1 /* $NetBSD: sdhc.c,v 1.91 2015/11/03 07:59:29 mlelstv Exp $ */ 2 /* $OpenBSD: sdhc.c,v 1.25 2009/01/13 19:44:20 grange Exp $ */ 3 4 /* 5 * Copyright (c) 2006 Uwe Stuehler <uwe@openbsd.org> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 /* 21 * SD Host Controller driver based on the SD Host Controller Standard 22 * Simplified Specification Version 1.00 (www.sdcard.com). 23 */ 24 25 #include <sys/cdefs.h> 26 __KERNEL_RCSID(0, "$NetBSD: sdhc.c,v 1.91 2015/11/03 07:59:29 mlelstv Exp $"); 27 28 #ifdef _KERNEL_OPT 29 #include "opt_sdmmc.h" 30 #endif 31 32 #include <sys/param.h> 33 #include <sys/device.h> 34 #include <sys/kernel.h> 35 #include <sys/malloc.h> 36 #include <sys/systm.h> 37 #include <sys/mutex.h> 38 #include <sys/condvar.h> 39 #include <sys/atomic.h> 40 41 #include <dev/sdmmc/sdhcreg.h> 42 #include <dev/sdmmc/sdhcvar.h> 43 #include <dev/sdmmc/sdmmcchip.h> 44 #include <dev/sdmmc/sdmmcreg.h> 45 #include <dev/sdmmc/sdmmcvar.h> 46 47 #ifdef SDHC_DEBUG 48 int sdhcdebug = 1; 49 #define DPRINTF(n,s) do { if ((n) <= sdhcdebug) printf s; } while (0) 50 void sdhc_dump_regs(struct sdhc_host *); 51 #else 52 #define DPRINTF(n,s) do {} while (0) 53 #endif 54 55 #define SDHC_COMMAND_TIMEOUT hz 56 #define SDHC_BUFFER_TIMEOUT hz 57 #define SDHC_TRANSFER_TIMEOUT hz 58 #define SDHC_DMA_TIMEOUT (hz*3) 59 #define SDHC_TUNING_TIMEOUT hz 60 61 struct sdhc_host { 62 struct sdhc_softc *sc; /* host controller device */ 63 64 bus_space_tag_t iot; /* host register set tag */ 65 bus_space_handle_t ioh; /* host register set handle */ 66 bus_size_t ios; /* host register space size */ 67 bus_dma_tag_t dmat; /* host DMA tag */ 68 69 device_t sdmmc; /* generic SD/MMC device */ 70 71 u_int clkbase; /* base clock frequency in KHz */ 72 int maxblklen; /* maximum block length */ 73 uint32_t ocr; /* OCR value from capabilities */ 74 75 uint8_t regs[14]; /* host controller state */ 76 77 uint16_t intr_status; /* soft interrupt status */ 78 uint16_t intr_error_status; /* soft error status */ 79 kmutex_t intr_lock; 80 kcondvar_t intr_cv; 81 82 callout_t tuning_timer; 83 int tuning_timing; 84 u_int tuning_timer_count; 85 u_int tuning_timer_pending; 86 87 int specver; /* spec. version */ 88 89 uint32_t flags; /* flags for this host */ 90 #define SHF_USE_DMA 0x0001 91 #define SHF_USE_4BIT_MODE 0x0002 92 #define SHF_USE_8BIT_MODE 0x0004 93 #define SHF_MODE_DMAEN 0x0008 /* needs SDHC_DMA_ENABLE in mode */ 94 #define SHF_USE_ADMA2_32 0x0010 95 #define SHF_USE_ADMA2_64 0x0020 96 #define SHF_USE_ADMA2_MASK 0x0030 97 98 bus_dmamap_t adma_map; 99 bus_dma_segment_t adma_segs[1]; 100 void *adma2; 101 }; 102 103 #define HDEVNAME(hp) (device_xname((hp)->sc->sc_dev)) 104 105 static uint8_t 106 hread1(struct sdhc_host *hp, bus_size_t reg) 107 { 108 109 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) 110 return bus_space_read_1(hp->iot, hp->ioh, reg); 111 return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 3)); 112 } 113 114 static uint16_t 115 hread2(struct sdhc_host *hp, bus_size_t reg) 116 { 117 118 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) 119 return bus_space_read_2(hp->iot, hp->ioh, reg); 120 return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 2)); 121 } 122 123 #define HREAD1(hp, reg) hread1(hp, reg) 124 #define HREAD2(hp, reg) hread2(hp, reg) 125 #define HREAD4(hp, reg) \ 126 (bus_space_read_4((hp)->iot, (hp)->ioh, (reg))) 127 128 129 static void 130 hwrite1(struct sdhc_host *hp, bus_size_t o, uint8_t val) 131 { 132 133 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) { 134 bus_space_write_1(hp->iot, hp->ioh, o, val); 135 } else { 136 const size_t shift = 8 * (o & 3); 137 o &= -4; 138 uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o); 139 tmp = (val << shift) | (tmp & ~(0xff << shift)); 140 bus_space_write_4(hp->iot, hp->ioh, o, tmp); 141 } 142 } 143 144 static void 145 hwrite2(struct sdhc_host *hp, bus_size_t o, uint16_t val) 146 { 147 148 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) { 149 bus_space_write_2(hp->iot, hp->ioh, o, val); 150 } else { 151 const size_t shift = 8 * (o & 2); 152 o &= -4; 153 uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o); 154 tmp = (val << shift) | (tmp & ~(0xffff << shift)); 155 bus_space_write_4(hp->iot, hp->ioh, o, tmp); 156 } 157 } 158 159 #define HWRITE1(hp, reg, val) hwrite1(hp, reg, val) 160 #define HWRITE2(hp, reg, val) hwrite2(hp, reg, val) 161 #define HWRITE4(hp, reg, val) \ 