xref: /netbsd-src/sys/dev/spi/spiflash.c (revision ce2c90c7c172d95d2402a5b3d96d8f8e6d138a21)
1 /* $NetBSD: spiflash.c,v 1.1 2006/10/07 07:21:13 gdamore Exp $ */
2 
3 /*-
4  * Copyright (c) 2006 Urbana-Champaign Independent Media Center.
5  * Copyright (c) 2006 Garrett D'Amore.
6  * All rights reserved.
7  *
8  * Portions of this code were written by Garrett D'Amore for the
9  * Champaign-Urbana Community Wireless Network Project.
10  *
11  * Redistribution and use in source and binary forms, with or
12  * without modification, are permitted provided that the following
13  * conditions are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above
17  *    copyright notice, this list of conditions and the following
18  *    disclaimer in the documentation and/or other materials provided
19  *    with the distribution.
20  * 3. All advertising materials mentioning features or use of this
21  *    software must display the following acknowledgements:
22  *      This product includes software developed by the Urbana-Champaign
23  *      Independent Media Center.
24  *	This product includes software developed by Garrett D'Amore.
25  * 4. Urbana-Champaign Independent Media Center's name and Garrett
26  *    D'Amore's name may not be used to endorse or promote products
27  *    derived from this software without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE URBANA-CHAMPAIGN INDEPENDENT
30  * MEDIA CENTER AND GARRETT D'AMORE ``AS IS'' AND ANY EXPRESS OR
31  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
32  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE URBANA-CHAMPAIGN INDEPENDENT
34  * MEDIA CENTER OR GARRETT D'AMORE BE LIABLE FOR ANY DIRECT, INDIRECT,
35  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
36  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
37  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
38  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
40  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
41  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
42  */
43 
44 #include <sys/cdefs.h>
45 __KERNEL_RCSID(0, "$NetBSD: spiflash.c,v 1.1 2006/10/07 07:21:13 gdamore Exp $");
46 
47 #include <sys/param.h>
48 #include <sys/conf.h>
49 #include <sys/proc.h>
50 #include <sys/systm.h>
51 #include <sys/device.h>
52 #include <sys/kernel.h>
53 #include <sys/file.h>
54 #include <sys/ioctl.h>
55 #include <sys/disk.h>
56 #include <sys/disklabel.h>
57 #include <sys/buf.h>
58 #include <sys/bufq.h>
59 #include <sys/uio.h>
60 #include <sys/kthread.h>
61 #include <sys/malloc.h>
62 #include <sys/errno.h>
63 
64 #include <dev/spi/spivar.h>
65 #include <dev/spi/spiflash.h>
66 
67 /*
68  * This is an MI block driver for SPI flash devices.  It could probably be
69  * converted to some more generic framework, if someone wanted to create one
70  * for NOR flashes.  Note that some flashes have the ability to handle
71  * interrupts.
72  */
73 
74 struct spiflash_softc {
75 	struct device		sc_dev;
76 	struct disk		sc_dk;
77 
78 	struct spiflash_hw_if	sc_hw;
79 	void			*sc_cookie;
80 
81 	const char		*sc_name;
82 	struct spi_handle	*sc_handle;
83 	int			sc_device_size;
84 	int			sc_write_size;
85 	int			sc_erase_size;
86 	int			sc_read_size;
87 	int			sc_device_blks;
88 
89 	struct bufq_state	*sc_bufq;
90 	struct proc		*sc_thread;
91 };
92 
93 #define	sc_getname	sc_hw.sf_getname
94 #define	sc_gethandle	sc_hw.sf_gethandle
95 #define	sc_getsize	sc_hw.sf_getsize
96 #define	sc_getflags	sc_hw.sf_getflags
97 #define	sc_erase	sc_hw.sf_erase
98 #define	sc_write	sc_hw.sf_write
99 #define	sc_read		sc_hw.sf_read
100 #define	sc_getstatus	sc_hw.sf_getstatus
101 #define	sc_setstatus	sc_hw.sf_setstatus
102 
103 struct spiflash_attach_args {
104 	const struct spiflash_hw_if	*hw;
105 	void				*cookie;
106 };
107 
108 #define	STATIC
109 STATIC int spiflash_match(struct device *, struct cfdata *, void *);
110 STATIC void spiflash_attach(struct device *, struct device *, void *);
111 STATIC int spiflash_print(void *, const char *);
