envsys object. 498 */ 499 void 500 sysmon_envsys_destroy(struct sysmon_envsys *sme) 501 { 502 envsys_data_t *edata; 503 504 KASSERT(sme != NULL); 505 506 while (!TAILQ_EMPTY(&sme->sme_sensors_list)) { 507 edata = TAILQ_FIRST(&sme->sme_sensors_list); 508 TAILQ_REMOVE(&sme->sme_sensors_list, edata, sensors_head); 509 } 510 mutex_destroy(&sme->sme_mtx); 511 cv_destroy(&sme->sme_condvar); 512 kmem_free(sme, sizeof(*sme)); 513 } 514 515 /* 516 * sysmon_envsys_sensor_attach: 517 * 518 * + Attaches a sensor into a sysmon_envsys device checking that units 519 * is set to a valid type and description is unique and not empty. 520 */ 521 int 522 sysmon_envsys_sensor_attach(struct sysmon_envsys *sme, envsys_data_t *edata) 523 { 524 const struct sme_descr_entry *sdt_units; 525 envsys_data_t *oedata; 526 527 KASSERT(sme != NULL || edata != NULL); 528 529 /* 530 * Find the correct units for this sensor. 531 */ 532 sdt_units = sme_find_table_entry(SME_DESC_UNITS, edata->units); 533 if (sdt_units->type == -1) 534 return EINVAL; 535 536 /* 537 * Check that description is not empty or duplicate. 538 */ 539 if (strlen(edata->desc) == 0) 540 return EINVAL; 541 542 mutex_enter(&sme->sme_mtx); 543 sysmon_envsys_acquire(sme, true); 544 TAILQ_FOREACH(oedata, &sme->sme_sensors_list, sensors_head) { 545 if (strcmp(oedata->desc, edata->desc) == 0) { 546 sysmon_envsys_release(sme, true); 547 mutex_exit(&sme->sme_mtx); 548 return EEXIST; 549 } 550 } 551 /* 552 * Ok, the sensor has been added into the device queue. 553 */ 554 TAILQ_INSERT_TAIL(&sme->sme_sensors_list, edata, sensors_head); 555 556 /* 557 * Give the sensor an index position. 558 */ 559 edata->sensor = sme->sme_nsensors; 560 sme->sme_nsensors++; 561 sysmon_envsys_release(sme, true); 562 mutex_exit(&sme->sme_mtx); 563 564 DPRINTF(("%s: attached #%d (%s), units=%d (%s)\n", 565 __func__, edata->sensor, edata->desc, 566 sdt_units->type, sdt_units->desc)); 567 568 return 0; 569 } 570 571 /* 572 * sysmon_envsys_sensor_detach: 573 * 574 * + Detachs a sensor from a sysmon_envsys device and decrements the 575 * sensors count on success. 576 */ 577 int 578 sysmon_envsys_sensor_detach(struct sysmon_envsys *sme, envsys_data_t *edata) 579 { 580 envsys_data_t *oedata; 581 bool found = false; 582 583 KASSERT(sme != NULL || edata != NULL); 584 585 /* 586 * Check the sensor is already on the list. 587 */ 588 mutex_enter(&sme->sme_mtx); 589 sysmon_envsys_acquire(sme, true); 590 TAILQ_FOREACH(oedata, &sme->sme_sensors_list, sensors_head) { 591 if (oedata->sensor == edata->sensor) { 592 found = true; 593 break; 594 } 595 } 596 597 if (!found) { 598 sysmon_envsys_release(sme, true); 599 mutex_exit(&sme->sme_mtx); 600 return EINVAL; 601 } 602 603 /* 604 * remove it, unhook from rnd(4), and decrement the sensors count. 605 */ 606 sme_event_unregister_sensor(sme, edata); 607 TAILQ_REMOVE(&sme->sme_sensors_list, edata, sensors_head); 608 sme->sme_nsensors--; 609 sysmon_envsys_release(sme, true); 610 mutex_exit(&sme->sme_mtx); 611 612 return 0; 613 } 614 615 616 /* 617 * sysmon_envsys_register: 618 * 619 * + Register a sysmon envsys device. 620 * + Create array of dictionaries for a device. 621 */ 622 int 623 sysmon_envsys_register(struct sysmon_envsys *sme) 624 { 625 struct sme_evdrv { 626 SLIST_ENTRY(sme_evdrv) evdrv_head; 627 sme_event_drv_t *evdrv; 628 }; 629 SLIST_HEAD(, sme_evdrv) sme_evdrv_list; 630 struct sme_evdrv *evdv = NULL; 631 struct sysmon_envsys *lsme; 632 prop_array_t array = NULL; 633 prop_dictionary_t dict, dict2; 634 envsys_data_t *edata = NULL; 635 sme_event_drv_t *this_evdrv; 636 int nevent; 637 int error = 0; 638 char rnd_name[sizeof(edata->rnd_src.name)]; 639 640 KASSERT(sme != NULL); 641 KASSERT(sme->sme_name != NULL); 642 643 /* 644 * Check if requested sysmon_envsys device is valid 645 * and does not exist already in the list. 646 */ 647 mutex_enter(&sme_global_mtx); 648 LIST_FOREACH(lsme, &sysmon_envsys_list, sme_list) { 649 if (strcmp(lsme->sme_name, sme->sme_name) == 0) { 650 mutex_exit(&sme_global_mtx); 651 return EEXIST; 652 } 653 } 654 mutex_exit(&sme_global_mtx); 655 656 /* 657 * sanity check: if SME_DISABLE_REFRESH is not set, 658 * the sme_refresh function callback must be non NULL. 659 */ 660 if ((sme->sme_flags & SME_DISABLE_REFRESH) == 0) 661 if (!sme->sme_refresh) 662 return EINVAL; 663 664 /* 665 * If the list of sensors is empty, there's no point to continue... 666 */ 667 if (TAILQ_EMPTY(&sme->sme_sensors_list)) { 668 DPRINTF(("%s: sensors list empty for %s\n", __func__, 669 sme->sme_name)); 670 return ENOTSUP; 671 } 672 673 /* 674 * Initialize the singly linked list for driver events. 675 */ 676 SLIST_INIT(&sme_evdrv_list); 677 678 array = prop_array_create(); 679 if (!array) 680 return ENOMEM; 681 682 /* 683 * Iterate over all sensors and create a dictionary per sensor. 684 * We must respect the order in which the sensors were added. 685 */ 686 TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) { 687 dict = prop_dictionary_create(); 688 if (!dict) { 689 error = ENOMEM; 690 goto out2; 691 } 692 693 /* 694 * Create all objects in sensor's dictionary. 