162 bus_space_write_4((hp)->iot, (hp)->ioh, (reg), (val)) 163 164 #define HCLR1(hp, reg, bits) \ 165 do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits)); while (0) 166 #define HCLR2(hp, reg, bits) \ 167 do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits)); while (0) 168 #define HCLR4(hp, reg, bits) \ 169 do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) & ~(bits)); while (0) 170 #define HSET1(hp, reg, bits) \ 171 do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits)); while (0) 172 #define HSET2(hp, reg, bits) \ 173 do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits)); while (0) 174 #define HSET4(hp, reg, bits) \ 175 do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) | (bits)); while (0) 176 177 static int sdhc_host_reset(sdmmc_chipset_handle_t); 178 static int sdhc_host_reset1(sdmmc_chipset_handle_t); 179 static uint32_t sdhc_host_ocr(sdmmc_chipset_handle_t); 180 static int sdhc_host_maxblklen(sdmmc_chipset_handle_t); 181 static int sdhc_card_detect(sdmmc_chipset_handle_t); 182 static int sdhc_write_protect(sdmmc_chipset_handle_t); 183 static int sdhc_bus_power(sdmmc_chipset_handle_t, uint32_t); 184 static int sdhc_bus_clock_ddr(sdmmc_chipset_handle_t, int, bool); 185 static int sdhc_bus_width(sdmmc_chipset_handle_t, int); 186 static int sdhc_bus_rod(sdmmc_chipset_handle_t, int); 187 static void sdhc_card_enable_intr(sdmmc_chipset_handle_t, int); 188 static void sdhc_card_intr_ack(sdmmc_chipset_handle_t); 189 static void sdhc_exec_command(sdmmc_chipset_handle_t, 190 struct sdmmc_command *); 191 static int sdhc_signal_voltage(sdmmc_chipset_handle_t, int); 192 static int sdhc_execute_tuning1(struct sdhc_host *, int); 193 static int sdhc_execute_tuning(sdmmc_chipset_handle_t, int); 194 static void sdhc_tuning_timer(void *); 195 static int sdhc_start_command(struct sdhc_host *, struct sdmmc_command *); 196 static int sdhc_wait_state(struct sdhc_host *, uint32_t, uint32_t); 197 static int sdhc_soft_reset(struct sdhc_host *, int); 198 static int sdhc_wait_intr(struct sdhc_host *, int, int, bool); 199 static void sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *); 200 static int sdhc_transfer_data_dma(struct sdhc_host *, struct sdmmc_command *); 201 static int sdhc_transfer_data_pio(struct sdhc_host *, struct sdmmc_command *); 202 static void sdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int); 203 static void sdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int); 204 static void esdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int); 205 static void esdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int); 206 207 static struct sdmmc_chip_functions sdhc_functions = { 208 /* host controller reset */ 209 .host_reset = sdhc_host_reset, 210 211 /* host controller capabilities */ 212 .host_ocr = sdhc_host_ocr, 213 .host_maxblklen = sdhc_host_maxblklen, 214 215 /* card detection */ 216 .card_detect = sdhc_card_detect, 217 218 /* write protect */ 219 .write_protect = sdhc_write_protect, 220 221 /* bus power, clock frequency, width and ROD(OpenDrain/PushPull) */ 222 .bus_power = sdhc_bus_power, 223 .bus_clock = NULL, /* see sdhc_bus_clock_ddr */ 224 .bus_width = sdhc_bus_width, 225 .bus_rod = sdhc_bus_rod, 226 227 /* command execution */ 228 .exec_command = sdhc_exec_command, 229 230 /* card interrupt */ 231 .card_enable_intr = sdhc_card_enable_intr, 232 .card_intr_ack = sdhc_card_intr_ack, 233 234 /* UHS functions */ 235 .signal_voltage = sdhc_signal_voltage, 236 .bus_clock_ddr = sdhc_bus_clock_ddr, 237 .execute_tuning = sdhc_execute_tuning, 238 }; 239 240 static int 241 sdhc_cfprint(void *aux, const char *pnp) 242 { 243 const struct sdmmcbus_attach_args * const saa = aux; 244 const struct sdhc_host * const hp = saa->saa_sch; 245 246 if (pnp) { 247 aprint_normal("sdmmc at %s", pnp); 248 } 249 for (size_t host = 0; host < hp->sc->sc_nhosts; host++) { 250 if (hp->sc->sc_host[host] == hp) { 251 aprint_normal(" slot %zu", host); 252 } 253 } 254 255 return UNCONF; 256 } 257 258 /* 259 * Called by attachment driver. For each SD card slot there is one SD 260 * host controller standard register set. (1.3) 261 */ 262 int 263 sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot, 264 bus_space_handle_t ioh, bus_size_t iosize) 265 { 266 struct sdmmcbus_attach_args saa; 267 struct sdhc_host *hp; 268 uint32_t caps, caps2; 269 uint16_t sdhcver; 270 int error; 271 272 /* Allocate one more host