1 /* $NetBSD: sdhc.c,v 1.97 2017/01/07 15:05:08 kiyohara Exp $ */ 2 /* $OpenBSD: sdhc.c,v 1.25 2009/01/13 19:44:20 grange Exp $ */ 3 4 /* 5 * Copyright (c) 2006 Uwe Stuehler <uwe@openbsd.org> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 /* 21 * SD Host Controller driver based on the SD Host Controller Standard 22 * Simplified Specification Version 1.00 (www.sdcard.com). 23 */ 24 25 #include <sys/cdefs.h> 26 __KERNEL_RCSID(0, "$NetBSD: sdhc.c,v 1.97 2017/01/07 15:05:08 kiyohara Exp $"); 27 28 #ifdef _KERNEL_OPT 29 #include "opt_sdmmc.h" 30 #endif 31 32 #include <sys/param.h> 33 #include <sys/device.h> 34 #include <sys/kernel.h> 35 #include <sys/malloc.h> 36 #include <sys/systm.h> 37 #include <sys/mutex.h> 38 #include <sys/condvar.h> 39 #include <sys/atomic.h> 40 41 #include <dev/sdmmc/sdhcreg.h> 42 #include <dev/sdmmc/sdhcvar.h> 43 #include <dev/sdmmc/sdmmcchip.h> 44 #include <dev/sdmmc/sdmmcreg.h> 45 #include <dev/sdmmc/sdmmcvar.h> 46 47 #ifdef SDHC_DEBUG 48 int sdhcdebug = 1; 49 #define DPRINTF(n,s) do { if ((n) <= sdhcdebug) printf s; } while (0) 50 void sdhc_dump_regs(struct sdhc_host *); 51 #else 52 #define DPRINTF(n,s) do {} while (0) 53 #endif 54 55 #define SDHC_COMMAND_TIMEOUT hz 56 #define SDHC_BUFFER_TIMEOUT hz 57 #define SDHC_TRANSFER_TIMEOUT hz 58 #define SDHC_DMA_TIMEOUT (hz*3) 59 #define SDHC_TUNING_TIMEOUT hz 60 61 struct sdhc_host { 62 struct sdhc_softc *sc; /* host controller device */ 63 64 bus_space_tag_t iot; /* host register set tag */ 65 bus_space_handle_t ioh; /* host register set handle */ 66 bus_size_t ios; /* host register space size */ 67 bus_dma_tag_t dmat; /* host DMA tag */ 68 69 device_t sdmmc; /* generic SD/MMC device */ 70 71 u_int clkbase; /* base clock frequency in KHz */ 72 int maxblklen; /* maximum block length */ 73 uint32_t ocr; /* OCR value from capabilities */ 74 75 uint8_t regs[14]; /* host controller state */ 76 77 uint16_t intr_status; /* soft interrupt status */ 78 uint16_t intr_error_status; /* soft error status */ 79 kmutex_t intr_lock; 80 kcondvar_t intr_cv; 81 82 callout_t tuning_timer; 83 int tuning_timing; 84 u_int tuning_timer_count; 85 u_int tuning_timer_pending; 86 87 int specver; /* spec. version */ 88 89 uint32_t flags; /* flags for this host */ 90 #define SHF_USE_DMA 0x0001 91 #define SHF_USE_4BIT_MODE 0x0002 92 #define SHF_USE_8BIT_MODE 0x0004 93 #define SHF_MODE_DMAEN 0x0008 /* needs SDHC_DMA_ENABLE in mode */ 94 #define SHF_USE_ADMA2_32 0x0010 95 #define SHF_USE_ADMA2_64 0x0020 96 #define SHF_USE_ADMA2_MASK 0x0030 97 98 bus_dmamap_t adma_map; 99 bus_dma_segment_t adma_segs[1]; 100 void *adma2; 101 }; 102 103 #define HDEVNAME(hp) (device_xname((hp)->sc->sc_dev)) 104 105 static uint8_t 106 hread1(struct sdhc_host *hp, bus_size_t reg) 107 { 108 109 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) 110 return bus_space_read_1(hp->iot, hp->ioh, reg); 111 return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 3)); 112 } 113 114 static uint16_t 115 hread2(struct sdhc_host *hp, bus_size_t reg) 116 { 117 118 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) 119 return bus_space_read_2(hp->iot, hp->ioh, reg); 120 return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 2)); 121 } 122 123 #define HREAD1(hp, reg) hread1(hp, reg) 124 #define HREAD2(hp, reg) hread2(hp, reg) 125 #define HREAD4(hp, reg) \ 126 (bus_space_read_4((hp)->iot, (hp)->ioh, (reg))) 127 128 129 static void 130 hwrite1(struct sdhc_host *hp, bus_size_t o, uint8_t val) 131 { 132 133 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) { 134 bus_space_write_1(hp->iot, hp->ioh, o, val); 135 } else { 136 const size_t shift = 8 * (o & 3); 137 o &= -4; 138 uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o); 139 tmp = (val << shift) | (tmp & ~(0xff << shift)); 140 bus_space_write_4(hp->iot, hp->ioh, o, tmp); 141 } 142 } 143 144 static void 145 hwrite2(struct sdhc_host *hp, bus_size_t o, uint16_t val) 146 { 147 148 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) { 149 bus_space_write_2(hp->iot, hp->ioh, o, val); 150 } else { 151 const size_t shift = 8 * (o & 2); 152 o &= -4; 153 uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o); 154 tmp = (val << shift) | (tmp & ~(0xffff << shift)); 155 bus_space_write_4(hp->iot, hp->ioh, o, tmp); 156 } 157 } 158 159 #define HWRITE1(hp, reg, val) hwrite1(hp, reg, val) 160 #define HWRITE2(hp, reg, val) hwrite2(hp, reg, val) 161 #define HWRITE4(hp, reg, val) \ 162 bus_space_write_4((hp)->iot, (hp)->ioh, (reg), (val)) 163 164 #define HCLR1(hp, reg, bits) \ 165 do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits)); while (0) 166 #define HCLR2(hp, reg, bits) \ 167 do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits)); while (0) 168 #define HCLR4(hp, reg, bits) \ 169 do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) & ~(bits)); while (0) 170 #define HSET1(hp, reg, bits) \ 171 do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits)); while (0) 172 #define HSET2(hp, reg, bits) \ 173 do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits)); while (0) 174 #define HSET4(hp, reg, bits) \ 175 do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) | (bits)); while (0) 176 177 static int sdhc_host_reset(sdmmc_chipset_handle_t); 178 static int sdhc_host_reset1(sdmmc_chipset_handle_t); 179 static uint32_t sdhc_host_ocr(sdmmc_chipset_handle_t); 180 static int sdhc_host_maxblklen(sdmmc_chipset_handle_t); 181 static int sdhc_card_detect(sdmmc_chipset_handle_t); 182 static int sdhc_write_protect(sdmmc_chipset_handle_t); 183 static int sdhc_bus_power(sdmmc_chipset_handle_t, uint32_t); 184 static int sdhc_bus_clock_ddr(sdmmc_chipset_handle_t, int, bool); 185 static int sdhc_bus_width(sdmmc_chipset_handle_t, int); 186 static int sdhc_bus_rod(sdmmc_chipset_handle_t, int); 187 static void sdhc_card_enable_intr(sdmmc_chipset_handle_t, int); 188 static void sdhc_card_intr_ack(sdmmc_chipset_handle_t); 189 static void sdhc_exec_command(sdmmc_chipset_handle_t, 190 struct sdmmc_command *); 191 static int sdhc_signal_voltage(sdmmc_chipset_handle_t, int); 192 static int sdhc_execute_tuning1(struct sdhc_host *, int); 193 static int sdhc_execute_tuning(sdmmc_chipset_handle_t, int); 194 static void sdhc_tuning_timer(void *); 195 static int sdhc_start_command(struct sdhc_host *, struct sdmmc_command *); 196 static int sdhc_wait_state(struct sdhc_host *, uint32_t, uint32_t); 197 static int sdhc_soft_reset(struct sdhc_host *, int); 198 static int sdhc_wait_intr(struct sdhc_host *, int, int, bool); 199 static void sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *); 200 static int sdhc_transfer_data_dma(struct sdhc_host *, struct sdmmc_command *); 201 static int sdhc_transfer_data_pio(struct sdhc_host *, struct sdmmc_command *); 202 static void sdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int); 203 static void sdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int); 204 static void esdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int); 205 static void esdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int); 206 207 static struct sdmmc_chip_functions sdhc_functions = { 208 /* host controller reset */ 209 .host_reset = sdhc_host_reset, 210 211 /* host controller capabilities */ 212 .host_ocr = sdhc_host_ocr, 213 .host_maxblklen = sdhc_host_maxblklen, 214 215 /* card detection */ 216 .card_detect = sdhc_card_detect, 217 218 /* write protect */ 219 .write_protect = sdhc_write_protect, 220 221 /* bus power, clock frequency, width and ROD(OpenDrain/PushPull) */ 222 .bus_power = sdhc_bus_power, 223 .bus_clock = NULL, /* see sdhc_bus_clock_ddr */ 224 .bus_width = sdhc_bus_width, 225 .bus_rod = sdhc_bus_rod, 226 227 /* command execution */ 228 .exec_command = sdhc_exec_command, 229 230 /* card interrupt */ 231 .card_enable_intr = sdhc_card_enable_intr, 232 .card_intr_ack = sdhc_card_intr_ack, 233 234 /* UHS functions */ 235 .signal_voltage = sdhc_signal_voltage, 236 .bus_clock_ddr = sdhc_bus_clock_ddr, 237 .execute_tuning = sdhc_execute_tuning, 238 }; 239 240 static int 241 sdhc_cfprint(void *aux, const char *pnp) 242 { 243 const struct sdmmcbus_attach_args * const saa = aux; 244 const struct sdhc_host * const hp = saa->saa_sch; 245 246 if (pnp) { 247 aprint_normal("sdmmc at %s", pnp); 248 } 249 for (size_t host = 0; host < hp->sc->sc_nhosts; host++) { 250 if (hp->sc->sc_host[host] == hp) { 251 aprint_normal(" slot %zu", host); 252 } 253 } 254 255 return UNCONF; 256 } 257 258 /* 259 * Called by attachment driver. For each SD card slot there is one SD 260 * host controller standard register set. (1.3) 261 */ 262 int 263 sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot, 264 bus_space_handle_t ioh, bus_size_t iosize) 265 { 266 struct sdmmcbus_attach_args saa; 267 struct sdhc_host *hp; 268 uint32_t caps, caps2; 269 uint16_t sdhcver; 270 int error; 271 272 /* Allocate one more host structure. */ 273 hp = malloc(sizeof(struct sdhc_host), M_DEVBUF, M_WAITOK|M_ZERO); 274 if (hp == NULL) { 275 aprint_error_dev(sc->sc_dev, 276 "couldn't alloc memory (sdhc host)\n"); 277 goto err1; 278 } 279 sc->sc_host[sc->sc_nhosts++] = hp; 280 281 /* Fill in the new host structure. */ 282 hp->sc = sc; 283 hp->iot = iot; 284 hp->ioh = ioh; 285 hp->ios = iosize; 286 hp->dmat = sc->sc_dmat; 287 288 mutex_init(&hp->intr_lock, MUTEX_DEFAULT, IPL_SDMMC); 289 cv_init(&hp->intr_cv, "sdhcintr"); 290 callout_init(&hp->tuning_timer, CALLOUT_MPSAFE); 291 callout_setfunc(&hp->tuning_timer, sdhc_tuning_timer, hp); 292 293 if (iosize <= SDHC_HOST_CTL_VERSION) { 294 aprint_normal_dev(sc->sc_dev, "SDHC NO-VERS"); 295 hp->specver = -1; 296 } else { 297 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) { 298 sdhcver = SDHC_SPEC_VERS_300 << SDHC_SPEC_VERS_SHIFT; 299 } else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) { 300 sdhcver = HREAD4(hp, SDHC_ESDHC_HOST_CTL_VERSION); 301 } else 302 sdhcver = HREAD2(hp, SDHC_HOST_CTL_VERSION); 303 aprint_normal_dev(sc->sc_dev, "SDHC "); 304 hp->specver = SDHC_SPEC_VERSION(sdhcver); 305 switch (SDHC_SPEC_VERSION(sdhcver)) { 306 case SDHC_SPEC_VERS_100: 307 aprint_normal("1.0"); 308 break; 309 310 case SDHC_SPEC_VERS_200: 311 aprint_normal("2.0"); 312 break; 313 314 case SDHC_SPEC_VERS_300: 315 aprint_normal("3.0"); 316 break; 317 318 case SDHC_SPEC_VERS_400: 319 aprint_normal("4.0"); 320 break; 321 322 default: 323 aprint_normal("unknown version(0x%x)", 324 SDHC_SPEC_VERSION(sdhcver)); 325 break; 326 } 327 aprint_normal(", rev %u", SDHC_VENDOR_VERSION(sdhcver)); 328 } 329 330 /* 331 * Reset the host controller and enable interrupts. 