xref: /netbsd-src/sys/dev/sysmon/sysmon_envsys.c (revision 4817a0b0b8fe9612e8ebe21a9bf2d97b95038a97)
1 /*	$NetBSD: sysmon_envsys.c,v 1.111 2010/12/16 16:08:57 njoly Exp $	*/
2 
3 /*-
4  * Copyright (c) 2007, 2008 Juan Romero Pardines.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 /*-
29  * Copyright (c) 2000 Zembu Labs, Inc.
30  * All rights reserved.
31  *
32  * Author: Jason R. Thorpe <thorpej@zembu.com>
33  *
34  * Redistribution and use in source and binary forms, with or without
35  * modification, are permitted provided that the following conditions
36  * are met:
37  * 1. Redistributions of source code must retain the above copyright
38  *    notice, this list of conditions and the following disclaimer.
39  * 2. Redistributions in binary form must reproduce the above copyright
40  *    notice, this list of conditions and the following disclaimer in the
41  *    documentation and/or other materials provided with the distribution.
42  * 3. All advertising materials mentioning features or use of this software
43  *    must display the following acknowledgement:
44  *	This product includes software developed by Zembu Labs, Inc.
45  * 4. Neither the name of Zembu Labs nor the names of its employees may
46  *    be used to endorse or promote products derived from this software
47  *    without specific prior written permission.
48  *
49  * THIS SOFTWARE IS PROVIDED BY ZEMBU LABS, INC. ``AS IS'' AND ANY EXPRESS
50  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
51  * RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
52  * CLAIMED.  IN NO EVENT SHALL ZEMBU LABS BE LIABLE FOR ANY DIRECT, INDIRECT,
53  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
54  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
55  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
56  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
57  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
58  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
59  */
60 
61 /*
62  * Environmental sensor framework for sysmon, exported to userland
63  * with proplib(3).
64  */
65 
66 #include <sys/cdefs.h>
67 __KERNEL_RCSID(0, "$NetBSD: sysmon_envsys.c,v 1.111 2010/12/16 16:08:57 njoly Exp $");
68 
69 #include <sys/param.h>
70 #include <sys/types.h>
71 #include <sys/conf.h>
72 #include <sys/errno.h>
73 #include <sys/fcntl.h>
74 #include <sys/kernel.h>
75 #include <sys/systm.h>
76 #include <sys/proc.h>
77 #include <sys/mutex.h>
78 #include <sys/kmem.h>
79 
80 /* #define ENVSYS_DEBUG */
81 #include <dev/sysmon/sysmonvar.h>
82 #include <dev/sysmon/sysmon_envsysvar.h>
83 #include <dev/sysmon/sysmon_taskq.h>
84 
85 kmutex_t sme_global_mtx;
86 
87 prop_dictionary_t sme_propd;
88 
89 static uint32_t sysmon_envsys_next_sensor_index;
90 static struct sysmon_envsys *sysmon_envsys_find_40(u_int);
91 
92 static void sysmon_envsys_destroy_plist(prop_array_t);
93 static void sme_remove_userprops(void);
94 static int sme_add_property_dictionary(struct sysmon_envsys *, prop_array_t,
95 				       prop_dictionary_t);
96 static sme_event_drv_t * sme_add_sensor_dictionary(struct sysmon_envsys *,
97 	prop_array_t, prop_dictionary_t, envsys_data_t *);
98 static void sme_initial_refresh(void *);
99 static uint32_t sme_get_max_value(struct sysmon_envsys *,
100      bool (*)(const envsys_data_t*), bool);
101 
102 /*
103  * sysmon_envsys_init:
104  *
105  * 	+ Initialize global mutex, dictionary and the linked list.
106  */
107 void
108 sysmon_envsys_init(void)
109 {
110 	LIST_INIT(&sysmon_envsys_list);
111 	mutex_init(&sme_global_mtx, MUTEX_DEFAULT, IPL_NONE);
112 	sme_propd = prop_dictionary_create();
113 }
114 
115 /*
116  * sysmonopen_envsys:
117  *
118  *	+ Open the system monitor device.
119  */
120 int
121 sysmonopen_envsys(dev_t dev, int flag, int mode, struct lwp *l)
122 {
123 	return 0;
124 }
125 
126 /*
127  * sysmonclose_envsys:
128  *
129  *	+ Close the system monitor device.
130  */
131 int
132 sysmonclose_envsys(dev_t dev, int flag, int mode, struct lwp *l)
133 {
134 	return 0;
135 }
136 
137 /*
138  * sysmonioctl_envsys:
139  *
140  *	+ Perform a sysmon envsys control request.
141  */
142 int
143 sysmonioctl_envsys(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
144 {
145 	struct sysmon_envsys *sme = NULL;
146 	int error = 0;
147 	u_int oidx;
148 
149 	switch (cmd) {
150 	/*
151 	 * To update the global dictionary with latest data from devices.
152 	 */
153 	case ENVSYS_GETDICTIONARY:
154 	    {
155 		struct plistref *plist = (struct plistref *)data;
156 
157 		/*
158 		 * Update dictionaries on all sysmon envsys devices
159 		 * registered.
160 		 */
161 		mutex_enter(&sme_global_mtx);
162 		LIST_FOREACH(sme, &sysmon_envsys_list, sme_list) {
163 			sysmon_envsys_acquire(sme, false);
164 			error = sme_update_dictionary(sme);
165 			if (error) {
166 				DPRINTF(("%s: sme_update_dictionary, "
167 				    "error=%d\n", __func__, error));
168 				sysmon_envsys_release(sme, false);
169 				mutex_exit(&sme_global_mtx);
170 				return error;
171 			}
172 			sysmon_envsys_release(sme, false);
173 		}
174 		mutex_exit(&sme_global_mtx);
175 		/*
176 		 * Copy global dictionary to userland.
177 		 */
178 		error = prop_dictionary_copyout_ioctl(plist, cmd, sme_propd);
179 		break;
180 	    }
181 	/*
182 	 * To set properties on multiple devices.
183 	 */
184 	case ENVSYS_SETDICTIONARY:
185 	    {
186 		const struct plistref *plist = (const struct plistref *)data;
187 		prop_dictionary_t udict;
188 		prop_object_iterator_t iter, iter2;
189 		prop_object_t obj, obj2;
190 		prop_array_t array_u, array_k;
191 		const char *devname = NULL;
192 
193 		if ((flag & FWRITE) == 0)
194 			return EPERM;
195 
196 		/*
197 		 * Get dictionary from userland.
198 		 */
199 		error = prop_dictionary_copyin_ioctl(plist, cmd, &udict);
200 		if (error) {
201 			DPRINTF(("%s: copyin_ioctl error=%d\n",
202 			    __func__, error));
203 			break;
204 		}
205 
206 		iter = prop_dictionary_iterator(udict);
207 		if (!iter) {
208 			prop_object_release(udict);
209 			return ENOMEM;
210 		}
211 
212 		/*
213 		 * Iterate over the userland dictionary and process
214 		 * the list of devices.
215 		 */
216 		while ((obj = prop_object_iterator_next(iter))) {
217 			array_u = prop_dictionary_get_keysym(udict, obj);
218 			if (prop_object_type(array_u) != PROP_TYPE_ARRAY) {
219 				prop_object_iterator_release(iter);
220 				prop_object_release(udict);
221 				return EINVAL;
222 			}
223 
224 			devname = prop_dictionary_keysym_cstring_nocopy(obj);
225 			DPRINTF(("%s: processing the '%s' array requests\n",
226 			    __func__, devname));
227 
228 			/*
229 			 * find the correct sme device.
230 			 */
231 			sme = sysmon_envsys_find(devname);
232 			if (!sme) {
233 				DPRINTF(("%s: NULL sme\n", __func__));
234 				prop_object_iterator_release(iter);
235 				prop_object_release(udict);
236 				return EINVAL;
237 			}
238 
239 			/*
240 			 * Find the correct array object with the string
241 			 * supplied by the userland dictionary.
242 			 */
243 			array_k = prop_dictionary_get(sme_propd, devname);
244 			if (prop_object_type(array_k) != PROP_TYPE_ARRAY) {
245 				DPRINTF(("%s: array device failed\n",
246 				    __func__));
247 				sysmon_envsys_release(sme, false);
248 				prop_object_iterator_release(iter);
249 				prop_object_release(udict);
250 				return EINVAL;
251 			}
252 
253 			iter2 = prop_array_iterator(array_u);
254 			if (!iter2) {
255 				sysmon_envsys_release(sme, false);
256 				prop_object_iterator_release(iter);
257 				prop_object_release(udict);
258 				return ENOMEM;
259 			}
260 
261 			/*
262 			 * Iterate over the array of dictionaries to
263 			 * process the list of sensors and properties.
264 			 */
265 			while ((obj2 = prop_object_iterator_next(iter2))) {
266 				/*
267 				 * do the real work now.
268 				 */
269 				error = sme_userset_dictionary(sme,
270 							       obj2,
271 							       array_k);
272 				if (error) {
273 					sysmon_envsys_release(sme, false);
274 					prop_object_iterator_release(iter2);
275 					prop_object_iterator_release(iter);
276 					prop_object_release(udict);
277 					return error;
278 				}
279 			}
280 
281 			sysmon_envsys_release(sme, false);
282 			prop_object_iterator_release(iter2);
283 		}
284 
285 		prop_object_iterator_release(iter);
286 		prop_object_release(udict);
287 		break;
288 	    }
289 	/*
290 	 * To remove all properties from all devices registered.