structure. */ 273 hp = malloc(sizeof(struct sdhc_host), M_DEVBUF, M_WAITOK|M_ZERO); 274 if (hp == NULL) { 275 aprint_error_dev(sc->sc_dev, 276 "couldn't alloc memory (sdhc host)\n"); 277 goto err1; 278 } 279 sc->sc_host[sc->sc_nhosts++] = hp; 280 281 /* Fill in the new host structure. */ 282 hp->sc = sc; 283 hp->iot = iot; 284 hp->ioh = ioh; 285 hp->ios = iosize; 286 hp->dmat = sc->sc_dmat; 287 288 mutex_init(&hp->intr_lock, MUTEX_DEFAULT, IPL_SDMMC); 289 cv_init(&hp->intr_cv, "sdhcintr"); 290 callout_init(&hp->tuning_timer, CALLOUT_MPSAFE); 291 callout_setfunc(&hp->tuning_timer, sdhc_tuning_timer, hp); 292 293 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) { 294 sdhcver = HREAD4(hp, SDHC_ESDHC_HOST_CTL_VERSION); 295 } else { 296 sdhcver = HREAD2(hp, SDHC_HOST_CTL_VERSION); 297 } 298 aprint_normal_dev(sc->sc_dev, "SDHC "); 299 hp->specver = SDHC_SPEC_VERSION(sdhcver); 300 switch (SDHC_SPEC_VERSION(sdhcver)) { 301 case SDHC_SPEC_VERS_100: 302 aprint_normal("1.0"); 303 break; 304 305 case SDHC_SPEC_VERS_200: 306 aprint_normal("2.0"); 307 break; 308 309 case SDHC_SPEC_VERS_300: 310 aprint_normal("3.0"); 311 break; 312 313 case SDHC_SPEC_VERS_400: 314 aprint_normal("4.0"); 315 break; 316 317 default: 318 aprint_normal("unknown version(0x%x)", 319 SDHC_SPEC_VERSION(sdhcver)); 320 break; 321 } 322 aprint_normal(", rev %u", SDHC_VENDOR_VERSION(sdhcver)); 323 324 /* 325 * Reset the host controller and enable interrupts. 326 */ 327 (void)sdhc_host_reset(hp); 328 329 /* Determine host capabilities. */ 330 if (ISSET(sc->sc_flags, SDHC_FLAG_HOSTCAPS)) { 331 caps = sc->sc_caps; 332 caps2 = sc->sc_caps2; 333 } else { 334 caps = sc->sc_caps = HREAD4(hp, SDHC_CAPABILITIES); 335 if (hp->specver >= SDHC_SPEC_VERS_300) { 336 caps2 = sc->sc_caps2 = HREAD4(hp, SDHC_CAPABILITIES2); 337 } else { 338 caps2 = sc->sc_caps2 = 0; 339 } 340 } 341 342 const u_int retuning_mode = (caps2 >> SDHC_RETUNING_MODES_SHIFT) & 343 SDHC_RETUNING_MODES_MASK; 344 if (retuning_mode == SDHC_RETUNING_MODE_1) { 345 hp->tuning_timer_count = (caps2 >> SDHC_TIMER_COUNT_SHIFT) & 346 SDHC_TIMER_COUNT_MASK; 347 if (hp->tuning_timer_count == 0xf) 348 hp->tuning_timer_count = 0; 349 if (hp->tuning_timer_count) 350 hp->tuning_timer_count = 351 1 << (hp->tuning_timer_count - 1); 352 } 353 354 /* 355 * Use DMA if the host system and the controller support it. 356 * Suports integrated or external DMA egine, with or without 357 * SDHC_DMA_ENABLE in the command. 358 */ 359 if (ISSET(sc->sc_flags, SDHC_FLAG_FORCE_DMA) || 360 (ISSET(sc->sc_flags, SDHC_FLAG_USE_DMA && 361 ISSET(caps, SDHC_DMA_SUPPORT)))) { 362 SET(hp->flags, SHF_USE_DMA); 363 364 if (ISSET(sc->sc_flags, SDHC_FLAG_USE_ADMA2) && 365 ISSET(caps, SDHC_ADMA2_SUPP)) { 366 SET(hp->flags, SHF_MODE_DMAEN); 367 /* 368 * 64-bit mode was present in the 2.00 spec, removed 369 * from 3.00, and re-added in 4.00 with a different 370 * descriptor layout. We only support 2.00 and 3.00 371 * descriptors for now. 372 */ 373 if (hp->specver == SDHC_SPEC_VERS_200 && 374 ISSET(caps, SDHC_64BIT_SYS_BUS)) { 375 SET(hp->flags, SHF_USE_ADMA2_64); 376 aprint_normal(", 64-bit ADMA2"); 377 } else { 378 SET(hp->flags, SHF_USE_ADMA2_32); 379 aprint_normal(", 32-bit ADMA2"); 380 } 381 } else { 382 if (!ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA) || 383 ISSET(sc->sc_flags, SDHC_FLAG_EXTDMA_DMAEN)) 384 SET(hp->flags, SHF_MODE_DMAEN); 385 if (sc->sc_vendor_transfer_data_dma) { 386 aprint_normal(", platform DMA"); 387 } else { 388 aprint_normal(", SDMA"); 389 } 390 } 391 } else { 392 aprint_normal(", PIO"); 393 } 394 395 /* 396 * Determine the base clock frequency. (2.2.24) 397 */ 398 if (hp->specver >= SDHC_SPEC_VERS_300) { 399 hp->clkbase = SDHC_BASE_V3_FREQ_KHZ(caps); 400 } else { 401 hp->clkbase = SDHC_BASE_FREQ_KHZ(caps); 402 } 403 if (hp->clkbase == 0 || 404 ISSET(sc->sc_flags, SDHC_FLAG_NO_CLKBASE)) { 405 if (sc->sc_clkbase == 0) { 406 /* The attachment driver must tell us. */ 407 aprint_error_dev(sc->sc_dev, 408 "unknown base clock frequency\n"); 409 goto err; 410 } 411 hp->clkbase = sc->sc_clkbase; 412 } 413 if (hp->clkbase < 10000 || hp->clkbase > 10000 * 256) { 414 /* SDHC 1.0 supports only 10-63 MHz. */ 415 aprint_error_dev(sc->sc_dev, 416 "base clock frequency out of range: %u MHz\n", 417 hp->clkbase / 1000); 418 goto err; 419 } 420 aprint_normal(", %u kHz", hp->clkbase); 421 422 /* 423 * XXX Set the data timeout counter value according to 424 * capabilities. (2.2.15) 425 */ 426 HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX); 427 #if 1 428 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) 429 HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16); 430 #endif 431 432 if (ISSET(caps, SDHC_EMBEDDED_SLOT)) 433 aprint_normal(", embedded slot"); 434 435 /* 436 * Determine SD bus voltage levels supported by the controller. 