1 /* $NetBSD: spiflash.c,v 1.26 2022/05/08 06:38:58 skrll Exp $ */ 2 3 /*- 4 * Copyright (c) 2006 Urbana-Champaign Independent Media Center. 5 * Copyright (c) 2006 Garrett D'Amore. 6 * All rights reserved. 7 * 8 * Portions of this code were written by Garrett D'Amore for the 9 * Champaign-Urbana Community Wireless Network Project. 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer in the documentation and/or other materials provided 19 * with the distribution. 20 * 3. All advertising materials mentioning features or use of this 21 * software must display the following acknowledgements: 22 * This product includes software developed by the Urbana-Champaign 23 * Independent Media Center. 24 * This product includes software developed by Garrett D'Amore. 25 * 4. Urbana-Champaign Independent Media Center's name and Garrett 26 * D'Amore's name may not be used to endorse or promote products 27 * derived from this software without specific prior written permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE URBANA-CHAMPAIGN INDEPENDENT 30 * MEDIA CENTER AND GARRETT D'AMORE ``AS IS'' AND ANY EXPRESS OR 31 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 32 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 33 * ARE DISCLAIMED. IN NO EVENT SHALL THE URBANA-CHAMPAIGN INDEPENDENT 34 * MEDIA CENTER OR GARRETT D'AMORE BE LIABLE FOR ANY DIRECT, INDIRECT, 35 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 36 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 37 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 38 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 40 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF 41 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 42 */ 43 44 #include <sys/cdefs.h> 45 __KERNEL_RCSID(0, "$NetBSD: spiflash.c,v 1.26 2022/05/08 06:38:58 skrll Exp $"); 46 47 #include <sys/param.h> 48 #include <sys/conf.h> 49 #include <sys/proc.h> 50 #include <sys/systm.h> 51 #include <sys/device.h> 52 #include <sys/kernel.h> 53 #include <sys/file.h> 54 #include <sys/ioctl.h> 55 #include <sys/disk.h> 56 #include <sys/disklabel.h> 57 #include <sys/buf.h> 58 #include <sys/bufq.h> 59 #include <sys/uio.h> 60 #include <sys/kthread.h> 61 #include <sys/malloc.h> 62 #include <sys/errno.h> 63 64 #include <dev/spi/spivar.h> 65 #include <dev/spi/spiflash.h> 66 67 /* 68 * This is an MI block driver for SPI flash devices. It could probably be 69 * converted to some more generic framework, if someone wanted to create one 70 * for NOR flashes. Note that some flashes have the ability to handle 71 * interrupts. 72 */ 73 74 struct spiflash_softc { 75 struct disk sc_dk; 76 77 struct spiflash_hw_if sc_hw; 78 void *sc_cookie; 79 80 const char *sc_name; 81 struct spi_handle *sc_handle; 82 int sc_device_size; 83 int sc_write_size; 84 int sc_erase_size; 85 int sc_read_size; 86 int sc_device_blks; 87 88 struct bufq_state *sc_waitq; 89 struct bufq_state *sc_workq; 90 struct bufq_state *sc_doneq; 91 lwp_t *sc_thread; 92 }; 93 94 #define sc_getname sc_hw.sf_getname 95 #define sc_gethandle sc_hw.sf_gethandle 96 #define sc_getsize sc_hw.sf_getsize 97 #define sc_getflags sc_hw.sf_getflags 98 #define sc_erase sc_hw.sf_erase 99 #define sc_write sc_hw.sf_write 100 #define sc_read sc_hw.sf_read 101 #define sc_getstatus sc_hw.sf_getstatus 102 #define sc_setstatus sc_hw.sf_setstatus 103 104 struct spiflash_attach_args { 105 const struct spiflash_hw_if *hw; 106 void *cookie; 107 }; 108 109 #define STATIC 110 STATIC int spiflash_match(device_t , cfdata_t , void *); 111 STATIC void spiflash_attach(device_t , device_t , void *); 112 STATIC int spiflash_print(void *, const char *); 113 STATIC int spiflash_common_erase(spiflash_handle_t, size_t, size_t); 114 STATIC int spiflash_common_write(spiflash_handle_t, size_t, size_t, 115 const uint8_t *); 116 STATIC int spiflash_common_read(spiflash_handle_t, size_t, size_t, uint8_t *); 117 STATIC void spiflash_process_done(spiflash_handle_t, int); 118 STATIC void spiflash_process_read(spiflash_handle_t); 119 STATIC void spiflash_process_write(spiflash_handle_t); 120 STATIC void spiflash_thread(void *); 121 STATIC int spiflash_nsectors(spiflash_handle_t, struct buf *); 122 STATIC int spiflash_nsectors(spiflash_handle_t, struct buf *); 123 STATIC int spiflash_sector(spiflash_handle_t, struct buf *); 124 125 CFATTACH_DECL_NEW(spiflash, sizeof(struct spiflash_softc), 126 spiflash_match, spiflash_attach, NULL, NULL); 127 128 #ifdef SPIFLASH_DEBUG 129 #define DPRINTF(x) do { printf x; } while (0/*CONSTCOND*/) 130 #else 131 #define DPRINTF(x) do { } while (0/*CONSTCOND*/) 132 #endif 133 134 extern struct cfdriver spiflash_cd; 135 136 dev_type_open(spiflash_open); 137 dev_type_close(spiflash_close); 138 dev_type_read(spiflash_read); 139 dev_type_write(spiflash_write); 140 dev_type_ioctl(spiflash_ioctl); 141 dev_type_strategy(spiflash_strategy); 142 143 const struct bdevsw spiflash_bdevsw = { 144 .d_open = spiflash_open, 145 .d_close = spiflash_close, 146 .d_strategy = spiflash_strategy, 147 .d_ioctl = spiflash_ioctl, 148 .d_dump = nodump, 149 .d_psize = nosize, 150 .d_discard = nodiscard, 151 .d_flag = D_DISK, 152 }; 153 154 const struct cdevsw spiflash_cdevsw = { 155 .d_open = spiflash_open, 156 .d_close = spiflash_close, 157 .d_read = spiflash_read, 158 .d_write = spiflash_write, 159 .d_ioctl = spiflash_ioctl, 160 .d_stop = nostop, 161 .d_tty = notty, 162 .d_poll = nopoll, 163 .d_mmap = nommap, 164 .d_kqfilter = nokqfilter, 165 .d_discard = nodiscard, 166 .d_flag = D_DISK, 167 }; 168 169 static struct dkdriver spiflash_dkdriver = { 170 .d_strategy = spiflash_strategy 171 }; 172 173 spiflash_handle_t 174 spiflash_attach_mi(const struct spiflash_hw_if *hw, void *cookie, 175 device_t dev) 176 { 177 struct spiflash_attach_args sfa; 178 sfa.hw = hw; 179 sfa.cookie = cookie; 180 181 return (spiflash_handle_t)config_found(dev, &sfa, spiflash_print, 182 CFARGS_NONE); 183 } 184 185 int 186 spiflash_print(void *aux, const char *pnp) 187 { 188 if (pnp != NULL) 189 printf("spiflash at %s\n", pnp); 190 191 return UNCONF; 192 } 193 194 int 195 spiflash_match(device_t parent, cfdata_t cf, void *aux) 196 { 197 198 return 1; 199 } 200 201 void 202 spiflash_attach(device_t parent, device_t self, void *aux) 203 { 204 struct spiflash_softc *sc = device_private(self); 205 struct spiflash_attach_args *sfa = aux; 206 void *cookie = sfa->cookie; 207 208 sc->sc_hw = *sfa->hw; 209 sc->sc_cookie = cookie; 210 sc->sc_name = sc->sc_getname(cookie); 211 sc->sc_handle = sc->sc_gethandle(cookie); 212 sc->sc_device_size = sc->sc_getsize(cookie, SPIFLASH_SIZE_DEVICE); 213 sc->sc_erase_size = sc->sc_getsize(cookie, SPIFLASH_SIZE_ERASE); 214 sc->sc_write_size = sc->sc_getsize(cookie, SPIFLASH_SIZE_WRITE); 215 sc->sc_read_size = sc->sc_getsize(cookie, SPIFLASH_SIZE_READ); 216 sc->sc_device_blks = sc->sc_device_size / DEV_BSIZE; 217 218 if (sc->sc_read == NULL) 219 sc->sc_read = spiflash_common_read; 220 if (sc->sc_write == NULL) 221 sc->sc_write = spiflash_common_write; 222 if (sc->sc_erase == NULL) 223 sc->sc_erase = spiflash_common_erase; 224 225 aprint_naive(": SPI flash\n"); 226 aprint_normal(": %s SPI flash\n", sc->sc_name); 227 /* XXX: note that this has to change for boot-sectored flash */ 228 aprint_normal_dev(self, "%d KB, %d sectors of %d KB each\n", 229 sc->sc_device_size / 1024, 230 sc->sc_device_size / sc->sc_erase_size, 231 sc->sc_erase_size / 1024); 232 233 /* first-come first-served strategy works best for us */ 234 bufq_alloc(&sc->sc_waitq, "fcfs", BUFQ_SORT_RAWBLOCK); 235 bufq_alloc(&sc->sc_workq, "fcfs", BUFQ_SORT_RAWBLOCK); 236 bufq_alloc(&sc->sc_doneq, "fcfs", BUFQ_SORT_RAWBLOCK); 237 238 disk_init(&sc->sc_dk, device_xname(self), &spiflash_dkdriver); 239 disk_attach(&sc->sc_dk); 240 241 /* arrange to allocate the kthread */ 242 kthread_create(PRI_NONE, 0, NULL, spiflash_thread, sc, 243 &sc->sc_thread, "spiflash"); 244 } 245 246 int 247 spiflash_open(dev_t dev, int flags, int mode, struct lwp *l) 248 { 249 spiflash_handle_t sc; 250 251 sc = device_lookup_private(&spiflash_cd, DISKUNIT(dev)); 252 if (sc == NULL) 253 return ENXIO; 254 255 /* 256 * XXX: We need to handle partitions here. The problem is 257 * that it isn't entirely clear to me how to deal with this. 258 * There are devices that could be used "in the raw" with a 259 * NetBSD label, but then you get into devices that have other 260 * kinds of data on them -- some have VxWorks data, some have 261 * RedBoot data, and some have other contraints -- for example 262 * some devices might have a portion that is read-only, 263 * whereas others might have a portion that is read-write. 264 * 265 * For now we just permit access to the entire device. 266 */ 267 return 0; 268 } 269 270 int 271 spiflash_close(dev_t dev, int flags, int mode, struct lwp *l) 272 { 273 spiflash_handle_t sc; 274 275 sc = device_lookup_private(&spiflash_cd, DISKUNIT(dev)); 276 if (sc == NULL) 277 return ENXIO; 278 279 return 0; 280 } 281 282 int 283 spiflash_read(dev_t dev, struct uio *uio, int ioflag) 284 { 285 286 return physio(spiflash_strategy, NULL, dev, B_READ, minphys, uio); 287 } 288 289 int 290 spiflash_write(dev_t dev, struct uio *uio, int ioflag) 291 { 292 293 return physio(spiflash_strategy, NULL, dev, B_WRITE, minphys, uio); 294 } 295 296 int 297 spiflash_ioctl(dev_t dev, u_long cmd, void *data, int flags, struct lwp *l) 298 { 299 spiflash_handle_t sc; 300 301 sc = device_lookup_private(&spiflash_cd, DISKUNIT(dev)); 302 if (sc == NULL) 303 return ENXIO; 304 305 return EINVAL; 306 } 307 308 void 309 spiflash_strategy(struct buf *bp) 310 { 311 spiflash_handle_t sc; 312 int s; 313 314 bp->b_resid = bp->b_bcount; 315 316 sc = device_lookup_private(&spiflash_cd, DISKUNIT(bp->b_dev)); 317 if (sc == NULL) { 318 bp->b_error = ENXIO; 319 biodone(bp); 320 return; 321 } 322 323 if (((bp->b_bcount % sc->sc_write_size) != 0) || 324 (bp->b_blkno < 0)) { 325 bp->b_error = EINVAL; 326 biodone(bp); 327 return; 328 } 329 330 /* no work? */ 331 if (bp->b_bcount == 0) { 332 biodone(bp); 333 return; 334 } 335 336 if (bounds_check_with_mediasize(bp, DEV_BSIZE, 337 sc->sc_device_blks) <= 0) { 