xref: /netbsd-src/sys/dev/spi/spiflash.c (revision c0179c282a5968435315a82f4128c61372c68fc3)
1 /* $NetBSD: spiflash.c,v 1.2 2006/10/20 06:41:47 gdamore Exp $ */
2 
3 /*-
4  * Copyright (c) 2006 Urbana-Champaign Independent Media Center.
5  * Copyright (c) 2006 Garrett D'Amore.
6  * All rights reserved.
7  *
8  * Portions of this code were written by Garrett D'Amore for the
9  * Champaign-Urbana Community Wireless Network Project.
10  *
11  * Redistribution and use in source and binary forms, with or
12  * without modification, are permitted provided that the following
13  * conditions are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above
17  *    copyright notice, this list of conditions and the following
18  *    disclaimer in the documentation and/or other materials provided
19  *    with the distribution.
20  * 3. All advertising materials mentioning features or use of this
21  *    software must display the following acknowledgements:
22  *      This product includes software developed by the Urbana-Champaign
23  *      Independent Media Center.
24  *	This product includes software developed by Garrett D'Amore.
25  * 4. Urbana-Champaign Independent Media Center's name and Garrett
26  *    D'Amore's name may not be used to endorse or promote products
27  *    derived from this software without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE URBANA-CHAMPAIGN INDEPENDENT
30  * MEDIA CENTER AND GARRETT D'AMORE ``AS IS'' AND ANY EXPRESS OR
31  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
32  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE URBANA-CHAMPAIGN INDEPENDENT
34  * MEDIA CENTER OR GARRETT D'AMORE BE LIABLE FOR ANY DIRECT, INDIRECT,
35  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
36  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
37  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
38  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
40  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
41  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
42  */
43 
44 #include <sys/cdefs.h>
45 __KERNEL_RCSID(0, "$NetBSD: spiflash.c,v 1.2 2006/10/20 06:41:47 gdamore Exp $");
46 
47 #include <sys/param.h>
48 #include <sys/conf.h>
49 #include <sys/proc.h>
50 #include <sys/systm.h>
51 #include <sys/device.h>
52 #include <sys/kernel.h>
53 #include <sys/file.h>
54 #include <sys/ioctl.h>
55 #include <sys/disk.h>
56 #include <sys/disklabel.h>
57 #include <sys/buf.h>
58 #include <sys/bufq.h>
59 #include <sys/uio.h>
60 #include <sys/kthread.h>
61 #include <sys/malloc.h>
62 #include <sys/errno.h>
63 
64 #include <dev/spi/spivar.h>
65 #include <dev/spi/spiflash.h>
66 
67 /*
68  * This is an MI block driver for SPI flash devices.  It could probably be
69  * converted to some more generic framework, if someone wanted to create one
70  * for NOR flashes.  Note that some flashes have the ability to handle
71  * interrupts.