112 STATIC int spiflash_common_erase(spiflash_handle_t, size_t, size_t);
113 STATIC int spiflash_common_write(spiflash_handle_t, size_t, size_t,
114     const uint8_t *);
115 STATIC int spiflash_common_read(spiflash_handle_t, size_t, size_t, uint8_t *);
116 STATIC void spiflash_process(spiflash_handle_t, struct buf *);
117 STATIC void spiflash_thread(void *);
118 STATIC void spiflash_thread_create(void *);
119 
120 CFATTACH_DECL(spiflash, sizeof(struct spiflash_softc),
121 	      spiflash_match, spiflash_attach, NULL, NULL);
122 
123 extern struct cfdriver spiflash_cd;
124 
125 dev_type_open(spiflash_open);
126 dev_type_close(spiflash_close);
127 dev_type_read(spiflash_read);
128 dev_type_write(spiflash_write);
129 dev_type_ioctl(spiflash_ioctl);
130 dev_type_strategy(spiflash_strategy);
131 
132 const struct bdevsw spiflash_bdevsw = {
133 	.d_open = spiflash_open,
134 	.d_close = spiflash_close,
135 	.d_strategy = spiflash_strategy,
136 	.d_ioctl = spiflash_ioctl,
137 	.d_dump = nodump,
138 	.d_psize = nosize,
139 	.d_type = D_DISK,
140 };
141 
142 const struct cdevsw spiflash_cdevsw = {
143 	.d_open = spiflash_open,
144 	.d_close = spiflash_close,
145 	.d_read = spiflash_read,
146 	.d_write = spiflash_write,
147 	.d_ioctl = spiflash_ioctl,
148 	.d_stop = nostop,
149 	.d_tty = notty,
150 	.d_poll = nopoll,
151 	.d_mmap = nommap,
152 	.d_kqfilter = nokqfilter,
153 	.d_type = D_DISK,
154 };
155 
156 static struct dkdriver spiflash_dkdriver = { spiflash_strategy, NULL };
157 
158 spiflash_handle_t
159 spiflash_attach_mi(const struct spiflash_hw_if *hw, void *cookie,
160     struct device *dev)
161 {
162 	struct spiflash_attach_args sfa;
163 	sfa.hw = hw;
164 	sfa.cookie = cookie;
165 
166 	return (spiflash_handle_t)config_found(dev, &sfa, spiflash_print);
167 }
168 
169 int
170 spiflash_print(void *aux, const char *pnp)
171 {
172 	if (pnp != NULL)
173 		printf("spiflash at %s\n", pnp);
174 
175 	return UNCONF;
176 }
177 
178 int
179 spiflash_match(struct device *parent, struct cfdata *cf, void *aux)
180 {
181 
182 	return 1;
183 }
184 
185 void
186 spiflash_attach(struct device *parent, struct device *self, void *aux)
187 {
188 	struct spiflash_softc *sc = device_private(self);
189 	struct spiflash_attach_args *sfa = aux;
190 	void *cookie = sfa->cookie;
191 
192 	sc->sc_hw = *sfa->hw;
193 	sc->sc_cookie = cookie;
194 	sc->sc_name = sc->sc_getname(cookie);
195 	sc->sc_handle = sc->sc_gethandle(cookie);
196 	sc->sc_device_size = sc->sc_getsize(cookie, SPIFLASH_SIZE_DEVICE);
197 	sc->sc_erase_size = sc->sc_getsize(cookie, SPIFLASH_SIZE_ERASE);
198 	sc->sc_write_size = sc->sc_getsize(cookie, SPIFLASH_SIZE_WRITE);
199 	sc->sc_read_size = sc->sc_getsize(cookie, SPIFLASH_SIZE_READ);
200 	sc->sc_device_blks = sc->sc_device_size / DEV_BSIZE;
201 
202 	if (sc->sc_read == NULL)
203 		sc->sc_read = spiflash_common_read;
204 	if (sc->sc_write == NULL)
205 		sc->sc_write = spiflash_common_write;
206 	if (sc->sc_erase == NULL)
207 		sc->sc_erase = spiflash_common_erase;
208 
209 	aprint_naive(": SPI flash\n");
210 	aprint_normal(": %s SPI flash\n", sc->sc_name);
211 	/* XXX: note that this has to change for boot-sectored flash */
212 	aprint_normal("%s: %d KB, %d sectors of %d KB each\n",
213 	    sc->sc_dev.dv_xname, sc->sc_device_size / 1024,
214 	    sc->sc_device_size / sc->sc_erase_size,
215 	    sc->sc_erase_size / 1024);
216 
217 	/* first-come first-served strategy works best for us */
218 	bufq_alloc(&sc->sc_bufq, "fcfs", BUFQ_SORT_RAWBLOCK);
219 
220 	/* arrange to allocate the kthread */
221 	kthread_create(spiflash_thread_create, sc);
222 
223 	sc->sc_dk.dk_driver = &spiflash_dkdriver;
224 	sc->sc_dk.dk_name = sc->sc_dev.dv_xname;
225 
226 	disk_attach(&sc->sc_dk);
227 }
228 
229 int
230 spiflash_open(dev_t dev, int flags, int mode, struct lwp *l)
231 {
232 	spiflash_handle_t sc;
233 
234 	if ((sc = device_lookup(&spiflash_cd, DISKUNIT(dev))) == NULL)
235 		return ENXIO;
236 
237 	/*
238 	 * XXX: We need to handle partitions here.  The problem is
239 	 * that it isn't entirely clear to me how to deal with this.