695 */ 696 this_evdrv = sme_add_sensor_dictionary(sme, array, 697 dict, edata); 698 if (this_evdrv) { 699 evdv = kmem_zalloc(sizeof(*evdv), KM_SLEEP); 700 evdv->evdrv = this_evdrv; 701 SLIST_INSERT_HEAD(&sme_evdrv_list, evdv, evdrv_head); 702 } 703 } 704 705 /* 706 * If the array does not contain any object (sensor), there's 707 * no need to attach the driver. 708 */ 709 if (prop_array_count(array) == 0) { 710 error = EINVAL; 711 DPRINTF(("%s: empty array for '%s'\n", __func__, 712 sme->sme_name)); 713 goto out; 714 } 715 716 /* 717 * Add the dictionary for the global properties of this device. 718 */ 719 dict2 = prop_dictionary_create(); 720 if (!dict2) { 721 error = ENOMEM; 722 goto out; 723 } 724 725 error = sme_add_property_dictionary(sme, array, dict2); 726 if (error) { 727 prop_object_release(dict2); 728 goto out; 729 } 730 731 /* 732 * Add the array into the global dictionary for the driver. 733 * 734 * <dict> 735 * <key>foo0</key> 736 * <array> 737 * ... 738 */ 739 mutex_enter(&sme_global_mtx); 740 if (!prop_dictionary_set(sme_propd, sme->sme_name, array)) { 741 error = EINVAL; 742 DPRINTF(("%s: prop_dictionary_set for '%s'\n", __func__, 743 sme->sme_name)); 744 goto out; 745 } 746 747 /* 748 * Add the device into the list. 749 */ 750 LIST_INSERT_HEAD(&sysmon_envsys_list, sme, sme_list); 751 sme->sme_fsensor = sysmon_envsys_next_sensor_index; 752 sysmon_envsys_next_sensor_index += sme->sme_nsensors; 753 mutex_exit(&sme_global_mtx); 754 755 out: 756 /* 757 * No errors? Make an initial data refresh if was requested, 758 * then register the events that were set in the driver. Do 759 * the refresh first in case it is needed to establish the 760 * limits or max_value needed by some events. 761 */ 762 if (error == 0) { 763 nevent = 0; 764 sysmon_task_queue_init(); 765 766 if (sme->sme_flags & SME_INIT_REFRESH) { 767 sysmon_task_queue_sched(0, sme_initial_refresh, sme); 768 DPRINTF(("%s: scheduled initial refresh for '%s'\n", 769 __func__, sme->sme_name)); 770 } 771 SLIST_FOREACH(evdv, &sme_evdrv_list, evdrv_head) { 772 sysmon_task_queue_sched(0, 773 sme_event_drvadd, evdv->evdrv); 774 nevent++; 775 } 776 /* 777 * Hook the sensor into rnd(4) entropy pool if requested 778 */ 779 TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) { 780 if (edata->flags & ENVSYS_FHAS_ENTROPY) { 781 snprintf(rnd_name, sizeof(rnd_name), "%s-%s", 782 sme->sme_name, edata->desc); 783 rnd_attach_source(&edata->rnd_src, rnd_name, 784 RND_TYPE_ENV, 0); 785 } 786 } 787 DPRINTF(("%s: driver '%s' registered (nsens=%d nevent=%d)\n", 788 __func__, sme->sme_name, sme->sme_nsensors, nevent)); 789 } 790 791 out2: 792 while (!SLIST_EMPTY(&sme_evdrv_list)) { 793 evdv = SLIST_FIRST(&sme_evdrv_list); 794 SLIST_REMOVE_HEAD(&sme_evdrv_list, evdrv_head); 795 kmem_free(evdv, sizeof(*evdv)); 796 } 797 if (!error) 798 return 0; 799 800 /* 801 * Ugh... something wasn't right; unregister all events and sensors 802 * previously assigned and destroy the array with all its objects. 803 */ 804 DPRINTF(("%s: failed to register '%s' (%d)\n", __func__, 805 sme->sme_name, error)); 806 807 sme_event_unregister_all(sme); 808 while (!TAILQ_EMPTY(&sme->sme_sensors_list)) { 809 edata = TAILQ_FIRST(&sme->sme_sensors_list); 810 TAILQ_REMOVE(&sme->sme_sensors_list, edata, sensors_head); 811 } 812 sysmon_envsys_destroy_plist(array); 813 return error; 814 } 815 816 /* 817 * sysmon_envsys_destroy_plist: 818 * 819 * + Remove all objects from the array of dictionaries that is 820 * created in a sysmon envsys device. 821 */ 822 static void 823 sysmon_envsys_destroy_plist(prop_array_t array) 824 { 825 prop_object_iterator_t iter, iter2; 826 prop_dictionary_t dict; 827 prop_object_t obj; 828 829 KASSERT(array != NULL); 830 KASSERT(prop_object_type(array) == PROP_TYPE_ARRAY); 831 832 DPRINTFOBJ(("%s: objects in array=%d\n", __func__, 833 prop_array_count(array))); 834 835 iter = prop_array_iterator(array); 836 if (!iter) 837 return; 838 839 while ((dict = prop_object_iterator_next(iter))) { 840 KASSERT(prop_object_type(dict) == PROP_TYPE_DICTIONARY); 841 iter2 = prop_dictionary_iterator(dict); 842 if (!iter2) 843 goto out; 844 DPRINTFOBJ(("%s: iterating over dictionary\n", __func__)); 845 while ((obj = prop_object_iterator_next(iter2)) != NULL) { 846 DPRINTFOBJ(("%s: obj=%s\n", __func__, 847 prop_dictionary_keysym_cstring_nocopy(obj))); 848 prop_dictionary_remove(dict, 849 prop_dictionary_keysym_cstring_nocopy(obj)); 850 prop_object_iterator_reset(iter2); 851 } 852 prop_object_iterator_release(iter2); 853 DPRINTFOBJ(("%s: objects in dictionary:%d\n", 854 __func__, prop_dictionary_count(dict))); 855 prop_object_release(dict); 856 } 857 858 out: 859 prop_object_iterator_release(iter); 860 prop_object_release(array); 861 } 862 863 /* 864 * sysmon_envsys_unregister: 865 * 866 * + Unregister a sysmon envsys device. 