332 */ 333 (void)sdhc_host_reset(hp); 334 335 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) { 336 /* init uSDHC registers */ 337 HWRITE4(hp, SDHC_MMC_BOOT, 0); 338 HWRITE4(hp, SDHC_HOST_CTL, SDHC_USDHC_BURST_LEN_EN | 339 SDHC_USDHC_HOST_CTL_RESV23 | SDHC_USDHC_EMODE_LE); 340 HWRITE4(hp, SDHC_WATERMARK_LEVEL, 341 (0x10 << SDHC_WATERMARK_WR_BRST_SHIFT) | 342 (0x40 << SDHC_WATERMARK_WRITE_SHIFT) | 343 (0x10 << SDHC_WATERMARK_RD_BRST_SHIFT) | 344 (0x40 << SDHC_WATERMARK_READ_SHIFT)); 345 HSET4(hp, SDHC_VEND_SPEC, 346 SDHC_VEND_SPEC_MBO | 347 SDHC_VEND_SPEC_CARD_CLK_SOFT_EN | 348 SDHC_VEND_SPEC_IPG_PERCLK_SOFT_EN | 349 SDHC_VEND_SPEC_HCLK_SOFT_EN | 350 SDHC_VEND_SPEC_IPG_CLK_SOFT_EN | 351 SDHC_VEND_SPEC_AC12_WR_CHKBUSY_EN | 352 SDHC_VEND_SPEC_FRC_SDCLK_ON); 353 } 354 355 /* Determine host capabilities. */ 356 if (ISSET(sc->sc_flags, SDHC_FLAG_HOSTCAPS)) { 357 caps = sc->sc_caps; 358 caps2 = sc->sc_caps2; 359 } else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) { 360 /* uSDHC capability register is little bit different */ 361 caps = HREAD4(hp, SDHC_CAPABILITIES); 362 caps |= SDHC_8BIT_SUPP; 363 if (caps & SDHC_ADMA1_SUPP) 364 caps |= SDHC_ADMA2_SUPP; 365 sc->sc_caps = caps; 366 /* uSDHC has no SDHC_CAPABILITIES2 register */ 367 caps2 = sc->sc_caps2 = SDHC_SDR50_SUPP | SDHC_DDR50_SUPP; 368 } else { 369 caps = sc->sc_caps = HREAD4(hp, SDHC_CAPABILITIES); 370 if (hp->specver >= SDHC_SPEC_VERS_300) { 371 caps2 = sc->sc_caps2 = HREAD4(hp, SDHC_CAPABILITIES2); 372 } else { 373 caps2 = sc->sc_caps2 = 0; 374 } 375 } 376 377 const u_int retuning_mode = (caps2 >> SDHC_RETUNING_MODES_SHIFT) & 378 SDHC_RETUNING_MODES_MASK; 379 if (retuning_mode == SDHC_RETUNING_MODE_1) { 380 hp->tuning_timer_count = (caps2 >> SDHC_TIMER_COUNT_SHIFT) & 381 SDHC_TIMER_COUNT_MASK; 382 if (hp->tuning_timer_count == 0xf) 383 hp->tuning_timer_count = 0; 384 if (hp->tuning_timer_count) 385 hp->tuning_timer_count = 386 1 << (hp->tuning_timer_count - 1); 387 } 388 389 /* 390 * Use DMA if the host system and the controller support it. 391 * Suports integrated or external DMA egine, with or without 392 * SDHC_DMA_ENABLE in the command. 393 */ 394 if (ISSET(sc->sc_flags, SDHC_FLAG_FORCE_DMA) || 395 (ISSET(sc->sc_flags, SDHC_FLAG_USE_DMA && 396 ISSET(caps, SDHC_DMA_SUPPORT)))) { 397 SET(hp->flags, SHF_USE_DMA); 398 399 if (ISSET(sc->sc_flags, SDHC_FLAG_USE_ADMA2) && 400 ISSET(caps, SDHC_ADMA2_SUPP)) { 401 SET(hp->flags, SHF_MODE_DMAEN); 402 /* 403 * 64-bit mode was present in the 2.00 spec, removed 404 * from 3.00, and re-added in 4.00 with a different 405 * descriptor layout. We only support 2.00 and 3.00 406 * descriptors for now. 407 */ 408 if (hp->specver == SDHC_SPEC_VERS_200 && 409 ISSET(caps, SDHC_64BIT_SYS_BUS)) { 410 SET(hp->flags, SHF_USE_ADMA2_64); 411 aprint_normal(", 64-bit ADMA2"); 412 } else { 413 SET(hp->flags, SHF_USE_ADMA2_32); 414 aprint_normal(", 32-bit ADMA2"); 415 } 416 } else { 417 if (!ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA) || 418 ISSET(sc->sc_flags, SDHC_FLAG_EXTDMA_DMAEN)) 419 SET(hp->flags, SHF_MODE_DMAEN); 420 if (sc->sc_vendor_transfer_data_dma) { 421 aprint_normal(", platform DMA"); 422 } else { 423 aprint_normal(", SDMA"); 424 } 425 } 426 } else { 427 aprint_normal(", PIO"); 428 } 429 430 /* 431 * Determine the base clock frequency. (2.2.24) 432 */ 433 if (hp->specver >= SDHC_SPEC_VERS_300) { 434 hp->clkbase = SDHC_BASE_V3_FREQ_KHZ(caps); 435 } else { 436 hp->clkbase = SDHC_BASE_FREQ_KHZ(caps); 437 } 438 if (hp->clkbase == 0 || 439 ISSET(sc->sc_flags, SDHC_FLAG_NO_CLKBASE)) { 440 if (sc->sc_clkbase == 0) { 441 /* The attachment driver must tell us. */ 442 aprint_error_dev(sc->sc_dev, 443 "unknown base clock frequency\n"); 444 goto err; 445 } 446 hp->clkbase = sc->sc_clkbase; 447 } 448 if (hp->clkbase < 10000 || hp->clkbase > 10000 * 256) { 449 /* SDHC 1.0 supports only 10-63 MHz. */ 450 aprint_error_dev(sc->sc_dev, 451 "base clock frequency out of range: %u MHz\n", 452 hp->clkbase / 1000); 453 goto err; 454 } 455 aprint_normal(", %u kHz", hp->clkbase); 456 457 /* 458 * XXX Set the data timeout counter value according to 459 * capabilities. (2.2.15) 460 */ 461 HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX); 462 #if 1 463 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) 464 HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16); 465 #endif 466 467 if (ISSET(caps, SDHC_EMBEDDED_SLOT)) 468 aprint_normal(", embedded slot"); 469 470 /* 471 * Determine SD bus voltage levels supported by the controller. 472 */ 473 aprint_normal(","); 474 if (ISSET(caps, SDHC_HIGH_SPEED_SUPP)) { 475 SET(hp->ocr, MMC_OCR_HCS); 476 aprint_normal(" HS"); 477 } 478 if (ISSET(caps2, SDHC_SDR50_SUPP)) { 479 SET(hp->ocr, MMC_OCR_S18A); 480 aprint_normal(" SDR50"); 481 } 482 if (ISSET(caps2, SDHC_DDR50_SUPP)) { 483 SET(hp->ocr, MMC_OCR_S18A); 484 aprint_normal(" DDR50"); 485 } 486 if (ISSET(caps2, SDHC_SDR104_SUPP)) { 487 SET(hp->ocr, MMC_OCR_S18A); 488 aprint_normal(" SDR104 HS200"); 489 } 490 if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V)) { 491 SET(hp->ocr, MMC_OCR_1_65V_1_95V); 492 aprint_normal(" 1.8V"); 493 } 494 if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V)) { 495 SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V); 496 aprint_normal(" 3.0V"); 497 } 498 if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V)) { 499 SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V); 500 aprint_normal(" 3.3V"); 501 } 502 if (hp->specver >= SDHC_SPEC_VERS_300) { 503 aprint_normal(", re-tuning mode %d", retuning_mode + 1); 504 if (hp->tuning_timer_count) 505 aprint_normal(" (%us timer)", hp->tuning_timer_count); 506 } 507 508 /* 509 * Determine the maximum block length supported by the host 510 * controller. (2.2.24) 511 */ 512 switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) { 513 case SDHC_MAX_BLK_LEN_512: 514 hp->maxblklen = 512; 515 break; 516 517 case SDHC_MAX_BLK_LEN_1024: 518 hp->maxblklen = 1024; 519 break; 520 521 case SDHC_MAX_BLK_LEN_2048: 522 hp->maxblklen = 2048; 523 break; 524 525 case SDHC_MAX_BLK_LEN_4096: 526 hp->maxblklen = 4096; 527 break; 528 529 default: 530 aprint_error_dev(sc->sc_dev, "max block length unknown\n"); 531 goto err; 532 } 533 aprint_normal(", %u byte blocks", hp->maxblklen); 534 aprint_normal("\n"); 535 536 if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) { 537 int rseg; 538 539 /* Allocate ADMA2 descriptor memory */ 540 error = bus_dmamem_alloc(sc->sc_dmat, PAGE_SIZE, PAGE_SIZE, 541 PAGE_SIZE, hp->adma_segs, 1, &rseg, BUS_DMA_WAITOK); 542 if (error) { 543 aprint_error_dev(sc->sc_dev, 544 "ADMA2 dmamem_alloc failed (%d)\n", error); 545 goto adma_done; 546 } 547 error = bus_dmamem_map(sc->sc_dmat, hp->adma_segs, rseg, 548 PAGE_SIZE, (void **)&hp->adma2, BUS_DMA_WAITOK); 549 if (error) { 550 aprint_error_dev(sc->sc_dev, 551 "ADMA2 dmamem_map failed (%d)\n", error); 552 goto adma_done; 553 } 554 error = bus_dmamap_create(sc->sc_dmat, PAGE_SIZE, 1, PAGE_SIZE, 555 0, BUS_DMA_WAITOK, &hp->adma_map); 556 if (error) { 557 aprint_error_dev(sc->sc_dev, 558 "ADMA2 dmamap_create failed (%d)\n", error); 559 goto adma_done; 560 } 561 error = bus_dmamap_load(sc->sc_dmat, hp->adma_map, 562 hp->adma2, PAGE_SIZE, NULL, 563 BUS_DMA_WAITOK|BUS_DMA_WRITE); 564 if (error) { 565 aprint_error_dev(sc->sc_dev, 566 "ADMA2 dmamap_load failed (%d)\n", error); 567 goto adma_done; 568 } 569 570 memset(hp->adma2, 0, PAGE_SIZE); 571 572 adma_done: 573 if (error) 574 CLR(hp->flags, SHF_USE_ADMA2_MASK); 575 } 576 577 /* 578 * Attach the generic SD/MMC bus driver. (The bus driver must 579 * not invoke any chipset functions before it is attached.) 