72  */
73 
74 struct spiflash_softc {
75 	struct device		sc_dev;
76 	struct disk		sc_dk;
77 
78 	struct spiflash_hw_if	sc_hw;
79 	void			*sc_cookie;
80 
81 	const char		*sc_name;
82 	struct spi_handle	*sc_handle;
83 	int			sc_device_size;
84 	int			sc_write_size;
85 	int			sc_erase_size;
86 	int			sc_read_size;
87 	int			sc_device_blks;
88 
89 	struct bufq_state	*sc_waitq;
90 	struct bufq_state	*sc_workq;
91 	struct bufq_state	*sc_doneq;
92 	struct proc		*sc_thread;
93 };
94 
95 #define	sc_getname	sc_hw.sf_getname
96 #define	sc_gethandle	sc_hw.sf_gethandle
97 #define	sc_getsize	sc_hw.sf_getsize
98 #define	sc_getflags	sc_hw.sf_getflags
99 #define	sc_erase	sc_hw.sf_erase
100 #define	sc_write	sc_hw.sf_write
101 #define	sc_read		sc_hw.sf_read
102 #define	sc_getstatus	sc_hw.sf_getstatus
103 #define	sc_setstatus	sc_hw.sf_setstatus
104 
105 struct spiflash_attach_args {
106 	const struct spiflash_hw_if	*hw;
107 	void				*cookie;
108 };
109 
110 #define	STATIC
111 STATIC int spiflash_match(struct device *, struct cfdata *, void *);
112 STATIC void spiflash_attach(struct device *, struct device *, void *);
113 STATIC int spiflash_print(void *, const char *);
114 STATIC int spiflash_common_erase(spiflash_handle_t, size_t, size_t);
115 STATIC int spiflash_common_write(spiflash_handle_t, size_t, size_t,
116     const uint8_t *);
117 STATIC int spiflash_common_read(spiflash_handle_t, size_t, size_t, uint8_t *);
118 STATIC void spiflash_process_done(spiflash_handle_t, int);
119 STATIC void spiflash_process_read(spiflash_handle_t);
120 STATIC void spiflash_process_write(spiflash_handle_t);
121 STATIC void spiflash_thread(void *);
122 STATIC void spiflash_thread_create(void *);
123 STATIC int spiflash_nsectors(spiflash_handle_t, struct buf *);
124 STATIC int spiflash_nsectors(spiflash_handle_t, struct buf *);
125 STATIC int spiflash_sector(spiflash_handle_t, struct buf *);
126 
127 CFATTACH_DECL(spiflash, sizeof(struct spiflash_softc),
128 	      spiflash_match, spiflash_attach, NULL, NULL);
129 
130 #ifdef	SPIFLASH_DEBUG
131 #define	DPRINTF(x)	do { printf x; } while (0/*CONSTCOND*/)
132 #else
133 #define	DPRINTF(x)	do {  } while (0/*CONSTCOND*/)
134 #endif
135 
136 extern struct cfdriver spiflash_cd;
137 
138 dev_type_open(spiflash_open);
139 dev_type_close(spiflash_close);
140 dev_type_read(spiflash_read);
141 dev_type_write(spiflash_write);
142 dev_type_ioctl(spiflash_ioctl);
143 dev_type_strategy(spiflash_strategy);
144 
145 const struct bdevsw spiflash_bdevsw = {
146 	.d_open = spiflash_open,
147 	.d_close = spiflash_close,
148 	.d_strategy = spiflash_strategy,
149 	.d_ioctl = spiflash_ioctl,
150 	.d_dump = nodump,
151 	.d_psize = nosize,
152 	.d_type = D_DISK,
153 };
154 
155 const struct cdevsw spiflash_cdevsw = {
156 	.d_open = spiflash_open,
157 	.d_close = spiflash_close,
158 	.d_read = spiflash_read,
159 	.d_write = spiflash_write,
160 	.d_ioctl = spiflash_ioctl,
161 	.d_stop = nostop,
162 	.d_tty = notty,
163 	.d_poll = nopoll,
164 	.d_mmap = nommap,
165 	.d_kqfilter = nokqfilter,
166 	.d_type = D_DISK,
167 };
168 
169 static struct dkdriver spiflash_dkdriver = { spiflash_strategy, NULL };
170 