867 */ 868 void 869 sysmon_envsys_unregister(struct sysmon_envsys *sme) 870 { 871 prop_array_t array; 872 struct sysmon_envsys *osme; 873 874 KASSERT(sme != NULL); 875 876 /* 877 * Unregister all events associated with device. 878 */ 879 sme_event_unregister_all(sme); 880 /* 881 * Decrement global sensors counter and the first_sensor index 882 * for remaining devices in the list (only used for compatibility 883 * with previous API), and remove the device from the list. 884 */ 885 mutex_enter(&sme_global_mtx); 886 sysmon_envsys_next_sensor_index -= sme->sme_nsensors; 887 LIST_FOREACH(osme, &sysmon_envsys_list, sme_list) { 888 if (osme->sme_fsensor >= sme->sme_fsensor) 889 osme->sme_fsensor -= sme->sme_nsensors; 890 } 891 LIST_REMOVE(sme, sme_list); 892 mutex_exit(&sme_global_mtx); 893 894 /* 895 * Remove the device (and all its objects) from the global dictionary. 896 */ 897 array = prop_dictionary_get(sme_propd, sme->sme_name); 898 if (array && prop_object_type(array) == PROP_TYPE_ARRAY) { 899 mutex_enter(&sme_global_mtx); 900 prop_dictionary_remove(sme_propd, sme->sme_name); 901 mutex_exit(&sme_global_mtx); 902 sysmon_envsys_destroy_plist(array); 903 } 904 /* 905 * And finally destroy the sysmon_envsys object. 906 */ 907 sysmon_envsys_destroy(sme); 908 } 909 910 /* 911 * sysmon_envsys_find: 912 * 913 * + Find a sysmon envsys device and mark it as busy 914 * once it's available. 915 */ 916 struct sysmon_envsys * 917 sysmon_envsys_find(const char *name) 918 { 919 struct sysmon_envsys *sme; 920 921 mutex_enter(&sme_global_mtx); 922 LIST_FOREACH(sme, &sysmon_envsys_list, sme_list) { 923 if (strcmp(sme->sme_name, name) == 0) { 924 sysmon_envsys_acquire(sme, false); 925 break; 926 } 927 } 928 mutex_exit(&sme_global_mtx); 929 930 return sme; 931 } 932 933 /* 934 * Compatibility function with the old API. 935 */ 936 struct sysmon_envsys * 937 sysmon_envsys_find_40(u_int idx) 938 { 939 struct sysmon_envsys *sme; 940 941 mutex_enter(&sme_global_mtx); 942 LIST_FOREACH(sme, &sysmon_envsys_list, sme_list) { 943 if (idx >= sme->sme_fsensor && 944 idx < (sme->sme_fsensor + sme->sme_nsensors)) { 945 sysmon_envsys_acquire(sme, false); 946 break; 947 } 948 } 949 mutex_exit(&sme_global_mtx); 950 951 return sme; 952 } 953 954 /* 955 * sysmon_envsys_acquire: 956 * 957 * + Wait until a sysmon envsys device is available and mark 958 * it as busy. 959 */ 960 void 961 sysmon_envsys_acquire(struct sysmon_envsys *sme, bool locked) 962 { 963 KASSERT(sme != NULL); 964 965 if (locked) { 966 while (sme->sme_flags & SME_FLAG_BUSY) 967 cv_wait(&sme->sme_condvar, &sme->sme_mtx); 968 sme->sme_flags |= SME_FLAG_BUSY; 969 } else { 970 mutex_enter(&sme->sme_mtx); 971 while (sme->sme_flags & SME_FLAG_BUSY) 972 cv_wait(&sme->sme_condvar, &sme->sme_mtx); 973 sme->sme_flags |= SME_FLAG_BUSY; 974 mutex_exit(&sme->sme_mtx); 975 } 976 } 977 978 /* 979 * sysmon_envsys_release: 980 * 981 * + Unmark a sysmon envsys device as busy, and notify 982 * waiters. 983 */ 984 void 985 sysmon_envsys_release(struct sysmon_envsys *sme, bool locked) 986 { 987 KASSERT(sme != NULL); 988 989 if (locked) { 990 sme->sme_flags &= ~SME_FLAG_BUSY; 991 cv_broadcast(&sme->sme_condvar); 992 } else { 993 mutex_enter(&sme->sme_mtx); 994 sme->sme_flags &= ~SME_FLAG_BUSY; 995 cv_broadcast(&sme->sme_condvar); 996 mutex_exit(&sme->sme_mtx); 997 } 998 } 999 1000 /* 1001 * sme_initial_refresh: 1002 * 1003 * + Do an initial refresh of the sensors in a device just after 1004 * interrupts are enabled in the autoconf(9) process. 1005 * 1006 */ 1007 static void 1008 sme_initial_refresh(void *arg) 1009 { 1010 struct sysmon_envsys *sme = arg; 1011 envsys_data_t *edata; 1012 1013 mutex_enter(&sme->sme_mtx); 1014 sysmon_envsys_acquire(sme, true); 1015 TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) 1016 sysmon_envsys_refresh_sensor(sme, edata); 1017 sysmon_envsys_release(sme, true); 1018 mutex_exit(&sme->sme_mtx); 1019 } 1020 1021 /* 1022 * sme_sensor_dictionary_get: 1023 * 1024 * + Returns a dictionary of a device specified by its index 1025 * position. 1026 */ 1027 prop_dictionary_t 1028 sme_sensor_dictionary_get(prop_array_t array, const char *index) 1029 { 1030 prop_object_iterator_t iter; 1031 prop_dictionary_t dict; 1032 prop_object_t obj; 1033 1034 KASSERT(array != NULL || index != NULL); 1035 1036 iter = prop_array_iterator(array); 1037 if (!iter) 1038 return NULL; 1039 1040 while ((dict = prop_object_iterator_next(iter))) { 1041 obj = prop_dictionary_get(dict, "index"); 1042 if (prop_string_equals_cstring(obj, index)) 1043 break; 1044 } 1045 1046 prop_object_iterator_release(iter); 1047 return dict; 1048 } 1049 1050 /* 1051 * sme_remove_userprops: 1052 * 1053 * + Remove all properties from all devices that were set by 1054 * the ENVSYS_SETDICTIONARY ioctl. 