1 /* $NetBSD: sdhc.c,v 1.106 2019/10/28 18:11:15 joerg Exp $ */ 2 /* $OpenBSD: sdhc.c,v 1.25 2009/01/13 19:44:20 grange Exp $ */ 3 4 /* 5 * Copyright (c) 2006 Uwe Stuehler <uwe@openbsd.org> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 /* 21 * SD Host Controller driver based on the SD Host Controller Standard 22 * Simplified Specification Version 1.00 (www.sdcard.com). 23 */ 24 25 #include <sys/cdefs.h> 26 __KERNEL_RCSID(0, "$NetBSD: sdhc.c,v 1.106 2019/10/28 18:11:15 joerg Exp $"); 27 28 #ifdef _KERNEL_OPT 29 #include "opt_sdmmc.h" 30 #endif 31 32 #include <sys/param.h> 33 #include <sys/device.h> 34 #include <sys/kernel.h> 35 #include <sys/malloc.h> 36 #include <sys/systm.h> 37 #include <sys/mutex.h> 38 #include <sys/condvar.h> 39 #include <sys/atomic.h> 40 41 #include <dev/sdmmc/sdhcreg.h> 42 #include <dev/sdmmc/sdhcvar.h> 43 #include <dev/sdmmc/sdmmcchip.h> 44 #include <dev/sdmmc/sdmmcreg.h> 45 #include <dev/sdmmc/sdmmcvar.h> 46 47 #ifdef SDHC_DEBUG 48 int sdhcdebug = 1; 49 #define DPRINTF(n,s) do { if ((n) <= sdhcdebug) printf s; } while (0) 50 void sdhc_dump_regs(struct sdhc_host *); 51 #else 52 #define DPRINTF(n,s) do {} while (0) 53 #endif 54 55 #define SDHC_COMMAND_TIMEOUT hz 56 #define SDHC_BUFFER_TIMEOUT hz 57 #define SDHC_TRANSFER_TIMEOUT hz 58 #define SDHC_DMA_TIMEOUT (hz*3) 59 #define SDHC_TUNING_TIMEOUT hz 60 61 struct sdhc_host { 62 struct sdhc_softc *sc; /* host controller device */ 63 64 bus_space_tag_t iot; /* host register set tag */ 65 bus_space_handle_t ioh; /* host register set handle */ 66 bus_size_t ios; /* host register space size */ 67 bus_dma_tag_t dmat; /* host DMA tag */ 68 69 device_t sdmmc; /* generic SD/MMC device */ 70 71 u_int clkbase; /* base clock frequency in KHz */ 72 int maxblklen; /* maximum block length */ 73 uint32_t ocr; /* OCR value from capabilities */ 74 75 uint8_t regs[14]; /* host controller state */ 76 77 uint16_t intr_status; /* soft interrupt status */ 78 uint16_t intr_error_status; /* soft error status */ 79 kmutex_t intr_lock; 80 kcondvar_t intr_cv; 81 82 callout_t tuning_timer; 83 int tuning_timing; 84 u_int tuning_timer_count; 85 u_int tuning_timer_pending; 86 87 int specver; /* spec. version */ 88 89 uint32_t flags; /* flags for this host */ 90 #define SHF_USE_DMA 0x0001 91 #define SHF_USE_4BIT_MODE 0x0002 92 #define SHF_USE_8BIT_MODE 0x0004 93 #define SHF_MODE_DMAEN 0x0008 /* needs SDHC_DMA_ENABLE in mode */ 94 #define SHF_USE_ADMA2_32 0x0010 95 #define SHF_USE_ADMA2_64 0x0020 96 #define SHF_USE_ADMA2_MASK 0x0030 97 98 bus_dmamap_t adma_map; 99 bus_dma_segment_t adma_segs[1]; 100 void *adma2; 101 102 uint8_t vdd; /* last vdd setting */ 103 }; 104 105 #define HDEVNAME(hp) (device_xname((hp)->sc->sc_dev)) 106 107 static uint8_t 108 hread1(struct sdhc_host *hp, bus_size_t reg) 109 { 110 111 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) 112 return bus_space_read_1(hp->iot, hp->ioh, reg); 113 return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 3)); 114 } 115 116 static uint16_t 117 hread2(struct sdhc_host *hp, bus_size_t reg) 118 { 119 120 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) 121 return bus_space_read_2(hp->iot, hp->ioh, reg); 122 return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 2)); 123 } 124 125 #define HREAD1(hp, reg) hread1(hp, reg) 126 #define HREAD2(hp, reg) hread2(hp, reg) 127 #define HREAD4(hp, reg) \ 128 (bus_space_read_4((hp)->iot, (hp)->ioh, (reg))) 129 130 131 static void 132 hwrite1(struct sdhc_host *hp, bus_size_t o, uint8_t val) 133 { 134 135 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) { 136 bus_space_write_1(hp->iot, hp->ioh, o, val); 137 } else { 138 const size_t shift = 8 * (o & 3); 139 o &= -4; 140 uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o); 141 tmp = (val << shift) | (tmp & ~(0xff << shift)); 142 bus_space_write_4(hp->iot, hp->ioh, o, tmp); 143 } 144 } 145 146 static void 147 hwrite2(struct sdhc_host *hp, bus_size_t o, uint16_t val) 148 { 149 150 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) { 151 bus_space_write_2(hp->iot, hp->ioh, o, val); 152 } else { 153 const size_t shift = 8 * (o & 2); 154 o &= -4; 155 uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o); 156 tmp = (val << shift) | (tmp & ~(0xffff << shift)); 157 bus_space_write_4(hp->iot, hp->ioh, o, tmp); 158 } 159 } 160 161 static void 162 hwrite4(struct sdhc_host *hp, bus_size_t o, uint32_t val) 163 { 164 165 bus_space_write_4(hp->iot, hp->ioh, o, val); 166 } 167 168 #define HWRITE1(hp, reg, val) hwrite1(hp, reg, val) 169 #define HWRITE2(hp, reg, val) hwrite2(hp, reg, val) 170 #define HWRITE4(hp, reg, val) hwrite4(hp, reg, val) 171 172 #define HCLR1(hp, reg, bits) \ 173 do if ((bits) != 0) HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits)); while (0) 174 #define HCLR2(hp, reg, bits) \ 175 do if ((bits) != 0) HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits)); while (0) 176 #define HCLR4(hp, reg, bits) \ 177 do if ((bits) != 0) HWRITE4((hp), (reg), HREAD4((hp), (reg)) & ~(bits)); while (0) 178 #define HSET1(hp, reg, bits) \ 179 do if ((bits) != 0) HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits)); while (0) 180 #define HSET2(hp, reg, bits) \ 181 do if ((bits) != 0) HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits)); while (0) 182 #define HSET4(hp, reg, bits) \ 183 do if ((bits) != 0) HWRITE4((hp), (reg), HREAD4((hp), (reg)) | (bits)); while (0) 184 185 static int sdhc_host_reset(sdmmc_chipset_handle_t); 186 static int sdhc_host_reset1(sdmmc_chipset_handle_t); 187 static uint32_t sdhc_host_ocr(sdmmc_chipset_handle_t); 188 static int sdhc_host_maxblklen(sdmmc_chipset_handle_t); 189 static int sdhc_card_detect(sdmmc_chipset_handle_t); 190 static int sdhc_write_protect(sdmmc_chipset_handle_t); 191 static int sdhc_bus_power(sdmmc_chipset_handle_t, uint32_t); 192 static int sdhc_bus_clock_ddr(sdmmc_chipset_handle_t, int, bool); 193 static int sdhc_bus_width(sdmmc_chipset_handle_t, int); 194 static int sdhc_bus_rod(sdmmc_chipset_handle_t, int); 195 static void sdhc_card_enable_intr(sdmmc_chipset_handle_t, int); 196 static void sdhc_card_intr_ack(sdmmc_chipset_handle_t); 197 static void sdhc_exec_command(sdmmc_chipset_handle_t, 198 struct sdmmc_command *); 199 static int sdhc_signal_voltage(sdmmc_chipset_handle_t, int); 200 static int sdhc_execute_tuning1(struct sdhc_host *, int); 201 static int sdhc_execute_tuning(sdmmc_chipset_handle_t, int); 202 static void sdhc_tuning_timer(void *); 203 static void sdhc_hw_reset(sdmmc_chipset_handle_t); 204 static int sdhc_start_command(struct sdhc_host *, struct sdmmc_command *); 205 static int sdhc_wait_state(struct sdhc_host *, uint32_t, uint32_t); 206 static int sdhc_soft_reset(struct sdhc_host *, int); 207 static int sdhc_wait_intr(struct sdhc_host *, int, int, bool); 208 static void sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *); 209 static int sdhc_transfer_data_dma(struct sdhc_host *, struct sdmmc_command *); 210 static int sdhc_transfer_data_pio(struct sdhc_host *, struct sdmmc_command *); 211 static void sdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int); 212 static void sdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int); 213 static void esdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int); 214 static void esdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int); 215 216 static struct sdmmc_chip_functions sdhc_functions = { 217 /* host controller reset */ 218 .host_reset = sdhc_host_reset, 219 220 /* host controller capabilities */ 221 .host_ocr = sdhc_host_ocr, 222 .host_maxblklen = sdhc_host_maxblklen, 223 224 /* card detection */ 225 .card_detect = sdhc_card_detect, 226 227 /* write protect */ 228 .write_protect = sdhc_write_protect, 229 230 /* bus power, clock frequency, width and ROD(OpenDrain/PushPull) */ 231 .bus_power = sdhc_bus_power, 232 .bus_clock = NULL, /* see sdhc_bus_clock_ddr */ 233 .bus_width = sdhc_bus_width, 234 .bus_rod = sdhc_bus_rod, 235 236 /* command execution */ 237 .exec_command = sdhc_exec_command, 238 239 /* card interrupt */ 240 .card_enable_intr = sdhc_card_enable_intr, 241 .card_intr_ack = sdhc_card_intr_ack, 242 243 /* UHS functions */ 244 .signal_voltage = sdhc_signal_voltage, 245 .bus_clock_ddr = sdhc_bus_clock_ddr, 246 .execute_tuning = sdhc_execute_tuning, 247 .hw_reset = sdhc_hw_reset, 248 }; 249 250 static int 251 sdhc_cfprint(void *aux, const char *pnp) 252 { 253 const struct sdmmcbus_attach_args * const saa = aux; 254 const struct sdhc_host * const hp = saa->saa_sch; 255 256 if (pnp) { 257 aprint_normal("sdmmc at %s", pnp); 258 } 259 for (size_t host = 0; host < hp->sc->sc_nhosts; host++) { 260 if (hp->sc->sc_host[host] == hp) { 261 aprint_normal(" slot %zu", host); 262 } 263 } 264 265 return UNCONF; 266 } 267 268 /* 269 * Called by attachment driver. For each SD card slot there is one SD 270 * host controller standard register set. (1.3) 271 */ 272 int 273 sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot, 274 bus_space_handle_t ioh, bus_size_t iosize) 275 { 276 struct sdmmcbus_attach_args saa; 277 struct sdhc_host *hp; 278 uint32_t caps, caps2; 279 uint16_t sdhcver; 280 int error; 281 282 /* Allocate one more host structure. */ 283 hp = malloc(sizeof(struct sdhc_host), M_DEVBUF, M_WAITOK|M_ZERO); 284 if (hp == NULL) { 285 aprint_error_dev(sc->sc_dev, 286 "couldn't alloc memory (sdhc host)\n"); 287 goto err1; 288 } 289 sc->sc_host[sc->sc_nhosts++] = hp; 290 291 /* Fill in the new host structure. */ 292 hp->sc = sc; 293 hp->iot = iot; 294 hp->ioh = ioh; 295 hp->ios = iosize; 296 hp->dmat = sc->sc_dmat; 297 298 mutex_init(&hp->intr_lock, MUTEX_DEFAULT, IPL_SDMMC); 299 cv_init(&hp->intr_cv, "sdhcintr"); 300 callout_init(&hp->tuning_timer, CALLOUT_MPSAFE); 301 callout_setfunc(&hp->tuning_timer, sdhc_tuning_timer, hp); 302 303 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) { 304 sdhcver = SDHC_SPEC_VERS_300 << SDHC_SPEC_VERS_SHIFT; 305 } else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) { 306 sdhcver = HREAD4(hp, SDHC_ESDHC_HOST_CTL_VERSION); 307 } else if (iosize <= SDHC_HOST_CTL_VERSION) { 308 sdhcver = SDHC_SPEC_NOVERS << SDHC_SPEC_VERS_SHIFT; 309 } else { 310 sdhcver = HREAD2(hp, SDHC_HOST_CTL_VERSION); 311 } 312 aprint_normal_dev(sc->sc_dev, "SDHC "); 313 hp->specver = SDHC_SPEC_VERSION(sdhcver); 314 switch (SDHC_SPEC_VERSION(sdhcver)) { 315 case SDHC_SPEC_VERS_100: 316 aprint_normal("1.0"); 317 break; 318 case SDHC_SPEC_VERS_200: 319 aprint_normal("2.0"); 320 break; 321 case SDHC_SPEC_VERS_300: 322 aprint_normal("3.0"); 323 break; 324 case SDHC_SPEC_VERS_400: 325 aprint_normal("4.0"); 326 break; 327 case SDHC_SPEC_NOVERS: 328 hp->specver = -1; 329 aprint_normal("NO-VERS"); 330 break; 331 default: 332 aprint_normal("unknown version(0x%x)", 333 SDHC_SPEC_VERSION(sdhcver)); 334 break; 335 } 336 if (SDHC_SPEC_VERSION(sdhcver) != SDHC_SPEC_NOVERS) 337 aprint_normal(", rev %u", SDHC_VENDOR_VERSION(sdhcver)); 338 339 /* 340 * Reset the host controller and enable interrupts. 