xref: /netbsd-src/sys/dev/sdmmc/sdhc.c (revision c2f76ff004a2cb67efe5b12d97bd3ef7fe89e18d)
1 /*	$NetBSD: sdhc.c,v 1.8 2010/10/07 12:06:10 kiyohara Exp $	*/
2 /*	$OpenBSD: sdhc.c,v 1.25 2009/01/13 19:44:20 grange Exp $	*/
3 
4 /*
5  * Copyright (c) 2006 Uwe Stuehler <uwe@openbsd.org>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 /*
21  * SD Host Controller driver based on the SD Host Controller Standard
22  * Simplified Specification Version 1.00 (www.sdcard.com).
23  */
24 
25 #include <sys/cdefs.h>
26 __KERNEL_RCSID(0, "$NetBSD: sdhc.c,v 1.8 2010/10/07 12:06:10 kiyohara Exp $");
27 
28 #include <sys/param.h>
29 #include <sys/device.h>
30 #include <sys/kernel.h>
31 #include <sys/kthread.h>
32 #include <sys/malloc.h>
33 #include <sys/systm.h>
34 #include <sys/mutex.h>
35 #include <sys/condvar.h>
36 
37 #include <dev/sdmmc/sdhcreg.h>
38 #include <dev/sdmmc/sdhcvar.h>
39 #include <dev/sdmmc/sdmmcchip.h>
40 #include <dev/sdmmc/sdmmcreg.h>
41 #include <dev/sdmmc/sdmmcvar.h>
42 
43 #ifdef SDHC_DEBUG
44 int sdhcdebug = 1;
45 #define DPRINTF(n,s)	do { if ((n) <= sdhcdebug) printf s; } while (0)
46 void	sdhc_dump_regs(struct sdhc_host *);
47 #else
48 #define DPRINTF(n,s)	do {} while (0)
49 #endif
50 
51 #define SDHC_COMMAND_TIMEOUT	hz
52 #define SDHC_BUFFER_TIMEOUT	hz
53 #define SDHC_TRANSFER_TIMEOUT	hz
54 #define SDHC_DMA_TIMEOUT	hz
55 
56 struct sdhc_host {
57 	struct sdhc_softc *sc;		/* host controller device */
58 
59 	bus_space_tag_t iot;		/* host register set tag */
60 	bus_space_handle_t ioh;		/* host register set handle */
61 	bus_dma_tag_t dmat;		/* host DMA tag */
62 
63 	device_t sdmmc;			/* generic SD/MMC device */
64 
65 	struct kmutex host_mtx;
66 
67 	u_int clkbase;			/* base clock frequency in KHz */
68 	int maxblklen;			/* maximum block length */
69 	uint32_t ocr;			/* OCR value from capabilities */
70 
71 	uint8_t regs[14];		/* host controller state */
72 
73 	uint16_t intr_status;		/* soft interrupt status */
74 	uint16_t intr_error_status;	/* soft error status */
75 	struct kmutex intr_mtx;
76 	struct kcondvar intr_cv;
77 
78 	uint32_t flags;			/* flags for this host */
79 #define SHF_USE_DMA		0x0001
80 #define SHF_USE_4BIT_MODE	0x0002
81 };
82 
83 #define HDEVNAME(hp)	(device_xname((hp)->sc->sc_dev))
84 
85 #define HREAD1(hp, reg)							\
86 	(bus_space_read_1((hp)->iot, (hp)->ioh, (reg)))
87 #define HREAD2(hp, reg)							\
88 	(bus_space_read_2((hp)->iot, (hp)->ioh, (reg)))
89 #define HREAD4(hp, reg)							\
90 	(bus_space_read_4((hp)->iot, (hp)->ioh, (reg)))
91 #define HWRITE1(hp, reg, val)						\
92 	bus_space_write_1((hp)->iot, (hp)->ioh, (reg), (val))
93 #define HWRITE2(hp, reg, val)						\
94 	bus_space_write_2((hp)->iot, (hp)->ioh, (reg), (val))
95 #define HWRITE4(hp, reg, val)						\
96 	bus_space_write_4((hp)->iot, (hp)->ioh, (reg), (val))
97 #define HCLR1(hp, reg, bits)						\
98 	HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits))
99 #define HCLR2(hp, reg, bits)						\
100 	HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits))
101 #define HSET1(hp, reg, bits)						\
102 	HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits))
103 #define HSET2(hp, reg, bits)						\
104 	HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits))
105 
106 static int	sdhc_host_reset(sdmmc_chipset_handle_t);
107 static int	sdhc_host_reset1(sdmmc_chipset_handle_t);
108 static uint32_t	sdhc_host_ocr(sdmmc_chipset_handle_t);
109 static int	sdhc_host_maxblklen(sdmmc_chipset_handle_t);
110 static int	sdhc_card_detect(sdmmc_chipset_handle_t);
111 static int	sdhc_write_protect(sdmmc_chipset_handle_t);
112 static int	sdhc_bus_power(sdmmc_chipset_handle_t, uint32_t);
113 static int	sdhc_bus_clock(sdmmc_chipset_handle_t, int);
114 static int	sdhc_bus_width(sdmmc_chipset_handle_t, int);
115 static int	sdhc_bus_rod(sdmmc_chipset_handle_t, int);
116 static void	sdhc_card_enable_intr(sdmmc_chipset_handle_t, int);
117 static void	sdhc_card_intr_ack(sdmmc_chipset_handle_t);
118 static void	sdhc_exec_command(sdmmc_chipset_handle_t,
119 		    struct sdmmc_command *);
120 static int	sdhc_start_command(struct sdhc_host *, struct sdmmc_command *);
121 static int	sdhc_wait_state(struct sdhc_host *, uint32_t, uint32_t);
122 static int	sdhc_soft_reset(struct sdhc_host *, int);
123 static int	sdhc_wait_intr(struct sdhc_host *, int, int);
124 static void	sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *);
125 static int	sdhc_transfer_data_dma(struct sdhc_host *, struct sdmmc_command *);
126 static int	sdhc_transfer_data_pio(struct sdhc_host *, struct sdmmc_command *);
127 static void	sdhc_read_data_pio(struct sdhc_host *, uint8_t *, int);
128 static void	sdhc_write_data_pio(struct sdhc_host *, uint8_t *, int);
129 