171 spiflash_handle_t
172 spiflash_attach_mi(const struct spiflash_hw_if *hw, void *cookie,
173     struct device *dev)
174 {
175 	struct spiflash_attach_args sfa;
176 	sfa.hw = hw;
177 	sfa.cookie = cookie;
178 
179 	return (spiflash_handle_t)config_found(dev, &sfa, spiflash_print);
180 }
181 
182 int
183 spiflash_print(void *aux, const char *pnp)
184 {
185 	if (pnp != NULL)
186 		printf("spiflash at %s\n", pnp);
187 
188 	return UNCONF;
189 }
190 
191 int
192 spiflash_match(struct device *parent, struct cfdata *cf, void *aux)
193 {
194 
195 	return 1;
196 }
197 
198 void
199 spiflash_attach(struct device *parent, struct device *self, void *aux)
200 {
201 	struct spiflash_softc *sc = device_private(self);
202 	struct spiflash_attach_args *sfa = aux;
203 	void *cookie = sfa->cookie;
204 
205 	sc->sc_hw = *sfa->hw;
206 	sc->sc_cookie = cookie;
207 	sc->sc_name = sc->sc_getname(cookie);
208 	sc->sc_handle = sc->sc_gethandle(cookie);
209 	sc->sc_device_size = sc->sc_getsize(cookie, SPIFLASH_SIZE_DEVICE);
210 	sc->sc_erase_size = sc->sc_getsize(cookie, SPIFLASH_SIZE_ERASE);
211 	sc->sc_write_size = sc->sc_getsize(cookie, SPIFLASH_SIZE_WRITE);
212 	sc->sc_read_size = sc->sc_getsize(cookie, SPIFLASH_SIZE_READ);
213 	sc->sc_device_blks = sc->sc_device_size / DEV_BSIZE;
214 
215 	if (sc->sc_read == NULL)
216 		sc->sc_read = spiflash_common_read;
217 	if (sc->sc_write == NULL)
218 		sc->sc_write = spiflash_common_write;
219 	if (sc->sc_erase == NULL)
220 		sc->sc_erase = spiflash_common_erase;
221 
222 	aprint_naive(": SPI flash\n");
223 	aprint_normal(": %s SPI flash\n", sc->sc_name);
224 	/* XXX: note that this has to change for boot-sectored flash */
225 	aprint_normal("%s: %d KB, %d sectors of %d KB each\n",
226 	    sc->sc_dev.dv_xname, sc->sc_device_size / 1024,
227 	    sc->sc_device_size / sc->sc_erase_size,
228 	    sc->sc_erase_size / 1024);
229 
230 	/* first-come first-served strategy works best for us */
231 	bufq_alloc(&sc->sc_waitq, "fcfs", BUFQ_SORT_RAWBLOCK);
232 	bufq_alloc(&sc->sc_workq, "fcfs", BUFQ_SORT_RAWBLOCK);
233 	bufq_alloc(&sc->sc_doneq, "fcfs", BUFQ_SORT_RAWBLOCK);
234 
235 	/* arrange to allocate the kthread */
236 	kthread_create(spiflash_thread_create, sc);
237 
238 	sc->sc_dk.dk_driver = &spiflash_dkdriver;
239 	sc->sc_dk.dk_name = sc->sc_dev.dv_xname;
240 
241 	disk_attach(&sc->sc_dk);
242 }
243 
244 int
245 spiflash_open(dev_t dev, int flags, int mode, struct lwp *l)
246 {
247 	spiflash_handle_t sc;
248 
249 	if ((sc = device_lookup(&spiflash_cd, DISKUNIT(dev))) == NULL)
250 		return ENXIO;
251 
252 	/*
253 	 * XXX: We need to handle partitions here.  The problem is
254 	 * that it isn't entirely clear to me how to deal with this.
255 	 * There are devices that could be used "in the raw" with a
256 	 * NetBSD label, but then you get into devices that have other
257 	 * kinds of data on them -- some have VxWorks data, some have
258 	 * RedBoot data, and some have other contraints -- for example
259 	 * some devices might have a portion that is read-only,
260 	 * whereas others might have a portion that is read-write.
261 	 *
262 	 * For now we just permit access to the entire device.