580 */ 581 memset(&saa, 0, sizeof(saa)); 582 saa.saa_busname = "sdmmc"; 583 saa.saa_sct = &sdhc_functions; 584 saa.saa_sch = hp; 585 saa.saa_dmat = hp->dmat; 586 saa.saa_clkmax = hp->clkbase; 587 if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_CGM)) 588 saa.saa_clkmin = hp->clkbase / 256 / 2046; 589 else if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_DVS)) 590 saa.saa_clkmin = hp->clkbase / 256 / 16; 591 else if (hp->sc->sc_clkmsk != 0) 592 saa.saa_clkmin = hp->clkbase / (hp->sc->sc_clkmsk >> 593 (ffs(hp->sc->sc_clkmsk) - 1)); 594 else if (hp->specver >= SDHC_SPEC_VERS_300) 595 saa.saa_clkmin = hp->clkbase / 0x3ff; 596 else 597 saa.saa_clkmin = hp->clkbase / 256; 598 if (!ISSET(sc->sc_flags, SDHC_FLAG_NO_AUTO_STOP)) 599 saa.saa_caps |= SMC_CAPS_AUTO_STOP; 600 saa.saa_caps |= SMC_CAPS_4BIT_MODE; 601 if (ISSET(sc->sc_flags, SDHC_FLAG_8BIT_MODE)) 602 saa.saa_caps |= SMC_CAPS_8BIT_MODE; 603 if (ISSET(caps, SDHC_HIGH_SPEED_SUPP)) 604 saa.saa_caps |= SMC_CAPS_SD_HIGHSPEED; 605 if (ISSET(caps2, SDHC_SDR104_SUPP)) 606 saa.saa_caps |= SMC_CAPS_UHS_SDR104 | 607 SMC_CAPS_UHS_SDR50 | 608 SMC_CAPS_MMC_HS200; 609 if (ISSET(caps2, SDHC_SDR50_SUPP)) 610 saa.saa_caps |= SMC_CAPS_UHS_SDR50; 611 if (ISSET(caps2, SDHC_DDR50_SUPP)) 612 saa.saa_caps |= SMC_CAPS_UHS_DDR50; 613 if (ISSET(hp->flags, SHF_USE_DMA)) { 614 saa.saa_caps |= SMC_CAPS_DMA; 615 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) 616 saa.saa_caps |= SMC_CAPS_MULTI_SEG_DMA; 617 } 618 if (ISSET(sc->sc_flags, SDHC_FLAG_SINGLE_ONLY)) 619 saa.saa_caps |= SMC_CAPS_SINGLE_ONLY; 620 if (ISSET(sc->sc_flags, SDHC_FLAG_POLL_CARD_DET)) 621 saa.saa_caps |= SMC_CAPS_POLL_CARD_DET; 622 hp->sdmmc = config_found(sc->sc_dev, &saa, sdhc_cfprint); 623 624 return 0; 625 626 err: 627 callout_destroy(&hp->tuning_timer); 628 cv_destroy(&hp->intr_cv); 629 mutex_destroy(&hp->intr_lock); 630 free(hp, M_DEVBUF); 631 sc->sc_host[--sc->sc_nhosts] = NULL; 632 err1: 633 return 1; 634 } 635 636 int 637 sdhc_detach(struct sdhc_softc *sc, int flags) 638 { 639 struct sdhc_host *hp; 640 int rv = 0; 641 642 for (size_t n = 0; n < sc->sc_nhosts; n++) { 643 hp = sc->sc_host[n]; 644 if (hp == NULL) 645 continue; 646 if (hp->sdmmc != NULL) { 647 rv = config_detach(hp->sdmmc, flags); 648 if (rv) 649 break; 650 hp->sdmmc = NULL; 651 } 652 /* disable interrupts */ 653 if ((flags & DETACH_FORCE) == 0) { 654 mutex_enter(&hp->intr_lock); 655 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) { 656 HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0); 657 } else { 658 HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0); 659 } 660 sdhc_soft_reset(hp, SDHC_RESET_ALL); 661 mutex_exit(&hp->intr_lock); 662 } 663 callout_halt(&hp->tuning_timer, NULL); 664 callout_destroy(&hp->tuning_timer); 665 cv_destroy(&hp->intr_cv); 666 mutex_destroy(&hp->intr_lock); 667 if (hp->ios > 0) { 668 bus_space_unmap(hp->iot, hp->ioh, hp->ios); 669 hp->ios = 0; 670 } 671 if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) { 672 bus_dmamap_unload(sc->sc_dmat, hp->adma_map); 673 bus_dmamap_destroy(sc->sc_dmat, hp->adma_map); 674 bus_dmamem_unmap(sc->sc_dmat, hp->adma2, PAGE_SIZE); 675 bus_dmamem_free(sc->sc_dmat, hp->adma_segs, 1); 676 } 677 free(hp, M_DEVBUF); 678 sc->sc_host[n] = NULL; 679 } 680 681 return rv; 682 } 683 684 bool 685 sdhc_suspend(device_t dev, const pmf_qual_t *qual) 686 { 687 struct sdhc_softc *sc = device_private(dev); 688 struct sdhc_host *hp; 689 size_t i; 690 691 /* XXX poll for command completion or suspend command 692 * in progress */ 693 694 /* Save the host controller state. */ 695 for (size_t n = 0; n < sc->sc_nhosts; n++) { 696 hp = sc->sc_host[n]; 697 if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) { 698 for (i = 0; i < sizeof hp->regs; i += 4) { 699 uint32_t v = HREAD4(hp, i); 700 hp->regs[i + 0] = (v >> 0); 701 hp->regs[i + 1] = (v >> 8); 702 if (i + 3 < sizeof hp->regs) { 703 hp->regs[i + 2] = (v >> 16); 704 hp->regs[i + 3] = (v >> 24); 705 } 706 } 707 } else { 708 for (i = 0; i < sizeof hp->regs; i++) { 709 hp->regs[i] = HREAD1(hp, i); 710 } 711 } 712 } 713 return true; 714 } 715 716 bool 717 sdhc_resume(device_t dev, const pmf_qual_t *qual) 718 { 719 struct sdhc_softc *sc = device_private(dev); 720 struct sdhc_host *hp; 721 size_t i; 722 723 /* Restore the host controller state. */ 724 for (size_t n = 0; n < sc->sc_nhosts; n++) { 725 hp = sc->sc_host[n]; 726 (void)sdhc_host_reset(hp); 727 if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) { 728 for (i = 0; i < sizeof hp->regs; i += 4) { 729 if (i + 3 < sizeof hp->regs) { 730 HWRITE4(hp, i, 731 (hp->regs[i + 0] << 0) 732 | (hp->regs[i + 1] << 8) 733 | (hp->regs[i + 2] << 16) 734 | (hp->regs[i + 3] << 24)); 735 } else { 736 HWRITE4(hp, i, 737 (hp->regs[i + 0] << 0) 738 | (hp->regs[i + 1] << 8)); 739 } 740 } 741 } else { 742 for (i = 0; i < sizeof hp->regs; i++) { 743 HWRITE1(hp, i, hp->regs[i]); 744 } 745 } 746 } 747 return true; 748 } 749 750 bool 751 sdhc_shutdown(device_t dev, int flags) 752 { 753 struct sdhc_softc *sc = device_private(dev); 754 struct sdhc_host *hp; 755 756 /* XXX chip locks up if we don't disable it before reboot. */ 757 for (size_t i = 0; i < sc->sc_nhosts; i++) { 758 hp = sc->sc_host[i]; 759 (void)sdhc_host_reset(hp); 760 } 761 return true; 762 } 763 764 /* 765 * Reset the host controller. Called during initialization, when 766 * cards are removed, upon resume, and during error recovery. 767 */ 768 static int 769 sdhc_host_reset1(sdmmc_chipset_handle_t sch) 770 { 771 struct sdhc_host *hp = (struct sdhc_host *)sch; 772 uint32_t sdhcimask; 773 int error; 774 775 KASSERT(mutex_owned(&hp->intr_lock)); 776 777 /* Disable all interrupts. */ 778 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) { 779 HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0); 780 } else { 781 HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0); 782 } 783 784 /* 785 * Reset the entire host controller and wait up to 100ms for 786 * the controller to clear the reset bit. 787 */ 788 error = sdhc_soft_reset(hp, SDHC_RESET_ALL); 789 if (error) 790 goto out; 791 792 /* Set data timeout counter value to max for now. */ 793 HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX); 794 #if 1 795 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) 796 HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16); 797 #endif 798 799 /* Enable interrupts. */ 800 sdhcimask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION | 801 SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY | 802 SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT | 803 SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE; 804 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) { 805 sdhcimask |= SDHC_EINTR_STATUS_MASK << 16; 806 HWRITE4(hp, SDHC_NINTR_STATUS_EN, sdhcimask); 807 sdhcimask ^= 808 (SDHC_EINTR_STATUS_MASK ^ SDHC_EINTR_SIGNAL_MASK) << 16; 809 sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY; 810 HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask); 811 } else { 812 HWRITE2(hp, SDHC_NINTR_STATUS_EN, sdhcimask); 813 HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK); 814 sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY; 815 HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask); 816 HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK); 817 } 818 819 out: 820 return error; 821 } 822 823 static int 824 sdhc_host_reset(sdmmc_chipset_handle_t sch) 825 { 826 struct sdhc_host *hp = (struct sdhc_host *)sch; 827 int error; 828 829 mutex_enter(&hp->intr_lock); 830 error = sdhc_host_reset1(sch); 831 mutex_exit(&hp->intr_lock); 832 833 return error; 834 } 835 836 static uint32_t 837 sdhc_host_ocr(sdmmc_chipset_handle_t sch) 838 { 839 struct sdhc_host *hp = (struct sdhc_host *)sch; 840 841 return hp->ocr; 842 } 843 844 static int 845 sdhc_host_maxblklen(sdmmc_chipset_handle_t sch) 846 { 847 struct sdhc_host *hp = (struct sdhc_host *)sch; 848 849 return hp->maxblklen; 850 } 851 852 /* 853 * Return non-zero if the card is currently inserted. 854 */ 855 static int 856 sdhc_card_detect(sdmmc_chipset_handle_t sch) 857 { 858 struct sdhc_host *hp = (struct sdhc_host *)sch; 859 int r; 860 861 if (hp->sc->sc_vendor_card_detect) 862 return (*hp->sc->sc_vendor_card_detect)(hp->sc); 863 864 r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED); 865 866 return r ? 1 : 0; 867 } 868 869 /* 870 * Return non-zero if the card is currently write-protected. 871 */ 872 static int 873 sdhc_write_protect(sdmmc_chipset_handle_t sch) 874 { 875 struct sdhc_host *hp = (struct sdhc_host *)sch; 876 int r; 877 878 if (hp->sc->sc_vendor_write_protect) 879 return (*hp->sc->sc_vendor_write_protect)(hp->sc); 880 881 r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_WRITE_PROTECT_SWITCH); 882 883 return r ? 0 : 1; 884 } 885 886 /* 887 * Set or change SD bus voltage and enable or disable SD bus power. 888 * Return zero on success. 889 */ 890 static int 891 sdhc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr) 892 { 893 struct sdhc_host *hp = (struct sdhc_host *)sch; 894 uint8_t vdd; 895 int error = 0; 896 const uint32_t pcmask = 897 ~(SDHC_BUS_POWER | (SDHC_VOLTAGE_MASK << SDHC_VOLTAGE_SHIFT)); 898 899 mutex_enter(&hp->intr_lock); 900 901 /* 902 * Disable bus power before voltage change. 903 */ 904 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS) 905 && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_PWR0)) 906 HWRITE1(hp, SDHC_POWER_CTL, 0); 907 908 /* If power is disabled, reset the host and return now. */ 909 if (ocr == 0) { 910 (void)sdhc_host_reset1(hp); 911 callout_halt(&hp->tuning_timer, &hp->intr_lock); 912 goto out; 913 } 914 915 /* 916 * Select the lowest voltage according to capabilities. 