1 /* $NetBSD: sdhc.c,v 1.101 2017/06/23 08:43:59 ryo Exp $ */ 2 /* $OpenBSD: sdhc.c,v 1.25 2009/01/13 19:44:20 grange Exp $ */ 3 4 /* 5 * Copyright (c) 2006 Uwe Stuehler <uwe@openbsd.org> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 /* 21 * SD Host Controller driver based on the SD Host Controller Standard 22 * Simplified Specification Version 1.00 (www.sdcard.com). 23 */ 24 25 #include <sys/cdefs.h> 26 __KERNEL_RCSID(0, "$NetBSD: sdhc.c,v 1.101 2017/06/23 08:43:59 ryo Exp $"); 27 28 #ifdef _KERNEL_OPT 29 #include "opt_sdmmc.h" 30 #endif 31 32 #include <sys/param.h> 33 #include <sys/device.h> 34 #include <sys/kernel.h> 35 #include <sys/malloc.h> 36 #include <sys/systm.h> 37 #include <sys/mutex.h> 38 #include <sys/condvar.h> 39 #include <sys/atomic.h> 40 41 #include <dev/sdmmc/sdhcreg.h> 42 #include <dev/sdmmc/sdhcvar.h> 43 #include <dev/sdmmc/sdmmcchip.h> 44 #include <dev/sdmmc/sdmmcreg.h> 45 #include <dev/sdmmc/sdmmcvar.h> 46 47 #ifdef SDHC_DEBUG 48 int sdhcdebug = 1; 49 #define DPRINTF(n,s) do { if ((n) <= sdhcdebug) printf s; } while (0) 50 void sdhc_dump_regs(struct sdhc_host *); 51 #else 52 #define DPRINTF(n,s) do {} while (0) 53 #endif 54 55 #define SDHC_COMMAND_TIMEOUT hz 56 #define SDHC_BUFFER_TIMEOUT hz 57 #define SDHC_TRANSFER_TIMEOUT hz 58 #define SDHC_DMA_TIMEOUT (hz*3) 59 #define SDHC_TUNING_TIMEOUT hz 60 61 struct sdhc_host { 62 struct sdhc_softc *sc; /* host controller device */ 63 64 bus_space_tag_t iot; /* host register set tag */ 65 bus_space_handle_t ioh; /* host register set handle */ 66 bus_size_t ios; /* host register space size */ 67 bus_dma_tag_t dmat; /* host DMA tag */ 68 69 device_t sdmmc; /* generic SD/MMC device */ 70 71 u_int clkbase; /* base clock frequency in KHz */ 72 int maxblklen; /* maximum block length */ 73 uint32_t ocr; /* OCR value from capabilities */ 74 75 uint8_t regs[14]; /* host controller state */ 76 77 uint16_t intr_status; /* soft interrupt status */ 78 uint16_t intr_error_status; /* soft error status */ 79 kmutex_t intr_lock; 80 kcondvar_t intr_cv; 81 82 callout_t tuning_timer; 83 int tuning_timing; 84 u_int tuning_timer_count; 85 u_int tuning_timer_pending; 86 87 int specver; /* spec. version */ 88 89 uint32_t flags; /* flags for this host */ 90 #define SHF_USE_DMA 0x0001 91 #define SHF_USE_4BIT_MODE 0x0002 92 #define SHF_USE_8BIT_MODE 0x0004 93 #define SHF_MODE_DMAEN 0x0008 /* needs SDHC_DMA_ENABLE in mode */ 94 #define SHF_USE_ADMA2_32 0x0010 95 #define SHF_USE_ADMA2_64 0x0020 96 #define SHF_USE_ADMA2_MASK 0x0030 97 98 bus_dmamap_t adma_map; 99 bus_dma_segment_t adma_segs[1]; 100 void *adma2; 101 }; 102 103 #define HDEVNAME(hp) (device_xname((hp)->sc->sc_dev)) 104 105 static uint8_t 106 hread1(struct sdhc_host *hp, bus_size_t reg) 107 { 108 109 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) 110 return bus_space_read_1(hp->iot, hp->ioh, reg); 111 return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 3)); 112 } 113 114 static uint16_t 115 hread2(struct sdhc_host *hp, bus_size_t reg) 116 { 117 118 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) 119 return bus_space_read_2(hp->iot, hp->ioh, reg); 120 return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 2)); 121 } 122 123 #define HREAD1(hp, reg) hread1(hp, reg) 124 #define HREAD2(hp, reg) hread2(hp, reg) 125 #define HREAD4(hp, reg) \ 126 (bus_space_read_4((hp)->iot, (hp)->ioh, (reg))) 127 128 129 static void 130 hwrite1(struct sdhc_host *hp, bus_size_t o, uint8_t val) 131 { 132 133 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) { 134 bus_space_write_1(hp->iot, hp->ioh, o, val); 135 } else { 136 const size_t shift = 8 * (o & 3); 137 o &= -4; 138 uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o); 139 tmp = (val << shift) | (tmp & ~(0xff << shift)); 140 bus_space_write_4(hp->iot, hp->ioh, o, tmp); 141 } 142 } 143 144 static void 145 hwrite2(struct sdhc_host *hp, bus_size_t o, uint16_t val) 146 { 147 148 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) { 149 bus_space_write_2(hp->iot, hp->ioh, o, val); 150 } else { 151 const size_t shift = 8 * (o & 2); 152 o &= -4; 153 uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o); 154 tmp = (val << shift) | (tmp & ~(0xffff << shift)); 155 bus_space_write_4(hp->iot, hp->ioh, o, tmp); 156 } 157 } 158 159 #define HWRITE1(hp, reg, val) hwrite1(hp, reg, val) 160 #define HWRITE2(hp, reg, val) hwrite2(hp, reg, val) 161 #define HWRITE4(hp, reg, val) \ 162 bus_space_write_4((hp)->iot, (hp)->ioh, (reg), (val)) 163 164 #define HCLR1(hp, reg, bits) \ 165 do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits)); while (0) 166 #define HCLR2(hp, reg, bits) \ 167 do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits)); while (0) 168 #define HCLR4(hp, reg, bits) \ 169 do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) & ~(bits)); while (0) 170 #define HSET1(hp, reg, bits) \ 171 do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits)); while (0) 172 #define HSET2(hp, reg, bits) \ 173 do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits)); while (0) 174 #define HSET4(hp, reg, bits) \ 175 do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) | (bits)); while (0) 176 177 static int sdhc_host_reset(sdmmc_chipset_handle_t); 178 static int sdhc_host_reset1(sdmmc_chipset_handle_t); 179 static uint32_t sdhc_host_ocr(sdmmc_chipset_handle_t); 180 static int sdhc_host_maxblklen(sdmmc_chipset_handle_t); 181 static int sdhc_card_detect(sdmmc_chipset_handle_t); 182 static int sdhc_write_protect(sdmmc_chipset_handle_t); 183 static int sdhc_bus_power(sdmmc_chipset_handle_t, uint32_t); 184 static int sdhc_bus_clock_ddr(sdmmc_chipset_handle_t, int, bool); 185 static int sdhc_bus_width(sdmmc_chipset_handle_t, int); 186 static int sdhc_bus_rod(sdmmc_chipset_handle_t, int); 187 static void sdhc_card_enable_intr(sdmmc_chipset_handle_t, int); 188 static void sdhc_card_intr_ack(sdmmc_chipset_handle_t); 189 static void sdhc_exec_command(sdmmc_chipset_handle_t, 190 struct sdmmc_command *); 191 static int sdhc_signal_voltage(sdmmc_chipset_handle_t, int); 192 static int sdhc_execute_tuning1(struct sdhc_host *, int); 193 static int sdhc_execute_tuning(sdmmc_chipset_handle_t, int); 194 static void sdhc_tuning_timer(void *); 195 static void sdhc_hw_reset(sdmmc_chipset_handle_t); 196 static int sdhc_start_command(struct sdhc_host *, struct sdmmc_command *); 197 static int sdhc_wait_state(struct sdhc_host *, uint32_t, uint32_t); 198 static int sdhc_soft_reset(struct sdhc_host *, int); 199 static int sdhc_wait_intr(struct sdhc_host *, int, int, bool); 200 static void sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *); 201 static int sdhc_transfer_data_dma(struct sdhc_host *, struct sdmmc_command *); 202 static int sdhc_transfer_data_pio(struct sdhc_host *, struct sdmmc_command *); 203 static void sdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int); 204 static void sdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int); 205 static void esdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int); 206 static void esdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int); 207 208 static struct sdmmc_chip_functions sdhc_functions = { 209 /* host controller reset */ 210 .host_reset = sdhc_host_reset, 211 212 /* host controller capabilities */ 213 .host_ocr = sdhc_host_ocr, 214 .host_maxblklen = sdhc_host_maxblklen, 215 216 /* card detection */ 217 .card_detect = sdhc_card_detect, 218 219 /* write protect */ 220 .write_protect = sdhc_write_protect, 221 222 /* bus power, clock frequency, width and ROD(OpenDrain/PushPull) */ 223 .bus_power = sdhc_bus_power, 224 .bus_clock = NULL, /* see sdhc_bus_clock_ddr */ 225 .bus_width = sdhc_bus_width, 226 .bus_rod = sdhc_bus_rod, 227 228 /* command execution */ 229 .exec_command = sdhc_exec_command, 230 231 /* card interrupt */ 232 .card_enable_intr = sdhc_card_enable_intr, 233 .card_intr_ack = sdhc_card_intr_ack, 234 235 /* UHS functions */ 236 .signal_voltage = sdhc_signal_voltage, 237 .bus_clock_ddr = sdhc_bus_clock_ddr, 238 .execute_tuning = sdhc_execute_tuning, 239 .hw_reset = sdhc_hw_reset, 240 }; 241 242 static int 243 sdhc_cfprint(void *aux, const char *pnp) 244 { 245 const struct sdmmcbus_attach_args * const saa = aux; 246 const struct sdhc_host * const hp = saa->saa_sch; 247 248 if (pnp) { 249 aprint_normal("sdmmc at %s", pnp); 250 } 251 for (size_t host = 0; host < hp->sc->sc_nhosts; host++) { 252 if (hp->sc->sc_host[host] == hp) { 253 aprint_normal(" slot %zu", host); 254 } 255 } 256 257 return UNCONF; 258 } 259 260 /* 261 * Called by attachment driver. For each SD card slot there is one SD 262 * host controller standard register set. (1.3) 263 */ 264 int 265 sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot, 266 bus_space_handle_t ioh, bus_size_t iosize) 267 { 268 struct sdmmcbus_attach_args saa; 269 struct sdhc_host *hp; 270 uint32_t caps, caps2; 271 uint16_t sdhcver; 272 int error; 273 274 /* Allocate one more host structure. */ 275 hp = malloc(sizeof(struct sdhc_host), M_DEVBUF, M_WAITOK|M_ZERO); 276 if (hp == NULL) { 277 aprint_error_dev(sc->sc_dev, 278 "couldn't alloc memory (sdhc host)\n"); 279 goto err1; 280 } 281 sc->sc_host[sc->sc_nhosts++] = hp; 282 283 /* Fill in the new host structure. */ 284 hp->sc = sc; 285 hp->iot = iot; 286 hp->ioh = ioh; 287 hp->ios = iosize; 288 hp->dmat = sc->sc_dmat; 289 290 mutex_init(&hp->intr_lock, MUTEX_DEFAULT, IPL_SDMMC); 291 cv_init(&hp->intr_cv, "sdhcintr"); 292 callout_init(&hp->tuning_timer, CALLOUT_MPSAFE); 293 callout_setfunc(&hp->tuning_timer, sdhc_tuning_timer, hp); 294 295 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) { 296 sdhcver = SDHC_SPEC_VERS_300 << SDHC_SPEC_VERS_SHIFT; 297 } else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) { 298 sdhcver = HREAD4(hp, SDHC_ESDHC_HOST_CTL_VERSION); 299 } else if (iosize <= SDHC_HOST_CTL_VERSION) { 300 sdhcver = SDHC_SPEC_NOVERS << SDHC_SPEC_VERS_SHIFT; 301 } else { 302 sdhcver = HREAD2(hp, SDHC_HOST_CTL_VERSION); 303 } 304 aprint_normal_dev(sc->sc_dev, "SDHC "); 305 hp->specver = SDHC_SPEC_VERSION(sdhcver); 306 switch (SDHC_SPEC_VERSION(sdhcver)) { 307 case SDHC_SPEC_VERS_100: 308 aprint_normal("1.0"); 309 break; 310 case SDHC_SPEC_VERS_200: 311 aprint_normal("2.0"); 312 break; 313 case SDHC_SPEC_VERS_300: 314 aprint_normal("3.0"); 315 break; 316 case SDHC_SPEC_VERS_400: 317 aprint_normal("4.0"); 318 break; 319 case SDHC_SPEC_NOVERS: 320 hp->specver = -1; 321 aprint_normal("NO-VERS"); 322 break; 323 default: 324 aprint_normal("unknown version(0x%x)", 325 SDHC_SPEC_VERSION(sdhcver)); 326 break; 327 } 328 if (SDHC_SPEC_VERSION(sdhcver) != SDHC_SPEC_NOVERS) 329 aprint_normal(", rev %u", SDHC_VENDOR_VERSION(sdhcver)); 330 331 /* 332 * Reset the host controller and enable interrupts. 