xref: /netbsd-src/sys/dev/sdmmc/sdhc.c (revision b1c86f5f087524e68db12794ee9c3e3da1ab17a0)
1 /*	$NetBSD: sdhc.c,v 1.7 2010/03/27 03:04:52 nonaka Exp $	*/
2 /*	$OpenBSD: sdhc.c,v 1.25 2009/01/13 19:44:20 grange Exp $	*/
3 
4 /*
5  * Copyright (c) 2006 Uwe Stuehler <uwe@openbsd.org>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 /*
21  * SD Host Controller driver based on the SD Host Controller Standard
22  * Simplified Specification Version 1.00 (www.sdcard.com).
23  */
24 
25 #include <sys/cdefs.h>
26 __KERNEL_RCSID(0, "$NetBSD: sdhc.c,v 1.7 2010/03/27 03:04:52 nonaka Exp $");
27 
28 #include <sys/param.h>
29 #include <sys/device.h>
30 #include <sys/kernel.h>
31 #include <sys/kthread.h>
32 #include <sys/malloc.h>
33 #include <sys/systm.h>
34 #include <sys/mutex.h>
35 #include <sys/condvar.h>
36 
37 #include <dev/sdmmc/sdhcreg.h>
38 #include <dev/sdmmc/sdhcvar.h>
39 #include <dev/sdmmc/sdmmcchip.h>
40 #include <dev/sdmmc/sdmmcreg.h>
41 #include <dev/sdmmc/sdmmcvar.h>
42 
43 #ifdef SDHC_DEBUG
44 int sdhcdebug = 1;
45 #define DPRINTF(n,s)	do { if ((n) <= sdhcdebug) printf s; } while (0)
46 void	sdhc_dump_regs(struct sdhc_host *);
47 #else
48 #define DPRINTF(n,s)	do {} while (0)
49 #endif
50 
51 #define SDHC_COMMAND_TIMEOUT	hz
52 #define SDHC_BUFFER_TIMEOUT	hz
53 #define SDHC_TRANSFER_TIMEOUT	hz
54 #define SDHC_DMA_TIMEOUT	hz
55 
56 struct sdhc_host {
57 	struct sdhc_softc *sc;		/* host controller device */
58 
59 	bus_space_tag_t iot;		/* host register set tag */
60 	bus_space_handle_t ioh;		/* host register set handle */
61 	bus_dma_tag_t dmat;		/* host DMA tag */
62 
63 	device_t sdmmc;			/* generic SD/MMC device */
64 
65 	struct kmutex host_mtx;
66 
67 	u_int clkbase;			/* base clock frequency in KHz */
68 	int maxblklen;			/* maximum block length */
69 	uint32_t ocr;			/* OCR value from capabilities */
70 
71 	uint8_t regs[14];		/* host controller state */
72 
73 	uint16_t intr_status;		/* soft interrupt status */
74 	uint16_t intr_error_status;	/* soft error status */
75 	struct kmutex intr_mtx;
76 	struct kcondvar intr_cv;
77 
78 	uint32_t flags;			/* flags for this host */
79 #define SHF_USE_DMA		0x0001
80 #define SHF_USE_4BIT_MODE	0x0002
81 };
82 
83 #define HDEVNAME(hp)	(device_xname((hp)->sc->sc_dev))
84 
85 #define HREAD1(hp, reg)							\
86 	(bus_space_read_1((hp)->iot, (hp)->ioh, (reg)))
87 #define HREAD2(hp, reg)							\
88 	(bus_space_read_2((hp)->iot, (hp)->ioh, (reg)))
89 #define HREAD4(hp, reg)							\
90 	(bus_space_read_4((hp)->iot, (hp)->ioh, (reg)))
91 #define HWRITE1(hp, reg, val)						\
92 	bus_space_write_1((hp)->iot, (hp)->ioh, (reg), (val))
93 #define HWRITE2(hp, reg, val)						\
94 	bus_space_write_2((hp)->iot, (hp)->ioh, (reg), (val))
95 #define HWRITE4(hp, reg, val)						\
96 	bus_space_write_4((hp)->iot, (hp)->ioh, (reg), (val))
97 #define HCLR1(hp, reg, bits)						\
98 	HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits))
99 #define HCLR2(hp, reg, bits)						\
100 	HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits))
101 #define HSET1(hp, reg, bits)						\
102 	HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits))
103 #define HSET2(hp, reg, bits)						\
104 	HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits))
105 
106 static int	sdhc_host_reset(sdmmc_chipset_handle_t);
107 static int	sdhc_host_reset1(sdmmc_chipset_handle_t);
108 static uint32_t	sdhc_host_ocr(sdmmc_chipset_handle_t);
109 static int	sdhc_host_maxblklen(sdmmc_chipset_handle_t);
110 static int	sdhc_card_detect(sdmmc_chipset_handle_t);
111 static int	sdhc_write_protect(sdmmc_chipset_handle_t);
112 static int	sdhc_bus_power(sdmmc_chipset_handle_t, uint32_t);
113 static int	sdhc_bus_clock(sdmmc_chipset_handle_t, int);
114 static int	sdhc_bus_width(sdmmc_chipset_handle_t, int);
115 static void	sdhc_card_enable_intr(sdmmc_chipset_handle_t, int);
116 static void	sdhc_card_intr_ack(sdmmc_chipset_handle_t);
117 static void	sdhc_exec_command(sdmmc_chipset_handle_t,
118 		    struct sdmmc_command *);
119 static int	sdhc_start_command(struct sdhc_host *, struct sdmmc_command *);
120 static int	sdhc_wait_state(struct sdhc_host *, uint32_t, uint32_t);
121 static int	sdhc_soft_reset(struct sdhc_host *, int);
122 static int	sdhc_wait_intr(struct sdhc_host *, int, int);
123 static void	sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *);
124 static int	sdhc_transfer_data_dma(struct sdhc_host *, struct sdmmc_command *);
125 static int	sdhc_transfer_data_pio(struct sdhc_host *, struct sdmmc_command *);
126 static void	sdhc_read_data_pio(struct sdhc_host *, uint8_t *, int);
127 static void	sdhc_write_data_pio(struct sdhc_host *, uint8_t *, int);
128 
129 static struct sdmmc_chip_functions sdhc_functions = {
