1 /* $NetBSD: sdhc.c,v 1.119 2024/05/09 01:33:13 dyoung Exp $ */ 2 /* $OpenBSD: sdhc.c,v 1.25 2009/01/13 19:44:20 grange Exp $ */ 3 4 /* 5 * Copyright (c) 2006 Uwe Stuehler <uwe@openbsd.org> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 /* 21 * SD Host Controller driver based on the SD Host Controller Standard 22 * Simplified Specification Version 1.00 (www.sdcard.com). 23 */ 24 25 #include <sys/cdefs.h> 26 __KERNEL_RCSID(0, "$NetBSD: sdhc.c,v 1.119 2024/05/09 01:33:13 dyoung Exp $"); 27 28 #ifdef _KERNEL_OPT 29 #include "opt_sdmmc.h" 30 #endif 31 32 #include <sys/param.h> 33 #include <sys/device.h> 34 #include <sys/kernel.h> 35 #include <sys/malloc.h> 36 #include <sys/systm.h> 37 #include <sys/mutex.h> 38 #include <sys/condvar.h> 39 #include <sys/atomic.h> 40 41 #include <dev/sdmmc/sdhcreg.h> 42 #include <dev/sdmmc/sdhcvar.h> 43 #include <dev/sdmmc/sdmmcchip.h> 44 #include <dev/sdmmc/sdmmcreg.h> 45 #include <dev/sdmmc/sdmmcvar.h> 46 47 #ifdef SDHC_DEBUG 48 int sdhcdebug = 1; 49 #define DPRINTF(n,s) do { if ((n) <= sdhcdebug) printf s; } while (0) 50 void sdhc_dump_regs(struct sdhc_host *); 51 #else 52 #define DPRINTF(n,s) do {} while (0) 53 #endif 54 55 #define SDHC_COMMAND_TIMEOUT hz 56 #define SDHC_BUFFER_TIMEOUT hz 57 #define SDHC_TRANSFER_TIMEOUT hz 58 #define SDHC_DMA_TIMEOUT (hz*3) 59 #define SDHC_TUNING_TIMEOUT hz 60 61 struct sdhc_host { 62 struct sdhc_softc *sc; /* host controller device */ 63 64 bus_space_tag_t iot; /* host register set tag */ 65 bus_space_handle_t ioh; /* host register set handle */ 66 bus_size_t ios; /* host register space size */ 67 bus_dma_tag_t dmat; /* host DMA tag */ 68 69 device_t sdmmc; /* generic SD/MMC device */ 70 71 u_int clkbase; /* base clock frequency in KHz */ 72 int maxblklen; /* maximum block length */ 73 uint32_t ocr; /* OCR value from capabilities */ 74 75 uint8_t regs[14]; /* host controller state */ 76 77 uint16_t intr_status; /* soft interrupt status */ 78 uint16_t intr_error_status; /* soft error status */ 79 kmutex_t intr_lock; 80 kmutex_t bus_clock_lock; 81 kcondvar_t intr_cv; 82 83 callout_t tuning_timer; 84 int tuning_timing; 85 u_int tuning_timer_count; 86 u_int tuning_timer_pending; 87 88 int specver; /* spec. version */ 89 90 uint32_t flags; /* flags for this host */ 91 #define SHF_USE_DMA 0x0001 92 #define SHF_USE_4BIT_MODE 0x0002 93 #define SHF_USE_8BIT_MODE 0x0004 94 #define SHF_MODE_DMAEN 0x0008 /* needs SDHC_DMA_ENABLE in mode */ 95 #define SHF_USE_ADMA2_32 0x0010 96 #define SHF_USE_ADMA2_64 0x0020 97 #define SHF_USE_ADMA2_MASK 0x0030 98 99 bus_dmamap_t adma_map; 100 bus_dma_segment_t adma_segs[1]; 101 void *adma2; 102 103 uint8_t vdd; /* last vdd setting */ 104 }; 105 106 #define HDEVNAME(hp) (device_xname((hp)->sc->sc_dev)) 107 108 static uint8_t 109 hread1(struct sdhc_host *hp, bus_size_t reg) 110 { 111 112 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) 113 return bus_space_read_1(hp->iot, hp->ioh, reg); 114 return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 3)); 115 } 116 117 static uint16_t 118 hread2(struct sdhc_host *hp, bus_size_t reg) 119 { 120 121 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) 122 return bus_space_read_2(hp->iot, hp->ioh, reg); 123 return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 2)); 124 } 125 126 #define HREAD1(hp, reg) hread1(hp, reg) 127 #define HREAD2(hp, reg) hread2(hp, reg) 128 #define HREAD4(hp, reg) \ 129 (bus_space_read_4((hp)->iot, (hp)->ioh, (reg))) 130 131 132 static void 133 hwrite1(struct sdhc_host *hp, bus_size_t o, uint8_t val) 134 { 135 136 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) { 137 bus_space_write_1(hp->iot, hp->ioh, o, val); 138 } else { 139 const size_t shift = 8 * (o & 3); 140 o &= -4; 141 uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o); 142 tmp = (val << shift) | (tmp & ~(0xffU << shift)); 143 bus_space_write_4(hp->iot, hp->ioh, o, tmp); 144 } 145 if (hp->sc->sc_write_delay != 0) { 146 delay(hp->sc->sc_write_delay); 147 } 148 } 149 150 static void 151 hwrite2(struct sdhc_host *hp, bus_size_t o, uint16_t val) 152 { 153 154 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) { 155 bus_space_write_2(hp->iot, hp->ioh, o, val); 156 } else { 157 const size_t shift = 8 * (o & 2); 158 o &= -4; 159 uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o); 160 tmp = (val << shift) | (tmp & ~(0xffffU << shift)); 161 bus_space_write_4(hp->iot, hp->ioh, o, tmp); 162 } 163 if (hp->sc->sc_write_delay != 0) { 164 delay(hp->sc->sc_write_delay); 165 } 166 } 167 168 static void 169 hwrite4(struct sdhc_host *hp, bus_size_t o, uint32_t val) 170 { 171 172 bus_space_write_4(hp->iot, hp->ioh, o, val); 173 if (hp->sc->sc_write_delay != 0) { 174 delay(hp->sc->sc_write_delay); 175 } 176 } 177 178 #define HWRITE1(hp, reg, val) hwrite1(hp, reg, val) 179 #define HWRITE2(hp, reg, val) hwrite2(hp, reg, val) 180 #define HWRITE4(hp, reg, val) hwrite4(hp, reg, val) 181 182 #define HCLR1(hp, reg, bits) \ 183 do if ((bits) != 0) HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits)); while (0) 184 #define HCLR2(hp, reg, bits) \ 185 do if ((bits) != 0) HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits)); while (0) 186 #define HCLR4(hp, reg, bits) \ 187 do if ((bits) != 0) HWRITE4((hp), (reg), HREAD4((hp), (reg)) & ~(bits)); while (0) 188 #define HSET1(hp, reg, bits) \ 189 do if ((bits) != 0) HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits)); while (0) 190 #define HSET2(hp, reg, bits) \ 191 do if ((bits) != 0) HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits)); while (0) 192 #define HSET4(hp, reg, bits) \ 193 do if ((bits) != 0) HWRITE4((hp), (reg), HREAD4((hp), (reg)) | (bits)); while (0) 194 195 static int sdhc_host_reset(sdmmc_chipset_handle_t); 196 static int sdhc_host_reset1(sdmmc_chipset_handle_t); 197 static uint32_t sdhc_host_ocr(sdmmc_chipset_handle_t); 198 static int sdhc_host_maxblklen(sdmmc_chipset_handle_t); 199 static int sdhc_card_detect(sdmmc_chipset_handle_t); 200 static int sdhc_write_protect(sdmmc_chipset_handle_t); 201 static int sdhc_bus_power(sdmmc_chipset_handle_t, uint32_t); 202 static int sdhc_bus_clock_ddr(sdmmc_chipset_handle_t, int, bool); 203 static int sdhc_bus_width(sdmmc_chipset_handle_t, int); 204 static int sdhc_bus_rod(sdmmc_chipset_handle_t, int); 205 static void sdhc_card_enable_intr(sdmmc_chipset_handle_t, int); 206 static void sdhc_card_intr_ack(sdmmc_chipset_handle_t); 207 static void sdhc_exec_command(sdmmc_chipset_handle_t, 208 struct sdmmc_command *); 209 static int sdhc_signal_voltage(sdmmc_chipset_handle_t, int); 210 static int sdhc_execute_tuning1(struct sdhc_host *, int); 211 static int sdhc_execute_tuning(sdmmc_chipset_handle_t, int); 212 static void sdhc_tuning_timer(void *); 213 static void sdhc_hw_reset(sdmmc_chipset_handle_t); 214 static int sdhc_start_command(struct sdhc_host *, struct sdmmc_command *); 215 static int sdhc_wait_state(struct sdhc_host *, uint32_t, uint32_t); 216 static int sdhc_soft_reset(struct sdhc_host *, int); 217 static int sdhc_wait_intr(struct sdhc_host *, int, int, bool); 218 static void sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *); 219 static int sdhc_transfer_data_dma(struct sdhc_host *, struct sdmmc_command *); 220 static int sdhc_transfer_data_pio(struct sdhc_host *, struct sdmmc_command *); 221 static void sdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int); 222 static void sdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int); 223 static void esdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int); 224 static void esdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int); 225 226 static struct sdmmc_chip_functions sdhc_functions = { 227 /* host controller reset */ 228 .host_reset = sdhc_host_reset, 229 230 /* host controller capabilities */ 231 .host_ocr = sdhc_host_ocr, 232 .host_maxblklen = sdhc_host_maxblklen, 233 234 /* card detection */ 235 .card_detect = sdhc_card_detect, 236 237 /* write protect */ 238 .write_protect = sdhc_write_protect, 239 240 /* bus power, clock frequency, width and ROD(OpenDrain/PushPull) */ 241 .bus_power = sdhc_bus_power, 242 .bus_clock = NULL, /* see sdhc_bus_clock_ddr */ 243 .bus_width = sdhc_bus_width, 244 .bus_rod = sdhc_bus_rod, 245 246 /* command execution */ 247 .exec_command = sdhc_exec_command, 248 249 /* card interrupt */ 250 .card_enable_intr = sdhc_card_enable_intr, 251 .card_intr_ack = sdhc_card_intr_ack, 252 253 /* UHS functions */ 254 .signal_voltage = sdhc_signal_voltage, 255 .bus_clock_ddr = sdhc_bus_clock_ddr, 256 .execute_tuning = sdhc_execute_tuning, 257 .hw_reset = sdhc_hw_reset, 258 }; 259 260 static int 261 sdhc_cfprint(void *aux, const char *pnp) 262 { 263 const struct sdmmcbus_attach_args * const saa = aux; 264 const struct sdhc_host * const hp = saa->saa_sch; 265 266 if (pnp) { 267 aprint_normal("sdmmc at %s", pnp); 268 } 269 for (size_t host = 0; host < hp->sc->sc_nhosts; host++) { 270 if (hp->sc->sc_host[host] == hp) { 271 aprint_normal(" slot %zu", host); 272 } 273 } 274 275 return UNCONF; 276 } 277 278 /* 279 * Called by attachment driver. For each SD card slot there is one SD 280 * host controller standard register set. (1.3) 281 */ 282 int 283 sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot, 284 bus_space_handle_t ioh, bus_size_t iosize) 285 { 286 struct sdmmcbus_attach_args saa; 287 struct sdhc_host *hp; 288 uint32_t caps, caps2; 289 uint16_t sdhcver; 290 int error; 291 292 /* Allocate one more host structure. */ 293 hp = malloc(sizeof(struct sdhc_host), M_DEVBUF, M_WAITOK|M_ZERO); 294 if (hp == NULL) { 295 aprint_error_dev(sc->sc_dev, 296 "couldn't alloc memory (sdhc host)\n"); 297 goto err1; 298 } 299 sc->sc_host[sc->sc_nhosts++] = hp; 300 301 /* Fill in the new host structure. */ 302 hp->sc = sc; 303 hp->iot = iot; 304 hp->ioh = ioh; 305 hp->ios = iosize; 306 hp->dmat = sc->sc_dmat; 307 308 mutex_init(&hp->intr_lock, MUTEX_DEFAULT, IPL_SDMMC); 309 mutex_init(&hp->bus_clock_lock, MUTEX_DEFAULT, IPL_NONE); 310 cv_init(&hp->intr_cv, "sdhcintr"); 311 callout_init(&hp->tuning_timer, CALLOUT_MPSAFE); 312 callout_setfunc(&hp->tuning_timer, sdhc_tuning_timer, hp); 313 314 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) { 315 sdhcver = SDHC_SPEC_VERS_300 << SDHC_SPEC_VERS_SHIFT; 316 } else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) { 317 sdhcver = HREAD4(hp, SDHC_ESDHC_HOST_CTL_VERSION); 318 } else if (iosize <= SDHC_HOST_CTL_VERSION) { 319 sdhcver = SDHC_SPEC_NOVERS << SDHC_SPEC_VERS_SHIFT; 320 } else { 321 sdhcver = HREAD2(hp, SDHC_HOST_CTL_VERSION); 322 } 323 aprint_normal_dev(sc->sc_dev, "SDHC "); 324 hp->specver = SDHC_SPEC_VERSION(sdhcver); 325 switch (SDHC_SPEC_VERSION(sdhcver)) { 326 case SDHC_SPEC_VERS_100: 327 aprint_normal("1.0"); 328 break; 329 case SDHC_SPEC_VERS_200: 330 aprint_normal("2.0"); 331 break; 332 case SDHC_SPEC_VERS_300: 333 aprint_normal("3.0"); 334 break; 335 case SDHC_SPEC_VERS_400: 336 aprint_normal("4.0"); 337 break; 338 case SDHC_SPEC_VERS_410: 339 aprint_normal("4.1"); 340 break; 341 case SDHC_SPEC_VERS_420: 342 aprint_normal("4.2"); 343 break; 344 case SDHC_SPEC_NOVERS: 345 hp->specver = -1; 346 aprint_normal("NO-VERS"); 347 break; 348 default: 349 aprint_normal("unknown version(0x%x)", 350 SDHC_SPEC_VERSION(sdhcver)); 351 break; 352 } 353 if (SDHC_SPEC_VERSION(sdhcver) != SDHC_SPEC_NOVERS) 354 aprint_normal(", rev %u", SDHC_VENDOR_VERSION(sdhcver)); 355 356 /* 357 * Reset the host controller and enable interrupts. 358 */ 359 (void)sdhc_host_reset(hp); 360 361 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) { 362 /* init uSDHC registers */ 363 HWRITE4(hp, SDHC_MMC_BOOT, 0); 364 HWRITE4(hp, SDHC_HOST_CTL, SDHC_USDHC_BURST_LEN_EN | 365 SDHC_USDHC_HOST_CTL_RESV23 | SDHC_USDHC_EMODE_LE); 366 HWRITE4(hp, SDHC_WATERMARK_LEVEL, 367 (0x10 << SDHC_WATERMARK_WR_BRST_SHIFT) | 368 (0x40 << SDHC_WATERMARK_WRITE_SHIFT) | 369 (0x10 << SDHC_WATERMARK_RD_BRST_SHIFT) | 370 (0x40 << SDHC_WATERMARK_READ_SHIFT)); 371 HSET4(hp, SDHC_VEND_SPEC, 372 SDHC_VEND_SPEC_MBO | 373 SDHC_VEND_SPEC_CARD_CLK_SOFT_EN | 374 SDHC_VEND_SPEC_IPG_PERCLK_SOFT_EN | 375 SDHC_VEND_SPEC_HCLK_SOFT_EN | 376 SDHC_VEND_SPEC_IPG_CLK_SOFT_EN | 377 SDHC_VEND_SPEC_AC12_WR_CHKBUSY_EN | 378 SDHC_VEND_SPEC_FRC_SDCLK_ON); 379 } 380 381 /* Determine host capabilities. */ 382 if (ISSET(sc->sc_flags, SDHC_FLAG_HOSTCAPS)) { 383 caps = sc->sc_caps; 384 caps2 = sc->sc_caps2; 385 } else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) { 386 /* uSDHC capability register is little bit different */ 387 caps = HREAD4(hp, SDHC_CAPABILITIES); 388 caps |= SDHC_8BIT_SUPP; 389 if (caps & SDHC_ADMA1_SUPP) 390 caps |= SDHC_ADMA2_SUPP; 391 sc->sc_caps = caps; 392 /* uSDHC has no SDHC_CAPABILITIES2 register */ 393 caps2 = sc->sc_caps2 = SDHC_SDR50_SUPP | SDHC_DDR50_SUPP; 394 } else { 395 caps = sc->sc_caps = HREAD4(hp, SDHC_CAPABILITIES); 396 if (hp->specver >= SDHC_SPEC_VERS_300) { 397 caps2 = sc->sc_caps2 = HREAD4(hp, SDHC_CAPABILITIES2); 398 } else { 399 caps2 = sc->sc_caps2 = 0; 400 } 401 } 402 403 aprint_verbose(", caps <%08x/%08x>", caps, caps2); 404 405 const u_int retuning_mode = (caps2 >> SDHC_RETUNING_MODES_SHIFT) & 406 SDHC_RETUNING_MODES_MASK; 407 if (retuning_mode == SDHC_RETUNING_MODE_1) { 408 hp->tuning_timer_count = (caps2 >> SDHC_TIMER_COUNT_SHIFT) & 409 SDHC_TIMER_COUNT_MASK; 410 if (hp->tuning_timer_count == 0xf) 411 hp->tuning_timer_count = 0; 412 if (hp->tuning_timer_count) 413 hp->tuning_timer_count = 414 1 << (hp->tuning_timer_count - 1); 415 } 416 417 /* 418 * Use DMA if the host system and the controller support it. 419 * Supports integrated or external DMA egine, with or without 420 * SDHC_DMA_ENABLE in the command. 421 */ 422 if (ISSET(sc->sc_flags, SDHC_FLAG_FORCE_DMA) || 423 (ISSET(sc->sc_flags, SDHC_FLAG_USE_DMA && 424 ISSET(caps, SDHC_DMA_SUPPORT)))) { 425 SET(hp->flags, SHF_USE_DMA); 426 427 if (ISSET(caps, SDHC_ADMA2_SUPP) && 428 !ISSET(sc->sc_flags, SDHC_FLAG_BROKEN_ADMA)) { 429 SET(hp->flags, SHF_MODE_DMAEN); 430 /* 431 * 64-bit mode was present in the 2.00 spec, removed 432 * from 3.00, and re-added in 4.00 with a different 433 * descriptor layout. We only support 2.00 and 3.00 434 * descriptors for now. 435 */ 436 if (hp->specver == SDHC_SPEC_VERS_200 && 437 ISSET(caps, SDHC_64BIT_SYS_BUS)) { 438 SET(hp->flags, SHF_USE_ADMA2_64); 439 aprint_normal(", 64-bit ADMA2"); 440 } else { 441 SET(hp->flags, SHF_USE_ADMA2_32); 442 aprint_normal(", 32-bit ADMA2"); 443 } 444 } else { 445 if (!ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA) || 446 ISSET(sc->sc_flags, SDHC_FLAG_EXTDMA_DMAEN)) 447 SET(hp->flags, SHF_MODE_DMAEN); 448 if (sc->sc_vendor_transfer_data_dma) { 449 aprint_normal(", platform DMA"); 450 } else { 451 aprint_normal(", SDMA"); 452 } 453 } 454 } else { 455 aprint_normal(", PIO"); 456 } 457 458 /* 459 * Determine the base clock frequency. (2.2.24) 460 */ 461 if (hp->specver >= SDHC_SPEC_VERS_300) { 462 hp->clkbase = SDHC_BASE_V3_FREQ_KHZ(caps); 463 } else { 464 hp->clkbase = SDHC_BASE_FREQ_KHZ(caps); 465 } 466 if (hp->clkbase == 0 || 467 ISSET(sc->sc_flags, SDHC_FLAG_NO_CLKBASE)) { 468 if (sc->sc_clkbase == 0) { 469 /* The attachment driver must tell us. */ 470 aprint_error_dev(sc->sc_dev, 471 "unknown base clock frequency\n"); 472 goto err; 473 } 474 hp->clkbase = sc->sc_clkbase; 475 } 476 if (hp->clkbase < 10000 || hp->clkbase > 10000 * 256) { 477 /* SDHC 1.0 supports only 10-63 MHz. */ 478 aprint_error_dev(sc->sc_dev, 479 "base clock frequency out of range: %u MHz\n", 480 hp->clkbase / 1000); 481 goto err; 482 } 483 aprint_normal(", %u kHz", hp->clkbase); 484 485 /* 486 * XXX Set the data timeout counter value according to 487 * capabilities. (2.2.15) 488 */ 489 HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX); 490 #if 1 491 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) 492 HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16); 493 #endif 494 495 if (ISSET(caps, SDHC_EMBEDDED_SLOT)) 496 aprint_normal(", embedded slot"); 497 498 /* 499 * Determine SD bus voltage levels supported by the controller. 500 */ 501 aprint_normal(","); 502 if (ISSET(caps, SDHC_HIGH_SPEED_SUPP)) { 503 SET(hp->ocr, MMC_OCR_HCS); 504 aprint_normal(" HS"); 505 } 506 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_1_8_V)) { 507 if (ISSET(caps2, SDHC_SDR50_SUPP)) { 508 SET(hp->ocr, MMC_OCR_S18A); 509 aprint_normal(" SDR50"); 510 } 511 if (ISSET(caps2, SDHC_DDR50_SUPP)) { 512 SET(hp->ocr, MMC_OCR_S18A); 513 aprint_normal(" DDR50"); 514 } 515 if (ISSET(caps2, SDHC_SDR104_SUPP)) { 516 SET(hp->ocr, MMC_OCR_S18A); 517 aprint_normal(" SDR104 HS200"); 518 } 519 if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V)) { 520 SET(hp->ocr, MMC_OCR_1_65V_1_95V); 521 aprint_normal(" 1.8V"); 522 } 523 } 524 if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V)) { 525 SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V); 526 aprint_normal(" 3.0V"); 527 } 528 if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V)) { 529 SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V); 530 aprint_normal(" 3.3V"); 531 } 532 if (hp->specver >= SDHC_SPEC_VERS_300) { 533 aprint_normal(", re-tuning mode %d", retuning_mode + 1); 534 if (hp->tuning_timer_count) 535 aprint_normal(" (%us timer)", hp->tuning_timer_count); 536 } 537 538 /* 539 * Determine the maximum block length supported by the host 540 * controller. (2.2.24) 541 */ 542 switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) { 543 case SDHC_MAX_BLK_LEN_512: 544 hp->maxblklen = 512; 545 break; 546 547 case SDHC_MAX_BLK_LEN_1024: 548 hp->maxblklen = 1024; 549 break; 550 551 case SDHC_MAX_BLK_LEN_2048: 552 hp->maxblklen = 2048; 553 break; 554 555 case SDHC_MAX_BLK_LEN_4096: 556 hp->maxblklen = 4096; 557 break; 558 559 default: 560 aprint_error_dev(sc->sc_dev, "max block length unknown\n"); 561 goto err; 562 } 563 aprint_normal(", %u byte blocks", hp->maxblklen); 564 aprint_normal("\n"); 565 566 if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) { 567 int rseg; 568 569 /* Allocate ADMA2 descriptor memory */ 570 error = bus_dmamem_alloc(sc->sc_dmat, PAGE_SIZE, PAGE_SIZE, 571 PAGE_SIZE, hp->adma_segs, 1, &rseg, BUS_DMA_WAITOK); 572 if (error) { 573 aprint_error_dev(sc->sc_dev, 574 "ADMA2 dmamem_alloc failed (%d)\n", error); 575 goto adma_done; 576 } 577 error = bus_dmamem_map(sc->sc_dmat, hp->adma_segs, rseg, 578 PAGE_SIZE, (void **)&hp->adma2, BUS_DMA_WAITOK); 579 if (error) { 580 aprint_error_dev(sc->sc_dev, 581 "ADMA2 dmamem_map failed (%d)\n", error); 582 goto adma_done; 583 } 584 error = bus_dmamap_create(sc->sc_dmat, PAGE_SIZE, 1, PAGE_SIZE, 585 0, BUS_DMA_WAITOK, &hp->adma_map); 586 if (error) { 587 aprint_error_dev(sc->sc_dev, 588 "ADMA2 dmamap_create failed (%d)\n", error); 589 goto adma_done; 590 } 591 error = bus_dmamap_load(sc->sc_dmat, hp->adma_map, 592 hp->adma2, PAGE_SIZE, NULL, 593 BUS_DMA_WAITOK|BUS_DMA_WRITE); 594 if (error) { 595 aprint_error_dev(sc->sc_dev, 596 "ADMA2 dmamap_load failed (%d)\n", error); 597 goto adma_done; 598 } 599 600 memset(hp->adma2, 0, PAGE_SIZE); 601 602 adma_done: 603 if (error) 604 CLR(hp->flags, SHF_USE_ADMA2_MASK); 605 } 606 607 /* 608 * Attach the generic SD/MMC bus driver. (The bus driver must 609 * not invoke any chipset functions before it is attached.) 