xref: /netbsd-src/sys/dev/spi/spiflash.c (revision e77448e07be3174235c13f58032a0d6d0ab7638d)
1 /* $NetBSD: spiflash.c,v 1.8 2008/05/04 14:21:56 xtraeme Exp $ */
2 
3 /*-
4  * Copyright (c) 2006 Urbana-Champaign Independent Media Center.
5  * Copyright (c) 2006 Garrett D'Amore.
6  * All rights reserved.
7  *
8  * Portions of this code were written by Garrett D'Amore for the
9  * Champaign-Urbana Community Wireless Network Project.
10  *
11  * Redistribution and use in source and binary forms, with or
12  * without modification, are permitted provided that the following
13  * conditions are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above
17  *    copyright notice, this list of conditions and the following
18  *    disclaimer in the documentation and/or other materials provided
19  *    with the distribution.
20  * 3. All advertising materials mentioning features or use of this
21  *    software must display the following acknowledgements:
22  *      This product includes software developed by the Urbana-Champaign
23  *      Independent Media Center.
24  *	This product includes software developed by Garrett D'Amore.
25  * 4. Urbana-Champaign Independent Media Center's name and Garrett
26  *    D'Amore's name may not be used to endorse or promote products
27  *    derived from this software without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE URBANA-CHAMPAIGN INDEPENDENT
30  * MEDIA CENTER AND GARRETT D'AMORE ``AS IS'' AND ANY EXPRESS OR
31  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
32  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE URBANA-CHAMPAIGN INDEPENDENT
34  * MEDIA CENTER OR GARRETT D'AMORE BE LIABLE FOR ANY DIRECT, INDIRECT,
35  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
36  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
37  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
38  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
40  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
41  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
42  */
43 
44 #include <sys/cdefs.h>
45 __KERNEL_RCSID(0, "$NetBSD: spiflash.c,v 1.8 2008/05/04 14:21:56 xtraeme Exp $");
46 
47 #include <sys/param.h>
48 #include <sys/conf.h>
49 #include <sys/proc.h>
50 #include <sys/systm.h>
51 #include <sys/device.h>
52 #include <sys/kernel.h>
53 #include <sys/file.h>
54 #include <sys/ioctl.h>
55 #include <sys/disk.h>
56 #include <sys/disklabel.h>
57 #include <sys/buf.h>
58 #include <sys/bufq.h>
59 #include <sys/uio.h>
60 #include <sys/kthread.h>
61 #include <sys/malloc.h>
62 #include <sys/errno.h>
63 
64 #include <dev/spi/spivar.h>
65 #include <dev/spi/spiflash.h>
66 
67 /*
68  * This is an MI block driver for SPI flash devices.  It could probably be
69  * converted to some more generic framework, if someone wanted to create one
70  * for NOR flashes.  Note that some flashes have the ability to handle
71  * interrupts.