130 	/* host controller reset */
131 	sdhc_host_reset,
132 
133 	/* host controller capabilities */
134 	sdhc_host_ocr,
135 	sdhc_host_maxblklen,
136 
137 	/* card detection */
138 	sdhc_card_detect,
139 
140 	/* write protect */
141 	sdhc_write_protect,
142 
143 	/* bus power, clock frequency and width */
144 	sdhc_bus_power,
145 	sdhc_bus_clock,
146 	sdhc_bus_width,
147 
148 	/* command execution */
149 	sdhc_exec_command,
150 
151 	/* card interrupt */
152 	sdhc_card_enable_intr,
153 	sdhc_card_intr_ack
154 };
155 
156 /*
157  * Called by attachment driver.  For each SD card slot there is one SD
158  * host controller standard register set. (1.3)
159  */
160 int
161 sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot,
162     bus_space_handle_t ioh, bus_size_t iosize)
163 {
164 	struct sdmmcbus_attach_args saa;
165 	struct sdhc_host *hp;
166 	uint32_t caps;
167 #ifdef SDHC_DEBUG
168 	uint16_t sdhcver;
169 
170 	sdhcver = bus_space_read_2(iot, ioh, SDHC_HOST_CTL_VERSION);
171 	aprint_normal_dev(sc->sc_dev, "SD Host Specification/Vendor Version ");
172 	switch (SDHC_SPEC_VERSION(sdhcver)) {
173 	case 0x00:
174 		aprint_normal("1.0/%u\n", SDHC_VENDOR_VERSION(sdhcver));
175 		break;
176 
177 	default:
178 		aprint_normal(">1.0/%u\n", SDHC_VENDOR_VERSION(sdhcver));
179 		break;
180 	}
181 #endif
182 
183 	/* Allocate one more host structure. */
184 	hp = malloc(sizeof(struct sdhc_host), M_DEVBUF, M_WAITOK|M_ZERO);
185 	if (hp == NULL) {
186 		aprint_error_dev(sc->sc_dev,
187 		    "couldn't alloc memory (sdhc host)\n");
188 		goto err1;
189 	}
190 	sc->sc_host[sc->sc_nhosts++] = hp;
191 
192 	/* Fill in the new host structure. */
193 	hp->sc = sc;
194 	hp->iot = iot;
195 	hp->ioh = ioh;
196 	hp->dmat = sc->sc_dmat;
197 
198 	mutex_init(&hp->host_mtx, MUTEX_DEFAULT, IPL_SDMMC);
199 	mutex_init(&hp->intr_mtx, MUTEX_DEFAULT, IPL_SDMMC);
200 	cv_init(&hp->intr_cv, "sdhcintr");
201 
202 	/*
203 	 * Reset the host controller and enable interrupts.
204 	 */
205 	(void)sdhc_host_reset(hp);
206 
207 	/* Determine host capabilities. */
208 	mutex_enter(&hp->host_mtx);
209 	caps = HREAD4(hp, SDHC_CAPABILITIES);
210 	mutex_exit(&hp->host_mtx);
211 
212 #if notyet
213 	/* Use DMA if the host system and the controller support it. */
214 	if (ISSET(sc->sc_flags, SDHC_FLAG_FORCE_DMA)
215 	 || ((ISSET(sc->sc_flags, SDHC_FLAG_USE_DMA)
216 	   && ISSET(caps, SDHC_DMA_SUPPORT)))) {
217 		SET(hp->flags, SHF_USE_DMA);
218 		aprint_normal_dev(sc->sc_dev, "using DMA transfer\n");
219 	}
220 #endif
221 
222 	/*
223 	 * Determine the base clock frequency. (2.2.24)
224 	 */
225 	if (SDHC_BASE_FREQ_KHZ(caps) != 0)
226 		hp->clkbase = SDHC_BASE_FREQ_KHZ(caps);
227 	if (hp->clkbase == 0) {
228 		/* The attachment driver must tell us. */
229 		aprint_error_dev(sc->sc_dev, "unknown base clock frequency\n");
230 		goto err;
231 	} else if (hp->clkbase < 10000 || hp->clkbase > 63000) {
232 		/* SDHC 1.0 supports only 10-63 MHz. */
233 		aprint_error_dev(sc->sc_dev,
234 		    "base clock frequency out of range: %u MHz\n",
235 		    hp->clkbase / 1000);
236 		goto err;
237 	}
238 	DPRINTF(1,("%s: base clock frequency %u MHz\n",
239 	    device_xname(sc->sc_dev), hp->clkbase / 1000));
240 
241 	/*
242 	 * XXX Set the data timeout counter value according to
243 	 * capabilities. (2.2.15)
244 	 */
245 	HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
246 
247 	/*
248 	 * Determine SD bus voltage levels supported by the controller.
249 	 */
250 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V))
251 		SET(hp->ocr, MMC_OCR_1_7V_1_8V | MMC_OCR_1_8V_1_9V);
252 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V))
253 		SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V);
254 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V))
255 		SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V);
256 
257 	/*
258 	 * Determine the maximum block length supported by the host
259 	 * controller. (2.2.24)
260 	 */
261 	switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) {
262 	case SDHC_MAX_BLK_LEN_512:
263 		hp->maxblklen = 512;
264 		break;
265 
266 	case SDHC_MAX_BLK_LEN_1024:
267 		hp->maxblklen = 1024;
268 		break;
269 
270 	case SDHC_MAX_BLK_LEN_2048:
271 		hp->maxblklen = 2048;
272 		break;
273 
274 	default:
275 		aprint_error_dev(sc->sc_dev, "max block length unknown\n");
276 		goto err;
277 	}
278 	DPRINTF(1, ("%s: max block length %u byte%s\n",
279 	    device_xname(sc->sc_dev), hp->maxblklen,
280 	    hp->maxblklen > 1 ? "s" : ""));
281 
282 	/*
283 	 * Attach the generic SD/MMC bus driver.  (The bus driver must
284 	 * not invoke any chipset functions before it is attached.)
