1 /* $NetBSD: spiflash.c,v 1.6 2007/07/29 12:15:44 ad Exp $ */ 2 3 /*- 4 * Copyright (c) 2006 Urbana-Champaign Independent Media Center. 5 * Copyright (c) 2006 Garrett D'Amore. 6 * All rights reserved. 7 * 8 * Portions of this code were written by Garrett D'Amore for the 9 * Champaign-Urbana Community Wireless Network Project. 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer in the documentation and/or other materials provided 19 * with the distribution. 20 * 3. All advertising materials mentioning features or use of this 21 * software must display the following acknowledgements: 22 * This product includes software developed by the Urbana-Champaign 23 * Independent Media Center. 24 * This product includes software developed by Garrett D'Amore. 25 * 4. Urbana-Champaign Independent Media Center's name and Garrett 26 * D'Amore's name may not be used to endorse or promote products 27 * derived from this software without specific prior written permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE URBANA-CHAMPAIGN INDEPENDENT 30 * MEDIA CENTER AND GARRETT D'AMORE ``AS IS'' AND ANY EXPRESS OR 31 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 32 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 33 * ARE DISCLAIMED. IN NO EVENT SHALL THE URBANA-CHAMPAIGN INDEPENDENT 34 * MEDIA CENTER OR GARRETT D'AMORE BE LIABLE FOR ANY DIRECT, INDIRECT, 35 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 36 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 37 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 38 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 40 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF 41 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 42 */ 43 44 #include <sys/cdefs.h> 45 __KERNEL_RCSID(0, "$NetBSD: spiflash.c,v 1.6 2007/07/29 12:15:44 ad Exp $"); 46 47 #include <sys/param.h> 48 #include <sys/conf.h> 49 #include <sys/proc.h> 50 #include <sys/systm.h> 51 #include <sys/device.h> 52 #include <sys/kernel.h> 53 #include <sys/file.h> 54 #include <sys/ioctl.h> 55 #include <sys/disk.h> 56 #include <sys/disklabel.h> 57 #include <sys/buf.h> 58 #include <sys/bufq.h> 59 #include <sys/uio.h> 60 #include <sys/kthread.h> 61 #include <sys/malloc.h> 62 #include <sys/errno.h> 63 64 #include <dev/spi/spivar.h> 65 #include <dev/spi/spiflash.h> 66 67 /* 68 * This is an MI block driver for SPI flash devices. It could probably be 69 * converted to some more generic framework, if someone wanted to create one 70 * for NOR flashes. Note that some flashes have the ability to handle 71 * interrupts. 72 */ 73 74 struct spiflash_softc { 75 struct device sc_dev; 76 struct disk sc_dk; 77 78 struct spiflash_hw_if sc_hw; 79 void *sc_cookie; 80 81 const char *sc_name; 82 struct spi_handle *sc_handle; 83 int sc_device_size; 84 int sc_write_size; 85 int sc_erase_size; 86 int sc_read_size; 87 int sc_device_blks; 88 89 struct bufq_state *sc_waitq; 90 struct bufq_state *sc_workq; 91 struct bufq_state *sc_doneq; 92 lwp_t *sc_thread; 93 }; 94 95 #define sc_getname sc_hw.sf_getname 96 #define sc_gethandle sc_hw.sf_gethandle 97 #define sc_getsize sc_hw.sf_getsize 98 #define sc_getflags sc_hw.sf_getflags 99 #define sc_erase sc_hw.sf_erase 100 #define sc_write sc_hw.sf_write 101 #define sc_read sc_hw.sf_read 102 #define sc_getstatus sc_hw.sf_getstatus 103 #define sc_setstatus sc_hw.sf_setstatus 104 