437 */ 438 aprint_normal(","); 439 if (ISSET(caps, SDHC_HIGH_SPEED_SUPP)) { 440 SET(hp->ocr, MMC_OCR_HCS); 441 aprint_normal(" HS"); 442 } 443 if (ISSET(caps2, SDHC_SDR50_SUPP)) { 444 SET(hp->ocr, MMC_OCR_S18A); 445 aprint_normal(" SDR50"); 446 } 447 if (ISSET(caps2, SDHC_DDR50_SUPP)) { 448 SET(hp->ocr, MMC_OCR_S18A); 449 aprint_normal(" DDR50"); 450 } 451 if (ISSET(caps2, SDHC_SDR104_SUPP)) { 452 SET(hp->ocr, MMC_OCR_S18A); 453 aprint_normal(" SDR104 HS200"); 454 } 455 if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V)) { 456 SET(hp->ocr, MMC_OCR_1_7V_1_8V | MMC_OCR_1_8V_1_9V); 457 aprint_normal(" 1.8V"); 458 } 459 if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V)) { 460 SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V); 461 aprint_normal(" 3.0V"); 462 } 463 if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V)) { 464 SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V); 465 aprint_normal(" 3.3V"); 466 } 467 if (hp->specver >= SDHC_SPEC_VERS_300) { 468 aprint_normal(", re-tuning mode %d", retuning_mode + 1); 469 if (hp->tuning_timer_count) 470 aprint_normal(" (%us timer)", hp->tuning_timer_count); 471 } 472 473 /* 474 * Determine the maximum block length supported by the host 475 * controller. (2.2.24) 476 */ 477 switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) { 478 case SDHC_MAX_BLK_LEN_512: 479 hp->maxblklen = 512; 480 break; 481 482 case SDHC_MAX_BLK_LEN_1024: 483 hp->maxblklen = 1024; 484 break; 485 486 case SDHC_MAX_BLK_LEN_2048: 487 hp->maxblklen = 2048; 488 break; 489 490 case SDHC_MAX_BLK_LEN_4096: 491 hp->maxblklen = 4096; 492 break; 493 494 default: 495 aprint_error_dev(sc->sc_dev, "max block length unknown\n"); 496 goto err; 497 } 498 aprint_normal(", %u byte blocks", hp->maxblklen); 499 aprint_normal("\n"); 500 501 if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) { 502 int rseg; 503 504 /* Allocate ADMA2 descriptor memory */ 505 error = bus_dmamem_alloc(sc->sc_dmat, PAGE_SIZE, PAGE_SIZE, 506 PAGE_SIZE, hp->adma_segs, 1, &rseg, BUS_DMA_WAITOK); 507 if (error) { 508 aprint_error_dev(sc->sc_dev, 509 "ADMA2 dmamem_alloc failed (%d)\n", error); 510 goto adma_done; 511 } 512 error = bus_dmamem_map(sc->sc_dmat, hp->adma_segs, rseg, 513 PAGE_SIZE, (void **)&hp->adma2, BUS_DMA_WAITOK); 514 if (error) { 515 aprint_error_dev(sc->sc_dev, 516 "ADMA2 dmamem_map failed (%d)\n", error); 517 goto adma_done; 518 } 519 error = bus_dmamap_create(sc->sc_dmat, PAGE_SIZE, 1, PAGE_SIZE, 520 0, BUS_DMA_WAITOK, &hp->adma_map); 521 if (error) { 522 aprint_error_dev(sc->sc_dev, 523 "ADMA2 dmamap_create failed (%d)\n", error); 524 goto adma_done; 525 } 526 error = bus_dmamap_load(sc->sc_dmat, hp->adma_map, 527 hp->adma2, PAGE_SIZE, NULL, 528 BUS_DMA_WAITOK|BUS_DMA_WRITE); 529 if (error) { 530 aprint_error_dev(sc->sc_dev, 531 "ADMA2 dmamap_load failed (%d)\n", error); 532 goto adma_done; 533 } 534 535 memset(hp->adma2, 0, PAGE_SIZE); 536 537 adma_done: 538 if (error) 539 CLR(hp->flags, SHF_USE_ADMA2_MASK); 540 } 541 542 /* 543 * Attach the generic SD/MMC bus driver. (The bus driver must 544 * not invoke any chipset functions before it is attached.) 545 */ 546 memset(&saa, 0, sizeof(saa)); 547 saa.saa_busname = "sdmmc"; 548 saa.saa_sct = &sdhc_functions; 549 saa.saa_sch = hp; 550 saa.saa_dmat = hp->dmat; 551 saa.saa_clkmax = hp->clkbase; 552 if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_CGM)) 553 saa.saa_clkmin = hp->clkbase / 256 / 2046; 554 else if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_DVS)) 555 saa.saa_clkmin = hp->clkbase / 256 / 16; 556 else if (hp->sc->sc_clkmsk != 0) 557 saa.saa_clkmin = hp->clkbase / (hp->sc->sc_clkmsk >> 558 (ffs(hp->sc->sc_clkmsk) - 1)); 559 else if (hp->specver >= SDHC_SPEC_VERS_300) 560 saa.saa_clkmin = hp->clkbase / 0x3ff; 561 else 562 saa.saa_clkmin = hp->clkbase / 256; 563 saa.saa_caps = SMC_CAPS_4BIT_MODE|SMC_CAPS_AUTO_STOP; 564 if (ISSET(sc->sc_flags, SDHC_FLAG_8BIT_MODE)) 565 saa.saa_caps |= SMC_CAPS_8BIT_MODE; 566 if (ISSET(caps, SDHC_HIGH_SPEED_SUPP)) 567 saa.saa_caps |= SMC_CAPS_SD_HIGHSPEED; 568 if (ISSET(caps2, SDHC_SDR104_SUPP)) 569 saa.saa_caps |= SMC_CAPS_UHS_SDR104 | 570 SMC_CAPS_UHS_SDR50 | 571 SMC_CAPS_MMC_HS200; 572 if (ISSET(caps2, SDHC_SDR50_SUPP)) 573 saa.saa_caps |= SMC_CAPS_UHS_SDR50; 574 if (ISSET(caps2, SDHC_DDR50_SUPP)) 575 saa.saa_caps |= SMC_CAPS_UHS_DDR50; 576 if (ISSET(hp->flags, SHF_USE_DMA)) { 577 saa.saa_caps |= SMC_CAPS_DMA; 578 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) 579 saa.saa_caps |= SMC_CAPS_MULTI_SEG_DMA; 580 } 581 if (ISSET(sc->sc_flags, SDHC_FLAG_SINGLE_ONLY)) 582 saa.saa_caps |= SMC_CAPS_SINGLE_ONLY; 583 if (ISSET(sc->sc_flags, SDHC_FLAG_POLL_CARD_DET)) 584 saa.saa_caps |= SMC_CAPS_POLL_CARD_DET; 585 hp->sdmmc = config_found(sc->sc_dev, &saa, sdhc_cfprint); 586 587 return 0; 588 589 err: 590 callout_destroy(&hp->tuning_timer); 591 cv_destroy(&hp->intr_cv); 592 mutex_destroy(&hp->intr_lock); 593 free(hp, M_DEVBUF); 594 sc->sc_host[--sc->sc_nhosts] = NULL; 595 err1: 596 return 1; 597 } 598 599 int 600 sdhc_detach(struct sdhc_softc *sc, int flags) 601 { 602 struct sdhc_host *hp; 603 int rv = 0; 604 605 for (size_t n = 0; n < sc->sc_nhosts; n++) { 606 hp = sc->sc_host[n]; 607 if (hp == NULL) 608 continue; 609 if (hp->sdmmc != NULL) { 610 rv = config_detach(hp->sdmmc, flags); 611 if (rv) 612 break; 613 hp->sdmmc = NULL; 614 } 615 /* disable interrupts */ 616 if ((flags & DETACH_FORCE) == 0) { 617 mutex_enter(&hp->intr_lock); 618 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) { 619 HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0); 620 } else { 621 HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0); 622 } 623 sdhc_soft_reset(hp, SDHC_RESET_ALL); 624 mutex_exit(&hp->intr_lock); 625 } 626 callout_halt(&hp->tuning_timer, NULL); 627 callout_destroy(&hp->tuning_timer); 628 cv_destroy(&hp->intr_cv); 629 mutex_destroy(&hp->intr_lock); 630 if (hp->ios > 0) { 631 bus_space_unmap(hp->iot, hp->ioh, hp->ios); 632 hp->ios = 0; 633 } 634 if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) { 635 bus_dmamap_unload(sc->sc_dmat, hp->adma_map); 636 bus_dmamap_destroy(sc->sc_dmat, hp->adma_map); 637 bus_dmamem_unmap(sc->sc_dmat, hp->adma2, PAGE_SIZE); 638 bus_dmamem_free(sc->sc_dmat, hp->adma_segs, 1); 639 } 640 free(hp, M_DEVBUF); 641 sc->sc_host[n] = NULL; 642 } 643 644 return rv; 645 } 646 647 bool 648 sdhc_suspend(device_t dev, const pmf_qual_t *qual) 649 { 650 struct sdhc_softc *sc = device_private(dev); 651 struct sdhc_host *hp; 652 size_t i; 653 654 /* XXX poll for command completion or suspend command 655 * in progress */ 656 657 /* Save the host controller state. */ 658 for (size_t n = 0; n < sc->sc_nhosts; n++) { 659 hp = sc->sc_host[n]; 660 if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) { 661 for (i = 0; i < sizeof hp->regs; i += 4) { 662 uint32_t v = HREAD4(hp, i); 663 hp->regs[i + 0] = (v >> 0); 664 hp->regs[i + 1] = (v >> 8); 665 if (i + 3 < sizeof hp->regs) { 666 hp->regs[i + 2] = (v >> 16); 667 hp->regs[i + 3] = (v >> 24); 668 } 669 } 670 } else { 671 for (i = 0; i < sizeof hp->regs; i++) { 672 hp->regs[i] = HREAD1(hp, i); 673 } 674 } 675 } 676 return true; 677 } 678 679 bool 680 sdhc_resume(device_t dev, const pmf_qual_t *qual) 681 { 682 struct sdhc_softc *sc = device_private(dev); 683 struct sdhc_host *hp; 684 size_t i; 685 686 /* Restore the host controller state. */ 687 for (size_t n = 0; n < sc->sc_nhosts; n++) { 688 hp = sc->sc_host[n]; 689 (void)sdhc_host_reset(hp); 690 if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) { 691 for (i = 0; i < sizeof hp->regs; i += 4) { 692 if (i + 3 < sizeof hp->regs) { 693 HWRITE4(hp, i, 694 (hp->regs[i + 0] << 0) 695 | (hp->regs[i + 1] << 8) 696 | (hp->regs[i + 2] << 16) 697 | (hp->regs[i + 3] << 24)); 698 } else { 699 HWRITE4(hp, i, 700 (hp->regs[i + 0] << 0) 701 | (hp->regs[i + 1] << 8)); 702 } 703 } 704 } else { 705 for (i = 0; i < sizeof hp->regs; i++) { 706 HWRITE1(hp, i, hp->regs[i]); 707 } 708 } 709 } 710 return true; 711 } 712 713 bool 714 sdhc_shutdown(device_t dev, int flags) 715 { 716 struct sdhc_softc *sc = device_private(dev); 717 struct sdhc_host *hp; 718 719 /* XXX chip locks up if we don't disable it before reboot. */ 720 for (size_t i = 0; i < sc->sc_nhosts; i++) { 721 hp = sc->sc_host[i]; 722 (void)sdhc_host_reset(hp); 723 } 724 return true; 725 } 726 727 /* 728 * Reset the host controller. Called during initialization, when 729 * cards are removed, upon resume, and during error recovery. 