285 	 */
286 	memset(&saa, 0, sizeof(saa));
287 	saa.saa_busname = "sdmmc";
288 	saa.saa_sct = &sdhc_functions;
289 	saa.saa_sch = hp;
290 	saa.saa_dmat = hp->dmat;
291 	saa.saa_clkmin = hp->clkbase / 256;
292 	saa.saa_clkmax = hp->clkbase;
293 	saa.saa_caps = SMC_CAPS_4BIT_MODE|SMC_CAPS_AUTO_STOP;
294 #if notyet
295 	if (ISSET(hp->flags, SHF_USE_DMA))
296 		saa.saa_caps |= SMC_CAPS_DMA;
297 #endif
298 	hp->sdmmc = config_found(sc->sc_dev, &saa, NULL);
299 
300 	return 0;
301 
302 err:
303 	cv_destroy(&hp->intr_cv);
304 	mutex_destroy(&hp->intr_mtx);
305 	mutex_destroy(&hp->host_mtx);
306 	free(hp, M_DEVBUF);
307 	sc->sc_host[--sc->sc_nhosts] = NULL;
308 err1:
309 	return 1;
310 }
311 
312 int
313 sdhc_detach(device_t dev, int flags)
314 {
315 	struct sdhc_host *hp = (struct sdhc_host *)dev;
316 	struct sdhc_softc *sc = hp->sc;
317 	int rv = 0;
318 
319 	if (hp->sdmmc)
320 		rv = config_detach(hp->sdmmc, flags);
321 
322 	cv_destroy(&hp->intr_cv);
323 	mutex_destroy(&hp->intr_mtx);
324 	mutex_destroy(&hp->host_mtx);
325 	free(hp, M_DEVBUF);
326 	sc->sc_host[--sc->sc_nhosts] = NULL;
327 
328 	return rv;
329 }
330 
331 bool
332 sdhc_suspend(device_t dev, const pmf_qual_t *qual)
333 {
334 	struct sdhc_softc *sc = device_private(dev);
335 	struct sdhc_host *hp;
336 	int n, i;
337 
338 	/* XXX poll for command completion or suspend command
339 	 * in progress */
340 
341 	/* Save the host controller state. */
342 	for (n = 0; n < sc->sc_nhosts; n++) {
343 		hp = sc->sc_host[n];
344 		for (i = 0; i < sizeof hp->regs; i++)
345 			hp->regs[i] = HREAD1(hp, i);
346 	}
347 	return true;
348 }
349 
350 bool
351 sdhc_resume(device_t dev, const pmf_qual_t *qual)
352 {
353 	struct sdhc_softc *sc = device_private(dev);
354 	struct sdhc_host *hp;
355 	int n, i;
356 
357 	/* Restore the host controller state. */
358 	for (n = 0; n < sc->sc_nhosts; n++) {
359 		hp = sc->sc_host[n];
360 		(void)sdhc_host_reset(hp);
361 		for (i = 0; i < sizeof hp->regs; i++)
362 			HWRITE1(hp, i, hp->regs[i]);
363 	}
364 	return true;
365 }
366 
367 bool
368 sdhc_shutdown(device_t dev, int flags)
369 {
370 	struct sdhc_softc *sc = device_private(dev);
371 	struct sdhc_host *hp;
372 	int i;
373 
374 	/* XXX chip locks up if we don't disable it before reboot. */
375 	for (i = 0; i < sc->sc_nhosts; i++) {
376 		hp = sc->sc_host[i];
377 		(void)sdhc_host_reset(hp);
378 	}
379 	return true;
380 }
381 
382 /*
383  * Reset the host controller.  Called during initialization, when
384  * cards are removed, upon resume, and during error recovery.
385  */
386 static int
387 sdhc_host_reset1(sdmmc_chipset_handle_t sch)
388 {
389 	struct sdhc_host *hp = (struct sdhc_host *)sch;
390 	uint16_t sdhcimask;
391 	int error;
392 
393 	/* Don't lock. */
394 
395 	/* Disable all interrupts. */
396 	HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
397 
398 	/*
399 	 * Reset the entire host controller and wait up to 100ms for
400 	 * the controller to clear the reset bit.
401 	 */
402 	error = sdhc_soft_reset(hp, SDHC_RESET_ALL);
403 	if (error)
404 		goto out;
405 
406 	/* Set data timeout counter value to max for now. */
407 	HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
408 
409 	/* Enable interrupts. */
410 	sdhcimask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION |
411 	    SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY |
412 	    SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT |
413 	    SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE;
414 	HWRITE2(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
415 	HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK);
416 	HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
417 	HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK);
418 
419 out:
420 	return error;
421 }
422 
423 static int
424 sdhc_host_reset(sdmmc_chipset_handle_t sch)
425 {
426 	struct sdhc_host *hp = (struct sdhc_host *)sch;
427 	int error;
428 
429 	mutex_enter(&hp->host_mtx);
430 	error = sdhc_host_reset1(sch);
431 	mutex_exit(&hp->host_mtx);
432 
433 	return error;
434 }
435 
436 static uint32_t
437 sdhc_host_ocr(sdmmc_chipset_handle_t sch)
438 {
439 	struct sdhc_host *hp = (struct sdhc_host *)sch;
440 
441 	return hp->ocr;
442 }
443 
444 static int
445 sdhc_host_maxblklen(sdmmc_chipset_handle_t sch)
446 {
447 	struct sdhc_host *hp = (struct sdhc_host *)sch;
448 
449 	return hp->maxblklen;
450 }
451 
452 /*
453  * Return non-zero if the card is currently inserted.