610 */ 611 memset(&saa, 0, sizeof(saa)); 612 saa.saa_busname = "sdmmc"; 613 saa.saa_sct = &sdhc_functions; 614 saa.saa_sch = hp; 615 saa.saa_dmat = hp->dmat; 616 saa.saa_clkmax = hp->clkbase; 617 if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_CGM)) 618 saa.saa_clkmin = hp->clkbase / 256 / 2046; 619 else if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_DVS)) 620 saa.saa_clkmin = hp->clkbase / 256 / 16; 621 else if (hp->sc->sc_clkmsk != 0) 622 saa.saa_clkmin = hp->clkbase / (hp->sc->sc_clkmsk >> 623 (ffs(hp->sc->sc_clkmsk) - 1)); 624 else if (hp->specver >= SDHC_SPEC_VERS_300) 625 saa.saa_clkmin = hp->clkbase / 0x3ff; 626 else 627 saa.saa_clkmin = hp->clkbase / 256; 628 if (!ISSET(sc->sc_flags, SDHC_FLAG_NO_AUTO_STOP)) 629 saa.saa_caps |= SMC_CAPS_AUTO_STOP; 630 saa.saa_caps |= SMC_CAPS_4BIT_MODE; 631 if (ISSET(sc->sc_flags, SDHC_FLAG_8BIT_MODE)) 632 saa.saa_caps |= SMC_CAPS_8BIT_MODE; 633 if (ISSET(caps, SDHC_HIGH_SPEED_SUPP)) 634 saa.saa_caps |= SMC_CAPS_SD_HIGHSPEED | 635 SMC_CAPS_MMC_HIGHSPEED; 636 if (ISSET(caps2, SDHC_SDR104_SUPP)) 637 saa.saa_caps |= SMC_CAPS_UHS_SDR104 | 638 SMC_CAPS_UHS_SDR50 | 639 SMC_CAPS_MMC_HS200; 640 if (ISSET(caps2, SDHC_SDR50_SUPP)) 641 saa.saa_caps |= SMC_CAPS_UHS_SDR50; 642 if (ISSET(caps2, SDHC_DDR50_SUPP)) 643 saa.saa_caps |= SMC_CAPS_UHS_DDR50; 644 if (ISSET(hp->flags, SHF_USE_DMA)) { 645 saa.saa_caps |= SMC_CAPS_DMA; 646 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) 647 saa.saa_caps |= SMC_CAPS_MULTI_SEG_DMA; 648 } 649 if (ISSET(sc->sc_flags, SDHC_FLAG_SINGLE_ONLY)) 650 saa.saa_caps |= SMC_CAPS_SINGLE_ONLY; 651 if (ISSET(sc->sc_flags, SDHC_FLAG_POLL_CARD_DET)) 652 saa.saa_caps |= SMC_CAPS_POLL_CARD_DET; 653 654 if (ISSET(sc->sc_flags, SDHC_FLAG_BROKEN_ADMA2_ZEROLEN)) 655 saa.saa_max_seg = 65535; 656 657 hp->sdmmc = config_found(sc->sc_dev, &saa, sdhc_cfprint, CFARGS_NONE); 658 659 return 0; 660 661 err: 662 callout_destroy(&hp->tuning_timer); 663 cv_destroy(&hp->intr_cv); 664 mutex_destroy(&hp->bus_clock_lock); 665 mutex_destroy(&hp->intr_lock); 666 free(hp, M_DEVBUF); 667 sc->sc_host[--sc->sc_nhosts] = NULL; 668 err1: 669 return 1; 670 } 671 672 int 673 sdhc_detach(struct sdhc_softc *sc, int flags) 674 { 675 struct sdhc_host *hp; 676 int rv = 0; 677 678 for (size_t n = 0; n < sc->sc_nhosts; n++) { 679 hp = sc->sc_host[n]; 680 if (hp == NULL) 681 continue; 682 if (hp->sdmmc != NULL) { 683 rv = config_detach(hp->sdmmc, flags); 684 if (rv) 685 break; 686 hp->sdmmc = NULL; 687 } 688 /* disable interrupts */ 689 if ((flags & DETACH_FORCE) == 0) { 690 mutex_enter(&hp->intr_lock); 691 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) { 692 HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0); 693 } else { 694 HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0); 695 } 696 sdhc_soft_reset(hp, SDHC_RESET_ALL); 697 mutex_exit(&hp->intr_lock); 698 } 699 callout_halt(&hp->tuning_timer, NULL); 700 callout_destroy(&hp->tuning_timer); 701 cv_destroy(&hp->intr_cv); 702 mutex_destroy(&hp->intr_lock); 703 if (hp->ios > 0) { 704 bus_space_unmap(hp->iot, hp->ioh, hp->ios); 705 hp->ios = 0; 706 } 707 if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) { 708 bus_dmamap_unload(sc->sc_dmat, hp->adma_map); 709 bus_dmamap_destroy(sc->sc_dmat, hp->adma_map); 710 bus_dmamem_unmap(sc->sc_dmat, hp->adma2, PAGE_SIZE); 711 bus_dmamem_free(sc->sc_dmat, hp->adma_segs, 1); 712 } 713 free(hp, M_DEVBUF); 714 sc->sc_host[n] = NULL; 715 } 716 717 return rv; 718 } 719 720 bool 721 sdhc_suspend(device_t dev, const pmf_qual_t *qual) 722 { 723 struct sdhc_softc *sc = device_private(dev); 724 struct sdhc_host *hp; 725 size_t i; 726 727 /* XXX poll for command completion or suspend command 728 * in progress */ 729 730 /* Save the host controller state. */ 731 for (size_t n = 0; n < sc->sc_nhosts; n++) { 732 hp = sc->sc_host[n]; 733 if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) { 734 for (i = 0; i < sizeof hp->regs; i += 4) { 735 uint32_t v = HREAD4(hp, i); 736 hp->regs[i + 0] = (v >> 0); 737 hp->regs[i + 1] = (v >> 8); 738 if (i + 3 < sizeof hp->regs) { 739 hp->regs[i + 2] = (v >> 16); 740 hp->regs[i + 3] = (v >> 24); 741 } 742 } 743 } else { 744 for (i = 0; i < sizeof hp->regs; i++) { 745 hp->regs[i] = HREAD1(hp, i); 746 } 747 } 748 } 749 return true; 750 } 751 752 bool 753 sdhc_resume(device_t dev, const pmf_qual_t *qual) 754 { 755 struct sdhc_softc *sc = device_private(dev); 756 struct sdhc_host *hp; 757 size_t i; 758 759 /* Restore the host controller state. */ 760 for (size_t n = 0; n < sc->sc_nhosts; n++) { 761 hp = sc->sc_host[n]; 762 (void)sdhc_host_reset(hp); 763 if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) { 764 for (i = 0; i < sizeof hp->regs; i += 4) { 765 if (i + 3 < sizeof hp->regs) { 766 HWRITE4(hp, i, 767 (hp->regs[i + 0] << 0) 768 | (hp->regs[i + 1] << 8) 769 | (hp->regs[i + 2] << 16) 770 | (hp->regs[i + 3] << 24)); 771 } else { 772 HWRITE4(hp, i, 773 (hp->regs[i + 0] << 0) 774 | (hp->regs[i + 1] << 8)); 775 } 776 } 777 } else { 778 for (i = 0; i < sizeof hp->regs; i++) { 779 HWRITE1(hp, i, hp->regs[i]); 780 } 781 } 782 } 783 return true; 784 } 785 786 bool 787 sdhc_shutdown(device_t dev, int flags) 788 { 789 struct sdhc_softc *sc = device_private(dev); 790 struct sdhc_host *hp; 791 792 /* XXX chip locks up if we don't disable it before reboot. */ 793 for (size_t i = 0; i < sc->sc_nhosts; i++) { 794 hp = sc->sc_host[i]; 795 (void)sdhc_host_reset(hp); 796 } 797 return true; 798 } 799 800 /* 801 * Reset the host controller. Called during initialization, when 802 * cards are removed, upon resume, and during error recovery. 803 */ 804 static int 805 sdhc_host_reset1(sdmmc_chipset_handle_t sch) 806 { 807 struct sdhc_host *hp = (struct sdhc_host *)sch; 808 uint32_t sdhcimask; 809 int error; 810 811 KASSERT(mutex_owned(&hp->intr_lock)); 812 813 /* Disable all interrupts. */ 814 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) { 815 HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0); 816 } else { 817 HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0); 818 } 819 820 /* Let sdhc_bus_power restore power */ 821 hp->vdd = 0; 822 823 /* 824 * Reset the entire host controller and wait up to 100ms for 825 * the controller to clear the reset bit. 826 */ 827 error = sdhc_soft_reset(hp, SDHC_RESET_ALL); 828 if (error) 829 goto out; 830 831 /* Set data timeout counter value to max for now. */ 832 HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX); 833 #if 1 834 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) 835 HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16); 836 #endif 837 838 /* Enable interrupts. */ 839 sdhcimask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION | 840 SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY | 841 SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT | 842 SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE; 843 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) { 844 sdhcimask |= SDHC_EINTR_STATUS_MASK << 16; 845 HWRITE4(hp, SDHC_NINTR_STATUS_EN, sdhcimask); 846 sdhcimask ^= 847 (SDHC_EINTR_STATUS_MASK ^ SDHC_EINTR_SIGNAL_MASK) << 16; 848 sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY; 849 HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask); 850 } else { 851 HWRITE2(hp, SDHC_NINTR_STATUS_EN, sdhcimask); 852 HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK); 853 sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY; 854 HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask); 855 HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK); 856 } 857 858 out: 859 return error; 860 } 861 862 static int 863 sdhc_host_reset(sdmmc_chipset_handle_t sch) 864 { 865 struct sdhc_host *hp = (struct sdhc_host *)sch; 866 int error; 867 868 mutex_enter(&hp->intr_lock); 869 error = sdhc_host_reset1(sch); 870 mutex_exit(&hp->intr_lock); 871 872 return error; 873 } 874 875 static uint32_t 876 sdhc_host_ocr(sdmmc_chipset_handle_t sch) 877 { 878 struct sdhc_host *hp = (struct sdhc_host *)sch; 879 880 return hp->ocr; 881 } 882 883 static int 884 sdhc_host_maxblklen(sdmmc_chipset_handle_t sch) 885 { 886 struct sdhc_host *hp = (struct sdhc_host *)sch; 887 888 return hp->maxblklen; 889 } 890 891 /* 892 * Return non-zero if the card is currently inserted. 893 */ 894 static int 895 sdhc_card_detect(sdmmc_chipset_handle_t sch) 896 { 897 struct sdhc_host *hp = (struct sdhc_host *)sch; 898 int r; 899 900 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_NON_REMOVABLE)) 901 return 1; 902 903 if (hp->sc->sc_vendor_card_detect) 904 return (*hp->sc->sc_vendor_card_detect)(hp->sc); 905 906 r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED); 907 908 return r ? 1 : 0; 909 } 910 911 /* 912 * Return non-zero if the card is currently write-protected. 913 */ 914 static int 915 sdhc_write_protect(sdmmc_chipset_handle_t sch) 916 { 917 struct sdhc_host *hp = (struct sdhc_host *)sch; 918 int r; 919 920 if (hp->sc->sc_vendor_write_protect) 921 return (*hp->sc->sc_vendor_write_protect)(hp->sc); 922 923 r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_WRITE_PROTECT_SWITCH); 924 925 return r ? 0 : 1; 926 } 927 928 /* 929 * Set or change SD bus voltage and enable or disable SD bus power. 930 * Return zero on success. 931 */ 932 static int 933 sdhc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr) 934 { 935 struct sdhc_host *hp = (struct sdhc_host *)sch; 936 uint8_t vdd; 937 int error = 0; 938 const uint32_t pcmask = 939 ~(SDHC_BUS_POWER | (SDHC_VOLTAGE_MASK << SDHC_VOLTAGE_SHIFT)); 940 uint32_t reg; 941 942 mutex_enter(&hp->intr_lock); 943 944 /* 945 * Disable bus power before voltage change. 946 */ 947 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS) 948 && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_PWR0)) { 949 hp->vdd = 0; 950 HWRITE1(hp, SDHC_POWER_CTL, 0); 951 } 952 953 /* If power is disabled, reset the host and return now. */ 954 if (ocr == 0) { 955 (void)sdhc_host_reset1(hp); 956 callout_halt(&hp->tuning_timer, &hp->intr_lock); 957 goto out; 958 } 959 960 /* 961 * Select the lowest voltage according to capabilities. 