72  */
73 
74 struct spiflash_softc {
75 	struct disk		sc_dk;
76 
77 	struct spiflash_hw_if	sc_hw;
78 	void			*sc_cookie;
79 
80 	const char		*sc_name;
81 	struct spi_handle	*sc_handle;
82 	int			sc_device_size;
83 	int			sc_write_size;
84 	int			sc_erase_size;
85 	int			sc_read_size;
86 	int			sc_device_blks;
87 
88 	struct bufq_state	*sc_waitq;
89 	struct bufq_state	*sc_workq;
90 	struct bufq_state	*sc_doneq;
91 	lwp_t			*sc_thread;
92 };
93 
94 #define	sc_getname	sc_hw.sf_getname
95 #define	sc_gethandle	sc_hw.sf_gethandle
96 #define	sc_getsize	sc_hw.sf_getsize
97 #define	sc_getflags	sc_hw.sf_getflags
98 #define	sc_erase	sc_hw.sf_erase
99 #define	sc_write	sc_hw.sf_write
100 #define	sc_read		sc_hw.sf_read
101 #define	sc_getstatus	sc_hw.sf_getstatus
102 #define	sc_setstatus	sc_hw.sf_setstatus
103 
104 struct spiflash_attach_args {
105 	const struct spiflash_hw_if	*hw;
106 	void				*cookie;
107 };
108 
109 #define	STATIC
110 STATIC int spiflash_match(device_t , cfdata_t , void *);
111 STATIC void spiflash_attach(device_t , device_t , void *);
112 STATIC int spiflash_print(void *, const char *);
113 STATIC int spiflash_common_erase(spiflash_handle_t, size_t, size_t);
114 STATIC int spiflash_common_write(spiflash_handle_t, size_t, size_t,
115     const uint8_t *);
116 STATIC int spiflash_common_read(spiflash_handle_t, size_t, size_t, uint8_t *);
117 STATIC void spiflash_process_done(spiflash_handle_t, int);
118 STATIC void spiflash_process_read(spiflash_handle_t);
119 STATIC void spiflash_process_write(spiflash_handle_t);
120 STATIC void spiflash_thread(void *);
121 STATIC int spiflash_nsectors(spiflash_handle_t, struct buf *);
122 STATIC int spiflash_nsectors(spiflash_handle_t, struct buf *);
123 STATIC int spiflash_sector(spiflash_handle_t, struct buf *);
124 
125 CFATTACH_DECL_NEW(spiflash, sizeof(struct spiflash_softc),
126 	      spiflash_match, spiflash_attach, NULL, NULL);
127 
128 #ifdef	SPIFLASH_DEBUG
129 #define	DPRINTF(x)	do { printf x; } while (0/*CONSTCOND*/)
130 #else
131 #define	DPRINTF(x)	do {  } while (0/*CONSTCOND*/)
132 #endif
133 
134 extern struct cfdriver spiflash_cd;
135 
136 dev_type_open(spiflash_open);
137 dev_type_close(spiflash_close);
138 dev_type_read(spiflash_read);
139 dev_type_write(spiflash_write);
140 dev_type_ioctl(spiflash_ioctl);
141 dev_type_strategy(spiflash_strategy);
142 
143 const struct bdevsw spiflash_bdevsw = {
144 	.d_open = spiflash_open,
145 	.d_close = spiflash_close,
146 	.d_strategy = spiflash_strategy,
147 	.d_ioctl = spiflash_ioctl,
148 	.d_dump = nodump,
149 	.d_psize = nosize,
150 	.d_flag = D_DISK,
151 };
152 
153 const struct cdevsw spiflash_cdevsw = {
154 	.d_open = spiflash_open,
155 	.d_close = spiflash_close,
156 	.d_read = spiflash_read,
157 	.d_write = spiflash_write,
158 	.d_ioctl = spiflash_ioctl,
159 	.d_stop = nostop,
160 	.d_tty = notty,
161 	.d_poll = nopoll,
162 	.d_mmap = nommap,
163 	.d_kqfilter = nokqfilter,
164 	.d_flag = D_DISK,
165 };
166 
167 static struct dkdriver spiflash_dkdriver = { spiflash_strategy, NULL };
168 
169 spiflash_handle_t
170 spiflash_attach_mi(const struct spiflash_hw_if *hw, void *cookie,