130 static struct sdmmc_chip_functions sdhc_functions = {
131 	/* host controller reset */
132 	sdhc_host_reset,
133 
134 	/* host controller capabilities */
135 	sdhc_host_ocr,
136 	sdhc_host_maxblklen,
137 
138 	/* card detection */
139 	sdhc_card_detect,
140 
141 	/* write protect */
142 	sdhc_write_protect,
143 
144 	/* bus power, clock frequency and width */
145 	sdhc_bus_power,
146 	sdhc_bus_clock,
147 	sdhc_bus_width,
148 	sdhc_bus_rod,
149 
150 	/* command execution */
151 	sdhc_exec_command,
152 
153 	/* card interrupt */
154 	sdhc_card_enable_intr,
155 	sdhc_card_intr_ack
156 };
157 
158 /*
159  * Called by attachment driver.  For each SD card slot there is one SD
160  * host controller standard register set. (1.3)
161  */
162 int
163 sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot,
164     bus_space_handle_t ioh, bus_size_t iosize)
165 {
166 	struct sdmmcbus_attach_args saa;
167 	struct sdhc_host *hp;
168 	uint32_t caps;
169 #ifdef SDHC_DEBUG
170 	uint16_t sdhcver;
171 
172 	sdhcver = bus_space_read_2(iot, ioh, SDHC_HOST_CTL_VERSION);
173 	aprint_normal_dev(sc->sc_dev, "SD Host Specification/Vendor Version ");
174 	switch (SDHC_SPEC_VERSION(sdhcver)) {
175 	case 0x00:
176 		aprint_normal("1.0/%u\n", SDHC_VENDOR_VERSION(sdhcver));
177 		break;
178 
179 	default:
180 		aprint_normal(">1.0/%u\n", SDHC_VENDOR_VERSION(sdhcver));
181 		break;
182 	}
183 #endif
184 
185 	/* Allocate one more host structure. */
186 	hp = malloc(sizeof(struct sdhc_host), M_DEVBUF, M_WAITOK|M_ZERO);
187 	if (hp == NULL) {
188 		aprint_error_dev(sc->sc_dev,
189 		    "couldn't alloc memory (sdhc host)\n");
190 		goto err1;
191 	}
192 	sc->sc_host[sc->sc_nhosts++] = hp;
193 
194 	/* Fill in the new host structure. */
195 	hp->sc = sc;
196 	hp->iot = iot;
197 	hp->ioh = ioh;
198 	hp->dmat = sc->sc_dmat;
199 
200 	mutex_init(&hp->host_mtx, MUTEX_DEFAULT, IPL_SDMMC);
201 	mutex_init(&hp->intr_mtx, MUTEX_DEFAULT, IPL_SDMMC);
202 	cv_init(&hp->intr_cv, "sdhcintr");
203 
204 	/*
205 	 * Reset the host controller and enable interrupts.
206 	 */
207 	(void)sdhc_host_reset(hp);
208 
209 	/* Determine host capabilities. */
210 	mutex_enter(&hp->host_mtx);
211 	caps = HREAD4(hp, SDHC_CAPABILITIES);
212 	mutex_exit(&hp->host_mtx);
213 
214 #if notyet
215 	/* Use DMA if the host system and the controller support it. */
216 	if (ISSET(sc->sc_flags, SDHC_FLAG_FORCE_DMA)
217 	 || ((ISSET(sc->sc_flags, SDHC_FLAG_USE_DMA)
218 	   && ISSET(caps, SDHC_DMA_SUPPORT)))) {
219 		SET(hp->flags, SHF_USE_DMA);
220 		aprint_normal_dev(sc->sc_dev, "using DMA transfer\n");
221 	}
222 #endif
223 
224 	/*
225 	 * Determine the base clock frequency. (2.2.24)
226 	 */
227 	if (SDHC_BASE_FREQ_KHZ(caps) != 0)
228 		hp->clkbase = SDHC_BASE_FREQ_KHZ(caps);
229 	if (hp->clkbase == 0) {
230 		/* The attachment driver must tell us. */
231 		aprint_error_dev(sc->sc_dev, "unknown base clock frequency\n");
232 		goto err;
233 	} else if (hp->clkbase < 10000 || hp->clkbase > 63000) {
234 		/* SDHC 1.0 supports only 10-63 MHz. */
235 		aprint_error_dev(sc->sc_dev,
236 		    "base clock frequency out of range: %u MHz\n",
237 		    hp->clkbase / 1000);
238 		goto err;
239 	}
240 	DPRINTF(1,("%s: base clock frequency %u MHz\n",
241 	    device_xname(sc->sc_dev), hp->clkbase / 1000));
242 
243 	/*
244 	 * XXX Set the data timeout counter value according to
245 	 * capabilities. (2.2.15)
246 	 */
247 	HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
248 
249 	/*
250 	 * Determine SD bus voltage levels supported by the controller.
251 	 */
252 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V))
253 		SET(hp->ocr, MMC_OCR_1_7V_1_8V | MMC_OCR_1_8V_1_9V);
254 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V))
255 		SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V);
256 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V))
257 		SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V);
258 
259 	/*
260 	 * Determine the maximum block length supported by the host
261 	 * controller. (2.2.24)
262 	 */
263 	switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) {
264 	case SDHC_MAX_BLK_LEN_512:
265 		hp->maxblklen = 512;
266 		break;
267 
268 	case SDHC_MAX_BLK_LEN_1024:
269 		hp->maxblklen = 1024;
270 		break;
271 
272 	case SDHC_MAX_BLK_LEN_2048:
273 		hp->maxblklen = 2048;
274 		break;
275 
276 	default:
277 		aprint_error_dev(sc->sc_dev, "max block length unknown\n");
278 		goto err;
279 	}
280 	DPRINTF(1, ("%s: max block length %u byte%s\n",
281 	    device_xname(sc->sc_dev), hp->maxblklen,
282 	    hp->maxblklen > 1 ? "s" : ""));
283 
284 	/*
285 	 * Attach the generic SD/MMC bus driver.  (The bus driver must
286 	 * not invoke any chipset functions before it is attached.)