1055 */ 1056 static void 1057 sme_remove_userprops(void) 1058 { 1059 struct sysmon_envsys *sme; 1060 prop_array_t array; 1061 prop_dictionary_t sdict; 1062 envsys_data_t *edata = NULL; 1063 char tmp[ENVSYS_DESCLEN]; 1064 char rnd_name[sizeof(edata->rnd_src.name)]; 1065 sysmon_envsys_lim_t lims; 1066 const struct sme_descr_entry *sdt_units; 1067 uint32_t props; 1068 int ptype; 1069 1070 mutex_enter(&sme_global_mtx); 1071 LIST_FOREACH(sme, &sysmon_envsys_list, sme_list) { 1072 sysmon_envsys_acquire(sme, false); 1073 array = prop_dictionary_get(sme_propd, sme->sme_name); 1074 1075 TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) { 1076 (void)snprintf(tmp, sizeof(tmp), "sensor%d", 1077 edata->sensor); 1078 sdict = sme_sensor_dictionary_get(array, tmp); 1079 KASSERT(sdict != NULL); 1080 1081 ptype = 0; 1082 if (edata->upropset & PROP_BATTCAP) { 1083 prop_dictionary_remove(sdict, 1084 "critical-capacity"); 1085 ptype = PENVSYS_EVENT_CAPACITY; 1086 } 1087 1088 if (edata->upropset & PROP_BATTWARN) { 1089 prop_dictionary_remove(sdict, 1090 "warning-capacity"); 1091 ptype = PENVSYS_EVENT_CAPACITY; 1092 } 1093 1094 if (edata->upropset & PROP_BATTHIGH) { 1095 prop_dictionary_remove(sdict, 1096 "high-capacity"); 1097 ptype = PENVSYS_EVENT_CAPACITY; 1098 } 1099 1100 if (edata->upropset & PROP_BATTMAX) { 1101 prop_dictionary_remove(sdict, 1102 "maximum-capacity"); 1103 ptype = PENVSYS_EVENT_CAPACITY; 1104 } 1105 if (edata->upropset & PROP_WARNMAX) { 1106 prop_dictionary_remove(sdict, "warning-max"); 1107 ptype = PENVSYS_EVENT_LIMITS; 1108 } 1109 1110 if (edata->upropset & PROP_WARNMIN) { 1111 prop_dictionary_remove(sdict, "warning-min"); 1112 ptype = PENVSYS_EVENT_LIMITS; 1113 } 1114 1115 if (edata->upropset & PROP_CRITMAX) { 1116 prop_dictionary_remove(sdict, "critical-max"); 1117 ptype = PENVSYS_EVENT_LIMITS; 1118 } 1119 1120 if (edata->upropset & PROP_CRITMIN) { 1121 prop_dictionary_remove(sdict, "critical-min"); 1122 ptype = PENVSYS_EVENT_LIMITS; 1123 } 1124 if (edata->upropset & PROP_RFACT) { 1125 (void)sme_sensor_upint32(sdict, "rfact", 0); 1126 edata->rfact = 0; 1127 } 1128 1129 if (edata->upropset & PROP_DESC) 1130 (void)sme_sensor_upstring(sdict, 1131 "description", edata->desc); 1132 1133 if (ptype == 0) 1134 continue; 1135 1136 /* 1137 * If there were any limit values removed, we 1138 * need to revert to initial limits. 1139 * 1140 * First, tell the driver that we need it to 1141 * restore any h/w limits which may have been 1142 * changed to stored, boot-time values. 1143 */ 1144 if (sme->sme_set_limits) { 1145 DPRINTF(("%s: reset limits for %s %s\n", 1146 __func__, sme->sme_name, edata->desc)); 1147 (*sme->sme_set_limits)(sme, edata, NULL, NULL); 1148 } 1149 1150 /* 1151 * Next, we need to retrieve those initial limits. 1152 */ 1153 props = 0; 1154 edata->upropset &= ~PROP_LIMITS; 1155 if (sme->sme_get_limits) { 1156 DPRINTF(("%s: retrieve limits for %s %s\n", 1157 __func__, sme->sme_name, edata->desc)); 1158 lims = edata->limits; 1159 (*sme->sme_get_limits)(sme, edata, &lims, 1160 &props); 1161 } 1162 1163 /* 1164 * Finally, remove any old limits event, then 1165 * install a new event (which will update the 1166 * dictionary) 1167 */ 1168 sme_event_unregister(sme, edata->desc, 1169 PENVSYS_EVENT_LIMITS); 1170 1171 /* 1172 * Find the correct units for this sensor. 1173 */ 1174 sdt_units = sme_find_table_entry(SME_DESC_UNITS, 1175 edata->units); 1176 1177 if (props & PROP_LIMITS) { 1178 DPRINTF(("%s: install limits for %s %s\n", 1179 __func__, sme->sme_name, edata->desc)); 1180 1181 sme_event_register(sdict, edata, sme, 1182 &lims, props, PENVSYS_EVENT_LIMITS, 1183 sdt_units->crittype); 1184 } 1185 if (edata->flags & ENVSYS_FHAS_ENTROPY) { 1186 sme_event_register(sdict, edata, sme, 1187 &lims, props, PENVSYS_EVENT_NULL, 1188 sdt_units->crittype); 1189 snprintf(rnd_name, sizeof(rnd_name), "%s-%s", 1190 sme->sme_name, edata->desc); 1191 rnd_attach_source(&edata->rnd_src, rnd_name, 1192 RND_TYPE_ENV, 0); 1193 } 1194 } 1195 1196 /* 1197 * Restore default timeout value. 1198 */ 1199 sme->sme_events_timeout = SME_EVENTS_DEFTIMEOUT; 1200 sme_schedule_callout(sme); 1201 sysmon_envsys_release(sme, false); 1202 } 1203 mutex_exit(&sme_global_mtx); 1204 } 1205 1206 /* 1207 * sme_add_property_dictionary: 1208 * 1209 * + Add global properties into a device. 1210 */ 1211 static int 1212 sme_add_property_dictionary(struct sysmon_envsys *sme, prop_array_t array, 1213 prop_dictionary_t dict) 1214 { 1215 prop_dictionary_t pdict; 1216 const char *class; 1217 int error = 0; 1218 1219 pdict = prop_dictionary_create(); 1220 if (!pdict) 1221 return EINVAL; 1222 1223 /* 1224 * Add the 'refresh-timeout' and 'dev-class' objects into the 1225 * 'device-properties' dictionary. 1226 * 1227 * ... 1228 * <dict> 1229 * <key>device-properties</key> 1230 * <dict> 1231 * <key>refresh-timeout</key> 1232 * <integer>120</integer< 1233 * <key>device-class</key> 1234 * <string>class_name</string> 1235 * </dict> 1236 * </dict> 1237 * ... 