341 */ 342 (void)sdhc_host_reset(hp); 343 344 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) { 345 /* init uSDHC registers */ 346 HWRITE4(hp, SDHC_MMC_BOOT, 0); 347 HWRITE4(hp, SDHC_HOST_CTL, SDHC_USDHC_BURST_LEN_EN | 348 SDHC_USDHC_HOST_CTL_RESV23 | SDHC_USDHC_EMODE_LE); 349 HWRITE4(hp, SDHC_WATERMARK_LEVEL, 350 (0x10 << SDHC_WATERMARK_WR_BRST_SHIFT) | 351 (0x40 << SDHC_WATERMARK_WRITE_SHIFT) | 352 (0x10 << SDHC_WATERMARK_RD_BRST_SHIFT) | 353 (0x40 << SDHC_WATERMARK_READ_SHIFT)); 354 HSET4(hp, SDHC_VEND_SPEC, 355 SDHC_VEND_SPEC_MBO | 356 SDHC_VEND_SPEC_CARD_CLK_SOFT_EN | 357 SDHC_VEND_SPEC_IPG_PERCLK_SOFT_EN | 358 SDHC_VEND_SPEC_HCLK_SOFT_EN | 359 SDHC_VEND_SPEC_IPG_CLK_SOFT_EN | 360 SDHC_VEND_SPEC_AC12_WR_CHKBUSY_EN | 361 SDHC_VEND_SPEC_FRC_SDCLK_ON); 362 } 363 364 /* Determine host capabilities. */ 365 if (ISSET(sc->sc_flags, SDHC_FLAG_HOSTCAPS)) { 366 caps = sc->sc_caps; 367 caps2 = sc->sc_caps2; 368 } else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) { 369 /* uSDHC capability register is little bit different */ 370 caps = HREAD4(hp, SDHC_CAPABILITIES); 371 caps |= SDHC_8BIT_SUPP; 372 if (caps & SDHC_ADMA1_SUPP) 373 caps |= SDHC_ADMA2_SUPP; 374 sc->sc_caps = caps; 375 /* uSDHC has no SDHC_CAPABILITIES2 register */ 376 caps2 = sc->sc_caps2 = SDHC_SDR50_SUPP | SDHC_DDR50_SUPP; 377 } else { 378 caps = sc->sc_caps = HREAD4(hp, SDHC_CAPABILITIES); 379 if (hp->specver >= SDHC_SPEC_VERS_300) { 380 caps2 = sc->sc_caps2 = HREAD4(hp, SDHC_CAPABILITIES2); 381 } else { 382 caps2 = sc->sc_caps2 = 0; 383 } 384 } 385 386 const u_int retuning_mode = (caps2 >> SDHC_RETUNING_MODES_SHIFT) & 387 SDHC_RETUNING_MODES_MASK; 388 if (retuning_mode == SDHC_RETUNING_MODE_1) { 389 hp->tuning_timer_count = (caps2 >> SDHC_TIMER_COUNT_SHIFT) & 390 SDHC_TIMER_COUNT_MASK; 391 if (hp->tuning_timer_count == 0xf) 392 hp->tuning_timer_count = 0; 393 if (hp->tuning_timer_count) 394 hp->tuning_timer_count = 395 1 << (hp->tuning_timer_count - 1); 396 } 397 398 /* 399 * Use DMA if the host system and the controller support it. 400 * Suports integrated or external DMA egine, with or without 401 * SDHC_DMA_ENABLE in the command. 402 */ 403 if (ISSET(sc->sc_flags, SDHC_FLAG_FORCE_DMA) || 404 (ISSET(sc->sc_flags, SDHC_FLAG_USE_DMA && 405 ISSET(caps, SDHC_DMA_SUPPORT)))) { 406 SET(hp->flags, SHF_USE_DMA); 407 408 if (ISSET(sc->sc_flags, SDHC_FLAG_USE_ADMA2) && 409 ISSET(caps, SDHC_ADMA2_SUPP)) { 410 SET(hp->flags, SHF_MODE_DMAEN); 411 /* 412 * 64-bit mode was present in the 2.00 spec, removed 413 * from 3.00, and re-added in 4.00 with a different 414 * descriptor layout. We only support 2.00 and 3.00 415 * descriptors for now. 416 */ 417 if (hp->specver == SDHC_SPEC_VERS_200 && 418 ISSET(caps, SDHC_64BIT_SYS_BUS)) { 419 SET(hp->flags, SHF_USE_ADMA2_64); 420 aprint_normal(", 64-bit ADMA2"); 421 } else { 422 SET(hp->flags, SHF_USE_ADMA2_32); 423 aprint_normal(", 32-bit ADMA2"); 424 } 425 } else { 426 if (!ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA) || 427 ISSET(sc->sc_flags, SDHC_FLAG_EXTDMA_DMAEN)) 428 SET(hp->flags, SHF_MODE_DMAEN); 429 if (sc->sc_vendor_transfer_data_dma) { 430 aprint_normal(", platform DMA"); 431 } else { 432 aprint_normal(", SDMA"); 433 } 434 } 435 } else { 436 aprint_normal(", PIO"); 437 } 438 439 /* 440 * Determine the base clock frequency. (2.2.24) 441 */ 442 if (hp->specver >= SDHC_SPEC_VERS_300) { 443 hp->clkbase = SDHC_BASE_V3_FREQ_KHZ(caps); 444 } else { 445 hp->clkbase = SDHC_BASE_FREQ_KHZ(caps); 446 } 447 if (hp->clkbase == 0 || 448 ISSET(sc->sc_flags, SDHC_FLAG_NO_CLKBASE)) { 449 if (sc->sc_clkbase == 0) { 450 /* The attachment driver must tell us. */ 451 aprint_error_dev(sc->sc_dev, 452 "unknown base clock frequency\n"); 453 goto err; 454 } 455 hp->clkbase = sc->sc_clkbase; 456 } 457 if (hp->clkbase < 10000 || hp->clkbase > 10000 * 256) { 458 /* SDHC 1.0 supports only 10-63 MHz. */ 459 aprint_error_dev(sc->sc_dev, 460 "base clock frequency out of range: %u MHz\n", 461 hp->clkbase / 1000); 462 goto err; 463 } 464 aprint_normal(", %u kHz", hp->clkbase); 465 466 /* 467 * XXX Set the data timeout counter value according to 468 * capabilities. (2.2.15) 469 */ 470 HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX); 471 #if 1 472 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) 473 HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16); 474 #endif 475 476 if (ISSET(caps, SDHC_EMBEDDED_SLOT)) 477 aprint_normal(", embedded slot"); 478 479 /* 480 * Determine SD bus voltage levels supported by the controller. 481 */ 482 aprint_normal(","); 483 if (ISSET(caps, SDHC_HIGH_SPEED_SUPP)) { 484 SET(hp->ocr, MMC_OCR_HCS); 485 aprint_normal(" HS"); 486 } 487 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_1_8_V)) { 488 if (ISSET(caps2, SDHC_SDR50_SUPP)) { 489 SET(hp->ocr, MMC_OCR_S18A); 490 aprint_normal(" SDR50"); 491 } 492 if (ISSET(caps2, SDHC_DDR50_SUPP)) { 493 SET(hp->ocr, MMC_OCR_S18A); 494 aprint_normal(" DDR50"); 495 } 496 if (ISSET(caps2, SDHC_SDR104_SUPP)) { 497 SET(hp->ocr, MMC_OCR_S18A); 498 aprint_normal(" SDR104 HS200"); 499 } 500 if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V)) { 501 SET(hp->ocr, MMC_OCR_1_65V_1_95V); 502 aprint_normal(" 1.8V"); 503 } 504 } 505 if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V)) { 506 SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V); 507 aprint_normal(" 3.0V"); 508 } 509 if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V)) { 510 SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V); 511 aprint_normal(" 3.3V"); 512 } 513 if (hp->specver >= SDHC_SPEC_VERS_300) { 514 aprint_normal(", re-tuning mode %d", retuning_mode + 1); 515 if (hp->tuning_timer_count) 516 aprint_normal(" (%us timer)", hp->tuning_timer_count); 517 } 518 519 /* 520 * Determine the maximum block length supported by the host 521 * controller. (2.2.24) 522 */ 523 switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) { 524 case SDHC_MAX_BLK_LEN_512: 525 hp->maxblklen = 512; 526 break; 527 528 case SDHC_MAX_BLK_LEN_1024: 529 hp->maxblklen = 1024; 530 break; 531 532 case SDHC_MAX_BLK_LEN_2048: 533 hp->maxblklen = 2048; 534 break; 535 536 case SDHC_MAX_BLK_LEN_4096: 537 hp->maxblklen = 4096; 538 break; 539 540 default: 541 aprint_error_dev(sc->sc_dev, "max block length unknown\n"); 542 goto err; 543 } 544 aprint_normal(", %u byte blocks", hp->maxblklen); 545 aprint_normal("\n"); 546 547 if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) { 548 int rseg; 549 550 /* Allocate ADMA2 descriptor memory */ 551 error = bus_dmamem_alloc(sc->sc_dmat, PAGE_SIZE, PAGE_SIZE, 552 PAGE_SIZE, hp->adma_segs, 1, &rseg, BUS_DMA_WAITOK); 553 if (error) { 554 aprint_error_dev(sc->sc_dev, 555 "ADMA2 dmamem_alloc failed (%d)\n", error); 556 goto adma_done; 557 } 558 error = bus_dmamem_map(sc->sc_dmat, hp->adma_segs, rseg, 559 PAGE_SIZE, (void **)&hp->adma2, BUS_DMA_WAITOK); 560 if (error) { 561 aprint_error_dev(sc->sc_dev, 562 "ADMA2 dmamem_map failed (%d)\n", error); 563 goto adma_done; 564 } 565 error = bus_dmamap_create(sc->sc_dmat, PAGE_SIZE, 1, PAGE_SIZE, 566 0, BUS_DMA_WAITOK, &hp->adma_map); 567 if (error) { 568 aprint_error_dev(sc->sc_dev, 569 "ADMA2 dmamap_create failed (%d)\n", error); 570 goto adma_done; 571 } 572 error = bus_dmamap_load(sc->sc_dmat, hp->adma_map, 573 hp->adma2, PAGE_SIZE, NULL, 574 BUS_DMA_WAITOK|BUS_DMA_WRITE); 575 if (error) { 576 aprint_error_dev(sc->sc_dev, 577 "ADMA2 dmamap_load failed (%d)\n", error); 578 goto adma_done; 579 } 580 581 memset(hp->adma2, 0, PAGE_SIZE); 582 583 adma_done: 584 if (error) 585 CLR(hp->flags, SHF_USE_ADMA2_MASK); 586 } 587 588 /* 589 * Attach the generic SD/MMC bus driver. (The bus driver must 590 * not invoke any chipset functions before it is attached.) 