454  */
455 static int
456 sdhc_card_detect(sdmmc_chipset_handle_t sch)
457 {
458 	struct sdhc_host *hp = (struct sdhc_host *)sch;
459 	int r;
460 
461 	mutex_enter(&hp->host_mtx);
462 	r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED);
463 	mutex_exit(&hp->host_mtx);
464 
465 	if (r)
466 		return 1;
467 	return 0;
468 }
469 
470 /*
471  * Return non-zero if the card is currently write-protected.
472  */
473 static int
474 sdhc_write_protect(sdmmc_chipset_handle_t sch)
475 {
476 	struct sdhc_host *hp = (struct sdhc_host *)sch;
477 	int r;
478 
479 	mutex_enter(&hp->host_mtx);
480 	r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_WRITE_PROTECT_SWITCH);
481 	mutex_exit(&hp->host_mtx);
482 
483 	if (!r)
484 		return 1;
485 	return 0;
486 }
487 
488 /*
489  * Set or change SD bus voltage and enable or disable SD bus power.
490  * Return zero on success.
491  */
492 static int
493 sdhc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr)
494 {
495 	struct sdhc_host *hp = (struct sdhc_host *)sch;
496 	uint8_t vdd;
497 	int error = 0;
498 
499 	mutex_enter(&hp->host_mtx);
500 
501 	/*
502 	 * Disable bus power before voltage change.
503 	 */
504 	if (!(hp->sc->sc_flags & SDHC_FLAG_NO_PWR0))
505 		HWRITE1(hp, SDHC_POWER_CTL, 0);
506 
507 	/* If power is disabled, reset the host and return now. */
508 	if (ocr == 0) {
509 		(void)sdhc_host_reset1(hp);
510 		goto out;
511 	}
512 
513 	/*
514 	 * Select the lowest voltage according to capabilities.
515 	 */
516 	ocr &= hp->ocr;
517 	if (ISSET(ocr, MMC_OCR_1_7V_1_8V|MMC_OCR_1_8V_1_9V))
518 		vdd = SDHC_VOLTAGE_1_8V;
519 	else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V))
520 		vdd = SDHC_VOLTAGE_3_0V;
521 	else if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V))
522 		vdd = SDHC_VOLTAGE_3_3V;
523 	else {
524 		/* Unsupported voltage level requested. */
525 		error = EINVAL;
526 		goto out;
527 	}
528 
529 	/*
530 	 * Enable bus power.  Wait at least 1 ms (or 74 clocks) plus
531 	 * voltage ramp until power rises.
532 	 */
533 	HWRITE1(hp, SDHC_POWER_CTL,
534 	    (vdd << SDHC_VOLTAGE_SHIFT) | SDHC_BUS_POWER);
535 	sdmmc_delay(10000);
536 
537 	/*
538 	 * The host system may not power the bus due to battery low,
539 	 * etc.  In that case, the host controller should clear the
540 	 * bus power bit.
541 	 */
542 	if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) {
543 		error = ENXIO;
544 		goto out;
545 	}
546 
547 out:
548 	mutex_exit(&hp->host_mtx);
549 
550 	return error;
551 }
552 
553 /*
554  * Return the smallest possible base clock frequency divisor value
555  * for the CLOCK_CTL register to produce `freq' (KHz).
556  */
557 static int
558 sdhc_clock_divisor(struct sdhc_host *hp, u_int freq)
559 {
560 	int div;
561 
562 	for (div = 1; div <= 256; div *= 2)
563 		if ((hp->clkbase / div) <= freq)
564 			return (div / 2);
565 	/* No divisor found. */
566 	return -1;
567 }
568 
569 /*
570  * Set or change SDCLK frequency or disable the SD clock.
571  * Return zero on success.
572  */
573 static int
574 sdhc_bus_clock(sdmmc_chipset_handle_t sch, int freq)
575 {
576 	struct sdhc_host *hp = (struct sdhc_host *)sch;
577 	int div;
578 	int timo;
579 	int error = 0;
580 #ifdef DIAGNOSTIC
581 	int ispresent;
582 #endif
583 
584 #ifdef DIAGNOSTIC
585 	mutex_enter(&hp->host_mtx);
586 	ispresent = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK);
587 	mutex_exit(&hp->host_mtx);
588 
589 	/* Must not stop the clock if commands are in progress. */
590 	if (ispresent && sdhc_card_detect(hp))
591 		printf("%s: sdhc_sdclk_frequency_select: command in progress\n",
592 		    device_xname(hp->sc->sc_dev));
593 #endif
594 
595 	mutex_enter(&hp->host_mtx);
596 
597 	/*
598 	 * Stop SD clock before changing the frequency.
599 	 */
600 	HWRITE2(hp, SDHC_CLOCK_CTL, 0);
601 	if (freq == SDMMC_SDCLK_OFF)
602 		goto out;
603 
604 	/*
605 	 * Set the minimum base clock frequency divisor.
606 	 */
607 	if ((div = sdhc_clock_divisor(hp, freq)) < 0) {
608 		/* Invalid base clock frequency or `freq' value. */
609 		error = EINVAL;
610 		goto out;
611 	}
612 	HWRITE2(hp, SDHC_CLOCK_CTL, div << SDHC_SDCLK_DIV_SHIFT);
613 
614 	/*
615 	 * Start internal clock.  Wait 10ms for stabilization.
616 	 */
617 	HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE);
618 	for (timo = 1000; timo > 0; timo--) {
619 		if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL), SDHC_INTCLK_STABLE))
620 			break;
621 		sdmmc_delay(10);
622 	}
623 	if (timo == 0) {
624 		error = ETIMEDOUT;
625 		goto out;
626 	}
627 
628 	/*
629 	 * Enable SD clock.