263 	 */
264 	return 0;
265 }
266 
267 int
268 spiflash_close(dev_t dev, int flags, int mode, struct lwp *l)
269 {
270 	spiflash_handle_t sc;
271 
272 	if ((sc = device_lookup(&spiflash_cd, DISKUNIT(dev))) == NULL)
273 		return ENXIO;
274 
275 	return 0;
276 }
277 
278 int
279 spiflash_read(dev_t dev, struct uio *uio, int ioflag)
280 {
281 
282 	return physio(spiflash_strategy, NULL, dev, B_READ, minphys, uio);
283 }
284 
285 int
286 spiflash_write(dev_t dev, struct uio *uio, int ioflag)
287 {
288 
289 	return physio(spiflash_strategy, NULL, dev, B_WRITE, minphys, uio);
290 }
291 
292 int
293 spiflash_ioctl(dev_t dev, u_long cmd, caddr_t data, int flags, struct lwp *l)
294 {
295 	spiflash_handle_t sc;
296 
297 	if ((sc = device_lookup(&spiflash_cd, DISKUNIT(dev))) == NULL)
298 		return ENXIO;
299 
300 	return EINVAL;
301 }
302 
303 void
304 spiflash_strategy(struct buf *bp)
305 {
306 	spiflash_handle_t sc;
307 	int	s;
308 
309 	sc = device_lookup(&spiflash_cd, DISKUNIT(bp->b_dev));
310 	if (sc == NULL) {
311 		bp->b_error = ENXIO;
312 		bp->b_flags |= B_ERROR;
313 		biodone(bp);
314 		return;
315 	}
316 
317 	if (((bp->b_bcount % sc->sc_write_size) != 0) ||
318 	    (bp->b_blkno < 0)) {
319 		bp->b_error = EINVAL;
320 		bp->b_flags |= B_ERROR;
321 		biodone(bp);
322 		return;
323 	}
324 
325 	/* no work? */
326 	if (bp->b_bcount == 0) {
327 		biodone(bp);
328 		return;
329 	}
330 
331 	if (bounds_check_with_mediasize(bp, DEV_BSIZE,
332 		sc->sc_device_blks) <= 0) {
333 		biodone(bp);
334 		return;
335 	}
336 
337 	bp->b_resid = bp->b_bcount;
338 
339 	/* all ready, hand off to thread for async processing */
340 	s = splbio();
341 	BUFQ_PUT(sc->sc_waitq, bp);
342 	wakeup(&sc->sc_thread);
343 	splx(s);
344 }
345 
346 void
347 spiflash_process_done(spiflash_handle_t sc, int err)
348 {
349 	struct buf	*bp;
350 	int		cnt = 0;
351 	int		flag = 0;
352 
353 	while ((bp = BUFQ_GET(sc->sc_doneq)) != NULL) {
354 		flag = bp->b_flags & B_READ;
355 		if ((bp->b_error = err) != 0)
356 			bp->b_flags |= B_ERROR;
357 		else
358 			bp->b_resid = 0;
359 		cnt += bp->b_bcount - bp->b_resid;
360 		biodone(bp);
361 	}
362 	disk_unbusy(&sc->sc_dk, cnt, flag);
363 }
364 
365 void
366 spiflash_process_read(spiflash_handle_t sc)
367 {
368 	struct buf	*bp;
369 	int		err = 0;
370 
371 	disk_busy(&sc->sc_dk);
372 	while ((bp = BUFQ_GET(sc->sc_workq)) != NULL) {
373 		size_t addr = bp->b_blkno * DEV_BSIZE;
374 		uint8_t *data = bp->b_data;
375 		int cnt = bp->b_resid;
376 
377 		BUFQ_PUT(sc->sc_doneq, bp);
378 
379 		DPRINTF(("read from addr %x, cnt %d\n", (unsigned)addr, cnt));
380 
381 		if ((err = sc->sc_read(sc, addr, cnt, data)) != 0) {
382 			/* error occurred, fail all pending workq bufs */
383 			bufq_move(sc->sc_doneq, sc->sc_workq);
384 			break;
385 		}
386 
387 		bp->b_resid -= cnt;
388 		data += cnt;
389 		addr += cnt;
390 	}
391 	spiflash_process_done(sc, err);
392 }
393 
394 void
395 spiflash_process_write(spiflash_handle_t sc)
396 {
397 	int	len;
398 	size_t	base;
399 	daddr_t	blkno;
400 	uint8_t	*save;
401 	int	err = 0, neederase = 0;
402 	struct buf *bp;
403 
404 	/*
405 	 * due to other considerations, we are guaranteed that
406 	 * we will only have multiple buffers if they are all in
407 	 * the same erase sector.  Therefore we never need to look
408 	 * beyond the first block to determine how much data we need
409 	 * to save.