171     device_t dev)
172 {
173 	struct spiflash_attach_args sfa;
174 	sfa.hw = hw;
175 	sfa.cookie = cookie;
176 
177 	return (spiflash_handle_t)config_found(dev, &sfa, spiflash_print);
178 }
179 
180 int
181 spiflash_print(void *aux, const char *pnp)
182 {
183 	if (pnp != NULL)
184 		printf("spiflash at %s\n", pnp);
185 
186 	return UNCONF;
187 }
188 
189 int
190 spiflash_match(device_t parent, cfdata_t cf, void *aux)
191 {
192 
193 	return 1;
194 }
195 
196 void
197 spiflash_attach(device_t parent, device_t self, void *aux)
198 {
199 	struct spiflash_softc *sc = device_private(self);
200 	struct spiflash_attach_args *sfa = aux;
201 	void *cookie = sfa->cookie;
202 
203 	sc->sc_hw = *sfa->hw;
204 	sc->sc_cookie = cookie;
205 	sc->sc_name = sc->sc_getname(cookie);
206 	sc->sc_handle = sc->sc_gethandle(cookie);
207 	sc->sc_device_size = sc->sc_getsize(cookie, SPIFLASH_SIZE_DEVICE);
208 	sc->sc_erase_size = sc->sc_getsize(cookie, SPIFLASH_SIZE_ERASE);
209 	sc->sc_write_size = sc->sc_getsize(cookie, SPIFLASH_SIZE_WRITE);
210 	sc->sc_read_size = sc->sc_getsize(cookie, SPIFLASH_SIZE_READ);
211 	sc->sc_device_blks = sc->sc_device_size / DEV_BSIZE;
212 
213 	if (sc->sc_read == NULL)
214 		sc->sc_read = spiflash_common_read;
215 	if (sc->sc_write == NULL)
216 		sc->sc_write = spiflash_common_write;
217 	if (sc->sc_erase == NULL)
218 		sc->sc_erase = spiflash_common_erase;
219 
220 	aprint_naive(": SPI flash\n");
221 	aprint_normal(": %s SPI flash\n", sc->sc_name);
222 	/* XXX: note that this has to change for boot-sectored flash */
223 	aprint_normal_dev(self, "%d KB, %d sectors of %d KB each\n",
224 	    sc->sc_device_size / 1024,
225 	    sc->sc_device_size / sc->sc_erase_size,
226 	    sc->sc_erase_size / 1024);
227 
228 	/* first-come first-served strategy works best for us */
229 	bufq_alloc(&sc->sc_waitq, "fcfs", BUFQ_SORT_RAWBLOCK);
230 	bufq_alloc(&sc->sc_workq, "fcfs", BUFQ_SORT_RAWBLOCK);
231 	bufq_alloc(&sc->sc_doneq, "fcfs", BUFQ_SORT_RAWBLOCK);
232 
233 	sc->sc_dk.dk_driver = &spiflash_dkdriver;
234 	sc->sc_dk.dk_name = device_xname(self);
235 
236 	disk_attach(&sc->sc_dk);
237 
238 	/* arrange to allocate the kthread */
239 	kthread_create(PRI_NONE, 0, NULL, spiflash_thread, sc,
240 	    &sc->sc_thread, "spiflash");
241 }
242 
243 int
244 spiflash_open(dev_t dev, int flags, int mode, struct lwp *l)
245 {
246 	spiflash_handle_t sc;
247 
248 	if ((sc = device_lookup(&spiflash_cd, DISKUNIT(dev))) == NULL)
249 		return ENXIO;
250 
251 	/*
252 	 * XXX: We need to handle partitions here.  The problem is
253 	 * that it isn't entirely clear to me how to deal with this.
254 	 * There are devices that could be used "in the raw" with a
255 	 * NetBSD label, but then you get into devices that have other
256 	 * kinds of data on them -- some have VxWorks data, some have
257 	 * RedBoot data, and some have other contraints -- for example
258 	 * some devices might have a portion that is read-only,
259 	 * whereas others might have a portion that is read-write.
260 	 *
261 	 * For now we just permit access to the entire device.