291 	 */
292 	case ENVSYS_REMOVEPROPS:
293 	    {
294 		const struct plistref *plist = (const struct plistref *)data;
295 		prop_dictionary_t udict;
296 		prop_object_t obj;
297 
298 		if ((flag & FWRITE) == 0)
299 			return EPERM;
300 
301 		error = prop_dictionary_copyin_ioctl(plist, cmd, &udict);
302 		if (error) {
303 			DPRINTF(("%s: copyin_ioctl error=%d\n",
304 			    __func__, error));
305 			break;
306 		}
307 
308 		obj = prop_dictionary_get(udict, "envsys-remove-props");
309 		if (!obj || !prop_bool_true(obj)) {
310 			DPRINTF(("%s: invalid 'envsys-remove-props'\n",
311 			     __func__));
312 			return EINVAL;
313 		}
314 
315 		prop_object_release(udict);
316 		sme_remove_userprops();
317 
318 		break;
319 	    }
320 	/*
321 	 * Compatibility ioctls with the old interface, only implemented
322 	 * ENVSYS_GTREDATA and ENVSYS_GTREINFO; enough to make old
323 	 * applications work.
324 	 */
325 	case ENVSYS_GTREDATA:
326 	    {
327 		struct envsys_tre_data *tred = (void *)data;
328 		envsys_data_t *edata = NULL;
329 		bool found = false;
330 
331 		tred->validflags = 0;
332 
333 		sme = sysmon_envsys_find_40(tred->sensor);
334 		if (!sme)
335 			break;
336 
337 		oidx = tred->sensor;
338 		tred->sensor = SME_SENSOR_IDX(sme, tred->sensor);
339 
340 		DPRINTFOBJ(("%s: sensor=%d oidx=%d dev=%s nsensors=%d\n",
341 		    __func__, tred->sensor, oidx, sme->sme_name,
342 		    sme->sme_nsensors));
343 
344 		TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
345 			if (edata->sensor == tred->sensor) {
346 				found = true;
347 				break;
348 			}
349 		}
350 
351 		if (!found) {
352 			sysmon_envsys_release(sme, false);
353 			error = ENODEV;
354 			break;
355 		}
356 
357 		if (tred->sensor < sme->sme_nsensors) {
358 			if ((sme->sme_flags & SME_DISABLE_REFRESH) == 0 &&
359 			    (sme->sme_flags & SME_POLL_ONLY) == 0) {
360 				mutex_enter(&sme->sme_mtx);
361 				(*sme->sme_refresh)(sme, edata);
362 				mutex_exit(&sme->sme_mtx);
363 			}
364 
365 			/*
366 			 * copy required values to the old interface.
367 			 */
368 			tred->sensor = edata->sensor;
369 			tred->cur.data_us = edata->value_cur;
370 			tred->cur.data_s = edata->value_cur;
371 			tred->max.data_us = edata->value_max;
372 			tred->max.data_s = edata->value_max;
373 			tred->min.data_us = edata->value_min;
374 			tred->min.data_s = edata->value_min;
375 			tred->avg.data_us = edata->value_avg;
376 			tred->avg.data_s = edata->value_avg;
377 			if (edata->units == ENVSYS_BATTERY_CHARGE)
378 				tred->units = ENVSYS_INDICATOR;
379 			else
380 				tred->units = edata->units;
381 
382 			tred->validflags |= ENVSYS_FVALID;
383 			tred->validflags |= ENVSYS_FCURVALID;
384 
385 			if (edata->flags & ENVSYS_FPERCENT) {
386 				tred->validflags |= ENVSYS_FMAXVALID;
387 				tred->validflags |= ENVSYS_FFRACVALID;
388 			}
389 
390 			if (edata->state == ENVSYS_SINVALID) {
391 				tred->validflags &= ~ENVSYS_FCURVALID;
392 				tred->cur.data_us = tred->cur.data_s = 0;
393 			}
394 
395 			DPRINTFOBJ(("%s: sensor=%s tred->cur.data_s=%d\n",
396 			    __func__, edata->desc, tred->cur.data_s));
397 			DPRINTFOBJ(("%s: tred->validflags=%d tred->units=%d"
398 			    " tred->sensor=%d\n", __func__, tred->validflags,
399 			    tred->units, tred->sensor));
400 		}
401 		tred->sensor = oidx;
402 		sysmon_envsys_release(sme, false);
403 
404 		break;
405 	    }
406 	case ENVSYS_GTREINFO:
407 	    {
408 		struct envsys_basic_info *binfo = (void *)data;
409 		envsys_data_t *edata = NULL;
410 		bool found = false;
411 
412 		binfo->validflags = 0;
413 
414 		sme = sysmon_envsys_find_40(binfo->sensor);
415 		if (!sme)
416 			break;
417 
418 		oidx = binfo->sensor;
419 		binfo->sensor = SME_SENSOR_IDX(sme, binfo->sensor);
420 
421 		TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
422 			if (edata->sensor == binfo->sensor) {
423 				found = true;
424 				break;
425 			}
426 		}
427 
428 		if (!found) {
429 			sysmon_envsys_release(sme, false);
430 			error = ENODEV;
431 			break;
432 		}
433 
434 		binfo->validflags |= ENVSYS_FVALID;
435 
436 		if (binfo->sensor < sme->sme_nsensors) {
437 			if (edata->units == ENVSYS_BATTERY_CHARGE)
438 				binfo->units = ENVSYS_INDICATOR;
439 			else
440 				binfo->units = edata->units;
441 
442 			/*
443 			 * previously, the ACPI sensor names included the
444 			 * device name. Include that in compatibility code.
445 			 */
446 			if (strncmp(sme->sme_name, "acpi", 4) == 0)
447 				(void)snprintf(binfo->desc, sizeof(binfo->desc),
448 				    "%s %s", sme->sme_name, edata->desc);
449 			else
450 				(void)strlcpy(binfo->desc, edata->desc,
451 				    sizeof(binfo->desc));
452 		}
453 
454 		DPRINTFOBJ(("%s: binfo->units=%d binfo->validflags=%d\n",
455 		    __func__, binfo->units, binfo->validflags));
456 		DPRINTFOBJ(("%s: binfo->desc=%s binfo->sensor=%d\n",
457 		    __func__, binfo->desc, binfo->sensor));
458 
459 		binfo->sensor = oidx;
460 		sysmon_envsys_release(sme, false);
461 
462 		break;
463 	    }
464 	default:
465 		error = ENOTTY;
466 		break;
467 	}
468 
469 	return error;
470 }
471 
472 /*
473  * sysmon_envsys_create:
474  *
475  * 	+ Allocates a new sysmon_envsys object and initializes the
476  * 	  stuff for sensors and events.
477  */
478 struct sysmon_envsys *
479 sysmon_envsys_create(void)
480 {
481 	struct sysmon_envsys *sme;
482 
483 	sme = kmem_zalloc(sizeof(*sme), KM_SLEEP);
484 	TAILQ_INIT(&sme->sme_sensors_list);
485 	LIST_INIT(&sme->sme_events_list);
486 	mutex_init(&sme->sme_mtx, MUTEX_DEFAULT, IPL_NONE);
487 	cv_init(&sme->sme_condvar, "sme_wait");
488 
489 	return sme;
490 }
491 
492 /*
493  * sysmon_envsys_destroy:
494  *
495  * 	+ Removes all sensors from the tail queue, destroys the callout
496  * 	  and frees the sysmon_envsys object.
497  */
498 void
499 sysmon_envsys_destroy(struct sysmon_envsys *sme)
500 {
501 	envsys_data_t *edata;
502 
503 	KASSERT(sme != NULL);
504 
505 	while (!TAILQ_EMPTY(&sme->sme_sensors_list)) {
506 		edata = TAILQ_FIRST(&sme->sme_sensors_list);
507 		TAILQ_REMOVE(&sme->sme_sensors_list, edata, sensors_head);
508 	}
509 	mutex_destroy(&sme->sme_mtx);
510 	cv_destroy(&sme->sme_condvar);
511 	kmem_free(sme, sizeof(*sme));
512 }
513 
514 /*
515  * sysmon_envsys_sensor_attach:
516  *
517  * 	+ Attachs a sensor into a sysmon_envsys device checking that units
518  * 	  is set to a valid type and description is unique and not empty.
519  */
520 int
521 sysmon_envsys_sensor_attach(struct sysmon_envsys *sme, envsys_data_t *edata)
522 {
523 	const struct sme_descr_entry *sdt_units;
524 	envsys_data_t *oedata;
525 
526 	KASSERT(sme != NULL || edata != NULL);
527 
528 	/*
529 	 * Find the correct units for this sensor.
530 	 */
531 	sdt_units = sme_find_table_entry(SME_DESC_UNITS, edata->units);
532 	if (sdt_units->type == -1)
533 		return EINVAL;
534 
535 	/*
536 	 * Check that description is not empty or duplicate.