105 struct spiflash_attach_args { 106 const struct spiflash_hw_if *hw; 107 void *cookie; 108 }; 109 110 #define STATIC 111 STATIC int spiflash_match(struct device *, struct cfdata *, void *); 112 STATIC void spiflash_attach(struct device *, struct device *, void *); 113 STATIC int spiflash_print(void *, const char *); 114 STATIC int spiflash_common_erase(spiflash_handle_t, size_t, size_t); 115 STATIC int spiflash_common_write(spiflash_handle_t, size_t, size_t, 116 const uint8_t *); 117 STATIC int spiflash_common_read(spiflash_handle_t, size_t, size_t, uint8_t *); 118 STATIC void spiflash_process_done(spiflash_handle_t, int); 119 STATIC void spiflash_process_read(spiflash_handle_t); 120 STATIC void spiflash_process_write(spiflash_handle_t); 121 STATIC void spiflash_thread(void *); 122 STATIC int spiflash_nsectors(spiflash_handle_t, struct buf *); 123 STATIC int spiflash_nsectors(spiflash_handle_t, struct buf *); 124 STATIC int spiflash_sector(spiflash_handle_t, struct buf *); 125 126 CFATTACH_DECL(spiflash, sizeof(struct spiflash_softc), 127 spiflash_match, spiflash_attach, NULL, NULL); 128 129 #ifdef SPIFLASH_DEBUG 130 #define DPRINTF(x) do { printf x; } while (0/*CONSTCOND*/) 131 #else 132 #define DPRINTF(x) do { } while (0/*CONSTCOND*/) 133 #endif 134 135 extern struct cfdriver spiflash_cd; 136 137 dev_type_open(spiflash_open); 138 dev_type_close(spiflash_close); 139 dev_type_read(spiflash_read); 140 dev_type_write(spiflash_write); 141 dev_type_ioctl(spiflash_ioctl); 142 dev_type_strategy(spiflash_strategy); 143 144 const struct bdevsw spiflash_bdevsw = { 145 .d_open = spiflash_open, 146 .d_close = spiflash_close, 147 .d_strategy = spiflash_strategy, 148 .d_ioctl = spiflash_ioctl, 149 .d_dump = nodump, 150 .d_psize = nosize, 151 .d_flag = D_DISK, 152 }; 153 154 const struct cdevsw spiflash_cdevsw = { 155 .d_open = spiflash_open, 156 .d_close = spiflash_close, 157 .d_read = spiflash_read, 158 .d_write = spiflash_write, 159 .d_ioctl = spiflash_ioctl, 160 .d_stop = nostop, 161 .d_tty = notty, 162 .d_poll = nopoll, 163 .d_mmap = nommap, 164 .d_kqfilter = nokqfilter, 165 .d_flag = D_DISK, 166 }; 167 168 static struct dkdriver spiflash_dkdriver = { spiflash_strategy, NULL }; 169 170 spiflash_handle_t 171 spiflash_attach_mi(const struct spiflash_hw_if *hw, void *cookie, 172 struct device *dev) 173 { 174 struct spiflash_attach_args sfa; 175 sfa.hw = hw; 176 sfa.cookie = cookie; 177 178 return (spiflash_handle_t)config_found(dev, &sfa, spiflash_print); 179 } 180 181 int 182 spiflash_print(void *aux, const char *pnp) 183 { 184 if (pnp != NULL) 185 printf("spiflash at %s\n", pnp); 186 187 return UNCONF; 188 } 189 190 int 191 spiflash_match(struct device *parent, struct cfdata *cf, void *aux) 192 { 193 194 return 1; 195 } 196 197 void 198 spiflash_attach(struct device *parent, struct device *self, void *aux) 199 { 200 struct spiflash_softc *sc = device_private(self); 201 struct spiflash_attach_args *sfa = aux; 202 void *cookie = sfa->cookie; 203 204 sc->sc_hw = *sfa->hw; 205 sc->sc_cookie = cookie; 206 sc->sc_name = sc->sc_getname(cookie); 207 sc->sc_handle = sc->sc_gethandle(cookie); 208 sc->sc_device_size = sc->sc_getsize(cookie, SPIFLASH_SIZE_DEVICE); 209 sc->sc_erase_size = sc->sc_getsize(cookie, SPIFLASH_SIZE_ERASE); 210 sc->sc_write_size = sc->sc_getsize(cookie, SPIFLASH_SIZE_WRITE); 211 sc->sc_read_size = sc->sc_getsize(cookie, SPIFLASH_SIZE_READ); 212 sc->sc_device_blks = sc->sc_device_size / DEV_BSIZE; 213 214 if (sc->sc_read == NULL) 215 sc->sc_read = spiflash_common_read; 216 if (sc->sc_write == NULL) 217 sc->sc_write = spiflash_common_write; 218 if (sc->sc_erase == NULL) 219 sc->sc_erase = spiflash_common_erase; 220 221 aprint_naive(": SPI flash\n"); 222 aprint_normal(": %s SPI flash\n", sc->sc_name); 223 /* XXX: note that this has to change for boot-sectored flash */ 224 aprint_normal("%s: %d KB, %d sectors of %d KB each\n", 225 sc->sc_dev.dv_xname, sc->sc_device_size / 1024, 226 sc->sc_device_size / sc->sc_erase_size, 227 sc->sc_erase_size / 1024); 228 229 /* first-come first-served strategy works best for us */ 230 bufq_alloc(&sc->sc_waitq, "fcfs", BUFQ_SORT_RAWBLOCK); 231 bufq_alloc(&sc->sc_workq, "fcfs", BUFQ_SORT_RAWBLOCK); 232 bufq_alloc(&sc->sc_doneq, "fcfs", BUFQ_SORT_RAWBLOCK); 233 234 sc->sc_dk.dk_driver = &spiflash_dkdriver; 235 sc->sc_dk.dk_name = sc->sc_dev.dv_xname; 236 237 disk_attach(&sc->sc_dk); 238 239 /* arrange to allocate the kthread */ 240 kthread_create(PRI_NONE, 0, NULL, spiflash_thread, sc, 241 &sc->sc_thread, "spiflash"); 242 } 243 244 int 245 spiflash_open(dev_t dev, int flags, int mode, struct lwp *l) 246 { 247 spiflash_handle_t sc; 248 249 if ((sc = device_lookup(&spiflash_cd, DISKUNIT(dev))) == NULL) 250 return ENXIO; 251 252 /* 253 * XXX: We need to handle partitions here. The problem is 254 * that it isn't entirely clear to me how to deal with this. 255 * There are devices that could be used "in the raw" with a 256 * NetBSD label, but then you get into devices that have other 257 * kinds of data on them -- some have VxWorks data, some have 258 * RedBoot data, and some have other contraints -- for example 259 * some devices might have a portion that is read-only, 260 * whereas others might have a portion that is read-write. 261 * 262 * For now we just permit access to the entire device. 263 */ 264 return 0; 265 } 266 267 int 268 spiflash_close(dev_t dev, int flags, int mode, struct lwp *l) 269 { 270 spiflash_handle_t sc; 271 272 if ((sc = device_lookup(&spiflash_cd, DISKUNIT(dev))) == NULL) 273 return ENXIO; 274 275 return 0; 276 } 277 278 int 279 spiflash_read(dev_t dev, struct uio *uio, int ioflag) 280 { 281 282 return physio(spiflash_strategy, NULL, dev, B_READ, minphys, uio); 283 } 284 285 int 286 spiflash_write(dev_t dev, struct uio *uio, int ioflag) 287 { 288 289 return physio(spiflash_strategy, NULL, dev, B_WRITE, minphys, uio); 290 } 291 292 int 293 spiflash_ioctl(dev_t dev, u_long cmd, void *data, int flags, struct lwp *l) 294 { 295 spiflash_handle_t sc; 296 297 if ((sc = device_lookup(&spiflash_cd, DISKUNIT(dev))) == NULL) 298 return ENXIO; 299 300 return EINVAL; 301 } 302 303 void 304 spiflash_strategy(struct buf *bp) 305 { 306 spiflash_handle_t sc; 307 int s; 308 309 sc = device_lookup(&spiflash_cd, DISKUNIT(bp->b_dev)); 310 if (sc == NULL) { 311 bp->b_error = ENXIO; 312 biodone(bp); 313 return; 314 } 315 316 if (((bp->b_bcount % sc->sc_write_size) != 0) || 317 (bp->b_blkno < 0)) { 318 bp->b_error = EINVAL; 319 biodone(bp); 320 return; 321 } 322 323 /* no work? */ 324 if (bp->b_bcount == 0) { 325 biodone(bp); 326 return; 327 } 328 329 if (bounds_check_with_mediasize(bp, DEV_BSIZE, 330 sc->sc_device_blks) <= 0) { 331 biodone(bp); 332 return; 333 } 334 335 bp->b_resid = bp->b_bcount; 336 337 /* all ready, hand off to thread for async processing */ 338 s = splbio(); 339 BUFQ_PUT(sc->sc_waitq, bp); 340 wakeup(&sc->sc_thread); 341 splx(s); 342 } 343 344 void 345 spiflash_process_done(spiflash_handle_t sc, int err) 346 { 347 struct buf *bp; 348 int cnt = 0; 349 int flag = 0; 350 351 while ((bp = BUFQ_GET(sc->sc_doneq)) != NULL) { 352 flag = bp->b_flags & B_READ; 353 if ((bp->b_error = err) == 0) 354 bp->b_resid = 0; 355 cnt += bp->b_bcount - bp->b_resid; 356 biodone(bp); 357 } 358 disk_unbusy(&sc->sc_dk, cnt, flag); 359 } 360 361 void 362 spiflash_process_read(spiflash_handle_t sc) 363 { 364 struct buf *bp; 365 int err = 0; 366 367 disk_busy(&sc->sc_dk); 368 while ((bp = BUFQ_GET(sc->sc_workq)) != NULL) { 369 size_t addr = bp->b_blkno * DEV_BSIZE; 370 uint8_t *data = bp->b_data; 371 int cnt = bp->b_resid; 372 373 BUFQ_PUT(sc->sc_doneq, bp); 374 375 DPRINTF(("read from addr %x, cnt %d\n", (unsigned)addr, cnt)); 376 377 if ((err = sc->sc_read(sc, addr, cnt, data)) != 0) { 378 /* error occurred, fail all pending workq bufs */ 379 bufq_move(sc->sc_doneq, sc->sc_workq); 380 break; 381 } 382 383 bp->b_resid -= cnt; 384 data += cnt; 385 addr += cnt; 386 } 387 spiflash_process_done(sc, err); 388 } 389 390 void 391 spiflash_process_write(spiflash_handle_t sc) 392 { 393 int len; 394 size_t base; 395 daddr_t blkno; 396 uint8_t *save; 397 int err = 0, neederase = 0; 398 struct buf *bp; 399 400 /* 401 * due to other considerations, we are guaranteed that 402 * we will only have multiple buffers if they are all in 403 * the same erase sector. Therefore we never need to look 404 * beyond the first block to determine how much data we need 405 * to save. 406 */ 407 408 bp = BUFQ_PEEK(sc->sc_workq); 409 len = spiflash_nsectors(sc, bp) * sc->sc_erase_size; 410 blkno = bp->b_blkno; 411 base = (blkno * DEV_BSIZE) & ~ (sc->sc_erase_size - 1); 412 413 /* get ourself a scratch buffer */ 414 save = malloc(len, M_DEVBUF, M_WAITOK); 415 416 disk_busy(&sc->sc_dk); 417 /* read in as much of the data as we need */ 418 DPRINTF(("reading in %d bytes\n", len)); 419 if ((err = sc->sc_read(sc, base, len, save)) != 0) { 420 bufq_move(sc->sc_doneq, sc->sc_workq); 421 spiflash_process_done(sc, err); 422 return; 423 } 424 425 /* 426 * now coalesce the writes into the save area, but also 427 * check to see if we need to do an erase 428 */ 429 while ((bp = BUFQ_GET(sc->sc_workq)) != NULL) { 430 uint8_t *data, *dst; 431 int resid = bp->b_resid; 432 433 DPRINTF(("coalesce write, blkno %x, count %d, resid %d\n", 434 (unsigned)bp->b_blkno, bp->b_bcount, resid)); 435 436 data = bp->b_data; 437 dst = save + (bp->b_blkno - blkno) * DEV_BSIZE; 438 439 /* 440 * NOR flash bits. We can clear a bit, but we cannot 441 * set a bit, without erasing. This should help reduce 442 * unnecessary erases. 443 */ 444 while (resid) { 445 if ((*data) & ~(*dst)) 446 neederase = 1; 447 *dst++ = *data++; 448 resid--; 449 } 450 451 BUFQ_PUT(sc->sc_doneq, bp); 452 } 453 454 /* 455 * do the erase, if we need to. 456 */ 457 if (neederase) { 458 DPRINTF(("erasing from %x - %x\n", base, base + len)); 459 if ((err = sc->sc_erase(sc, base, len)) != 0) { 460 spiflash_process_done(sc, err); 461 return; 462 } 463 } 464 465 /* 466 * now write our save area, and finish up. 467 */ 468 DPRINTF(("flashing %d bytes to %x from %x\n", len, 469 base, (unsigned)save)); 