730 */ 731 static int 732 sdhc_host_reset1(sdmmc_chipset_handle_t sch) 733 { 734 struct sdhc_host *hp = (struct sdhc_host *)sch; 735 uint32_t sdhcimask; 736 int error; 737 738 KASSERT(mutex_owned(&hp->intr_lock)); 739 740 /* Disable all interrupts. */ 741 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) { 742 HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0); 743 } else { 744 HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0); 745 } 746 747 /* 748 * Reset the entire host controller and wait up to 100ms for 749 * the controller to clear the reset bit. 750 */ 751 error = sdhc_soft_reset(hp, SDHC_RESET_ALL); 752 if (error) 753 goto out; 754 755 /* Set data timeout counter value to max for now. */ 756 HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX); 757 #if 1 758 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) 759 HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16); 760 #endif 761 762 /* Enable interrupts. */ 763 sdhcimask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION | 764 SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY | 765 SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT | 766 SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE; 767 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) { 768 sdhcimask |= SDHC_EINTR_STATUS_MASK << 16; 769 HWRITE4(hp, SDHC_NINTR_STATUS_EN, sdhcimask); 770 sdhcimask ^= 771 (SDHC_EINTR_STATUS_MASK ^ SDHC_EINTR_SIGNAL_MASK) << 16; 772 sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY; 773 HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask); 774 } else { 775 HWRITE2(hp, SDHC_NINTR_STATUS_EN, sdhcimask); 776 HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK); 777 sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY; 778 HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask); 779 HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK); 780 } 781 782 out: 783 return error; 784 } 785 786 static int 787 sdhc_host_reset(sdmmc_chipset_handle_t sch) 788 { 789 struct sdhc_host *hp = (struct sdhc_host *)sch; 790 int error; 791 792 mutex_enter(&hp->intr_lock); 793 error = sdhc_host_reset1(sch); 794 mutex_exit(&hp->intr_lock); 795 796 return error; 797 } 798 799 static uint32_t 800 sdhc_host_ocr(sdmmc_chipset_handle_t sch) 801 { 802 struct sdhc_host *hp = (struct sdhc_host *)sch; 803 804 return hp->ocr; 805 } 806 807 static int 808 sdhc_host_maxblklen(sdmmc_chipset_handle_t sch) 809 { 810 struct sdhc_host *hp = (struct sdhc_host *)sch; 811 812 return hp->maxblklen; 813 } 814 815 /* 816 * Return non-zero if the card is currently inserted. 817 */ 818 static int 819 sdhc_card_detect(sdmmc_chipset_handle_t sch) 820 { 821 struct sdhc_host *hp = (struct sdhc_host *)sch; 822 int r; 823 824 if (hp->sc->sc_vendor_card_detect) 825 return (*hp->sc->sc_vendor_card_detect)(hp->sc); 826 827 r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED); 828 829 return r ? 1 : 0; 830 } 831 832 /* 833 * Return non-zero if the card is currently write-protected. 834 */ 835 static int 836 sdhc_write_protect(sdmmc_chipset_handle_t sch) 837 { 838 struct sdhc_host *hp = (struct sdhc_host *)sch; 839 int r; 840 841 if (hp->sc->sc_vendor_write_protect) 842 return (*hp->sc->sc_vendor_write_protect)(hp->sc); 843 844 r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_WRITE_PROTECT_SWITCH); 845 846 return r ? 0 : 1; 847 } 848 849 /* 850 * Set or change SD bus voltage and enable or disable SD bus power. 851 * Return zero on success. 852 */ 853 static int 854 sdhc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr) 855 { 856 struct sdhc_host *hp = (struct sdhc_host *)sch; 857 uint8_t vdd; 858 int error = 0; 859 const uint32_t pcmask = 860 ~(SDHC_BUS_POWER | (SDHC_VOLTAGE_MASK << SDHC_VOLTAGE_SHIFT)); 861 862 mutex_enter(&hp->intr_lock); 863 864 /* 865 * Disable bus power before voltage change. 866 */ 867 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS) 868 && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_PWR0)) 869 HWRITE1(hp, SDHC_POWER_CTL, 0); 870 871 /* If power is disabled, reset the host and return now. */ 872 if (ocr == 0) { 873 (void)sdhc_host_reset1(hp); 874 callout_halt(&hp->tuning_timer, &hp->intr_lock); 875 goto out; 876 } 877 878 /* 879 * Select the lowest voltage according to capabilities. 