338 biodone(bp); 339 return; 340 } 341 342 /* all ready, hand off to thread for async processing */ 343 s = splbio(); 344 bufq_put(sc->sc_waitq, bp); 345 wakeup(&sc->sc_thread); 346 splx(s); 347 } 348 349 void 350 spiflash_process_done(spiflash_handle_t sc, int err) 351 { 352 struct buf *bp; 353 int cnt = 0; 354 int flag = 0; 355 356 while ((bp = bufq_get(sc->sc_doneq)) != NULL) { 357 flag = bp->b_flags & B_READ; 358 if ((bp->b_error = err) == 0) 359 bp->b_resid = 0; 360 cnt += bp->b_bcount - bp->b_resid; 361 biodone(bp); 362 } 363 disk_unbusy(&sc->sc_dk, cnt, flag); 364 } 365 366 void 367 spiflash_process_read(spiflash_handle_t sc) 368 { 369 struct buf *bp; 370 int err = 0; 371 372 disk_busy(&sc->sc_dk); 373 while ((bp = bufq_get(sc->sc_workq)) != NULL) { 374 size_t addr = bp->b_blkno * DEV_BSIZE; 375 uint8_t *data = bp->b_data; 376 int cnt = bp->b_resid; 377 378 bufq_put(sc->sc_doneq, bp); 379 380 DPRINTF(("read from addr %x, cnt %d\n", (unsigned)addr, cnt)); 381 382 if ((err = sc->sc_read(sc, addr, cnt, data)) != 0) { 383 /* error occurred, fail all pending workq bufs */ 384 bufq_move(sc->sc_doneq, sc->sc_workq); 385 break; 386 } 387 388 bp->b_resid -= cnt; 389 data += cnt; 390 addr += cnt; 391 } 392 spiflash_process_done(sc, err); 393 } 394 395 void 396 spiflash_process_write(spiflash_handle_t sc) 397 { 398 int len; 399 size_t base; 400 daddr_t blkno; 401 uint8_t *save; 402 int err = 0, neederase = 0; 403 struct buf *bp; 404 405 /* 406 * due to other considerations, we are guaranteed that 407 * we will only have multiple buffers if they are all in 408 * the same erase sector. Therefore we never need to look 409 * beyond the first block to determine how much data we need 410 * to save. 411 */ 412 413 bp = bufq_peek(sc->sc_workq); 414 len = spiflash_nsectors(sc, bp) * sc->sc_erase_size; 415 blkno = bp->b_blkno; 416 base = (blkno * DEV_BSIZE) & ~ (sc->sc_erase_size - 1); 417 418 /* get ourself a scratch buffer */ 419 save = malloc(len, M_DEVBUF, M_WAITOK); 420 421 disk_busy(&sc->sc_dk); 422 /* read in as much of the data as we need */ 423 DPRINTF(("reading in %d bytes\n", len)); 424 if ((err = sc->sc_read(sc, base, len, save)) != 0) { 425 bufq_move(sc->sc_doneq, sc->sc_workq); 426 spiflash_process_done(sc, err); 427 return; 428 } 429 430 /* 431 * now coalesce the writes into the save area, but also 432 * check to see if we need to do an erase 433 */ 434 while ((bp = bufq_get(sc->sc_workq)) != NULL) { 435 uint8_t *data, *dst; 436 int resid = bp->b_resid; 437 438 DPRINTF(("coalesce write, blkno %x, count %d, resid %d\n", 439 (unsigned)bp->b_blkno, bp->b_bcount, resid)); 440 441 data = bp->b_data; 442 dst = save + (bp->b_blkno * DEV_BSIZE) - base; 443 444 /* 445 * NOR flash bits. We can clear a bit, but we cannot 446 * set a bit, without erasing. This should help reduce 447 * unnecessary erases. 448 */ 449 while (resid) { 450 if ((*data) & ~(*dst)) 451 neederase = 1; 452 *dst++ = *data++; 453 resid--; 454 } 455 456 bufq_put(sc->sc_doneq, bp); 457 } 458 459 /* 460 * do the erase, if we need to. 461 */ 462 if (neederase) { 463 DPRINTF(("erasing from %zx - %zx\n", base, base + len)); 464 if ((err = sc->sc_erase(sc, base, len)) != 0) { 465 spiflash_process_done(sc, err); 466 return; 467 } 468 } 469 470 /* 471 * now write our save area, and finish up. 472 */ 473 DPRINTF(("flashing %d bytes to %zx from %p\n", len, base, save)); 