537 	 */
538 	if (strlen(edata->desc) == 0)
539 		return EINVAL;
540 
541 	mutex_enter(&sme->sme_mtx);
542 	sysmon_envsys_acquire(sme, true);
543 	TAILQ_FOREACH(oedata, &sme->sme_sensors_list, sensors_head) {
544 		if (strcmp(oedata->desc, edata->desc) == 0) {
545 			sysmon_envsys_release(sme, true);
546 			mutex_exit(&sme->sme_mtx);
547 			return EEXIST;
548 		}
549 	}
550 	/*
551 	 * Ok, the sensor has been added into the device queue.
552 	 */
553 	TAILQ_INSERT_TAIL(&sme->sme_sensors_list, edata, sensors_head);
554 
555 	/*
556 	 * Give the sensor a index position.
557 	 */
558 	edata->sensor = sme->sme_nsensors;
559 	sme->sme_nsensors++;
560 	sysmon_envsys_release(sme, true);
561 	mutex_exit(&sme->sme_mtx);
562 
563 	DPRINTF(("%s: attached #%d (%s), units=%d (%s)\n",
564 	    __func__, edata->sensor, edata->desc,
565 	    sdt_units->type, sdt_units->desc));
566 
567 	return 0;
568 }
569 
570 /*
571  * sysmon_envsys_sensor_detach:
572  *
573  * 	+ Detachs a sensor from a sysmon_envsys device and decrements the
574  * 	  sensors count on success.
575  */
576 int
577 sysmon_envsys_sensor_detach(struct sysmon_envsys *sme, envsys_data_t *edata)
578 {
579 	envsys_data_t *oedata;
580 	bool found = false;
581 
582 	KASSERT(sme != NULL || edata != NULL);
583 
584 	/*
585 	 * Check the sensor is already on the list.
586 	 */
587 	mutex_enter(&sme->sme_mtx);
588 	sysmon_envsys_acquire(sme, true);
589 	TAILQ_FOREACH(oedata, &sme->sme_sensors_list, sensors_head) {
590 		if (oedata->sensor == edata->sensor) {
591 			found = true;
592 			break;
593 		}
594 	}
595 
596 	if (!found) {
597 		sysmon_envsys_release(sme, true);
598 		mutex_exit(&sme->sme_mtx);
599 		return EINVAL;
600 	}
601 
602 	/*
603 	 * remove it and decrement the sensors count.
604 	 */
605 	TAILQ_REMOVE(&sme->sme_sensors_list, edata, sensors_head);
606 	sme->sme_nsensors--;
607 	sysmon_envsys_release(sme, true);
608 	mutex_exit(&sme->sme_mtx);
609 
610 	return 0;
611 }
612 
613 
614 /*
615  * sysmon_envsys_register:
616  *
617  *	+ Register a sysmon envsys device.
618  *	+ Create array of dictionaries for a device.
619  */
620 int
621 sysmon_envsys_register(struct sysmon_envsys *sme)
622 {
623 	struct sme_evdrv {
624 		SLIST_ENTRY(sme_evdrv) evdrv_head;
625 		sme_event_drv_t *evdrv;
626 	};
627 	SLIST_HEAD(, sme_evdrv) sme_evdrv_list;
628 	struct sme_evdrv *evdv = NULL;
629 	struct sysmon_envsys *lsme;
630 	prop_array_t array = NULL;
631 	prop_dictionary_t dict, dict2;
632 	envsys_data_t *edata = NULL;
633 	sme_event_drv_t *this_evdrv;
634 	int nevent;
635 	int error = 0;
636 
637 	KASSERT(sme != NULL);
638 	KASSERT(sme->sme_name != NULL);
639 
640 	/*
641 	 * Check if requested sysmon_envsys device is valid
642 	 * and does not exist already in the list.
643 	 */
644 	mutex_enter(&sme_global_mtx);
645 	LIST_FOREACH(lsme, &sysmon_envsys_list, sme_list) {
646 	       if (strcmp(lsme->sme_name, sme->sme_name) == 0) {
647 		       mutex_exit(&sme_global_mtx);
648 		       return EEXIST;
649 	       }
650 	}
651 	mutex_exit(&sme_global_mtx);
652 
653 	/*
654 	 * sanity check: if SME_DISABLE_REFRESH is not set,
655 	 * the sme_refresh function callback must be non NULL.
656 	 */
657 	if ((sme->sme_flags & SME_DISABLE_REFRESH) == 0)
658 		if (!sme->sme_refresh)
659 			return EINVAL;
660 
661 	/*
662 	 * If the list of sensors is empty, there's no point to continue...
663 	 */
664 	if (TAILQ_EMPTY(&sme->sme_sensors_list)) {
665 		DPRINTF(("%s: sensors list empty for %s\n", __func__,
666 		    sme->sme_name));
667 		return ENOTSUP;
668 	}
669 
670 	/*
671 	 * Initialize the singly linked list for driver events.
672 	 */
673 	SLIST_INIT(&sme_evdrv_list);
674 
675 	array = prop_array_create();
676 	if (!array)
677 		return ENOMEM;
678 
679 	/*
680 	 * Iterate over all sensors and create a dictionary per sensor.
681 	 * We must respect the order in which the sensors were added.
682 	 */
683 	TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
684 		dict = prop_dictionary_create();
685 		if (!dict) {
686 			error = ENOMEM;
687 			goto out2;
688 		}
689 
690 		/*
691 		 * Create all objects in sensor's dictionary.
692 		 */
693 		this_evdrv = sme_add_sensor_dictionary(sme, array,
694 						       dict, edata);
695 		if (this_evdrv) {
696 			evdv = kmem_zalloc(sizeof(*evdv), KM_SLEEP);
697 			evdv->evdrv = this_evdrv;
698 			SLIST_INSERT_HEAD(&sme_evdrv_list, evdv, evdrv_head);
699 		}
700 	}
701 
702 	/*
703 	 * If the array does not contain any object (sensor), there's
704 	 * no need to attach the driver.
705 	 */
706 	if (prop_array_count(array) == 0) {
707 		error = EINVAL;
708 		DPRINTF(("%s: empty array for '%s'\n", __func__,
709 		    sme->sme_name));
710 		goto out;
711 	}
712 
713 	/*
714 	 * Add the dictionary for the global properties of this device.
715 	 */
716 	dict2 = prop_dictionary_create();
717 	if (!dict2) {
718 		error = ENOMEM;
719 		goto out;
720 	}
721 
722 	error = sme_add_property_dictionary(sme, array, dict2);
723 	if (error) {
724 		prop_object_release(dict2);
725 		goto out;
726 	}
727 
728 	/*
729 	 * Add the array into the global dictionary for the driver.
730 	 *
731 	 * <dict>
732 	 * 	<key>foo0</key>
733 	 * 	<array>
734 	 * 		...
735 	 */
736 	mutex_enter(&sme_global_mtx);
737 	if (!prop_dictionary_set(sme_propd, sme->sme_name, array)) {
738 		error = EINVAL;
739 		DPRINTF(("%s: prop_dictionary_set for '%s'\n", __func__,
740 		    sme->sme_name));
741 		goto out;
742 	}
743 
744 	/*
745 	 * Add the device into the list.
746 	 */
747 	LIST_INSERT_HEAD(&sysmon_envsys_list, sme, sme_list);
748 	sme->sme_fsensor = sysmon_envsys_next_sensor_index;
749 	sysmon_envsys_next_sensor_index += sme->sme_nsensors;
750 	mutex_exit(&sme_global_mtx);
751 
752 out:
753 	/*
754 	 * No errors?  Make an initial data refresh if was requested,
755 	 * then register the events that were set in the driver.  Do
756 	 * the refresh first in case it is needed to establish the
757 	 * limits or max_value needed by some events.
758 	 */
759 	if (error == 0) {
760 		nevent = 0;
761 		sysmon_task_queue_init();
762 
763 		if (sme->sme_flags & SME_INIT_REFRESH) {
764 			sysmon_task_queue_sched(0, sme_initial_refresh, sme);
765 			DPRINTF(("%s: scheduled initial refresh for '%s'\n",
766 				__func__, sme->sme_name));
767 		}
768 		SLIST_FOREACH(evdv, &sme_evdrv_list, evdrv_head) {
769 			sysmon_task_queue_sched(0,
770 			    sme_event_drvadd, evdv->evdrv);
771 			nevent++;
772 		}
773 		DPRINTF(("%s: driver '%s' registered (nsens=%d nevent=%d)\n",
774 		    __func__, sme->sme_name, sme->sme_nsensors, nevent));
775 	}
776 
777 out2:
778 	while (!SLIST_EMPTY(&sme_evdrv_list)) {
779 		evdv = SLIST_FIRST(&sme_evdrv_list);
780 		SLIST_REMOVE_HEAD(&sme_evdrv_list, evdrv_head);
781 		kmem_free(evdv, sizeof(*evdv));
782 	}
783 	if (!error)
784 		return 0;
785 
786 	/*
787 	 * Ugh... something wasn't right; unregister all events and sensors
788 	 * previously assigned and destroy the array with all its objects.
789 	 */
790 	DPRINTF(("%s: failed to register '%s' (%d)\n", __func__,
791 	    sme->sme_name, error));
792 
793 	sme_event_unregister_all(sme);
794 	while (!TAILQ_EMPTY(&sme->sme_sensors_list)) {
795 		edata = TAILQ_FIRST(&sme->sme_sensors_list);
796 		TAILQ_REMOVE(&sme->sme_sensors_list, edata, sensors_head);
797 	}
798 	sysmon_envsys_destroy_plist(array);
799 	return error;
800 }
801 
802 /*
803  * sysmon_envsys_destroy_plist:
804  *
805  * 	+ Remove all objects from the array of dictionaries that is
806  * 	  created in a sysmon envsys device.