287 	 */
288 	memset(&saa, 0, sizeof(saa));
289 	saa.saa_busname = "sdmmc";
290 	saa.saa_sct = &sdhc_functions;
291 	saa.saa_sch = hp;
292 	saa.saa_dmat = hp->dmat;
293 	saa.saa_clkmin = hp->clkbase / 256;
294 	saa.saa_clkmax = hp->clkbase;
295 	saa.saa_caps = SMC_CAPS_4BIT_MODE|SMC_CAPS_AUTO_STOP;
296 #if notyet
297 	if (ISSET(hp->flags, SHF_USE_DMA))
298 		saa.saa_caps |= SMC_CAPS_DMA;
299 #endif
300 	hp->sdmmc = config_found(sc->sc_dev, &saa, NULL);
301 
302 	return 0;
303 
304 err:
305 	cv_destroy(&hp->intr_cv);
306 	mutex_destroy(&hp->intr_mtx);
307 	mutex_destroy(&hp->host_mtx);
308 	free(hp, M_DEVBUF);
309 	sc->sc_host[--sc->sc_nhosts] = NULL;
310 err1:
311 	return 1;
312 }
313 
314 int
315 sdhc_detach(device_t dev, int flags)
316 {
317 	struct sdhc_host *hp = (struct sdhc_host *)dev;
318 	struct sdhc_softc *sc = hp->sc;
319 	int rv = 0;
320 
321 	if (hp->sdmmc)
322 		rv = config_detach(hp->sdmmc, flags);
323 
324 	cv_destroy(&hp->intr_cv);
325 	mutex_destroy(&hp->intr_mtx);
326 	mutex_destroy(&hp->host_mtx);
327 	free(hp, M_DEVBUF);
328 	sc->sc_host[--sc->sc_nhosts] = NULL;
329 
330 	return rv;
331 }
332 
333 bool
334 sdhc_suspend(device_t dev, const pmf_qual_t *qual)
335 {
336 	struct sdhc_softc *sc = device_private(dev);
337 	struct sdhc_host *hp;
338 	int n, i;
339 
340 	/* XXX poll for command completion or suspend command
341 	 * in progress */
342 
343 	/* Save the host controller state. */
344 	for (n = 0; n < sc->sc_nhosts; n++) {
345 		hp = sc->sc_host[n];
346 		for (i = 0; i < sizeof hp->regs; i++)
347 			hp->regs[i] = HREAD1(hp, i);
348 	}
349 	return true;
350 }
351 
352 bool
353 sdhc_resume(device_t dev, const pmf_qual_t *qual)
354 {
355 	struct sdhc_softc *sc = device_private(dev);
356 	struct sdhc_host *hp;
357 	int n, i;
358 
359 	/* Restore the host controller state. */
360 	for (n = 0; n < sc->sc_nhosts; n++) {
361 		hp = sc->sc_host[n];
362 		(void)sdhc_host_reset(hp);
363 		for (i = 0; i < sizeof hp->regs; i++)
364 			HWRITE1(hp, i, hp->regs[i]);
365 	}
366 	return true;
367 }
368 
369 bool
370 sdhc_shutdown(device_t dev, int flags)
371 {
372 	struct sdhc_softc *sc = device_private(dev);
373 	struct sdhc_host *hp;
374 	int i;
375 
376 	/* XXX chip locks up if we don't disable it before reboot. */
377 	for (i = 0; i < sc->sc_nhosts; i++) {
378 		hp = sc->sc_host[i];
379 		(void)sdhc_host_reset(hp);
380 	}
381 	return true;
382 }
383 
384 /*
385  * Reset the host controller.  Called during initialization, when
386  * cards are removed, upon resume, and during error recovery.
387  */
388 static int
389 sdhc_host_reset1(sdmmc_chipset_handle_t sch)
390 {
391 	struct sdhc_host *hp = (struct sdhc_host *)sch;
392 	uint16_t sdhcimask;
393 	int error;
394 
395 	/* Don't lock. */
396 
397 	/* Disable all interrupts. */
398 	HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
399 
400 	/*
401 	 * Reset the entire host controller and wait up to 100ms for
402 	 * the controller to clear the reset bit.
403 	 */
404 	error = sdhc_soft_reset(hp, SDHC_RESET_ALL);
405 	if (error)
406 		goto out;
407 
408 	/* Set data timeout counter value to max for now. */
409 	HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
410 
411 	/* Enable interrupts. */
412 	sdhcimask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION |
413 	    SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY |
414 	    SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT |
415 	    SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE;
416 	HWRITE2(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
417 	HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK);
418 	HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
419 	HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK);
420 
421 out:
422 	return error;
423 }
424 
425 static int
426 sdhc_host_reset(sdmmc_chipset_handle_t sch)
427 {
428 	struct sdhc_host *hp = (struct sdhc_host *)sch;
429 	int error;
430 
431 	mutex_enter(&hp->host_mtx);
432 	error = sdhc_host_reset1(sch);
433 	mutex_exit(&hp->host_mtx);
434 
435 	return error;
436 }
437 
438 static uint32_t
439 sdhc_host_ocr(sdmmc_chipset_handle_t sch)
440 {
441 	struct sdhc_host *hp = (struct sdhc_host *)sch;
442 
443 	return hp->ocr;
444 }
445 
446 static int
447 sdhc_host_maxblklen(sdmmc_chipset_handle_t sch)
448 {
449 	struct sdhc_host *hp = (struct sdhc_host *)sch;
450 
451 	return hp->maxblklen;
452 }
453 
454 /*
455  * Return non-zero if the card is currently inserted.