917 */ 918 ocr &= hp->ocr; 919 if (ISSET(ocr, MMC_OCR_1_65V_1_95V)) { 920 vdd = SDHC_VOLTAGE_1_8V; 921 } else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V)) { 922 vdd = SDHC_VOLTAGE_3_0V; 923 } else if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V)) { 924 vdd = SDHC_VOLTAGE_3_3V; 925 } else { 926 /* Unsupported voltage level requested. */ 927 error = EINVAL; 928 goto out; 929 } 930 931 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) { 932 /* 933 * Enable bus power. Wait at least 1 ms (or 74 clocks) plus 934 * voltage ramp until power rises. 935 */ 936 937 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_SINGLE_POWER_WRITE)) { 938 HWRITE1(hp, SDHC_POWER_CTL, 939 (vdd << SDHC_VOLTAGE_SHIFT) | SDHC_BUS_POWER); 940 } else { 941 HWRITE1(hp, SDHC_POWER_CTL, 942 HREAD1(hp, SDHC_POWER_CTL) & pcmask); 943 sdmmc_delay(1); 944 HWRITE1(hp, SDHC_POWER_CTL, 945 (vdd << SDHC_VOLTAGE_SHIFT)); 946 sdmmc_delay(1); 947 HSET1(hp, SDHC_POWER_CTL, SDHC_BUS_POWER); 948 sdmmc_delay(10000); 949 } 950 951 /* 952 * The host system may not power the bus due to battery low, 953 * etc. In that case, the host controller should clear the 954 * bus power bit. 955 */ 956 if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) { 957 error = ENXIO; 958 goto out; 959 } 960 } 961 962 out: 963 mutex_exit(&hp->intr_lock); 964 965 return error; 966 } 967 968 /* 969 * Return the smallest possible base clock frequency divisor value 970 * for the CLOCK_CTL register to produce `freq' (KHz). 971 */ 972 static bool 973 sdhc_clock_divisor(struct sdhc_host *hp, u_int freq, u_int *divp) 974 { 975 u_int div; 976 977 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_CGM)) { 978 for (div = hp->clkbase / freq; div <= 0x3ff; div++) { 979 if ((hp->clkbase / div) <= freq) { 980 *divp = SDHC_SDCLK_CGM 981 | ((div & 0x300) << SDHC_SDCLK_XDIV_SHIFT) 982 | ((div & 0x0ff) << SDHC_SDCLK_DIV_SHIFT); 983 //freq = hp->clkbase / div; 984 return true; 985 } 986 } 987 /* No divisor found. */ 988 return false; 989 } 990 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_DVS)) { 991 u_int dvs = (hp->clkbase + freq - 1) / freq; 992 u_int roundup = dvs & 1; 993 for (dvs >>= 1, div = 1; div <= 256; div <<= 1, dvs >>= 1) { 994 if (dvs + roundup <= 16) { 995 dvs += roundup - 1; 996 *divp = (div << SDHC_SDCLK_DIV_SHIFT) 997 | (dvs << SDHC_SDCLK_DVS_SHIFT); 998 DPRINTF(2, 999 ("%s: divisor for freq %u is %u * %u\n", 1000 HDEVNAME(hp), freq, div * 2, dvs + 1)); 1001 //freq = hp->clkbase / (div * 2) * (dvs + 1); 1002 return true; 1003 } 1004 /* 1005 * If we drop bits, we need to round up the divisor. 1006 */ 1007 roundup |= dvs & 1; 1008 } 1009 /* No divisor found. */ 1010 return false; 1011 } 1012 if (hp->sc->sc_clkmsk != 0) { 1013 div = howmany(hp->clkbase, freq); 1014 if (div > (hp->sc->sc_clkmsk >> (ffs(hp->sc->sc_clkmsk) - 1))) 1015 return false; 1016 *divp = div << (ffs(hp->sc->sc_clkmsk) - 1); 1017 //freq = hp->clkbase / div; 1018 return true; 1019 } 1020 if (hp->specver >= SDHC_SPEC_VERS_300) { 1021 div = howmany(hp->clkbase, freq); 1022 div = div > 1 ? howmany(div, 2) : 0; 1023 if (div > 0x3ff) 1024 return false; 1025 *divp = (((div >> 8) & SDHC_SDCLK_XDIV_MASK) 1026 << SDHC_SDCLK_XDIV_SHIFT) | 1027 (((div >> 0) & SDHC_SDCLK_DIV_MASK) 1028 << SDHC_SDCLK_DIV_SHIFT); 1029 //freq = hp->clkbase / (div ? div * 2 : 1); 1030 return true; 1031 } else { 1032 for (div = 1; div <= 256; div *= 2) { 1033 if ((hp->clkbase / div) <= freq) { 1034 *divp = (div / 2) << SDHC_SDCLK_DIV_SHIFT; 1035 //freq = hp->clkbase / div; 1036 return true; 1037 } 1038 } 1039 /* No divisor found. */ 1040 return false; 1041 } 1042 /* No divisor found. */ 1043 return false; 1044 } 1045 1046 /* 1047 * Set or change SDCLK frequency or disable the SD clock. 1048 * Return zero on success. 1049 */ 1050 static int 1051 sdhc_bus_clock_ddr(sdmmc_chipset_handle_t sch, int freq, bool ddr) 1052 { 1053 struct sdhc_host *hp = (struct sdhc_host *)sch; 1054 u_int div; 1055 u_int timo; 1056 int16_t reg; 1057 int error = 0; 1058 bool present __diagused; 1059 1060 mutex_enter(&hp->intr_lock); 1061 1062 #ifdef DIAGNOSTIC 1063 present = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK); 1064 1065 /* Must not stop the clock if commands are in progress. */ 1066 if (present && sdhc_card_detect(hp)) { 1067 aprint_normal_dev(hp->sc->sc_dev, 1068 "%s: command in progress\n", __func__); 1069 } 1070 #endif 1071 1072 if (hp->sc->sc_vendor_bus_clock) { 1073 error = (*hp->sc->sc_vendor_bus_clock)(hp->sc, freq); 1074 if (error != 0) 1075 goto out; 1076 } 1077 1078 /* 1079 * Stop SD clock before changing the frequency. 1080 */ 1081 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) { 1082 HCLR4(hp, SDHC_VEND_SPEC, 1083 SDHC_VEND_SPEC_CARD_CLK_SOFT_EN | 1084 SDHC_VEND_SPEC_FRC_SDCLK_ON); 1085 if (freq == SDMMC_SDCLK_OFF) { 1086 goto out; 1087 } 1088 } else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) { 1089 HCLR4(hp, SDHC_CLOCK_CTL, 0xfff8); 1090 if (freq == SDMMC_SDCLK_OFF) { 1091 HSET4(hp, SDHC_CLOCK_CTL, 0x80f0); 1092 goto out; 1093 } 1094 } else { 1095 HCLR2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE); 1096 if (freq == SDMMC_SDCLK_OFF) 1097 goto out; 1098 } 1099 1100 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) { 1101 if (ddr) 1102 HSET4(hp, SDHC_MIX_CTRL, SDHC_USDHC_DDR_EN); 1103 else 1104 HCLR4(hp, SDHC_MIX_CTRL, SDHC_USDHC_DDR_EN); 1105 } else if (hp->specver >= SDHC_SPEC_VERS_300) { 1106 HCLR2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_MASK); 1107 if (freq > 100000) { 1108 HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR104); 1109 } else if (freq > 50000) { 1110 HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR50); 1111 } else if (freq > 25000) { 1112 if (ddr) { 1113 HSET2(hp, SDHC_HOST_CTL2, 1114 SDHC_UHS_MODE_SELECT_DDR50); 1115 } else { 1116 HSET2(hp, SDHC_HOST_CTL2, 1117 SDHC_UHS_MODE_SELECT_SDR25); 1118 } 1119 } else if (freq > 400) { 1120 HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR12); 1121 } 1122 } 1123 1124 /* 1125 * Slow down Ricoh 5U823 controller that isn't reliable 1126 * at 100MHz bus clock. 1127 */ 1128 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_SLOW_SDR50)) { 1129 if (freq == 100000) 1130 --freq; 1131 } 1132 1133 /* 1134 * Set the minimum base clock frequency divisor. 1135 */ 1136 if (!sdhc_clock_divisor(hp, freq, &div)) { 1137 /* Invalid base clock frequency or `freq' value. */ 1138 aprint_error_dev(hp->sc->sc_dev, 1139 "Invalid bus clock %d kHz\n", freq); 1140 error = EINVAL; 1141 goto out; 1142 } 1143 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) { 1144 if (ddr) { 1145 /* in ddr mode, divisor >>= 1 */ 1146 div = ((div >> 1) & (SDHC_SDCLK_DIV_MASK << 1147 SDHC_SDCLK_DIV_SHIFT)) | 1148 (div & (SDHC_SDCLK_DVS_MASK << 1149 SDHC_SDCLK_DVS_SHIFT)); 1150 } 1151 for (timo = 1000; timo > 0; timo--) { 1152 if (ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_SDSTB)) 1153 break; 1154 sdmmc_delay(10); 1155 } 1156 HWRITE4(hp, SDHC_CLOCK_CTL, 1157 div | (SDHC_TIMEOUT_MAX << 16) | 0x0f); 1158 } else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) { 1159 HWRITE4(hp, SDHC_CLOCK_CTL, 1160 div | (SDHC_TIMEOUT_MAX << 16)); 1161 } else { 1162 reg = HREAD2(hp, SDHC_CLOCK_CTL); 1163 reg &= (SDHC_INTCLK_STABLE | SDHC_INTCLK_ENABLE); 1164 HWRITE2(hp, SDHC_CLOCK_CTL, reg | div); 1165 } 1166 1167 /* 1168 * Start internal clock. Wait 10ms for stabilization. 1169 */ 1170 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) { 1171 HSET4(hp, SDHC_VEND_SPEC, 1172 SDHC_VEND_SPEC_CARD_CLK_SOFT_EN | 1173 SDHC_VEND_SPEC_FRC_SDCLK_ON); 1174 } else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) { 1175 sdmmc_delay(10000); 1176 HSET4(hp, SDHC_CLOCK_CTL, 1177 8 | SDHC_INTCLK_ENABLE | SDHC_INTCLK_STABLE); 1178 } else { 1179 HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE); 1180 for (timo = 1000; timo > 0; timo--) { 1181 if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL), 1182 SDHC_INTCLK_STABLE)) 1183 break; 1184 sdmmc_delay(10); 1185 } 1186 if (timo == 0) { 1187 error = ETIMEDOUT; 1188 DPRINTF(1,("%s: timeout\n", __func__)); 1189 goto out; 1190 } 1191 } 1192 1193 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) { 1194 HSET1(hp, SDHC_SOFTWARE_RESET, SDHC_INIT_ACTIVE); 1195 /* 1196 * Sending 80 clocks at 400kHz takes 200us. 1197 * So delay for that time + slop and then 1198 * check a few times for completion. 1199 */ 1200 sdmmc_delay(210); 1201 for (timo = 10; timo > 0; timo--) { 1202 if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), 1203 SDHC_INIT_ACTIVE)) 1204 break; 1205 sdmmc_delay(10); 1206 } 1207 DPRINTF(2,("%s: %u init spins\n", __func__, 10 - timo)); 1208 1209 /* 1210 * Enable SD clock. 1211 */ 1212 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) { 1213 HSET4(hp, SDHC_VEND_SPEC, 1214 SDHC_VEND_SPEC_CARD_CLK_SOFT_EN | 1215 SDHC_VEND_SPEC_FRC_SDCLK_ON); 1216 } else { 1217 HSET4(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE); 1218 } 1219 } else { 1220 /* 1221 * Enable SD clock. 1222 */ 1223 HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE); 1224 1225 if (freq > 25000 && 1226 !