333 */ 334 (void)sdhc_host_reset(hp); 335 336 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) { 337 /* init uSDHC registers */ 338 HWRITE4(hp, SDHC_MMC_BOOT, 0); 339 HWRITE4(hp, SDHC_HOST_CTL, SDHC_USDHC_BURST_LEN_EN | 340 SDHC_USDHC_HOST_CTL_RESV23 | SDHC_USDHC_EMODE_LE); 341 HWRITE4(hp, SDHC_WATERMARK_LEVEL, 342 (0x10 << SDHC_WATERMARK_WR_BRST_SHIFT) | 343 (0x40 << SDHC_WATERMARK_WRITE_SHIFT) | 344 (0x10 << SDHC_WATERMARK_RD_BRST_SHIFT) | 345 (0x40 << SDHC_WATERMARK_READ_SHIFT)); 346 HSET4(hp, SDHC_VEND_SPEC, 347 SDHC_VEND_SPEC_MBO | 348 SDHC_VEND_SPEC_CARD_CLK_SOFT_EN | 349 SDHC_VEND_SPEC_IPG_PERCLK_SOFT_EN | 350 SDHC_VEND_SPEC_HCLK_SOFT_EN | 351 SDHC_VEND_SPEC_IPG_CLK_SOFT_EN | 352 SDHC_VEND_SPEC_AC12_WR_CHKBUSY_EN | 353 SDHC_VEND_SPEC_FRC_SDCLK_ON); 354 } 355 356 /* Determine host capabilities. */ 357 if (ISSET(sc->sc_flags, SDHC_FLAG_HOSTCAPS)) { 358 caps = sc->sc_caps; 359 caps2 = sc->sc_caps2; 360 } else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) { 361 /* uSDHC capability register is little bit different */ 362 caps = HREAD4(hp, SDHC_CAPABILITIES); 363 caps |= SDHC_8BIT_SUPP; 364 if (caps & SDHC_ADMA1_SUPP) 365 caps |= SDHC_ADMA2_SUPP; 366 sc->sc_caps = caps; 367 /* uSDHC has no SDHC_CAPABILITIES2 register */ 368 caps2 = sc->sc_caps2 = SDHC_SDR50_SUPP | SDHC_DDR50_SUPP; 369 } else { 370 caps = sc->sc_caps = HREAD4(hp, SDHC_CAPABILITIES); 371 if (hp->specver >= SDHC_SPEC_VERS_300) { 372 caps2 = sc->sc_caps2 = HREAD4(hp, SDHC_CAPABILITIES2); 373 } else { 374 caps2 = sc->sc_caps2 = 0; 375 } 376 } 377 378 const u_int retuning_mode = (caps2 >> SDHC_RETUNING_MODES_SHIFT) & 379 SDHC_RETUNING_MODES_MASK; 380 if (retuning_mode == SDHC_RETUNING_MODE_1) { 381 hp->tuning_timer_count = (caps2 >> SDHC_TIMER_COUNT_SHIFT) & 382 SDHC_TIMER_COUNT_MASK; 383 if (hp->tuning_timer_count == 0xf) 384 hp->tuning_timer_count = 0; 385 if (hp->tuning_timer_count) 386 hp->tuning_timer_count = 387 1 << (hp->tuning_timer_count - 1); 388 } 389 390 /* 391 * Use DMA if the host system and the controller support it. 392 * Suports integrated or external DMA egine, with or without 393 * SDHC_DMA_ENABLE in the command. 394 */ 395 if (ISSET(sc->sc_flags, SDHC_FLAG_FORCE_DMA) || 396 (ISSET(sc->sc_flags, SDHC_FLAG_USE_DMA && 397 ISSET(caps, SDHC_DMA_SUPPORT)))) { 398 SET(hp->flags, SHF_USE_DMA); 399 400 if (ISSET(sc->sc_flags, SDHC_FLAG_USE_ADMA2) && 401 ISSET(caps, SDHC_ADMA2_SUPP)) { 402 SET(hp->flags, SHF_MODE_DMAEN); 403 /* 404 * 64-bit mode was present in the 2.00 spec, removed 405 * from 3.00, and re-added in 4.00 with a different 406 * descriptor layout. We only support 2.00 and 3.00 407 * descriptors for now. 408 */ 409 if (hp->specver == SDHC_SPEC_VERS_200 && 410 ISSET(caps, SDHC_64BIT_SYS_BUS)) { 411 SET(hp->flags, SHF_USE_ADMA2_64); 412 aprint_normal(", 64-bit ADMA2"); 413 } else { 414 SET(hp->flags, SHF_USE_ADMA2_32); 415 aprint_normal(", 32-bit ADMA2"); 416 } 417 } else { 418 if (!ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA) || 419 ISSET(sc->sc_flags, SDHC_FLAG_EXTDMA_DMAEN)) 420 SET(hp->flags, SHF_MODE_DMAEN); 421 if (sc->sc_vendor_transfer_data_dma) { 422 aprint_normal(", platform DMA"); 423 } else { 424 aprint_normal(", SDMA"); 425 } 426 } 427 } else { 428 aprint_normal(", PIO"); 429 } 430 431 /* 432 * Determine the base clock frequency. (2.2.24) 433 */ 434 if (hp->specver >= SDHC_SPEC_VERS_300) { 435 hp->clkbase = SDHC_BASE_V3_FREQ_KHZ(caps); 436 } else { 437 hp->clkbase = SDHC_BASE_FREQ_KHZ(caps); 438 } 439 if (hp->clkbase == 0 || 440 ISSET(sc->sc_flags, SDHC_FLAG_NO_CLKBASE)) { 441 if (sc->sc_clkbase == 0) { 442 /* The attachment driver must tell us. */ 443 aprint_error_dev(sc->sc_dev, 444 "unknown base clock frequency\n"); 445 goto err; 446 } 447 hp->clkbase = sc->sc_clkbase; 448 } 449 if (hp->clkbase < 10000 || hp->clkbase > 10000 * 256) { 450 /* SDHC 1.0 supports only 10-63 MHz. */ 451 aprint_error_dev(sc->sc_dev, 452 "base clock frequency out of range: %u MHz\n", 453 hp->clkbase / 1000); 454 goto err; 455 } 456 aprint_normal(", %u kHz", hp->clkbase); 457 458 /* 459 * XXX Set the data timeout counter value according to 460 * capabilities. (2.2.15) 461 */ 462 HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX); 463 #if 1 464 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) 465 HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16); 466 #endif 467 468 if (ISSET(caps, SDHC_EMBEDDED_SLOT)) 469 aprint_normal(", embedded slot"); 470 471 /* 472 * Determine SD bus voltage levels supported by the controller. 473 */ 474 aprint_normal(","); 475 if (ISSET(caps, SDHC_HIGH_SPEED_SUPP)) { 476 SET(hp->ocr, MMC_OCR_HCS); 477 aprint_normal(" HS"); 478 } 479 if (ISSET(caps2, SDHC_SDR50_SUPP)) { 480 SET(hp->ocr, MMC_OCR_S18A); 481 aprint_normal(" SDR50"); 482 } 483 if (ISSET(caps2, SDHC_DDR50_SUPP)) { 484 SET(hp->ocr, MMC_OCR_S18A); 485 aprint_normal(" DDR50"); 486 } 487 if (ISSET(caps2, SDHC_SDR104_SUPP)) { 488 SET(hp->ocr, MMC_OCR_S18A); 489 aprint_normal(" SDR104 HS200"); 490 } 491 if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V)) { 492 SET(hp->ocr, MMC_OCR_1_65V_1_95V); 493 aprint_normal(" 1.8V"); 494 } 495 if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V)) { 496 SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V); 497 aprint_normal(" 3.0V"); 498 } 499 if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V)) { 500 SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V); 501 aprint_normal(" 3.3V"); 502 } 503 if (hp->specver >= SDHC_SPEC_VERS_300) { 504 aprint_normal(", re-tuning mode %d", retuning_mode + 1); 505 if (hp->tuning_timer_count) 506 aprint_normal(" (%us timer)", hp->tuning_timer_count); 507 } 508 509 /* 510 * Determine the maximum block length supported by the host 511 * controller. (2.2.24) 512 */ 513 switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) { 514 case SDHC_MAX_BLK_LEN_512: 515 hp->maxblklen = 512; 516 break; 517 518 case SDHC_MAX_BLK_LEN_1024: 519 hp->maxblklen = 1024; 520 break; 521 522 case SDHC_MAX_BLK_LEN_2048: 523 hp->maxblklen = 2048; 524 break; 525 526 case SDHC_MAX_BLK_LEN_4096: 527 hp->maxblklen = 4096; 528 break; 529 530 default: 531 aprint_error_dev(sc->sc_dev, "max block length unknown\n"); 532 goto err; 533 } 534 aprint_normal(", %u byte blocks", hp->maxblklen); 535 aprint_normal("\n"); 536 537 if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) { 538 int rseg; 539 540 /* Allocate ADMA2 descriptor memory */ 541 error = bus_dmamem_alloc(sc->sc_dmat, PAGE_SIZE, PAGE_SIZE, 542 PAGE_SIZE, hp->adma_segs, 1, &rseg, BUS_DMA_WAITOK); 543 if (error) { 544 aprint_error_dev(sc->sc_dev, 545 "ADMA2 dmamem_alloc failed (%d)\n", error); 546 goto adma_done; 547 } 548 error = bus_dmamem_map(sc->sc_dmat, hp->adma_segs, rseg, 549 PAGE_SIZE, (void **)&hp->adma2, BUS_DMA_WAITOK); 550 if (error) { 551 aprint_error_dev(sc->sc_dev, 552 "ADMA2 dmamem_map failed (%d)\n", error); 553 goto adma_done; 554 } 555 error = bus_dmamap_create(sc->sc_dmat, PAGE_SIZE, 1, PAGE_SIZE, 556 0, BUS_DMA_WAITOK, &hp->adma_map); 557 if (error) { 558 aprint_error_dev(sc->sc_dev, 559 "ADMA2 dmamap_create failed (%d)\n", error); 560 goto adma_done; 561 } 562 error = bus_dmamap_load(sc->sc_dmat, hp->adma_map, 563 hp->adma2, PAGE_SIZE, NULL, 564 BUS_DMA_WAITOK|BUS_DMA_WRITE); 565 if (error) { 566 aprint_error_dev(sc->sc_dev, 567 "ADMA2 dmamap_load failed (%d)\n", error); 568 goto adma_done; 569 } 570 571 memset(hp->adma2, 0, PAGE_SIZE); 572 573 adma_done: 574 if (error) 575 CLR(hp->flags, SHF_USE_ADMA2_MASK); 576 } 577 578 /* 579 * Attach the generic SD/MMC bus driver. (The bus driver must 580 * not invoke any chipset functions before it is attached.) 