262 	 */
263 	return 0;
264 }
265 
266 int
267 spiflash_close(dev_t dev, int flags, int mode, struct lwp *l)
268 {
269 	spiflash_handle_t sc;
270 
271 	if ((sc = device_lookup(&spiflash_cd, DISKUNIT(dev))) == NULL)
272 		return ENXIO;
273 
274 	return 0;
275 }
276 
277 int
278 spiflash_read(dev_t dev, struct uio *uio, int ioflag)
279 {
280 
281 	return physio(spiflash_strategy, NULL, dev, B_READ, minphys, uio);
282 }
283 
284 int
285 spiflash_write(dev_t dev, struct uio *uio, int ioflag)
286 {
287 
288 	return physio(spiflash_strategy, NULL, dev, B_WRITE, minphys, uio);
289 }
290 
291 int
292 spiflash_ioctl(dev_t dev, u_long cmd, void *data, int flags, struct lwp *l)
293 {
294 	spiflash_handle_t sc;
295 
296 	if ((sc = device_lookup(&spiflash_cd, DISKUNIT(dev))) == NULL)
297 		return ENXIO;
298 
299 	return EINVAL;
300 }
301 
302 void
303 spiflash_strategy(struct buf *bp)
304 {
305 	spiflash_handle_t sc;
306 	int	s;
307 
308 	sc = device_lookup(&spiflash_cd, DISKUNIT(bp->b_dev));
309 	if (sc == NULL) {
310 		bp->b_error = ENXIO;
311 		biodone(bp);
312 		return;
313 	}
314 
315 	if (((bp->b_bcount % sc->sc_write_size) != 0) ||
316 	    (bp->b_blkno < 0)) {
317 		bp->b_error = EINVAL;
318 		biodone(bp);
319 		return;
320 	}
321 
322 	/* no work? */
323 	if (bp->b_bcount == 0) {
324 		biodone(bp);
325 		return;
326 	}
327 
328 	if (bounds_check_with_mediasize(bp, DEV_BSIZE,
329 		sc->sc_device_blks) <= 0) {
330 		biodone(bp);
331 		return;
332 	}
333 
334 	bp->b_resid = bp->b_bcount;
335 
336 	/* all ready, hand off to thread for async processing */
337 	s = splbio();
338 	BUFQ_PUT(sc->sc_waitq, bp);
339 	wakeup(&sc->sc_thread);
340 	splx(s);
341 }
342 
343 void
344 spiflash_process_done(spiflash_handle_t sc, int err)
345 {
346 	struct buf	*bp;
347 	int		cnt = 0;
348 	int		flag = 0;
349 
350 	while ((bp = BUFQ_GET(sc->sc_doneq)) != NULL) {
351 		flag = bp->b_flags & B_READ;
352 		if ((bp->b_error = err) == 0)
353 			bp->b_resid = 0;
354 		cnt += bp->b_bcount - bp->b_resid;
355 		biodone(bp);
356 	}
357 	disk_unbusy(&sc->sc_dk, cnt, flag);
358 }
359 
360 void
361 spiflash_process_read(spiflash_handle_t sc)
362 {
363 	struct buf	*bp;
364 	int		err = 0;
365 
366 	disk_busy(&sc->sc_dk);
367 	while ((bp = BUFQ_GET(sc->sc_workq)) != NULL) {
368 		size_t addr = bp->b_blkno * DEV_BSIZE;
369 		uint8_t *data = bp->b_data;
370 		int cnt = bp->b_resid;
371 
372 		BUFQ_PUT(sc->sc_doneq, bp);
373 
374 		DPRINTF(("read from addr %x, cnt %d\n", (unsigned)addr, cnt));
375 
376 		if ((err = sc->sc_read(sc, addr, cnt, data)) != 0) {
377 			/* error occurred, fail all pending workq bufs */
378 			bufq_move(sc->sc_doneq, sc->sc_workq);
379 			break;
380 		}
381 
382 		bp->b_resid -= cnt;
383 		data += cnt;
384 		addr += cnt;
385 	}
386 	spiflash_process_done(sc, err);
387 }
388 
389 void
390 spiflash_process_write(spiflash_handle_t sc)
391 {
392 	int	len;
393 	size_t	base;
394 	daddr_t	blkno;
395 	uint8_t	*save;
396 	int	err = 0, neederase = 0;
397 	struct buf *bp;
398 
399 	/*
400 	 * due to other considerations, we are guaranteed that
401 	 * we will only have multiple buffers if they are all in
402 	 * the same erase sector.  Therefore we never need to look
403 	 * beyond the first block to determine how much data we need
404 	 * to save.