591 */ 592 memset(&saa, 0, sizeof(saa)); 593 saa.saa_busname = "sdmmc"; 594 saa.saa_sct = &sdhc_functions; 595 saa.saa_sch = hp; 596 saa.saa_dmat = hp->dmat; 597 saa.saa_clkmax = hp->clkbase; 598 if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_CGM)) 599 saa.saa_clkmin = hp->clkbase / 256 / 2046; 600 else if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_DVS)) 601 saa.saa_clkmin = hp->clkbase / 256 / 16; 602 else if (hp->sc->sc_clkmsk != 0) 603 saa.saa_clkmin = hp->clkbase / (hp->sc->sc_clkmsk >> 604 (ffs(hp->sc->sc_clkmsk) - 1)); 605 else if (hp->specver >= SDHC_SPEC_VERS_300) 606 saa.saa_clkmin = hp->clkbase / 0x3ff; 607 else 608 saa.saa_clkmin = hp->clkbase / 256; 609 if (!ISSET(sc->sc_flags, SDHC_FLAG_NO_AUTO_STOP)) 610 saa.saa_caps |= SMC_CAPS_AUTO_STOP; 611 saa.saa_caps |= SMC_CAPS_4BIT_MODE; 612 if (ISSET(sc->sc_flags, SDHC_FLAG_8BIT_MODE)) 613 saa.saa_caps |= SMC_CAPS_8BIT_MODE; 614 if (ISSET(caps, SDHC_HIGH_SPEED_SUPP)) 615 saa.saa_caps |= SMC_CAPS_SD_HIGHSPEED; 616 if (ISSET(caps2, SDHC_SDR104_SUPP)) 617 saa.saa_caps |= SMC_CAPS_UHS_SDR104 | 618 SMC_CAPS_UHS_SDR50 | 619 SMC_CAPS_MMC_HS200; 620 if (ISSET(caps2, SDHC_SDR50_SUPP)) 621 saa.saa_caps |= SMC_CAPS_UHS_SDR50; 622 if (ISSET(caps2, SDHC_DDR50_SUPP)) 623 saa.saa_caps |= SMC_CAPS_UHS_DDR50; 624 if (ISSET(hp->flags, SHF_USE_DMA)) { 625 saa.saa_caps |= SMC_CAPS_DMA; 626 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) 627 saa.saa_caps |= SMC_CAPS_MULTI_SEG_DMA; 628 } 629 if (ISSET(sc->sc_flags, SDHC_FLAG_SINGLE_ONLY)) 630 saa.saa_caps |= SMC_CAPS_SINGLE_ONLY; 631 if (ISSET(sc->sc_flags, SDHC_FLAG_POLL_CARD_DET)) 632 saa.saa_caps |= SMC_CAPS_POLL_CARD_DET; 633 634 if (ISSET(sc->sc_flags, SDHC_FLAG_BROKEN_ADMA2_ZEROLEN)) 635 saa.saa_max_seg = 65535; 636 637 hp->sdmmc = config_found(sc->sc_dev, &saa, sdhc_cfprint); 638 639 return 0; 640 641 err: 642 callout_destroy(&hp->tuning_timer); 643 cv_destroy(&hp->intr_cv); 644 mutex_destroy(&hp->intr_lock); 645 free(hp, M_DEVBUF); 646 sc->sc_host[--sc->sc_nhosts] = NULL; 647 err1: 648 return 1; 649 } 650 651 int 652 sdhc_detach(struct sdhc_softc *sc, int flags) 653 { 654 struct sdhc_host *hp; 655 int rv = 0; 656 657 for (size_t n = 0; n < sc->sc_nhosts; n++) { 658 hp = sc->sc_host[n]; 659 if (hp == NULL) 660 continue; 661 if (hp->sdmmc != NULL) { 662 rv = config_detach(hp->sdmmc, flags); 663 if (rv) 664 break; 665 hp->sdmmc = NULL; 666 } 667 /* disable interrupts */ 668 if ((flags & DETACH_FORCE) == 0) { 669 mutex_enter(&hp->intr_lock); 670 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) { 671 HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0); 672 } else { 673 HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0); 674 } 675 sdhc_soft_reset(hp, SDHC_RESET_ALL); 676 mutex_exit(&hp->intr_lock); 677 } 678 callout_halt(&hp->tuning_timer, NULL); 679 callout_destroy(&hp->tuning_timer); 680 cv_destroy(&hp->intr_cv); 681 mutex_destroy(&hp->intr_lock); 682 if (hp->ios > 0) { 683 bus_space_unmap(hp->iot, hp->ioh, hp->ios); 684 hp->ios = 0; 685 } 686 if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) { 687 bus_dmamap_unload(sc->sc_dmat, hp->adma_map); 688 bus_dmamap_destroy(sc->sc_dmat, hp->adma_map); 689 bus_dmamem_unmap(sc->sc_dmat, hp->adma2, PAGE_SIZE); 690 bus_dmamem_free(sc->sc_dmat, hp->adma_segs, 1); 691 } 692 free(hp, M_DEVBUF); 693 sc->sc_host[n] = NULL; 694 } 695 696 return rv; 697 } 698 699 bool 700 sdhc_suspend(device_t dev, const pmf_qual_t *qual) 701 { 702 struct sdhc_softc *sc = device_private(dev); 703 struct sdhc_host *hp; 704 size_t i; 705 706 /* XXX poll for command completion or suspend command 707 * in progress */ 708 709 /* Save the host controller state. */ 710 for (size_t n = 0; n < sc->sc_nhosts; n++) { 711 hp = sc->sc_host[n]; 712 if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) { 713 for (i = 0; i < sizeof hp->regs; i += 4) { 714 uint32_t v = HREAD4(hp, i); 715 hp->regs[i + 0] = (v >> 0); 716 hp->regs[i + 1] = (v >> 8); 717 if (i + 3 < sizeof hp->regs) { 718 hp->regs[i + 2] = (v >> 16); 719 hp->regs[i + 3] = (v >> 24); 720 } 721 } 722 } else { 723 for (i = 0; i < sizeof hp->regs; i++) { 724 hp->regs[i] = HREAD1(hp, i); 725 } 726 } 727 } 728 return true; 729 } 730 731 bool 732 sdhc_resume(device_t dev, const pmf_qual_t *qual) 733 { 734 struct sdhc_softc *sc = device_private(dev); 735 struct sdhc_host *hp; 736 size_t i; 737 738 /* Restore the host controller state. */ 739 for (size_t n = 0; n < sc->sc_nhosts; n++) { 740 hp = sc->sc_host[n]; 741 (void)sdhc_host_reset(hp); 742 if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) { 743 for (i = 0; i < sizeof hp->regs; i += 4) { 744 if (i + 3 < sizeof hp->regs) { 745 HWRITE4(hp, i, 746 (hp->regs[i + 0] << 0) 747 | (hp->regs[i + 1] << 8) 748 | (hp->regs[i + 2] << 16) 749 | (hp->regs[i + 3] << 24)); 750 } else { 751 HWRITE4(hp, i, 752 (hp->regs[i + 0] << 0) 753 | (hp->regs[i + 1] << 8)); 754 } 755 } 756 } else { 757 for (i = 0; i < sizeof hp->regs; i++) { 758 HWRITE1(hp, i, hp->regs[i]); 759 } 760 } 761 } 762 return true; 763 } 764 765 bool 766 sdhc_shutdown(device_t dev, int flags) 767 { 768 struct sdhc_softc *sc = device_private(dev); 769 struct sdhc_host *hp; 770 771 /* XXX chip locks up if we don't disable it before reboot. */ 772 for (size_t i = 0; i < sc->sc_nhosts; i++) { 773 hp = sc->sc_host[i]; 774 (void)sdhc_host_reset(hp); 775 } 776 return true; 777 } 778 779 /* 780 * Reset the host controller. Called during initialization, when 781 * cards are removed, upon resume, and during error recovery. 782 */ 783 static int 784 sdhc_host_reset1(sdmmc_chipset_handle_t sch) 785 { 786 struct sdhc_host *hp = (struct sdhc_host *)sch; 787 uint32_t sdhcimask; 788 int error; 789 790 KASSERT(mutex_owned(&hp->intr_lock)); 791 792 /* Disable all interrupts. */ 793 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) { 794 HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0); 795 } else { 796 HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0); 797 } 798 799 /* Let sdhc_bus_power restore power */ 800 hp->vdd = 0; 801 802 /* 803 * Reset the entire host controller and wait up to 100ms for 804 * the controller to clear the reset bit. 805 */ 806 error = sdhc_soft_reset(hp, SDHC_RESET_ALL); 807 if (error) 808 goto out; 809 810 /* Set data timeout counter value to max for now. */ 811 HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX); 812 #if 1 813 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) 814 HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16); 815 #endif 816 817 /* Enable interrupts. */ 818 sdhcimask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION | 819 SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY | 820 SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT | 821 SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE; 822 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) { 823 sdhcimask |= SDHC_EINTR_STATUS_MASK << 16; 824 HWRITE4(hp, SDHC_NINTR_STATUS_EN, sdhcimask); 825 sdhcimask ^= 826 (SDHC_EINTR_STATUS_MASK ^ SDHC_EINTR_SIGNAL_MASK) << 16; 827 sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY; 828 HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask); 829 } else { 830 HWRITE2(hp, SDHC_NINTR_STATUS_EN, sdhcimask); 831 HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK); 832 sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY; 833 HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask); 834 HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK); 835 } 836 837 out: 838 return error; 839 } 840 841 static int 842 sdhc_host_reset(sdmmc_chipset_handle_t sch) 843 { 844 struct sdhc_host *hp = (struct sdhc_host *)sch; 845 int error; 846 847 mutex_enter(&hp->intr_lock); 848 error = sdhc_host_reset1(sch); 849 mutex_exit(&hp->intr_lock); 850 851 return error; 852 } 853 854 static uint32_t 855 sdhc_host_ocr(sdmmc_chipset_handle_t sch) 856 { 857 struct sdhc_host *hp = (struct sdhc_host *)sch; 858 859 return hp->ocr; 860 } 861 862 static int 863 sdhc_host_maxblklen(sdmmc_chipset_handle_t sch) 864 { 865 struct sdhc_host *hp = (struct sdhc_host *)sch; 866 867 return hp->maxblklen; 868 } 869 870 /* 871 * Return non-zero if the card is currently inserted. 872 */ 873 static int 874 sdhc_card_detect(sdmmc_chipset_handle_t sch) 875 { 876 struct sdhc_host *hp = (struct sdhc_host *)sch; 877 int r; 878 879 if (hp->sc->sc_vendor_card_detect) 880 return (*hp->sc->sc_vendor_card_detect)(hp->sc); 881 882 r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED); 883 884 return r ? 1 : 0; 885 } 886 887 /* 888 * Return non-zero if the card is currently write-protected. 889 */ 890 static int 891 sdhc_write_protect(sdmmc_chipset_handle_t sch) 892 { 893 struct sdhc_host *hp = (struct sdhc_host *)sch; 894 int r; 895 896 if (hp->sc->sc_vendor_write_protect) 897 return (*hp->sc->sc_vendor_write_protect)(hp->sc); 898 899 r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_WRITE_PROTECT_SWITCH); 900 901 return r ? 0 : 1; 902 } 903 904 /* 905 * Set or change SD bus voltage and enable or disable SD bus power. 906 * Return zero on success. 907 */ 908 static int 909 sdhc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr) 910 { 911 struct sdhc_host *hp = (struct sdhc_host *)sch; 912 uint8_t vdd; 913 int error = 0; 914 const uint32_t pcmask = 915 ~(SDHC_BUS_POWER | (SDHC_VOLTAGE_MASK << SDHC_VOLTAGE_SHIFT)); 916 uint32_t reg; 917 918 mutex_enter(&hp->intr_lock); 919 920 /* 921 * Disable bus power before voltage change. 922 */ 923 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS) 924 && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_PWR0)) { 925 hp->vdd = 0; 926 HWRITE1(hp, SDHC_POWER_CTL, 0); 927 } 928 929 /* If power is disabled, reset the host and return now. */ 930 if (ocr == 0) { 931 (void)sdhc_host_reset1(hp); 932 callout_halt(&hp->tuning_timer, &hp->intr_lock); 933 goto out; 934 } 935 936 /* 937 * Select the lowest voltage according to capabilities. 