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_HS_BIT)) 1227 HSET1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED); 1228 else 1229 HCLR1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED); 1230 } 1231 1232 out: 1233 mutex_exit(&hp->intr_lock); 1234 1235 return error; 1236 } 1237 1238 static int 1239 sdhc_bus_width(sdmmc_chipset_handle_t sch, int width) 1240 { 1241 struct sdhc_host *hp = (struct sdhc_host *)sch; 1242 int reg; 1243 1244 switch (width) { 1245 case 1: 1246 case 4: 1247 break; 1248 1249 case 8: 1250 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_8BIT_MODE)) 1251 break; 1252 /* FALLTHROUGH */ 1253 default: 1254 DPRINTF(0,("%s: unsupported bus width (%d)\n", 1255 HDEVNAME(hp), width)); 1256 return 1; 1257 } 1258 1259 if (hp->sc->sc_vendor_bus_width) { 1260 const int error = hp->sc->sc_vendor_bus_width(hp->sc, width); 1261 if (error != 0) 1262 return error; 1263 } 1264 1265 mutex_enter(&hp->intr_lock); 1266 1267 reg = HREAD1(hp, SDHC_HOST_CTL); 1268 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) { 1269 reg &= ~(SDHC_4BIT_MODE|SDHC_ESDHC_8BIT_MODE); 1270 if (width == 4) 1271 reg |= SDHC_4BIT_MODE; 1272 else if (width == 8) 1273 reg |= SDHC_ESDHC_8BIT_MODE; 1274 } else { 1275 reg &= ~SDHC_4BIT_MODE; 1276 if (hp->specver >= SDHC_SPEC_VERS_300) { 1277 reg &= ~SDHC_8BIT_MODE; 1278 } 1279 if (width == 4) { 1280 reg |= SDHC_4BIT_MODE; 1281 } else if (width == 8 && hp->specver >= SDHC_SPEC_VERS_300) { 1282 reg |= SDHC_8BIT_MODE; 1283 } 1284 } 1285 HWRITE1(hp, SDHC_HOST_CTL, reg); 1286 1287 mutex_exit(&hp->intr_lock); 1288 1289 return 0; 1290 } 1291 1292 static int 1293 sdhc_bus_rod(sdmmc_chipset_handle_t sch, int on) 1294 { 1295 struct sdhc_host *hp = (struct sdhc_host *)sch; 1296 1297 if (hp->sc->sc_vendor_rod) 1298 return (*hp->sc->sc_vendor_rod)(hp->sc, on); 1299 1300 return 0; 1301 } 1302 1303 static void 1304 sdhc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable) 1305 { 1306 struct sdhc_host *hp = (struct sdhc_host *)sch; 1307 1308 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) { 1309 mutex_enter(&hp->intr_lock); 1310 if (enable) { 1311 HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT); 1312 HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT); 1313 } else { 1314 HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT); 1315 HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT); 1316 } 1317 mutex_exit(&hp->intr_lock); 1318 } 1319 } 1320 1321 static void 1322 sdhc_card_intr_ack(sdmmc_chipset_handle_t sch) 1323 { 1324 struct sdhc_host *hp = (struct sdhc_host *)sch; 1325 1326 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) { 1327 mutex_enter(&hp->intr_lock); 1328 HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT); 1329 mutex_exit(&hp->intr_lock); 1330 } 1331 } 1332 1333 static int 1334 sdhc_signal_voltage(sdmmc_chipset_handle_t sch, int signal_voltage) 1335 { 1336 struct sdhc_host *hp = (struct sdhc_host *)sch; 1337 1338 mutex_enter(&hp->intr_lock); 1339 switch (signal_voltage) { 1340 case SDMMC_SIGNAL_VOLTAGE_180: 1341 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) 1342 HSET2(hp, SDHC_HOST_CTL2, SDHC_1_8V_SIGNAL_EN); 1343 break; 1344 case SDMMC_SIGNAL_VOLTAGE_330: 1345 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) 1346 HCLR2(hp, SDHC_HOST_CTL2, SDHC_1_8V_SIGNAL_EN); 1347 break; 1348 default: 1349 return EINVAL; 1350 } 1351 mutex_exit(&hp->intr_lock); 1352 1353 return 0; 1354 } 1355 1356 /* 1357 * Sampling clock tuning procedure (UHS) 1358 */ 1359 static int 1360 sdhc_execute_tuning1(struct sdhc_host *hp, int timing) 1361 { 1362 struct sdmmc_command cmd; 1363 uint8_t hostctl; 1364 int opcode, error, retry = 40; 1365 1366 KASSERT(mutex_owned(&hp->intr_lock)); 1367 1368 hp->tuning_timing = timing; 1369 1370 switch (timing) { 1371 case SDMMC_TIMING_MMC_HS200: 1372 opcode = MMC_SEND_TUNING_BLOCK_HS200; 1373 break; 1374 case SDMMC_TIMING_UHS_SDR50: 1375 if (!ISSET(hp->sc->sc_caps2, SDHC_TUNING_SDR50)) 1376 return 0; 1377 /* FALLTHROUGH */ 1378 case SDMMC_TIMING_UHS_SDR104: 1379 opcode = MMC_SEND_TUNING_BLOCK; 1380 break; 1381 default: 1382 return EINVAL; 1383 } 1384 1385 hostctl = HREAD1(hp, SDHC_HOST_CTL); 1386 1387 /* enable buffer read ready interrupt */ 1388 HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_BUFFER_READ_READY); 1389 HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_BUFFER_READ_READY); 1390 1391 /* disable DMA */ 1392 HCLR1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT); 1393 1394 /* reset tuning circuit */ 1395 HCLR2(hp, SDHC_HOST_CTL2, SDHC_SAMPLING_CLOCK_SEL); 1396 1397 /* start of tuning */ 1398 HWRITE2(hp, SDHC_HOST_CTL2, SDHC_EXECUTE_TUNING); 1399 1400 do { 1401 memset(&cmd, 0, sizeof(cmd)); 1402 cmd.c_opcode = opcode; 1403 cmd.c_arg = 0; 1404 cmd.c_flags = SCF_CMD_ADTC | SCF_CMD_READ | SCF_RSP_R1; 1405 if (ISSET(hostctl, SDHC_8BIT_MODE)) { 1406 cmd.c_blklen = cmd.c_datalen = 128; 1407 } else { 1408 cmd.c_blklen = cmd.c_datalen = 64; 1409 } 1410 1411 error = sdhc_start_command(hp, &cmd); 1412 if (error) 1413 break; 1414 1415 if (!sdhc_wait_intr(hp, SDHC_BUFFER_READ_READY, 1416 SDHC_TUNING_TIMEOUT, false)) { 1417 break; 1418 } 1419 1420 delay(1000); 1421 } while (HREAD2(hp, SDHC_HOST_CTL2) & SDHC_EXECUTE_TUNING && --retry); 1422 1423 /* disable buffer read ready interrupt */ 1424 HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_BUFFER_READ_READY); 1425 HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_BUFFER_READ_READY); 1426 1427 if (HREAD2(hp, SDHC_HOST_CTL2) & SDHC_EXECUTE_TUNING) { 1428 HCLR2(hp, SDHC_HOST_CTL2, 1429 SDHC_SAMPLING_CLOCK_SEL|SDHC_EXECUTE_TUNING); 1430 sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD); 1431 aprint_error_dev(hp->sc->sc_dev, 1432 "tuning did not complete, using fixed sampling clock\n"); 1433 return EIO; /* tuning did not complete */ 1434 } 1435 1436 if ((HREAD2(hp, SDHC_HOST_CTL2) & SDHC_SAMPLING_CLOCK_SEL) == 0) { 1437 HCLR2(hp, SDHC_HOST_CTL2, 1438 SDHC_SAMPLING_CLOCK_SEL|SDHC_EXECUTE_TUNING); 1439 sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD); 1440 aprint_error_dev(hp->sc->sc_dev, 1441 "tuning failed, using fixed sampling clock\n"); 1442 return EIO; /* tuning failed */ 1443 } 1444 1445 if (hp->tuning_timer_count) { 1446 callout_schedule(&hp->tuning_timer, 1447 hz * hp->tuning_timer_count); 1448 } 1449 1450 return 0; /* tuning completed */ 1451 } 1452 1453 static int 1454 sdhc_execute_tuning(sdmmc_chipset_handle_t sch, int timing) 1455 { 1456 struct sdhc_host *hp = (struct sdhc_host *)sch; 1457 int error; 1458 1459 mutex_enter(&hp->intr_lock); 1460 error = sdhc_execute_tuning1(hp, timing); 1461 mutex_exit(&hp->intr_lock); 1462 return error; 1463 } 1464 1465 static void 1466 sdhc_tuning_timer(void *arg) 1467 { 1468 struct sdhc_host *hp = arg; 1469 1470 atomic_swap_uint(&hp->tuning_timer_pending, 1); 1471 } 1472 1473 static int 1474 sdhc_wait_state(struct sdhc_host *hp, uint32_t mask, uint32_t value) 1475 { 1476 uint32_t state; 1477 int timeout; 1478 1479 for (timeout = 10000; timeout > 0; timeout--) { 1480 if (((state = HREAD4(hp, SDHC_PRESENT_STATE)) & mask) == value) 1481 return 0; 1482 sdmmc_delay(10); 1483 } 1484 aprint_error_dev(hp->sc->sc_dev, "timeout waiting for mask %#x value %#x (state=%#x)\n", 1485 mask, value, state); 1486 return ETIMEDOUT; 1487 } 1488 1489 static void 1490 sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd) 1491 { 1492 struct sdhc_host *hp = (struct sdhc_host *)sch; 1493 int error; 1494 bool probing; 1495 1496 mutex_enter(&hp->intr_lock); 1497 1498 if (atomic_cas_uint(&hp->tuning_timer_pending, 1, 0) == 1) { 1499 (void)sdhc_execute_tuning1(hp, hp->tuning_timing); 1500 } 1501 1502 if (cmd->c_data && 1503 ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) { 1504 const uint16_t ready = SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY; 1505 if (ISSET(hp->flags, SHF_USE_DMA)) { 1506 HCLR2(hp, SDHC_NINTR_SIGNAL_EN, ready); 1507 HCLR2(hp, SDHC_NINTR_STATUS_EN, ready); 1508 } else { 1509 HSET2(hp, SDHC_NINTR_SIGNAL_EN, ready); 1510 HSET2(hp, SDHC_NINTR_STATUS_EN, ready); 1511 } 1512 } 1513 1514 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_TIMEOUT)) { 1515 const uint16_t eintr = SDHC_CMD_TIMEOUT_ERROR; 1516 if (cmd->c_data != NULL) { 1517 HCLR2(hp, SDHC_EINTR_SIGNAL_EN, eintr); 1518 HCLR2(hp, SDHC_EINTR_STATUS_EN, eintr); 1519 } else { 1520 HSET2(hp, SDHC_EINTR_SIGNAL_EN, eintr); 1521 HSET2(hp, SDHC_EINTR_STATUS_EN, eintr); 1522 } 1523 } 1524 1525 /* 1526 * Start the MMC command, or mark `cmd' as failed and return. 1527 */ 1528 error = sdhc_start_command(hp, cmd); 1529 if (error) { 1530 cmd->c_error = error; 1531 goto out; 1532 } 1533 1534 /* 1535 * Wait until the command phase is done, or until the command 1536 * is marked done for any other reason. 1537 */ 1538 probing = (cmd->c_flags & SCF_TOUT_OK) != 0; 1539 if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE, SDHC_COMMAND_TIMEOUT, probing)) { 1540 DPRINTF(1,("%s: timeout for command\n", __func__)); 1541 sdmmc_delay(50); 1542 cmd->c_error = ETIMEDOUT; 1543 goto out; 1544 } 1545 1546 /* 1547 * The host controller removes bits [0:7] from the response 1548 * data (CRC) and we pass the data up unchanged to the bus 1549 * driver (without padding). 