962 */ 963 ocr &= hp->ocr; 964 if (ISSET(ocr, MMC_OCR_1_65V_1_95V)) { 965 vdd = SDHC_VOLTAGE_1_8V; 966 } else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V)) { 967 vdd = SDHC_VOLTAGE_3_0V; 968 } else if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V)) { 969 vdd = SDHC_VOLTAGE_3_3V; 970 } else { 971 /* Unsupported voltage level requested. */ 972 error = EINVAL; 973 goto out; 974 } 975 976 /* 977 * Did voltage change ? 978 */ 979 if (vdd == hp->vdd) 980 goto out; 981 982 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) { 983 /* 984 * Enable bus power. Wait at least 1 ms (or 74 clocks) plus 985 * voltage ramp until power rises. 986 */ 987 988 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_SINGLE_POWER_WRITE)) { 989 HWRITE1(hp, SDHC_POWER_CTL, 990 (vdd << SDHC_VOLTAGE_SHIFT) | SDHC_BUS_POWER); 991 } else { 992 reg = HREAD1(hp, SDHC_POWER_CTL) & pcmask; 993 HWRITE1(hp, SDHC_POWER_CTL, reg); 994 sdmmc_delay(1); 995 reg |= (vdd << SDHC_VOLTAGE_SHIFT); 996 HWRITE1(hp, SDHC_POWER_CTL, reg); 997 sdmmc_delay(1); 998 reg |= SDHC_BUS_POWER; 999 HWRITE1(hp, SDHC_POWER_CTL, reg); 1000 sdmmc_delay(10000); 1001 } 1002 1003 /* 1004 * The host system may not power the bus due to battery low, 1005 * etc. In that case, the host controller should clear the 1006 * bus power bit. 1007 */ 1008 if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) { 1009 error = ENXIO; 1010 goto out; 1011 } 1012 } 1013 1014 /* power successfully changed */ 1015 hp->vdd = vdd; 1016 1017 out: 1018 mutex_exit(&hp->intr_lock); 1019 1020 return error; 1021 } 1022 1023 /* 1024 * Return the smallest possible base clock frequency divisor value 1025 * for the CLOCK_CTL register to produce `freq' (KHz). 1026 */ 1027 static bool 1028 sdhc_clock_divisor(struct sdhc_host *hp, u_int freq, u_int *divp) 1029 { 1030 u_int div; 1031 1032 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_CGM)) { 1033 for (div = hp->clkbase / freq; div <= 0x3ff; div++) { 1034 if ((hp->clkbase / div) <= freq) { 1035 *divp = SDHC_SDCLK_CGM 1036 | ((div & 0x300) << SDHC_SDCLK_XDIV_SHIFT) 1037 | ((div & 0x0ff) << SDHC_SDCLK_DIV_SHIFT); 1038 //freq = hp->clkbase / div; 1039 return true; 1040 } 1041 } 1042 /* No divisor found. */ 1043 return false; 1044 } 1045 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_DVS)) { 1046 u_int dvs = (hp->clkbase + freq - 1) / freq; 1047 u_int roundup = dvs & 1; 1048 for (dvs >>= 1, div = 1; div <= 256; div <<= 1, dvs >>= 1) { 1049 if (dvs + roundup <= 16) { 1050 dvs += roundup - 1; 1051 *divp = (div << SDHC_SDCLK_DIV_SHIFT) 1052 | (dvs << SDHC_SDCLK_DVS_SHIFT); 1053 DPRINTF(2, 1054 ("%s: divisor for freq %u is %u * %u\n", 1055 HDEVNAME(hp), freq, div * 2, dvs + 1)); 1056 //freq = hp->clkbase / (div * 2) * (dvs + 1); 1057 return true; 1058 } 1059 /* 1060 * If we drop bits, we need to round up the divisor. 1061 */ 1062 roundup |= dvs & 1; 1063 } 1064 /* No divisor found. */ 1065 return false; 1066 } 1067 if (hp->sc->sc_clkmsk != 0) { 1068 div = howmany(hp->clkbase, freq); 1069 if (div > (hp->sc->sc_clkmsk >> (ffs(hp->sc->sc_clkmsk) - 1))) 1070 return false; 1071 *divp = div << (ffs(hp->sc->sc_clkmsk) - 1); 1072 //freq = hp->clkbase / div; 1073 return true; 1074 } 1075 if (hp->specver >= SDHC_SPEC_VERS_300) { 1076 div = howmany(hp->clkbase, freq); 1077 div = div > 1 ? howmany(div, 2) : 0; 1078 if (div > 0x3ff) 1079 return false; 1080 *divp = (((div >> 8) & SDHC_SDCLK_XDIV_MASK) 1081 << SDHC_SDCLK_XDIV_SHIFT) | 1082 (((div >> 0) & SDHC_SDCLK_DIV_MASK) 1083 << SDHC_SDCLK_DIV_SHIFT); 1084 //freq = hp->clkbase / (div ? div * 2 : 1); 1085 return true; 1086 } else { 1087 for (div = 1; div <= 256; div *= 2) { 1088 if ((hp->clkbase / div) <= freq) { 1089 *divp = (div / 2) << SDHC_SDCLK_DIV_SHIFT; 1090 //freq = hp->clkbase / div; 1091 return true; 1092 } 1093 } 1094 /* No divisor found. */ 1095 return false; 1096 } 1097 /* No divisor found. */ 1098 return false; 1099 } 1100 1101 /* 1102 * Set or change SDCLK frequency or disable the SD clock. 1103 * Return zero on success. 1104 */ 1105 static int 1106 sdhc_bus_clock_ddr(sdmmc_chipset_handle_t sch, int freq, bool ddr) 1107 { 1108 struct sdhc_host *hp = (struct sdhc_host *)sch; 1109 u_int div; 1110 u_int timo; 1111 int16_t reg; 1112 int error = 0; 1113 bool present __diagused; 1114 1115 #ifdef DIAGNOSTIC 1116 present = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK); 1117 1118 /* Must not stop the clock if commands are in progress. */ 1119 if (present && sdhc_card_detect(hp)) { 1120 aprint_normal_dev(hp->sc->sc_dev, 1121 "%s: command in progress\n", __func__); 1122 } 1123 #endif 1124 1125 if (hp->sc->sc_vendor_bus_clock) { 1126 mutex_enter(&hp->bus_clock_lock); 1127 error = (*hp->sc->sc_vendor_bus_clock)(hp->sc, freq); 1128 mutex_exit(&hp->bus_clock_lock); 1129 if (error != 0) 1130 return error; 1131 } 1132 1133 mutex_enter(&hp->intr_lock); 1134 1135 /* 1136 * Stop SD clock before changing the frequency. 1137 */ 1138 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) { 1139 HCLR4(hp, SDHC_VEND_SPEC, 1140 SDHC_VEND_SPEC_CARD_CLK_SOFT_EN | 1141 SDHC_VEND_SPEC_FRC_SDCLK_ON); 1142 if (freq == SDMMC_SDCLK_OFF) { 1143 goto out; 1144 } 1145 } else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) { 1146 HCLR4(hp, SDHC_CLOCK_CTL, 0xfff8); 1147 if (freq == SDMMC_SDCLK_OFF) { 1148 HSET4(hp, SDHC_CLOCK_CTL, 0x80f0); 1149 goto out; 1150 } 1151 } else { 1152 HCLR2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE); 1153 if (freq == SDMMC_SDCLK_OFF) 1154 goto out; 1155 } 1156 1157 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) { 1158 if (ddr) 1159 HSET4(hp, SDHC_MIX_CTRL, SDHC_USDHC_DDR_EN); 1160 else 1161 HCLR4(hp, SDHC_MIX_CTRL, SDHC_USDHC_DDR_EN); 1162 } else if (hp->specver >= SDHC_SPEC_VERS_300) { 1163 HCLR2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_MASK); 1164 if (freq > 100000) { 1165 HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR104); 1166 } else if (freq > 50000) { 1167 if (ddr) { 1168 HSET2(hp, SDHC_HOST_CTL2, 1169 SDHC_UHS_MODE_SELECT_DDR50); 1170 } else { 1171 HSET2(hp, SDHC_HOST_CTL2, 1172 SDHC_UHS_MODE_SELECT_SDR50); 1173 } 1174 } else if (freq > 25000) { 1175 if (ddr) { 1176 HSET2(hp, SDHC_HOST_CTL2, 1177 SDHC_UHS_MODE_SELECT_DDR50); 1178 } else { 1179 HSET2(hp, SDHC_HOST_CTL2, 1180 SDHC_UHS_MODE_SELECT_SDR25); 1181 } 1182 } else if (freq > 400) { 1183 HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR12); 1184 } 1185 } 1186 1187 /* 1188 * Slow down Ricoh 5U823 controller that isn't reliable 1189 * at 100MHz bus clock. 1190 */ 1191 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_SLOW_SDR50)) { 1192 if (freq == 100000) 1193 --freq; 1194 } 1195 1196 /* 1197 * Set the minimum base clock frequency divisor. 1198 */ 1199 if (!sdhc_clock_divisor(hp, freq, &div)) { 1200 /* Invalid base clock frequency or `freq' value. */ 1201 aprint_error_dev(hp->sc->sc_dev, 1202 "Invalid bus clock %d kHz\n", freq); 1203 error = EINVAL; 1204 goto out; 1205 } 1206 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) { 1207 if (ddr) { 1208 /* in ddr mode, divisor >>= 1 */ 1209 div = ((div >> 1) & (SDHC_SDCLK_DIV_MASK << 1210 SDHC_SDCLK_DIV_SHIFT)) | 1211 (div & (SDHC_SDCLK_DVS_MASK << 1212 SDHC_SDCLK_DVS_SHIFT)); 1213 } 1214 for (timo = 1000; timo > 0; timo--) { 1215 if (ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_SDSTB)) 1216 break; 1217 sdmmc_delay(10); 1218 } 1219 HWRITE4(hp, SDHC_CLOCK_CTL, 1220 div | (SDHC_TIMEOUT_MAX << 16) | 0x0f); 1221 } else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) { 1222 HWRITE4(hp, SDHC_CLOCK_CTL, 1223 div | (SDHC_TIMEOUT_MAX << 16)); 1224 } else { 1225 reg = HREAD2(hp, SDHC_CLOCK_CTL); 1226 reg &= (SDHC_INTCLK_STABLE | SDHC_INTCLK_ENABLE); 1227 HWRITE2(hp, SDHC_CLOCK_CTL, reg | div); 1228 } 1229 1230 /* 1231 * Start internal clock. Wait 10ms for stabilization. 1232 */ 1233 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) { 1234 HSET4(hp, SDHC_VEND_SPEC, 1235 SDHC_VEND_SPEC_CARD_CLK_SOFT_EN | 1236 SDHC_VEND_SPEC_FRC_SDCLK_ON); 1237 } else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) { 1238 sdmmc_delay(10000); 1239 HSET4(hp, SDHC_CLOCK_CTL, 1240 8 | SDHC_INTCLK_ENABLE | SDHC_INTCLK_STABLE); 1241 } else { 1242 HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE); 1243 for (timo = 1000; timo > 0; timo--) { 1244 if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL), 1245 SDHC_INTCLK_STABLE)) 1246 break; 1247 sdmmc_delay(10); 1248 } 1249 if (timo == 0) { 1250 error = ETIMEDOUT; 1251 DPRINTF(1,("%s: timeout\n", __func__)); 1252 goto out; 1253 } 1254 } 1255 1256 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) { 1257 HSET1(hp, SDHC_SOFTWARE_RESET, SDHC_INIT_ACTIVE); 1258 /* 1259 * Sending 80 clocks at 400kHz takes 200us. 1260 * So delay for that time + slop and then 1261 * check a few times for completion. 1262 */ 1263 sdmmc_delay(210); 1264 for (timo = 10; timo > 0; timo--) { 1265 if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), 1266 SDHC_INIT_ACTIVE)) 1267 break; 1268 sdmmc_delay(10); 1269 } 1270 DPRINTF(2,("%s: %u init spins\n", __func__, 10 - timo)); 1271 1272 /* 1273 * Enable SD clock. 1274 */ 1275 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) { 1276 HSET4(hp, SDHC_VEND_SPEC, 1277 SDHC_VEND_SPEC_CARD_CLK_SOFT_EN | 1278 SDHC_VEND_SPEC_FRC_SDCLK_ON); 1279 } else { 1280 HSET4(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE); 1281 } 1282 } else { 1283 /* 1284 * Enable SD clock. 1285 */ 1286 HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE); 1287 1288 if (freq > 25000 && 1289 !