807  */
808 static void
809 sysmon_envsys_destroy_plist(prop_array_t array)
810 {
811 	prop_object_iterator_t iter, iter2;
812 	prop_dictionary_t dict;
813 	prop_object_t obj;
814 
815 	KASSERT(array != NULL);
816 	KASSERT(prop_object_type(array) == PROP_TYPE_ARRAY);
817 
818 	DPRINTFOBJ(("%s: objects in array=%d\n", __func__,
819 	    prop_array_count(array)));
820 
821 	iter = prop_array_iterator(array);
822 	if (!iter)
823 		return;
824 
825 	while ((dict = prop_object_iterator_next(iter))) {
826 		KASSERT(prop_object_type(dict) == PROP_TYPE_DICTIONARY);
827 		iter2 = prop_dictionary_iterator(dict);
828 		if (!iter2)
829 			goto out;
830 		DPRINTFOBJ(("%s: iterating over dictionary\n", __func__));
831 		while ((obj = prop_object_iterator_next(iter2)) != NULL) {
832 			DPRINTFOBJ(("%s: obj=%s\n", __func__,
833 			    prop_dictionary_keysym_cstring_nocopy(obj)));
834 			prop_dictionary_remove(dict,
835 			    prop_dictionary_keysym_cstring_nocopy(obj));
836 			prop_object_iterator_reset(iter2);
837 		}
838 		prop_object_iterator_release(iter2);
839 		DPRINTFOBJ(("%s: objects in dictionary:%d\n",
840 		    __func__, prop_dictionary_count(dict)));
841 		prop_object_release(dict);
842 	}
843 
844 out:
845 	prop_object_iterator_release(iter);
846 	prop_object_release(array);
847 }
848 
849 /*
850  * sysmon_envsys_unregister:
851  *
852  *	+ Unregister a sysmon envsys device.
853  */
854 void
855 sysmon_envsys_unregister(struct sysmon_envsys *sme)
856 {
857 	prop_array_t array;
858 	struct sysmon_envsys *osme;
859 
860 	KASSERT(sme != NULL);
861 
862 	/*
863 	 * Unregister all events associated with device.
864 	 */
865 	sme_event_unregister_all(sme);
866 	/*
867 	 * Decrement global sensors counter and the first_sensor index
868 	 * for remaining devices in the list (only used for compatibility
869 	 * with previous API), and remove the device from the list.
870 	 */
871 	mutex_enter(&sme_global_mtx);
872 	sysmon_envsys_next_sensor_index -= sme->sme_nsensors;
873 	LIST_FOREACH(osme, &sysmon_envsys_list, sme_list) {
874 		if (osme->sme_fsensor >= sme->sme_fsensor)
875 			osme->sme_fsensor -= sme->sme_nsensors;
876 	}
877 	LIST_REMOVE(sme, sme_list);
878 	mutex_exit(&sme_global_mtx);
879 
880 	/*
881 	 * Remove the device (and all its objects) from the global dictionary.
882 	 */
883 	array = prop_dictionary_get(sme_propd, sme->sme_name);
884 	if (array && prop_object_type(array) == PROP_TYPE_ARRAY) {
885 		mutex_enter(&sme_global_mtx);
886 		prop_dictionary_remove(sme_propd, sme->sme_name);
887 		mutex_exit(&sme_global_mtx);
888 		sysmon_envsys_destroy_plist(array);
889 	}
890 	/*
891 	 * And finally destroy the sysmon_envsys object.
892 	 */
893 	sysmon_envsys_destroy(sme);
894 }
895 
896 /*
897  * sysmon_envsys_find:
898  *
899  *	+ Find a sysmon envsys device and mark it as busy
900  *	  once it's available.
901  */
902 struct sysmon_envsys *
903 sysmon_envsys_find(const char *name)
904 {
905 	struct sysmon_envsys *sme;
906 
907 	mutex_enter(&sme_global_mtx);
908 	LIST_FOREACH(sme, &sysmon_envsys_list, sme_list) {
909 		if (strcmp(sme->sme_name, name) == 0) {
910 			sysmon_envsys_acquire(sme, false);
911 			break;
912 		}
913 	}
914 	mutex_exit(&sme_global_mtx);
915 
916 	return sme;
917 }
918 
919 /*
920  * Compatibility function with the old API.
921  */
922 struct sysmon_envsys *
923 sysmon_envsys_find_40(u_int idx)
924 {
925 	struct sysmon_envsys *sme;
926 
927 	mutex_enter(&sme_global_mtx);
928 	LIST_FOREACH(sme, &sysmon_envsys_list, sme_list) {
929 		if (idx >= sme->sme_fsensor &&
930 	    	    idx < (sme->sme_fsensor + sme->sme_nsensors)) {
931 			sysmon_envsys_acquire(sme, false);
932 			break;
933 		}
934 	}
935 	mutex_exit(&sme_global_mtx);
936 
937 	return sme;
938 }
939 
940 /*
941  * sysmon_envsys_acquire:
942  *
943  * 	+ Wait until a sysmon envsys device is available and mark
944  * 	  it as busy.
945  */
946 void
947 sysmon_envsys_acquire(struct sysmon_envsys *sme, bool locked)
948 {
949 	KASSERT(sme != NULL);
950 
951 	if (locked) {
952 		while (sme->sme_flags & SME_FLAG_BUSY)
953 			cv_wait(&sme->sme_condvar, &sme->sme_mtx);
954 		sme->sme_flags |= SME_FLAG_BUSY;
955 	} else {
956 		mutex_enter(&sme->sme_mtx);
957 		while (sme->sme_flags & SME_FLAG_BUSY)
958 			cv_wait(&sme->sme_condvar, &sme->sme_mtx);
959 		sme->sme_flags |= SME_FLAG_BUSY;
960 		mutex_exit(&sme->sme_mtx);
961 	}
962 }
963 
964 /*
965  * sysmon_envsys_release:
966  *
967  * 	+ Unmark a sysmon envsys device as busy, and notify
968  * 	  waiters.
969  */
970 void
971 sysmon_envsys_release(struct sysmon_envsys *sme, bool locked)
972 {
973 	KASSERT(sme != NULL);
974 
975 	if (locked) {
976 		sme->sme_flags &= ~SME_FLAG_BUSY;
977 		cv_broadcast(&sme->sme_condvar);
978 	} else {
979 		mutex_enter(&sme->sme_mtx);
980 		sme->sme_flags &= ~SME_FLAG_BUSY;
981 		cv_broadcast(&sme->sme_condvar);
982 		mutex_exit(&sme->sme_mtx);
983 	}
984 }
985 
986 /*
987  * sme_initial_refresh:
988  *
989  * 	+ Do an initial refresh of the sensors in a device just after
990  * 	  interrupts are enabled in the autoconf(9) process.
991  *
992  */
993 static void
994 sme_initial_refresh(void *arg)
995 {
996 	struct sysmon_envsys *sme = arg;
997 	envsys_data_t *edata;
998 
999 	mutex_enter(&sme->sme_mtx);
1000 	sysmon_envsys_acquire(sme, true);
1001 	TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head)
1002 		if ((sme->sme_flags & SME_DISABLE_REFRESH) == 0)
1003 			(*sme->sme_refresh)(sme, edata);
1004 	sysmon_envsys_release(sme, true);
1005 	mutex_exit(&sme->sme_mtx);
1006 }
1007 
1008 /*
1009  * sme_sensor_dictionary_get:
1010  *
1011  * 	+ Returns a dictionary of a device specified by its index
1012  * 	  position.
1013  */
1014 prop_dictionary_t
1015 sme_sensor_dictionary_get(prop_array_t array, const char *index)
1016 {
1017 	prop_object_iterator_t iter;
1018 	prop_dictionary_t dict;
1019 	prop_object_t obj;
1020 
1021 	KASSERT(array != NULL || index != NULL);
1022 
1023 	iter = prop_array_iterator(array);
1024 	if (!iter)
1025 		return NULL;
1026 
1027 	while ((dict = prop_object_iterator_next(iter))) {
1028 		obj = prop_dictionary_get(dict, "index");
1029 		if (prop_string_equals_cstring(obj, index))
1030 			break;
1031 	}
1032 
1033 	prop_object_iterator_release(iter);
1034 	return dict;
1035 }
1036 
1037 /*
1038  * sme_remove_userprops:
1039  *
1040  * 	+ Remove all properties from all devices that were set by
1041  * 	  the ENVSYS_SETDICTIONARY ioctl.