938 */ 939 ocr &= hp->ocr; 940 if (ISSET(ocr, MMC_OCR_1_65V_1_95V)) { 941 vdd = SDHC_VOLTAGE_1_8V; 942 } else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V)) { 943 vdd = SDHC_VOLTAGE_3_0V; 944 } else if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V)) { 945 vdd = SDHC_VOLTAGE_3_3V; 946 } else { 947 /* Unsupported voltage level requested. */ 948 error = EINVAL; 949 goto out; 950 } 951 952 /* 953 * Did voltage change ? 954 */ 955 if (vdd == hp->vdd) 956 goto out; 957 958 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) { 959 /* 960 * Enable bus power. Wait at least 1 ms (or 74 clocks) plus 961 * voltage ramp until power rises. 962 */ 963 964 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_SINGLE_POWER_WRITE)) { 965 HWRITE1(hp, SDHC_POWER_CTL, 966 (vdd << SDHC_VOLTAGE_SHIFT) | SDHC_BUS_POWER); 967 } else { 968 reg = HREAD1(hp, SDHC_POWER_CTL) & pcmask; 969 HWRITE1(hp, SDHC_POWER_CTL, reg); 970 sdmmc_delay(1); 971 reg |= (vdd << SDHC_VOLTAGE_SHIFT); 972 HWRITE1(hp, SDHC_POWER_CTL, reg); 973 sdmmc_delay(1); 974 reg |= SDHC_BUS_POWER; 975 HWRITE1(hp, SDHC_POWER_CTL, reg); 976 sdmmc_delay(10000); 977 } 978 979 /* 980 * The host system may not power the bus due to battery low, 981 * etc. In that case, the host controller should clear the 982 * bus power bit. 983 */ 984 if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) { 985 error = ENXIO; 986 goto out; 987 } 988 } 989 990 /* power successfully changed */ 991 hp->vdd = vdd; 992 993 out: 994 mutex_exit(&hp->intr_lock); 995 996 return error; 997 } 998 999 /* 1000 * Return the smallest possible base clock frequency divisor value 1001 * for the CLOCK_CTL register to produce `freq' (KHz). 1002 */ 1003 static bool 1004 sdhc_clock_divisor(struct sdhc_host *hp, u_int freq, u_int *divp) 1005 { 1006 u_int div; 1007 1008 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_CGM)) { 1009 for (div = hp->clkbase / freq; div <= 0x3ff; div++) { 1010 if ((hp->clkbase / div) <= freq) { 1011 *divp = SDHC_SDCLK_CGM 1012 | ((div & 0x300) << SDHC_SDCLK_XDIV_SHIFT) 1013 | ((div & 0x0ff) << SDHC_SDCLK_DIV_SHIFT); 1014 //freq = hp->clkbase / div; 1015 return true; 1016 } 1017 } 1018 /* No divisor found. */ 1019 return false; 1020 } 1021 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_DVS)) { 1022 u_int dvs = (hp->clkbase + freq - 1) / freq; 1023 u_int roundup = dvs & 1; 1024 for (dvs >>= 1, div = 1; div <= 256; div <<= 1, dvs >>= 1) { 1025 if (dvs + roundup <= 16) { 1026 dvs += roundup - 1; 1027 *divp = (div << SDHC_SDCLK_DIV_SHIFT) 1028 | (dvs << SDHC_SDCLK_DVS_SHIFT); 1029 DPRINTF(2, 1030 ("%s: divisor for freq %u is %u * %u\n", 1031 HDEVNAME(hp), freq, div * 2, dvs + 1)); 1032 //freq = hp->clkbase / (div * 2) * (dvs + 1); 1033 return true; 1034 } 1035 /* 1036 * If we drop bits, we need to round up the divisor. 1037 */ 1038 roundup |= dvs & 1; 1039 } 1040 /* No divisor found. */ 1041 return false; 1042 } 1043 if (hp->sc->sc_clkmsk != 0) { 1044 div = howmany(hp->clkbase, freq); 1045 if (div > (hp->sc->sc_clkmsk >> (ffs(hp->sc->sc_clkmsk) - 1))) 1046 return false; 1047 *divp = div << (ffs(hp->sc->sc_clkmsk) - 1); 1048 //freq = hp->clkbase / div; 1049 return true; 1050 } 1051 if (hp->specver >= SDHC_SPEC_VERS_300) { 1052 div = howmany(hp->clkbase, freq); 1053 div = div > 1 ? howmany(div, 2) : 0; 1054 if (div > 0x3ff) 1055 return false; 1056 *divp = (((div >> 8) & SDHC_SDCLK_XDIV_MASK) 1057 << SDHC_SDCLK_XDIV_SHIFT) | 1058 (((div >> 0) & SDHC_SDCLK_DIV_MASK) 1059 << SDHC_SDCLK_DIV_SHIFT); 1060 //freq = hp->clkbase / (div ? div * 2 : 1); 1061 return true; 1062 } else { 1063 for (div = 1; div <= 256; div *= 2) { 1064 if ((hp->clkbase / div) <= freq) { 1065 *divp = (div / 2) << SDHC_SDCLK_DIV_SHIFT; 1066 //freq = hp->clkbase / div; 1067 return true; 1068 } 1069 } 1070 /* No divisor found. */ 1071 return false; 1072 } 1073 /* No divisor found. */ 1074 return false; 1075 } 1076 1077 /* 1078 * Set or change SDCLK frequency or disable the SD clock. 1079 * Return zero on success. 1080 */ 1081 static int 1082 sdhc_bus_clock_ddr(sdmmc_chipset_handle_t sch, int freq, bool ddr) 1083 { 1084 struct sdhc_host *hp = (struct sdhc_host *)sch; 1085 u_int div; 1086 u_int timo; 1087 int16_t reg; 1088 int error = 0; 1089 bool present __diagused; 1090 1091 mutex_enter(&hp->intr_lock); 1092 1093 #ifdef DIAGNOSTIC 1094 present = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK); 1095 1096 /* Must not stop the clock if commands are in progress. */ 1097 if (present && sdhc_card_detect(hp)) { 1098 aprint_normal_dev(hp->sc->sc_dev, 1099 "%s: command in progress\n", __func__); 1100 } 1101 #endif 1102 1103 if (hp->sc->sc_vendor_bus_clock) { 1104 error = (*hp->sc->sc_vendor_bus_clock)(hp->sc, freq); 1105 if (error != 0) 1106 goto out; 1107 } 1108 1109 /* 1110 * Stop SD clock before changing the frequency. 1111 */ 1112 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) { 1113 HCLR4(hp, SDHC_VEND_SPEC, 1114 SDHC_VEND_SPEC_CARD_CLK_SOFT_EN | 1115 SDHC_VEND_SPEC_FRC_SDCLK_ON); 1116 if (freq == SDMMC_SDCLK_OFF) { 1117 goto out; 1118 } 1119 } else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) { 1120 HCLR4(hp, SDHC_CLOCK_CTL, 0xfff8); 1121 if (freq == SDMMC_SDCLK_OFF) { 1122 HSET4(hp, SDHC_CLOCK_CTL, 0x80f0); 1123 goto out; 1124 } 1125 } else { 1126 HCLR2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE); 1127 if (freq == SDMMC_SDCLK_OFF) 1128 goto out; 1129 } 1130 1131 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) { 1132 if (ddr) 1133 HSET4(hp, SDHC_MIX_CTRL, SDHC_USDHC_DDR_EN); 1134 else 1135 HCLR4(hp, SDHC_MIX_CTRL, SDHC_USDHC_DDR_EN); 1136 } else if (hp->specver >= SDHC_SPEC_VERS_300) { 1137 HCLR2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_MASK); 1138 if (freq > 100000) { 1139 HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR104); 1140 } else if (freq > 50000) { 1141 if (ddr) { 1142 HSET2(hp, SDHC_HOST_CTL2, 1143 SDHC_UHS_MODE_SELECT_DDR50); 1144 } else { 1145 HSET2(hp, SDHC_HOST_CTL2, 1146 SDHC_UHS_MODE_SELECT_SDR50); 1147 } 1148 } else if (freq > 25000) { 1149 if (ddr) { 1150 HSET2(hp, SDHC_HOST_CTL2, 1151 SDHC_UHS_MODE_SELECT_DDR50); 1152 } else { 1153 HSET2(hp, SDHC_HOST_CTL2, 1154 SDHC_UHS_MODE_SELECT_SDR25); 1155 } 1156 } else if (freq > 400) { 1157 HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR12); 1158 } 1159 } 1160 1161 /* 1162 * Slow down Ricoh 5U823 controller that isn't reliable 1163 * at 100MHz bus clock. 1164 */ 1165 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_SLOW_SDR50)) { 1166 if (freq == 100000) 1167 --freq; 1168 } 1169 1170 /* 1171 * Set the minimum base clock frequency divisor. 1172 */ 1173 if (!sdhc_clock_divisor(hp, freq, &div)) { 1174 /* Invalid base clock frequency or `freq' value. */ 1175 aprint_error_dev(hp->sc->sc_dev, 1176 "Invalid bus clock %d kHz\n", freq); 1177 error = EINVAL; 1178 goto out; 1179 } 1180 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) { 1181 if (ddr) { 1182 /* in ddr mode, divisor >>= 1 */ 1183 div = ((div >> 1) & (SDHC_SDCLK_DIV_MASK << 1184 SDHC_SDCLK_DIV_SHIFT)) | 1185 (div & (SDHC_SDCLK_DVS_MASK << 1186 SDHC_SDCLK_DVS_SHIFT)); 1187 } 1188 for (timo = 1000; timo > 0; timo--) { 1189 if (ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_SDSTB)) 1190 break; 1191 sdmmc_delay(10); 1192 } 1193 HWRITE4(hp, SDHC_CLOCK_CTL, 1194 div | (SDHC_TIMEOUT_MAX << 16) | 0x0f); 1195 } else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) { 1196 HWRITE4(hp, SDHC_CLOCK_CTL, 1197 div | (SDHC_TIMEOUT_MAX << 16)); 1198 } else { 1199 reg = HREAD2(hp, SDHC_CLOCK_CTL); 1200 reg &= (SDHC_INTCLK_STABLE | SDHC_INTCLK_ENABLE); 1201 HWRITE2(hp, SDHC_CLOCK_CTL, reg | div); 1202 } 1203 1204 /* 1205 * Start internal clock. Wait 10ms for stabilization. 1206 */ 1207 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) { 1208 HSET4(hp, SDHC_VEND_SPEC, 1209 SDHC_VEND_SPEC_CARD_CLK_SOFT_EN | 1210 SDHC_VEND_SPEC_FRC_SDCLK_ON); 1211 } else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) { 1212 sdmmc_delay(10000); 1213 HSET4(hp, SDHC_CLOCK_CTL, 1214 8 | SDHC_INTCLK_ENABLE | SDHC_INTCLK_STABLE); 1215 } else { 1216 HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE); 1217 for (timo = 1000; timo > 0; timo--) { 1218 if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL), 1219 SDHC_INTCLK_STABLE)) 1220 break; 1221 sdmmc_delay(10); 1222 } 1223 if (timo == 0) { 1224 error = ETIMEDOUT; 1225 DPRINTF(1,("%s: timeout\n", __func__)); 1226 goto out; 1227 } 1228 } 1229 1230 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) { 1231 HSET1(hp, SDHC_SOFTWARE_RESET, SDHC_INIT_ACTIVE); 1232 /* 1233 * Sending 80 clocks at 400kHz takes 200us. 1234 * So delay for that time + slop and then 1235 * check a few times for completion. 1236 */ 1237 sdmmc_delay(210); 1238 for (timo = 10; timo > 0; timo--) { 1239 if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), 1240 SDHC_INIT_ACTIVE)) 1241 break; 1242 sdmmc_delay(10); 1243 } 1244 DPRINTF(2,("%s: %u init spins\n", __func__, 10 - timo)); 1245 1246 /* 1247 * Enable SD clock. 1248 */ 1249 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) { 1250 HSET4(hp, SDHC_VEND_SPEC, 1251 SDHC_VEND_SPEC_CARD_CLK_SOFT_EN | 1252 SDHC_VEND_SPEC_FRC_SDCLK_ON); 1253 } else { 1254 HSET4(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE); 1255 } 1256 } else { 1257 /* 1258 * Enable SD clock. 1259 */ 1260 HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE); 1261 1262 if (freq > 25000 && 1263 !