456  */
457 static int
458 sdhc_card_detect(sdmmc_chipset_handle_t sch)
459 {
460 	struct sdhc_host *hp = (struct sdhc_host *)sch;
461 	int r;
462 
463 	mutex_enter(&hp->host_mtx);
464 	r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED);
465 	mutex_exit(&hp->host_mtx);
466 
467 	if (r)
468 		return 1;
469 	return 0;
470 }
471 
472 /*
473  * Return non-zero if the card is currently write-protected.
474  */
475 static int
476 sdhc_write_protect(sdmmc_chipset_handle_t sch)
477 {
478 	struct sdhc_host *hp = (struct sdhc_host *)sch;
479 	int r;
480 
481 	mutex_enter(&hp->host_mtx);
482 	r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_WRITE_PROTECT_SWITCH);
483 	mutex_exit(&hp->host_mtx);
484 
485 	if (!r)
486 		return 1;
487 	return 0;
488 }
489 
490 /*
491  * Set or change SD bus voltage and enable or disable SD bus power.
492  * Return zero on success.
493  */
494 static int
495 sdhc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr)
496 {
497 	struct sdhc_host *hp = (struct sdhc_host *)sch;
498 	uint8_t vdd;
499 	int error = 0;
500 
501 	mutex_enter(&hp->host_mtx);
502 
503 	/*
504 	 * Disable bus power before voltage change.
505 	 */
506 	if (!(hp->sc->sc_flags & SDHC_FLAG_NO_PWR0))
507 		HWRITE1(hp, SDHC_POWER_CTL, 0);
508 
509 	/* If power is disabled, reset the host and return now. */
510 	if (ocr == 0) {
511 		(void)sdhc_host_reset1(hp);
512 		goto out;
513 	}
514 
515 	/*
516 	 * Select the lowest voltage according to capabilities.
517 	 */
518 	ocr &= hp->ocr;
519 	if (ISSET(ocr, MMC_OCR_1_7V_1_8V|MMC_OCR_1_8V_1_9V))
520 		vdd = SDHC_VOLTAGE_1_8V;
521 	else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V))
522 		vdd = SDHC_VOLTAGE_3_0V;
523 	else if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V))
524 		vdd = SDHC_VOLTAGE_3_3V;
525 	else {
526 		/* Unsupported voltage level requested. */
527 		error = EINVAL;
528 		goto out;
529 	}
530 
531 	/*
532 	 * Enable bus power.  Wait at least 1 ms (or 74 clocks) plus
533 	 * voltage ramp until power rises.
534 	 */
535 	HWRITE1(hp, SDHC_POWER_CTL,
536 	    (vdd << SDHC_VOLTAGE_SHIFT) | SDHC_BUS_POWER);
537 	sdmmc_delay(10000);
538 
539 	/*
540 	 * The host system may not power the bus due to battery low,
541 	 * etc.  In that case, the host controller should clear the
542 	 * bus power bit.
543 	 */
544 	if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) {
545 		error = ENXIO;
546 		goto out;
547 	}
548 
549 out:
550 	mutex_exit(&hp->host_mtx);
551 
552 	return error;
553 }
554 
555 /*
556  * Return the smallest possible base clock frequency divisor value
557  * for the CLOCK_CTL register to produce `freq' (KHz).
558  */
559 static int
560 sdhc_clock_divisor(struct sdhc_host *hp, u_int freq)
561 {
562 	int div;
563 
564 	for (div = 1; div <= 256; div *= 2)
565 		if ((hp->clkbase / div) <= freq)
566 			return (div / 2);
567 	/* No divisor found. */
568 	return -1;
569 }
570 
571 /*
572  * Set or change SDCLK frequency or disable the SD clock.
573  * Return zero on success.
574  */
575 static int
576 sdhc_bus_clock(sdmmc_chipset_handle_t sch, int freq)
577 {
578 	struct sdhc_host *hp = (struct sdhc_host *)sch;
579 	int div;
580 	int timo;
581 	int error = 0;
582 #ifdef DIAGNOSTIC
583 	int ispresent;
584 #endif
585 
586 #ifdef DIAGNOSTIC
587 	mutex_enter(&hp->host_mtx);
588 	ispresent = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK);
589 	mutex_exit(&hp->host_mtx);
590 
591 	/* Must not stop the clock if commands are in progress. */
592 	if (ispresent && sdhc_card_detect(hp))
593 		printf("%s: sdhc_sdclk_frequency_select: command in progress\n",
594 		    device_xname(hp->sc->sc_dev));
595 #endif
596 
597 	mutex_enter(&hp->host_mtx);
598 
599 	/*
600 	 * Stop SD clock before changing the frequency.
601 	 */
602 	HWRITE2(hp, SDHC_CLOCK_CTL, 0);
603 	if (freq == SDMMC_SDCLK_OFF)
604 		goto out;
605 
606 	/*
607 	 * Set the minimum base clock frequency divisor.
608 	 */
609 	if ((div = sdhc_clock_divisor(hp, freq)) < 0) {
610 		/* Invalid base clock frequency or `freq' value. */
611 		error = EINVAL;
612 		goto out;
613 	}
614 	HWRITE2(hp, SDHC_CLOCK_CTL, div << SDHC_SDCLK_DIV_SHIFT);
615 
616 	/*
617 	 * Start internal clock.  Wait 10ms for stabilization.
618 	 */
619 	HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE);
620 	for (timo = 1000; timo > 0; timo--) {
621 		if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL), SDHC_INTCLK_STABLE))
622 			break;
623 		sdmmc_delay(10);
624 	}
625 	if (timo == 0) {
626 		error = ETIMEDOUT;
627 		goto out;
628 	}
629 
630 	/*
631 	 * Enable SD clock.