1042  */
1043 static void
1044 sme_remove_userprops(void)
1045 {
1046 	struct sysmon_envsys *sme;
1047 	prop_array_t array;
1048 	prop_dictionary_t sdict;
1049 	envsys_data_t *edata = NULL;
1050 	char tmp[ENVSYS_DESCLEN];
1051 	sysmon_envsys_lim_t lims;
1052 	const struct sme_descr_entry *sdt_units;
1053 	uint32_t props;
1054 	int ptype;
1055 
1056 	mutex_enter(&sme_global_mtx);
1057 	LIST_FOREACH(sme, &sysmon_envsys_list, sme_list) {
1058 		sysmon_envsys_acquire(sme, false);
1059 		array = prop_dictionary_get(sme_propd, sme->sme_name);
1060 
1061 		TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
1062 			(void)snprintf(tmp, sizeof(tmp), "sensor%d",
1063 				       edata->sensor);
1064 			sdict = sme_sensor_dictionary_get(array, tmp);
1065 			KASSERT(sdict != NULL);
1066 
1067 			ptype = 0;
1068 			if (edata->upropset & PROP_BATTCAP) {
1069 				prop_dictionary_remove(sdict,
1070 				    "critical-capacity");
1071 				ptype = PENVSYS_EVENT_CAPACITY;
1072 			}
1073 
1074 			if (edata->upropset & PROP_BATTWARN) {
1075 				prop_dictionary_remove(sdict,
1076 				    "warning-capacity");
1077 				ptype = PENVSYS_EVENT_CAPACITY;
1078 			}
1079 
1080 			if (edata->upropset & PROP_BATTHIGH) {
1081 				prop_dictionary_remove(sdict,
1082 				    "high-capacity");
1083 				ptype = PENVSYS_EVENT_CAPACITY;
1084 			}
1085 
1086 			if (edata->upropset & PROP_BATTMAX) {
1087 				prop_dictionary_remove(sdict,
1088 				    "maximum-capacity");
1089 				ptype = PENVSYS_EVENT_CAPACITY;
1090 			}
1091 			if (edata->upropset & PROP_WARNMAX) {
1092 				prop_dictionary_remove(sdict, "warning-max");
1093 				ptype = PENVSYS_EVENT_LIMITS;
1094 			}
1095 
1096 			if (edata->upropset & PROP_WARNMIN) {
1097 				prop_dictionary_remove(sdict, "warning-min");
1098 				ptype = PENVSYS_EVENT_LIMITS;
1099 			}
1100 
1101 			if (edata->upropset & PROP_CRITMAX) {
1102 				prop_dictionary_remove(sdict, "critical-max");
1103 				ptype = PENVSYS_EVENT_LIMITS;
1104 			}
1105 
1106 			if (edata->upropset & PROP_CRITMIN) {
1107 				prop_dictionary_remove(sdict, "critical-min");
1108 				ptype = PENVSYS_EVENT_LIMITS;
1109 			}
1110 			if (edata->upropset & PROP_RFACT) {
1111 				(void)sme_sensor_upint32(sdict, "rfact", 0);
1112 				edata->rfact = 0;
1113 			}
1114 
1115 			if (edata->upropset & PROP_DESC)
1116 				(void)sme_sensor_upstring(sdict,
1117 			  	    "description", edata->desc);
1118 
1119 			if (ptype == 0)
1120 				continue;
1121 
1122 			/*
1123 			 * If there were any limit values removed, we
1124 			 * need to revert to initial limits.
1125 			 *
1126 			 * First, tell the driver that we need it to
1127 			 * restore any h/w limits which may have been
1128 			 * changed to stored, boot-time values.
1129 			 */
1130 			if (sme->sme_set_limits) {
1131 				DPRINTF(("%s: reset limits for %s %s\n",
1132 					__func__, sme->sme_name, edata->desc));
1133 				(*sme->sme_set_limits)(sme, edata, NULL, NULL);
1134 			}
1135 
1136 			/*
1137 			 * Next, we need to retrieve those initial limits.
1138 			 */
1139 			props = 0;
1140 			edata->upropset &= ~PROP_LIMITS;
1141 			if (sme->sme_get_limits) {
1142 				DPRINTF(("%s: retrieve limits for %s %s\n",
1143 					__func__, sme->sme_name, edata->desc));
1144 				lims = edata->limits;
1145 				(*sme->sme_get_limits)(sme, edata, &lims,
1146 						       &props);
1147 			}
1148 
1149 			/*
1150 			 * Finally, remove any old limits event, then
1151 			 * install a new event (which will update the
1152 			 * dictionary)
1153 			 */
1154 			sme_event_unregister(sme, edata->desc,
1155 			    PENVSYS_EVENT_LIMITS);
1156 
1157 			if (props & PROP_LIMITS) {
1158 				DPRINTF(("%s: install limits for %s %s\n",
1159 					__func__, sme->sme_name, edata->desc));
1160 
1161 
1162 				/*
1163 				 * Find the correct units for this sensor.
1164 				 */
1165 				sdt_units = sme_find_table_entry(SME_DESC_UNITS,
1166 				    edata->units);
1167 
1168 				sme_event_register(sdict, edata, sme,
1169 				    &lims, props, PENVSYS_EVENT_LIMITS,
1170 				    sdt_units->crittype);
1171 			}
1172 		}
1173 
1174 		/*
1175 		 * Restore default timeout value.
1176 		 */
1177 		sme->sme_events_timeout = SME_EVENTS_DEFTIMEOUT;
1178 		sysmon_envsys_release(sme, false);
1179 	}
1180 	mutex_exit(&sme_global_mtx);
1181 }
1182 
1183 /*
1184  * sme_add_property_dictionary:
1185  *
1186  * 	+ Add global properties into a device.
1187  */
1188 static int
1189 sme_add_property_dictionary(struct sysmon_envsys *sme, prop_array_t array,
1190 			    prop_dictionary_t dict)
1191 {
1192 	prop_dictionary_t pdict;
1193 	const char *class;
1194 	int error = 0;
1195 
1196 	pdict = prop_dictionary_create();
1197 	if (!pdict)
1198 		return EINVAL;
1199 
1200 	/*
1201 	 * Add the 'refresh-timeout' and 'dev-class' objects into the
1202 	 * 'device-properties' dictionary.
1203 	 *
1204 	 * 	...
1205 	 * 	<dict>
1206 	 * 		<key>device-properties</key>
1207 	 * 		<dict>
1208 	 * 			<key>refresh-timeout</key>
1209 	 * 			<integer>120</integer<
1210 	 *			<key>device-class</key>
1211 	 *			<string>class_name</string>
1212 	 * 		</dict>
1213 	 * 	</dict>
1214 	 * 	...
1215 	 *
1216 	 */
1217 	if (!sme->sme_events_timeout)
1218 		sme->sme_events_timeout = SME_EVENTS_DEFTIMEOUT;
1219 
1220 	if (!prop_dictionary_set_uint64(pdict, "refresh-timeout",
1221 					sme->sme_events_timeout)) {
1222 		error = EINVAL;
1223 		goto out;
1224 	}
1225 	if (sme->sme_class == SME_CLASS_BATTERY)
1226 		class = "battery";
1227 	else if (sme->sme_class == SME_CLASS_ACADAPTER)
1228 		class = "ac-adapter";
1229 	else
1230 		class = "other";
1231 	if (!prop_dictionary_set_cstring_nocopy(pdict, "device-class", class)) {
1232 		error = EINVAL;
1233 		goto out;
1234 	}
1235 
1236 	if (!prop_dictionary_set(dict, "device-properties", pdict)) {
1237 		error = EINVAL;
1238 		goto out;
1239 	}
1240 
1241 	/*
1242 	 * Add the device dictionary into the sysmon envsys array.
1243 	 */
1244 	if (!prop_array_add(array, dict))
1245 		error = EINVAL;
1246 
1247 out:
1248 	prop_object_release(pdict);
1249 	return error;
1250 }
1251 
1252 /*
1253  * sme_add_sensor_dictionary:
1254  *
1255  * 	+ Adds the sensor objects into the dictionary and returns a pointer
1256  * 	  to a sme_event_drv_t object if a monitoring flag was set
1257  * 	  (or NULL otherwise).
1258  */
1259 static sme_event_drv_t *
1260 sme_add_sensor_dictionary(struct sysmon_envsys *sme, prop_array_t array,
1261 		    	  prop_dictionary_t dict, envsys_data_t *edata)
1262 {
1263 	const struct sme_descr_entry *sdt_state, *sdt_units, *sdt_battcap;
1264 	const struct sme_descr_entry *sdt_drive;
1265 	sme_event_drv_t *sme_evdrv_t = NULL;
1266 	char indexstr[ENVSYS_DESCLEN];
1267 
1268 	/*
1269 	 * Find the correct units for this sensor.
1270 	 */
1271 	sdt_units = sme_find_table_entry(SME_DESC_UNITS, edata->units);
1272 
1273 	/*
1274 	 * Add the index sensor string.
1275 	 *
1276 	 * 		...
1277 	 * 		<key>index</eyr
1278 	 * 		<string>sensor0</string>
1279 	 * 		...
1280 	 */
1281 	(void)snprintf(indexstr, sizeof(indexstr), "sensor%d", edata->sensor);
1282 	if (sme_sensor_upstring(dict, "index", indexstr))
1283 		goto bad;
1284 
1285 	/*
1286 	 * 		...
1287 	 * 		<key>type</key>
1288 	 * 		<string>foo</string>
1289 	 * 		<key>description</key>
1290 	 * 		<string>blah blah</string>
1291 	 * 		...
1292 	 */
1293 	if (sme_sensor_upstring(dict, "type", sdt_units->desc))
1294 		goto bad;
1295 
1296 	if (sme_sensor_upstring(dict, "description", edata->desc))
1297 		goto bad;
1298 
1299 	/*
1300 	 * Add sensor's state description.