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_HS_BIT)) 1290 HSET1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED); 1291 else 1292 HCLR1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED); 1293 } 1294 1295 mutex_exit(&hp->intr_lock); 1296 1297 if (hp->sc->sc_vendor_bus_clock_post) { 1298 mutex_enter(&hp->bus_clock_lock); 1299 error = (*hp->sc->sc_vendor_bus_clock_post)(hp->sc, freq); 1300 mutex_exit(&hp->bus_clock_lock); 1301 } 1302 return error; 1303 1304 out: 1305 mutex_exit(&hp->intr_lock); 1306 1307 return error; 1308 } 1309 1310 static int 1311 sdhc_bus_width(sdmmc_chipset_handle_t sch, int width) 1312 { 1313 struct sdhc_host *hp = (struct sdhc_host *)sch; 1314 int reg; 1315 1316 switch (width) { 1317 case 1: 1318 case 4: 1319 break; 1320 1321 case 8: 1322 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_8BIT_MODE)) 1323 break; 1324 /* FALLTHROUGH */ 1325 default: 1326 DPRINTF(0,("%s: unsupported bus width (%d)\n", 1327 HDEVNAME(hp), width)); 1328 return 1; 1329 } 1330 1331 if (hp->sc->sc_vendor_bus_width) { 1332 const int error = hp->sc->sc_vendor_bus_width(hp->sc, width); 1333 if (error != 0) 1334 return error; 1335 } 1336 1337 mutex_enter(&hp->intr_lock); 1338 1339 reg = HREAD1(hp, SDHC_HOST_CTL); 1340 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) { 1341 reg &= ~(SDHC_4BIT_MODE|SDHC_ESDHC_8BIT_MODE); 1342 if (width == 4) 1343 reg |= SDHC_4BIT_MODE; 1344 else if (width == 8) 1345 reg |= SDHC_ESDHC_8BIT_MODE; 1346 } else { 1347 reg &= ~SDHC_4BIT_MODE; 1348 if (hp->specver >= SDHC_SPEC_VERS_300) { 1349 reg &= ~SDHC_8BIT_MODE; 1350 } 1351 if (width == 4) { 1352 reg |= SDHC_4BIT_MODE; 1353 } else if (width == 8 && hp->specver >= SDHC_SPEC_VERS_300) { 1354 reg |= SDHC_8BIT_MODE; 1355 } 1356 } 1357 HWRITE1(hp, SDHC_HOST_CTL, reg); 1358 1359 mutex_exit(&hp->intr_lock); 1360 1361 return 0; 1362 } 1363 1364 static int 1365 sdhc_bus_rod(sdmmc_chipset_handle_t sch, int on) 1366 { 1367 struct sdhc_host *hp = (struct sdhc_host *)sch; 1368 1369 if (hp->sc->sc_vendor_rod) 1370 return (*hp->sc->sc_vendor_rod)(hp->sc, on); 1371 1372 return 0; 1373 } 1374 1375 static void 1376 sdhc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable) 1377 { 1378 struct sdhc_host *hp = (struct sdhc_host *)sch; 1379 1380 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) { 1381 mutex_enter(&hp->intr_lock); 1382 if (enable) { 1383 HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT); 1384 HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT); 1385 } else { 1386 HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT); 1387 HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT); 1388 } 1389 mutex_exit(&hp->intr_lock); 1390 } 1391 } 1392 1393 static void 1394 sdhc_card_intr_ack(sdmmc_chipset_handle_t sch) 1395 { 1396 struct sdhc_host *hp = (struct sdhc_host *)sch; 1397 1398 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) { 1399 mutex_enter(&hp->intr_lock); 1400 HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT); 1401 mutex_exit(&hp->intr_lock); 1402 } 1403 } 1404 1405 static int 1406 sdhc_signal_voltage(sdmmc_chipset_handle_t sch, int signal_voltage) 1407 { 1408 struct sdhc_host *hp = (struct sdhc_host *)sch; 1409 int error = 0; 1410 1411 if (hp->specver < SDHC_SPEC_VERS_300) 1412 return EINVAL; 1413 1414 mutex_enter(&hp->intr_lock); 1415 switch (signal_voltage) { 1416 case SDMMC_SIGNAL_VOLTAGE_180: 1417 if (hp->sc->sc_vendor_signal_voltage != NULL) { 1418 error = hp->sc->sc_vendor_signal_voltage(hp->sc, 1419 signal_voltage); 1420 if (error != 0) 1421 break; 1422 } 1423 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) 1424 HSET2(hp, SDHC_HOST_CTL2, SDHC_1_8V_SIGNAL_EN); 1425 break; 1426 case SDMMC_SIGNAL_VOLTAGE_330: 1427 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) 1428 HCLR2(hp, SDHC_HOST_CTL2, SDHC_1_8V_SIGNAL_EN); 1429 if (hp->sc->sc_vendor_signal_voltage != NULL) { 1430 error = hp->sc->sc_vendor_signal_voltage(hp->sc, 1431 signal_voltage); 1432 if (error != 0) 1433 break; 1434 } 1435 break; 1436 default: 1437 error = EINVAL; 1438 break; 1439 } 1440 mutex_exit(&hp->intr_lock); 1441 1442 return error; 1443 } 1444 1445 /* 1446 * Sampling clock tuning procedure (UHS) 1447 */ 1448 static int 1449 sdhc_execute_tuning1(struct sdhc_host *hp, int timing) 1450 { 1451 struct sdmmc_command cmd; 1452 uint8_t hostctl; 1453 int opcode, error, retry = 40; 1454 1455 KASSERT(mutex_owned(&hp->intr_lock)); 1456 1457 hp->tuning_timing = timing; 1458 1459 switch (timing) { 1460 case SDMMC_TIMING_MMC_HS200: 1461 opcode = MMC_SEND_TUNING_BLOCK_HS200; 1462 break; 1463 case SDMMC_TIMING_UHS_SDR50: 1464 if (!ISSET(hp->sc->sc_caps2, SDHC_TUNING_SDR50)) 1465 return 0; 1466 /* FALLTHROUGH */ 1467 case SDMMC_TIMING_UHS_SDR104: 1468 opcode = MMC_SEND_TUNING_BLOCK; 1469 break; 1470 default: 1471 return EINVAL; 1472 } 1473 1474 hostctl = HREAD1(hp, SDHC_HOST_CTL); 1475 1476 /* enable buffer read ready interrupt */ 1477 HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_BUFFER_READ_READY); 1478 HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_BUFFER_READ_READY); 1479 1480 /* disable DMA */ 1481 HCLR1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT); 1482 1483 /* reset tuning circuit */ 1484 HCLR2(hp, SDHC_HOST_CTL2, SDHC_SAMPLING_CLOCK_SEL); 1485 1486 /* start of tuning */ 1487 HWRITE2(hp, SDHC_HOST_CTL2, SDHC_EXECUTE_TUNING); 1488 1489 do { 1490 memset(&cmd, 0, sizeof(cmd)); 1491 cmd.c_opcode = opcode; 1492 cmd.c_arg = 0; 1493 cmd.c_flags = SCF_CMD_ADTC | SCF_CMD_READ | SCF_RSP_R1; 1494 if (ISSET(hostctl, SDHC_8BIT_MODE)) { 1495 cmd.c_blklen = cmd.c_datalen = 128; 1496 } else { 1497 cmd.c_blklen = cmd.c_datalen = 64; 1498 } 1499 1500 error = sdhc_start_command(hp, &cmd); 1501 if (error) 1502 break; 1503 1504 if (!sdhc_wait_intr(hp, SDHC_BUFFER_READ_READY, 1505 SDHC_TUNING_TIMEOUT, false)) { 1506 break; 1507 } 1508 1509 delay(1000); 1510 } while (HREAD2(hp, SDHC_HOST_CTL2) & SDHC_EXECUTE_TUNING && --retry); 1511 1512 /* disable buffer read ready interrupt */ 1513 HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_BUFFER_READ_READY); 1514 HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_BUFFER_READ_READY); 1515 1516 if (HREAD2(hp, SDHC_HOST_CTL2) & SDHC_EXECUTE_TUNING) { 1517 HCLR2(hp, SDHC_HOST_CTL2, 1518 SDHC_SAMPLING_CLOCK_SEL|SDHC_EXECUTE_TUNING); 1519 sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD); 1520 aprint_error_dev(hp->sc->sc_dev, 1521 "tuning did not complete, using fixed sampling clock\n"); 1522 return 0; /* tuning did not complete */ 1523 } 1524 1525 if ((HREAD2(hp, SDHC_HOST_CTL2) & SDHC_SAMPLING_CLOCK_SEL) == 0) { 1526 HCLR2(hp, SDHC_HOST_CTL2, 1527 SDHC_SAMPLING_CLOCK_SEL|SDHC_EXECUTE_TUNING); 1528 sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD); 1529 aprint_error_dev(hp->sc->sc_dev, 1530 "tuning failed, using fixed sampling clock\n"); 1531 return 0; /* tuning failed */ 1532 } 1533 1534 if (hp->tuning_timer_count) { 1535 callout_schedule(&hp->tuning_timer, 1536 hz * hp->tuning_timer_count); 1537 } 1538 1539 return 0; /* tuning completed */ 1540 } 1541 1542 static int 1543 sdhc_execute_tuning(sdmmc_chipset_handle_t sch, int timing) 1544 { 1545 struct sdhc_host *hp = (struct sdhc_host *)sch; 1546 int error; 1547 1548 mutex_enter(&hp->intr_lock); 1549 error = sdhc_execute_tuning1(hp, timing); 1550 mutex_exit(&hp->intr_lock); 1551 return error; 1552 } 1553 1554 static void 1555 sdhc_tuning_timer(void *arg) 1556 { 1557 struct sdhc_host *hp = arg; 1558 1559 atomic_swap_uint(&hp->tuning_timer_pending, 1); 1560 } 1561 1562 static void 1563 sdhc_hw_reset(sdmmc_chipset_handle_t sch) 1564 { 1565 struct sdhc_host *hp = (struct sdhc_host *)sch; 1566 struct sdhc_softc *sc = hp->sc; 1567 1568 if (sc->sc_vendor_hw_reset != NULL) 1569 sc->sc_vendor_hw_reset(sc, hp); 1570 } 1571 1572 static int 1573 sdhc_wait_state(struct sdhc_host *hp, uint32_t mask, uint32_t value) 1574 { 1575 uint32_t state; 1576 int timeout; 1577 1578 for (timeout = 100000; timeout > 0; timeout--) { 1579 if (((state = HREAD4(hp, SDHC_PRESENT_STATE)) & mask) == value) 1580 return 0; 1581 sdmmc_delay(10); 1582 } 1583 aprint_error_dev(hp->sc->sc_dev, "timeout waiting for mask %#x value %#x (state=%#x)\n", 1584 mask, value, state); 1585 return ETIMEDOUT; 1586 } 1587 1588 static void 1589 sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd) 1590 { 1591 struct sdhc_host *hp = (struct sdhc_host *)sch; 1592 int error; 1593 bool probing; 1594 1595 mutex_enter(&hp->intr_lock); 1596 1597 if (atomic_cas_uint(&hp->tuning_timer_pending, 1, 0) == 1) { 1598 (void)sdhc_execute_tuning1(hp, hp->tuning_timing); 1599 } 1600 1601 if (cmd->c_data && 1602 ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) { 1603 const uint16_t ready = SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY; 1604 if (ISSET(hp->flags, SHF_USE_DMA)) { 1605 HCLR2(hp, SDHC_NINTR_SIGNAL_EN, ready); 1606 HCLR2(hp, SDHC_NINTR_STATUS_EN, ready); 1607 } else { 1608 HSET2(hp, SDHC_NINTR_SIGNAL_EN, ready); 1609 HSET2(hp, SDHC_NINTR_STATUS_EN, ready); 1610 } 1611 } 1612 1613 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_TIMEOUT)) { 1614 const uint16_t eintr = SDHC_CMD_TIMEOUT_ERROR; 1615 if (cmd->c_data != NULL) { 1616 HCLR2(hp, SDHC_EINTR_SIGNAL_EN, eintr); 1617 HCLR2(hp, SDHC_EINTR_STATUS_EN, eintr); 1618 } else { 1619 HSET2(hp, SDHC_EINTR_SIGNAL_EN, eintr); 1620 HSET2(hp, SDHC_EINTR_STATUS_EN, eintr); 1621 } 1622 } 1623 1624 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_STOP_WITH_TC)) { 1625 if (cmd->c_opcode == MMC_STOP_TRANSMISSION) 1626 SET(cmd->c_flags, SCF_RSP_BSY); 1627 } 1628 1629 /* 1630 * Start the MMC command, or mark `cmd' as failed and return. 