240 	 * There are devices that could be used "in the raw" with a
241 	 * NetBSD label, but then you get into devices that have other
242 	 * kinds of data on them -- some have VxWorks data, some have
243 	 * RedBoot data, and some have other contraints -- for example
244 	 * some devices might have a portion that is read-only,
245 	 * whereas others might have a portion that is read-write.
246 	 *
247 	 * For now we just permit access to the entire device.
248 	 */
249 	return 0;
250 }
251 
252 int
253 spiflash_close(dev_t dev, int flags, int mode, struct lwp *l)
254 {
255 	spiflash_handle_t sc;
256 
257 	if ((sc = device_lookup(&spiflash_cd, DISKUNIT(dev))) == NULL)
258 		return ENXIO;
259 
260 	return 0;
261 }
262 
263 int
264 spiflash_read(dev_t dev, struct uio *uio, int ioflag)
265 {
266 
267 	return physio(spiflash_strategy, NULL, dev, B_READ, minphys, uio);
268 }
269 
270 int
271 spiflash_write(dev_t dev, struct uio *uio, int ioflag)
272 {
273 
274 	return physio(spiflash_strategy, NULL, dev, B_WRITE, minphys, uio);
275 }
276 
277 int
278 spiflash_ioctl(dev_t dev, u_long cmd, caddr_t data, int flags, struct lwp *l)
279 {
280 	spiflash_handle_t sc;
281 
282 	if ((sc = device_lookup(&spiflash_cd, DISKUNIT(dev))) == NULL)
283 		return ENXIO;
284 
285 	return EINVAL;
286 }
287 
288 void
289 spiflash_strategy(struct buf *bp)
290 {
291 	spiflash_handle_t sc;
292 	int	sz;
293 	int	s;
294 
295 	sc = device_lookup(&spiflash_cd, DISKUNIT(bp->b_dev));
296 	if (sc == NULL) {
297 		bp->b_error = ENXIO;
298 		bp->b_flags |= B_ERROR;
299 		biodone(bp);
300 		return;
301 	}
302 
303 	if ((bp->b_bcount % sc->sc_write_size) ||
304 	    (bp->b_blkno < 0)) {
305 		bp->b_error = EINVAL;
306 		bp->b_flags |= B_ERROR;
307 		biodone(bp);
308 		return;
309 	}
310 
311 	/* no work? */
312 	if (bp->b_bcount == 0) {
313 		biodone(bp);
314 		return;
315 	}
316 
317 	sz = bp->b_bcount / DEV_BSIZE;
318 
319 	if ((bp->b_blkno + sz) > sc->sc_device_blks) {
320 		sz = sc->sc_device_blks - bp->b_blkno;
321 		/* exactly at end of media?  return EOF */
322 		if (sz == 0) {
323 			biodone(bp);
324 			return;
325 		}
326 		if (sz < 0) {
327 			/* past end of disk */
328 			bp->b_error = EINVAL;
329 			bp->b_flags |= B_ERROR;
330 			biodone(bp);
331 		}
332 		/* otherwise truncate it */
333 		bp->b_bcount = sz << DEV_BSHIFT;
334 	}
335 
336 	bp->b_resid = bp->b_bcount;
337 
338 	/* all ready, hand off to thread for async processing */
339 	s = splbio();
340 	BUFQ_PUT(sc->sc_bufq, bp);
341 	wakeup(&sc->sc_thread);
342 	splx(s);
343 }
344 
345 void
346 spiflash_process(spiflash_handle_t sc, struct buf *bp)
347 {
348 	int	cnt;
349 	size_t	addr;
350 	uint8_t	*data;
351 
352 	addr = bp->b_blkno * DEV_BSIZE;
353 	data = bp->b_data;
354 
355 	while (bp->b_resid > 0) {
356 		cnt = max(sc->sc_write_size, DEV_BSIZE);
357 		if (bp->b_flags & B_READ) {
358 			bp->b_error = sc->sc_read(sc, addr, cnt, data);
359 		} else {
360 			bp->b_error = sc->sc_write(sc, addr, cnt, data);
361 		}
362 		if (bp->b_error) {
363 			bp->b_flags |= B_ERROR;
364 			biodone(bp);
365 			return;
366 		}