1238 * 1239 */ 1240 if (sme->sme_events_timeout == 0) { 1241 sme->sme_events_timeout = SME_EVENTS_DEFTIMEOUT; 1242 sme_schedule_callout(sme); 1243 } 1244 1245 if (!prop_dictionary_set_uint64(pdict, "refresh-timeout", 1246 sme->sme_events_timeout)) { 1247 error = EINVAL; 1248 goto out; 1249 } 1250 if (sme->sme_class == SME_CLASS_BATTERY) 1251 class = "battery"; 1252 else if (sme->sme_class == SME_CLASS_ACADAPTER) 1253 class = "ac-adapter"; 1254 else 1255 class = "other"; 1256 if (!prop_dictionary_set_cstring_nocopy(pdict, "device-class", class)) { 1257 error = EINVAL; 1258 goto out; 1259 } 1260 1261 if (!prop_dictionary_set(dict, "device-properties", pdict)) { 1262 error = EINVAL; 1263 goto out; 1264 } 1265 1266 /* 1267 * Add the device dictionary into the sysmon envsys array. 1268 */ 1269 if (!prop_array_add(array, dict)) 1270 error = EINVAL; 1271 1272 out: 1273 prop_object_release(pdict); 1274 return error; 1275 } 1276 1277 /* 1278 * sme_add_sensor_dictionary: 1279 * 1280 * + Adds the sensor objects into the dictionary and returns a pointer 1281 * to a sme_event_drv_t object if a monitoring flag was set 1282 * (or NULL otherwise). 1283 */ 1284 static sme_event_drv_t * 1285 sme_add_sensor_dictionary(struct sysmon_envsys *sme, prop_array_t array, 1286 prop_dictionary_t dict, envsys_data_t *edata) 1287 { 1288 const struct sme_descr_entry *sdt; 1289 int error; 1290 sme_event_drv_t *sme_evdrv_t = NULL; 1291 char indexstr[ENVSYS_DESCLEN]; 1292 bool mon_supported, allow_rfact; 1293 1294 /* 1295 * Add the index sensor string. 1296 * 1297 * ... 1298 * <key>index</eyr 1299 * <string>sensor0</string> 1300 * ... 1301 */ 1302 (void)snprintf(indexstr, sizeof(indexstr), "sensor%d", edata->sensor); 1303 if (sme_sensor_upstring(dict, "index", indexstr)) 1304 goto bad; 1305 1306 /* 1307 * ... 1308 * <key>description</key> 1309 * <string>blah blah</string> 1310 * ... 1311 */ 1312 if (sme_sensor_upstring(dict, "description", edata->desc)) 1313 goto bad; 1314 1315 /* 1316 * Add the monitoring boolean object: 1317 * 1318 * ... 1319 * <key>monitoring-supported</key> 1320 * <true/> 1321 * ... 1322 * 1323 * always false on Battery {capacity,charge}, Drive and Indicator types. 1324 * They cannot be monitored. 1325 * 1326 */ 1327 if ((edata->flags & ENVSYS_FMONNOTSUPP) || 1328 (edata->units == ENVSYS_INDICATOR) || 1329 (edata->units == ENVSYS_DRIVE) || 1330 (edata->units == ENVSYS_BATTERY_CAPACITY) || 1331 (edata->units == ENVSYS_BATTERY_CHARGE)) 1332 mon_supported = false; 1333 else 1334 mon_supported = true; 1335 if (sme_sensor_upbool(dict, "monitoring-supported", mon_supported)) 1336 goto out; 1337 1338 /* 1339 * Add the allow-rfact boolean object, true if 1340 * ENVSYS_FCHANGERFACT is set, false otherwise. 1341 * 1342 * ... 1343 * <key>allow-rfact</key> 1344 * <true/> 1345 * ... 1346 */ 1347 if (edata->units == ENVSYS_SVOLTS_DC || 1348 edata->units == ENVSYS_SVOLTS_AC) { 1349 if (edata->flags & ENVSYS_FCHANGERFACT) 1350 allow_rfact = true; 1351 else 1352 allow_rfact = false; 1353 if (sme_sensor_upbool(dict, "allow-rfact", allow_rfact)) 1354 goto out; 1355 } 1356 1357 error = sme_update_sensor_dictionary(dict, edata, 1358 (edata->state == ENVSYS_SVALID)); 1359 if (error < 0) 1360 goto bad; 1361 else if (error) 1362 goto out; 1363 1364 /* 1365 * ... 1366 * </dict> 1367 * 1368 * Add the dictionary into the array. 1369 * 1370 */ 1371 if (!prop_array_add(array, dict)) { 1372 DPRINTF(("%s: prop_array_add\n", __func__)); 1373 goto bad; 1374 } 1375 1376 /* 1377 * Register new event(s) if any monitoring flag was set or if 1378 * the sensor provides entropy for rnd(4). 1379 */ 1380 if (edata->flags & (ENVSYS_FMONANY | ENVSYS_FHAS_ENTROPY)) { 1381 sme_evdrv_t = kmem_zalloc(sizeof(*sme_evdrv_t), KM_SLEEP); 1382 sme_evdrv_t->sed_sdict = dict; 1383 sme_evdrv_t->sed_edata = edata; 1384 sme_evdrv_t->sed_sme = sme; 1385 sdt = sme_find_table_entry(SME_DESC_UNITS, edata->units); 1386 sme_evdrv_t->sed_powertype = sdt->crittype; 1387 } 1388 1389 out: 1390 return sme_evdrv_t; 1391 1392 bad: 1393 prop_object_release(dict); 1394 return NULL; 1395 } 1396 1397 /* 1398 * Find the maximum of all currently reported values. 1399 * The provided callback decides whether a sensor is part of the 1400 * maximum calculation (by returning true) or ignored (callback 1401 * returns false). Example usage: callback selects temperature 1402 * sensors in a given thermal zone, the function calculates the 1403 * maximum currently reported temperature in this zone. 1404 * If the parameter "refresh" is true, new values will be aquired 1405 * from the hardware, if not, the last reported value will be used. 1406 */ 1407 uint32_t 1408 sysmon_envsys_get_max_value(bool (*predicate)(const envsys_data_t*), 1409 bool refresh) 1410 { 1411 struct sysmon_envsys *sme; 1412 uint32_t maxv, v; 1413 1414 maxv = 0; 1415 mutex_enter(&sme_global_mtx); 1416 LIST_FOREACH(sme, &sysmon_envsys_list, sme_list) { 1417 sysmon_envsys_acquire(sme, false); 1418 v = sme_get_max_value(sme, predicate, refresh); 1419 sysmon_envsys_release(sme, false); 1420 if (v > maxv) 1421 maxv = v; 1422 } 1423 mutex_exit(&sme_global_mtx); 1424 return maxv; 1425 } 1426 1427 static uint32_t 1428 sme_get_max_value(struct sysmon_envsys *sme, 1429 bool (*predicate)(const envsys_data_t*), 1430 bool refresh) 1431 { 1432 envsys_data_t *edata; 1433 uint32_t maxv, v; 1434 1435 /* 1436 * Iterate over all sensors that match the predicate 1437 */ 1438 maxv = 0; 1439 TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) { 1440 if (!