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_HS_BIT)) 1264 HSET1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED); 1265 else 1266 HCLR1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED); 1267 } 1268 1269 if (hp->sc->sc_vendor_bus_clock_post) { 1270 error = (*hp->sc->sc_vendor_bus_clock_post)(hp->sc, freq); 1271 if (error != 0) 1272 goto out; 1273 } 1274 1275 out: 1276 mutex_exit(&hp->intr_lock); 1277 1278 return error; 1279 } 1280 1281 static int 1282 sdhc_bus_width(sdmmc_chipset_handle_t sch, int width) 1283 { 1284 struct sdhc_host *hp = (struct sdhc_host *)sch; 1285 int reg; 1286 1287 switch (width) { 1288 case 1: 1289 case 4: 1290 break; 1291 1292 case 8: 1293 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_8BIT_MODE)) 1294 break; 1295 /* FALLTHROUGH */ 1296 default: 1297 DPRINTF(0,("%s: unsupported bus width (%d)\n", 1298 HDEVNAME(hp), width)); 1299 return 1; 1300 } 1301 1302 if (hp->sc->sc_vendor_bus_width) { 1303 const int error = hp->sc->sc_vendor_bus_width(hp->sc, width); 1304 if (error != 0) 1305 return error; 1306 } 1307 1308 mutex_enter(&hp->intr_lock); 1309 1310 reg = HREAD1(hp, SDHC_HOST_CTL); 1311 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) { 1312 reg &= ~(SDHC_4BIT_MODE|SDHC_ESDHC_8BIT_MODE); 1313 if (width == 4) 1314 reg |= SDHC_4BIT_MODE; 1315 else if (width == 8) 1316 reg |= SDHC_ESDHC_8BIT_MODE; 1317 } else { 1318 reg &= ~SDHC_4BIT_MODE; 1319 if (hp->specver >= SDHC_SPEC_VERS_300) { 1320 reg &= ~SDHC_8BIT_MODE; 1321 } 1322 if (width == 4) { 1323 reg |= SDHC_4BIT_MODE; 1324 } else if (width == 8 && hp->specver >= SDHC_SPEC_VERS_300) { 1325 reg |= SDHC_8BIT_MODE; 1326 } 1327 } 1328 HWRITE1(hp, SDHC_HOST_CTL, reg); 1329 1330 mutex_exit(&hp->intr_lock); 1331 1332 return 0; 1333 } 1334 1335 static int 1336 sdhc_bus_rod(sdmmc_chipset_handle_t sch, int on) 1337 { 1338 struct sdhc_host *hp = (struct sdhc_host *)sch; 1339 1340 if (hp->sc->sc_vendor_rod) 1341 return (*hp->sc->sc_vendor_rod)(hp->sc, on); 1342 1343 return 0; 1344 } 1345 1346 static void 1347 sdhc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable) 1348 { 1349 struct sdhc_host *hp = (struct sdhc_host *)sch; 1350 1351 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) { 1352 mutex_enter(&hp->intr_lock); 1353 if (enable) { 1354 HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT); 1355 HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT); 1356 } else { 1357 HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT); 1358 HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT); 1359 } 1360 mutex_exit(&hp->intr_lock); 1361 } 1362 } 1363 1364 static void 1365 sdhc_card_intr_ack(sdmmc_chipset_handle_t sch) 1366 { 1367 struct sdhc_host *hp = (struct sdhc_host *)sch; 1368 1369 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) { 1370 mutex_enter(&hp->intr_lock); 1371 HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT); 1372 mutex_exit(&hp->intr_lock); 1373 } 1374 } 1375 1376 static int 1377 sdhc_signal_voltage(sdmmc_chipset_handle_t sch, int signal_voltage) 1378 { 1379 struct sdhc_host *hp = (struct sdhc_host *)sch; 1380 int error = 0; 1381 1382 if (hp->specver < SDHC_SPEC_VERS_300) 1383 return EINVAL; 1384 1385 mutex_enter(&hp->intr_lock); 1386 switch (signal_voltage) { 1387 case SDMMC_SIGNAL_VOLTAGE_180: 1388 if (hp->sc->sc_vendor_signal_voltage != NULL) { 1389 error = hp->sc->sc_vendor_signal_voltage(hp->sc, 1390 signal_voltage); 1391 if (error != 0) 1392 break; 1393 } 1394 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) 1395 HSET2(hp, SDHC_HOST_CTL2, SDHC_1_8V_SIGNAL_EN); 1396 break; 1397 case SDMMC_SIGNAL_VOLTAGE_330: 1398 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) 1399 HCLR2(hp, SDHC_HOST_CTL2, SDHC_1_8V_SIGNAL_EN); 1400 if (hp->sc->sc_vendor_signal_voltage != NULL) { 1401 error = hp->sc->sc_vendor_signal_voltage(hp->sc, 1402 signal_voltage); 1403 if (error != 0) 1404 break; 1405 } 1406 break; 1407 default: 1408 error = EINVAL; 1409 break; 1410 } 1411 mutex_exit(&hp->intr_lock); 1412 1413 return error; 1414 } 1415 1416 /* 1417 * Sampling clock tuning procedure (UHS) 1418 */ 1419 static int 1420 sdhc_execute_tuning1(struct sdhc_host *hp, int timing) 1421 { 1422 struct sdmmc_command cmd; 1423 uint8_t hostctl; 1424 int opcode, error, retry = 40; 1425 1426 KASSERT(mutex_owned(&hp->intr_lock)); 1427 1428 hp->tuning_timing = timing; 1429 1430 switch (timing) { 1431 case SDMMC_TIMING_MMC_HS200: 1432 opcode = MMC_SEND_TUNING_BLOCK_HS200; 1433 break; 1434 case SDMMC_TIMING_UHS_SDR50: 1435 if (!ISSET(hp->sc->sc_caps2, SDHC_TUNING_SDR50)) 1436 return 0; 1437 /* FALLTHROUGH */ 1438 case SDMMC_TIMING_UHS_SDR104: 1439 opcode = MMC_SEND_TUNING_BLOCK; 1440 break; 1441 default: 1442 return EINVAL; 1443 } 1444 1445 hostctl = HREAD1(hp, SDHC_HOST_CTL); 1446 1447 /* enable buffer read ready interrupt */ 1448 HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_BUFFER_READ_READY); 1449 HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_BUFFER_READ_READY); 1450 1451 /* disable DMA */ 1452 HCLR1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT); 1453 1454 /* reset tuning circuit */ 1455 HCLR2(hp, SDHC_HOST_CTL2, SDHC_SAMPLING_CLOCK_SEL); 1456 1457 /* start of tuning */ 1458 HWRITE2(hp, SDHC_HOST_CTL2, SDHC_EXECUTE_TUNING); 1459 1460 do { 1461 memset(&cmd, 0, sizeof(cmd)); 1462 cmd.c_opcode = opcode; 1463 cmd.c_arg = 0; 1464 cmd.c_flags = SCF_CMD_ADTC | SCF_CMD_READ | SCF_RSP_R1; 1465 if (ISSET(hostctl, SDHC_8BIT_MODE)) { 1466 cmd.c_blklen = cmd.c_datalen = 128; 1467 } else { 1468 cmd.c_blklen = cmd.c_datalen = 64; 1469 } 1470 1471 error = sdhc_start_command(hp, &cmd); 1472 if (error) 1473 break; 1474 1475 if (!sdhc_wait_intr(hp, SDHC_BUFFER_READ_READY, 1476 SDHC_TUNING_TIMEOUT, false)) { 1477 break; 1478 } 1479 1480 delay(1000); 1481 } while (HREAD2(hp, SDHC_HOST_CTL2) & SDHC_EXECUTE_TUNING && --retry); 1482 1483 /* disable buffer read ready interrupt */ 1484 HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_BUFFER_READ_READY); 1485 HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_BUFFER_READ_READY); 1486 1487 if (HREAD2(hp, SDHC_HOST_CTL2) & SDHC_EXECUTE_TUNING) { 1488 HCLR2(hp, SDHC_HOST_CTL2, 1489 SDHC_SAMPLING_CLOCK_SEL|SDHC_EXECUTE_TUNING); 1490 sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD); 1491 aprint_error_dev(hp->sc->sc_dev, 1492 "tuning did not complete, using fixed sampling clock\n"); 1493 return 0; /* tuning did not complete */ 1494 } 1495 1496 if ((HREAD2(hp, SDHC_HOST_CTL2) & SDHC_SAMPLING_CLOCK_SEL) == 0) { 1497 HCLR2(hp, SDHC_HOST_CTL2, 1498 SDHC_SAMPLING_CLOCK_SEL|SDHC_EXECUTE_TUNING); 1499 sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD); 1500 aprint_error_dev(hp->sc->sc_dev, 1501 "tuning failed, using fixed sampling clock\n"); 1502 return 0; /* tuning failed */ 1503 } 1504 1505 if (hp->tuning_timer_count) { 1506 callout_schedule(&hp->tuning_timer, 1507 hz * hp->tuning_timer_count); 1508 } 1509 1510 return 0; /* tuning completed */ 1511 } 1512 1513 static int 1514 sdhc_execute_tuning(sdmmc_chipset_handle_t sch, int timing) 1515 { 1516 struct sdhc_host *hp = (struct sdhc_host *)sch; 1517 int error; 1518 1519 mutex_enter(&hp->intr_lock); 1520 error = sdhc_execute_tuning1(hp, timing); 1521 mutex_exit(&hp->intr_lock); 1522 return error; 1523 } 1524 1525 static void 1526 sdhc_tuning_timer(void *arg) 1527 { 1528 struct sdhc_host *hp = arg; 1529 1530 atomic_swap_uint(&hp->tuning_timer_pending, 1); 1531 } 1532 1533 static void 1534 sdhc_hw_reset(sdmmc_chipset_handle_t sch) 1535 { 1536 struct sdhc_host *hp = (struct sdhc_host *)sch; 1537 struct sdhc_softc *sc = hp->sc; 1538 1539 if (sc->sc_vendor_hw_reset != NULL) 1540 sc->sc_vendor_hw_reset(sc, hp); 1541 } 1542 1543 static int 1544 sdhc_wait_state(struct sdhc_host *hp, uint32_t mask, uint32_t value) 1545 { 1546 uint32_t state; 1547 int timeout; 1548 1549 for (timeout = 100000; timeout > 0; timeout--) { 1550 if (((state = HREAD4(hp, SDHC_PRESENT_STATE)) & mask) == value) 1551 return 0; 1552 sdmmc_delay(10); 1553 } 1554 aprint_error_dev(hp->sc->sc_dev, "timeout waiting for mask %#x value %#x (state=%#x)\n", 1555 mask, value, state); 1556 return ETIMEDOUT; 1557 } 1558 1559 static void 1560 sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd) 1561 { 1562 struct sdhc_host *hp = (struct sdhc_host *)sch; 1563 int error; 1564 bool probing; 1565 1566 mutex_enter(&hp->intr_lock); 1567 1568 if (atomic_cas_uint(&hp->tuning_timer_pending, 1, 0) == 1) { 1569 (void)sdhc_execute_tuning1(hp, hp->tuning_timing); 1570 } 1571 1572 if (cmd->c_data && 1573 ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) { 1574 const uint16_t ready = SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY; 1575 if (ISSET(hp->flags, SHF_USE_DMA)) { 1576 HCLR2(hp, SDHC_NINTR_SIGNAL_EN, ready); 1577 HCLR2(hp, SDHC_NINTR_STATUS_EN, ready); 1578 } else { 1579 HSET2(hp, SDHC_NINTR_SIGNAL_EN, ready); 1580 HSET2(hp, SDHC_NINTR_STATUS_EN, ready); 1581 } 1582 } 1583 1584 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_TIMEOUT)) { 1585 const uint16_t eintr = SDHC_CMD_TIMEOUT_ERROR; 1586 if (cmd->c_data != NULL) { 1587 HCLR2(hp, SDHC_EINTR_SIGNAL_EN, eintr); 1588 HCLR2(hp, SDHC_EINTR_STATUS_EN, eintr); 1589 } else { 1590 HSET2(hp, SDHC_EINTR_SIGNAL_EN, eintr); 1591 HSET2(hp, SDHC_EINTR_STATUS_EN, eintr); 1592 } 1593 } 1594 1595 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_STOP_WITH_TC)) { 1596 if (cmd->c_opcode == MMC_STOP_TRANSMISSION) 1597 SET(cmd->c_flags, SCF_RSP_BSY); 1598 } 1599 1600 /* 1601 * Start the MMC command, or mark `cmd' as failed and return. 1602 */ 1603 error = sdhc_start_command(hp, cmd); 1604 if (error) { 1605 cmd->c_error = error; 1606 goto out; 1607 } 1608 1609 /* 1610 * Wait until the command phase is done, or until the command 1611 * is marked done for any other reason. 