410 	 */
411 
412 	bp = BUFQ_PEEK(sc->sc_workq);
413 	len = spiflash_nsectors(sc, bp)  * sc->sc_erase_size;
414 	blkno = bp->b_blkno;
415 	base = (blkno * DEV_BSIZE) & ~ (sc->sc_erase_size - 1);
416 
417 	/* get ourself a scratch buffer */
418 	save = malloc(len, M_DEVBUF, M_WAITOK);
419 
420 	disk_busy(&sc->sc_dk);
421 	/* read in as much of the data as we need */
422 	DPRINTF(("reading in %d bytes\n", len));
423 	if ((err = sc->sc_read(sc, base, len, save)) != 0) {
424 		bufq_move(sc->sc_doneq, sc->sc_workq);
425 		spiflash_process_done(sc, err);
426 		return;
427 	}
428 
429 	/*
430 	 * now coalesce the writes into the save area, but also
431 	 * check to see if we need to do an erase
432 	 */
433 	while ((bp = BUFQ_GET(sc->sc_workq)) != NULL) {
434 		uint8_t	*data, *dst;
435 		int resid = bp->b_resid;
436 
437 		DPRINTF(("coalesce write, blkno %x, count %d, resid %d\n",
438 			    (unsigned)bp->b_blkno, bp->b_bcount, resid));
439 
440 		data = bp->b_data;
441 		dst = save + (bp->b_blkno - blkno) * DEV_BSIZE;
442 
443 		/*
444 		 * NOR flash bits.  We can clear a bit, but we cannot
445 		 * set a bit, without erasing.  This should help reduce
446 		 * unnecessary erases.
447 		 */
448 		while (resid) {
449 			if ((*data) & ~(*dst))
450 				neederase = 1;
451 			*dst++ = *data++;
452 			resid--;
453 		}
454 
455 		BUFQ_PUT(sc->sc_doneq, bp);
456 	}
457 
458 	/*
459 	 * do the erase, if we need to.
460 	 */
461 	if (neederase) {
462 		DPRINTF(("erasing from %x - %x\n", base, base + len));
463 		if ((err = sc->sc_erase(sc, base, len)) != 0) {
464 			spiflash_process_done(sc, err);
465 			return;
466 		}
467 	}
468 
469 	/*
470 	 * now write our save area, and finish up.
471 	 */
472 	DPRINTF(("flashing %d bytes to %x from %x\n", len,
473 		    base, (unsigned)save));
474 	err = sc->sc_write(sc, base, len, save);
475 	spiflash_process_done(sc, err);
476 }
477 
478 
479 int
480 spiflash_nsectors(spiflash_handle_t sc, struct buf *bp)
481 {
482 	unsigned	addr, sector;
483 
484 	addr = bp->b_blkno * DEV_BSIZE;
485 	sector = addr / sc->sc_erase_size;
486 
487 	addr += bp->b_bcount;
488 	addr--;
489 	return (((addr / sc->sc_erase_size)  - sector) + 1);
490 }
491 
492 int
493 spiflash_sector(spiflash_handle_t sc, struct buf *bp)
494 {
495 	unsigned	addr, sector;
496 
497 	addr = bp->b_blkno * DEV_BSIZE;
498 	sector = addr / sc->sc_erase_size;
499 
500 	/* if it spans multiple blocks, error it */
501 	addr += bp->b_bcount;
502 	addr--;
503 	if (sector != (addr / sc->sc_erase_size))
504 		return -1;
505 
506 	return sector;
507 }
508 
509 void
510 spiflash_thread(void *arg)
511 {
512 	spiflash_handle_t sc = arg;
513 	struct buf	*bp;
514 	int		s;
515 	int		sector;
516 
517 	s = splbio();
518 	for (;;) {
519 		if ((bp = BUFQ_GET(sc->sc_waitq)) == NULL) {
520 			tsleep(&sc->sc_thread, PRIBIO, "spiflash_thread", 0);
521 			continue;
522 		}
523 
524 		BUFQ_PUT(sc->sc_workq, bp);
525 
526 		if (bp->b_flags & B_READ) {
527 			/* just do the read */
528 			spiflash_process_read(sc);
529 			continue;
530 		}
531 
532 		/*
533 		 * Because writing a flash filesystem is particularly
534 		 * painful, involving erase, modify, write, we prefer
535 		 * to coalesce writes to the same sector together.