581 */ 582 memset(&saa, 0, sizeof(saa)); 583 saa.saa_busname = "sdmmc"; 584 saa.saa_sct = &sdhc_functions; 585 saa.saa_sch = hp; 586 saa.saa_dmat = hp->dmat; 587 saa.saa_clkmax = hp->clkbase; 588 if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_CGM)) 589 saa.saa_clkmin = hp->clkbase / 256 / 2046; 590 else if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_DVS)) 591 saa.saa_clkmin = hp->clkbase / 256 / 16; 592 else if (hp->sc->sc_clkmsk != 0) 593 saa.saa_clkmin = hp->clkbase / (hp->sc->sc_clkmsk >> 594 (ffs(hp->sc->sc_clkmsk) - 1)); 595 else if (hp->specver >= SDHC_SPEC_VERS_300) 596 saa.saa_clkmin = hp->clkbase / 0x3ff; 597 else 598 saa.saa_clkmin = hp->clkbase / 256; 599 if (!ISSET(sc->sc_flags, SDHC_FLAG_NO_AUTO_STOP)) 600 saa.saa_caps |= SMC_CAPS_AUTO_STOP; 601 saa.saa_caps |= SMC_CAPS_4BIT_MODE; 602 if (ISSET(sc->sc_flags, SDHC_FLAG_8BIT_MODE)) 603 saa.saa_caps |= SMC_CAPS_8BIT_MODE; 604 if (ISSET(caps, SDHC_HIGH_SPEED_SUPP)) 605 saa.saa_caps |= SMC_CAPS_SD_HIGHSPEED; 606 if (ISSET(caps2, SDHC_SDR104_SUPP)) 607 saa.saa_caps |= SMC_CAPS_UHS_SDR104 | 608 SMC_CAPS_UHS_SDR50 | 609 SMC_CAPS_MMC_HS200; 610 if (ISSET(caps2, SDHC_SDR50_SUPP)) 611 saa.saa_caps |= SMC_CAPS_UHS_SDR50; 612 if (ISSET(caps2, SDHC_DDR50_SUPP)) 613 saa.saa_caps |= SMC_CAPS_UHS_DDR50; 614 if (ISSET(hp->flags, SHF_USE_DMA)) { 615 saa.saa_caps |= SMC_CAPS_DMA; 616 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) 617 saa.saa_caps |= SMC_CAPS_MULTI_SEG_DMA; 618 } 619 if (ISSET(sc->sc_flags, SDHC_FLAG_SINGLE_ONLY)) 620 saa.saa_caps |= SMC_CAPS_SINGLE_ONLY; 621 if (ISSET(sc->sc_flags, SDHC_FLAG_POLL_CARD_DET)) 622 saa.saa_caps |= SMC_CAPS_POLL_CARD_DET; 623 hp->sdmmc = config_found(sc->sc_dev, &saa, sdhc_cfprint); 624 625 return 0; 626 627 err: 628 callout_destroy(&hp->tuning_timer); 629 cv_destroy(&hp->intr_cv); 630 mutex_destroy(&hp->intr_lock); 631 free(hp, M_DEVBUF); 632 sc->sc_host[--sc->sc_nhosts] = NULL; 633 err1: 634 return 1; 635 } 636 637 int 638 sdhc_detach(struct sdhc_softc *sc, int flags) 639 { 640 struct sdhc_host *hp; 641 int rv = 0; 642 643 for (size_t n = 0; n < sc->sc_nhosts; n++) { 644 hp = sc->sc_host[n]; 645 if (hp == NULL) 646 continue; 647 if (hp->sdmmc != NULL) { 648 rv = config_detach(hp->sdmmc, flags); 649 if (rv) 650 break; 651 hp->sdmmc = NULL; 652 } 653 /* disable interrupts */ 654 if ((flags & DETACH_FORCE) == 0) { 655 mutex_enter(&hp->intr_lock); 656 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) { 657 HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0); 658 } else { 659 HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0); 660 } 661 sdhc_soft_reset(hp, SDHC_RESET_ALL); 662 mutex_exit(&hp->intr_lock); 663 } 664 callout_halt(&hp->tuning_timer, NULL); 665 callout_destroy(&hp->tuning_timer); 666 cv_destroy(&hp->intr_cv); 667 mutex_destroy(&hp->intr_lock); 668 if (hp->ios > 0) { 669 bus_space_unmap(hp->iot, hp->ioh, hp->ios); 670 hp->ios = 0; 671 } 672 if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) { 673 bus_dmamap_unload(sc->sc_dmat, hp->adma_map); 674 bus_dmamap_destroy(sc->sc_dmat, hp->adma_map); 675 bus_dmamem_unmap(sc->sc_dmat, hp->adma2, PAGE_SIZE); 676 bus_dmamem_free(sc->sc_dmat, hp->adma_segs, 1); 677 } 678 free(hp, M_DEVBUF); 679 sc->sc_host[n] = NULL; 680 } 681 682 return rv; 683 } 684 685 bool 686 sdhc_suspend(device_t dev, const pmf_qual_t *qual) 687 { 688 struct sdhc_softc *sc = device_private(dev); 689 struct sdhc_host *hp; 690 size_t i; 691 692 /* XXX poll for command completion or suspend command 693 * in progress */ 694 695 /* Save the host controller state. */ 696 for (size_t n = 0; n < sc->sc_nhosts; n++) { 697 hp = sc->sc_host[n]; 698 if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) { 699 for (i = 0; i < sizeof hp->regs; i += 4) { 700 uint32_t v = HREAD4(hp, i); 701 hp->regs[i + 0] = (v >> 0); 702 hp->regs[i + 1] = (v >> 8); 703 if (i + 3 < sizeof hp->regs) { 704 hp->regs[i + 2] = (v >> 16); 705 hp->regs[i + 3] = (v >> 24); 706 } 707 } 708 } else { 709 for (i = 0; i < sizeof hp->regs; i++) { 710 hp->regs[i] = HREAD1(hp, i); 711 } 712 } 713 } 714 return true; 715 } 716 717 bool 718 sdhc_resume(device_t dev, const pmf_qual_t *qual) 719 { 720 struct sdhc_softc *sc = device_private(dev); 721 struct sdhc_host *hp; 722 size_t i; 723 724 /* Restore the host controller state. */ 725 for (size_t n = 0; n < sc->sc_nhosts; n++) { 726 hp = sc->sc_host[n]; 727 (void)sdhc_host_reset(hp); 728 if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) { 729 for (i = 0; i < sizeof hp->regs; i += 4) { 730 if (i + 3 < sizeof hp->regs) { 731 HWRITE4(hp, i, 732 (hp->regs[i + 0] << 0) 733 | (hp->regs[i + 1] << 8) 734 | (hp->regs[i + 2] << 16) 735 | (hp->regs[i + 3] << 24)); 736 } else { 737 HWRITE4(hp, i, 738 (hp->regs[i + 0] << 0) 739 | (hp->regs[i + 1] << 8)); 740 } 741 } 742 } else { 743 for (i = 0; i < sizeof hp->regs; i++) { 744 HWRITE1(hp, i, hp->regs[i]); 745 } 746 } 747 } 748 return true; 749 } 750 751 bool 752 sdhc_shutdown(device_t dev, int flags) 753 { 754 struct sdhc_softc *sc = device_private(dev); 755 struct sdhc_host *hp; 756 757 /* XXX chip locks up if we don't disable it before reboot. */ 758 for (size_t i = 0; i < sc->sc_nhosts; i++) { 759 hp = sc->sc_host[i]; 760 (void)sdhc_host_reset(hp); 761 } 762 return true; 763 } 764 765 /* 766 * Reset the host controller. Called during initialization, when 767 * cards are removed, upon resume, and during error recovery. 768 */ 769 static int 770 sdhc_host_reset1(sdmmc_chipset_handle_t sch) 771 { 772 struct sdhc_host *hp = (struct sdhc_host *)sch; 773 uint32_t sdhcimask; 774 int error; 775 776 KASSERT(mutex_owned(&hp->intr_lock)); 777 778 /* Disable all interrupts. */ 779 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) { 780 HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0); 781 } else { 782 HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0); 783 } 784 785 /* 786 * Reset the entire host controller and wait up to 100ms for 787 * the controller to clear the reset bit. 788 */ 789 error = sdhc_soft_reset(hp, SDHC_RESET_ALL); 790 if (error) 791 goto out; 792 793 /* Set data timeout counter value to max for now. */ 794 HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX); 795 #if 1 796 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) 797 HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16); 798 #endif 799 800 /* Enable interrupts. */ 801 sdhcimask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION | 802 SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY | 803 SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT | 804 SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE; 805 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) { 806 sdhcimask |= SDHC_EINTR_STATUS_MASK << 16; 807 HWRITE4(hp, SDHC_NINTR_STATUS_EN, sdhcimask); 808 sdhcimask ^= 809 (SDHC_EINTR_STATUS_MASK ^ SDHC_EINTR_SIGNAL_MASK) << 16; 810 sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY; 811 HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask); 812 } else { 813 HWRITE2(hp, SDHC_NINTR_STATUS_EN, sdhcimask); 814 HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK); 815 sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY; 816 HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask); 817 HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK); 818 } 819 820 out: 821 return error; 822 } 823 824 static int 825 sdhc_host_reset(sdmmc_chipset_handle_t sch) 826 { 827 struct sdhc_host *hp = (struct sdhc_host *)sch; 828 int error; 829 830 mutex_enter(&hp->intr_lock); 831 error = sdhc_host_reset1(sch); 832 mutex_exit(&hp->intr_lock); 833 834 return error; 835 } 836 837 static uint32_t 838 sdhc_host_ocr(sdmmc_chipset_handle_t sch) 839 { 840 struct sdhc_host *hp = (struct sdhc_host *)sch; 841 842 return hp->ocr; 843 } 844 845 static int 846 sdhc_host_maxblklen(sdmmc_chipset_handle_t sch) 847 { 848 struct sdhc_host *hp = (struct sdhc_host *)sch; 849 850 return hp->maxblklen; 851 } 852 853 /* 854 * Return non-zero if the card is currently inserted. 855 */ 856 static int 857 sdhc_card_detect(sdmmc_chipset_handle_t sch) 858 { 859 struct sdhc_host *hp = (struct sdhc_host *)sch; 860 int r; 861 862 if (hp->sc->sc_vendor_card_detect) 863 return (*hp->sc->sc_vendor_card_detect)(hp->sc); 864 865 r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED); 866 867 return r ? 1 : 0; 868 } 869 870 /* 871 * Return non-zero if the card is currently write-protected. 872 */ 873 static int 874 sdhc_write_protect(sdmmc_chipset_handle_t sch) 875 { 876 struct sdhc_host *hp = (struct sdhc_host *)sch; 877 int r; 878 879 if (hp->sc->sc_vendor_write_protect) 880 return (*hp->sc->sc_vendor_write_protect)(hp->sc); 881 882 r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_WRITE_PROTECT_SWITCH); 883 884 return r ? 0 : 1; 885 } 886 887 /* 888 * Set or change SD bus voltage and enable or disable SD bus power. 889 * Return zero on success. 890 */ 891 static int 892 sdhc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr) 893 { 894 struct sdhc_host *hp = (struct sdhc_host *)sch; 895 uint8_t vdd; 896 int error = 0; 897 const uint32_t pcmask = 898 ~(SDHC_BUS_POWER | (SDHC_VOLTAGE_MASK << SDHC_VOLTAGE_SHIFT)); 899 900 mutex_enter(&hp->intr_lock); 901 902 /* 903 * Disable bus power before voltage change. 904 */ 905 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS) 906 && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_PWR0)) 907 HWRITE1(hp, SDHC_POWER_CTL, 0); 908 909 /* If power is disabled, reset the host and return now. */ 910 if (ocr == 0) { 911 (void)sdhc_host_reset1(hp); 912 callout_halt(&hp->tuning_timer, &hp->intr_lock); 913 goto out; 914 } 915 916 /* 917 * Select the lowest voltage according to capabilities. 