1550 */ 1551 if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) { 1552 cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE + 0); 1553 if (ISSET(cmd->c_flags, SCF_RSP_136)) { 1554 cmd->c_resp[1] = HREAD4(hp, SDHC_RESPONSE + 4); 1555 cmd->c_resp[2] = HREAD4(hp, SDHC_RESPONSE + 8); 1556 cmd->c_resp[3] = HREAD4(hp, SDHC_RESPONSE + 12); 1557 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_RSP136_CRC)) { 1558 cmd->c_resp[0] = (cmd->c_resp[0] >> 8) | 1559 (cmd->c_resp[1] << 24); 1560 cmd->c_resp[1] = (cmd->c_resp[1] >> 8) | 1561 (cmd->c_resp[2] << 24); 1562 cmd->c_resp[2] = (cmd->c_resp[2] >> 8) | 1563 (cmd->c_resp[3] << 24); 1564 cmd->c_resp[3] = (cmd->c_resp[3] >> 8); 1565 } 1566 } 1567 } 1568 DPRINTF(1,("%s: resp = %08x\n", HDEVNAME(hp), cmd->c_resp[0])); 1569 1570 /* 1571 * If the command has data to transfer in any direction, 1572 * execute the transfer now. 1573 */ 1574 if (cmd->c_error == 0 && cmd->c_data != NULL) 1575 sdhc_transfer_data(hp, cmd); 1576 else if (ISSET(cmd->c_flags, SCF_RSP_BSY)) { 1577 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_BUSY_INTR) && 1578 !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE, hz * 10, false)) { 1579 DPRINTF(1,("%s: sdhc_exec_command: RSP_BSY\n", 1580 HDEVNAME(hp))); 1581 cmd->c_error = ETIMEDOUT; 1582 goto out; 1583 } 1584 } 1585 1586 out: 1587 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED) 1588 && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_LED_ON)) { 1589 /* Turn off the LED. */ 1590 HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON); 1591 } 1592 SET(cmd->c_flags, SCF_ITSDONE); 1593 1594 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_AUTO_STOP) && 1595 cmd->c_opcode == MMC_STOP_TRANSMISSION) 1596 (void)sdhc_soft_reset(hp, SDHC_RESET_CMD|SDHC_RESET_DAT); 1597 1598 mutex_exit(&hp->intr_lock); 1599 1600 DPRINTF(1,("%s: cmd %d %s (flags=%08x error=%d)\n", HDEVNAME(hp), 1601 cmd->c_opcode, (cmd->c_error == 0) ? "done" : "abort", 1602 cmd->c_flags, cmd->c_error)); 1603 } 1604 1605 static int 1606 sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd) 1607 { 1608 struct sdhc_softc * const sc = hp->sc; 1609 uint16_t blksize = 0; 1610 uint16_t blkcount = 0; 1611 uint16_t mode; 1612 uint16_t command; 1613 uint32_t pmask; 1614 int error; 1615 1616 KASSERT(mutex_owned(&hp->intr_lock)); 1617 1618 DPRINTF(1,("%s: start cmd %d arg=%08x data=%p dlen=%d flags=%08x, status=%#x\n", 1619 HDEVNAME(hp), cmd->c_opcode, cmd->c_arg, cmd->c_data, 1620 cmd->c_datalen, cmd->c_flags, HREAD4(hp, SDHC_NINTR_STATUS))); 1621 1622 /* 1623 * The maximum block length for commands should be the minimum 1624 * of the host buffer size and the card buffer size. (1.7.2) 1625 */ 1626 1627 /* Fragment the data into proper blocks. */ 1628 if (cmd->c_datalen > 0) { 1629 blksize = MIN(cmd->c_datalen, cmd->c_blklen); 1630 blkcount = cmd->c_datalen / blksize; 1631 if (cmd->c_datalen % blksize > 0) { 1632 /* XXX: Split this command. (1.7.4) */ 1633 aprint_error_dev(sc->sc_dev, 1634 "data not a multiple of %u bytes\n", blksize); 1635 return EINVAL; 1636 } 1637 } 1638 1639 /* Check limit imposed by 9-bit block count. (1.7.2) */ 1640 if (blkcount > SDHC_BLOCK_COUNT_MAX) { 1641 aprint_error_dev(sc->sc_dev, "too much data\n"); 1642 return EINVAL; 1643 } 1644 1645 /* Prepare transfer mode register value. (2.2.5) */ 1646 mode = SDHC_BLOCK_COUNT_ENABLE; 1647 if (ISSET(cmd->c_flags, SCF_CMD_READ)) 1648 mode |= SDHC_READ_MODE; 1649 if (blkcount > 1) { 1650 mode |= SDHC_MULTI_BLOCK_MODE; 1651 /* XXX only for memory commands? */ 1652 if (!ISSET(sc->sc_flags, SDHC_FLAG_NO_AUTO_STOP)) 1653 mode |= SDHC_AUTO_CMD12_ENABLE; 1654 } 1655 if (cmd->c_dmamap != NULL && cmd->c_datalen > 0 && 1656 ISSET(hp->flags, SHF_MODE_DMAEN)) { 1657 mode |= SDHC_DMA_ENABLE; 1658 } 1659 1660 /* 1661 * Prepare command register value. (2.2.6) 1662 */ 1663 command = (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) << SDHC_COMMAND_INDEX_SHIFT; 1664 1665 if (ISSET(cmd->c_flags, SCF_RSP_CRC)) 1666 command |= SDHC_CRC_CHECK_ENABLE; 1667 if (ISSET(cmd->c_flags, SCF_RSP_IDX)) 1668 command |= SDHC_INDEX_CHECK_ENABLE; 1669 if (cmd->c_datalen > 0) 1670 command |= SDHC_DATA_PRESENT_SELECT; 1671 1672 if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT)) 1673 command |= SDHC_NO_RESPONSE; 1674 else if (ISSET(cmd->c_flags, SCF_RSP_136)) 1675 command |= SDHC_RESP_LEN_136; 1676 else if (ISSET(cmd->c_flags, SCF_RSP_BSY)) 1677 command |= SDHC_RESP_LEN_48_CHK_BUSY; 1678 else 1679 command |= SDHC_RESP_LEN_48; 1680 1681 /* Wait until command and optionally data inhibit bits are clear. (1.5) */ 1682 pmask = SDHC_CMD_INHIBIT_CMD; 1683 if (cmd->c_flags & (SCF_CMD_ADTC|SCF_RSP_BSY)) 1684 pmask |= SDHC_CMD_INHIBIT_DAT; 1685 error = sdhc_wait_state(hp, pmask, 0); 1686 if (error) { 1687 (void) sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD); 1688 device_printf(sc->sc_dev, "command or data phase inhibited\n"); 1689 return error; 1690 } 1691 1692 DPRINTF(1,("%s: writing cmd: blksize=%d blkcnt=%d mode=%04x cmd=%04x\n", 1693 HDEVNAME(hp), blksize, blkcount, mode, command)); 1694 1695 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) { 1696 blksize |= (MAX(0, PAGE_SHIFT - 12) & SDHC_DMA_BOUNDARY_MASK) << 1697 SDHC_DMA_BOUNDARY_SHIFT; /* PAGE_SIZE DMA boundary */ 1698 } 1699 1700 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) { 1701 /* Alert the user not to remove the card. */ 1702 HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON); 1703 } 1704 1705 /* Set DMA start address. */ 1706 if (ISSET(hp->flags, SHF_USE_ADMA2_MASK) && cmd->c_data != NULL) { 1707 for (int seg = 0; seg < cmd->c_dmamap->dm_nsegs; seg++) { 1708 bus_addr_t paddr = 1709 cmd->c_dmamap->dm_segs[seg].ds_addr; 1710 uint16_t len = 1711 cmd->c_dmamap->dm_segs[seg].ds_len == 65536 ? 1712 0 : cmd->c_dmamap->dm_segs[seg].ds_len; 1713 uint16_t attr = 1714 SDHC_ADMA2_VALID | SDHC_ADMA2_ACT_TRANS; 1715 if (seg == cmd->c_dmamap->dm_nsegs - 1) { 1716 attr |= SDHC_ADMA2_END; 1717 } 1718 if (ISSET(hp->flags, SHF_USE_ADMA2_32)) { 1719 struct sdhc_adma2_descriptor32 *desc = 1720 hp->adma2; 1721 desc[seg].attribute = htole16(attr); 1722 desc[seg].length = htole16(len); 1723 desc[seg].address = htole32(paddr); 1724 } else { 1725 struct sdhc_adma2_descriptor64 *desc = 1726 hp->adma2; 1727 desc[seg].attribute = htole16(attr); 1728 desc[seg].length = htole16(len); 1729 desc[seg].address = htole32(paddr & 0xffffffff); 1730 desc[seg].address_hi = htole32( 1731 (uint64_t)paddr >> 32); 1732 } 1733 } 1734 if (ISSET(hp->flags, SHF_USE_ADMA2_32)) { 1735 struct sdhc_adma2_descriptor32 *desc = hp->adma2; 1736 desc[cmd->c_dmamap->dm_nsegs].attribute = htole16(0); 1737 } else { 1738 struct sdhc_adma2_descriptor64 *desc = hp->adma2; 1739 desc[cmd->c_dmamap->dm_nsegs].attribute = htole16(0); 1740 } 1741 bus_dmamap_sync(sc->sc_dmat, hp->adma_map, 0, PAGE_SIZE, 1742 BUS_DMASYNC_PREWRITE); 1743 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) { 1744 HCLR4(hp, SDHC_HOST_CTL, SDHC_USDHC_DMA_SELECT); 1745 HSET4(hp, SDHC_HOST_CTL, SDHC_USDHC_DMA_SELECT_ADMA2); 1746 } else { 1747 HCLR1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT); 1748 HSET1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT_ADMA2); 1749 } 1750 1751 const bus_addr_t desc_addr = hp->adma_map->dm_segs[0].ds_addr; 1752 1753 HWRITE4(hp, SDHC_ADMA_SYSTEM_ADDR, desc_addr & 0xffffffff); 1754 if (ISSET(hp->flags, SHF_USE_ADMA2_64)) { 1755 HWRITE4(hp, SDHC_ADMA_SYSTEM_ADDR + 4, 1756 (uint64_t)desc_addr >> 32); 1757 } 1758 } else if (ISSET(mode, SDHC_DMA_ENABLE) && 1759 !ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA)) { 1760 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) { 1761 HCLR4(hp, SDHC_HOST_CTL, SDHC_USDHC_DMA_SELECT); 1762 } 1763 HWRITE4(hp, SDHC_DMA_ADDR, cmd->c_dmamap->dm_segs[0].ds_addr); 1764 } 1765 1766 /* 1767 * Start a CPU data transfer. Writing to the high order byte 1768 * of the SDHC_COMMAND register triggers the SD command. (1.5) 1769 */ 1770 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) { 1771 HWRITE4(hp, SDHC_BLOCK_SIZE, blksize | (blkcount << 16)); 1772 HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg); 1773 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) { 1774 /* mode bits is in MIX_CTRL register on uSDHC */ 1775 HWRITE4(hp, SDHC_MIX_CTRL, mode | 1776 (HREAD4(hp, SDHC_MIX_CTRL) & 1777 ~(SDHC_MULTI_BLOCK_MODE | 1778 SDHC_READ_MODE | 1779 SDHC_AUTO_CMD12_ENABLE | 1780 SDHC_BLOCK_COUNT_ENABLE | 1781 SDHC_DMA_ENABLE))); 1782 HWRITE4(hp, SDHC_TRANSFER_MODE, command << 16); 1783 } else { 1784 HWRITE4(hp, SDHC_TRANSFER_MODE, mode | (command << 16)); 1785 } 1786 } else { 1787 HWRITE2(hp, SDHC_BLOCK_SIZE, blksize); 1788 HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount); 1789 HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg); 1790 HWRITE2(hp, SDHC_TRANSFER_MODE, mode); 1791 HWRITE2(hp, SDHC_COMMAND, command); 1792 } 1793 1794 return 0; 1795 } 1796 1797 static void 1798 sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd) 1799 { 1800 struct sdhc_softc *sc = hp->sc; 1801 int error; 1802 1803 KASSERT(mutex_owned(&hp->intr_lock)); 1804 1805 DPRINTF(1,("%s: data transfer: resp=%08x datalen=%u\n", HDEVNAME(hp), 1806 MMC_R1(cmd->c_resp), cmd->c_datalen)); 