474 err = sc->sc_write(sc, base, len, save); 475 spiflash_process_done(sc, err); 476 } 477 478 479 int 480 spiflash_nsectors(spiflash_handle_t sc, struct buf *bp) 481 { 482 unsigned addr, sector; 483 484 addr = bp->b_blkno * DEV_BSIZE; 485 sector = addr / sc->sc_erase_size; 486 487 addr += bp->b_bcount; 488 addr--; 489 return (((addr / sc->sc_erase_size) - sector) + 1); 490 } 491 492 int 493 spiflash_sector(spiflash_handle_t sc, struct buf *bp) 494 { 495 unsigned addr, sector; 496 497 addr = bp->b_blkno * DEV_BSIZE; 498 sector = addr / sc->sc_erase_size; 499 500 /* if it spans multiple blocks, error it */ 501 addr += bp->b_bcount; 502 addr--; 503 if (sector != (addr / sc->sc_erase_size)) 504 return -1; 505 506 return sector; 507 } 508 509 void 510 spiflash_thread(void *arg) 511 { 512 spiflash_handle_t sc = arg; 513 struct buf *bp; 514 int sector; 515 516 (void)splbio(); 517 for (;;) { 518 if ((bp = bufq_get(sc->sc_waitq)) == NULL) { 519 tsleep(&sc->sc_thread, PRIBIO, "spiflash_thread", 0); 520 continue; 521 } 522 523 bufq_put(sc->sc_workq, bp); 524 525 if (bp->b_flags & B_READ) { 526 /* just do the read */ 527 spiflash_process_read(sc); 528 continue; 529 } 530 531 /* 532 * Because writing a flash filesystem is particularly 533 * painful, involving erase, modify, write, we prefer 534 * to coalesce writes to the same sector together. 535 */ 536 537 sector = spiflash_sector(sc, bp); 538 539 /* 540 * if the write spans multiple sectors, skip 541 * coalescing. (It would be nice if we could break 542 * these up. minphys is honored for read/write, but 543 * not necessarily for bread.) 544 */ 545 if (sector < 0) 546 goto dowrite; 547 548 while ((bp = bufq_peek(sc->sc_waitq)) != NULL) { 549 /* can't deal with read requests! */ 550 if (bp->b_flags & B_READ) 551 break; 552 553 /* is it for the same sector? */ 554 if (spiflash_sector(sc, bp) != sector) 555 break; 556 557 bp = bufq_get(sc->sc_waitq); 558 bufq_put(sc->sc_workq, bp); 559 } 560 561 dowrite: 562 spiflash_process_write(sc); 563 } 564 } 565 /* 566 * SPI flash common implementation. 567 */ 568 569 /* 570 * Most devices take on the order of 1 second for each block that they 571 * delete. 572 */ 573 int 574 spiflash_common_erase(spiflash_handle_t sc, size_t start, size_t size) 575 { 576 int rv; 577 578 if ((start % sc->sc_erase_size) || (size % sc->sc_erase_size)) 579 return EINVAL; 580 581 /* the second test is to test against wrap */ 582 if ((start > sc->sc_device_size) || 583 ((start + size) > sc->sc_device_size)) 584 return EINVAL; 585 586 /* 587 * XXX: check protection status? Requires master table mapping 588 * sectors to status bits, and so forth. 589 */ 590 591 while (size) { 592 if ((rv = spiflash_write_enable(sc)) != 0) { 593 spiflash_write_disable(sc); 594 return rv; 595 } 596 if ((rv = spiflash_cmd(sc, SPIFLASH_CMD_ERASE, 3, start, 0, 597 NULL, NULL)) != 0) { 598 spiflash_write_disable(sc); 599 return rv; 600 } 601 602 /* 603 * The devices I have all say typical for sector erase 604 * is ~1sec. We check ten times that often. (There 605 * is no way to interrupt on this.) 606 */ 607 if ((rv = spiflash_wait(sc, hz / 10)) != 0) 608 return rv; 609 610 start += sc->sc_erase_size; 611 size -= sc->sc_erase_size; 612 613 /* NB: according to the docs I have, the write enable 614 * is automatically cleared upon completion of an erase 615 * command, so there