918 */ 919 ocr &= hp->ocr; 920 if (ISSET(ocr, MMC_OCR_1_65V_1_95V)) { 921 vdd = SDHC_VOLTAGE_1_8V; 922 } else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V)) { 923 vdd = SDHC_VOLTAGE_3_0V; 924 } else if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V)) { 925 vdd = SDHC_VOLTAGE_3_3V; 926 } else { 927 /* Unsupported voltage level requested. */ 928 error = EINVAL; 929 goto out; 930 } 931 932 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) { 933 /* 934 * Enable bus power. Wait at least 1 ms (or 74 clocks) plus 935 * voltage ramp until power rises. 936 */ 937 938 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_SINGLE_POWER_WRITE)) { 939 HWRITE1(hp, SDHC_POWER_CTL, 940 (vdd << SDHC_VOLTAGE_SHIFT) | SDHC_BUS_POWER); 941 } else { 942 HWRITE1(hp, SDHC_POWER_CTL, 943 HREAD1(hp, SDHC_POWER_CTL) & pcmask); 944 sdmmc_delay(1); 945 HWRITE1(hp, SDHC_POWER_CTL, 946 (vdd << SDHC_VOLTAGE_SHIFT)); 947 sdmmc_delay(1); 948 HSET1(hp, SDHC_POWER_CTL, SDHC_BUS_POWER); 949 sdmmc_delay(10000); 950 } 951 952 /* 953 * The host system may not power the bus due to battery low, 954 * etc. In that case, the host controller should clear the 955 * bus power bit. 956 */ 957 if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) { 958 error = ENXIO; 959 goto out; 960 } 961 } 962 963 out: 964 mutex_exit(&hp->intr_lock); 965 966 return error; 967 } 968 969 /* 970 * Return the smallest possible base clock frequency divisor value 971 * for the CLOCK_CTL register to produce `freq' (KHz). 972 */ 973 static bool 974 sdhc_clock_divisor(struct sdhc_host *hp, u_int freq, u_int *divp) 975 { 976 u_int div; 977 978 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_CGM)) { 979 for (div = hp->clkbase / freq; div <= 0x3ff; div++) { 980 if ((hp->clkbase / div) <= freq) { 981 *divp = SDHC_SDCLK_CGM 982 | ((div & 0x300) << SDHC_SDCLK_XDIV_SHIFT) 983 | ((div & 0x0ff) << SDHC_SDCLK_DIV_SHIFT); 984 //freq = hp->clkbase / div; 985 return true; 986 } 987 } 988 /* No divisor found. */ 989 return false; 990 } 991 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_DVS)) { 992 u_int dvs = (hp->clkbase + freq - 1) / freq; 993 u_int roundup = dvs & 1; 994 for (dvs >>= 1, div = 1; div <= 256; div <<= 1, dvs >>= 1) { 995 if (dvs + roundup <= 16) { 996 dvs += roundup - 1; 997 *divp = (div << SDHC_SDCLK_DIV_SHIFT) 998 | (dvs << SDHC_SDCLK_DVS_SHIFT); 999 DPRINTF(2, 1000 ("%s: divisor for freq %u is %u * %u\n", 1001 HDEVNAME(hp), freq, div * 2, dvs + 1)); 1002 //freq = hp->clkbase / (div * 2) * (dvs + 1); 1003 return true; 1004 } 1005 /* 1006 * If we drop bits, we need to round up the divisor. 1007 */ 1008 roundup |= dvs & 1; 1009 } 1010 /* No divisor found. */ 1011 return false; 1012 } 1013 if (hp->sc->sc_clkmsk != 0) { 1014 div = howmany(hp->clkbase, freq); 1015 if (div > (hp->sc->sc_clkmsk >> (ffs(hp->sc->sc_clkmsk) - 1))) 1016 return false; 1017 *divp = div << (ffs(hp->sc->sc_clkmsk) - 1); 1018 //freq = hp->clkbase / div; 1019 return true; 1020 } 1021 if (hp->specver >= SDHC_SPEC_VERS_300) { 1022 div = howmany(hp->clkbase, freq); 1023 div = div > 1 ? howmany(div, 2) : 0; 1024 if (div > 0x3ff) 1025 return false; 1026 *divp = (((div >> 8) & SDHC_SDCLK_XDIV_MASK) 1027 << SDHC_SDCLK_XDIV_SHIFT) | 1028 (((div >> 0) & SDHC_SDCLK_DIV_MASK) 1029 << SDHC_SDCLK_DIV_SHIFT); 1030 //freq = hp->clkbase / (div ? div * 2 : 1); 1031 return true; 1032 } else { 1033 for (div = 1; div <= 256; div *= 2) { 1034 if ((hp->clkbase / div) <= freq) { 1035 *divp = (div / 2) << SDHC_SDCLK_DIV_SHIFT; 1036 //freq = hp->clkbase / div; 1037 return true; 1038 } 1039 } 1040 /* No divisor found. */ 1041 return false; 1042 } 1043 /* No divisor found. */ 1044 return false; 1045 } 1046 1047 /* 1048 * Set or change SDCLK frequency or disable the SD clock. 1049 * Return zero on success. 1050 */ 1051 static int 1052 sdhc_bus_clock_ddr(sdmmc_chipset_handle_t sch, int freq, bool ddr) 1053 { 1054 struct sdhc_host *hp = (struct sdhc_host *)sch; 1055 u_int div; 1056 u_int timo; 1057 int16_t reg; 1058 int error = 0; 1059 bool present __diagused; 1060 1061 mutex_enter(&hp->intr_lock); 1062 1063 #ifdef DIAGNOSTIC 1064 present = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK); 1065 1066 /* Must not stop the clock if commands are in progress. */ 1067 if (present && sdhc_card_detect(hp)) { 1068 aprint_normal_dev(hp->sc->sc_dev, 1069 "%s: command in progress\n", __func__); 1070 } 1071 #endif 1072 1073 if (hp->sc->sc_vendor_bus_clock) { 1074 error = (*hp->sc->sc_vendor_bus_clock)(hp->sc, freq); 1075 if (error != 0) 1076 goto out; 1077 } 1078 1079 /* 1080 * Stop SD clock before changing the frequency. 1081 */ 1082 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) { 1083 HCLR4(hp, SDHC_VEND_SPEC, 1084 SDHC_VEND_SPEC_CARD_CLK_SOFT_EN | 1085 SDHC_VEND_SPEC_FRC_SDCLK_ON); 1086 if (freq == SDMMC_SDCLK_OFF) { 1087 goto out; 1088 } 1089 } else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) { 1090 HCLR4(hp, SDHC_CLOCK_CTL, 0xfff8); 1091 if (freq == SDMMC_SDCLK_OFF) { 1092 HSET4(hp, SDHC_CLOCK_CTL, 0x80f0); 1093 goto out; 1094 } 1095 } else { 1096 HCLR2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE); 1097 if (freq == SDMMC_SDCLK_OFF) 1098 goto out; 1099 } 1100 1101 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) { 1102 if (ddr) 1103 HSET4(hp, SDHC_MIX_CTRL, SDHC_USDHC_DDR_EN); 1104 else 1105 HCLR4(hp, SDHC_MIX_CTRL, SDHC_USDHC_DDR_EN); 1106 } else if (hp->specver >= SDHC_SPEC_VERS_300) { 1107 HCLR2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_MASK); 1108 if (freq > 100000) { 1109 HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR104); 1110 } else if (freq > 50000) { 1111 if (ddr) { 1112 HSET2(hp, SDHC_HOST_CTL2, 1113 SDHC_UHS_MODE_SELECT_DDR50); 1114 } else { 1115 HSET2(hp, SDHC_HOST_CTL2, 1116 SDHC_UHS_MODE_SELECT_SDR50); 1117 } 1118 } else if (freq > 25000) { 1119 if (ddr) { 1120 HSET2(hp, SDHC_HOST_CTL2, 1121 SDHC_UHS_MODE_SELECT_DDR50); 1122 } else { 1123 HSET2(hp, SDHC_HOST_CTL2, 1124 SDHC_UHS_MODE_SELECT_SDR25); 1125 } 1126 } else if (freq > 400) { 1127 HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR12); 1128 } 1129 } 1130 1131 /* 1132 * Slow down Ricoh 5U823 controller that isn't reliable 1133 * at 100MHz bus clock. 1134 */ 1135 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_SLOW_SDR50)) { 1136 if (freq == 100000) 1137 --freq; 1138 } 1139 1140 /* 1141 * Set the minimum base clock frequency divisor. 1142 */ 1143 if (!sdhc_clock_divisor(hp, freq, &div)) { 1144 /* Invalid base clock frequency or `freq' value. */ 1145 aprint_error_dev(hp->sc->sc_dev, 1146 "Invalid bus clock %d kHz\n", freq); 1147 error = EINVAL; 1148 goto out; 1149 } 1150 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) { 1151 if (ddr) { 1152 /* in ddr mode, divisor >>= 1 */ 1153 div = ((div >> 1) & (SDHC_SDCLK_DIV_MASK << 1154 SDHC_SDCLK_DIV_SHIFT)) | 1155 (div & (SDHC_SDCLK_DVS_MASK << 1156 SDHC_SDCLK_DVS_SHIFT)); 1157 } 1158 for (timo = 1000; timo > 0; timo--) { 1159 if (ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_SDSTB)) 1160 break; 1161 sdmmc_delay(10); 1162 } 1163 HWRITE4(hp, SDHC_CLOCK_CTL, 1164 div | (SDHC_TIMEOUT_MAX << 16) | 0x0f); 1165 } else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) { 1166 HWRITE4(hp, SDHC_CLOCK_CTL, 1167 div | (SDHC_TIMEOUT_MAX << 16)); 1168 } else { 1169 reg = HREAD2(hp, SDHC_CLOCK_CTL); 1170 reg &= (SDHC_INTCLK_STABLE | SDHC_INTCLK_ENABLE); 1171 HWRITE2(hp, SDHC_CLOCK_CTL, reg | div); 1172 } 1173 1174 /* 1175 * Start internal clock. Wait 10ms for stabilization. 1176 */ 1177 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) { 1178 HSET4(hp, SDHC_VEND_SPEC, 1179 SDHC_VEND_SPEC_CARD_CLK_SOFT_EN | 1180 SDHC_VEND_SPEC_FRC_SDCLK_ON); 1181 } else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) { 1182 sdmmc_delay(10000); 1183 HSET4(hp, SDHC_CLOCK_CTL, 1184 8 | SDHC_INTCLK_ENABLE | SDHC_INTCLK_STABLE); 1185 } else { 1186 HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE); 1187 for (timo = 1000; timo > 0; timo--) { 1188 if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL), 1189 SDHC_INTCLK_STABLE)) 1190 break; 1191 sdmmc_delay(10); 1192 } 1193 if (timo == 0) { 1194 error = ETIMEDOUT; 1195 DPRINTF(1,("%s: timeout\n", __func__)); 1196 goto out; 1197 } 1198 } 1199 1200 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) { 1201 HSET1(hp, SDHC_SOFTWARE_RESET, SDHC_INIT_ACTIVE); 1202 /* 1203 * Sending 80 clocks at 400kHz takes 200us. 1204 * So delay for that time + slop and then 1205 * check a few times for completion. 1206 */ 1207 sdmmc_delay(210); 1208 for (timo = 10; timo > 0; timo--) { 1209 if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), 1210 SDHC_INIT_ACTIVE)) 1211 break; 1212 sdmmc_delay(10); 1213 } 1214 DPRINTF(2,("%s: %u init spins\n", __func__, 10 - timo)); 1215 1216 /* 1217 * Enable SD clock. 1218 */ 1219 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) { 1220 HSET4(hp, SDHC_VEND_SPEC, 1221 SDHC_VEND_SPEC_CARD_CLK_SOFT_EN | 1222 SDHC_VEND_SPEC_FRC_SDCLK_ON); 1223 } else { 1224 HSET4(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE); 1225 } 1226 } else { 1227 /* 1228 * Enable SD clock. 1229 */ 1230 HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE); 1231 1232 if (freq > 25000 && 1233 !