1612 */ 1613 probing = (cmd->c_flags & SCF_TOUT_OK) != 0; 1614 if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE, SDHC_COMMAND_TIMEOUT*3, probing)) { 1615 DPRINTF(1,("%s: timeout for command\n", __func__)); 1616 sdmmc_delay(50); 1617 cmd->c_error = ETIMEDOUT; 1618 goto out; 1619 } 1620 1621 /* 1622 * The host controller removes bits [0:7] from the response 1623 * data (CRC) and we pass the data up unchanged to the bus 1624 * driver (without padding). 1625 */ 1626 if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) { 1627 cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE + 0); 1628 if (ISSET(cmd->c_flags, SCF_RSP_136)) { 1629 cmd->c_resp[1] = HREAD4(hp, SDHC_RESPONSE + 4); 1630 cmd->c_resp[2] = HREAD4(hp, SDHC_RESPONSE + 8); 1631 cmd->c_resp[3] = HREAD4(hp, SDHC_RESPONSE + 12); 1632 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_RSP136_CRC)) { 1633 cmd->c_resp[0] = (cmd->c_resp[0] >> 8) | 1634 (cmd->c_resp[1] << 24); 1635 cmd->c_resp[1] = (cmd->c_resp[1] >> 8) | 1636 (cmd->c_resp[2] << 24); 1637 cmd->c_resp[2] = (cmd->c_resp[2] >> 8) | 1638 (cmd->c_resp[3] << 24); 1639 cmd->c_resp[3] = (cmd->c_resp[3] >> 8); 1640 } 1641 } 1642 } 1643 DPRINTF(1,("%s: resp = %08x\n", HDEVNAME(hp), cmd->c_resp[0])); 1644 1645 /* 1646 * If the command has data to transfer in any direction, 1647 * execute the transfer now. 1648 */ 1649 if (cmd->c_error == 0 && cmd->c_data != NULL) 1650 sdhc_transfer_data(hp, cmd); 1651 else if (ISSET(cmd->c_flags, SCF_RSP_BSY)) { 1652 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_BUSY_INTR) && 1653 !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE, hz * 10, false)) { 1654 DPRINTF(1,("%s: sdhc_exec_command: RSP_BSY\n", 1655 HDEVNAME(hp))); 1656 cmd->c_error = ETIMEDOUT; 1657 goto out; 1658 } 1659 } 1660 1661 out: 1662 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED) 1663 && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_LED_ON)) { 1664 /* Turn off the LED. */ 1665 HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON); 1666 } 1667 SET(cmd->c_flags, SCF_ITSDONE); 1668 1669 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_AUTO_STOP) && 1670 cmd->c_opcode == MMC_STOP_TRANSMISSION) 1671 (void)sdhc_soft_reset(hp, SDHC_RESET_CMD|SDHC_RESET_DAT); 1672 1673 mutex_exit(&hp->intr_lock); 1674 1675 DPRINTF(1,("%s: cmd %d %s (flags=%08x error=%d)\n", HDEVNAME(hp), 1676 cmd->c_opcode, (cmd->c_error == 0) ? "done" : "abort", 1677 cmd->c_flags, cmd->c_error)); 1678 } 1679 1680 static int 1681 sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd) 1682 { 1683 struct sdhc_softc * const sc = hp->sc; 1684 uint16_t blksize = 0; 1685 uint16_t blkcount = 0; 1686 uint16_t mode; 1687 uint16_t command; 1688 uint32_t pmask; 1689 int error; 1690 1691 KASSERT(mutex_owned(&hp->intr_lock)); 1692 1693 DPRINTF(1,("%s: start cmd %d arg=%08x data=%p dlen=%d flags=%08x, status=%#x\n", 1694 HDEVNAME(hp), cmd->c_opcode, cmd->c_arg, cmd->c_data, 1695 cmd->c_datalen, cmd->c_flags, HREAD4(hp, SDHC_NINTR_STATUS))); 1696 1697 /* 1698 * The maximum block length for commands should be the minimum 1699 * of the host buffer size and the card buffer size. (1.7.2) 1700 */ 1701 1702 /* Fragment the data into proper blocks. */ 1703 if (cmd->c_datalen > 0) { 1704 blksize = MIN(cmd->c_datalen, cmd->c_blklen); 1705 blkcount = cmd->c_datalen / blksize; 1706 if (cmd->c_datalen % blksize > 0) { 1707 /* XXX: Split this command. (1.7.4) */ 1708 aprint_error_dev(sc->sc_dev, 1709 "data not a multiple of %u bytes\n", blksize); 1710 return EINVAL; 1711 } 1712 } 1713 1714 /* Check limit imposed by 9-bit block count. (1.7.2) */ 1715 if (blkcount > SDHC_BLOCK_COUNT_MAX) { 1716 aprint_error_dev(sc->sc_dev, "too much data\n"); 1717 return EINVAL; 1718 } 1719 1720 /* Prepare transfer mode register value. (2.2.5) */ 1721 mode = SDHC_BLOCK_COUNT_ENABLE; 1722 if (ISSET(cmd->c_flags, SCF_CMD_READ)) 1723 mode |= SDHC_READ_MODE; 1724 if (blkcount > 1) { 1725 mode |= SDHC_MULTI_BLOCK_MODE; 1726 /* XXX only for memory commands? */ 1727 if (!ISSET(sc->sc_flags, SDHC_FLAG_NO_AUTO_STOP)) 1728 mode |= SDHC_AUTO_CMD12_ENABLE; 1729 } 1730 if (cmd->c_dmamap != NULL && cmd->c_datalen > 0 && 1731 ISSET(hp->flags, SHF_MODE_DMAEN)) { 1732 mode |= SDHC_DMA_ENABLE; 1733 } 1734 1735 /* 1736 * Prepare command register value. (2.2.6) 1737 */ 1738 command = (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) << SDHC_COMMAND_INDEX_SHIFT; 1739 1740 if (ISSET(cmd->c_flags, SCF_RSP_CRC)) 1741 command |= SDHC_CRC_CHECK_ENABLE; 1742 if (ISSET(cmd->c_flags, SCF_RSP_IDX)) 1743 command |= SDHC_INDEX_CHECK_ENABLE; 1744 if (cmd->c_datalen > 0) 1745 command |= SDHC_DATA_PRESENT_SELECT; 1746 1747 if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT)) 1748 command |= SDHC_NO_RESPONSE; 1749 else if (ISSET(cmd->c_flags, SCF_RSP_136)) 1750 command |= SDHC_RESP_LEN_136; 1751 else if (ISSET(cmd->c_flags, SCF_RSP_BSY)) 1752 command |= SDHC_RESP_LEN_48_CHK_BUSY; 1753 else 1754 command |= SDHC_RESP_LEN_48; 1755 1756 /* Wait until command and optionally data inhibit bits are clear. (1.5) */ 1757 pmask = SDHC_CMD_INHIBIT_CMD; 1758 if (cmd->c_flags & (SCF_CMD_ADTC|SCF_RSP_BSY)) 1759 pmask |= SDHC_CMD_INHIBIT_DAT; 1760 error = sdhc_wait_state(hp, pmask, 0); 1761 if (error) { 1762 (void) sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD); 1763 device_printf(sc->sc_dev, "command or data phase inhibited\n"); 1764 return error; 1765 } 1766 1767 DPRINTF(1,("%s: writing cmd: blksize=%d blkcnt=%d mode=%04x cmd=%04x\n", 1768 HDEVNAME(hp), blksize, blkcount, mode, command)); 1769 1770 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) { 1771 blksize |= (MAX(0, PAGE_SHIFT - 12) & SDHC_DMA_BOUNDARY_MASK) << 1772 SDHC_DMA_BOUNDARY_SHIFT; /* PAGE_SIZE DMA boundary */ 1773 } 1774 1775 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) { 1776 /* Alert the user not to remove the card. */ 1777 HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON); 1778 } 1779 1780 /* Set DMA start address. */ 1781 if (ISSET(hp->flags, SHF_USE_ADMA2_MASK) && cmd->c_data != NULL) { 1782 for (int seg = 0; seg < cmd->c_dmamap->dm_nsegs; seg++) { 1783 bus_addr_t paddr = 1784 cmd->c_dmamap->dm_segs[seg].ds_addr; 1785 uint16_t len = 1786 cmd->c_dmamap->dm_segs[seg].ds_len == 65536 ? 1787 0 : cmd->c_dmamap->dm_segs[seg].ds_len; 1788 uint16_t attr = 1789 SDHC_ADMA2_VALID | SDHC_ADMA2_ACT_TRANS; 1790 if (seg == cmd->c_dmamap->dm_nsegs - 1) { 1791 attr |= SDHC_ADMA2_END; 1792 } 1793 if (ISSET(hp->flags, SHF_USE_ADMA2_32)) { 1794 struct sdhc_adma2_descriptor32 *desc = 1795 hp->adma2; 1796 desc[seg].attribute = htole16(attr); 1797 desc[seg].length = htole16(len); 1798 desc[seg].address = htole32(paddr); 1799 } else { 1800 struct sdhc_adma2_descriptor64 *desc = 1801 hp->adma2; 1802 desc[seg].attribute = htole16(attr); 1803 desc[seg].length = htole16(len); 1804 desc[seg].address = htole32(paddr & 0xffffffff); 1805 desc[seg].address_hi = htole32( 1806 (uint64_t)paddr >> 32); 1807 } 1808 } 1809 if (ISSET(hp->flags, SHF_USE_ADMA2_32)) { 1810 struct sdhc_adma2_descriptor32 *desc = hp->adma2; 1811 desc[cmd->c_dmamap->dm_nsegs].attribute = htole16(0); 1812 } else { 1813 struct sdhc_adma2_descriptor64 *desc = hp->adma2; 1814 desc[cmd->c_dmamap->dm_nsegs].attribute = htole16(0); 1815 } 1816 bus_dmamap_sync(sc->sc_dmat, hp->adma_map, 0, PAGE_SIZE, 1817 BUS_DMASYNC_PREWRITE); 1818 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) { 1819 HCLR4(hp, SDHC_HOST_CTL, SDHC_USDHC_DMA_SELECT); 1820 HSET4(hp, SDHC_HOST_CTL, SDHC_USDHC_DMA_SELECT_ADMA2); 1821 } else { 1822 HCLR1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT); 1823 HSET1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT_ADMA2); 1824 } 1825 1826 const bus_addr_t desc_addr = hp->adma_map->dm_segs[0].ds_addr; 1827 1828 HWRITE4(hp, SDHC_ADMA_SYSTEM_ADDR, desc_addr & 0xffffffff); 1829 if (ISSET(hp->flags, SHF_USE_ADMA2_64)) { 1830 HWRITE4(hp, SDHC_ADMA_SYSTEM_ADDR + 4, 1831 (uint64_t)desc_addr >> 32); 1832 } 1833 } else if (ISSET(mode, SDHC_DMA_ENABLE) && 1834 !ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA)) { 1835 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) { 1836 HCLR4(hp, SDHC_HOST_CTL, SDHC_USDHC_DMA_SELECT); 1837 } 1838 HWRITE4(hp, SDHC_DMA_ADDR, cmd->c_dmamap->dm_segs[0].ds_addr); 1839 } 1840 1841 /* 1842 * Start a CPU data transfer. Writing to the high order byte 1843 * of the SDHC_COMMAND register triggers the SD command. (1.5) 1844 */ 1845 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) { 1846 HWRITE4(hp, SDHC_BLOCK_SIZE, blksize | (blkcount << 16)); 1847 HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg); 1848 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) { 1849 /* mode bits is in MIX_CTRL register on uSDHC */ 1850 HWRITE4(hp, SDHC_MIX_CTRL, mode | 1851 (HREAD4(hp, SDHC_MIX_CTRL) & ~SDHC_TRANSFER_MODE_MASK)); 1852 if (cmd->c_opcode == MMC_STOP_TRANSMISSION) 1853 command |= SDHC_COMMAND_TYPE_ABORT; 1854 HWRITE4(hp, SDHC_TRANSFER_MODE, command << 16); 1855 } else { 1856 HWRITE4(hp, SDHC_TRANSFER_MODE, mode | (command << 16)); 1857 } 1858 } else { 1859 HWRITE2(hp, SDHC_BLOCK_SIZE, blksize); 1860 HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount); 1861 HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg); 1862 HWRITE2(hp, SDHC_TRANSFER_MODE, mode); 1863 HWRITE2(hp, SDHC_COMMAND, command); 1864 } 1865 1866 return 0; 1867 } 1868 1869 static void 1870 sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd) 1871 { 1872 struct sdhc_softc *sc = hp->sc; 1873 int error; 1874 1875 KASSERT(mutex_owned(&hp->intr_lock)); 1876 1877 DPRINTF(1,("%s: data transfer: resp=%08x datalen=%u\n", HDEVNAME(hp), 1878 MMC_R1(cmd->c_resp), cmd->c_datalen)); 1879 1880 #ifdef SDHC_DEBUG 1881 /* XXX I forgot why I wanted to know when this happens :-( */ 1882 if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) && 1883 ISSET(MMC_R1(cmd->c_resp), 0xcb00)) { 1884 aprint_error_dev(hp->sc->sc_dev, 1885 "CMD52/53 error response flags %#x\n", 1886 MMC_R1(cmd->c_resp) & 0xff00); 1887 } 1888 #endif 1889 1890 if (cmd->c_dmamap != NULL) { 1891 if (hp->sc->sc_vendor_transfer_data_dma != NULL) { 1892 error = hp->sc->sc_vendor_transfer_data_dma(sc, cmd); 1893 if (error == 0 && !sdhc_wait_intr(hp, 1894 SDHC_TRANSFER_COMPLETE, SDHC_DMA_TIMEOUT, false)) { 1895 DPRINTF(1,("%s: timeout\n", __func__)); 1896 error = ETIMEDOUT; 1897 } 1898 } else { 1899 error = sdhc_transfer_data_dma(hp, cmd); 1900 } 1901 } else 1902 error = sdhc_transfer_data_pio(hp, cmd); 1903 if (error) 1904 cmd->c_error = error; 1905 SET(cmd->c_flags, SCF_ITSDONE); 1906 1907 DPRINTF(1,("%s: data transfer done (error=%d)\n", 1908 HDEVNAME(hp), cmd->c_error)); 1909 } 1910 1911 static int 1912 sdhc_transfer_data_dma(struct sdhc_host *hp, struct sdmmc_command *cmd) 1913 { 1914 bus_dma_segment_t *dm_segs = cmd->c_dmamap->dm_segs; 1915 bus_addr_t posaddr; 1916 bus_addr_t segaddr; 1917 bus_size_t seglen; 1918 u_int seg = 0; 1919 int error = 0; 1920 int status; 1921 1922 KASSERT(mutex_owned(&hp->intr_lock)); 1923 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_DMA_INTERRUPT); 1924 KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_DMA_INTERRUPT); 1925 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE); 1926 KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE); 1927 1928 for (;;) { 1929 status = sdhc_wait_intr(hp, 1930 SDHC_DMA_INTERRUPT|SDHC_TRANSFER_COMPLETE, 1931 SDHC_DMA_TIMEOUT, false); 1932 1933 if (status & SDHC_TRANSFER_COMPLETE) { 1934 break; 1935 } 1936 if (!status) { 1937 DPRINTF(1,("%s: timeout\n", __func__)); 1938 error = ETIMEDOUT; 1939 break; 1940 } 1941 1942 if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) { 1943 continue; 1944 } 1945 1946 if ((status & SDHC_DMA_INTERRUPT) == 0) { 1947 continue; 1948 } 1949 1950 /* DMA Interrupt (boundary crossing) */ 1951 1952 segaddr = dm_segs[seg].ds_addr; 1953 seglen = dm_segs[seg].ds_len; 1954 posaddr = HREAD4(hp, SDHC_DMA_ADDR); 1955 1956 if ((seg == (cmd->c_dmamap->dm_nsegs-1)) && (posaddr == (segaddr + seglen))) { 1957 continue; 1958 } 1959 if ((posaddr >= segaddr) && (posaddr < (segaddr + seglen))) 1960 HWRITE4(hp, SDHC_DMA_ADDR, posaddr); 1961 else if ((posaddr >= segaddr) && (posaddr == (segaddr + seglen)) && (seg + 1) < cmd->c_dmamap->dm_nsegs) 1962 HWRITE4(hp, SDHC_DMA_ADDR, dm_segs[++seg].ds_addr); 1963 KASSERT(seg < cmd->c_dmamap->dm_nsegs); 1964 } 1965 1966 if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) { 1967 bus_dmamap_sync(hp->sc->sc_dmat, hp->adma_map, 0, 1968 PAGE_SIZE, BUS_DMASYNC_POSTWRITE); 1969 } 1970 1971 return error; 1972 } 1973 1974 static int 1975 sdhc_transfer_data_pio(struct sdhc_host *hp, struct sdmmc_command *cmd) 1976 { 1977 uint8_t *data = cmd->c_data; 1978 void (*pio_func)(struct sdhc_host *, uint8_t *, u_int); 1979 u_int len, datalen; 1980 u_int imask; 1981 u_int pmask; 1982 int error = 0; 1983 1984 KASSERT(mutex_owned(&hp->intr_lock)); 1985 1986 if (ISSET(cmd->c_flags, SCF_CMD_READ)) { 1987 imask = SDHC_BUFFER_READ_READY; 1988 pmask = SDHC_BUFFER_READ_ENABLE; 1989 if (ISSET(hp->sc->sc_flags, 1990 SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) { 1991 pio_func = esdhc_read_data_pio; 1992 } else { 1993 pio_func = sdhc_read_data_pio; 1994 } 1995 } else { 1996 imask = SDHC_BUFFER_WRITE_READY; 1997 pmask = SDHC_BUFFER_WRITE_ENABLE; 1998 if (ISSET(hp->sc->sc_flags, 1999 SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) { 2000 pio_func = esdhc_write_data_pio; 2001 } else { 2002 pio_func = sdhc_write_data_pio; 2003 } 2004 } 2005 datalen = cmd->c_datalen; 2006 2007 KASSERT(mutex_owned(&hp->intr_lock)); 2008 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & imask); 2009 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE); 2010 KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE); 2011 2012 while (datalen > 0) { 2013 if (!ISSET(HREAD4(hp, SDHC_PRESENT_STATE), pmask)) { 2014 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) { 2015 HSET4(hp, SDHC_NINTR_SIGNAL_EN, imask); 2016 } else { 2017 HSET2(hp, SDHC_NINTR_SIGNAL_EN, imask); 2018 } 2019 if (!sdhc_wait_intr(hp, imask, SDHC_BUFFER_TIMEOUT, false)) { 2020 DPRINTF(1,("%s: timeout\n", __func__)); 2021 error = ETIMEDOUT; 2022 break; 2023 } 2024 2025 error = sdhc_wait_state(hp, pmask, pmask); 2026 if (error) 2027 break; 2028 } 2029 2030 len = MIN(datalen, cmd->c_blklen); 2031 (*pio_func)(hp, data, len); 2032 DPRINTF(2,("%s: pio data transfer %u @ %p\n", 2033 HDEVNAME(hp), len, data)); 2034 2035 data += len; 2036 datalen -= len; 2037 } 2038 2039 if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE, 2040 SDHC_TRANSFER_TIMEOUT, false)) { 2041 DPRINTF(1,("%s: timeout for transfer\n", __func__)); 2042 error = ETIMEDOUT; 2043 } 2044 2045 return error; 2046 } 2047 2048 static void 2049 sdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen) 2050 { 2051 2052 if (((__uintptr_t)data & 3) == 0) { 2053 while (datalen > 3) { 2054 *(uint32_t *)data = le32toh(HREAD4(hp, SDHC_DATA)); 2055 data += 4; 2056 datalen -= 4; 2057 } 2058 if (datalen > 1) { 2059 *(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA)); 2060 data += 2; 2061 datalen -= 2; 2062 } 2063 if (datalen > 0) { 2064 *data = HREAD1(hp, SDHC_DATA); 2065 data += 1; 2066 datalen -= 1; 2067 } 2068 } else if (((__uintptr_t)data & 1) == 0) { 2069 while (datalen > 1) { 2070 *(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA)); 2071 data += 2; 2072 datalen -= 2; 2073 } 2074 if (datalen > 0) { 2075 *data = HREAD1(hp, SDHC_DATA); 2076 data += 1; 2077 datalen -= 1; 2078 } 2079 } else { 2080 while (datalen > 0) { 2081 *data = HREAD1(hp, SDHC_DATA); 2082 data += 1; 2083 datalen -= 1; 2084 } 2085 } 2086 } 2087 2088 static void 2089 sdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen) 2090 { 2091 2092 if (((__uintptr_t)data & 3) == 0) { 2093 while (datalen > 3) { 2094 HWRITE4(hp, SDHC_DATA, htole32(*(uint32_t *)data)); 2095 data += 4; 2096 datalen -= 4; 2097 } 2098 if (datalen > 1) { 2099 HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data)); 2100 data += 2; 2101 datalen -= 2; 2102 } 2103 if (datalen > 0) { 2104 HWRITE1(hp, SDHC_DATA, *data); 2105 data += 1; 2106 datalen -= 1; 2107 } 2108 } else if (((__uintptr_t)data & 1) == 0) { 2109 while (datalen > 1) { 2110 HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data)); 2111 data += 2; 2112 datalen -= 2; 2113 } 2114 if (datalen > 0) { 2115 HWRITE1(hp, SDHC_DATA, *data); 2116 data += 1; 2117 datalen -= 1; 2118 } 2119 } else { 2120 while (datalen > 0) { 2121 HWRITE1(hp, SDHC_DATA, *data); 2122 data += 1; 2123 datalen -= 1; 2124 } 2125 } 2126 } 2127 2128 static void 2129 esdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen) 2130 { 2131 uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS); 2132 uint32_t v; 2133 2134 const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_READ_SHIFT) & SDHC_WATERMARK_READ_MASK; 2135 size_t count = 0; 2136 2137 while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) { 2138 if (count == 0) { 2139 /* 2140 * If we've drained "watermark" words, we need to wait 2141 * a little bit so the read FIFO can refill. 2142 */ 2143 sdmmc_delay(10); 2144 count = watermark; 2145 } 2146 v = HREAD4(hp, SDHC_DATA); 2147 v = le32toh(v); 2148 *(uint32_t *)data = v; 2149 data += 4; 2150 datalen -= 4; 2151 status = HREAD2(hp, SDHC_NINTR_STATUS); 2152 count--; 2153 } 2154 if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) { 2155 if (count == 0) { 2156 sdmmc_delay(10); 2157 } 2158 v = HREAD4(hp, SDHC_DATA); 2159 v = le32toh(v); 2160 do { 2161 *data++ = v; 2162 v >>= 8; 2163 } while (--datalen > 0); 2164 } 2165 } 2166 2167 static void 2168 esdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen) 2169 { 2170 uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS); 2171 uint32_t v; 2172 2173 const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_WRITE_SHIFT) & SDHC_WATERMARK_WRITE_MASK; 2174 size_t count = watermark; 2175 2176 while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) { 2177 if (count == 0) { 2178 sdmmc_delay(10); 2179 count = watermark; 2180 } 2181 v = *(uint32_t *)data; 2182 v = htole32(v); 2183 HWRITE4(hp, SDHC_DATA, v); 2184 data += 4; 2185 datalen -= 4; 2186 status = HREAD2(hp, SDHC_NINTR_STATUS); 2187 count--; 2188 } 2189 if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) { 2190 if (count == 0) { 2191 sdmmc_delay(10); 2192 } 2193 v = *(uint32_t *)data; 2194 v = htole32(v); 2195 HWRITE4(hp, SDHC_DATA, v); 2196 } 2197 } 2198 2199 /* Prepare for another command. */ 2200 static int 2201 sdhc_soft_reset(struct sdhc_host *hp, int mask) 2202 { 2203 int timo; 2204 2205 KASSERT(mutex_owned(&hp->intr_lock)); 2206 2207 DPRINTF(1,("%s: software reset reg=%08x\n", HDEVNAME(hp), mask)); 2208 2209 /* Request the reset. */ 2210 HWRITE1(hp, SDHC_SOFTWARE_RESET, mask); 2211 2212 /* 2213 * If necessary, wait for the controller to set the bits to 2214 * acknowledge the reset. 2215 */ 2216 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_WAIT_RESET) && 2217 ISSET(mask, (SDHC_RESET_DAT | SDHC_RESET_CMD))) { 2218 for (timo = 10000; timo > 0; timo--) { 2219 if (ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask)) 2220 break; 2221 /* Short delay because I worry we may miss it... */ 2222 sdmmc_delay(1); 2223 } 2224 if (timo == 0) { 2225 DPRINTF(1,("%s: timeout for reset on\n", __func__)); 2226 return ETIMEDOUT; 2227 } 2228 } 2229 2230 /* 2231 * Wait for the controller to clear the bits to indicate that 2232 * the reset has completed. 