536 		 */
537 
538 		sector = spiflash_sector(sc, bp);
539 
540 		/*
541 		 * if the write spans multiple sectors, skip
542 		 * coalescing.  (It would be nice if we could break
543 		 * these up.  minphys is honored for read/write, but
544 		 * not necessarily for bread.)
545 		 */
546 		if (sector < 0)
547 			goto dowrite;
548 
549 		while ((bp = BUFQ_PEEK(sc->sc_waitq)) != NULL) {
550 			/* can't deal with read requests! */
551 			if (bp->b_flags & B_READ)
552 				break;
553 
554 			/* is it for the same sector? */
555 			if (spiflash_sector(sc, bp) != sector)
556 				break;
557 
558 			bp = BUFQ_GET(sc->sc_waitq);
559 			BUFQ_PUT(sc->sc_workq, bp);
560 		}
561 
562 	dowrite:
563 		spiflash_process_write(sc);
564 	}
565 }
566 
567 void
568 spiflash_thread_create(void *arg)
569 {
570 	spiflash_handle_t sc = arg;
571 
572 	kthread_create1(spiflash_thread, arg, &sc->sc_thread,
573 	    "spiflash_thread");
574 }
575 
576 /*
577  * SPI flash common implementation.
578  */
579 
580 /*
581  * Most devices take on the order of 1 second for each block that they
582  * delete.
583  */
584 int
585 spiflash_common_erase(spiflash_handle_t sc, size_t start, size_t size)
586 {
587 	int		rv;
588 
589 	if ((start % sc->sc_erase_size) || (size % sc->sc_erase_size))
590 		return EINVAL;
591 
592 	/* the second test is to test against wrap */
593 	if ((start > sc->sc_device_size) ||
594 	    ((start + size) > sc->sc_device_size))
595 		return EINVAL;
596 
597 	/*
598 	 * XXX: check protection status?  Requires master table mapping
599 	 * sectors to status bits, and so forth.
600 	 */
601 
602 	while (size) {
603 		if ((rv = spiflash_write_enable(sc)) != 0) {
604 			spiflash_write_disable(sc);
605 			return rv;
606 		}
607 		if ((rv = spiflash_cmd(sc, SPIFLASH_CMD_ERASE, 3, start, 0,
608 			 NULL, NULL)) != 0) {
609 			spiflash_write_disable(sc);
610 			return rv;
611 		}
612 
613 		/*
614 		 * The devices I have all say typical for sector erase
615 		 * is ~1sec.  We check ten times that often.  (There
616 		 * is no way to interrupt on this.)
617 		 */
618 		if ((rv = spiflash_wait(sc, hz / 10)) != 0)
619 			return rv;
620 
621 		start += sc->sc_erase_size;
622 		size -= sc->sc_erase_size;
623 
624 		/* NB: according to the docs I have, the write enable
625 		 * is automatically cleared upon completion of an erase
626 		 * command, so there is no need to explicitly disable it.
627 		 */
628 	}
629 
630 	return 0;
631 }
632 
633 int
634 spiflash_common_write(spiflash_handle_t sc, size_t start, size_t size,
635     const uint8_t *data)
636 {
637 	int		rv;
638 
639 	if ((start % sc->sc_write_size) || (size % sc->sc_write_size))
640 		return EINVAL;
641 
642 	while (size) {
643 		int cnt;
644 
645 		if ((rv = spiflash_write_enable(sc)) != 0) {
646 			spiflash_write_disable(sc);
647 			return rv;
648 		}
649 
650 		cnt = min(size, sc->sc_write_size);
651 		if ((rv = spiflash_cmd(sc, SPIFLASH_CMD_PROGRAM, 3, start,
652 			 cnt, data, NULL)) != 0) {
653 			spiflash_write_disable(sc);
654 			return rv;
655 		}
656 
657 		/*
658 		 * It seems that most devices can write bits fairly
659 		 * quickly.  For example, one part I have access to
660 		 * takes ~5msec to process the entire 256 byte page.