1301 	 *
1302 	 * 		...
1303 	 * 		<key>state</key>
1304 	 * 		<string>valid</string>
1305 	 * 		...
1306 	 */
1307 	sdt_state = sme_find_table_entry(SME_DESC_STATES, edata->state);
1308 
1309 	DPRINTF(("%s: sensor desc=%s type=%d state=%d\n",
1310 	    __func__, edata->desc, edata->units, edata->state));
1311 
1312 	if (sme_sensor_upstring(dict, "state", sdt_state->desc))
1313 		goto bad;
1314 
1315 	/*
1316 	 * Add the monitoring boolean object:
1317 	 *
1318 	 * 		...
1319 	 * 		<key>monitoring-supported</key>
1320 	 * 		<true/>
1321 	 *		...
1322 	 *
1323 	 * always false on Battery {capacity,charge}, Drive and Indicator types.
1324 	 * They cannot be monitored.
1325 	 *
1326 	 */
1327 	if ((edata->flags & ENVSYS_FMONNOTSUPP) ||
1328 	    (edata->units == ENVSYS_INDICATOR) ||
1329 	    (edata->units == ENVSYS_DRIVE) ||
1330 	    (edata->units == ENVSYS_BATTERY_CAPACITY) ||
1331 	    (edata->units == ENVSYS_BATTERY_CHARGE)) {
1332 		if (sme_sensor_upbool(dict, "monitoring-supported", false))
1333 			goto out;
1334 	} else {
1335 		if (sme_sensor_upbool(dict, "monitoring-supported", true))
1336 			goto out;
1337 	}
1338 
1339 	/*
1340 	 * Add the percentage boolean object, true if ENVSYS_FPERCENT
1341 	 * is set or false otherwise.
1342 	 *
1343 	 * 		...
1344 	 * 		<key>want-percentage</key>
1345 	 * 		<true/>
1346 	 * 		...
1347 	 */
1348 	if (edata->flags & ENVSYS_FPERCENT)
1349 		if (sme_sensor_upbool(dict, "want-percentage", true))
1350 			goto out;
1351 
1352 	/*
1353 	 * Add the allow-rfact boolean object, true if
1354 	 * ENVSYS_FCHANGERFACT if set or false otherwise.
1355 	 *
1356 	 * 		...
1357 	 * 		<key>allow-rfact</key>
1358 	 * 		<true/>
1359 	 * 		...
1360 	 */
1361 	if (edata->units == ENVSYS_SVOLTS_DC ||
1362 	    edata->units == ENVSYS_SVOLTS_AC) {
1363 		if (edata->flags & ENVSYS_FCHANGERFACT) {
1364 			if (sme_sensor_upbool(dict, "allow-rfact", true))
1365 				goto out;
1366 		} else {
1367 			if (sme_sensor_upbool(dict, "allow-rfact", false))
1368 				goto out;
1369 		}
1370 	}
1371 
1372 	/*
1373 	 * Add the object for battery capacity sensors:
1374 	 *
1375 	 * 		...
1376 	 * 		<key>battery-capacity</key>
1377 	 * 		<string>NORMAL</string>
1378 	 * 		...
1379 	 */
1380 	if (edata->units == ENVSYS_BATTERY_CAPACITY) {
1381 		sdt_battcap = sme_find_table_entry(SME_DESC_BATTERY_CAPACITY,
1382 		    edata->value_cur);
1383 		if (sme_sensor_upstring(dict, "battery-capacity",
1384 					sdt_battcap->desc))
1385 			goto out;
1386 	}
1387 
1388 	/*
1389 	 * Add the drive-state object for drive sensors:
1390 	 *
1391 	 * 		...
1392 	 * 		<key>drive-state</key>
1393 	 * 		<string>drive is online</string>
1394 	 * 		...
1395 	 */
1396 	if (edata->units == ENVSYS_DRIVE) {
1397 		sdt_drive = sme_find_table_entry(SME_DESC_DRIVE_STATES,
1398 		    edata->value_cur);
1399 		if (sme_sensor_upstring(dict, "drive-state", sdt_drive->desc))
1400 			goto out;
1401 	}
1402 
1403 	/*
1404 	 * Add the following objects if sensor is enabled...
1405 	 */
1406 	if (edata->state == ENVSYS_SVALID) {
1407 		/*
1408 		 * Add the following objects:
1409 		 *
1410 		 * 	...
1411 		 * 	<key>rpms</key>
1412 		 * 	<integer>2500</integer>
1413 		 * 	<key>rfact</key>
1414 		 * 	<integer>10000</integer>
1415 		 * 	<key>cur-value</key>
1416 	 	 * 	<integer>1250</integer>
1417 	 	 * 	<key>min-value</key>
1418 	 	 * 	<integer>800</integer>
1419 	 	 * 	<key>max-value</integer>
1420 	 	 * 	<integer>3000</integer>
1421 	 	 * 	<key>avg-value</integer>
1422 	 	 * 	<integer>1400</integer>
1423 	 	 * 	...
1424 	 	 */
1425 		if (edata->units == ENVSYS_SFANRPM)
1426 			if (sme_sensor_upuint32(dict, "rpms", edata->rpms))
1427 				goto out;
1428 
1429 		if (edata->units == ENVSYS_SVOLTS_AC ||
1430 	    	    edata->units == ENVSYS_SVOLTS_DC)
1431 			if (sme_sensor_upint32(dict, "rfact", edata->rfact))
1432 				goto out;
1433 
1434 		if (sme_sensor_upint32(dict, "cur-value", edata->value_cur))
1435 			goto out;
1436 
1437 		if (edata->flags & ENVSYS_FVALID_MIN) {
1438 			if (sme_sensor_upint32(dict,
1439 					       "min-value",
1440 					       edata->value_min))
1441 			goto out;
1442 		}
1443 
1444 		if (edata->flags & ENVSYS_FVALID_MAX) {
1445 			if (sme_sensor_upint32(dict,
1446 					       "max-value",
1447 					       edata->value_max))
1448 			goto out;
1449 		}
1450 
1451 		if (edata->flags & ENVSYS_FVALID_AVG) {
1452 			if (sme_sensor_upint32(dict,
1453 					       "avg-value",
1454 					       edata->value_avg))
1455 			goto out;
1456 		}
1457 	}
1458 
1459 	/*
1460 	 * 	...
1461 	 * </dict>
1462 	 *
1463 	 * Add the dictionary into the array.
1464 	 *
1465 	 */
1466 	if (!prop_array_add(array, dict)) {
1467 		DPRINTF(("%s: prop_array_add\n", __func__));
1468 		goto bad;
1469 	}
1470 
1471 	/*
1472 	 * Register new event(s) if any monitoring flag was set.
1473 	 */
1474 	if (edata->flags & ENVSYS_FMONANY) {
1475 		sme_evdrv_t = kmem_zalloc(sizeof(*sme_evdrv_t), KM_SLEEP);
1476 		sme_evdrv_t->sed_sdict = dict;
1477 		sme_evdrv_t->sed_edata = edata;
1478 		sme_evdrv_t->sed_sme = sme;
1479 		sme_evdrv_t->sed_powertype = sdt_units->crittype;
1480 	}
1481 
1482 out:
1483 	return sme_evdrv_t;
1484 
1485 bad:
1486 	prop_object_release(dict);
1487 	return NULL;
1488 }
1489 
1490 /*
1491  * Find the maximum of all currently reported values.
1492  * The provided callback decides wether a sensor is part of the
1493  * maximum calculation (by returning true) or ignored (callback
1494  * returns false). Example usage: callback selects temperature
1495  * sensors in a given thermal zone, the function calculates the
1496  * maximum currently reported temperature in this zone.
1497  * If the parameter "refresh" is true, new values will be aquired
1498  * from the hardware, if not, the last reported value will be used.
1499  */
1500 uint32_t
1501 sysmon_envsys_get_max_value(bool (*predicate)(const envsys_data_t*),
1502 	bool refresh)
1503 {
1504 	struct sysmon_envsys *sme;
1505 	uint32_t maxv, v;
1506 
1507 	maxv = 0;
1508 	mutex_enter(&sme_global_mtx);
1509 	LIST_FOREACH(sme, &sysmon_envsys_list, sme_list) {
1510 		sysmon_envsys_acquire(sme, false);
1511 		v = sme_get_max_value(sme, predicate, refresh);
1512 		sysmon_envsys_release(sme, false);
1513 		if (v > maxv)
1514 			maxv = v;
1515 	}
1516 	mutex_exit(&sme_global_mtx);
1517 	return maxv;
1518 }
1519 
1520 static uint32_t
1521 sme_get_max_value(struct sysmon_envsys *sme,
1522     bool (*predicate)(const envsys_data_t*),
1523     bool refresh)
1524 {
1525 	envsys_data_t *edata;
1526 	uint32_t maxv, v;
1527 
1528 	/*
1529 	 * Iterate over all sensors that match the predicate
1530 	 */
1531 	maxv = 0;
1532 	TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
1533 		if (!(*predicate)(edata))
1534 			continue;
1535 
1536 		/*
1537 		 * refresh sensor data via sme_refresh only if the
1538 		 * flag is not set.