405 	 */
406 
407 	bp = BUFQ_PEEK(sc->sc_workq);
408 	len = spiflash_nsectors(sc, bp)  * sc->sc_erase_size;
409 	blkno = bp->b_blkno;
410 	base = (blkno * DEV_BSIZE) & ~ (sc->sc_erase_size - 1);
411 
412 	/* get ourself a scratch buffer */
413 	save = malloc(len, M_DEVBUF, M_WAITOK);
414 
415 	disk_busy(&sc->sc_dk);
416 	/* read in as much of the data as we need */
417 	DPRINTF(("reading in %d bytes\n", len));
418 	if ((err = sc->sc_read(sc, base, len, save)) != 0) {
419 		bufq_move(sc->sc_doneq, sc->sc_workq);
420 		spiflash_process_done(sc, err);
421 		return;
422 	}
423 
424 	/*
425 	 * now coalesce the writes into the save area, but also
426 	 * check to see if we need to do an erase
427 	 */
428 	while ((bp = BUFQ_GET(sc->sc_workq)) != NULL) {
429 		uint8_t	*data, *dst;
430 		int resid = bp->b_resid;
431 
432 		DPRINTF(("coalesce write, blkno %x, count %d, resid %d\n",
433 			    (unsigned)bp->b_blkno, bp->b_bcount, resid));
434 
435 		data = bp->b_data;
436 		dst = save + (bp->b_blkno - blkno) * DEV_BSIZE;
437 
438 		/*
439 		 * NOR flash bits.  We can clear a bit, but we cannot
440 		 * set a bit, without erasing.  This should help reduce
441 		 * unnecessary erases.
442 		 */
443 		while (resid) {
444 			if ((*data) & ~(*dst))
445 				neederase = 1;
446 			*dst++ = *data++;
447 			resid--;
448 		}
449 
450 		BUFQ_PUT(sc->sc_doneq, bp);
451 	}
452 
453 	/*
454 	 * do the erase, if we need to.
455 	 */
456 	if (neederase) {
457 		DPRINTF(("erasing from %x - %x\n", base, base + len));
458 		if ((err = sc->sc_erase(sc, base, len)) != 0) {
459 			spiflash_process_done(sc, err);
460 			return;
461 		}
462 	}
463 
464 	/*
465 	 * now write our save area, and finish up.
466 	 */
467 	DPRINTF(("flashing %d bytes to %x from %x\n", len,
468 		    base, (unsigned)save));
469 	err = sc->sc_write(sc, base, len, save);
470 	spiflash_process_done(sc, err);
471 }
472 
473 
474 int
475 spiflash_nsectors(spiflash_handle_t sc, struct buf *bp)
476 {
477 	unsigned	addr, sector;
478 
479 	addr = bp->b_blkno * DEV_BSIZE;
480 	sector = addr / sc->sc_erase_size;
481 
482 	addr += bp->b_bcount;
483 	addr--;
484 	return (((addr / sc->sc_erase_size)  - sector) + 1);
485 }
486 
487 int
488 spiflash_sector(spiflash_handle_t sc, struct buf *bp)
489 {
490 	unsigned	addr, sector;
491 
492 	addr = bp->b_blkno * DEV_BSIZE;
493 	sector = addr / sc->sc_erase_size;
494 
495 	/* if it spans multiple blocks, error it */
496 	addr += bp->b_bcount;
497 	addr--;
498 	if (sector != (addr / sc->sc_erase_size))
499 		return -1;
500 
501 	return sector;
502 }
503 
504 void
505 spiflash_thread(void *arg)
506 {
507 	spiflash_handle_t sc = arg;
508 	struct buf	*bp;
509 	int		s;
510 	int		sector;
511 
512 	s = splbio();
513 	for (;;) {
514 		if ((bp = BUFQ_GET(sc->sc_waitq)) == NULL) {
515 			tsleep(&sc->sc_thread, PRIBIO, "spiflash_thread", 0);
516 			continue;
517 		}
518 
519 		BUFQ_PUT(sc->sc_workq, bp);
520 
521 		if (bp->b_flags & B_READ) {
522 			/* just do the read */
523 			spiflash_process_read(sc);
524 			continue;
525 		}
526 
527 		/*
528 		 * Because writing a flash filesystem is particularly
529 		 * painful, involving erase, modify, write, we prefer
530 		 * to coalesce writes to the same sector together.