(*predicate)(edata)) 1441 continue; 1442 1443 /* 1444 * refresh sensor data 1445 */ 1446 mutex_enter(&sme->sme_mtx); 1447 sysmon_envsys_refresh_sensor(sme, edata); 1448 mutex_exit(&sme->sme_mtx); 1449 1450 v = edata->value_cur; 1451 if (v > maxv) 1452 maxv = v; 1453 1454 } 1455 1456 return maxv; 1457 } 1458 1459 /* 1460 * sme_update_dictionary: 1461 * 1462 * + Update per-sensor dictionaries with new values if there were 1463 * changes, otherwise the object in dictionary is untouched. 1464 */ 1465 int 1466 sme_update_dictionary(struct sysmon_envsys *sme) 1467 { 1468 envsys_data_t *edata; 1469 prop_object_t array, dict, obj, obj2; 1470 int error = 0; 1471 1472 /* 1473 * Retrieve the array of dictionaries in device. 1474 */ 1475 array = prop_dictionary_get(sme_propd, sme->sme_name); 1476 if (prop_object_type(array) != PROP_TYPE_ARRAY) { 1477 DPRINTF(("%s: not an array (%s)\n", __func__, sme->sme_name)); 1478 return EINVAL; 1479 } 1480 1481 /* 1482 * Get the last dictionary on the array, this contains the 1483 * 'device-properties' sub-dictionary. 1484 */ 1485 obj = prop_array_get(array, prop_array_count(array) - 1); 1486 if (!obj || prop_object_type(obj) != PROP_TYPE_DICTIONARY) { 1487 DPRINTF(("%s: not a device-properties dictionary\n", __func__)); 1488 return EINVAL; 1489 } 1490 1491 obj2 = prop_dictionary_get(obj, "device-properties"); 1492 if (!obj2) 1493 return EINVAL; 1494 1495 /* 1496 * Update the 'refresh-timeout' property. 1497 */ 1498 if (!prop_dictionary_set_uint64(obj2, "refresh-timeout", 1499 sme->sme_events_timeout)) 1500 return EINVAL; 1501 1502 /* 1503 * - iterate over all sensors. 1504 * - fetch new data. 1505 * - check if data in dictionary is different than new data. 1506 * - update dictionary if there were changes. 1507 */ 1508 DPRINTF(("%s: updating '%s' with nsensors=%d\n", __func__, 1509 sme->sme_name, sme->sme_nsensors)); 1510 1511 /* 1512 * Don't bother with locking when traversing the queue, 1513 * the device is already marked as busy; if a sensor 1514 * is going to be removed or added it will have to wait. 1515 */ 1516 TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) { 1517 /* 1518 * refresh sensor data via sme_envsys_refresh_sensor 1519 */ 1520 mutex_enter(&sme->sme_mtx); 1521 sysmon_envsys_refresh_sensor(sme, edata); 1522 mutex_exit(&sme->sme_mtx); 1523 1524 /* 1525 * retrieve sensor's dictionary. 1526 */ 1527 dict = prop_array_get(array, edata->sensor); 1528 if (prop_object_type(dict) != PROP_TYPE_DICTIONARY) { 1529 DPRINTF(("%s: not a dictionary (%d:%s)\n", 1530 __func__, edata->sensor, sme->sme_name)); 1531 return EINVAL; 1532 } 1533 1534 /* 1535 * update sensor's state. 1536 */ 1537 error = sme_update_sensor_dictionary(dict, edata, true); 1538 1539 if (error) 1540 break; 1541 } 1542 1543 return error; 1544 } 1545 1546 int 1547 sme_update_sensor_dictionary(prop_object_t dict, envsys_data_t *edata, 1548 bool value_update) 1549 { 1550 const struct sme_descr_entry *sdt; 1551 int error = 0; 1552 1553 sdt = sme_find_table_entry(SME_DESC_STATES, edata->state); 1554 if (sdt == NULL) { 1555 printf("sme_update_sensor_dictionary: can not update sensor " 1556 "state %d unknown\n", edata->state); 1557 return EINVAL; 1558 } 1559 1560 DPRINTFOBJ(("%s: sensor #%d type=%d (%s) flags=%d\n", __func__, 1561 edata->sensor, sdt->type, sdt->desc, edata->flags)); 1562 1563 error = sme_sensor_upstring(dict, "state", sdt->desc); 1564 if (error) 1565 return (-error); 1566 1567 /* 1568 * update sensor's type. 1569 */ 1570 sdt = sme_find_table_entry(SME_DESC_UNITS, edata->units); 1571 1572 DPRINTFOBJ(("%s: sensor #%d units=%d (%s)\n", __func__, edata->sensor, 1573 sdt->type, sdt->desc)); 1574 1575 error = sme_sensor_upstring(dict, "type", sdt->desc); 1576 if (error) 1577 return (-error); 1578 1579 if (value_update) { 1580 /* 1581 * update sensor's current value. 1582 */ 1583 error = sme_sensor_upint32(dict, "cur-value", edata->value_cur); 1584 if (error) 1585 return error; 1586 } 1587 1588 /* 1589 * Battery charge and Indicator types do not 1590 * need the remaining objects, so skip them. 1591 */ 1592 if (edata->units == ENVSYS_INDICATOR || 1593 edata->units == ENVSYS_BATTERY_CHARGE) 1594 return error; 1595 1596 /* 1597 * update sensor flags. 1598 */ 1599 if (edata->flags & ENVSYS_FPERCENT) { 1600 error = sme_sensor_upbool(dict, "want-percentage", true); 1601 if (error) 1602 return error; 1603 } 1604 1605 if (value_update) { 1606 /* 1607 * update sensor's {max,min}-value. 1608 */ 1609 if (edata->flags & ENVSYS_FVALID_MAX) { 1610 error = sme_sensor_upint32(dict, "max-value", 1611 edata->value_max); 1612 if (error) 1613 return error; 1614 } 1615 1616 if (edata->flags & ENVSYS_FVALID_MIN) { 1617 error = sme_sensor_upint32(dict, "min-value", 1618 edata->value_min); 1619 if (error) 1620 return error; 1621 } 1622 1623 /* 1624 * update 'rpms' only for ENVSYS_SFANRPM sensors. 