1807 1808 #ifdef SDHC_DEBUG 1809 /* XXX I forgot why I wanted to know when this happens :-( */ 1810 if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) && 1811 ISSET(MMC_R1(cmd->c_resp), 0xcb00)) { 1812 aprint_error_dev(hp->sc->sc_dev, 1813 "CMD52/53 error response flags %#x\n", 1814 MMC_R1(cmd->c_resp) & 0xff00); 1815 } 1816 #endif 1817 1818 if (cmd->c_dmamap != NULL) { 1819 if (hp->sc->sc_vendor_transfer_data_dma != NULL) { 1820 error = hp->sc->sc_vendor_transfer_data_dma(sc, cmd); 1821 if (error == 0 && !sdhc_wait_intr(hp, 1822 SDHC_TRANSFER_COMPLETE, SDHC_DMA_TIMEOUT, false)) { 1823 DPRINTF(1,("%s: timeout\n", __func__)); 1824 error = ETIMEDOUT; 1825 } 1826 } else { 1827 error = sdhc_transfer_data_dma(hp, cmd); 1828 } 1829 } else 1830 error = sdhc_transfer_data_pio(hp, cmd); 1831 if (error) 1832 cmd->c_error = error; 1833 SET(cmd->c_flags, SCF_ITSDONE); 1834 1835 DPRINTF(1,("%s: data transfer done (error=%d)\n", 1836 HDEVNAME(hp), cmd->c_error)); 1837 } 1838 1839 static int 1840 sdhc_transfer_data_dma(struct sdhc_host *hp, struct sdmmc_command *cmd) 1841 { 1842 bus_dma_segment_t *dm_segs = cmd->c_dmamap->dm_segs; 1843 bus_addr_t posaddr; 1844 bus_addr_t segaddr; 1845 bus_size_t seglen; 1846 u_int seg = 0; 1847 int error = 0; 1848 int status; 1849 1850 KASSERT(mutex_owned(&hp->intr_lock)); 1851 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_DMA_INTERRUPT); 1852 KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_DMA_INTERRUPT); 1853 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE); 1854 KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE); 1855 1856 for (;;) { 1857 status = sdhc_wait_intr(hp, 1858 SDHC_DMA_INTERRUPT|SDHC_TRANSFER_COMPLETE, 1859 SDHC_DMA_TIMEOUT, false); 1860 1861 if (status & SDHC_TRANSFER_COMPLETE) { 1862 break; 1863 } 1864 if (!status) { 1865 DPRINTF(1,("%s: timeout\n", __func__)); 1866 error = ETIMEDOUT; 1867 break; 1868 } 1869 1870 if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) { 1871 continue; 1872 } 1873 1874 if ((status & SDHC_DMA_INTERRUPT) == 0) { 1875 continue; 1876 } 1877 1878 /* DMA Interrupt (boundary crossing) */ 1879 1880 segaddr = dm_segs[seg].ds_addr; 1881 seglen = dm_segs[seg].ds_len; 1882 posaddr = HREAD4(hp, SDHC_DMA_ADDR); 1883 1884 if ((seg == (cmd->c_dmamap->dm_nsegs-1)) && (posaddr == (segaddr + seglen))) { 1885 continue; 1886 } 1887 if ((posaddr >= segaddr) && (posaddr < (segaddr + seglen))) 1888 HWRITE4(hp, SDHC_DMA_ADDR, posaddr); 1889 else if ((posaddr >= segaddr) && (posaddr == (segaddr + seglen)) && (seg + 1) < cmd->c_dmamap->dm_nsegs) 1890 HWRITE4(hp, SDHC_DMA_ADDR, dm_segs[++seg].ds_addr); 1891 KASSERT(seg < cmd->c_dmamap->dm_nsegs); 1892 } 1893 1894 if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) { 1895 bus_dmamap_sync(hp->sc->sc_dmat, hp->adma_map, 0, 1896 PAGE_SIZE, BUS_DMASYNC_POSTWRITE); 1897 } 1898 1899 return error; 1900 } 1901 1902 static int 1903 sdhc_transfer_data_pio(struct sdhc_host *hp, struct sdmmc_command *cmd) 1904 { 1905 uint8_t *data = cmd->c_data; 1906 void (*pio_func)(struct sdhc_host *, uint8_t *, u_int); 1907 u_int len, datalen; 1908 u_int imask; 1909 u_int pmask; 1910 int error = 0; 1911 1912 KASSERT(mutex_owned(&hp->intr_lock)); 1913 1914 if (ISSET(cmd->c_flags, SCF_CMD_READ)) { 1915 imask = SDHC_BUFFER_READ_READY; 1916 pmask = SDHC_BUFFER_READ_ENABLE; 1917 if (ISSET(hp->sc->sc_flags, 1918 SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) { 1919 pio_func = esdhc_read_data_pio; 1920 } else { 1921 pio_func = sdhc_read_data_pio; 1922 } 1923 } else { 1924 imask = SDHC_BUFFER_WRITE_READY; 1925 pmask = SDHC_BUFFER_WRITE_ENABLE; 1926 if (ISSET(hp->sc->sc_flags, 1927 SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) { 1928 pio_func = esdhc_write_data_pio; 1929 } else { 1930 pio_func = sdhc_write_data_pio; 1931 } 1932 } 1933 datalen = cmd->c_datalen; 1934 1935 KASSERT(mutex_owned(&hp->intr_lock)); 1936 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & imask); 1937 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE); 1938 KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE); 1939 1940 while (datalen > 0) { 1941 if (!ISSET(HREAD4(hp, SDHC_PRESENT_STATE), pmask)) { 1942 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) { 1943 HSET4(hp, SDHC_NINTR_SIGNAL_EN, imask); 1944 } else { 1945 HSET2(hp, SDHC_NINTR_SIGNAL_EN, imask); 1946 } 1947 if (!sdhc_wait_intr(hp, imask, SDHC_BUFFER_TIMEOUT, false)) { 1948 DPRINTF(1,("%s: timeout\n", __func__)); 1949 error = ETIMEDOUT; 1950 break; 1951 } 1952 1953 error = sdhc_wait_state(hp, pmask, pmask); 1954 if (error) 1955 break; 1956 } 1957 1958 len = MIN(datalen, cmd->c_blklen); 1959 (*pio_func)(hp, data, len); 1960 DPRINTF(2,("%s: pio data transfer %u @ %p\n", 1961 HDEVNAME(hp), len, data)); 1962 1963 data += len; 1964 datalen -= len; 1965 } 1966 1967 if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE, 1968 SDHC_TRANSFER_TIMEOUT, false)) { 1969 DPRINTF(1,("%s: timeout for transfer\n", __func__)); 1970 error = ETIMEDOUT; 1971 } 1972 1973 return error; 1974 } 1975 1976 static void 1977 sdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen) 1978 { 1979 1980 if (((__uintptr_t)data & 3) == 0) { 1981 while (datalen > 3) { 1982 *(uint32_t *)data = le32toh(HREAD4(hp, SDHC_DATA)); 1983 data += 4; 1984 datalen -= 4; 1985 } 1986 if (datalen > 1) { 1987 *(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA)); 1988 data += 2; 1989 datalen -= 2; 1990 } 1991 if (datalen > 0) { 1992 *data = HREAD1(hp, SDHC_DATA); 1993 data += 1; 1994 datalen -= 1; 1995 } 1996 } else if (((__uintptr_t)data & 1) == 0) { 1997 while (datalen > 1) { 1998 *(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA)); 1999 data += 2; 2000 datalen -= 2; 2001 } 2002 if (datalen > 0) { 2003 *data = HREAD1(hp, SDHC_DATA); 2004 data += 1; 2005 datalen -= 1; 2006 } 2007 } else { 2008 while (datalen > 0) { 2009 *data = HREAD1(hp, SDHC_DATA); 2010 data += 1; 2011 datalen -= 1; 2012 } 2013 } 2014 } 2015 2016 static void 2017 sdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen) 2018 { 2019 2020 if (((__uintptr_t)data & 3) == 0) { 2021 while (datalen > 3) { 2022 HWRITE4(hp, SDHC_DATA, htole32(*(uint32_t *)data)); 2023 data += 4; 2024 datalen -= 4; 2025 } 2026 if (datalen > 1) { 2027 HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data)); 2028 data += 2; 2029 datalen -= 2; 2030 } 2031 if (datalen > 0) { 2032 HWRITE1(hp, SDHC_DATA, *data); 2033 data += 1; 2034 datalen -= 1; 2035 } 2036 } else if (((__uintptr_t)data & 1) == 0) { 2037 while (datalen > 1) { 2038 HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data)); 2039 data += 2; 2040 datalen -= 2; 2041 } 2042 if (datalen > 0) { 2043 HWRITE1(hp, SDHC_DATA, *data); 2044 data += 1; 2045 datalen -= 1; 2046 } 2047 } else { 2048 while (datalen > 0) { 2049 HWRITE1(hp, SDHC_DATA, *data); 2050 data += 1; 2051 datalen -= 1; 2052 } 2053 } 2054 } 2055 2056 static void 2057 esdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen) 2058 { 2059 uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS); 2060 uint32_t v; 2061 2062 const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_READ_SHIFT) & SDHC_WATERMARK_READ_MASK; 2063 size_t count = 0; 2064 2065 while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) { 2066 if (count == 0) { 2067 /* 2068 * If we've drained "watermark" words, we need to wait 2069 * a little bit so the read FIFO can refill. 2070 */ 2071 sdmmc_delay(10); 2072 count = watermark; 2073 } 2074 v = HREAD4(hp, SDHC_DATA); 2075 v = le32toh(v); 2076 *(uint32_t *)data = v; 2077 data += 4; 2078 datalen -= 4; 2079 status = HREAD2(hp, SDHC_NINTR_STATUS); 2080 count--; 2081 } 2082 if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) { 2083 if (count == 0) { 2084 sdmmc_delay(10); 2085 } 2086 v = HREAD4(hp, SDHC_DATA); 2087 v = le32toh(v); 2088 do { 2089 *data++ = v; 2090 v >>= 8; 2091 } while (--datalen > 0); 2092 } 2093 } 2094 2095 static void 2096 esdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen) 2097 { 2098 uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS); 2099 uint32_t v; 2100 2101 const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_WRITE_SHIFT) & SDHC_WATERMARK_WRITE_MASK; 2102 size_t count = watermark; 2103 2104 while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) { 2105 if (count == 0) { 2106 sdmmc_delay(10); 2107 count = watermark; 2108 } 2109 v = *(uint32_t *)data; 2110 v = htole32(v); 2111 HWRITE4(hp, SDHC_DATA, v); 2112 data += 4; 2113 datalen -= 4; 2114 status = HREAD2(hp, SDHC_NINTR_STATUS); 2115 count--; 2116 } 2117 if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) { 2118 if (count == 0) { 2119 sdmmc_delay(10); 2120 } 2121 v = *(uint32_t *)data; 2122 v = htole32(v); 2123 HWRITE4(hp, SDHC_DATA, v); 2124 } 2125 } 2126 2127 /* Prepare for another command. */ 2128 static int 2129 sdhc_soft_reset(struct sdhc_host *hp, int mask) 2130 { 2131 int timo; 2132 2133 KASSERT(mutex_owned(&hp->intr_lock)); 2134 2135 DPRINTF(1,("%s: software reset reg=%08x\n", HDEVNAME(hp), mask)); 2136 2137 /* Request the reset. */ 2138 HWRITE1(hp, SDHC_SOFTWARE_RESET, mask); 2139 2140 /* 2141 * If necessary, wait for the controller to set the bits to 2142 * acknowledge the reset. 