531 		 */
532 
533 		sector = spiflash_sector(sc, bp);
534 
535 		/*
536 		 * if the write spans multiple sectors, skip
537 		 * coalescing.  (It would be nice if we could break
538 		 * these up.  minphys is honored for read/write, but
539 		 * not necessarily for bread.)
540 		 */
541 		if (sector < 0)
542 			goto dowrite;
543 
544 		while ((bp = BUFQ_PEEK(sc->sc_waitq)) != NULL) {
545 			/* can't deal with read requests! */
546 			if (bp->b_flags & B_READ)
547 				break;
548 
549 			/* is it for the same sector? */
550 			if (spiflash_sector(sc, bp) != sector)
551 				break;
552 
553 			bp = BUFQ_GET(sc->sc_waitq);
554 			BUFQ_PUT(sc->sc_workq, bp);
555 		}
556 
557 	dowrite:
558 		spiflash_process_write(sc);
559 	}
560 }
561 /*
562  * SPI flash common implementation.
563  */
564 
565 /*
566  * Most devices take on the order of 1 second for each block that they
567  * delete.
568  */
569 int
570 spiflash_common_erase(spiflash_handle_t sc, size_t start, size_t size)
571 {
572 	int		rv;
573 
574 	if ((start % sc->sc_erase_size) || (size % sc->sc_erase_size))
575 		return EINVAL;
576 
577 	/* the second test is to test against wrap */
578 	if ((start > sc->sc_device_size) ||
579 	    ((start + size) > sc->sc_device_size))
580 		return EINVAL;
581 
582 	/*
583 	 * XXX: check protection status?  Requires master table mapping
584 	 * sectors to status bits, and so forth.
585 	 */
586 
587 	while (size) {
588 		if ((rv = spiflash_write_enable(sc)) != 0) {
589 			spiflash_write_disable(sc);
590 			return rv;
591 		}
592 		if ((rv = spiflash_cmd(sc, SPIFLASH_CMD_ERASE, 3, start, 0,
593 			 NULL, NULL)) != 0) {
594 			spiflash_write_disable(sc);
595 			return rv;
596 		}
597 
598 		/*
599 		 * The devices I have all say typical for sector erase
600 		 * is ~1sec.  We check ten times that often.  (There
601 		 * is no way to interrupt on this.)
602 		 */
603 		if ((rv = spiflash_wait(sc, hz / 10)) != 0)
604 			return rv;
605 
606 		start += sc->sc_erase_size;
607 		size -= sc->sc_erase_size;
608 
609 		/* NB: according to the docs I have, the write enable
610 		 * is automatically cleared upon completion of an erase
611 		 * command, so there is no need to explicitly disable it.
612 		 */
613 	}
614 
615 	return 0;
616 }
617 
618 int
619 spiflash_common_write(spiflash_handle_t sc, size_t start, size_t size,
620     const uint8_t *data)
621 {
622 	int		rv;
623 
624 	if ((start % sc->sc_write_size) || (size % sc->sc_write_size))
625 		return EINVAL;
626 
627 	while (size) {
628 		int cnt;
629 
630 		if ((rv = spiflash_write_enable(sc)) != 0) {
631 			spiflash_write_disable(sc);
632 			return rv;
633 		}
634 
635 		cnt = min(size, sc->sc_write_size);
636 		if ((rv = spiflash_cmd(sc, SPIFLASH_CMD_PROGRAM, 3, start,
637 			 cnt, data, NULL)) != 0) {
638 			spiflash_write_disable(sc);
639 			return rv;
640 		}
641 
642 		/*
643 		 * It seems that most devices can write bits fairly
644 		 * quickly.  For example, one part I have access to
645 		 * takes ~5msec to process the entire 256 byte page.