1625 */ 1626 if (edata->units == ENVSYS_SFANRPM) { 1627 error = sme_sensor_upuint32(dict, "rpms", edata->rpms); 1628 if (error) 1629 return error; 1630 } 1631 1632 /* 1633 * update 'rfact' only for ENVSYS_SVOLTS_[AD]C sensors. 1634 */ 1635 if (edata->units == ENVSYS_SVOLTS_AC || 1636 edata->units == ENVSYS_SVOLTS_DC) { 1637 error = sme_sensor_upint32(dict, "rfact", edata->rfact); 1638 if (error) 1639 return error; 1640 } 1641 } 1642 1643 /* 1644 * update 'drive-state' only for ENVSYS_DRIVE sensors. 1645 */ 1646 if (edata->units == ENVSYS_DRIVE) { 1647 sdt = sme_find_table_entry(SME_DESC_DRIVE_STATES, 1648 edata->value_cur); 1649 error = sme_sensor_upstring(dict, "drive-state", sdt->desc); 1650 if (error) 1651 return error; 1652 } 1653 1654 /* 1655 * update 'battery-capacity' only for ENVSYS_BATTERY_CAPACITY 1656 * sensors. 1657 */ 1658 if (edata->units == ENVSYS_BATTERY_CAPACITY) { 1659 sdt = sme_find_table_entry(SME_DESC_BATTERY_CAPACITY, 1660 edata->value_cur); 1661 error = sme_sensor_upstring(dict, "battery-capacity", 1662 sdt->desc); 1663 if (error) 1664 return error; 1665 } 1666 1667 return error; 1668 } 1669 1670 /* 1671 * sme_userset_dictionary: 1672 * 1673 * + Parse the userland dictionary and run the appropiate tasks 1674 * that were specified. 1675 */ 1676 int 1677 sme_userset_dictionary(struct sysmon_envsys *sme, prop_dictionary_t udict, 1678 prop_array_t array) 1679 { 1680 const struct sme_descr_entry *sdt; 1681 envsys_data_t *edata; 1682 prop_dictionary_t dict, tdict = NULL; 1683 prop_object_t obj, obj1, obj2, tobj = NULL; 1684 uint32_t props; 1685 uint64_t refresh_timo = 0; 1686 sysmon_envsys_lim_t lims; 1687 int i, error = 0; 1688 const char *blah; 1689 bool targetfound = false; 1690 1691 /* 1692 * The user wanted to change the refresh timeout value for this 1693 * device. 1694 * 1695 * Get the 'device-properties' object from the userland dictionary. 1696 */ 1697 obj = prop_dictionary_get(udict, "device-properties"); 1698 if (obj && prop_object_type(obj) == PROP_TYPE_DICTIONARY) { 1699 /* 1700 * Get the 'refresh-timeout' property for this device. 1701 */ 1702 obj1 = prop_dictionary_get(obj, "refresh-timeout"); 1703 if (obj1 && prop_object_type(obj1) == PROP_TYPE_NUMBER) { 1704 targetfound = true; 1705 refresh_timo = 1706 prop_number_unsigned_integer_value(obj1); 1707 if (refresh_timo < 1) 1708 error = EINVAL; 1709 else { 1710 mutex_enter(&sme->sme_mtx); 1711 if (sme->sme_events_timeout != refresh_timo) { 1712 sme->sme_events_timeout = refresh_timo; 1713 sme_schedule_callout(sme); 1714 } 1715 mutex_exit(&sme->sme_mtx); 1716 } 1717 } 1718 return error; 1719 1720 } else if (!obj) { 1721 /* 1722 * Get sensor's index from userland dictionary. 1723 */ 1724 obj = prop_dictionary_get(udict, "index"); 1725 if (!obj) 1726 return EINVAL; 1727 if (prop_object_type(obj) != PROP_TYPE_STRING) { 1728 DPRINTF(("%s: 'index' not a string\n", __func__)); 1729 return EINVAL; 1730 } 1731 } else 1732 return EINVAL; 1733 1734 /* 1735 * Don't bother with locking when traversing the queue, 1736 * the device is already marked as busy; if a sensor 1737 * is going to be removed or added it will have to wait. 1738 */ 1739 TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) { 1740 /* 1741 * Get a dictionary and check if it's our sensor by checking 1742 * at its index position. 1743 */ 1744 dict = prop_array_get(array, edata->sensor); 1745 obj1 = prop_dictionary_get(dict, "index"); 1746 1747 /* 1748 * is it our sensor? 1749 */ 1750 if (!prop_string_equals(obj1, obj)) 1751 continue; 1752 1753 props = 0; 1754 1755 /* 1756 * Check if a new description operation was 1757 * requested by the user and set new description. 1758 */ 1759 obj2 = prop_dictionary_get(udict, "description"); 1760 if (obj2 && prop_object_type(obj2) == PROP_TYPE_STRING) { 1761 targetfound = true; 1762 blah = prop_string_cstring_nocopy(obj2); 1763 1764 /* 1765 * Check for duplicate description. 1766 */ 1767 for (i = 0; i < sme->sme_nsensors; i++) { 1768 if (i == edata->sensor) 1769 continue; 1770 tdict = prop_array_get(array, i); 1771 tobj = 1772 prop_dictionary_get(tdict, "description"); 1773 if (prop_string_equals(obj2, tobj)) { 1774 error = EEXIST; 1775 goto out; 1776 } 1777 } 1778 1779 /* 1780 * Update the object in dictionary. 1781 */ 1782 mutex_enter(&sme->sme_mtx); 1783 error = sme_sensor_upstring(dict, 1784 "description", 1785 blah); 1786 if (error) { 1787 mutex_exit(&sme->sme_mtx); 1788 goto out; 1789 } 1790 1791 DPRINTF(("%s: sensor%d changed desc to: %s\n", 1792 __func__, edata->sensor, blah)); 1793 edata->upropset |= PROP_DESC; 1794 mutex_exit(&sme->sme_mtx); 1795 } 1796 1797 /* 1798 * did the user want to change the rfact? 