367 		bp->b_resid -= cnt;
368 		data += cnt;
369 		addr += cnt;
370 	}
371 	biodone(bp);
372 }
373 
374 void
375 spiflash_thread(void *arg)
376 {
377 	spiflash_handle_t sc = arg;
378 	struct buf	*bp;
379 	int		s;
380 
381 	s = splbio();
382 	for (;;) {
383 		if ((bp = BUFQ_GET(sc->sc_bufq)) == NULL) {
384 			tsleep(&sc->sc_thread, PRIBIO, "spiflash_thread", 0);
385 			continue;
386 		}
387 
388 		spiflash_process(sc, bp);
389 	}
390 }
391 
392 void
393 spiflash_thread_create(void *arg)
394 {
395 	spiflash_handle_t sc = arg;
396 
397 	kthread_create1(spiflash_thread, arg, &sc->sc_thread,
398 	    "spiflash_thread");
399 }
400 
401 /*
402  * SPI flash common implementation.
403  */
404 
405 /*
406  * Most devices take on the order of 1 second for each block that they
407  * delete.
408  */
409 int
410 spiflash_common_erase(spiflash_handle_t sc, size_t start, size_t size)
411 {
412 	int		rv;
413 
414 	if ((start % sc->sc_erase_size) || (size % sc->sc_erase_size))
415 		return EINVAL;
416 
417 	/* the second test is to test against wrap */
418 	if ((start > sc->sc_device_size) ||
419 	    ((start + size) > sc->sc_device_size))
420 		return EINVAL;
421 
422 	/*
423 	 * XXX: check protection status?  Requires master table mapping
424 	 * sectors to status bits, and so forth.
425 	 */
426 
427 	while (size) {
428 		if ((rv = spiflash_write_enable(sc)) != 0) {
429 			spiflash_write_disable(sc);
430 			return rv;
431 		}
432 		if ((rv = spiflash_cmd(sc, SPIFLASH_CMD_ERASE, 3, start, 0,
433 			 NULL, NULL)) != 0) {
434 			spiflash_write_disable(sc);
435 			return rv;
436 		}
437 
438 		/*
439 		 * The devices I have all say typical for sector erase
440 		 * is ~1sec.  We check ten times that often.  (There
441 		 * is no way to interrupt on this.)
442 		 */
443 		if ((rv = spiflash_wait(sc, hz / 10)) != 0)
444 			return rv;
445 
446 		start += sc->sc_erase_size;
447 		size -= sc->sc_erase_size;
448 
449 		/* NB: according to the docs I have, the write enable
450 		 * is automatically cleared upon completion of an erase
451 		 * command, so there is no need to explicitly disable it.
452 		 */
453 	}
454 
455 	return 0;
456 }
457 
458 int
459 spiflash_common_write(spiflash_handle_t sc, size_t start, size_t size,
460     const uint8_t *data)
461 {
462 	int		rv;
463 
464 	if ((start % sc->sc_write_size) || (size % sc->sc_write_size))
465 		return EINVAL;
466 
467 	/* the second test is to test against wrap */
468 	if ((start > sc->sc_device_size) ||
469 	    ((start + size) > sc->sc_device_size))
470 		return EINVAL;
471 
472 	while (size) {
473 		int cnt;
474 
475 		if ((rv = spiflash_write_enable(sc)) != 0) {
476 			spiflash_write_disable(sc);
477 			return rv;
478 		}
479 
480 		cnt = min(size, sc->sc_write_size);
481 		if ((rv = spiflash_cmd(sc, SPIFLASH_CMD_PROGRAM, 3, start,
482 			 cnt, data, NULL)) != 0) {
483 			spiflash_write_disable(sc);
484 			return rv;
485 		}
486 
487 		/*
488 		 * It seems that most devices can write bits fairly
489 		 * quickly.  For example, one part I have access to
490 		 * takes ~5msec to process the entire 256 byte page.