632 	 */
633 	HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
634 
635 	if (freq > 25000)
636 		HSET1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
637 	else
638 		HCLR1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
639 
640 out:
641 	mutex_exit(&hp->host_mtx);
642 
643 	return error;
644 }
645 
646 static int
647 sdhc_bus_width(sdmmc_chipset_handle_t sch, int width)
648 {
649 	struct sdhc_host *hp = (struct sdhc_host *)sch;
650 	int reg;
651 
652 	switch (width) {
653 	case 1:
654 	case 4:
655 		break;
656 
657 	default:
658 		DPRINTF(0,("%s: unsupported bus width (%d)\n",
659 		    HDEVNAME(hp), width));
660 		return 1;
661 	}
662 
663 	mutex_enter(&hp->host_mtx);
664 	reg = HREAD1(hp, SDHC_HOST_CTL);
665 	reg &= ~SDHC_4BIT_MODE;
666 	if (width == 4)
667 		reg |= SDHC_4BIT_MODE;
668 	HWRITE1(hp, SDHC_HOST_CTL, reg);
669 	mutex_exit(&hp->host_mtx);
670 
671 	return 0;
672 }
673 
674 static int
675 sdhc_bus_rod(sdmmc_chipset_handle_t sch, int on)
676 {
677 
678 	/* Nothing ?? */
679 	return 0;
680 }
681 
682 static void
683 sdhc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable)
684 {
685 	struct sdhc_host *hp = (struct sdhc_host *)sch;
686 
687 	mutex_enter(&hp->host_mtx);
688 	if (enable) {
689 		HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
690 		HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
691 	} else {
692 		HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
693 		HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
694 	}
695 	mutex_exit(&hp->host_mtx);
696 }
697 
698 static void
699 sdhc_card_intr_ack(sdmmc_chipset_handle_t sch)
700 {
701 	struct sdhc_host *hp = (struct sdhc_host *)sch;
702 
703 	mutex_enter(&hp->host_mtx);
704 	HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
705 	mutex_exit(&hp->host_mtx);
706 }
707 
708 static int
709 sdhc_wait_state(struct sdhc_host *hp, uint32_t mask, uint32_t value)
710 {
711 	uint32_t state;
712 	int timeout;
713 
714 	for (timeout = 10; timeout > 0; timeout--) {
715 		if (((state = HREAD4(hp, SDHC_PRESENT_STATE)) & mask) == value)
716 			return 0;
717 		sdmmc_delay(10000);
718 	}
719 	DPRINTF(0,("%s: timeout waiting for %x (state=%x)\n", HDEVNAME(hp),
720 	    value, state));
721 	return ETIMEDOUT;
722 }
723 
724 static void
725 sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
726 {
727 	struct sdhc_host *hp = (struct sdhc_host *)sch;
728 	int error;
729 
730 	/*
731 	 * Start the MMC command, or mark `cmd' as failed and return.
732 	 */
733 	error = sdhc_start_command(hp, cmd);
734 	if (error) {
735 		cmd->c_error = error;
736 		goto out;
737 	}
738 
739 	/*
740 	 * Wait until the command phase is done, or until the command
741 	 * is marked done for any other reason.
742 	 */
743 	if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE, SDHC_COMMAND_TIMEOUT)) {
744 		cmd->c_error = ETIMEDOUT;
745 		goto out;
746 	}
747 
748 	/*
749 	 * The host controller removes bits [0:7] from the response
750 	 * data (CRC) and we pass the data up unchanged to the bus
751 	 * driver (without padding).
752 	 */
753 	mutex_enter(&hp->host_mtx);
754 	if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
755 		if (ISSET(cmd->c_flags, SCF_RSP_136)) {
756 			uint8_t *p = (uint8_t *)cmd->c_resp;
757 			int i;
758 
759 			for (i = 0; i < 15; i++)
760 				*p++ = HREAD1(hp, SDHC_RESPONSE + i);
761 		} else {
762 			cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE);
763 		}
764 	}
765 	mutex_exit(&hp->host_mtx);
766 	DPRINTF(1,("%s: resp = %08x\n", HDEVNAME(hp), cmd->c_resp[0]));
767 
768 	/*
769 	 * If the command has data to transfer in any direction,
770 	 * execute the transfer now.