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_HS_BIT)) 1234 HSET1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED); 1235 else 1236 HCLR1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED); 1237 } 1238 1239 out: 1240 mutex_exit(&hp->intr_lock); 1241 1242 return error; 1243 } 1244 1245 static int 1246 sdhc_bus_width(sdmmc_chipset_handle_t sch, int width) 1247 { 1248 struct sdhc_host *hp = (struct sdhc_host *)sch; 1249 int reg; 1250 1251 switch (width) { 1252 case 1: 1253 case 4: 1254 break; 1255 1256 case 8: 1257 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_8BIT_MODE)) 1258 break; 1259 /* FALLTHROUGH */ 1260 default: 1261 DPRINTF(0,("%s: unsupported bus width (%d)\n", 1262 HDEVNAME(hp), width)); 1263 return 1; 1264 } 1265 1266 if (hp->sc->sc_vendor_bus_width) { 1267 const int error = hp->sc->sc_vendor_bus_width(hp->sc, width); 1268 if (error != 0) 1269 return error; 1270 } 1271 1272 mutex_enter(&hp->intr_lock); 1273 1274 reg = HREAD1(hp, SDHC_HOST_CTL); 1275 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) { 1276 reg &= ~(SDHC_4BIT_MODE|SDHC_ESDHC_8BIT_MODE); 1277 if (width == 4) 1278 reg |= SDHC_4BIT_MODE; 1279 else if (width == 8) 1280 reg |= SDHC_ESDHC_8BIT_MODE; 1281 } else { 1282 reg &= ~SDHC_4BIT_MODE; 1283 if (hp->specver >= SDHC_SPEC_VERS_300) { 1284 reg &= ~SDHC_8BIT_MODE; 1285 } 1286 if (width == 4) { 1287 reg |= SDHC_4BIT_MODE; 1288 } else if (width == 8 && hp->specver >= SDHC_SPEC_VERS_300) { 1289 reg |= SDHC_8BIT_MODE; 1290 } 1291 } 1292 HWRITE1(hp, SDHC_HOST_CTL, reg); 1293 1294 mutex_exit(&hp->intr_lock); 1295 1296 return 0; 1297 } 1298 1299 static int 1300 sdhc_bus_rod(sdmmc_chipset_handle_t sch, int on) 1301 { 1302 struct sdhc_host *hp = (struct sdhc_host *)sch; 1303 1304 if (hp->sc->sc_vendor_rod) 1305 return (*hp->sc->sc_vendor_rod)(hp->sc, on); 1306 1307 return 0; 1308 } 1309 1310 static void 1311 sdhc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable) 1312 { 1313 struct sdhc_host *hp = (struct sdhc_host *)sch; 1314 1315 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) { 1316 mutex_enter(&hp->intr_lock); 1317 if (enable) { 1318 HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT); 1319 HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT); 1320 } else { 1321 HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT); 1322 HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT); 1323 } 1324 mutex_exit(&hp->intr_lock); 1325 } 1326 } 1327 1328 static void 1329 sdhc_card_intr_ack(sdmmc_chipset_handle_t sch) 1330 { 1331 struct sdhc_host *hp = (struct sdhc_host *)sch; 1332 1333 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) { 1334 mutex_enter(&hp->intr_lock); 1335 HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT); 1336 mutex_exit(&hp->intr_lock); 1337 } 1338 } 1339 1340 static int 1341 sdhc_signal_voltage(sdmmc_chipset_handle_t sch, int signal_voltage) 1342 { 1343 struct sdhc_host *hp = (struct sdhc_host *)sch; 1344 int error = 0; 1345 1346 if (hp->specver < SDHC_SPEC_VERS_300) 1347 return EINVAL; 1348 1349 mutex_enter(&hp->intr_lock); 1350 switch (signal_voltage) { 1351 case SDMMC_SIGNAL_VOLTAGE_180: 1352 if (hp->sc->sc_vendor_signal_voltage != NULL) { 1353 error = hp->sc->sc_vendor_signal_voltage(hp->sc, 1354 signal_voltage); 1355 if (error != 0) 1356 break; 1357 } 1358 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) 1359 HSET2(hp, SDHC_HOST_CTL2, SDHC_1_8V_SIGNAL_EN); 1360 break; 1361 case SDMMC_SIGNAL_VOLTAGE_330: 1362 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) 1363 HCLR2(hp, SDHC_HOST_CTL2, SDHC_1_8V_SIGNAL_EN); 1364 if (hp->sc->sc_vendor_signal_voltage != NULL) { 1365 error = hp->sc->sc_vendor_signal_voltage(hp->sc, 1366 signal_voltage); 1367 if (error != 0) 1368 break; 1369 } 1370 break; 1371 default: 1372 error = EINVAL; 1373 break; 1374 } 1375 mutex_exit(&hp->intr_lock); 1376 1377 return error; 1378 } 1379 1380 /* 1381 * Sampling clock tuning procedure (UHS) 1382 */ 1383 static int 1384 sdhc_execute_tuning1(struct sdhc_host *hp, int timing) 1385 { 1386 struct sdmmc_command cmd; 1387 uint8_t hostctl; 1388 int opcode, error, retry = 40; 1389 1390 KASSERT(mutex_owned(&hp->intr_lock)); 1391 1392 hp->tuning_timing = timing; 1393 1394 switch (timing) { 1395 case SDMMC_TIMING_MMC_HS200: 1396 opcode = MMC_SEND_TUNING_BLOCK_HS200; 1397 break; 1398 case SDMMC_TIMING_UHS_SDR50: 1399 if (!ISSET(hp->sc->sc_caps2, SDHC_TUNING_SDR50)) 1400 return 0; 1401 /* FALLTHROUGH */ 1402 case SDMMC_TIMING_UHS_SDR104: 1403 opcode = MMC_SEND_TUNING_BLOCK; 1404 break; 1405 default: 1406 return EINVAL; 1407 } 1408 1409 hostctl = HREAD1(hp, SDHC_HOST_CTL); 1410 1411 /* enable buffer read ready interrupt */ 1412 HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_BUFFER_READ_READY); 1413 HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_BUFFER_READ_READY); 1414 1415 /* disable DMA */ 1416 HCLR1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT); 1417 1418 /* reset tuning circuit */ 1419 HCLR2(hp, SDHC_HOST_CTL2, SDHC_SAMPLING_CLOCK_SEL); 1420 1421 /* start of tuning */ 1422 HWRITE2(hp, SDHC_HOST_CTL2, SDHC_EXECUTE_TUNING); 1423 1424 do { 1425 memset(&cmd, 0, sizeof(cmd)); 1426 cmd.c_opcode = opcode; 1427 cmd.c_arg = 0; 1428 cmd.c_flags = SCF_CMD_ADTC | SCF_CMD_READ | SCF_RSP_R1; 1429 if (ISSET(hostctl, SDHC_8BIT_MODE)) { 1430 cmd.c_blklen = cmd.c_datalen = 128; 1431 } else { 1432 cmd.c_blklen = cmd.c_datalen = 64; 1433 } 1434 1435 error = sdhc_start_command(hp, &cmd); 1436 if (error) 1437 break; 1438 1439 if (!sdhc_wait_intr(hp, SDHC_BUFFER_READ_READY, 1440 SDHC_TUNING_TIMEOUT, false)) { 1441 break; 1442 } 1443 1444 delay(1000); 1445 } while (HREAD2(hp, SDHC_HOST_CTL2) & SDHC_EXECUTE_TUNING && --retry); 1446 1447 /* disable buffer read ready interrupt */ 1448 HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_BUFFER_READ_READY); 1449 HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_BUFFER_READ_READY); 1450 1451 if (HREAD2(hp, SDHC_HOST_CTL2) & SDHC_EXECUTE_TUNING) { 1452 HCLR2(hp, SDHC_HOST_CTL2, 1453 SDHC_SAMPLING_CLOCK_SEL|SDHC_EXECUTE_TUNING); 1454 sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD); 1455 aprint_error_dev(hp->sc->sc_dev, 1456 "tuning did not complete, using fixed sampling clock\n"); 1457 return EIO; /* tuning did not complete */ 1458 } 1459 1460 if ((HREAD2(hp, SDHC_HOST_CTL2) & SDHC_SAMPLING_CLOCK_SEL) == 0) { 1461 HCLR2(hp, SDHC_HOST_CTL2, 1462 SDHC_SAMPLING_CLOCK_SEL|SDHC_EXECUTE_TUNING); 1463 sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD); 1464 aprint_error_dev(hp->sc->sc_dev, 1465 "tuning failed, using fixed sampling clock\n"); 1466 return EIO; /* tuning failed */ 1467 } 1468 1469 if (hp->tuning_timer_count) { 1470 callout_schedule(&hp->tuning_timer, 1471 hz * hp->tuning_timer_count); 1472 } 1473 1474 return 0; /* tuning completed */ 1475 } 1476 1477 static int 1478 sdhc_execute_tuning(sdmmc_chipset_handle_t sch, int timing) 1479 { 1480 struct sdhc_host *hp = (struct sdhc_host *)sch; 1481 int error; 1482 1483 mutex_enter(&hp->intr_lock); 1484 error = sdhc_execute_tuning1(hp, timing); 1485 mutex_exit(&hp->intr_lock); 1486 return error; 1487 } 1488 1489 static void 1490 sdhc_tuning_timer(void *arg) 1491 { 1492 struct sdhc_host *hp = arg; 1493 1494 atomic_swap_uint(&hp->tuning_timer_pending, 1); 1495 } 1496 1497 static void 1498 sdhc_hw_reset(sdmmc_chipset_handle_t sch) 1499 { 1500 struct sdhc_host *hp = (struct sdhc_host *)sch; 1501 struct sdhc_softc *sc = hp->sc; 1502 1503 if (sc->sc_vendor_hw_reset != NULL) 1504 sc->sc_vendor_hw_reset(sc, hp); 1505 } 1506 1507 static int 1508 sdhc_wait_state(struct sdhc_host *hp, uint32_t mask, uint32_t value) 1509 { 1510 uint32_t state; 1511 int timeout; 1512 1513 for (timeout = 10000; timeout > 0; timeout--) { 1514 if (((state = HREAD4(hp, SDHC_PRESENT_STATE)) & mask) == value) 1515 return 0; 1516 sdmmc_delay(10); 1517 } 1518 aprint_error_dev(hp->sc->sc_dev, "timeout waiting for mask %#x value %#x (state=%#x)\n", 1519 mask, value, state); 1520 return ETIMEDOUT; 1521 } 1522 1523 static void 1524 sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd) 1525 { 1526 struct sdhc_host *hp = (struct sdhc_host *)sch; 1527 int error; 1528 bool probing; 1529 1530 mutex_enter(&hp->intr_lock); 1531 1532 if (atomic_cas_uint(&hp->tuning_timer_pending, 1, 0) == 1) { 1533 (void)sdhc_execute_tuning1(hp, hp->tuning_timing); 1534 } 1535 1536 if (cmd->c_data && 1537 ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) { 1538 const uint16_t ready = SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY; 1539 if (ISSET(hp->flags, SHF_USE_DMA)) { 1540 HCLR2(hp, SDHC_NINTR_SIGNAL_EN, ready); 1541 HCLR2(hp, SDHC_NINTR_STATUS_EN, ready); 1542 } else { 1543 HSET2(hp, SDHC_NINTR_SIGNAL_EN, ready); 1544 HSET2(hp, SDHC_NINTR_STATUS_EN, ready); 1545 } 1546 } 1547 1548 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_TIMEOUT)) { 1549 const uint16_t eintr = SDHC_CMD_TIMEOUT_ERROR; 1550 if (cmd->c_data != NULL) { 1551 HCLR2(hp, SDHC_EINTR_SIGNAL_EN, eintr); 1552 HCLR2(hp, SDHC_EINTR_STATUS_EN, eintr); 1553 } else { 1554 HSET2(hp, SDHC_EINTR_SIGNAL_EN, eintr); 1555 HSET2(hp, SDHC_EINTR_STATUS_EN, eintr); 1556 } 1557 } 1558 1559 /* 1560 * Start the MMC command, or mark `cmd' as failed and return. 1561 */ 1562 error = sdhc_start_command(hp, cmd); 1563 if (error) { 1564 cmd->c_error = error; 1565 goto out; 1566 } 1567 1568 /* 1569 * Wait until the command phase is done, or until the command 1570 * is marked done for any other reason. 1571 */ 1572 probing = (cmd->c_flags & SCF_TOUT_OK) != 0; 1573 if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE, SDHC_COMMAND_TIMEOUT, probing)) { 1574 DPRINTF(1,("%s: timeout for command\n", __func__)); 1575 sdmmc_delay(50); 1576 cmd->c_error = ETIMEDOUT; 1577 goto out; 1578 } 1579 1580 /* 1581 * The host controller removes bits [0:7] from the response 1582 * data (CRC) and we pass the data up unchanged to the bus 1583 * driver (without padding). 