630 	 */
631 	HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
632 
633 out:
634 	mutex_exit(&hp->host_mtx);
635 
636 	return error;
637 }
638 
639 static int
640 sdhc_bus_width(sdmmc_chipset_handle_t sch, int width)
641 {
642 	struct sdhc_host *hp = (struct sdhc_host *)sch;
643 	int reg;
644 
645 	switch (width) {
646 	case 1:
647 	case 4:
648 		break;
649 
650 	default:
651 		DPRINTF(0,("%s: unsupported bus width (%d)\n",
652 		    HDEVNAME(hp), width));
653 		return 1;
654 	}
655 
656 	mutex_enter(&hp->host_mtx);
657 	reg = HREAD1(hp, SDHC_HOST_CTL);
658 	reg &= ~SDHC_4BIT_MODE;
659 	if (width == 4)
660 		reg |= SDHC_4BIT_MODE;
661 	HWRITE1(hp, SDHC_HOST_CTL, reg);
662 	mutex_exit(&hp->host_mtx);
663 
664 	return 0;
665 }
666 
667 static void
668 sdhc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable)
669 {
670 	struct sdhc_host *hp = (struct sdhc_host *)sch;
671 
672 	mutex_enter(&hp->host_mtx);
673 	if (enable) {
674 		HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
675 		HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
676 	} else {
677 		HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
678 		HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
679 	}
680 	mutex_exit(&hp->host_mtx);
681 }
682 
683 static void
684 sdhc_card_intr_ack(sdmmc_chipset_handle_t sch)
685 {
686 	struct sdhc_host *hp = (struct sdhc_host *)sch;
687 
688 	mutex_enter(&hp->host_mtx);
689 	HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
690 	mutex_exit(&hp->host_mtx);
691 }
692 
693 static int
694 sdhc_wait_state(struct sdhc_host *hp, uint32_t mask, uint32_t value)
695 {
696 	uint32_t state;
697 	int timeout;
698 
699 	for (timeout = 10; timeout > 0; timeout--) {
700 		if (((state = HREAD4(hp, SDHC_PRESENT_STATE)) & mask) == value)
701 			return 0;
702 		sdmmc_delay(10000);
703 	}
704 	DPRINTF(0,("%s: timeout waiting for %x (state=%x)\n", HDEVNAME(hp),
705 	    value, state));
706 	return ETIMEDOUT;
707 }
708 
709 static void
710 sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
711 {
712 	struct sdhc_host *hp = (struct sdhc_host *)sch;
713 	int error;
714 
715 	/*
716 	 * Start the MMC command, or mark `cmd' as failed and return.
717 	 */
718 	error = sdhc_start_command(hp, cmd);
719 	if (error) {
720 		cmd->c_error = error;
721 		goto out;
722 	}
723 
724 	/*
725 	 * Wait until the command phase is done, or until the command
726 	 * is marked done for any other reason.
727 	 */
728 	if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE, SDHC_COMMAND_TIMEOUT)) {
729 		cmd->c_error = ETIMEDOUT;
730 		goto out;
731 	}
732 
733 	/*
734 	 * The host controller removes bits [0:7] from the response
735 	 * data (CRC) and we pass the data up unchanged to the bus
736 	 * driver (without padding).
737 	 */
738 	mutex_enter(&hp->host_mtx);
739 	if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
740 		if (ISSET(cmd->c_flags, SCF_RSP_136)) {
741 			uint8_t *p = (uint8_t *)cmd->c_resp;
742 			int i;
743 
744 			for (i = 0; i < 15; i++)
745 				*p++ = HREAD1(hp, SDHC_RESPONSE + i);
746 		} else {
747 			cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE);
748 		}
749 	}
750 	mutex_exit(&hp->host_mtx);
751 	DPRINTF(1,("%s: resp = %08x\n", HDEVNAME(hp), cmd->c_resp[0]));
752 
753 	/*
754 	 * If the command has data to transfer in any direction,
755 	 * execute the transfer now.
756 	 */
757 	if (cmd->c_error == 0 && cmd->c_data != NULL)
758 		sdhc_transfer_data(hp, cmd);
759 
760 out:
761 	mutex_enter(&hp->host_mtx);
762 	/* Turn off the LED. */
763 	HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
764 	mutex_exit(&hp->host_mtx);
765 	SET(cmd->c_flags, SCF_ITSDONE);
766 
767 	DPRINTF(1,("%s: cmd %d %s (flags=%08x error=%d)\n", HDEVNAME(hp),
768 	    cmd->c_opcode, (cmd->c_error == 0) ? "done" : "abort",
769 	    cmd->c_flags, cmd->c_error));
770 }
771 
772 static int
773 sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd)
774 {
775 	uint16_t blksize = 0;
776 	uint16_t blkcount = 0;
777 	uint16_t mode;
778 	uint16_t command;
779 	int error;
780 
781 	DPRINTF(1,("%s: start cmd %d arg=%08x data=%p dlen=%d flags=%08x\n",
782 	    HDEVNAME(hp), cmd->c_opcode, cmd->c_arg, cmd->c_data,
783 	    cmd->c_datalen, cmd->c_flags));
784 
785 	/*
786 	 * The maximum block length for commands should be the minimum
787 	 * of the host buffer size and the card buffer size. (1.7.2)
788 	 */
789 
790 	/* Fragment the data into proper blocks. */
791 	if (cmd->c_datalen > 0) {
792 		blksize = MIN(cmd->c_datalen, cmd->c_blklen);
793 		blkcount = cmd->c_datalen / blksize;
794 		if (cmd->c_datalen % blksize > 0) {
795 			/* XXX: Split this command. (1.7.4) */
796 			aprint_error_dev(hp->sc->sc_dev,
797 			    "data not a multiple of %u bytes\n", blksize);