771 	 */
772 	if (cmd->c_error == 0 && cmd->c_data != NULL)
773 		sdhc_transfer_data(hp, cmd);
774 
775 out:
776 	mutex_enter(&hp->host_mtx);
777 	/* Turn off the LED. */
778 	HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
779 	mutex_exit(&hp->host_mtx);
780 	SET(cmd->c_flags, SCF_ITSDONE);
781 
782 	DPRINTF(1,("%s: cmd %d %s (flags=%08x error=%d)\n", HDEVNAME(hp),
783 	    cmd->c_opcode, (cmd->c_error == 0) ? "done" : "abort",
784 	    cmd->c_flags, cmd->c_error));
785 }
786 
787 static int
788 sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd)
789 {
790 	uint16_t blksize = 0;
791 	uint16_t blkcount = 0;
792 	uint16_t mode;
793 	uint16_t command;
794 	int error;
795 
796 	DPRINTF(1,("%s: start cmd %d arg=%08x data=%p dlen=%d flags=%08x\n",
797 	    HDEVNAME(hp), cmd->c_opcode, cmd->c_arg, cmd->c_data,
798 	    cmd->c_datalen, cmd->c_flags));
799 
800 	/*
801 	 * The maximum block length for commands should be the minimum
802 	 * of the host buffer size and the card buffer size. (1.7.2)
803 	 */
804 
805 	/* Fragment the data into proper blocks. */
806 	if (cmd->c_datalen > 0) {
807 		blksize = MIN(cmd->c_datalen, cmd->c_blklen);
808 		blkcount = cmd->c_datalen / blksize;
809 		if (cmd->c_datalen % blksize > 0) {
810 			/* XXX: Split this command. (1.7.4) */
811 			aprint_error_dev(hp->sc->sc_dev,
812 			    "data not a multiple of %u bytes\n", blksize);
813 			return EINVAL;
814 		}
815 	}
816 
817 	/* Check limit imposed by 9-bit block count. (1.7.2) */
818 	if (blkcount > SDHC_BLOCK_COUNT_MAX) {
819 		aprint_error_dev(hp->sc->sc_dev, "too much data\n");
820 		return EINVAL;
821 	}
822 
823 	/* Prepare transfer mode register value. (2.2.5) */
824 	mode = 0;
825 	if (ISSET(cmd->c_flags, SCF_CMD_READ))
826 		mode |= SDHC_READ_MODE;
827 	if (blkcount > 0) {
828 		mode |= SDHC_BLOCK_COUNT_ENABLE;
829 		if (blkcount > 1) {
830 			mode |= SDHC_MULTI_BLOCK_MODE;
831 			/* XXX only for memory commands? */
832 			mode |= SDHC_AUTO_CMD12_ENABLE;
833 		}
834 	}
835 	if (cmd->c_dmamap != NULL && cmd->c_datalen > 0) {
836 		if (cmd->c_dmamap->dm_nsegs == 1) {
837 			mode |= SDHC_DMA_ENABLE;
838 		} else {
839 			cmd->c_dmamap = NULL;
840 		}
841 	}
842 
843 	/*
844 	 * Prepare command register value. (2.2.6)
845 	 */
846 	command =
847 	 (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) << SDHC_COMMAND_INDEX_SHIFT;
848 
849 	if (ISSET(cmd->c_flags, SCF_RSP_CRC))
850 		command |= SDHC_CRC_CHECK_ENABLE;
851 	if (ISSET(cmd->c_flags, SCF_RSP_IDX))
852 		command |= SDHC_INDEX_CHECK_ENABLE;
853 	if (cmd->c_data != NULL)
854 		command |= SDHC_DATA_PRESENT_SELECT;
855 
856 	if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT))
857 		command |= SDHC_NO_RESPONSE;
858 	else if (ISSET(cmd->c_flags, SCF_RSP_136))
859 		command |= SDHC_RESP_LEN_136;
860 	else if (ISSET(cmd->c_flags, SCF_RSP_BSY))
861 		command |= SDHC_RESP_LEN_48_CHK_BUSY;
862 	else
863 		command |= SDHC_RESP_LEN_48;
864 
865 	/* Wait until command and data inhibit bits are clear. (1.5) */
866 	error = sdhc_wait_state(hp, SDHC_CMD_INHIBIT_MASK, 0);
867 	if (error)
868 		return error;
869 
870 	DPRINTF(1,("%s: writing cmd: blksize=%d blkcnt=%d mode=%04x cmd=%04x\n",
871 	    HDEVNAME(hp), blksize, blkcount, mode, command));
872 
873 	mutex_enter(&hp->host_mtx);
874 
875 	/* Alert the user not to remove the card. */
876 	HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
877 
878 	/* Set DMA start address. */
879 	if (ISSET(mode, SDHC_DMA_ENABLE))
880 		HWRITE4(hp, SDHC_DMA_ADDR, cmd->c_dmamap->dm_segs[0].ds_addr);
881 
882 	/*
883 	 * Start a CPU data transfer.  Writing to the high order byte
884 	 * of the SDHC_COMMAND register triggers the SD command. (1.5)
885 	 */
886 	HWRITE2(hp, SDHC_TRANSFER_MODE, mode);
887 	HWRITE2(hp, SDHC_BLOCK_SIZE, blksize);
888 	if (blkcount > 1)
889 		HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount);
890 	HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
891 	HWRITE2(hp, SDHC_COMMAND, command);
892 
893 	mutex_exit(&hp->host_mtx);
894 
895 	return 0;
896 }
897 
898 static void
899 sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd)
900 {
901 	int error;
902 
903 	DPRINTF(1,("%s: data transfer: resp=%08x datalen=%u\n", HDEVNAME(hp),
904 	    MMC_R1(cmd->c_resp), cmd->c_datalen));
905 
906 #ifdef SDHC_DEBUG
907 	/* XXX I forgot why I wanted to know when this happens :-( */
908 	if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) &&
909 	    ISSET(MMC_R1(cmd->c_resp), 0xcb00)) {
910 		aprint_error_dev(hp->sc->sc_dev,
911 		    "CMD52/53 error response flags %#x\n",
912 		    MMC_R1(cmd->c_resp) & 0xff00);
913 	}
914 #endif
915 
916 	if (cmd->c_dmamap != NULL)
917 		error = sdhc_transfer_data_dma(hp, cmd);
918 	else
919 		error = sdhc_transfer_data_pio(hp, cmd);
920 	if (error)
921 		cmd->c_error = error;
922 	SET(cmd->c_flags, SCF_ITSDONE);
923 
924 	DPRINTF(1,("%s: data transfer done (error=%d)\n",
925 	    HDEVNAME(hp), cmd->c_error));
926 }
927 
928 static int
929 sdhc_transfer_data_dma(struct sdhc_host *hp, struct sdmmc_command *cmd)
930 {
931 	bus_dmamap_t dmap = cmd->c_dmamap;
932 	uint16_t blklen = cmd->c_blklen;
933 	uint16_t blkcnt = cmd->c_datalen / blklen;
934 	uint16_t remain;
935 	int error = 0;
936 
937 	for (;;) {
938 		if (!sdhc_wait_intr(hp,
939 		    SDHC_DMA_INTERRUPT|SDHC_TRANSFER_COMPLETE,
940 		    SDHC_DMA_TIMEOUT)) {
941 			error = ETIMEDOUT;
942 			break;
943 		}
944 
945 		/* single block mode */
946 		if (blkcnt == 1)
947 			break;
948 
949 		/* multi block mode */
950 		remain = HREAD2(hp, SDHC_BLOCK_COUNT);
951 		if (remain == 0)
952 			break;
953 
954 		HWRITE4(hp, SDHC_DMA_ADDR,
955 		    dmap->dm_segs[0].ds_addr + (blkcnt - remain) * blklen);
956 	}
957 
958 #if 0
959 	if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
960 	    SDHC_TRANSFER_TIMEOUT))
961 		error = ETIMEDOUT;
962 #endif
963 
964 	return error;
965 }
966 
967 static int
968 sdhc_transfer_data_pio(struct sdhc_host *hp, struct sdmmc_command *cmd)
969 {
970 	uint8_t *data = cmd->c_data;
971 	int len, datalen;
972 	int mask;
973 	int error = 0;
974 
975 	mask = ISSET(cmd->c_flags, SCF_CMD_READ) ?