1584 */ 1585 if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) { 1586 cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE + 0); 1587 if (ISSET(cmd->c_flags, SCF_RSP_136)) { 1588 cmd->c_resp[1] = HREAD4(hp, SDHC_RESPONSE + 4); 1589 cmd->c_resp[2] = HREAD4(hp, SDHC_RESPONSE + 8); 1590 cmd->c_resp[3] = HREAD4(hp, SDHC_RESPONSE + 12); 1591 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_RSP136_CRC)) { 1592 cmd->c_resp[0] = (cmd->c_resp[0] >> 8) | 1593 (cmd->c_resp[1] << 24); 1594 cmd->c_resp[1] = (cmd->c_resp[1] >> 8) | 1595 (cmd->c_resp[2] << 24); 1596 cmd->c_resp[2] = (cmd->c_resp[2] >> 8) | 1597 (cmd->c_resp[3] << 24); 1598 cmd->c_resp[3] = (cmd->c_resp[3] >> 8); 1599 } 1600 } 1601 } 1602 DPRINTF(1,("%s: resp = %08x\n", HDEVNAME(hp), cmd->c_resp[0])); 1603 1604 /* 1605 * If the command has data to transfer in any direction, 1606 * execute the transfer now. 1607 */ 1608 if (cmd->c_error == 0 && cmd->c_data != NULL) 1609 sdhc_transfer_data(hp, cmd); 1610 else if (ISSET(cmd->c_flags, SCF_RSP_BSY)) { 1611 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_BUSY_INTR) && 1612 !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE, hz * 10, false)) { 1613 DPRINTF(1,("%s: sdhc_exec_command: RSP_BSY\n", 1614 HDEVNAME(hp))); 1615 cmd->c_error = ETIMEDOUT; 1616 goto out; 1617 } 1618 } 1619 1620 out: 1621 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED) 1622 && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_LED_ON)) { 1623 /* Turn off the LED. */ 1624 HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON); 1625 } 1626 SET(cmd->c_flags, SCF_ITSDONE); 1627 1628 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_AUTO_STOP) && 1629 cmd->c_opcode == MMC_STOP_TRANSMISSION) 1630 (void)sdhc_soft_reset(hp, SDHC_RESET_CMD|SDHC_RESET_DAT); 1631 1632 mutex_exit(&hp->intr_lock); 1633 1634 DPRINTF(1,("%s: cmd %d %s (flags=%08x error=%d)\n", HDEVNAME(hp), 1635 cmd->c_opcode, (cmd->c_error == 0) ? "done" : "abort", 1636 cmd->c_flags, cmd->c_error)); 1637 } 1638 1639 static int 1640 sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd) 1641 { 1642 struct sdhc_softc * const sc = hp->sc; 1643 uint16_t blksize = 0; 1644 uint16_t blkcount = 0; 1645 uint16_t mode; 1646 uint16_t command; 1647 uint32_t pmask; 1648 int error; 1649 1650 KASSERT(mutex_owned(&hp->intr_lock)); 1651 1652 DPRINTF(1,("%s: start cmd %d arg=%08x data=%p dlen=%d flags=%08x, status=%#x\n", 1653 HDEVNAME(hp), cmd->c_opcode, cmd->c_arg, cmd->c_data, 1654 cmd->c_datalen, cmd->c_flags, HREAD4(hp, SDHC_NINTR_STATUS))); 1655 1656 /* 1657 * The maximum block length for commands should be the minimum 1658 * of the host buffer size and the card buffer size. (1.7.2) 1659 */ 1660 1661 /* Fragment the data into proper blocks. */ 1662 if (cmd->c_datalen > 0) { 1663 blksize = MIN(cmd->c_datalen, cmd->c_blklen); 1664 blkcount = cmd->c_datalen / blksize; 1665 if (cmd->c_datalen % blksize > 0) { 1666 /* XXX: Split this command. (1.7.4) */ 1667 aprint_error_dev(sc->sc_dev, 1668 "data not a multiple of %u bytes\n", blksize); 1669 return EINVAL; 1670 } 1671 } 1672 1673 /* Check limit imposed by 9-bit block count. (1.7.2) */ 1674 if (blkcount > SDHC_BLOCK_COUNT_MAX) { 1675 aprint_error_dev(sc->sc_dev, "too much data\n"); 1676 return EINVAL; 1677 } 1678 1679 /* Prepare transfer mode register value. (2.2.5) */ 1680 mode = SDHC_BLOCK_COUNT_ENABLE; 1681 if (ISSET(cmd->c_flags, SCF_CMD_READ)) 1682 mode |= SDHC_READ_MODE; 1683 if (blkcount > 1) { 1684 mode |= SDHC_MULTI_BLOCK_MODE; 1685 /* XXX only for memory commands? */ 1686 if (!ISSET(sc->sc_flags, SDHC_FLAG_NO_AUTO_STOP)) 1687 mode |= SDHC_AUTO_CMD12_ENABLE; 1688 } 1689 if (cmd->c_dmamap != NULL && cmd->c_datalen > 0 && 1690 ISSET(hp->flags, SHF_MODE_DMAEN)) { 1691 mode |= SDHC_DMA_ENABLE; 1692 } 1693 1694 /* 1695 * Prepare command register value. (2.2.6) 1696 */ 1697 command = (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) << SDHC_COMMAND_INDEX_SHIFT; 1698 1699 if (ISSET(cmd->c_flags, SCF_RSP_CRC)) 1700 command |= SDHC_CRC_CHECK_ENABLE; 1701 if (ISSET(cmd->c_flags, SCF_RSP_IDX)) 1702 command |= SDHC_INDEX_CHECK_ENABLE; 1703 if (cmd->c_datalen > 0) 1704 command |= SDHC_DATA_PRESENT_SELECT; 1705 1706 if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT)) 1707 command |= SDHC_NO_RESPONSE; 1708 else if (ISSET(cmd->c_flags, SCF_RSP_136)) 1709 command |= SDHC_RESP_LEN_136; 1710 else if (ISSET(cmd->c_flags, SCF_RSP_BSY)) 1711 command |= SDHC_RESP_LEN_48_CHK_BUSY; 1712 else 1713 command |= SDHC_RESP_LEN_48; 1714 1715 /* Wait until command and optionally data inhibit bits are clear. (1.5) */ 1716 pmask = SDHC_CMD_INHIBIT_CMD; 1717 if (cmd->c_flags & (SCF_CMD_ADTC|SCF_RSP_BSY)) 1718 pmask |= SDHC_CMD_INHIBIT_DAT; 1719 error = sdhc_wait_state(hp, pmask, 0); 1720 if (error) { 1721 (void) sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD); 1722 device_printf(sc->sc_dev, "command or data phase inhibited\n"); 1723 return error; 1724 } 1725 1726 DPRINTF(1,("%s: writing cmd: blksize=%d blkcnt=%d mode=%04x cmd=%04x\n", 1727 HDEVNAME(hp), blksize, blkcount, mode, command)); 1728 1729 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) { 1730 blksize |= (MAX(0, PAGE_SHIFT - 12) & SDHC_DMA_BOUNDARY_MASK) << 1731 SDHC_DMA_BOUNDARY_SHIFT; /* PAGE_SIZE DMA boundary */ 1732 } 1733 1734 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) { 1735 /* Alert the user not to remove the card. */ 1736 HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON); 1737 } 1738 1739 /* Set DMA start address. */ 1740 if (ISSET(hp->flags, SHF_USE_ADMA2_MASK) && cmd->c_data != NULL) { 1741 for (int seg = 0; seg < cmd->c_dmamap->dm_nsegs; seg++) { 1742 bus_addr_t paddr = 1743 cmd->c_dmamap->dm_segs[seg].ds_addr; 1744 uint16_t len = 1745 cmd->c_dmamap->dm_segs[seg].ds_len == 65536 ? 1746 0 : cmd->c_dmamap->dm_segs[seg].ds_len; 1747 uint16_t attr = 1748 SDHC_ADMA2_VALID | SDHC_ADMA2_ACT_TRANS; 1749 if (seg == cmd->c_dmamap->dm_nsegs - 1) { 1750 attr |= SDHC_ADMA2_END; 1751 } 1752 if (ISSET(hp->flags, SHF_USE_ADMA2_32)) { 1753 struct sdhc_adma2_descriptor32 *desc = 1754 hp->adma2; 1755 desc[seg].attribute = htole16(attr); 1756 desc[seg].length = htole16(len); 1757 desc[seg].address = htole32(paddr); 1758 } else { 1759 struct sdhc_adma2_descriptor64 *desc = 1760 hp->adma2; 1761 desc[seg].attribute = htole16(attr); 1762 desc[seg].length = htole16(len); 1763 desc[seg].address = htole32(paddr & 0xffffffff); 1764 desc[seg].address_hi = htole32( 1765 (uint64_t)paddr >> 32); 1766 } 1767 } 1768 if (ISSET(hp->flags, SHF_USE_ADMA2_32)) { 1769 struct sdhc_adma2_descriptor32 *desc = hp->adma2; 1770 desc[cmd->c_dmamap->dm_nsegs].attribute = htole16(0); 1771 } else { 1772 struct sdhc_adma2_descriptor64 *desc = hp->adma2; 1773 desc[cmd->c_dmamap->dm_nsegs].attribute = htole16(0); 1774 } 1775 bus_dmamap_sync(sc->sc_dmat, hp->adma_map, 0, PAGE_SIZE, 1776 BUS_DMASYNC_PREWRITE); 1777 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) { 1778 HCLR4(hp, SDHC_HOST_CTL, SDHC_USDHC_DMA_SELECT); 1779 HSET4(hp, SDHC_HOST_CTL, SDHC_USDHC_DMA_SELECT_ADMA2); 1780 } else { 1781 HCLR1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT); 1782 HSET1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT_ADMA2); 1783 } 1784 1785 const bus_addr_t desc_addr = hp->adma_map->dm_segs[0].ds_addr; 1786 1787 HWRITE4(hp, SDHC_ADMA_SYSTEM_ADDR, desc_addr & 0xffffffff); 1788 if (ISSET(hp->flags, SHF_USE_ADMA2_64)) { 1789 HWRITE4(hp, SDHC_ADMA_SYSTEM_ADDR + 4, 1790 (uint64_t)desc_addr >> 32); 1791 } 1792 } else if (ISSET(mode, SDHC_DMA_ENABLE) && 1793 !ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA)) { 1794 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) { 1795 HCLR4(hp, SDHC_HOST_CTL, SDHC_USDHC_DMA_SELECT); 1796 } 1797 HWRITE4(hp, SDHC_DMA_ADDR, cmd->c_dmamap->dm_segs[0].ds_addr); 1798 } 1799 1800 /* 1801 * Start a CPU data transfer. Writing to the high order byte 1802 * of the SDHC_COMMAND register triggers the SD command. (1.5) 1803 */ 1804 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) { 1805 HWRITE4(hp, SDHC_BLOCK_SIZE, blksize | (blkcount << 16)); 1806 HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg); 1807 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) { 1808 /* mode bits is in MIX_CTRL register on uSDHC */ 1809 HWRITE4(hp, SDHC_MIX_CTRL, mode | 1810 (HREAD4(hp, SDHC_MIX_CTRL) & 1811 ~(SDHC_MULTI_BLOCK_MODE | 1812 SDHC_READ_MODE | 1813 SDHC_AUTO_CMD12_ENABLE | 1814 SDHC_BLOCK_COUNT_ENABLE | 1815 SDHC_DMA_ENABLE))); 1816 HWRITE4(hp, SDHC_TRANSFER_MODE, command << 16); 1817 } else { 1818 HWRITE4(hp, SDHC_TRANSFER_MODE, mode | (command << 16)); 1819 } 1820 } else { 1821 HWRITE2(hp, SDHC_BLOCK_SIZE, blksize); 1822 HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount); 1823 HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg); 1824 HWRITE2(hp, SDHC_TRANSFER_MODE, mode); 1825 HWRITE2(hp, SDHC_COMMAND, command); 1826 } 1827 1828 return 0; 1829 } 1830 1831 static void 1832 sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd) 1833 { 1834 struct sdhc_softc *sc = hp->sc; 1835 int error; 1836 1837 KASSERT(mutex_owned(&hp->intr_lock)); 1838 1839 DPRINTF(1,("%s: data transfer: resp=%08x datalen=%u\n", HDEVNAME(hp), 1840 MMC_R1(cmd->c_resp), cmd->c_datalen)); 1841 1842 #ifdef SDHC_DEBUG 1843 /* XXX I forgot why I wanted to know when this happens :-( */ 1844 if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) && 1845 ISSET(MMC_R1(cmd->c_resp), 0xcb00)) { 1846 aprint_error_dev(hp->sc->sc_dev, 1847 "CMD52/53 error response