1631 */ 1632 error = sdhc_start_command(hp, cmd); 1633 if (error) { 1634 cmd->c_error = error; 1635 goto out; 1636 } 1637 1638 /* 1639 * Wait until the command phase is done, or until the command 1640 * is marked done for any other reason. 1641 */ 1642 probing = (cmd->c_flags & SCF_TOUT_OK) != 0; 1643 if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE, SDHC_COMMAND_TIMEOUT*3, probing)) { 1644 DPRINTF(1,("%s: timeout for command\n", __func__)); 1645 sdmmc_delay(50); 1646 cmd->c_error = ETIMEDOUT; 1647 goto out; 1648 } 1649 1650 /* 1651 * The host controller removes bits [0:7] from the response 1652 * data (CRC) and we pass the data up unchanged to the bus 1653 * driver (without padding). 1654 */ 1655 if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) { 1656 cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE + 0); 1657 if (ISSET(cmd->c_flags, SCF_RSP_136)) { 1658 cmd->c_resp[1] = HREAD4(hp, SDHC_RESPONSE + 4); 1659 cmd->c_resp[2] = HREAD4(hp, SDHC_RESPONSE + 8); 1660 cmd->c_resp[3] = HREAD4(hp, SDHC_RESPONSE + 12); 1661 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_RSP136_CRC)) { 1662 cmd->c_resp[0] = (cmd->c_resp[0] >> 8) | 1663 (cmd->c_resp[1] << 24); 1664 cmd->c_resp[1] = (cmd->c_resp[1] >> 8) | 1665 (cmd->c_resp[2] << 24); 1666 cmd->c_resp[2] = (cmd->c_resp[2] >> 8) | 1667 (cmd->c_resp[3] << 24); 1668 cmd->c_resp[3] = (cmd->c_resp[3] >> 8); 1669 } 1670 } 1671 } 1672 DPRINTF(1,("%s: resp = %08x\n", HDEVNAME(hp), cmd->c_resp[0])); 1673 1674 /* 1675 * If the command has data to transfer in any direction, 1676 * execute the transfer now. 1677 */ 1678 if (cmd->c_error == 0 && cmd->c_data != NULL) 1679 sdhc_transfer_data(hp, cmd); 1680 else if (ISSET(cmd->c_flags, SCF_RSP_BSY)) { 1681 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_BUSY_INTR) && 1682 !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE, hz * 10, false)) { 1683 DPRINTF(1,("%s: sdhc_exec_command: RSP_BSY\n", 1684 HDEVNAME(hp))); 1685 cmd->c_error = ETIMEDOUT; 1686 goto out; 1687 } 1688 } 1689 1690 out: 1691 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED) 1692 && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_LED_ON)) { 1693 /* Turn off the LED. */ 1694 HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON); 1695 } 1696 SET(cmd->c_flags, SCF_ITSDONE); 1697 1698 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_AUTO_STOP) && 1699 cmd->c_opcode == MMC_STOP_TRANSMISSION) 1700 (void)sdhc_soft_reset(hp, SDHC_RESET_CMD|SDHC_RESET_DAT); 1701 1702 mutex_exit(&hp->intr_lock); 1703 1704 DPRINTF(1,("%s: cmd %d %s (flags=%08x error=%d)\n", HDEVNAME(hp), 1705 cmd->c_opcode, (cmd->c_error == 0) ? "done" : "abort", 1706 cmd->c_flags, cmd->c_error)); 1707 } 1708 1709 static int 1710 sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd) 1711 { 1712 struct sdhc_softc * const sc = hp->sc; 1713 uint16_t blksize = 0; 1714 uint16_t blkcount = 0; 1715 uint16_t mode; 1716 uint16_t command; 1717 uint32_t pmask; 1718 int error; 1719 1720 KASSERT(mutex_owned(&hp->intr_lock)); 1721 1722 DPRINTF(1,("%s: start cmd %d arg=%08x data=%p dlen=%d flags=%08x, status=%#x\n", 1723 HDEVNAME(hp), cmd->c_opcode, cmd->c_arg, cmd->c_data, 1724 cmd->c_datalen, cmd->c_flags, HREAD4(hp, SDHC_NINTR_STATUS))); 1725 1726 /* 1727 * The maximum block length for commands should be the minimum 1728 * of the host buffer size and the card buffer size. (1.7.2) 1729 */ 1730 1731 /* Fragment the data into proper blocks. */ 1732 if (cmd->c_datalen > 0) { 1733 blksize = MIN(cmd->c_datalen, cmd->c_blklen); 1734 blkcount = cmd->c_datalen / blksize; 1735 if (cmd->c_datalen % blksize > 0) { 1736 /* XXX: Split this command. (1.7.4) */ 1737 aprint_error_dev(sc->sc_dev, 1738 "data not a multiple of %u bytes\n", blksize); 1739 return EINVAL; 1740 } 1741 } 1742 1743 /* Check limit imposed by 9-bit block count. (1.7.2) */ 1744 if (blkcount > SDHC_BLOCK_COUNT_MAX) { 1745 aprint_error_dev(sc->sc_dev, "too much data\n"); 1746 return EINVAL; 1747 } 1748 1749 /* Prepare transfer mode register value. (2.2.5) */ 1750 mode = 0; 1751 if (ISSET(cmd->c_flags, SCF_CMD_READ)) 1752 mode |= SDHC_READ_MODE; 1753 if (blkcount > 0) { 1754 mode |= SDHC_BLOCK_COUNT_ENABLE; 1755 if (blkcount > 1) { 1756 mode |= SDHC_MULTI_BLOCK_MODE; 1757 if (!ISSET(sc->sc_flags, SDHC_FLAG_NO_AUTO_STOP) 1758 && !ISSET(cmd->c_flags, SCF_NO_STOP)) 1759 mode |= SDHC_AUTO_CMD12_ENABLE; 1760 } 1761 } 1762 if (cmd->c_dmamap != NULL && cmd->c_datalen > 0 && 1763 ISSET(hp->flags, SHF_MODE_DMAEN)) { 1764 mode |= SDHC_DMA_ENABLE; 1765 } 1766 1767 /* 1768 * Prepare command register value. (2.2.6) 1769 */ 1770 command = (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) << SDHC_COMMAND_INDEX_SHIFT; 1771 1772 if (ISSET(cmd->c_flags, SCF_RSP_CRC)) 1773 command |= SDHC_CRC_CHECK_ENABLE; 1774 if (ISSET(cmd->c_flags, SCF_RSP_IDX)) 1775 command |= SDHC_INDEX_CHECK_ENABLE; 1776 if (cmd->c_datalen > 0) 1777 command |= SDHC_DATA_PRESENT_SELECT; 1778 1779 if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT)) 1780 command |= SDHC_NO_RESPONSE; 1781 else if (ISSET(cmd->c_flags, SCF_RSP_136)) 1782 command |= SDHC_RESP_LEN_136; 1783 else if (ISSET(cmd->c_flags, SCF_RSP_BSY)) 1784 command |= SDHC_RESP_LEN_48_CHK_BUSY; 1785 else 1786 command |= SDHC_RESP_LEN_48; 1787 1788 /* Wait until command and optionally data inhibit bits are clear. (1.5) */ 1789 pmask = SDHC_CMD_INHIBIT_CMD; 1790 if (cmd->c_flags & (SCF_CMD_ADTC|SCF_RSP_BSY)) 1791 pmask |= SDHC_CMD_INHIBIT_DAT; 1792 error = sdhc_wait_state(hp, pmask, 0); 1793 if (error) { 1794 (void) sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD); 1795 device_printf(sc->sc_dev, "command or data phase inhibited\n"); 1796 return error; 1797 } 1798 1799 DPRINTF(1,("%s: writing cmd: blksize=%d blkcnt=%d mode=%04x cmd=%04x\n", 1800 HDEVNAME(hp), blksize, blkcount, mode, command)); 1801 1802 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) { 1803 blksize |= (MAX(0, PAGE_SHIFT - 12) & SDHC_DMA_BOUNDARY_MASK) << 1804 SDHC_DMA_BOUNDARY_SHIFT; /* PAGE_SIZE DMA boundary */ 1805 } 1806 1807 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) { 1808 /* Alert the user not to remove the card. */ 1809 HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON); 1810 } 1811 1812 /* Set DMA start address. */ 1813 if (ISSET(hp->flags, SHF_USE_ADMA2_MASK) && cmd->c_data != NULL) { 1814 for (int seg = 0; seg < cmd->c_dmamap->dm_nsegs; seg++) { 1815 bus_addr_t paddr = 1816 cmd->c_dmamap->dm_segs[seg].ds_addr; 1817 uint16_t len = 1818 cmd->c_dmamap->dm_segs[seg].ds_len == 65536 ? 1819 0 : cmd->c_dmamap->dm_segs[seg].ds_len; 1820 uint16_t attr = 1821 SDHC_ADMA2_VALID | SDHC_ADMA2_ACT_TRANS; 1822 if (seg == cmd->c_dmamap->dm_nsegs - 1) { 1823 attr |= SDHC_ADMA2_END; 1824 } 1825 if (ISSET(hp->flags, SHF_USE_ADMA2_32)) { 1826 struct sdhc_adma2_descriptor32 *desc = 1827 hp->adma2; 1828 desc[seg].attribute = htole16(attr); 1829 desc[seg].length = htole16(len); 1830 desc[seg].address = htole32(paddr); 1831 } else { 1832 struct sdhc_adma2_descriptor64 *desc = 1833 hp->adma2; 1834 desc[seg].attribute = htole16(attr); 1835 desc[seg].length = htole16(len); 1836 desc[seg].address = htole32(paddr & 0xffffffff); 1837 desc[seg].address_hi = htole32( 1838 (uint64_t)paddr >> 32); 1839 } 1840 } 1841 if (ISSET(hp->flags, SHF_USE_ADMA2_32)) { 1842 struct sdhc_adma2_descriptor32 *desc = hp->adma2; 1843 desc[cmd->c_dmamap->dm_nsegs].attribute = htole16(0); 1844 } else { 1845 struct sdhc_adma2_descriptor64 *desc = hp->adma2; 1846 desc[cmd->c_dmamap->dm_nsegs].attribute = htole16(0); 1847 } 1848 bus_dmamap_sync(sc->sc_dmat, hp->adma_map, 0, PAGE_SIZE, 1849 BUS_DMASYNC_PREWRITE); 1850 1851 const bus_addr_t desc_addr = hp->adma_map->dm_segs[0].ds_addr; 1852 HWRITE4(hp, SDHC_ADMA_SYSTEM_ADDR, desc_addr & 0xffffffff); 1853 if (ISSET(hp->flags, SHF_USE_ADMA2_64)) { 1854 HWRITE4(hp, SDHC_ADMA_SYSTEM_ADDR + 4, 1855 (uint64_t)desc_addr >> 32); 1856 } 1857 1858 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) { 1859 HCLR4(hp, SDHC_HOST_CTL, SDHC_USDHC_DMA_SELECT); 1860 HSET4(hp, SDHC_HOST_CTL, SDHC_USDHC_DMA_SELECT_ADMA2); 1861 } else { 1862 HCLR1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT); 1863 HSET1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT_ADMA2); 1864 } 1865 } else if (ISSET(mode, SDHC_DMA_ENABLE) && 1866 !ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA)) { 1867 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) { 1868 HCLR4(hp, SDHC_HOST_CTL, SDHC_USDHC_DMA_SELECT); 1869 } 1870 HWRITE4(hp, SDHC_DMA_ADDR, cmd->c_dmamap->dm_segs[0].ds_addr); 1871 } 1872 1873 /* 1874 * Start a CPU data transfer. Writing to the high order byte 1875 * of the SDHC_COMMAND register triggers the SD command. (1.5) 1876 */ 1877 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) { 1878 HWRITE4(hp, SDHC_BLOCK_SIZE, blksize | (blkcount << 16)); 1879 HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg); 1880 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) { 1881 /* mode bits is in MIX_CTRL register on uSDHC */ 1882 HWRITE4(hp, SDHC_MIX_CTRL, mode | 1883 (HREAD4(hp, SDHC_MIX_CTRL) & ~SDHC_TRANSFER_MODE_MASK)); 1884 if (cmd->c_opcode == MMC_STOP_TRANSMISSION) 1885 command |= SDHC_COMMAND_TYPE_ABORT; 1886 HWRITE4(hp, SDHC_TRANSFER_MODE, command << 16); 1887 } else { 1888 HWRITE4(hp, SDHC_TRANSFER_MODE, mode | (command << 16)); 1889 } 1890 } else { 1891 HWRITE2(hp, SDHC_BLOCK_SIZE, blksize); 1892 HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount); 1893 HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg); 1894 HWRITE2(hp, SDHC_TRANSFER_MODE, mode); 1895 HWRITE2(hp, SDHC_COMMAND, command); 1896 } 1897 1898 return 0; 1899 } 1900 1901 static void 1902 sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd) 1903 { 1904 struct sdhc_softc *sc = hp->sc; 1905 int error; 1906 1907 KASSERT(mutex_owned(&hp->intr_lock)); 1908 1909 DPRINTF(1,("%s: data transfer: resp=%08x datalen=%u\n", HDEVNAME(hp), 1910 MMC_R1(cmd->c_resp), cmd->c_datalen)); 1911 1912 #ifdef SDHC_DEBUG 1913 /* XXX I forgot why I wanted to know when this happens :-( */ 1914 if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) && 1915 ISSET(MMC_R1(cmd->c_resp), 0xcb00)) { 1916 aprint_error_dev(hp->sc->sc_dev, 1917 "CMD52/53 error response flags %#x\n", 1918 MMC_R1(cmd->c_resp) & 0xff00); 1919 } 1920 #endif 1921 1922 if (cmd->c_dmamap != NULL) { 1923 if (hp->sc->sc_vendor_transfer_data_dma != NULL) { 1924 error = hp->sc->sc_vendor_transfer_data_dma(sc, cmd); 1925 if (error == 0 && !sdhc_wait_intr(hp, 1926 SDHC_TRANSFER_COMPLETE, SDHC_DMA_TIMEOUT, false)) { 1927 DPRINTF(1,("%s: timeout\n", __func__)); 1928 error = ETIMEDOUT; 1929 } 1930 } else { 1931 error = sdhc_transfer_data_dma(hp, cmd); 1932 } 1933 } else 1934 error = sdhc_transfer_data_pio(hp, cmd); 1935 if (error) 1936 cmd->c_error = error; 1937 SET(cmd->c_flags, SCF_ITSDONE); 1938 1939 DPRINTF(1,("%s: data transfer done (error=%d)\n", 1940 HDEVNAME(hp), cmd->c_error)); 1941 } 1942 1943 static int 1944 sdhc_transfer_data_dma(struct sdhc_host *hp, struct sdmmc_command *cmd) 1945 { 1946 bus_dma_segment_t *dm_segs = cmd->c_dmamap->dm_segs; 1947 bus_addr_t posaddr; 1948 bus_addr_t segaddr; 1949 bus_size_t seglen; 1950 u_int seg = 0; 1951 int error = 0; 1952 int status; 1953 1954 KASSERT(mutex_owned(&hp->intr_lock)); 1955 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_DMA_INTERRUPT); 1956 KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_DMA_INTERRUPT); 1957 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE); 1958 KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE); 1959 1960 for (;;) { 1961 status = sdhc_wait_intr(hp, 1962 SDHC_DMA_INTERRUPT|SDHC_TRANSFER_COMPLETE, 1963 SDHC_DMA_TIMEOUT, false); 1964 1965 if (status & SDHC_TRANSFER_COMPLETE) { 1966 break; 1967 } 1968 if (!status) { 1969 DPRINTF(1,("%s: timeout\n", __func__)); 1970 error = ETIMEDOUT; 1971 break; 1972 } 1973 1974 if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) { 1975 continue; 1976 } 1977 1978 if ((status & SDHC_DMA_INTERRUPT) == 0) { 1979 continue; 1980 } 1981 1982 /* DMA Interrupt (boundary crossing) */ 1983 1984 segaddr = dm_segs[seg].ds_addr; 1985 seglen = dm_segs[seg].ds_len; 1986 posaddr = HREAD4(hp, SDHC_DMA_ADDR); 1987 1988 if ((seg == (cmd->c_dmamap->dm_nsegs-1)) && (posaddr == (segaddr + seglen))) { 1989 continue; 1990 } 1991 if ((posaddr >= segaddr) && (posaddr < (segaddr + seglen))) 1992 HWRITE4(hp, SDHC_DMA_ADDR, posaddr); 1993 else if ((posaddr >= segaddr) && (posaddr == (segaddr + seglen)) && (seg + 1) < cmd->c_dmamap->dm_nsegs) 1994 HWRITE4(hp, SDHC_DMA_ADDR, dm_segs[++seg].ds_addr); 1995 KASSERT(seg < cmd->c_dmamap->dm_nsegs); 1996 } 1997 1998 if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) { 1999 bus_dmamap_sync(hp->sc->sc_dmat, hp->adma_map, 0, 2000 PAGE_SIZE, BUS_DMASYNC_POSTWRITE); 2001 } 2002 2003 return error; 2004 } 2005 2006 static int 2007 sdhc_transfer_data_pio(struct sdhc_host *hp, struct sdmmc_command *cmd) 2008 { 2009 uint8_t *data = cmd->c_data; 2010 void (*pio_func)(struct sdhc_host *, uint8_t *, u_int); 2011 u_int len, datalen; 2012 u_int imask; 2013 u_int pmask; 2014 int error = 0; 2015 2016 KASSERT(mutex_owned(&hp->intr_lock)); 2017 2018 if (ISSET(cmd->c_flags, SCF_CMD_READ)) { 2019 imask = SDHC_BUFFER_READ_READY; 2020 pmask = SDHC_BUFFER_READ_ENABLE; 2021 if (ISSET(hp->sc->sc_flags, 2022 SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) { 2023 pio_func = esdhc_read_data_pio; 2024 } else { 2025 pio_func = sdhc_read_data_pio; 2026 } 2027 } else { 2028 imask = SDHC_BUFFER_WRITE_READY; 2029 pmask = SDHC_BUFFER_WRITE_ENABLE; 2030 if (ISSET(hp->sc->sc_flags, 2031 SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) { 2032 pio_func = esdhc_write_data_pio; 2033 } else { 2034 pio_func = sdhc_write_data_pio; 2035 } 2036 } 2037 datalen = cmd->c_datalen; 2038 2039 KASSERT(mutex_owned(&hp->intr_lock)); 2040 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & imask); 2041 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE); 2042 KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE); 2043 2044 while (datalen > 0) { 2045 if (!ISSET(HREAD4(hp, SDHC_PRESENT_STATE), pmask)) { 2046 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) { 2047 HSET4(hp, SDHC_NINTR_SIGNAL_EN, imask); 2048 } else { 2049 HSET2(hp, SDHC_NINTR_SIGNAL_EN, imask); 2050 } 2051 if (!sdhc_wait_intr(hp, imask, SDHC_BUFFER_TIMEOUT, false)) { 2052 DPRINTF(1,("%s: timeout\n", __func__)); 2053 error = ETIMEDOUT; 2054 break; 2055 } 2056 2057 error = sdhc_wait_state(hp, pmask, pmask); 2058 if (error) 2059 break; 2060 } 2061 2062 len = MIN(datalen, cmd->c_blklen); 2063 (*pio_func)(hp, data, len); 2064 DPRINTF(2,("%s: pio data transfer %u @ %p\n", 2065 HDEVNAME(hp), len, data)); 2066 2067 data += len; 2068 datalen -= len; 2069 } 2070 2071 if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE, 2072 SDHC_TRANSFER_TIMEOUT, false)) { 2073 DPRINTF(1,("%s: timeout for transfer\n", __func__)); 2074 error = ETIMEDOUT; 2075 } 2076 2077 return error; 2078 } 2079 2080 static void 2081 sdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen) 2082 { 2083 2084 if (((__uintptr_t)data & 3) == 0) { 2085 while (datalen > 3) { 2086 *(uint32_t *)data = le32toh(HREAD4(hp, SDHC_DATA)); 2087 data += 4; 2088 datalen -= 4; 2089 } 2090 if (datalen > 1) { 2091 *(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA)); 2092 data += 2; 2093 datalen -= 2; 2094 } 2095 if (datalen > 0) { 2096 *data = HREAD1(hp, SDHC_DATA); 2097 data += 1; 2098 datalen -= 1; 2099 } 2100 } else if (((__uintptr_t)data & 1) == 0) { 2101 while (datalen > 1) { 2102 *(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA)); 2103 data += 2; 2104 datalen -= 2; 2105 } 2106 if (datalen > 0) { 2107 *data = HREAD1(hp, SDHC_DATA); 2108 data += 1; 2109 datalen -= 1; 2110 } 2111 } else { 2112 while (datalen > 0) { 2113 *data = HREAD1(hp, SDHC_DATA); 2114 data += 1; 2115 datalen -= 1; 2116 } 2117 } 2118 } 2119 2120 static void 2121 sdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen) 2122 { 2123 2124 if (((__uintptr_t)data & 3) == 0) { 2125 while (datalen > 3) { 2126 HWRITE4(hp, SDHC_DATA, htole32(*(uint32_t *)data)); 2127 data += 4; 2128 datalen -= 4; 2129 } 2130 if (datalen > 1) { 2131 HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data)); 2132 data += 2; 2133 datalen -= 2; 2134 } 2135 if (datalen > 0) { 2136 HWRITE1(hp, SDHC_DATA, *data); 2137 data += 1; 2138 datalen -= 1; 2139 } 2140 } else if (((__uintptr_t)data & 1) == 0) { 2141 while (datalen > 1) { 2142 HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data)); 2143 data += 2; 2144 datalen -= 2; 2145 } 2146 if (datalen > 0) { 2147 HWRITE1(hp, SDHC_DATA, *data); 2148 data += 1; 2149 datalen -= 1; 2150 } 2151 } else { 2152 while (datalen > 0) { 2153 HWRITE1(hp, SDHC_DATA, *data); 2154 data += 1; 2155 datalen -= 1; 2156 } 2157 } 2158 } 2159 2160 static void 2161 esdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen) 2162 { 2163 uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS); 2164 uint32_t v; 2165 2166 const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_READ_SHIFT) & SDHC_WATERMARK_READ_MASK; 2167 size_t count = 0; 2168 2169 while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) { 2170 if (count == 0) { 2171 /* 2172 * If we've drained "watermark" words, we need to wait 2173 * a little bit so the read FIFO can refill. 2174 */ 2175 sdmmc_delay(10); 2176 count = watermark; 2177 } 2178 v = HREAD4(hp, SDHC_DATA); 2179 v = le32toh(v); 2180 *(uint32_t *)data = v; 2181 data += 4; 2182 datalen -= 4; 2183 status = HREAD2(hp, SDHC_NINTR_STATUS); 2184 count--; 2185 } 2186 if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) { 2187 if (count == 0) { 2188 sdmmc_delay(10); 2189 } 2190 v = HREAD4(hp, SDHC_DATA); 2191 v = le32toh(v); 2192 do { 2193 *data++ = v; 2194 v >>= 8; 2195 } while (--datalen > 0); 2196 } 2197 } 2198 2199 static void 2200 esdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen) 2201 { 2202 uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS); 2203 uint32_t v; 2204 2205 const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_WRITE_SHIFT) & SDHC_WATERMARK_WRITE_MASK; 2206 size_t count = watermark; 2207 2208 while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) { 2209 if (count == 0) { 2210 sdmmc_delay(10); 2211 count = watermark; 2212 } 2213 v = *(uint32_t *)data; 2214 v = htole32(v); 2215 HWRITE4(hp, SDHC_DATA, v); 2216 data += 4; 2217 datalen -= 4; 2218 status = HREAD2(hp, SDHC_NINTR_STATUS); 2219 count--; 2220 } 2221 if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) { 2222 if (count == 0) { 2223 sdmmc_delay(10); 2224 } 2225 v = *(uint32_t *)data; 2226 v = htole32(v); 2227 HWRITE4(hp, SDHC_DATA, v); 2228 } 2229 } 2230 2231 /* Prepare for another command. */ 2232 static int 2233 sdhc_soft_reset(struct sdhc_host *hp, int mask) 2234 { 2235 int timo; 2236 2237 KASSERT(mutex_owned(&hp->intr_lock)); 2238 2239 DPRINTF(1,("%s: software reset reg=%08x\n", HDEVNAME(hp), mask)); 2240 2241 /* Request the reset. */ 2242 HWRITE1(hp, SDHC_SOFTWARE_RESET, mask); 2243 2244 /* 2245 * If necessary, wait for the controller to set the bits to 2246 * acknowledge the reset. 2247 */ 2248 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_WAIT_RESET) && 2249 ISSET(mask, (SDHC_RESET_DAT | SDHC_RESET_CMD))) { 2250 for (timo = 10000; timo > 0; timo--) { 2251 if (ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask)) 2252 break; 2253 /* Short delay because I worry we may miss it... */ 2254 sdmmc_delay(1); 2255 } 2256 if (timo == 0) { 2257 DPRINTF(1,("%s: timeout for reset on\n", __func__)); 2258 return ETIMEDOUT; 2259 } 2260 } 2261 2262 /* 2263 * Wait for the controller to clear the bits to indicate that 2264 * the reset has completed. 