2143 */ 2144 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_WAIT_RESET) && 2145 ISSET(mask, (SDHC_RESET_DAT | SDHC_RESET_CMD))) { 2146 for (timo = 10000; timo > 0; timo--) { 2147 if (ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask)) 2148 break; 2149 /* Short delay because I worry we may miss it... */ 2150 sdmmc_delay(1); 2151 } 2152 if (timo == 0) { 2153 DPRINTF(1,("%s: timeout for reset on\n", __func__)); 2154 return ETIMEDOUT; 2155 } 2156 } 2157 2158 /* 2159 * Wait for the controller to clear the bits to indicate that 2160 * the reset has completed. 2161 */ 2162 for (timo = 10; timo > 0; timo--) { 2163 if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask)) 2164 break; 2165 sdmmc_delay(10000); 2166 } 2167 if (timo == 0) { 2168 DPRINTF(1,("%s: timeout reg=%08x\n", HDEVNAME(hp), 2169 HREAD1(hp, SDHC_SOFTWARE_RESET))); 2170 return ETIMEDOUT; 2171 } 2172 2173 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) { 2174 HSET4(hp, SDHC_DMA_CTL, SDHC_DMA_SNOOP); 2175 } 2176 2177 return 0; 2178 } 2179 2180 static int 2181 sdhc_wait_intr(struct sdhc_host *hp, int mask, int timo, bool probing) 2182 { 2183 int status, error, nointr; 2184 2185 KASSERT(mutex_owned(&hp->intr_lock)); 2186 2187 mask |= SDHC_ERROR_INTERRUPT; 2188 2189 nointr = 0; 2190 status = hp->intr_status & mask; 2191 while (status == 0) { 2192 if (cv_timedwait(&hp->intr_cv, &hp->intr_lock, timo) 2193 == EWOULDBLOCK) { 2194 nointr = 1; 2195 break; 2196 } 2197 status = hp->intr_status & mask; 2198 } 2199 error = hp->intr_error_status; 2200 2201 DPRINTF(2,("%s: intr status %#x error %#x\n", HDEVNAME(hp), status, 2202 error)); 2203 2204 hp->intr_status &= ~status; 2205 hp->intr_error_status &= ~error; 2206 2207 if (ISSET(status, SDHC_ERROR_INTERRUPT)) { 2208 if (ISSET(error, SDHC_DMA_ERROR)) 2209 device_printf(hp->sc->sc_dev,"dma error\n"); 2210 if (ISSET(error, SDHC_ADMA_ERROR)) 2211 device_printf(hp->sc->sc_dev,"adma error\n"); 2212 if (ISSET(error, SDHC_AUTO_CMD12_ERROR)) 2213 device_printf(hp->sc->sc_dev,"auto_cmd12 error\n"); 2214 if (ISSET(error, SDHC_CURRENT_LIMIT_ERROR)) 2215 device_printf(hp->sc->sc_dev,"current limit error\n"); 2216 if (ISSET(error, SDHC_DATA_END_BIT_ERROR)) 2217 device_printf(hp->sc->sc_dev,"data end bit error\n"); 2218 if (ISSET(error, SDHC_DATA_CRC_ERROR)) 2219 device_printf(hp->sc->sc_dev,"data crc error\n"); 2220 if (ISSET(error, SDHC_DATA_TIMEOUT_ERROR)) 2221 device_printf(hp->sc->sc_dev,"data timeout error\n"); 2222 if (ISSET(error, SDHC_CMD_INDEX_ERROR)) 2223 device_printf(hp->sc->sc_dev,"cmd index error\n"); 2224 if (ISSET(error, SDHC_CMD_END_BIT_ERROR)) 2225 device_printf(hp->sc->sc_dev,"cmd end bit error\n"); 2226 if (ISSET(error, SDHC_CMD_CRC_ERROR)) 2227 device_printf(hp->sc->sc_dev,"cmd crc error\n"); 2228 if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR)) { 2229 if (!probing) 2230 device_printf(hp->sc->sc_dev,"cmd timeout error\n"); 2231 #ifdef SDHC_DEBUG 2232 else if (sdhcdebug > 0) 2233 device_printf(hp->sc->sc_dev,"cmd timeout (expected)\n"); 2234 #endif 2235 } 2236 if ((error & ~SDHC_EINTR_STATUS_MASK) != 0) 2237 device_printf(hp->sc->sc_dev,"vendor error %#x\n", 2238 (error & ~SDHC_EINTR_STATUS_MASK)); 2239 if (error == 0) 2240 device_printf(hp->sc->sc_dev,"no error\n"); 2241 2242 /* Command timeout has higher priority than command complete. */ 2243 if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR)) 2244 CLR(status, SDHC_COMMAND_COMPLETE); 2245 2246 /* Transfer complete has higher priority than data timeout. */ 2247 if (ISSET(status, SDHC_TRANSFER_COMPLETE)) 2248 CLR(error, SDHC_DATA_TIMEOUT_ERROR); 2249 } 2250 2251 if (nointr || 2252 (ISSET(status, SDHC_ERROR_INTERRUPT) && error)) { 2253 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) 2254 (void)sdhc_soft_reset(hp, SDHC_RESET_CMD|SDHC_RESET_DAT); 2255 hp->intr_error_status = 0; 2256 status = 0; 2257 } 2258 2259 return status; 2260 } 2261 2262 /* 2263 * Established by attachment driver at interrupt priority IPL_SDMMC. 2264 */ 2265 int 2266 sdhc_intr(void *arg) 2267 { 2268 struct sdhc_softc *sc = (struct sdhc_softc *)arg; 2269 struct sdhc_host *hp; 2270 int done = 0; 2271 uint16_t status; 2272 uint16_t error; 2273 2274 /* We got an interrupt, but we don't know from which slot. */ 2275 for (size_t host = 0; host < sc->sc_nhosts; host++) { 2276 hp = sc->sc_host[host]; 2277 if (hp == NULL) 2278 continue; 2279 2280 mutex_enter(&hp->intr_lock); 2281 2282 if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) { 2283 /* Find out which interrupts are pending. */ 2284 uint32_t xstatus = HREAD4(hp, SDHC_NINTR_STATUS); 2285 status = xstatus; 2286 error = xstatus >> 16; 2287 if (ISSET(sc->sc_flags, SDHC_FLAG_USDHC) && 2288 (xstatus & SDHC_TRANSFER_COMPLETE) && 2289 !(xstatus & SDHC_DMA_INTERRUPT)) { 2290 /* read again due to uSDHC errata */ 2291 status = xstatus = HREAD4(hp, 2292 SDHC_NINTR_STATUS); 2293 error = xstatus >> 16; 2294 } 2295 if (ISSET(sc->sc_flags, 2296 SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) { 2297 if ((error & SDHC_NINTR_STATUS_MASK) != 0) 2298 SET(status, SDHC_ERROR_INTERRUPT); 2299 } 2300 if (error) 2301 xstatus |= SDHC_ERROR_INTERRUPT; 2302 else if (!ISSET(status, SDHC_NINTR_STATUS_MASK)) 2303 goto next_port; /* no interrupt for us */ 2304 /* Acknowledge the interrupts we are about to handle. */ 2305 HWRITE4(hp, SDHC_NINTR_STATUS, xstatus); 2306 } else { 2307 /* Find out which interrupts are pending. */ 2308 error = 0; 2309 status = HREAD2(hp, SDHC_NINTR_STATUS); 2310 if (!ISSET(status, SDHC_NINTR_STATUS_MASK)) 2311 goto next_port; /* no interrupt for us */ 2312 /* Acknowledge the interrupts we are about to handle. */ 2313 HWRITE2(hp, SDHC_NINTR_STATUS, status); 2314 if (ISSET(status, SDHC_ERROR_INTERRUPT)) { 2315 /* Acknowledge error interrupts. */ 2316 error = HREAD2(hp, SDHC_EINTR_STATUS); 2317 HWRITE2(hp, SDHC_EINTR_STATUS, error); 2318 } 2319 } 2320 2321 DPRINTF(2,("%s: interrupt status=%x error=%x\n", HDEVNAME(hp), 2322 status, error)); 2323 2324 /* Claim this interrupt. */ 2325 done = 1; 2326 2327 if (ISSET(status, SDHC_ERROR_INTERRUPT) && 2328 ISSET(error, SDHC_ADMA_ERROR)) { 2329 uint8_t adma_err = HREAD1(hp, SDHC_ADMA_ERROR_STATUS); 2330 printf("%s: ADMA error, status %02x\n", HDEVNAME(hp), 2331 adma_err); 2332 } 2333 2334 /* 2335 * Wake up the sdmmc event thread to scan for cards. 2336 */ 2337 if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)) { 2338 if (hp->sdmmc != NULL) { 2339 sdmmc_needs_discover(hp->sdmmc); 2340 } 2341 if (ISSET(sc->sc_flags, 2342 SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) { 2343 HCLR4(hp, SDHC_NINTR_STATUS_EN, 2344 status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)); 2345 HCLR4(hp, SDHC_NINTR_SIGNAL_EN, 2346 status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)); 2347 } 2348 } 2349 2350 /* 2351 * Schedule re-tuning process (UHS). 2352 */ 2353 if (ISSET(status, SDHC_RETUNING_EVENT)) { 2354 atomic_swap_uint(&hp->tuning_timer_pending, 1); 2355 } 2356 2357 /* 2358 * Wake up the blocking process to service command 2359 * related interrupt(s). 2360 */ 2361 if (ISSET(status, SDHC_COMMAND_COMPLETE|SDHC_ERROR_INTERRUPT| 2362 SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY| 2363 SDHC_TRANSFER_COMPLETE|SDHC_DMA_INTERRUPT)) { 2364 hp->intr_error_status |= error; 2365 hp->intr_status |= status; 2366 if (ISSET(sc->sc_flags, 2367 SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) { 2368 HCLR4(hp, SDHC_NINTR_SIGNAL_EN, 2369 status & (SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY)); 2370 } 2371 cv_broadcast(&hp->intr_cv); 2372 } 2373 2374 /* 2375 * Service SD card interrupts. 2376 */ 2377 if (!ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC) 2378 && ISSET(status, SDHC_CARD_INTERRUPT)) { 2379 DPRINTF(0,("%s: card interrupt\n", HDEVNAME(hp))); 2380 HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT); 2381 sdmmc_card_intr(hp->sdmmc); 2382 } 2383 next_port: 2384 mutex_exit(&hp->intr_lock); 2385 } 2386 2387 return done; 2388 } 2389 2390 kmutex_t * 2391 sdhc_host_lock(struct sdhc_host *hp) 2392 { 2393 return &hp->intr_lock; 2394 } 2395 2396 #ifdef SDHC_DEBUG 2397 void 2398 sdhc_dump_regs(struct sdhc_host *hp) 2399 { 2400 2401 printf("0x%02x PRESENT_STATE: %x\n", SDHC_PRESENT_STATE, 2402 HREAD4(hp, SDHC_PRESENT_STATE)); 2403 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) 2404 printf("0x%02x POWER_CTL: %x\n", SDHC_POWER_CTL, 2405 HREAD1(hp, SDHC_POWER_CTL)); 2406 printf("0x%02x NINTR_STATUS: %x\n", SDHC_NINTR_STATUS, 2407 HREAD2(hp, SDHC_NINTR_STATUS)); 2408 printf("0x%02x EINTR_STATUS: %x\n", SDHC_EINTR_STATUS, 2409 HREAD2(hp, SDHC_EINTR_STATUS)); 2410 printf("0x%02x NINTR_STATUS_EN: %x\n", SDHC_NINTR_STATUS_EN, 2411 HREAD2(hp, SDHC_NINTR_STATUS_EN)); 2412 printf("0x%02x EINTR_STATUS_EN: %x\n", SDHC_EINTR_STATUS_EN, 2413 HREAD2(hp, SDHC_EINTR_STATUS_EN)); 2414 printf("0x%02x NINTR_SIGNAL_EN: %x\n", SDHC_NINTR_SIGNAL_EN, 2415 HREAD2(hp, SDHC_NINTR_SIGNAL_EN)); 2416 printf("0x%02x EINTR_SIGNAL_EN: %x\n", SDHC_EINTR_SIGNAL_EN, 2417 HREAD2(hp, SDHC_EINTR_SIGNAL_EN)); 2418 printf("0x%02x CAPABILITIES: %x\n", SDHC_CAPABILITIES, 2419 HREAD4(hp, SDHC_CAPABILITIES)); 2420 printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES, 2421 HREAD4(hp, SDHC_MAX_CAPABILITIES)); 2422 } 2423 #endif 2424