976 	    SDHC_BUFFER_READ_ENABLE : SDHC_BUFFER_WRITE_ENABLE;
977 	datalen = cmd->c_datalen;
978 
979 	while (datalen > 0) {
980 		if (!sdhc_wait_intr(hp,
981 		    SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY,
982 		    SDHC_BUFFER_TIMEOUT)) {
983 			error = ETIMEDOUT;
984 			break;
985 		}
986 
987 		error = sdhc_wait_state(hp, mask, mask);
988 		if (error)
989 			break;
990 
991 		len = MIN(datalen, cmd->c_blklen);
992 		if (ISSET(cmd->c_flags, SCF_CMD_READ))
993 			sdhc_read_data_pio(hp, data, len);
994 		else
995 			sdhc_write_data_pio(hp, data, len);
996 
997 		data += len;
998 		datalen -= len;
999 	}
1000 
1001 	if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
1002 	    SDHC_TRANSFER_TIMEOUT))
1003 		error = ETIMEDOUT;
1004 
1005 	return error;
1006 }
1007 
1008 static void
1009 sdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, int datalen)
1010 {
1011 
1012 	if (((__uintptr_t)data & 3) == 0) {
1013 		while (datalen > 3) {
1014 			*(uint32_t *)data = HREAD4(hp, SDHC_DATA);
1015 			data += 4;
1016 			datalen -= 4;
1017 		}
1018 		if (datalen > 1) {
1019 			*(uint16_t *)data = HREAD2(hp, SDHC_DATA);
1020 			data += 2;
1021 			datalen -= 2;
1022 		}
1023 		if (datalen > 0) {
1024 			*data = HREAD1(hp, SDHC_DATA);
1025 			data += 1;
1026 			datalen -= 1;
1027 		}
1028 	} else if (((__uintptr_t)data & 1) == 0) {
1029 		while (datalen > 1) {
1030 			*(uint16_t *)data = HREAD2(hp, SDHC_DATA);
1031 			data += 2;
1032 			datalen -= 2;
1033 		}
1034 		if (datalen > 0) {
1035 			*data = HREAD1(hp, SDHC_DATA);
1036 			data += 1;
1037 			datalen -= 1;
1038 		}
1039 	} else {
1040 		while (datalen > 0) {
1041 			*data = HREAD1(hp, SDHC_DATA);
1042 			data += 1;
1043 			datalen -= 1;
1044 		}
1045 	}
1046 }
1047 
1048 static void
1049 sdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, int datalen)
1050 {
1051 
1052 	if (((__uintptr_t)data & 3) == 0) {
1053 		while (datalen > 3) {
1054 			HWRITE4(hp, SDHC_DATA, *(uint32_t *)data);
1055 			data += 4;
1056 			datalen -= 4;
1057 		}
1058 		if (datalen > 1) {
1059 			HWRITE2(hp, SDHC_DATA, *(uint16_t *)data);
1060 			data += 2;
1061 			datalen -= 2;
1062 		}
1063 		if (datalen > 0) {
1064 			HWRITE1(hp, SDHC_DATA, *data);
1065 			data += 1;
1066 			datalen -= 1;
1067 		}
1068 	} else if (((__uintptr_t)data & 1) == 0) {
1069 		while (datalen > 1) {
1070 			HWRITE2(hp, SDHC_DATA, *(uint16_t *)data);
1071 			data += 2;
1072 			datalen -= 2;
1073 		}
1074 		if (datalen > 0) {
1075 			HWRITE1(hp, SDHC_DATA, *data);
1076 			data += 1;
1077 			datalen -= 1;
1078 		}
1079 	} else {
1080 		while (datalen > 0) {
1081 			HWRITE1(hp, SDHC_DATA, *data);
1082 			data += 1;
1083 			datalen -= 1;
1084 		}
1085 	}
1086 }
1087 
1088 /* Prepare for another command. */
1089 static int
1090 sdhc_soft_reset(struct sdhc_host *hp, int mask)
1091 {
1092 	int timo;
1093 
1094 	DPRINTF(1,("%s: software reset reg=%08x\n", HDEVNAME(hp), mask));
1095 
1096 	HWRITE1(hp, SDHC_SOFTWARE_RESET, mask);
1097 	for (timo = 10; timo > 0; timo--) {
1098 		if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
1099 			break;
1100 		sdmmc_delay(10000);
1101 		HWRITE1(hp, SDHC_SOFTWARE_RESET, 0);
1102 	}
1103 	if (timo == 0) {
1104 		DPRINTF(1,("%s: timeout reg=%08x\n", HDEVNAME(hp),
1105 		    HREAD1(hp, SDHC_SOFTWARE_RESET)));
1106 		HWRITE1(hp, SDHC_SOFTWARE_RESET, 0);
1107 		return ETIMEDOUT;
1108 	}
1109 
1110 	return 0;
1111 }
1112 
1113 static int
1114 sdhc_wait_intr(struct sdhc_host *hp, int mask, int timo)
1115 {
1116 	int status;
1117 
1118 	mask |= SDHC_ERROR_INTERRUPT;
1119 
1120 	mutex_enter(&hp->intr_mtx);
1121 	status = hp->intr_status & mask;
1122 	while (status == 0) {
1123 		if (cv_timedwait(&hp->intr_cv, &hp->intr_mtx, timo)
1124 		    == EWOULDBLOCK) {
1125 			status |= SDHC_ERROR_INTERRUPT;
1126 			break;
1127 		}
1128 		status = hp->intr_status & mask;
1129 	}
1130 	hp->intr_status &= ~status;
1131 
1132 	DPRINTF(2,("%s: intr status %#x error %#x\n", HDEVNAME(hp), status,
1133 	    hp->intr_error_status));
1134 
1135 	/* Command timeout has higher priority than command complete. */
1136 	if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
1137 		hp->intr_error_status = 0;
1138 		(void)sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
1139 		status = 0;
1140 	}
1141 	mutex_exit(&hp->intr_mtx);
1142 
1143 	return status;
1144 }
1145 
1146 /*
1147  * Established by attachment driver at interrupt priority IPL_SDMMC.