880 */ 881 ocr &= hp->ocr; 882 if (ISSET(ocr, MMC_OCR_1_7V_1_8V|MMC_OCR_1_8V_1_9V)) { 883 vdd = SDHC_VOLTAGE_1_8V; 884 } else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V)) { 885 vdd = SDHC_VOLTAGE_3_0V; 886 } else if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V)) { 887 vdd = SDHC_VOLTAGE_3_3V; 888 } else { 889 /* Unsupported voltage level requested. */ 890 error = EINVAL; 891 goto out; 892 } 893 894 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) { 895 /* 896 * Enable bus power. Wait at least 1 ms (or 74 clocks) plus 897 * voltage ramp until power rises. 898 */ 899 900 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_SINGLE_POWER_WRITE)) { 901 HWRITE1(hp, SDHC_POWER_CTL, 902 (vdd << SDHC_VOLTAGE_SHIFT) | SDHC_BUS_POWER); 903 } else { 904 HWRITE1(hp, SDHC_POWER_CTL, 905 HREAD1(hp, SDHC_POWER_CTL) & pcmask); 906 sdmmc_delay(1); 907 HWRITE1(hp, SDHC_POWER_CTL, 908 (vdd << SDHC_VOLTAGE_SHIFT)); 909 sdmmc_delay(1); 910 HSET1(hp, SDHC_POWER_CTL, SDHC_BUS_POWER); 911 sdmmc_delay(10000); 912 } 913 914 /* 915 * The host system may not power the bus due to battery low, 916 * etc. In that case, the host controller should clear the 917 * bus power bit. 918 */ 919 if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) { 920 error = ENXIO; 921 goto out; 922 } 923 } 924 925 out: 926 mutex_exit(&hp->intr_lock); 927 928 return error; 929 } 930 931 /* 932 * Return the smallest possible base clock frequency divisor value 933 * for the CLOCK_CTL register to produce `freq' (KHz). 934 */ 935 static bool 936 sdhc_clock_divisor(struct sdhc_host *hp, u_int freq, u_int *divp) 937 { 938 u_int div; 939 940 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_CGM)) { 941 for (div = hp->clkbase / freq; div <= 0x3ff; div++) { 942 if ((hp->clkbase / div) <= freq) { 943 *divp = SDHC_SDCLK_CGM 944 | ((div & 0x300) << SDHC_SDCLK_XDIV_SHIFT) 945 | ((div & 0x0ff) << SDHC_SDCLK_DIV_SHIFT); 946 //freq = hp->clkbase / div; 947 return true; 948 } 949 } 950 /* No divisor found. */ 951 return false; 952 } 953 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_DVS)) { 954 u_int dvs = (hp->clkbase + freq - 1) / freq; 955 u_int roundup = dvs & 1; 956 for (dvs >>= 1, div = 1; div <= 256; div <<= 1, dvs >>= 1) { 957 if (dvs + roundup <= 16) { 958 dvs += roundup - 1; 959 *divp = (div << SDHC_SDCLK_DIV_SHIFT) 960 | (dvs << SDHC_SDCLK_DVS_SHIFT); 961 DPRINTF(2, 962 ("%s: divisor for freq %u is %u * %u\n", 963 HDEVNAME(hp), freq, div * 2, dvs + 1)); 964 //freq = hp->clkbase / (div * 2) * (dvs + 1); 965 return true; 966 } 967 /* 968 * If we drop bits, we need to round up the divisor. 969 */ 970 roundup |= dvs & 1; 971 } 972 /* No divisor found. */ 973 return false; 974 } 975 if (hp->sc->sc_clkmsk != 0) { 976 div = howmany(hp->clkbase, freq); 977 if (div > (hp->sc->sc_clkmsk >> (ffs(hp->sc->sc_clkmsk) - 1))) 978 return false; 979 *divp = div << (ffs(hp->sc->sc_clkmsk) - 1); 980 //freq = hp->clkbase / div; 981 return true; 982 } 983 if (hp->specver >= SDHC_SPEC_VERS_300) { 984 div = howmany(hp->clkbase, freq); 985 div = div > 1 ? howmany(div, 2) : 0; 986 if (div > 0x3ff) 987 return false; 988 *divp = (((div >> 8) & SDHC_SDCLK_XDIV_MASK) 989 << SDHC_SDCLK_XDIV_SHIFT) | 990 (((div >> 0) & SDHC_SDCLK_DIV_MASK) 991 << SDHC_SDCLK_DIV_SHIFT); 992 //freq = hp->clkbase / (div ? div * 2 : 1); 993 return true; 994 } else { 995 for (div = 1; div <= 256; div *= 2) { 996 if ((hp->clkbase / div) <= freq) { 997 *divp = (div / 2) << SDHC_SDCLK_DIV_SHIFT; 998 //freq = hp->clkbase / div; 999 return true; 1000 } 1001 } 1002 /* No divisor found. */ 1003 return false; 1004 } 1005 /* No divisor found. */ 1006 return false; 1007 } 1008 1009 /* 1010 * Set or change SDCLK frequency or disable the SD clock. 1011 * Return zero on success. 1012 */ 1013 static int 1014 sdhc_bus_clock_ddr(sdmmc_chipset_handle_t sch, int freq, bool ddr) 1015 { 1016 struct sdhc_host *hp = (struct sdhc_host *)sch; 1017 u_int div; 1018 u_int timo; 1019 int16_t reg; 1020 int error = 0; 1021 bool present __diagused; 1022 1023 mutex_enter(&hp->intr_lock); 1024 1025 #ifdef DIAGNOSTIC 1026 present = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK); 1027 1028 /* Must not stop the clock if commands are in progress. */ 1029 if (present && sdhc_card_detect(hp)) { 1030 aprint_normal_dev(hp->sc->sc_dev, 1031 "%s: command in progress\n", __func__); 1032 } 1033 #endif 1034 1035 if (hp->sc->sc_vendor_bus_clock) { 1036 error = (*hp->sc->sc_vendor_bus_clock)(hp->sc, freq); 1037 if (error != 0) 1038 goto out; 1039 } 1040 1041 /* 1042 * Stop SD clock before changing the frequency. 