flags %#x\n", 1848 MMC_R1(cmd->c_resp) & 0xff00); 1849 } 1850 #endif 1851 1852 if (cmd->c_dmamap != NULL) { 1853 if (hp->sc->sc_vendor_transfer_data_dma != NULL) { 1854 error = hp->sc->sc_vendor_transfer_data_dma(sc, cmd); 1855 if (error == 0 && !sdhc_wait_intr(hp, 1856 SDHC_TRANSFER_COMPLETE, SDHC_DMA_TIMEOUT, false)) { 1857 DPRINTF(1,("%s: timeout\n", __func__)); 1858 error = ETIMEDOUT; 1859 } 1860 } else { 1861 error = sdhc_transfer_data_dma(hp, cmd); 1862 } 1863 } else 1864 error = sdhc_transfer_data_pio(hp, cmd); 1865 if (error) 1866 cmd->c_error = error; 1867 SET(cmd->c_flags, SCF_ITSDONE); 1868 1869 DPRINTF(1,("%s: data transfer done (error=%d)\n", 1870 HDEVNAME(hp), cmd->c_error)); 1871 } 1872 1873 static int 1874 sdhc_transfer_data_dma(struct sdhc_host *hp, struct sdmmc_command *cmd) 1875 { 1876 bus_dma_segment_t *dm_segs = cmd->c_dmamap->dm_segs; 1877 bus_addr_t posaddr; 1878 bus_addr_t segaddr; 1879 bus_size_t seglen; 1880 u_int seg = 0; 1881 int error = 0; 1882 int status; 1883 1884 KASSERT(mutex_owned(&hp->intr_lock)); 1885 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_DMA_INTERRUPT); 1886 KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_DMA_INTERRUPT); 1887 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE); 1888 KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE); 1889 1890 for (;;) { 1891 status = sdhc_wait_intr(hp, 1892 SDHC_DMA_INTERRUPT|SDHC_TRANSFER_COMPLETE, 1893 SDHC_DMA_TIMEOUT, false); 1894 1895 if (status & SDHC_TRANSFER_COMPLETE) { 1896 break; 1897 } 1898 if (!status) { 1899 DPRINTF(1,("%s: timeout\n", __func__)); 1900 error = ETIMEDOUT; 1901 break; 1902 } 1903 1904 if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) { 1905 continue; 1906 } 1907 1908 if ((status & SDHC_DMA_INTERRUPT) == 0) { 1909 continue; 1910 } 1911 1912 /* DMA Interrupt (boundary crossing) */ 1913 1914 segaddr = dm_segs[seg].ds_addr; 1915 seglen = dm_segs[seg].ds_len; 1916 posaddr = HREAD4(hp, SDHC_DMA_ADDR); 1917 1918 if ((seg == (cmd->c_dmamap->dm_nsegs-1)) && (posaddr == (segaddr + seglen))) { 1919 continue; 1920 } 1921 if ((posaddr >= segaddr) && (posaddr < (segaddr + seglen))) 1922 HWRITE4(hp, SDHC_DMA_ADDR, posaddr); 1923 else if ((posaddr >= segaddr) && (posaddr == (segaddr + seglen)) && (seg + 1) < cmd->c_dmamap->dm_nsegs) 1924 HWRITE4(hp, SDHC_DMA_ADDR, dm_segs[++seg].ds_addr); 1925 KASSERT(seg < cmd->c_dmamap->dm_nsegs); 1926 } 1927 1928 if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) { 1929 bus_dmamap_sync(hp->sc->sc_dmat, hp->adma_map, 0, 1930 PAGE_SIZE, BUS_DMASYNC_POSTWRITE); 1931 } 1932 1933 return error; 1934 } 1935 1936 static int 1937 sdhc_transfer_data_pio(struct sdhc_host *hp, struct sdmmc_command *cmd) 1938 { 1939 uint8_t *data = cmd->c_data; 1940 void (*pio_func)(struct sdhc_host *, uint8_t *, u_int); 1941 u_int len, datalen; 1942 u_int imask; 1943 u_int pmask; 1944 int error = 0; 1945 1946 KASSERT(mutex_owned(&hp->intr_lock)); 1947 1948 if (ISSET(cmd->c_flags, SCF_CMD_READ)) { 1949 imask = SDHC_BUFFER_READ_READY; 1950 pmask = SDHC_BUFFER_READ_ENABLE; 1951 if (ISSET(hp->sc->sc_flags, 1952 SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) { 1953 pio_func = esdhc_read_data_pio; 1954 } else { 1955 pio_func = sdhc_read_data_pio; 1956 } 1957 } else { 1958 imask = SDHC_BUFFER_WRITE_READY; 1959 pmask = SDHC_BUFFER_WRITE_ENABLE; 1960 if (ISSET(hp->sc->sc_flags, 1961 SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) { 1962 pio_func = esdhc_write_data_pio; 1963 } else { 1964 pio_func = sdhc_write_data_pio; 1965 } 1966 } 1967 datalen = cmd->c_datalen; 1968 1969 KASSERT(mutex_owned(&hp->intr_lock)); 1970 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & imask); 1971 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE); 1972 KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE); 1973 1974 while (datalen > 0) { 1975 if (!ISSET(HREAD4(hp, SDHC_PRESENT_STATE), pmask)) { 1976 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) { 1977 HSET4(hp, SDHC_NINTR_SIGNAL_EN, imask); 1978 } else { 1979 HSET2(hp, SDHC_NINTR_SIGNAL_EN, imask); 1980 } 1981 if (!sdhc_wait_intr(hp, imask, SDHC_BUFFER_TIMEOUT, false)) { 1982 DPRINTF(1,("%s: timeout\n", __func__)); 1983 error = ETIMEDOUT; 1984 break; 1985 } 1986 1987 error = sdhc_wait_state(hp, pmask, pmask); 1988 if (error) 1989 break; 1990 } 1991 1992 len = MIN(datalen, cmd->c_blklen); 1993 (*pio_func)(hp, data, len); 1994 DPRINTF(2,("%s: pio data transfer %u @ %p\n", 1995 HDEVNAME(hp), len, data)); 1996 1997 data += len; 1998 datalen -= len; 1999 } 2000 2001 if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE, 2002 SDHC_TRANSFER_TIMEOUT, false)) { 2003 DPRINTF(1,("%s: timeout for transfer\n", __func__)); 2004 error = ETIMEDOUT; 2005 } 2006 2007 return error; 2008 } 2009 2010 static void 2011 sdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen) 2012 { 2013 2014 if (((__uintptr_t)data & 3) == 0) { 2015 while (datalen > 3) { 2016 *(uint32_t *)data = le32toh(HREAD4(hp, SDHC_DATA)); 2017 data += 4; 2018 datalen -= 4; 2019 } 2020 if (datalen > 1) { 2021 *(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA)); 2022 data += 2; 2023 datalen -= 2; 2024 } 2025 if (datalen > 0) { 2026 *data = HREAD1(hp, SDHC_DATA); 2027 data += 1; 2028 datalen -= 1; 2029 } 2030 } else if (((__uintptr_t)data & 1) == 0) { 2031 while (datalen > 1) { 2032 *(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA)); 2033 data += 2; 2034 datalen -= 2; 2035 } 2036 if (datalen > 0) { 2037 *data = HREAD1(hp, SDHC_DATA); 2038 data += 1; 2039 datalen -= 1; 2040 } 2041 } else { 2042 while (datalen > 0) { 2043 *data = HREAD1(hp, SDHC_DATA); 2044 data += 1; 2045 datalen -= 1; 2046 } 2047 } 2048 } 2049 2050 static void 2051 sdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen) 2052 { 2053 2054 if (((__uintptr_t)data & 3) == 0) { 2055 while (datalen > 3) { 2056 HWRITE4(hp, SDHC_DATA, htole32(*(uint32_t *)data)); 2057 data += 4; 2058 datalen -= 4; 2059 } 2060 if (datalen > 1) { 2061 HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data)); 2062 data += 2; 2063 datalen -= 2; 2064 } 2065 if (datalen > 0) { 2066 HWRITE1(hp, SDHC_DATA, *data); 2067 data += 1; 2068 datalen -= 1; 2069 } 2070 } else if (((__uintptr_t)data & 1) == 0) { 2071 while (datalen > 1) { 2072 HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data)); 2073 data += 2; 2074 datalen -= 2; 2075 } 2076 if (datalen > 0) { 2077 HWRITE1(hp, SDHC_DATA, *data); 2078 data += 1; 2079 datalen -= 1; 2080 } 2081 } else { 2082 while (datalen > 0) { 2083 HWRITE1(hp, SDHC_DATA, *data); 2084 data += 1; 2085 datalen -= 1; 2086 } 2087 } 2088 } 2089 2090 static void 2091 esdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen) 2092 { 2093 uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS); 2094 uint32_t v; 2095 2096 const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_READ_SHIFT) & SDHC_WATERMARK_READ_MASK; 2097 size_t count = 0; 2098 2099 while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) { 2100 if (count == 0) { 2101 /* 2102 * If we've drained "watermark" words, we need to wait 2103 * a little bit so the read FIFO can refill. 2104 */ 2105 sdmmc_delay(10); 2106 count = watermark; 2107 } 2108 v = HREAD4(hp, SDHC_DATA); 2109 v = le32toh(v); 2110 *(uint32_t *)data = v; 2111 data += 4; 2112 datalen -= 4; 2113 status = HREAD2(hp, SDHC_NINTR_STATUS); 2114 count--; 2115 } 2116 if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) { 2117 if (count == 0) { 2118 sdmmc_delay(10); 2119 } 2120 v = HREAD4(hp, SDHC_DATA); 2121 v = le32toh(v); 2122 do { 2123 *data++ = v; 2124 v >>= 8; 2125 } while (--datalen > 0); 2126 } 2127 } 2128 2129 static void 2130 esdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen) 2131 { 2132 uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS); 2133 uint32_t v; 2134 2135 const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_WRITE_SHIFT) & SDHC_WATERMARK_WRITE_MASK; 2136 size_t count = watermark; 2137 2138 while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) { 2139 if (count == 0) { 2140 sdmmc_delay(10); 2141 count = watermark; 2142 } 2143 v = *(uint32_t *)data; 2144 v = htole32(v); 2145 HWRITE4(hp, SDHC_DATA, v); 2146 data += 4; 2147 datalen -= 4; 2148 status = HREAD2(hp, SDHC_NINTR_STATUS); 2149 count--; 2150 } 2151 if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) { 2152 if (count == 0) { 2153 sdmmc_delay(10); 2154 } 2155 v = *(uint32_t *)data; 2156 v = htole32(v); 2157 HWRITE4(hp, SDHC_DATA, v); 2158 } 2159 } 2160 2161 /* Prepare for another command. */ 2162 static int 2163 sdhc_soft_reset(struct sdhc_host *hp, int mask) 2164 { 2165 int timo; 2166 2167 KASSERT(mutex_owned(&hp->intr_lock)); 2168 2169 DPRINTF(1,("%s: software reset reg=%08x\n", HDEVNAME(hp), mask)); 2170 2171 /* Request the reset. */ 2172 HWRITE1(hp, SDHC_SOFTWARE_RESET, mask); 2173 2174 /* 2175 * If necessary, wait for the controller to set the bits to 2176 * acknowledge the reset. 2177 */ 2178 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_WAIT_RESET) && 2179 ISSET(mask, (SDHC_RESET_DAT | SDHC_RESET_CMD))) { 2180 for (timo = 10000; timo > 0; timo--) { 2181 if (ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask)) 2182 break; 2183 /* Short delay because I worry we may miss it... */ 2184 sdmmc_delay(1); 2185 } 2186 if (timo == 0) { 2187 DPRINTF(1,("%s: timeout for reset on\n", __func__)); 2188 return ETIMEDOUT; 2189 } 2190 } 2191 2192 /* 2193 * Wait for the controller to clear the bits to indicate that 2194 * the reset has completed. 