1148  */
1149 int
1150 sdhc_intr(void *arg)
1151 {
1152 	struct sdhc_softc *sc = (struct sdhc_softc *)arg;
1153 	struct sdhc_host *hp;
1154 	int host;
1155 	int done = 0;
1156 	uint16_t status;
1157 	uint16_t error;
1158 
1159 	/* We got an interrupt, but we don't know from which slot. */
1160 	for (host = 0; host < sc->sc_nhosts; host++) {
1161 		hp = sc->sc_host[host];
1162 		if (hp == NULL)
1163 			continue;
1164 
1165 		/* Find out which interrupts are pending. */
1166 		status = HREAD2(hp, SDHC_NINTR_STATUS);
1167 		if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
1168 			continue; /* no interrupt for us */
1169 
1170 		/* Acknowledge the interrupts we are about to handle. */
1171 		HWRITE2(hp, SDHC_NINTR_STATUS, status);
1172 		DPRINTF(2,("%s: interrupt status=%x\n", HDEVNAME(hp),
1173 		    status));
1174 
1175 		if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
1176 			continue;
1177 
1178 		/* Claim this interrupt. */
1179 		done = 1;
1180 
1181 		/*
1182 		 * Service error interrupts.
1183 		 */
1184 		if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
1185 			/* Acknowledge error interrupts. */
1186 			error = HREAD2(hp, SDHC_EINTR_STATUS);
1187 			HWRITE2(hp, SDHC_EINTR_STATUS, error);
1188 			DPRINTF(2,("%s: error interrupt, status=%x\n",
1189 			    HDEVNAME(hp), error));
1190 
1191 			if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR|
1192 			    SDHC_DATA_TIMEOUT_ERROR)) {
1193 				hp->intr_error_status |= error;
1194 				hp->intr_status |= status;
1195 				cv_broadcast(&hp->intr_cv);
1196 			}
1197 		}
1198 
1199 		/*
1200 		 * Wake up the sdmmc event thread to scan for cards.
1201 		 */
1202 		if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION))
1203 			sdmmc_needs_discover(hp->sdmmc);
1204 
1205 		/*
1206 		 * Wake up the blocking process to service command
1207 		 * related interrupt(s).
1208 		 */
1209 		if (ISSET(status, SDHC_BUFFER_READ_READY|
1210 		    SDHC_BUFFER_WRITE_READY|SDHC_COMMAND_COMPLETE|
1211 		    SDHC_TRANSFER_COMPLETE|SDHC_DMA_INTERRUPT)) {
1212 			hp->intr_status |= status;
1213 			cv_broadcast(&hp->intr_cv);
1214 		}
1215 
1216 		/*
1217 		 * Service SD card interrupts.
1218 		 */
1219 		if (ISSET(status, SDHC_CARD_INTERRUPT)) {
1220 			DPRINTF(0,("%s: card interrupt\n", HDEVNAME(hp)));
1221 			HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1222 			sdmmc_card_intr(hp->sdmmc);
1223 		}
1224 	}
1225 
1226 	return done;
1227 }
1228 
1229 #ifdef SDHC_DEBUG
1230 void
1231 sdhc_dump_regs(struct sdhc_host *hp)
1232 {
1233 
1234 	printf("0x%02x PRESENT_STATE:    %x\n", SDHC_PRESENT_STATE,
1235 	    HREAD4(hp, SDHC_PRESENT_STATE));
1236 	printf("0x%02x POWER_CTL:        %x\n", SDHC_POWER_CTL,
1237 	    HREAD1(hp, SDHC_POWER_CTL));
1238 	printf("0x%02x NINTR_STATUS:     %x\n", SDHC_NINTR_STATUS,
1239 	    HREAD2(hp, SDHC_NINTR_STATUS));
1240 	printf("0x%02x EINTR_STATUS:     %x\n", SDHC_EINTR_STATUS,
1241 	    HREAD2(hp, SDHC_EINTR_STATUS));
1242 	printf("0x%02x NINTR_STATUS_EN:  %x\n", SDHC_NINTR_STATUS_EN,
1243 	    HREAD2(hp, SDHC_NINTR_STATUS_EN));
1244 	printf("0x%02x EINTR_STATUS_EN:  %x\n", SDHC_EINTR_STATUS_EN,
1245 	    HREAD2(hp, SDHC_EINTR_STATUS_EN));
1246 	printf("0x%02x NINTR_SIGNAL_EN:  %x\n", SDHC_NINTR_SIGNAL_EN,
1247 	    HREAD2(hp, SDHC_NINTR_SIGNAL_EN));
1248 	printf("0x%02x EINTR_SIGNAL_EN:  %x\n", SDHC_EINTR_SIGNAL_EN,
1249 	    HREAD2(hp, SDHC_EINTR_SIGNAL_EN));
1250 	printf("0x%02x CAPABILITIES:     %x\n", SDHC_CAPABILITIES,
1251 	    HREAD4(hp, SDHC_CAPABILITIES));
1252 	printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES,
1253 	    HREAD4(hp, SDHC_MAX_CAPABILITIES));
1254 }
1255 #endif
1256