661 		 * Probably this should be modified to cope with
662 		 * device-specific timing, and maybe also take into
663 		 * account systems with higher values of HZ (which
664 		 * could benefit from sleeping.)
665 		 */
666 		if ((rv = spiflash_wait(sc, 0)) != 0)
667 			return rv;
668 
669 		data += cnt;
670 		start += cnt;
671 		size -= cnt;
672 	}
673 
674 	return 0;
675 }
676 
677 int
678 spiflash_common_read(spiflash_handle_t sc, size_t start, size_t size,
679     uint8_t *data)
680 {
681 	int		rv;
682 
683 	while (size) {
684 		int cnt;
685 
686 		if (sc->sc_read_size > 0)
687 			cnt = min(size, sc->sc_read_size);
688 		else
689 			cnt = size;
690 
691 		if ((rv = spiflash_cmd(sc, SPIFLASH_CMD_READ, 3, start,
692 			 cnt, NULL, data)) != 0) {
693 			return rv;
694 		}
695 
696 		start += cnt;
697 		size -= cnt;
698 	}
699 
700 	return 0;
701 }
702 
703 /* read status register */
704 int
705 spiflash_read_status(spiflash_handle_t sc, uint8_t *sr)
706 {
707 
708 	return spiflash_cmd(sc, SPIFLASH_CMD_RDSR, 0, 0, 1, NULL, sr);
709 }
710 
711 int
712 spiflash_write_enable(spiflash_handle_t sc)
713 {
714 
715 	return spiflash_cmd(sc, SPIFLASH_CMD_WREN, 0, 0, 0, NULL, NULL);
716 }
717 
718 int
719 spiflash_write_disable(spiflash_handle_t sc)
720 {
721 
722 	return spiflash_cmd(sc, SPIFLASH_CMD_WRDI, 0, 0, 0, NULL, NULL);
723 }
724 
725 int
726 spiflash_cmd(spiflash_handle_t sc, uint8_t cmd,
727     size_t addrlen, uint32_t addr,
728     size_t cnt, const uint8_t *wdata, uint8_t *rdata)
729 {
730 	struct spi_transfer	trans;
731 	struct spi_chunk	chunk1, chunk2;
732 	char buf[4];
733 	int i;
734 
735 	buf[0] = cmd;
736 
737 	if (addrlen > 3)
738 		return EINVAL;
739 
740 	for (i = addrlen; i > 0; i--) {
741 		buf[i] = addr & 0xff;
742 		addr >>= 8;
743 	}
744 	spi_transfer_init(&trans);
745 	spi_chunk_init(&chunk1, addrlen + 1, buf, NULL);
746 	spi_transfer_add(&trans, &chunk1);
747 	if (cnt) {
748 		spi_chunk_init(&chunk2, cnt, wdata, rdata);
749 		spi_transfer_add(&trans, &chunk2);
750 	}
751 
752 	spi_transfer(sc->sc_handle, &trans);
753 	spi_wait(&trans);
754 
755 	if (trans.st_flags & SPI_F_ERROR)
756 		return trans.st_errno;
757 	return 0;
758 }
759 
760 int
761 spiflash_wait(spiflash_handle_t sc, int tmo)
762 {
763 	int	rv;
764 	uint8_t	sr;
765 
766 	for (;;) {
767 		if ((rv = spiflash_read_status(sc, &sr)) != 0)
768 			return rv;
769 
770 		if ((sr & SPIFLASH_SR_BUSY) == 0)
771 			break;
772 		/*
773 		 * The devices I have all say typical for sector
774 		 * erase is ~1sec.  We check time times that often.
775 		 * (There is no way to interrupt on this.)
776 		 */
777 		if (tmo)
778 			tsleep(&sr, PWAIT, "spiflash_wait", tmo);
779 	}
780 	return 0;
781 }
782