2195 */ 2196 for (timo = 10; timo > 0; timo--) { 2197 if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask)) 2198 break; 2199 sdmmc_delay(10000); 2200 } 2201 if (timo == 0) { 2202 DPRINTF(1,("%s: timeout reg=%08x\n", HDEVNAME(hp), 2203 HREAD1(hp, SDHC_SOFTWARE_RESET))); 2204 return ETIMEDOUT; 2205 } 2206 2207 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) { 2208 HSET4(hp, SDHC_DMA_CTL, SDHC_DMA_SNOOP); 2209 } 2210 2211 return 0; 2212 } 2213 2214 static int 2215 sdhc_wait_intr(struct sdhc_host *hp, int mask, int timo, bool probing) 2216 { 2217 int status, error, nointr; 2218 2219 KASSERT(mutex_owned(&hp->intr_lock)); 2220 2221 mask |= SDHC_ERROR_INTERRUPT; 2222 2223 nointr = 0; 2224 status = hp->intr_status & mask; 2225 while (status == 0) { 2226 if (cv_timedwait(&hp->intr_cv, &hp->intr_lock, timo) 2227 == EWOULDBLOCK) { 2228 nointr = 1; 2229 break; 2230 } 2231 status = hp->intr_status & mask; 2232 } 2233 error = hp->intr_error_status; 2234 2235 DPRINTF(2,("%s: intr status %#x error %#x\n", HDEVNAME(hp), status, 2236 error)); 2237 2238 hp->intr_status &= ~status; 2239 hp->intr_error_status &= ~error; 2240 2241 if (ISSET(status, SDHC_ERROR_INTERRUPT)) { 2242 if (ISSET(error, SDHC_DMA_ERROR)) 2243 device_printf(hp->sc->sc_dev,"dma error\n"); 2244 if (ISSET(error, SDHC_ADMA_ERROR)) 2245 device_printf(hp->sc->sc_dev,"adma error\n"); 2246 if (ISSET(error, SDHC_AUTO_CMD12_ERROR)) 2247 device_printf(hp->sc->sc_dev,"auto_cmd12 error\n"); 2248 if (ISSET(error, SDHC_CURRENT_LIMIT_ERROR)) 2249 device_printf(hp->sc->sc_dev,"current limit error\n"); 2250 if (ISSET(error, SDHC_DATA_END_BIT_ERROR)) 2251 device_printf(hp->sc->sc_dev,"data end bit error\n"); 2252 if (ISSET(error, SDHC_DATA_CRC_ERROR)) 2253 device_printf(hp->sc->sc_dev,"data crc error\n"); 2254 if (ISSET(error, SDHC_DATA_TIMEOUT_ERROR)) 2255 device_printf(hp->sc->sc_dev,"data timeout error\n"); 2256 if (ISSET(error, SDHC_CMD_INDEX_ERROR)) 2257 device_printf(hp->sc->sc_dev,"cmd index error\n"); 2258 if (ISSET(error, SDHC_CMD_END_BIT_ERROR)) 2259 device_printf(hp->sc->sc_dev,"cmd end bit error\n"); 2260 if (ISSET(error, SDHC_CMD_CRC_ERROR)) 2261 device_printf(hp->sc->sc_dev,"cmd crc error\n"); 2262 if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR)) { 2263 if (!probing) 2264 device_printf(hp->sc->sc_dev,"cmd timeout error\n"); 2265 #ifdef SDHC_DEBUG 2266 else if (sdhcdebug > 0) 2267 device_printf(hp->sc->sc_dev,"cmd timeout (expected)\n"); 2268 #endif 2269 } 2270 if ((error & ~SDHC_EINTR_STATUS_MASK) != 0) 2271 device_printf(hp->sc->sc_dev,"vendor error %#x\n", 2272 (error & ~SDHC_EINTR_STATUS_MASK)); 2273 if (error == 0) 2274 device_printf(hp->sc->sc_dev,"no error\n"); 2275 2276 /* Command timeout has higher priority than command complete. */ 2277 if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR)) 2278 CLR(status, SDHC_COMMAND_COMPLETE); 2279 2280 /* Transfer complete has higher priority than data timeout. */ 2281 if (ISSET(status, SDHC_TRANSFER_COMPLETE)) 2282 CLR(error, SDHC_DATA_TIMEOUT_ERROR); 2283 } 2284 2285 if (nointr || 2286 (ISSET(status, SDHC_ERROR_INTERRUPT) && error)) { 2287 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) 2288 (void)sdhc_soft_reset(hp, SDHC_RESET_CMD|SDHC_RESET_DAT); 2289 hp->intr_error_status = 0; 2290 status = 0; 2291 } 2292 2293 return status; 2294 } 2295 2296 /* 2297 * Established by attachment driver at interrupt priority IPL_SDMMC. 2298 */ 2299 int 2300 sdhc_intr(void *arg) 2301 { 2302 struct sdhc_softc *sc = (struct sdhc_softc *)arg; 2303 struct sdhc_host *hp; 2304 int done = 0; 2305 uint16_t status; 2306 uint16_t error; 2307 2308 /* We got an interrupt, but we don't know from which slot. */ 2309 for (size_t host = 0; host < sc->sc_nhosts; host++) { 2310 hp = sc->sc_host[host]; 2311 if (hp == NULL) 2312 continue; 2313 2314 mutex_enter(&hp->intr_lock); 2315 2316 if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) { 2317 /* Find out which interrupts are pending. */ 2318 uint32_t xstatus = HREAD4(hp, SDHC_NINTR_STATUS); 2319 status = xstatus; 2320 error = xstatus >> 16; 2321 if (ISSET(sc->sc_flags, SDHC_FLAG_USDHC) && 2322 (xstatus & SDHC_TRANSFER_COMPLETE) && 2323 !(xstatus & SDHC_DMA_INTERRUPT)) { 2324 /* read again due to uSDHC errata */ 2325 status = xstatus = HREAD4(hp, 2326 SDHC_NINTR_STATUS); 2327 error = xstatus >> 16; 2328 } 2329 if (ISSET(sc->sc_flags, 2330 SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) { 2331 if ((error & SDHC_NINTR_STATUS_MASK) != 0) 2332 SET(status, SDHC_ERROR_INTERRUPT); 2333 } 2334 if (error) 2335 xstatus |= SDHC_ERROR_INTERRUPT; 2336 else if (!ISSET(status, SDHC_NINTR_STATUS_MASK)) 2337 goto next_port; /* no interrupt for us */ 2338 /* Acknowledge the interrupts we are about to handle. */ 2339 HWRITE4(hp, SDHC_NINTR_STATUS, xstatus); 2340 } else { 2341 /* Find out which interrupts are pending. */ 2342 error = 0; 2343 status = HREAD2(hp, SDHC_NINTR_STATUS); 2344 if (!ISSET(status, SDHC_NINTR_STATUS_MASK)) 2345 goto next_port; /* no interrupt for us */ 2346 /* Acknowledge the interrupts we are about to handle. */ 2347 HWRITE2(hp, SDHC_NINTR_STATUS, status); 2348 if (ISSET(status, SDHC_ERROR_INTERRUPT)) { 2349 /* Acknowledge error interrupts. */ 2350 error = HREAD2(hp, SDHC_EINTR_STATUS); 2351 HWRITE2(hp, SDHC_EINTR_STATUS, error); 2352 } 2353 } 2354 2355 DPRINTF(2,("%s: interrupt status=%x error=%x\n", HDEVNAME(hp), 2356 status, error)); 2357 2358 /* Claim this interrupt. */ 2359 done = 1; 2360 2361 if (ISSET(status, SDHC_ERROR_INTERRUPT) && 2362 ISSET(error, SDHC_ADMA_ERROR)) { 2363 uint8_t adma_err = HREAD1(hp, SDHC_ADMA_ERROR_STATUS); 2364 printf("%s: ADMA error, status %02x\n", HDEVNAME(hp), 2365 adma_err); 2366 } 2367 2368 /* 2369 * Wake up the sdmmc event thread to scan for cards. 2370 */ 2371 if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)) { 2372 if (hp->sdmmc != NULL) { 2373 sdmmc_needs_discover(hp->sdmmc); 2374 } 2375 if (ISSET(sc->sc_flags, 2376 SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) { 2377 HCLR4(hp, SDHC_NINTR_STATUS_EN, 2378 status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)); 2379 HCLR4(hp, SDHC_NINTR_SIGNAL_EN, 2380 status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)); 2381 } 2382 } 2383 2384 /* 2385 * Schedule re-tuning process (UHS). 2386 */ 2387 if (ISSET(status, SDHC_RETUNING_EVENT)) { 2388 atomic_swap_uint(&hp->tuning_timer_pending, 1); 2389 } 2390 2391 /* 2392 * Wake up the blocking process to service command 2393 * related interrupt(s). 2394 */ 2395 if (ISSET(status, SDHC_COMMAND_COMPLETE|SDHC_ERROR_INTERRUPT| 2396 SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY| 2397 SDHC_TRANSFER_COMPLETE|SDHC_DMA_INTERRUPT)) { 2398 hp->intr_error_status |= error; 2399 hp->intr_status |= status; 2400 if (ISSET(sc->sc_flags, 2401 SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) { 2402 HCLR4(hp, SDHC_NINTR_SIGNAL_EN, 2403 status & (SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY)); 2404 } 2405 cv_broadcast(&hp->intr_cv); 2406 } 2407 2408 /* 2409 * Service SD card interrupts. 2410 */ 2411 if (!ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC) 2412 && ISSET(status, SDHC_CARD_INTERRUPT)) { 2413 DPRINTF(0,("%s: card interrupt\n", HDEVNAME(hp))); 2414 HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT); 2415 sdmmc_card_intr(hp->sdmmc); 2416 } 2417 next_port: 2418 mutex_exit(&hp->intr_lock); 2419 } 2420 2421 return done; 2422 } 2423 2424 kmutex_t * 2425 sdhc_host_lock(struct sdhc_host *hp) 2426 { 2427 return &hp->intr_lock; 2428 } 2429 2430 uint8_t 2431 sdhc_host_read_1(struct sdhc_host *hp, int reg) 2432 { 2433 return HREAD1(hp, reg); 2434 } 2435 2436 uint16_t 2437 sdhc_host_read_2(struct sdhc_host *hp, int reg) 2438 { 2439 return HREAD2(hp, reg); 2440 } 2441 2442 uint32_t 2443 sdhc_host_read_4(struct sdhc_host *hp, int reg) 2444 { 2445 return HREAD4(hp, reg); 2446 } 2447 2448 void 2449 sdhc_host_write_1(struct sdhc_host *hp, int reg, uint8_t val) 2450 { 2451 HWRITE1(hp, reg, val); 2452 } 2453 2454 void 2455 sdhc_host_write_2(struct sdhc_host *hp, int reg, uint16_t val) 2456 { 2457 HWRITE2(hp, reg, val); 2458 } 2459 2460 void 2461 sdhc_host_write_4(struct sdhc_host *hp, int reg, uint32_t val) 2462 { 2463 HWRITE4(hp, reg, val); 2464 } 2465 2466 #ifdef SDHC_DEBUG 2467 void 2468 sdhc_dump_regs(struct sdhc_host *hp) 2469 { 2470 2471 printf("0x%02x PRESENT_STATE: %x\n", SDHC_PRESENT_STATE, 2472 HREAD4(hp, SDHC_PRESENT_STATE)); 2473 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) 2474 printf("0x%02x POWER_CTL: %x\n", SDHC_POWER_CTL, 2475 HREAD1(hp, SDHC_POWER_CTL)); 2476 printf("0x%02x NINTR_STATUS: %x\n", SDHC_NINTR_STATUS, 2477 HREAD2(hp, SDHC_NINTR_STATUS)); 2478 printf("0x%02x EINTR_STATUS: %x\n", SDHC_EINTR_STATUS, 2479 HREAD2(hp, SDHC_EINTR_STATUS)); 2480 printf("0x%02x NINTR_STATUS_EN: %x\n", SDHC_NINTR_STATUS_EN, 2481 HREAD2(hp, SDHC_NINTR_STATUS_EN)); 2482 printf("0x%02x EINTR_STATUS_EN: %x\n", SDHC_EINTR_STATUS_EN, 2483 HREAD2(hp, SDHC_EINTR_STATUS_EN)); 2484 printf("0x%02x NINTR_SIGNAL_EN: %x\n", SDHC_NINTR_SIGNAL_EN, 2485 HREAD2(hp, SDHC_NINTR_SIGNAL_EN)); 2486 printf("0x%02x EINTR_SIGNAL_EN: %x\n", SDHC_EINTR_SIGNAL_EN, 2487 HREAD2(hp, SDHC_EINTR_SIGNAL_EN)); 2488 printf("0x%02x CAPABILITIES: %x\n", SDHC_CAPABILITIES, 2489 HREAD4(hp, SDHC_CAPABILITIES)); 2490 printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES, 2491 HREAD4(hp, SDHC_MAX_CAPABILITIES)); 2492 } 2493 #endif 2494