2265 */ 2266 for (timo = 10; timo > 0; timo--) { 2267 if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask)) 2268 break; 2269 sdmmc_delay(10000); 2270 } 2271 if (timo == 0) { 2272 DPRINTF(1,("%s: timeout reg=%08x\n", HDEVNAME(hp), 2273 HREAD1(hp, SDHC_SOFTWARE_RESET))); 2274 return ETIMEDOUT; 2275 } 2276 2277 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) { 2278 HSET4(hp, SDHC_DMA_CTL, SDHC_DMA_SNOOP); 2279 } 2280 2281 return 0; 2282 } 2283 2284 static int 2285 sdhc_wait_intr(struct sdhc_host *hp, int mask, int timo, bool probing) 2286 { 2287 int status, error, nointr; 2288 2289 KASSERT(mutex_owned(&hp->intr_lock)); 2290 2291 mask |= SDHC_ERROR_INTERRUPT; 2292 2293 nointr = 0; 2294 status = hp->intr_status & mask; 2295 while (status == 0) { 2296 if (cv_timedwait(&hp->intr_cv, &hp->intr_lock, timo) 2297 == EWOULDBLOCK) { 2298 nointr = 1; 2299 break; 2300 } 2301 status = hp->intr_status & mask; 2302 } 2303 error = hp->intr_error_status; 2304 2305 DPRINTF(2,("%s: intr status %#x error %#x\n", HDEVNAME(hp), status, 2306 error)); 2307 2308 hp->intr_status &= ~status; 2309 hp->intr_error_status &= ~error; 2310 2311 if (ISSET(status, SDHC_ERROR_INTERRUPT)) { 2312 if (ISSET(error, SDHC_DMA_ERROR)) 2313 device_printf(hp->sc->sc_dev,"dma error\n"); 2314 if (ISSET(error, SDHC_ADMA_ERROR)) 2315 device_printf(hp->sc->sc_dev,"adma error\n"); 2316 if (ISSET(error, SDHC_AUTO_CMD12_ERROR)) 2317 device_printf(hp->sc->sc_dev,"auto_cmd12 error\n"); 2318 if (ISSET(error, SDHC_CURRENT_LIMIT_ERROR)) 2319 device_printf(hp->sc->sc_dev,"current limit error\n"); 2320 if (ISSET(error, SDHC_DATA_END_BIT_ERROR)) 2321 device_printf(hp->sc->sc_dev,"data end bit error\n"); 2322 if (ISSET(error, SDHC_DATA_CRC_ERROR)) 2323 device_printf(hp->sc->sc_dev,"data crc error\n"); 2324 if (ISSET(error, SDHC_DATA_TIMEOUT_ERROR)) 2325 device_printf(hp->sc->sc_dev,"data timeout error\n"); 2326 if (ISSET(error, SDHC_CMD_INDEX_ERROR)) 2327 device_printf(hp->sc->sc_dev,"cmd index error\n"); 2328 if (ISSET(error, SDHC_CMD_END_BIT_ERROR)) 2329 device_printf(hp->sc->sc_dev,"cmd end bit error\n"); 2330 if (ISSET(error, SDHC_CMD_CRC_ERROR)) 2331 device_printf(hp->sc->sc_dev,"cmd crc error\n"); 2332 if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR)) { 2333 if (!probing) 2334 device_printf(hp->sc->sc_dev,"cmd timeout error\n"); 2335 #ifdef SDHC_DEBUG 2336 else if (sdhcdebug > 0) 2337 device_printf(hp->sc->sc_dev,"cmd timeout (expected)\n"); 2338 #endif 2339 } 2340 if ((error & ~SDHC_EINTR_STATUS_MASK) != 0) 2341 device_printf(hp->sc->sc_dev,"vendor error %#x\n", 2342 (error & ~SDHC_EINTR_STATUS_MASK)); 2343 if (error == 0) 2344 device_printf(hp->sc->sc_dev,"no error\n"); 2345 2346 /* Command timeout has higher priority than command complete. */ 2347 if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR)) 2348 CLR(status, SDHC_COMMAND_COMPLETE); 2349 2350 /* Transfer complete has higher priority than data timeout. */ 2351 if (ISSET(status, SDHC_TRANSFER_COMPLETE)) 2352 CLR(error, SDHC_DATA_TIMEOUT_ERROR); 2353 } 2354 2355 if (nointr || 2356 (ISSET(status, SDHC_ERROR_INTERRUPT) && error)) { 2357 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) 2358 (void)sdhc_soft_reset(hp, SDHC_RESET_CMD|SDHC_RESET_DAT); 2359 hp->intr_error_status = 0; 2360 status = 0; 2361 } 2362 2363 return status; 2364 } 2365 2366 /* 2367 * Established by attachment driver at interrupt priority IPL_SDMMC. 2368 */ 2369 int 2370 sdhc_intr(void *arg) 2371 { 2372 struct sdhc_softc *sc = (struct sdhc_softc *)arg; 2373 struct sdhc_host *hp; 2374 int done = 0; 2375 uint16_t status; 2376 uint16_t error; 2377 2378 /* We got an interrupt, but we don't know from which slot. */ 2379 for (size_t host = 0; host < sc->sc_nhosts; host++) { 2380 hp = sc->sc_host[host]; 2381 if (hp == NULL) 2382 continue; 2383 2384 mutex_enter(&hp->intr_lock); 2385 2386 if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) { 2387 /* Find out which interrupts are pending. */ 2388 uint32_t xstatus = HREAD4(hp, SDHC_NINTR_STATUS); 2389 status = xstatus; 2390 error = xstatus >> 16; 2391 if (ISSET(sc->sc_flags, SDHC_FLAG_USDHC) && 2392 (xstatus & SDHC_TRANSFER_COMPLETE) && 2393 !(xstatus & SDHC_DMA_INTERRUPT)) { 2394 /* read again due to uSDHC errata */ 2395 status = xstatus = HREAD4(hp, 2396 SDHC_NINTR_STATUS); 2397 error = xstatus >> 16; 2398 } 2399 if (ISSET(sc->sc_flags, 2400 SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) { 2401 if ((error & SDHC_NINTR_STATUS_MASK) != 0) 2402 SET(status, SDHC_ERROR_INTERRUPT); 2403 } 2404 if (error) 2405 xstatus |= SDHC_ERROR_INTERRUPT; 2406 else if (!ISSET(status, SDHC_NINTR_STATUS_MASK)) 2407 goto next_port; /* no interrupt for us */ 2408 /* Acknowledge the interrupts we are about to handle. */ 2409 HWRITE4(hp, SDHC_NINTR_STATUS, xstatus); 2410 } else { 2411 /* Find out which interrupts are pending. */ 2412 error = 0; 2413 status = HREAD2(hp, SDHC_NINTR_STATUS); 2414 if (!ISSET(status, SDHC_NINTR_STATUS_MASK)) 2415 goto next_port; /* no interrupt for us */ 2416 /* Acknowledge the interrupts we are about to handle. */ 2417 HWRITE2(hp, SDHC_NINTR_STATUS, status); 2418 if (ISSET(status, SDHC_ERROR_INTERRUPT)) { 2419 /* Acknowledge error interrupts. */ 2420 error = HREAD2(hp, SDHC_EINTR_STATUS); 2421 HWRITE2(hp, SDHC_EINTR_STATUS, error); 2422 } 2423 } 2424 2425 DPRINTF(2,("%s: interrupt status=%x error=%x\n", HDEVNAME(hp), 2426 status, error)); 2427 2428 /* Claim this interrupt. */ 2429 done = 1; 2430 2431 if (ISSET(status, SDHC_ERROR_INTERRUPT) && 2432 ISSET(error, SDHC_ADMA_ERROR)) { 2433 uint8_t adma_err = HREAD1(hp, SDHC_ADMA_ERROR_STATUS); 2434 printf("%s: ADMA error, status %02x\n", HDEVNAME(hp), 2435 adma_err); 2436 } 2437 2438 /* 2439 * Wake up the sdmmc event thread to scan for cards. 2440 */ 2441 if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)) { 2442 if (hp->sdmmc != NULL) { 2443 sdmmc_needs_discover(hp->sdmmc); 2444 } 2445 if (ISSET(sc->sc_flags, 2446 SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) { 2447 HCLR4(hp, SDHC_NINTR_STATUS_EN, 2448 status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)); 2449 HCLR4(hp, SDHC_NINTR_SIGNAL_EN, 2450 status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)); 2451 } 2452 } 2453 2454 /* 2455 * Schedule re-tuning process (UHS). 2456 */ 2457 if (ISSET(status, SDHC_RETUNING_EVENT)) { 2458 atomic_swap_uint(&hp->tuning_timer_pending, 1); 2459 } 2460 2461 /* 2462 * Wake up the blocking process to service command 2463 * related interrupt(s). 2464 */ 2465 if (ISSET(status, SDHC_COMMAND_COMPLETE|SDHC_ERROR_INTERRUPT| 2466 SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY| 2467 SDHC_TRANSFER_COMPLETE|SDHC_DMA_INTERRUPT)) { 2468 hp->intr_error_status |= error; 2469 hp->intr_status |= status; 2470 if (ISSET(sc->sc_flags, 2471 SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) { 2472 HCLR4(hp, SDHC_NINTR_SIGNAL_EN, 2473 status & (SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY)); 2474 } 2475 cv_broadcast(&hp->intr_cv); 2476 } 2477 2478 /* 2479 * Service SD card interrupts. 2480 */ 2481 if (!ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC) 2482 && ISSET(status, SDHC_CARD_INTERRUPT)) { 2483 DPRINTF(0,("%s: card interrupt\n", HDEVNAME(hp))); 2484 HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT); 2485 sdmmc_card_intr(hp->sdmmc); 2486 } 2487 next_port: 2488 mutex_exit(&hp->intr_lock); 2489 } 2490 2491 return done; 2492 } 2493 2494 kmutex_t * 2495 sdhc_host_lock(struct sdhc_host *hp) 2496 { 2497 return &hp->intr_lock; 2498 } 2499 2500 uint8_t 2501 sdhc_host_read_1(struct sdhc_host *hp, int reg) 2502 { 2503 return HREAD1(hp, reg); 2504 } 2505 2506 uint16_t 2507 sdhc_host_read_2(struct sdhc_host *hp, int reg) 2508 { 2509 return HREAD2(hp, reg); 2510 } 2511 2512 uint32_t 2513 sdhc_host_read_4(struct sdhc_host *hp, int reg) 2514 { 2515 return HREAD4(hp, reg); 2516 } 2517 2518 void 2519 sdhc_host_write_1(struct sdhc_host *hp, int reg, uint8_t val) 2520 { 2521 HWRITE1(hp, reg, val); 2522 } 2523 2524 void 2525 sdhc_host_write_2(struct sdhc_host *hp, int reg, uint16_t val) 2526 { 2527 HWRITE2(hp, reg, val); 2528 } 2529 2530 void 2531 sdhc_host_write_4(struct sdhc_host *hp, int reg, uint32_t val) 2532 { 2533 HWRITE4(hp, reg, val); 2534 } 2535 2536 #ifdef SDHC_DEBUG 2537 void 2538 sdhc_dump_regs(struct sdhc_host *hp) 2539 { 2540 2541 printf("0x%02x PRESENT_STATE: %x\n", SDHC_PRESENT_STATE, 2542 HREAD4(hp, SDHC_PRESENT_STATE)); 2543 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) 2544 printf("0x%02x POWER_CTL: %x\n", SDHC_POWER_CTL, 2545 HREAD1(hp, SDHC_POWER_CTL)); 2546 printf("0x%02x NINTR_STATUS: %x\n", SDHC_NINTR_STATUS, 2547 HREAD2(hp, SDHC_NINTR_STATUS)); 2548 printf("0x%02x EINTR_STATUS: %x\n", SDHC_EINTR_STATUS, 2549 HREAD2(hp, SDHC_EINTR_STATUS)); 2550 printf("0x%02x NINTR_STATUS_EN: %x\n", SDHC_NINTR_STATUS_EN, 2551 HREAD2(hp, SDHC_NINTR_STATUS_EN)); 2552 printf("0x%02x EINTR_STATUS_EN: %x\n", SDHC_EINTR_STATUS_EN, 2553 HREAD2(hp, SDHC_EINTR_STATUS_EN)); 2554 printf("0x%02x NINTR_SIGNAL_EN: %x\n", SDHC_NINTR_SIGNAL_EN, 2555 HREAD2(hp, SDHC_NINTR_SIGNAL_EN)); 2556 printf("0x%02x EINTR_SIGNAL_EN: %x\n", SDHC_EINTR_SIGNAL_EN, 2557 HREAD2(hp, SDHC_EINTR_SIGNAL_EN)); 2558 printf("0x%02x CAPABILITIES: %x\n", SDHC_CAPABILITIES, 2559 HREAD4(hp, SDHC_CAPABILITIES)); 2560 printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES, 2561 HREAD4(hp, SDHC_MAX_CAPABILITIES)); 2562 } 2563 #endif 2564