798 			return EINVAL;
799 		}
800 	}
801 
802 	/* Check limit imposed by 9-bit block count. (1.7.2) */
803 	if (blkcount > SDHC_BLOCK_COUNT_MAX) {
804 		aprint_error_dev(hp->sc->sc_dev, "too much data\n");
805 		return EINVAL;
806 	}
807 
808 	/* Prepare transfer mode register value. (2.2.5) */
809 	mode = 0;
810 	if (ISSET(cmd->c_flags, SCF_CMD_READ))
811 		mode |= SDHC_READ_MODE;
812 	if (blkcount > 0) {
813 		mode |= SDHC_BLOCK_COUNT_ENABLE;
814 		if (blkcount > 1) {
815 			mode |= SDHC_MULTI_BLOCK_MODE;
816 			/* XXX only for memory commands? */
817 			mode |= SDHC_AUTO_CMD12_ENABLE;
818 		}
819 	}
820 	if (cmd->c_dmamap != NULL && cmd->c_datalen > 0) {
821 		if (cmd->c_dmamap->dm_nsegs == 1) {
822 			mode |= SDHC_DMA_ENABLE;
823 		} else {
824 			cmd->c_dmamap = NULL;
825 		}
826 	}
827 
828 	/*
829 	 * Prepare command register value. (2.2.6)
830 	 */
831 	command =
832 	 (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) << SDHC_COMMAND_INDEX_SHIFT;
833 
834 	if (ISSET(cmd->c_flags, SCF_RSP_CRC))
835 		command |= SDHC_CRC_CHECK_ENABLE;
836 	if (ISSET(cmd->c_flags, SCF_RSP_IDX))
837 		command |= SDHC_INDEX_CHECK_ENABLE;
838 	if (cmd->c_data != NULL)
839 		command |= SDHC_DATA_PRESENT_SELECT;
840 
841 	if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT))
842 		command |= SDHC_NO_RESPONSE;
843 	else if (ISSET(cmd->c_flags, SCF_RSP_136))
844 		command |= SDHC_RESP_LEN_136;
845 	else if (ISSET(cmd->c_flags, SCF_RSP_BSY))
846 		command |= SDHC_RESP_LEN_48_CHK_BUSY;
847 	else
848 		command |= SDHC_RESP_LEN_48;
849 
850 	/* Wait until command and data inhibit bits are clear. (1.5) */
851 	error = sdhc_wait_state(hp, SDHC_CMD_INHIBIT_MASK, 0);
852 	if (error)
853 		return error;
854 
855 	DPRINTF(1,("%s: writing cmd: blksize=%d blkcnt=%d mode=%04x cmd=%04x\n",
856 	    HDEVNAME(hp), blksize, blkcount, mode, command));
857 
858 	mutex_enter(&hp->host_mtx);
859 
860 	/* Alert the user not to remove the card. */
861 	HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
862 
863 	/* Set DMA start address. */
864 	if (ISSET(mode, SDHC_DMA_ENABLE))
865 		HWRITE4(hp, SDHC_DMA_ADDR, cmd->c_dmamap->dm_segs[0].ds_addr);
866 
867 	/*
868 	 * Start a CPU data transfer.  Writing to the high order byte
869 	 * of the SDHC_COMMAND register triggers the SD command. (1.5)
870 	 */
871 	HWRITE2(hp, SDHC_TRANSFER_MODE, mode);
872 	HWRITE2(hp, SDHC_BLOCK_SIZE, blksize);
873 	if (blkcount > 1)
874 		HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount);
875 	HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
876 	HWRITE2(hp, SDHC_COMMAND, command);
877 
878 	mutex_exit(&hp->host_mtx);
879 
880 	return 0;
881 }
882 
883 static void
884 sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd)
885 {
886 	int error;
887 
888 	DPRINTF(1,("%s: data transfer: resp=%08x datalen=%u\n", HDEVNAME(hp),
889 	    MMC_R1(cmd->c_resp), cmd->c_datalen));
890 
891 #ifdef SDHC_DEBUG
892 	/* XXX I forgot why I wanted to know when this happens :-( */
893 	if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) &&
894 	    ISSET(MMC_R1(cmd->c_resp), 0xcb00)) {
895 		aprint_error_dev(hp->sc->sc_dev,
896 		    "CMD52/53 error response flags %#x\n",
897 		    MMC_R1(cmd->c_resp) & 0xff00);
898 	}
899 #endif
900 
901 	if (cmd->c_dmamap != NULL)
902 		error = sdhc_transfer_data_dma(hp, cmd);
903 	else
904 		error = sdhc_transfer_data_pio(hp, cmd);
905 	if (error)
906 		cmd->c_error = error;
907 	SET(cmd->c_flags, SCF_ITSDONE);
908 
909 	DPRINTF(1,("%s: data transfer done (error=%d)\n",
910 	    HDEVNAME(hp), cmd->c_error));
911 }
912 
913 static int
914 sdhc_transfer_data_dma(struct sdhc_host *hp, struct sdmmc_command *cmd)
915 {
916 	bus_dmamap_t dmap = cmd->c_dmamap;
917 	uint16_t blklen = cmd->c_blklen;
918 	uint16_t blkcnt = cmd->c_datalen / blklen;
919 	uint16_t remain;
920 	int error = 0;
921 
922 	for (;;) {
923 		if (!sdhc_wait_intr(hp,
924 		    SDHC_DMA_INTERRUPT|SDHC_TRANSFER_COMPLETE,
925 		    SDHC_DMA_TIMEOUT)) {
926 			error = ETIMEDOUT;
927 			break;
928 		}
929 
930 		/* single block mode */
931 		if (blkcnt == 1)
932 			break;
933 
934 		/* multi block mode */
935 		remain = HREAD2(hp, SDHC_BLOCK_COUNT);
936 		if (remain == 0)
937 			break;
938 
939 		HWRITE4(hp, SDHC_DMA_ADDR,
940 		    dmap->dm_segs[0].ds_addr + (blkcnt - remain) * blklen);
941 	}
942 
943 #if 0
944 	if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
945 	    SDHC_TRANSFER_TIMEOUT))
946 		error = ETIMEDOUT;
947 #endif
948 
949 	return error;
950 }
951 
952 static int
953 sdhc_transfer_data_pio(struct sdhc_host *hp, struct sdmmc_command *cmd)
954 {
955 	uint8_t *data = cmd->c_data;
956 	int len, datalen;
957 	int mask;
958 	int error = 0;
959 
960 	mask = ISSET(cmd->c_flags, SCF_CMD_READ) ?