1799 */ 1800 obj2 = prop_dictionary_get(udict, "rfact"); 1801 if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) { 1802 targetfound = true; 1803 if (edata->flags & ENVSYS_FCHANGERFACT) { 1804 mutex_enter(&sme->sme_mtx); 1805 edata->rfact = prop_number_integer_value(obj2); 1806 edata->upropset |= PROP_RFACT; 1807 mutex_exit(&sme->sme_mtx); 1808 DPRINTF(("%s: sensor%d changed rfact to %d\n", 1809 __func__, edata->sensor, edata->rfact)); 1810 } else { 1811 error = ENOTSUP; 1812 goto out; 1813 } 1814 } 1815 1816 sdt = sme_find_table_entry(SME_DESC_UNITS, edata->units); 1817 1818 /* 1819 * did the user want to set a critical capacity event? 1820 */ 1821 obj2 = prop_dictionary_get(udict, "critical-capacity"); 1822 if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) { 1823 targetfound = true; 1824 lims.sel_critmin = prop_number_integer_value(obj2); 1825 props |= PROP_BATTCAP; 1826 } 1827 1828 /* 1829 * did the user want to set a warning capacity event? 1830 */ 1831 obj2 = prop_dictionary_get(udict, "warning-capacity"); 1832 if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) { 1833 targetfound = true; 1834 lims.sel_warnmin = prop_number_integer_value(obj2); 1835 props |= PROP_BATTWARN; 1836 } 1837 1838 /* 1839 * did the user want to set a high capacity event? 1840 */ 1841 obj2 = prop_dictionary_get(udict, "high-capacity"); 1842 if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) { 1843 targetfound = true; 1844 lims.sel_warnmin = prop_number_integer_value(obj2); 1845 props |= PROP_BATTHIGH; 1846 } 1847 1848 /* 1849 * did the user want to set a maximum capacity event? 1850 */ 1851 obj2 = prop_dictionary_get(udict, "maximum-capacity"); 1852 if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) { 1853 targetfound = true; 1854 lims.sel_warnmin = prop_number_integer_value(obj2); 1855 props |= PROP_BATTMAX; 1856 } 1857 1858 /* 1859 * did the user want to set a critical max event? 1860 */ 1861 obj2 = prop_dictionary_get(udict, "critical-max"); 1862 if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) { 1863 targetfound = true; 1864 lims.sel_critmax = prop_number_integer_value(obj2); 1865 props |= PROP_CRITMAX; 1866 } 1867 1868 /* 1869 * did the user want to set a warning max event? 1870 */ 1871 obj2 = prop_dictionary_get(udict, "warning-max"); 1872 if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) { 1873 targetfound = true; 1874 lims.sel_warnmax = prop_number_integer_value(obj2); 1875 props |= PROP_WARNMAX; 1876 } 1877 1878 /* 1879 * did the user want to set a critical min event? 1880 */ 1881 obj2 = prop_dictionary_get(udict, "critical-min"); 1882 if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) { 1883 targetfound = true; 1884 lims.sel_critmin = prop_number_integer_value(obj2); 1885 props |= PROP_CRITMIN; 1886 } 1887 1888 /* 1889 * did the user want to set a warning min event? 1890 */ 1891 obj2 = prop_dictionary_get(udict, "warning-min"); 1892 if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) { 1893 targetfound = true; 1894 lims.sel_warnmin = prop_number_integer_value(obj2); 1895 props |= PROP_WARNMIN; 1896 } 1897 1898 if (props && (edata->flags & ENVSYS_FMONNOTSUPP) != 0) { 1899 error = ENOTSUP; 1900 goto out; 1901 } 1902 if (props || (edata->flags & ENVSYS_FHAS_ENTROPY) != 0) { 1903 error = sme_event_register(dict, edata, sme, &lims, 1904 props, 1905 (edata->flags & ENVSYS_FPERCENT)? 1906 PENVSYS_EVENT_CAPACITY: 1907 PENVSYS_EVENT_LIMITS, 1908 sdt->crittype); 1909 if (error == EEXIST) 1910 error = 0; 1911 if (error) 1912 goto out; 1913 } 1914 1915 /* 1916 * All objects in dictionary were processed. 1917 */ 1918 break; 1919 } 1920 1921 out: 1922 /* 1923 * invalid target? return the error. 1924 */ 1925 if (!targetfound) 1926 error = EINVAL; 1927 1928 return error; 1929 } 1930 1931 /* 1932 * + sysmon_envsys_foreach_sensor 1933 * 1934 * Walk through the devices' sensor lists and execute the callback. 1935 * If the callback returns false, the remainder of the current 1936 * device's sensors are skipped. 1937 */ 1938 void 1939 sysmon_envsys_foreach_sensor(sysmon_envsys_callback_t func, void *arg, 1940 bool refresh) 1941 { 1942 struct sysmon_envsys *sme; 1943 envsys_data_t *sensor; 1944 1945 mutex_enter(&sme_global_mtx); 1946 LIST_FOREACH(sme, &sysmon_envsys_list, sme_list) { 1947 1948 sysmon_envsys_acquire(sme, false); 1949 TAILQ_FOREACH(sensor, &sme->sme_sensors_list, sensors_head) { 1950 if (refresh) { 1951 mutex_enter(&sme->sme_mtx); 1952 sysmon_envsys_refresh_sensor(sme, sensor); 1953 mutex_exit(&sme->sme_mtx); 1954 } 1955 if (!(*func)(sme, sensor, arg)) 1956 break; 1957 } 1958 sysmon_envsys_release(sme, false); 1959 } 1960 mutex_exit(&sme_global_mtx); 1961 } 1962 1963 /* 1964 * Call the sensor's refresh function, and collect/stir entropy 1965 */ 1966 void 1967 sysmon_envsys_refresh_sensor(struct sysmon_envsys *sme, envsys_data_t *edata) 1968 { 1969 1970 if ((sme->sme_flags & SME_DISABLE_REFRESH) == 0) 1971 (*sme->sme_refresh)(sme, edata); 1972 1973 if (edata->flags & ENVSYS_FHAS_ENTROPY && 1974 edata->state != ENVSYS_SINVALID && 1975 edata->value_prev != edata->value_cur) 1976 rnd_add_uint32(&edata->rnd_src, edata->value_cur); 1977 edata->value_prev = edata->value_cur; 1978 } 1979