2233 */ 2234 for (timo = 10; timo > 0; timo--) { 2235 if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask)) 2236 break; 2237 sdmmc_delay(10000); 2238 } 2239 if (timo == 0) { 2240 DPRINTF(1,("%s: timeout reg=%08x\n", HDEVNAME(hp), 2241 HREAD1(hp, SDHC_SOFTWARE_RESET))); 2242 return ETIMEDOUT; 2243 } 2244 2245 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) { 2246 HSET4(hp, SDHC_DMA_CTL, SDHC_DMA_SNOOP); 2247 } 2248 2249 return 0; 2250 } 2251 2252 static int 2253 sdhc_wait_intr(struct sdhc_host *hp, int mask, int timo, bool probing) 2254 { 2255 int status, error, nointr; 2256 2257 KASSERT(mutex_owned(&hp->intr_lock)); 2258 2259 mask |= SDHC_ERROR_INTERRUPT; 2260 2261 nointr = 0; 2262 status = hp->intr_status & mask; 2263 while (status == 0) { 2264 if (cv_timedwait(&hp->intr_cv, &hp->intr_lock, timo) 2265 == EWOULDBLOCK) { 2266 nointr = 1; 2267 break; 2268 } 2269 status = hp->intr_status & mask; 2270 } 2271 error = hp->intr_error_status; 2272 2273 DPRINTF(2,("%s: intr status %#x error %#x\n", HDEVNAME(hp), status, 2274 error)); 2275 2276 hp->intr_status &= ~status; 2277 hp->intr_error_status &= ~error; 2278 2279 if (ISSET(status, SDHC_ERROR_INTERRUPT)) { 2280 if (ISSET(error, SDHC_DMA_ERROR)) 2281 device_printf(hp->sc->sc_dev,"dma error\n"); 2282 if (ISSET(error, SDHC_ADMA_ERROR)) 2283 device_printf(hp->sc->sc_dev,"adma error\n"); 2284 if (ISSET(error, SDHC_AUTO_CMD12_ERROR)) 2285 device_printf(hp->sc->sc_dev,"auto_cmd12 error\n"); 2286 if (ISSET(error, SDHC_CURRENT_LIMIT_ERROR)) 2287 device_printf(hp->sc->sc_dev,"current limit error\n"); 2288 if (ISSET(error, SDHC_DATA_END_BIT_ERROR)) 2289 device_printf(hp->sc->sc_dev,"data end bit error\n"); 2290 if (ISSET(error, SDHC_DATA_CRC_ERROR)) 2291 device_printf(hp->sc->sc_dev,"data crc error\n"); 2292 if (ISSET(error, SDHC_DATA_TIMEOUT_ERROR)) 2293 device_printf(hp->sc->sc_dev,"data timeout error\n"); 2294 if (ISSET(error, SDHC_CMD_INDEX_ERROR)) 2295 device_printf(hp->sc->sc_dev,"cmd index error\n"); 2296 if (ISSET(error, SDHC_CMD_END_BIT_ERROR)) 2297 device_printf(hp->sc->sc_dev,"cmd end bit error\n"); 2298 if (ISSET(error, SDHC_CMD_CRC_ERROR)) 2299 device_printf(hp->sc->sc_dev,"cmd crc error\n"); 2300 if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR)) { 2301 if (!probing) 2302 device_printf(hp->sc->sc_dev,"cmd timeout error\n"); 2303 #ifdef SDHC_DEBUG 2304 else if (sdhcdebug > 0) 2305 device_printf(hp->sc->sc_dev,"cmd timeout (expected)\n"); 2306 #endif 2307 } 2308 if ((error & ~SDHC_EINTR_STATUS_MASK) != 0) 2309 device_printf(hp->sc->sc_dev,"vendor error %#x\n", 2310 (error & ~SDHC_EINTR_STATUS_MASK)); 2311 if (error == 0) 2312 device_printf(hp->sc->sc_dev,"no error\n"); 2313 2314 /* Command timeout has higher priority than command complete. */ 2315 if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR)) 2316 CLR(status, SDHC_COMMAND_COMPLETE); 2317 2318 /* Transfer complete has higher priority than data timeout. */ 2319 if (ISSET(status, SDHC_TRANSFER_COMPLETE)) 2320 CLR(error, SDHC_DATA_TIMEOUT_ERROR); 2321 } 2322 2323 if (nointr || 2324 (ISSET(status, SDHC_ERROR_INTERRUPT) && error)) { 2325 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) 2326 (void)sdhc_soft_reset(hp, SDHC_RESET_CMD|SDHC_RESET_DAT); 2327 hp->intr_error_status = 0; 2328 status = 0; 2329 } 2330 2331 return status; 2332 } 2333 2334 /* 2335 * Established by attachment driver at interrupt priority IPL_SDMMC. 2336 */ 2337 int 2338 sdhc_intr(void *arg) 2339 { 2340 struct sdhc_softc *sc = (struct sdhc_softc *)arg; 2341 struct sdhc_host *hp; 2342 int done = 0; 2343 uint16_t status; 2344 uint16_t error; 2345 2346 /* We got an interrupt, but we don't know from which slot. */ 2347 for (size_t host = 0; host < sc->sc_nhosts; host++) { 2348 hp = sc->sc_host[host]; 2349 if (hp == NULL) 2350 continue; 2351 2352 mutex_enter(&hp->intr_lock); 2353 2354 if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) { 2355 /* Find out which interrupts are pending. */ 2356 uint32_t xstatus = HREAD4(hp, SDHC_NINTR_STATUS); 2357 status = xstatus; 2358 error = xstatus >> 16; 2359 if (ISSET(sc->sc_flags, SDHC_FLAG_USDHC) && 2360 (xstatus & SDHC_TRANSFER_COMPLETE) && 2361 !(xstatus & SDHC_DMA_INTERRUPT)) { 2362 /* read again due to uSDHC errata */ 2363 status = xstatus = HREAD4(hp, 2364 SDHC_NINTR_STATUS); 2365 error = xstatus >> 16; 2366 } 2367 if (ISSET(sc->sc_flags, 2368 SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) { 2369 if ((error & SDHC_NINTR_STATUS_MASK) != 0) 2370 SET(status, SDHC_ERROR_INTERRUPT); 2371 } 2372 if (error) 2373 xstatus |= SDHC_ERROR_INTERRUPT; 2374 else if (!ISSET(status, SDHC_NINTR_STATUS_MASK)) 2375 goto next_port; /* no interrupt for us */ 2376 /* Acknowledge the interrupts we are about to handle. */ 2377 HWRITE4(hp, SDHC_NINTR_STATUS, xstatus); 2378 } else { 2379 /* Find out which interrupts are pending. */ 2380 error = 0; 2381 status = HREAD2(hp, SDHC_NINTR_STATUS); 2382 if (!ISSET(status, SDHC_NINTR_STATUS_MASK)) 2383 goto next_port; /* no interrupt for us */ 2384 /* Acknowledge the interrupts we are about to handle. */ 2385 HWRITE2(hp, SDHC_NINTR_STATUS, status); 2386 if (ISSET(status, SDHC_ERROR_INTERRUPT)) { 2387 /* Acknowledge error interrupts. */ 2388 error = HREAD2(hp, SDHC_EINTR_STATUS); 2389 HWRITE2(hp, SDHC_EINTR_STATUS, error); 2390 } 2391 } 2392 2393 DPRINTF(2,("%s: interrupt status=%x error=%x\n", HDEVNAME(hp), 2394 status, error)); 2395 2396 /* Claim this interrupt. */ 2397 done = 1; 2398 2399 if (ISSET(status, SDHC_ERROR_INTERRUPT) && 2400 ISSET(error, SDHC_ADMA_ERROR)) { 2401 uint8_t adma_err = HREAD1(hp, SDHC_ADMA_ERROR_STATUS); 2402 printf("%s: ADMA error, status %02x\n", HDEVNAME(hp), 2403 adma_err); 2404 } 2405 2406 /* 2407 * Wake up the sdmmc event thread to scan for cards. 2408 */ 2409 if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)) { 2410 if (hp->sdmmc != NULL) { 2411 sdmmc_needs_discover(hp->sdmmc); 2412 } 2413 if (ISSET(sc->sc_flags, 2414 SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) { 2415 HCLR4(hp, SDHC_NINTR_STATUS_EN, 2416 status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)); 2417 HCLR4(hp, SDHC_NINTR_SIGNAL_EN, 2418 status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)); 2419 } 2420 } 2421 2422 /* 2423 * Schedule re-tuning process (UHS). 2424 */ 2425 if (ISSET(status, SDHC_RETUNING_EVENT)) { 2426 atomic_swap_uint(&hp->tuning_timer_pending, 1); 2427 } 2428 2429 /* 2430 * Wake up the blocking process to service command 2431 * related interrupt(s). 2432 */ 2433 if (ISSET(status, SDHC_COMMAND_COMPLETE|SDHC_ERROR_INTERRUPT| 2434 SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY| 2435 SDHC_TRANSFER_COMPLETE|SDHC_DMA_INTERRUPT)) { 2436 hp->intr_error_status |= error; 2437 hp->intr_status |= status; 2438 if (ISSET(sc->sc_flags, 2439 SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) { 2440 HCLR4(hp, SDHC_NINTR_SIGNAL_EN, 2441 status & (SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY)); 2442 } 2443 cv_broadcast(&hp->intr_cv); 2444 } 2445 2446 /* 2447 * Service SD card interrupts. 2448 */ 2449 if (!ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC) 2450 && ISSET(status, SDHC_CARD_INTERRUPT)) { 2451 DPRINTF(0,("%s: card interrupt\n", HDEVNAME(hp))); 2452 HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT); 2453 sdmmc_card_intr(hp->sdmmc); 2454 } 2455 next_port: 2456 mutex_exit(&hp->intr_lock); 2457 } 2458 2459 return done; 2460 } 2461 2462 kmutex_t * 2463 sdhc_host_lock(struct sdhc_host *hp) 2464 { 2465 return &hp->intr_lock; 2466 } 2467 2468 uint8_t 2469 sdhc_host_read_1(struct sdhc_host *hp, int reg) 2470 { 2471 return HREAD1(hp, reg); 2472 } 2473 2474 uint16_t 2475 sdhc_host_read_2(struct sdhc_host *hp, int reg) 2476 { 2477 return HREAD2(hp, reg); 2478 } 2479 2480 uint32_t 2481 sdhc_host_read_4(struct sdhc_host *hp, int reg) 2482 { 2483 return HREAD4(hp, reg); 2484 } 2485 2486 void 2487 sdhc_host_write_1(struct sdhc_host *hp, int reg, uint8_t val) 2488 { 2489 HWRITE1(hp, reg, val); 2490 } 2491 2492 void 2493 sdhc_host_write_2(struct sdhc_host *hp, int reg, uint16_t val) 2494 { 2495 HWRITE2(hp, reg, val); 2496 } 2497 2498 void 2499 sdhc_host_write_4(struct sdhc_host *hp, int reg, uint32_t val) 2500 { 2501 HWRITE4(hp, reg, val); 2502 } 2503 2504 #ifdef SDHC_DEBUG 2505 void 2506 sdhc_dump_regs(struct sdhc_host *hp) 2507 { 2508 2509 printf("0x%02x PRESENT_STATE: %x\n", SDHC_PRESENT_STATE, 2510 HREAD4(hp, SDHC_PRESENT_STATE)); 2511 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) 2512 printf("0x%02x POWER_CTL: %x\n", SDHC_POWER_CTL, 2513 HREAD1(hp, SDHC_POWER_CTL)); 2514 printf("0x%02x NINTR_STATUS: %x\n", SDHC_NINTR_STATUS, 2515 HREAD2(hp, SDHC_NINTR_STATUS)); 2516 printf("0x%02x EINTR_STATUS: %x\n", SDHC_EINTR_STATUS, 2517 HREAD2(hp, SDHC_EINTR_STATUS)); 2518 printf("0x%02x NINTR_STATUS_EN: %x\n", SDHC_NINTR_STATUS_EN, 2519 HREAD2(hp, SDHC_NINTR_STATUS_EN)); 2520 printf("0x%02x EINTR_STATUS_EN: %x\n", SDHC_EINTR_STATUS_EN, 2521 HREAD2(hp, SDHC_EINTR_STATUS_EN)); 2522 printf("0x%02x NINTR_SIGNAL_EN: %x\n", SDHC_NINTR_SIGNAL_EN, 2523 HREAD2(hp, SDHC_NINTR_SIGNAL_EN)); 2524 printf("0x%02x EINTR_SIGNAL_EN: %x\n", SDHC_EINTR_SIGNAL_EN, 2525 HREAD2(hp, SDHC_EINTR_SIGNAL_EN)); 2526 printf("0x%02x CAPABILITIES: %x\n", SDHC_CAPABILITIES, 2527 HREAD4(hp, SDHC_CAPABILITIES)); 2528 printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES, 2529 HREAD4(hp, SDHC_MAX_CAPABILITIES)); 2530 } 2531 #endif 2532