961 	    SDHC_BUFFER_READ_ENABLE : SDHC_BUFFER_WRITE_ENABLE;
962 	datalen = cmd->c_datalen;
963 
964 	while (datalen > 0) {
965 		if (!sdhc_wait_intr(hp,
966 		    SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY,
967 		    SDHC_BUFFER_TIMEOUT)) {
968 			error = ETIMEDOUT;
969 			break;
970 		}
971 
972 		error = sdhc_wait_state(hp, mask, mask);
973 		if (error)
974 			break;
975 
976 		len = MIN(datalen, cmd->c_blklen);
977 		if (ISSET(cmd->c_flags, SCF_CMD_READ))
978 			sdhc_read_data_pio(hp, data, len);
979 		else
980 			sdhc_write_data_pio(hp, data, len);
981 
982 		data += len;
983 		datalen -= len;
984 	}
985 
986 	if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
987 	    SDHC_TRANSFER_TIMEOUT))
988 		error = ETIMEDOUT;
989 
990 	return error;
991 }
992 
993 static void
994 sdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, int datalen)
995 {
996 
997 	if (((__uintptr_t)data & 3) == 0) {
998 		while (datalen > 3) {
999 			*(uint32_t *)data = HREAD4(hp, SDHC_DATA);
1000 			data += 4;
1001 			datalen -= 4;
1002 		}
1003 		if (datalen > 1) {
1004 			*(uint16_t *)data = HREAD2(hp, SDHC_DATA);
1005 			data += 2;
1006 			datalen -= 2;
1007 		}
1008 		if (datalen > 0) {
1009 			*data = HREAD1(hp, SDHC_DATA);
1010 			data += 1;
1011 			datalen -= 1;
1012 		}
1013 	} else if (((__uintptr_t)data & 1) == 0) {
1014 		while (datalen > 1) {
1015 			*(uint16_t *)data = HREAD2(hp, SDHC_DATA);
1016 			data += 2;
1017 			datalen -= 2;
1018 		}
1019 		if (datalen > 0) {
1020 			*data = HREAD1(hp, SDHC_DATA);
1021 			data += 1;
1022 			datalen -= 1;
1023 		}
1024 	} else {
1025 		while (datalen > 0) {
1026 			*data = HREAD1(hp, SDHC_DATA);
1027 			data += 1;
1028 			datalen -= 1;
1029 		}
1030 	}
1031 }
1032 
1033 static void
1034 sdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, int datalen)
1035 {
1036 
1037 	if (((__uintptr_t)data & 3) == 0) {
1038 		while (datalen > 3) {
1039 			HWRITE4(hp, SDHC_DATA, *(uint32_t *)data);
1040 			data += 4;
1041 			datalen -= 4;
1042 		}
1043 		if (datalen > 1) {
1044 			HWRITE2(hp, SDHC_DATA, *(uint16_t *)data);
1045 			data += 2;
1046 			datalen -= 2;
1047 		}
1048 		if (datalen > 0) {
1049 			HWRITE1(hp, SDHC_DATA, *data);
1050 			data += 1;
1051 			datalen -= 1;
1052 		}
1053 	} else if (((__uintptr_t)data & 1) == 0) {
1054 		while (datalen > 1) {
1055 			HWRITE2(hp, SDHC_DATA, *(uint16_t *)data);
1056 			data += 2;
1057 			datalen -= 2;
1058 		}
1059 		if (datalen > 0) {
1060 			HWRITE1(hp, SDHC_DATA, *data);
1061 			data += 1;
1062 			datalen -= 1;
1063 		}
1064 	} else {
1065 		while (datalen > 0) {
1066 			HWRITE1(hp, SDHC_DATA, *data);
1067 			data += 1;
1068 			datalen -= 1;
1069 		}
1070 	}
1071 }
1072 
1073 /* Prepare for another command. */
1074 static int
1075 sdhc_soft_reset(struct sdhc_host *hp, int mask)
1076 {
1077 	int timo;
1078 
1079 	DPRINTF(1,("%s: software reset reg=%08x\n", HDEVNAME(hp), mask));
1080 
1081 	HWRITE1(hp, SDHC_SOFTWARE_RESET, mask);
1082 	for (timo = 10; timo > 0; timo--) {
1083 		if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
1084 			break;
1085 		sdmmc_delay(10000);
1086 		HWRITE1(hp, SDHC_SOFTWARE_RESET, 0);
1087 	}
1088 	if (timo == 0) {
1089 		DPRINTF(1,("%s: timeout reg=%08x\n", HDEVNAME(hp),
1090 		    HREAD1(hp, SDHC_SOFTWARE_RESET)));
1091 		HWRITE1(hp, SDHC_SOFTWARE_RESET, 0);
1092 		return ETIMEDOUT;
1093 	}
1094 
1095 	return 0;
1096 }
1097 
1098 static int
1099 sdhc_wait_intr(struct sdhc_host *hp, int mask, int timo)
1100 {
1101 	int status;
1102 
1103 	mask |= SDHC_ERROR_INTERRUPT;
1104 
1105 	mutex_enter(&hp->intr_mtx);
1106 	status = hp->intr_status & mask;
1107 	while (status == 0) {
1108 		if (cv_timedwait(&hp->intr_cv, &hp->intr_mtx, timo)
1109 		    == EWOULDBLOCK) {
1110 			status |= SDHC_ERROR_INTERRUPT;
1111 			break;
1112 		}
1113 		status = hp->intr_status & mask;
1114 	}
1115 	hp->intr_status &= ~status;
1116 
1117 	DPRINTF(2,("%s: intr status %#x error %#x\n", HDEVNAME(hp), status,
1118 	    hp->intr_error_status));
1119 
1120 	/* Command timeout has higher priority than command complete. */
1121 	if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
1122 		hp->intr_error_status = 0;
1123 		(void)sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
1124 		status = 0;
1125 	}
1126 	mutex_exit(&hp->intr_mtx);
1127 
1128 	return status;
1129 }
1130 
1131 /*
1132  * Established by attachment driver at interrupt priority IPL_SDMMC.