491 		 * Probably this should be modified to cope with
492 		 * device-specific timing, and maybe also take into
493 		 * account systems with higher values of HZ (which
494 		 * could benefit from sleeping.)
495 		 */
496 		if ((rv = spiflash_wait(sc, 0)) != 0)
497 			return rv;
498 
499 		start += cnt;
500 		size -= cnt;
501 	}
502 
503 	return 0;
504 }
505 
506 int
507 spiflash_common_read(spiflash_handle_t sc, size_t start, size_t size,
508     uint8_t *data)
509 {
510 	int		rv;
511 	int		align;
512 
513 	align = sc->sc_write_size;
514 	if (sc->sc_read_size > 0)
515 		align = sc->sc_read_size;
516 
517 	if ((start % align) || (size % align))
518 		return EINVAL;
519 
520 	/* the second test is to test against wrap */
521 	if ((start > sc->sc_device_size) ||
522 	    ((start + size) > sc->sc_device_size))
523 		return EINVAL;
524 
525 	while (size) {
526 		int cnt;
527 
528 		if ((rv = spiflash_write_enable(sc)) != 0) {
529 			spiflash_write_disable(sc);
530 			return rv;
531 		}
532 
533 		if (sc->sc_read_size > 0)
534 			cnt = min(size, sc->sc_read_size);
535 		else
536 			cnt = size;
537 
538 		if ((rv = spiflash_cmd(sc, SPIFLASH_CMD_READ, 3, start,
539 			 cnt, NULL, data)) != 0) {
540 			spiflash_write_disable(sc);
541 			return rv;
542 		}
543 
544 		start += cnt;
545 		size -= cnt;
546 	}
547 
548 	return 0;
549 }
550 
551 /* read status register */
552 int
553 spiflash_read_status(spiflash_handle_t sc, uint8_t *sr)
554 {
555 
556 	return spiflash_cmd(sc, SPIFLASH_CMD_RDSR, 0, 0, 1, NULL, sr);
557 }
558 
559 int
560 spiflash_write_enable(spiflash_handle_t sc)
561 {
562 
563 	return spiflash_cmd(sc, SPIFLASH_CMD_WREN, 0, 0, 0, NULL, NULL);
564 }
565 
566 int
567 spiflash_write_disable(spiflash_handle_t sc)
568 {
569 
570 	return spiflash_cmd(sc, SPIFLASH_CMD_WRDI, 0, 0, 0, NULL, NULL);
571 }
572 
573 int
574 spiflash_cmd(spiflash_handle_t sc, uint8_t cmd,
575     size_t addrlen, uint32_t addr,
576     size_t cnt, const uint8_t *wdata, uint8_t *rdata)
577 {
578 	struct spi_transfer	trans;
579 	struct spi_chunk	chunk1, chunk2;
580 	char buf[4];
581 	int i;
582 
583 	buf[0] = cmd;
584 
585 	if (addrlen > 3)
586 		return EINVAL;
587 
588 	for (i = addrlen; i > 0; i--) {
589 		buf[i] = (addr >> ((i - 1) * 8)) & 0xff;
590 	}
591 	spi_transfer_init(&trans);
592 	spi_chunk_init(&chunk1, addrlen + 1, buf, NULL);
593 	spi_transfer_add(&trans, &chunk1);
594 	if (cnt) {
595 		spi_chunk_init(&chunk2, cnt, wdata, rdata);
596 		spi_transfer_add(&trans, &chunk2);
597 	}
598 
599 	spi_transfer(sc->sc_handle, &trans);
600 	spi_wait(&trans);
601 
602 	if (trans.st_flags & SPI_F_ERROR)
603 		return trans.st_errno;
604 	return 0;
605 }
606 
607 int
608 spiflash_wait(spiflash_handle_t sc, int tmo)
609 {
610 	int	rv;
611 	uint8_t	sr;
612 
613 	for (;;) {
614 		if ((rv = spiflash_read_status(sc, &sr)) != 0)
615 			return rv;
616 
617 		if ((sr & SPIFLASH_SR_BUSY) == 0)
618 			break;
619 		/*
620 		 * The devices I have all say typical for sector
621 		 * erase is ~1sec.  We check time times that often.
622 		 * (There is no way to interrupt on this.)
623 		 */
624 		if (tmo)
625 			tsleep(&sr, PWAIT, "spiflash_wait", tmo);
626 	}
627 	return 0;
628 }
629