is no need to explicitly disable it. 616 */ 617 } 618 619 return 0; 620 } 621 622 int 623 spiflash_common_write(spiflash_handle_t sc, size_t start, size_t size, 624 const uint8_t *data) 625 { 626 int rv; 627 628 if ((start % sc->sc_write_size) || (size % sc->sc_write_size)) 629 return EINVAL; 630 631 while (size) { 632 int cnt; 633 634 if ((rv = spiflash_write_enable(sc)) != 0) { 635 spiflash_write_disable(sc); 636 return rv; 637 } 638 639 cnt = uimin(size, sc->sc_write_size); 640 if ((rv = spiflash_cmd(sc, SPIFLASH_CMD_PROGRAM, 3, start, 641 cnt, data, NULL)) != 0) { 642 spiflash_write_disable(sc); 643 return rv; 644 } 645 646 /* 647 * It seems that most devices can write bits fairly 648 * quickly. For example, one part I have access to 649 * takes ~5msec to process the entire 256 byte page. 650 * Probably this should be modified to cope with 651 * device-specific timing, and maybe also take into 652 * account systems with higher values of HZ (which 653 * could benefit from sleeping.) 654 */ 655 if ((rv = spiflash_wait(sc, 0)) != 0) 656 return rv; 657 658 data += cnt; 659 start += cnt; 660 size -= cnt; 661 } 662 663 return 0; 664 } 665 666 int 667 spiflash_common_read(spiflash_handle_t sc, size_t start, size_t size, 668 uint8_t *data) 669 { 670 int rv; 671 672 while (size) { 673 int cnt; 674 675 if (sc->sc_read_size > 0) 676 cnt = uimin(size, sc->sc_read_size); 677 else 678 cnt = size; 679 680 if ((rv = spiflash_cmd(sc, SPIFLASH_CMD_READ, 3, start, 681 cnt, NULL, data)) != 0) { 682 return rv; 683 } 684 685 data += cnt; 686 start += cnt; 687 size -= cnt; 688 } 689 690 return 0; 691 } 692 693 /* read status register */ 694 int 695 spiflash_read_status(spiflash_handle_t sc, uint8_t *sr) 696 { 697 698 return spiflash_cmd(sc, SPIFLASH_CMD_RDSR, 0, 0, 1, NULL, sr); 699 } 700 701 int 702 spiflash_write_enable(spiflash_handle_t sc) 703 { 704 705 return spiflash_cmd(sc, SPIFLASH_CMD_WREN, 0, 0, 0, NULL, NULL); 706 } 707 708 int 709 spiflash_write_disable(spiflash_handle_t sc) 710 { 711 712 return spiflash_cmd(sc, SPIFLASH_CMD_WRDI, 0, 0, 0, NULL, NULL); 713 } 714 715 int 716 spiflash_cmd(spiflash_handle_t sc, uint8_t cmd, 717 size_t addrlen, uint32_t addr, 718 size_t cnt, const uint8_t *wdata, uint8_t *rdata) 719 { 720 struct spi_transfer trans; 721 struct spi_chunk chunk1, chunk2; 722 char buf[4]; 723 int i; 724 725 buf[0] = cmd; 726 727 if (addrlen > 3) 728 return EINVAL; 729 730 for (i = addrlen; i > 0; i--) { 731 buf[i] = addr & 0xff; 732 addr >>= 8; 733 } 734 spi_transfer_init(&trans); 735 spi_chunk_init(&chunk1, addrlen + 1, buf, NULL); 736 spi_transfer_add(&trans, &chunk1); 737 if (cnt) { 738 spi_chunk_init(&chunk2, cnt, wdata, rdata); 739 spi_transfer_add(&trans, &chunk2); 740 } 741 742 spi_transfer(sc->sc_handle, &trans); 743 spi_wait(&trans); 744 745 if (trans.st_flags & SPI_F_ERROR) 746 return trans.st_errno; 747 return 0; 748 } 749 750 int 751 spiflash_wait(spiflash_handle_t sc, int tmo) 752 { 753 int rv; 754 uint8_t sr; 755 756 for (;;) { 757 if ((rv = spiflash_read_status(sc, &sr)) != 0) 758 return rv; 759 760 if ((sr & SPIFLASH_SR_BUSY) == 0) 761 break; 762 /* 763 * The devices I have all say typical for sector 764 * erase is ~1sec. We check time times that often. 765 * (There is no way to interrupt on this.) 766 */ 767 if (tmo) 768 tsleep(&sr, PWAIT, "spiflash_wait", tmo); 769 } 770 return 0; 771 } 772