1539 		 */
1540 		if (refresh && (sme->sme_flags & SME_DISABLE_REFRESH) == 0) {
1541 			mutex_enter(&sme->sme_mtx);
1542 			(*sme->sme_refresh)(sme, edata);
1543 			mutex_exit(&sme->sme_mtx);
1544 		}
1545 
1546 		v = edata->value_cur;
1547 		if (v > maxv)
1548 			maxv = v;
1549 
1550 	}
1551 
1552 	return maxv;
1553 }
1554 
1555 /*
1556  * sme_update_dictionary:
1557  *
1558  * 	+ Update per-sensor dictionaries with new values if there were
1559  * 	  changes, otherwise the object in dictionary is untouched.
1560  */
1561 int
1562 sme_update_dictionary(struct sysmon_envsys *sme)
1563 {
1564 	const struct sme_descr_entry *sdt;
1565 	envsys_data_t *edata;
1566 	prop_object_t array, dict, obj, obj2;
1567 	int error = 0;
1568 
1569 	/*
1570 	 * Retrieve the array of dictionaries in device.
1571 	 */
1572 	array = prop_dictionary_get(sme_propd, sme->sme_name);
1573 	if (prop_object_type(array) != PROP_TYPE_ARRAY) {
1574 		DPRINTF(("%s: not an array (%s)\n", __func__, sme->sme_name));
1575 		return EINVAL;
1576 	}
1577 
1578 	/*
1579 	 * Get the last dictionary on the array, this contains the
1580 	 * 'device-properties' sub-dictionary.
1581 	 */
1582 	obj = prop_array_get(array, prop_array_count(array) - 1);
1583 	if (!obj || prop_object_type(obj) != PROP_TYPE_DICTIONARY) {
1584 		DPRINTF(("%s: not a device-properties dictionary\n", __func__));
1585 		return EINVAL;
1586 	}
1587 
1588 	obj2 = prop_dictionary_get(obj, "device-properties");
1589 	if (!obj2)
1590 		return EINVAL;
1591 
1592 	/*
1593 	 * Update the 'refresh-timeout' property.
1594 	 */
1595 	if (!prop_dictionary_set_uint64(obj2, "refresh-timeout",
1596 					sme->sme_events_timeout))
1597 		return EINVAL;
1598 
1599 	/*
1600 	 * - iterate over all sensors.
1601 	 * - fetch new data.
1602 	 * - check if data in dictionary is different than new data.
1603 	 * - update dictionary if there were changes.
1604 	 */
1605 	DPRINTF(("%s: updating '%s' with nsensors=%d\n", __func__,
1606 	    sme->sme_name, sme->sme_nsensors));
1607 
1608 	/*
1609 	 * Don't bother with locking when traversing the queue,
1610 	 * the device is already marked as busy; if a sensor
1611 	 * is going to be removed or added it will have to wait.
1612 	 */
1613 	TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
1614 		/*
1615 		 * refresh sensor data via sme_refresh only if the
1616 		 * flag is not set.
1617 		 */
1618 		if ((sme->sme_flags & SME_DISABLE_REFRESH) == 0) {
1619 			mutex_enter(&sme->sme_mtx);
1620 			(*sme->sme_refresh)(sme, edata);
1621 			mutex_exit(&sme->sme_mtx);
1622 		}
1623 
1624 		/*
1625 		 * retrieve sensor's dictionary.
1626 		 */
1627 		dict = prop_array_get(array, edata->sensor);
1628 		if (prop_object_type(dict) != PROP_TYPE_DICTIONARY) {
1629 			DPRINTF(("%s: not a dictionary (%d:%s)\n",
1630 			    __func__, edata->sensor, sme->sme_name));
1631 			return EINVAL;
1632 		}
1633 
1634 		/*
1635 		 * update sensor's state.
1636 		 */
1637 		sdt = sme_find_table_entry(SME_DESC_STATES, edata->state);
1638 
1639 		DPRINTFOBJ(("%s: sensor #%d type=%d (%s) flags=%d\n",
1640 		    __func__, edata->sensor, sdt->type, sdt->desc,
1641 		    edata->flags));
1642 
1643 		error = sme_sensor_upstring(dict, "state", sdt->desc);
1644 		if (error)
1645 			break;
1646 
1647 		/*
1648 		 * update sensor's type.
1649 		 */
1650 		sdt = sme_find_table_entry(SME_DESC_UNITS, edata->units);
1651 
1652 		DPRINTFOBJ(("%s: sensor #%d units=%d (%s)\n",
1653 		    __func__, edata->sensor, sdt->type, sdt->desc));
1654 
1655 		error = sme_sensor_upstring(dict, "type", sdt->desc);
1656 		if (error)
1657 			break;
1658 
1659 		/*
1660 		 * update sensor's current value.
1661 		 */
1662 		error = sme_sensor_upint32(dict,
1663 					   "cur-value",
1664 					   edata->value_cur);
1665 		if (error)
1666 			break;
1667 
1668 		/*
1669 		 * Battery charge, Integer and Indicator types do not
1670 		 * need the following objects, so skip them.
1671 		 */
1672 		if (edata->units == ENVSYS_INTEGER ||
1673 		    edata->units == ENVSYS_INDICATOR ||
1674 		    edata->units == ENVSYS_BATTERY_CHARGE)
1675 			continue;
1676 
1677 		/*
1678 		 * update sensor flags.
1679 		 */
1680 		if (edata->flags & ENVSYS_FPERCENT) {
1681 			error = sme_sensor_upbool(dict,
1682 						  "want-percentage",
1683 						  true);
1684 			if (error)
1685 				break;
1686 		}
1687 
1688 		/*
1689 		 * update sensor's {avg,max,min}-value.
1690 		 */
1691 		if (edata->flags & ENVSYS_FVALID_MAX) {
1692 			error = sme_sensor_upint32(dict,
1693 						   "max-value",
1694 						   edata->value_max);
1695 			if (error)
1696 				break;
1697 		}
1698 
1699 		if (edata->flags & ENVSYS_FVALID_MIN) {
1700 			error = sme_sensor_upint32(dict,
1701 						   "min-value",
1702 						   edata->value_min);
1703 			if (error)
1704 				break;
1705 		}
1706 
1707 		if (edata->flags & ENVSYS_FVALID_AVG) {
1708 			error = sme_sensor_upint32(dict,
1709 						   "avg-value",
1710 						   edata->value_avg);
1711 			if (error)
1712 				break;
1713 		}
1714 
1715 		/*
1716 		 * update 'rpms' only for ENVSYS_SFANRPM sensors.
1717 		 */
1718 		if (edata->units == ENVSYS_SFANRPM) {
1719 			error = sme_sensor_upuint32(dict,
1720 						    "rpms",
1721 						    edata->rpms);
1722 			if (error)
1723 				break;
1724 		}
1725 
1726 		/*
1727 		 * update 'rfact' only for ENVSYS_SVOLTS_[AD]C sensors.
1728 		 */
1729 		if (edata->units == ENVSYS_SVOLTS_AC ||
1730 		    edata->units == ENVSYS_SVOLTS_DC) {
1731 			error = sme_sensor_upint32(dict,
1732 						   "rfact",
1733 						   edata->rfact);
1734 			if (error)
1735 				break;
1736 		}
1737 
1738 		/*
1739 		 * update 'drive-state' only for ENVSYS_DRIVE sensors.
1740 		 */
1741 		if (edata->units == ENVSYS_DRIVE) {
1742 			sdt = sme_find_table_entry(SME_DESC_DRIVE_STATES,
1743 			    edata->value_cur);
1744 			error = sme_sensor_upstring(dict, "drive-state",
1745 						    sdt->desc);
1746 			if (error)
1747 				break;
1748 		}
1749 
1750 		/*
1751 		 * update 'battery-capacity' only for ENVSYS_BATTERY_CAPACITY
1752 		 * sensors.
1753 		 */
1754 		if (edata->units == ENVSYS_BATTERY_CAPACITY) {
1755 			sdt = sme_find_table_entry(SME_DESC_BATTERY_CAPACITY,
1756 			    edata->value_cur);
1757 			error = sme_sensor_upstring(dict, "battery-capacity",
1758 						    sdt->desc);
1759 			if (error)
1760 				break;
1761 		}
1762 	}
1763 
1764 	return error;
1765 }
1766 
1767 /*
1768  * sme_userset_dictionary:
1769  *
1770  * 	+ Parse the userland dictionary and run the appropiate tasks
1771  * 	  that were specified.
1772  */
1773 int
1774 sme_userset_dictionary(struct sysmon_envsys *sme, prop_dictionary_t udict,
1775 		       prop_array_t array)
1776 {
1777 	const struct sme_descr_entry *sdt;
1778 	envsys_data_t *edata;
1779 	prop_dictionary_t dict, tdict = NULL;
1780 	prop_object_t obj, obj1, obj2, tobj = NULL;
1781 	uint32_t props;
1782 	uint64_t refresh_timo = 0;
1783 	sysmon_envsys_lim_t lims;
1784 	int i, error = 0;
1785 	const char *blah;
1786 	bool targetfound = false;
1787 
1788 	/*
1789 	 * The user wanted to change the refresh timeout value for this
1790 	 * device.
1791 	 *
1792 	 * Get the 'device-properties' object from the userland dictionary.
1793 	 */
1794 	obj = prop_dictionary_get(udict, "device-properties");
1795 	if (obj && prop_object_type(obj) == PROP_TYPE_DICTIONARY) {
1796 		/*
1797 		 * Get the 'refresh-timeout' property for this device.