470 err = sc->sc_write(sc, base, len, save); 471 spiflash_process_done(sc, err); 472 } 473 474 475 int 476 spiflash_nsectors(spiflash_handle_t sc, struct buf *bp) 477 { 478 unsigned addr, sector; 479 480 addr = bp->b_blkno * DEV_BSIZE; 481 sector = addr / sc->sc_erase_size; 482 483 addr += bp->b_bcount; 484 addr--; 485 return (((addr / sc->sc_erase_size) - sector) + 1); 486 } 487 488 int 489 spiflash_sector(spiflash_handle_t sc, struct buf *bp) 490 { 491 unsigned addr, sector; 492 493 addr = bp->b_blkno * DEV_BSIZE; 494 sector = addr / sc->sc_erase_size; 495 496 /* if it spans multiple blocks, error it */ 497 addr += bp->b_bcount; 498 addr--; 499 if (sector != (addr / sc->sc_erase_size)) 500 return -1; 501 502 return sector; 503 } 504 505 void 506 spiflash_thread(void *arg) 507 { 508 spiflash_handle_t sc = arg; 509 struct buf *bp; 510 int s; 511 int sector; 512 513 s = splbio(); 514 for (;;) { 515 if ((bp = BUFQ_GET(sc->sc_waitq)) == NULL) { 516 tsleep(&sc->sc_thread, PRIBIO, "spiflash_thread", 0); 517 continue; 518 } 519 520 BUFQ_PUT(sc->sc_workq, bp); 521 522 if (bp->b_flags & B_READ) { 523 /* just do the read */ 524 spiflash_process_read(sc); 525 continue; 526 } 527 528 /* 529 * Because writing a flash filesystem is particularly 530 * painful, involving erase, modify, write, we prefer 531 * to coalesce writes to the same sector together. 532 */ 533 534 sector = spiflash_sector(sc, bp); 535 536 /* 537 * if the write spans multiple sectors, skip 538 * coalescing. (It would be nice if we could break 539 * these up. minphys is honored for read/write, but 540 * not necessarily for bread.) 541 */ 542 if (sector < 0) 543 goto dowrite; 544 545 while ((bp = BUFQ_PEEK(sc->sc_waitq)) != NULL) { 546 /* can't deal with read requests! */ 547 if (bp->b_flags & B_READ) 548 break; 549 550 /* is it for the same sector? */ 551 if (spiflash_sector(sc, bp) != sector) 552 break; 553 554 bp = BUFQ_GET(sc->sc_waitq); 555 BUFQ_PUT(sc->sc_workq, bp); 556 } 557 558 dowrite: 559 spiflash_process_write(sc); 560 } 561 } 562 /* 563 * SPI flash common implementation. 564 */ 565 566 /* 567 * Most devices take on the order of 1 second for each block that they 568 * delete. 569 */ 570 int 571 spiflash_common_erase(spiflash_handle_t sc, size_t start, size_t size) 572 { 573 int rv; 574 575 if ((start % sc->sc_erase_size) || (size % sc->sc_erase_size)) 576 return EINVAL; 577 578 /* the second test is to test against wrap */ 579 if ((start > sc->sc_device_size) || 580 ((start + size) > sc->sc_device_size)) 581 return EINVAL; 582 583 /* 584 * XXX: check protection status? Requires master table mapping 585 * sectors to status bits, and so forth. 586 */ 587 588 while (size) { 589 if ((rv = spiflash_write_enable(sc)) != 0) { 590 spiflash_write_disable(sc); 591 return rv; 592 } 593 if ((rv = spiflash_cmd(sc, SPIFLASH_CMD_ERASE, 3, start, 0, 594 NULL, NULL)) != 0) { 595 spiflash_write_disable(sc); 596 return rv; 597 } 598 599 /* 600 * The devices I have all say typical for sector erase 601 * is ~1sec. We check ten times that often. (There 602 * is no way to interrupt on this.) 603 */ 604 if ((rv = spiflash_wait(sc, hz / 10)) != 0) 605 return rv; 606 607 start += sc->sc_erase_size; 608 size -= sc->sc_erase_size; 609 610 /* NB: according to the docs I have, the write enable 611 * is automatically cleared upon completion of an erase 612 * command, so there is no need to explicitly disable it. 613 */ 614 } 615 616 return 0; 617 } 618 619 int 620 spiflash_common_write(spiflash_handle_t sc, size_t start, size_t size, 621 const uint8_t *data) 622 { 623 int rv; 624 625 if ((start % sc->sc_write_size) || (size % sc->sc_write_size)) 626 return EINVAL; 627 628 while (size) { 629 int cnt; 630 631 if ((rv = spiflash_write_enable(sc)) != 0) { 632 spiflash_write_disable(sc); 633 return rv; 634 } 635 636 cnt = min(size, sc->sc_write_size); 637 if ((rv = spiflash_cmd(sc, SPIFLASH_CMD_PROGRAM, 3, start, 638 cnt, data, NULL)) != 0) { 639 spiflash_write_disable(sc); 640 return rv; 641 } 642 643 /* 644 * It seems that most devices can write bits fairly 645 * quickly. For example, one part I have access to 646 * takes ~5msec to process the entire 256 byte page. 647 * Probably this should be modified to cope with 648 * device-specific timing, and maybe also take into 649 * account systems with higher values of HZ (which 650 * could benefit from sleeping.) 651 */ 652 if ((rv = spiflash_wait(sc, 0)) != 0) 653 return rv; 654 655 data += cnt; 656 start += cnt; 657 size -= cnt; 658 } 659 660 return 0; 661 } 662 663 int 664 spiflash_common_read(spiflash_handle_t sc, size_t start, size_t size, 665 uint8_t *data) 666 { 667 int rv; 668 669 while (size) { 670 int cnt; 671 672 if (sc->sc_read_size > 0) 673 cnt = min(size, sc->sc_read_size); 674 else 675 cnt = size; 676 677 if ((rv = spiflash_cmd(sc, SPIFLASH_CMD_READ, 3, start, 678 cnt, NULL, data)) != 0) { 679 return rv; 680 } 681 682 start += cnt; 683 size -= cnt; 684 } 685 686 return 0; 687 } 688 689 /* read status register */ 690 int 691 spiflash_read_status(spiflash_handle_t sc, uint8_t *sr) 692 { 693 694 return spiflash_cmd(sc, SPIFLASH_CMD_RDSR, 0, 0, 1, NULL, sr); 695 } 696 697 int 698 spiflash_write_enable(spiflash_handle_t sc) 699 { 700 701 return spiflash_cmd(sc, SPIFLASH_CMD_WREN, 0, 0, 0, NULL, NULL); 702 } 703 704 int 705 spiflash_write_disable(spiflash_handle_t sc) 706 { 707 708 return spiflash_cmd(sc, SPIFLASH_CMD_WRDI, 0, 0, 0, NULL, NULL); 709 } 710 711 int 712 spiflash_cmd(spiflash_handle_t sc, uint8_t cmd, 713 size_t addrlen, uint32_t addr, 714 size_t cnt, const uint8_t *wdata, uint8_t *rdata) 715 { 716 struct spi_transfer trans; 717 struct spi_chunk chunk1, chunk2; 718 char buf[4]; 719 int i; 720 721 buf[0] = cmd; 722 723 if (addrlen > 3) 724 return EINVAL; 725 726 for (i = addrlen; i > 0; i--) { 727 buf[i] = addr & 0xff; 728 addr >>= 8; 729 } 730 spi_transfer_init(&trans); 731 spi_chunk_init(&chunk1, addrlen + 1, buf, NULL); 732 spi_transfer_add(&trans, &chunk1); 733 if (cnt) { 734 spi_chunk_init(&chunk2, cnt, wdata, rdata); 735 spi_transfer_add(&trans, &chunk2); 736 } 737 738 spi_transfer(sc->sc_handle, &trans); 739 spi_wait(&trans); 740 741 if (trans.st_flags & SPI_F_ERROR) 742 return trans.st_errno; 743 return 0; 744 } 745 746 int 747 spiflash_wait(spiflash_handle_t sc, int tmo) 748 { 749 int rv; 750 uint8_t sr; 751 752 for (;;) { 753 if ((rv = spiflash_read_status(sc, &sr)) != 0) 754 return rv; 755 756 if ((sr & SPIFLASH_SR_BUSY) == 0) 757 break; 758 /* 759 * The devices I have all say typical for sector 760 * erase is ~1sec. We check time times that often. 761 * (There is no way to interrupt on this.) 762 */ 763 if (tmo) 764 tsleep(&sr, PWAIT, "spiflash_wait", tmo); 765 } 766 return 0; 767 } 768