1133  */
1134 int
1135 sdhc_intr(void *arg)
1136 {
1137 	struct sdhc_softc *sc = (struct sdhc_softc *)arg;
1138 	struct sdhc_host *hp;
1139 	int host;
1140 	int done = 0;
1141 	uint16_t status;
1142 	uint16_t error;
1143 
1144 	/* We got an interrupt, but we don't know from which slot. */
1145 	for (host = 0; host < sc->sc_nhosts; host++) {
1146 		hp = sc->sc_host[host];
1147 		if (hp == NULL)
1148 			continue;
1149 
1150 		/* Find out which interrupts are pending. */
1151 		status = HREAD2(hp, SDHC_NINTR_STATUS);
1152 		if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
1153 			continue; /* no interrupt for us */
1154 
1155 		/* Acknowledge the interrupts we are about to handle. */
1156 		HWRITE2(hp, SDHC_NINTR_STATUS, status);
1157 		DPRINTF(2,("%s: interrupt status=%x\n", HDEVNAME(hp),
1158 		    status));
1159 
1160 		if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
1161 			continue;
1162 
1163 		/* Claim this interrupt. */
1164 		done = 1;
1165 
1166 		/*
1167 		 * Service error interrupts.
1168 		 */
1169 		if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
1170 			/* Acknowledge error interrupts. */
1171 			error = HREAD2(hp, SDHC_EINTR_STATUS);
1172 			HWRITE2(hp, SDHC_EINTR_STATUS, error);
1173 			DPRINTF(2,("%s: error interrupt, status=%x\n",
1174 			    HDEVNAME(hp), error));
1175 
1176 			if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR|
1177 			    SDHC_DATA_TIMEOUT_ERROR)) {
1178 				hp->intr_error_status |= error;
1179 				hp->intr_status |= status;
1180 				cv_broadcast(&hp->intr_cv);
1181 			}
1182 		}
1183 
1184 		/*
1185 		 * Wake up the sdmmc event thread to scan for cards.
1186 		 */
1187 		if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION))
1188 			sdmmc_needs_discover(hp->sdmmc);
1189 
1190 		/*
1191 		 * Wake up the blocking process to service command
1192 		 * related interrupt(s).
1193 		 */
1194 		if (ISSET(status, SDHC_BUFFER_READ_READY|
1195 		    SDHC_BUFFER_WRITE_READY|SDHC_COMMAND_COMPLETE|
1196 		    SDHC_TRANSFER_COMPLETE|SDHC_DMA_INTERRUPT)) {
1197 			hp->intr_status |= status;
1198 			cv_broadcast(&hp->intr_cv);
1199 		}
1200 
1201 		/*
1202 		 * Service SD card interrupts.
1203 		 */
1204 		if (ISSET(status, SDHC_CARD_INTERRUPT)) {
1205 			DPRINTF(0,("%s: card interrupt\n", HDEVNAME(hp)));
1206 			HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1207 			sdmmc_card_intr(hp->sdmmc);
1208 		}
1209 	}
1210 
1211 	return done;
1212 }
1213 
1214 #ifdef SDHC_DEBUG
1215 void
1216 sdhc_dump_regs(struct sdhc_host *hp)
1217 {
1218 
1219 	printf("0x%02x PRESENT_STATE:    %x\n", SDHC_PRESENT_STATE,
1220 	    HREAD4(hp, SDHC_PRESENT_STATE));
1221 	printf("0x%02x POWER_CTL:        %x\n", SDHC_POWER_CTL,
1222 	    HREAD1(hp, SDHC_POWER_CTL));
1223 	printf("0x%02x NINTR_STATUS:     %x\n", SDHC_NINTR_STATUS,
1224 	    HREAD2(hp, SDHC_NINTR_STATUS));
1225 	printf("0x%02x EINTR_STATUS:     %x\n", SDHC_EINTR_STATUS,
1226 	    HREAD2(hp, SDHC_EINTR_STATUS));
1227 	printf("0x%02x NINTR_STATUS_EN:  %x\n", SDHC_NINTR_STATUS_EN,
1228 	    HREAD2(hp, SDHC_NINTR_STATUS_EN));
1229 	printf("0x%02x EINTR_STATUS_EN:  %x\n", SDHC_EINTR_STATUS_EN,
1230 	    HREAD2(hp, SDHC_EINTR_STATUS_EN));
1231 	printf("0x%02x NINTR_SIGNAL_EN:  %x\n", SDHC_NINTR_SIGNAL_EN,
1232 	    HREAD2(hp, SDHC_NINTR_SIGNAL_EN));
1233 	printf("0x%02x EINTR_SIGNAL_EN:  %x\n", SDHC_EINTR_SIGNAL_EN,
1234 	    HREAD2(hp, SDHC_EINTR_SIGNAL_EN));
1235 	printf("0x%02x CAPABILITIES:     %x\n", SDHC_CAPABILITIES,
1236 	    HREAD4(hp, SDHC_CAPABILITIES));
1237 	printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES,
1238 	    HREAD4(hp, SDHC_MAX_CAPABILITIES));
1239 }
1240 #endif
1241