1798 		 */
1799 		obj1 = prop_dictionary_get(obj, "refresh-timeout");
1800 		if (obj1 && prop_object_type(obj1) == PROP_TYPE_NUMBER) {
1801 			targetfound = true;
1802 			refresh_timo =
1803 			    prop_number_unsigned_integer_value(obj1);
1804 			if (refresh_timo < 1)
1805 				error = EINVAL;
1806 			else {
1807 				mutex_enter(&sme->sme_mtx);
1808 				sme->sme_events_timeout = refresh_timo;
1809 				mutex_exit(&sme->sme_mtx);
1810 		}
1811 		}
1812 		return error;
1813 
1814 	} else if (!obj) {
1815 		/*
1816 		 * Get sensor's index from userland dictionary.
1817 		 */
1818 		obj = prop_dictionary_get(udict, "index");
1819 		if (!obj)
1820 			return EINVAL;
1821 		if (prop_object_type(obj) != PROP_TYPE_STRING) {
1822 			DPRINTF(("%s: 'index' not a string\n", __func__));
1823 			return EINVAL;
1824 		}
1825 	} else
1826 		return EINVAL;
1827 
1828 	/*
1829 	 * Don't bother with locking when traversing the queue,
1830 	 * the device is already marked as busy; if a sensor
1831 	 * is going to be removed or added it will have to wait.
1832 	 */
1833 	TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
1834 		/*
1835 		 * Get a dictionary and check if it's our sensor by checking
1836 		 * at its index position.
1837 		 */
1838 		dict = prop_array_get(array, edata->sensor);
1839 		obj1 = prop_dictionary_get(dict, "index");
1840 
1841 		/*
1842 		 * is it our sensor?
1843 		 */
1844 		if (!prop_string_equals(obj1, obj))
1845 			continue;
1846 
1847 		props = 0;
1848 
1849 		/*
1850 		 * Check if a new description operation was
1851 		 * requested by the user and set new description.
1852 		 */
1853 		obj2 = prop_dictionary_get(udict, "description");
1854 		if (obj2 && prop_object_type(obj2) == PROP_TYPE_STRING) {
1855 			targetfound = true;
1856 			blah = prop_string_cstring_nocopy(obj2);
1857 
1858 			/*
1859 			 * Check for duplicate description.
1860 			 */
1861 			for (i = 0; i < sme->sme_nsensors; i++) {
1862 				if (i == edata->sensor)
1863 					continue;
1864 				tdict = prop_array_get(array, i);
1865 				tobj =
1866 				    prop_dictionary_get(tdict, "description");
1867 				if (prop_string_equals(obj2, tobj)) {
1868 					error = EEXIST;
1869 					goto out;
1870 				}
1871 			}
1872 
1873 			/*
1874 			 * Update the object in dictionary.
1875 			 */
1876 			mutex_enter(&sme->sme_mtx);
1877 			error = sme_sensor_upstring(dict,
1878 						    "description",
1879 						    blah);
1880 			if (error) {
1881 				mutex_exit(&sme->sme_mtx);
1882 				goto out;
1883 			}
1884 
1885 			DPRINTF(("%s: sensor%d changed desc to: %s\n",
1886 			    __func__, edata->sensor, blah));
1887 			edata->upropset |= PROP_DESC;
1888 			mutex_exit(&sme->sme_mtx);
1889 		}
1890 
1891 		/*
1892 		 * did the user want to change the rfact?
1893 		 */
1894 		obj2 = prop_dictionary_get(udict, "rfact");
1895 		if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1896 			targetfound = true;
1897 			if (edata->flags & ENVSYS_FCHANGERFACT) {
1898 				mutex_enter(&sme->sme_mtx);
1899 				edata->rfact = prop_number_integer_value(obj2);
1900 				edata->upropset |= PROP_RFACT;
1901 				mutex_exit(&sme->sme_mtx);
1902 				DPRINTF(("%s: sensor%d changed rfact to %d\n",
1903 				    __func__, edata->sensor, edata->rfact));
1904 			} else {
1905 				error = ENOTSUP;
1906 				goto out;
1907 			}
1908 		}
1909 
1910 		sdt = sme_find_table_entry(SME_DESC_UNITS, edata->units);
1911 
1912 		/*
1913 		 * did the user want to set a critical capacity event?
1914 		 */
1915 		obj2 = prop_dictionary_get(udict, "critical-capacity");
1916 		if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1917 			targetfound = true;
1918 			lims.sel_critmin = prop_number_integer_value(obj2);
1919 			props |= PROP_BATTCAP;
1920 		}
1921 
1922 		/*
1923 		 * did the user want to set a warning capacity event?
1924 		 */
1925 		obj2 = prop_dictionary_get(udict, "warning-capacity");
1926 		if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1927 			targetfound = true;
1928 			lims.sel_warnmin = prop_number_integer_value(obj2);
1929 			props |= PROP_BATTWARN;
1930 		}
1931 
1932 		/*
1933 		 * did the user want to set a high capacity event?
1934 		 */
1935 		obj2 = prop_dictionary_get(udict, "high-capacity");
1936 		if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1937 			targetfound = true;
1938 			lims.sel_warnmin = prop_number_integer_value(obj2);
1939 			props |= PROP_BATTHIGH;
1940 		}
1941 
1942 		/*
1943 		 * did the user want to set a maximum capacity event?
1944 		 */
1945 		obj2 = prop_dictionary_get(udict, "maximum-capacity");
1946 		if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1947 			targetfound = true;
1948 			lims.sel_warnmin = prop_number_integer_value(obj2);
1949 			props |= PROP_BATTMAX;
1950 		}
1951 
1952 		/*
1953 		 * did the user want to set a critical max event?
1954 		 */
1955 		obj2 = prop_dictionary_get(udict, "critical-max");
1956 		if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1957 			targetfound = true;
1958 			lims.sel_critmax = prop_number_integer_value(obj2);
1959 			props |= PROP_CRITMAX;
1960 		}
1961 
1962 		/*
1963 		 * did the user want to set a warning max event?
1964 		 */
1965 		obj2 = prop_dictionary_get(udict, "warning-max");
1966 		if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1967 			targetfound = true;
1968 			lims.sel_warnmax = prop_number_integer_value(obj2);
1969 			props |= PROP_WARNMAX;
1970 		}
1971 
1972 		/*
1973 		 * did the user want to set a critical min event?
1974 		 */
1975 		obj2 = prop_dictionary_get(udict, "critical-min");
1976 		if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1977 			targetfound = true;
1978 			lims.sel_critmin = prop_number_integer_value(obj2);
1979 			props |= PROP_CRITMIN;
1980 		}
1981 
1982 		/*
1983 		 * did the user want to set a warning min event?
1984 		 */
1985 		obj2 = prop_dictionary_get(udict, "warning-min");
1986 		if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1987 			targetfound = true;
1988 			lims.sel_warnmin = prop_number_integer_value(obj2);
1989 			props |= PROP_WARNMIN;
1990 		}
1991 
1992 		if (props) {
1993 			if (edata->flags & ENVSYS_FMONNOTSUPP) {
1994 				error = ENOTSUP;
1995 				goto out;
1996 			}
1997 			error = sme_event_register(dict, edata, sme, &lims,
1998 					props,
1999 					(edata->flags & ENVSYS_FPERCENT)?
2000 						PENVSYS_EVENT_CAPACITY:
2001 						PENVSYS_EVENT_LIMITS,
2002 					sdt->crittype);
2003 			if (error == EEXIST)
2004 				error = 0;
2005 			if (error)
2006 				goto out;
2007 		}
2008 
2009 		/*
2010 		 * All objects in dictionary were processed.
2011 		 */
2012 		break;
2013 	}
2014 
2015 out:
2016 	/*
2017 	 * invalid target? return the error.
2018 	 */
2019 	if (!targetfound)
2020 		error = EINVAL;
2021 
2022 	return error;
2023 }
2024 
2025 /*
2026  * + sysmon_envsys_foreach_sensor
2027  *
2028  *	Walk through the devices' sensor lists and execute the callback.
2029  *	If the callback returns false, the remainder of the current
2030  *	device's sensors are skipped.
2031  */
2032 void
2033 sysmon_envsys_foreach_sensor(sysmon_envsys_callback_t func, void *arg,
2034 			     bool refresh)
2035 {
2036 	struct sysmon_envsys *sme;
2037 	envsys_data_t *sensor;
2038 
2039 	mutex_enter(&sme_global_mtx);
2040 	LIST_FOREACH(sme, &sysmon_envsys_list, sme_list) {
2041 
2042 		sysmon_envsys_acquire(sme, false);
2043 		TAILQ_FOREACH(sensor, &sme->sme_sensors_list, sensors_head) {
2044 			if (refresh &&
2045 			    (sme->sme_flags & SME_DISABLE_REFRESH) == 0) {
2046 				mutex_enter(&sme->sme_mtx);
2047 				(*sme->sme_refresh)(sme, sensor);
2048 				mutex_exit(&sme->sme_mtx);
2049 			}
2050 			if (!(*func)(sme, sensor, arg))
2051 				break;
2052 		}
2053 		sysmon_envsys_release(sme, false);
2054 	}
2055 	mutex_exit(&sme_global_mtx);
2056 }
2057