646 		 * Probably this should be modified to cope with
647 		 * device-specific timing, and maybe also take into
648 		 * account systems with higher values of HZ (which
649 		 * could benefit from sleeping.)
650 		 */
651 		if ((rv = spiflash_wait(sc, 0)) != 0)
652 			return rv;
653 
654 		data += cnt;
655 		start += cnt;
656 		size -= cnt;
657 	}
658 
659 	return 0;
660 }
661 
662 int
663 spiflash_common_read(spiflash_handle_t sc, size_t start, size_t size,
664     uint8_t *data)
665 {
666 	int		rv;
667 
668 	while (size) {
669 		int cnt;
670 
671 		if (sc->sc_read_size > 0)
672 			cnt = min(size, sc->sc_read_size);
673 		else
674 			cnt = size;
675 
676 		if ((rv = spiflash_cmd(sc, SPIFLASH_CMD_READ, 3, start,
677 			 cnt, NULL, data)) != 0) {
678 			return rv;
679 		}
680 
681 		start += cnt;
682 		size -= cnt;
683 	}
684 
685 	return 0;
686 }
687 
688 /* read status register */
689 int
690 spiflash_read_status(spiflash_handle_t sc, uint8_t *sr)
691 {
692 
693 	return spiflash_cmd(sc, SPIFLASH_CMD_RDSR, 0, 0, 1, NULL, sr);
694 }
695 
696 int
697 spiflash_write_enable(spiflash_handle_t sc)
698 {
699 
700 	return spiflash_cmd(sc, SPIFLASH_CMD_WREN, 0, 0, 0, NULL, NULL);
701 }
702 
703 int
704 spiflash_write_disable(spiflash_handle_t sc)
705 {
706 
707 	return spiflash_cmd(sc, SPIFLASH_CMD_WRDI, 0, 0, 0, NULL, NULL);
708 }
709 
710 int
711 spiflash_cmd(spiflash_handle_t sc, uint8_t cmd,
712     size_t addrlen, uint32_t addr,
713     size_t cnt, const uint8_t *wdata, uint8_t *rdata)
714 {
715 	struct spi_transfer	trans;
716 	struct spi_chunk	chunk1, chunk2;
717 	char buf[4];
718 	int i;
719 
720 	buf[0] = cmd;
721 
722 	if (addrlen > 3)
723 		return EINVAL;
724 
725 	for (i = addrlen; i > 0; i--) {
726 		buf[i] = addr & 0xff;
727 		addr >>= 8;
728 	}
729 	spi_transfer_init(&trans);
730 	spi_chunk_init(&chunk1, addrlen + 1, buf, NULL);
731 	spi_transfer_add(&trans, &chunk1);
732 	if (cnt) {
733 		spi_chunk_init(&chunk2, cnt, wdata, rdata);
734 		spi_transfer_add(&trans, &chunk2);
735 	}
736 
737 	spi_transfer(sc->sc_handle, &trans);
738 	spi_wait(&trans);
739 
740 	if (trans.st_flags & SPI_F_ERROR)
741 		return trans.st_errno;
742 	return 0;
743 }
744 
745 int
746 spiflash_wait(spiflash_handle_t sc, int tmo)
747 {
748 	int	rv;
749 	uint8_t	sr;
750 
751 	for (;;) {
752 		if ((rv = spiflash_read_status(sc, &sr)) != 0)
753 			return rv;
754 
755 		if ((sr & SPIFLASH_SR_BUSY) == 0)
756 			break;
757 		/*
758 		 * The devices I have all say typical for sector
759 		 * erase is ~1sec.  We check time times that often.
760 		 * (There is no way to interrupt on this.)
761 		 */
762 		if (tmo)
763 			tsleep(&sr, PWAIT, "spiflash_wait", tmo);
764 	}
765 	return 0;
766 }
767