1043 */ 1044 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) { 1045 HCLR4(hp, SDHC_CLOCK_CTL, 0xfff8); 1046 if (freq == SDMMC_SDCLK_OFF) { 1047 HSET4(hp, SDHC_CLOCK_CTL, 0x80f0); 1048 goto out; 1049 } 1050 } else { 1051 HCLR2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE); 1052 if (freq == SDMMC_SDCLK_OFF) 1053 goto out; 1054 } 1055 1056 if (hp->specver >= SDHC_SPEC_VERS_300) { 1057 HCLR2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_MASK); 1058 if (freq > 100000) { 1059 HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR104); 1060 } else if (freq > 50000) { 1061 HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR50); 1062 } else if (freq > 25000) { 1063 if (ddr) { 1064 HSET2(hp, SDHC_HOST_CTL2, 1065 SDHC_UHS_MODE_SELECT_DDR50); 1066 } else { 1067 HSET2(hp, SDHC_HOST_CTL2, 1068 SDHC_UHS_MODE_SELECT_SDR25); 1069 } 1070 } else if (freq > 400) { 1071 HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR12); 1072 } 1073 } 1074 1075 /* 1076 * Slow down Ricoh 5U823 controller that isn't reliable 1077 * at 100MHz bus clock. 1078 */ 1079 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_SLOW_SDR50)) { 1080 if (freq == 100000) 1081 --freq; 1082 } 1083 1084 /* 1085 * Set the minimum base clock frequency divisor. 1086 */ 1087 if (!sdhc_clock_divisor(hp, freq, &div)) { 1088 /* Invalid base clock frequency or `freq' value. */ 1089 aprint_error_dev(hp->sc->sc_dev, 1090 "Invalid bus clock %d kHz\n", freq); 1091 error = EINVAL; 1092 goto out; 1093 } 1094 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) { 1095 HWRITE4(hp, SDHC_CLOCK_CTL, 1096 div | (SDHC_TIMEOUT_MAX << 16)); 1097 } else { 1098 reg = HREAD2(hp, SDHC_CLOCK_CTL); 1099 reg &= (SDHC_INTCLK_STABLE | SDHC_INTCLK_ENABLE); 1100 HWRITE2(hp, SDHC_CLOCK_CTL, reg | div); 1101 } 1102 1103 /* 1104 * Start internal clock. Wait 10ms for stabilization. 1105 */ 1106 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) { 1107 sdmmc_delay(10000); 1108 HSET4(hp, SDHC_CLOCK_CTL, 1109 8 | SDHC_INTCLK_ENABLE | SDHC_INTCLK_STABLE); 1110 } else { 1111 HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE); 1112 for (timo = 1000; timo > 0; timo--) { 1113 if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL), 1114 SDHC_INTCLK_STABLE)) 1115 break; 1116 sdmmc_delay(10); 1117 } 1118 if (timo == 0) { 1119 error = ETIMEDOUT; 1120 DPRINTF(1,("%s: timeout\n", __func__)); 1121 goto out; 1122 } 1123 } 1124 1125 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) { 1126 HSET1(hp, SDHC_SOFTWARE_RESET, SDHC_INIT_ACTIVE); 1127 /* 1128 * Sending 80 clocks at 400kHz takes 200us. 1129 * So delay for that time + slop and then 1130 * check a few times for completion. 1131 */ 1132 sdmmc_delay(210); 1133 for (timo = 10; timo > 0; timo--) { 1134 if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), 1135 SDHC_INIT_ACTIVE)) 1136 break; 1137 sdmmc_delay(10); 1138 } 1139 DPRINTF(2,("%s: %u init spins\n", __func__, 10 - timo)); 1140 1141 /* 1142 * Enable SD clock. 1143 */ 1144 HSET4(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE); 1145 } else { 1146 /* 1147 * Enable SD clock. 1148 */ 1149 HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE); 1150 1151 if (freq > 25000 && 1152 !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_HS_BIT)) 1153 HSET1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED); 1154 else 1155 HCLR1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED); 1156 } 1157 1158 out: 1159 mutex_exit(&hp->intr_lock); 1160 1161 return error; 1162 } 1163 1164 static int 1165 sdhc_bus_width(sdmmc_chipset_handle_t sch, int width) 1166 { 1167 struct sdhc_host *hp = (struct sdhc_host *)sch; 1168 int reg; 1169 1170 switch (width) { 1171 case 1: 1172 case 4: 1173 break; 1174 1175 case 8: 1176 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_8BIT_MODE)) 1177 break; 1178 /* FALLTHROUGH */ 1179 default: 1180 DPRINTF(0,("%s: unsupported bus width (%d)\n", 1181 HDEVNAME(hp), width)); 1182 return 1; 1183 } 1184 1185 if (hp->sc->sc_vendor_bus_width) { 1186 const int error = hp->sc->sc_vendor_bus_width(hp->sc, width); 1187 if (error != 0) 1188 return error; 1189 } 1190 1191 mutex_enter(&hp->intr_lock); 1192 1193 reg = HREAD1(hp, SDHC_HOST_CTL); 1194 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) { 1195 reg &= ~(SDHC_4BIT_MODE|SDHC_ESDHC_8BIT_MODE); 1196 if (width == 4) 1197 reg |= SDHC_4BIT_MODE; 1198 else if (width == 8) 1199 reg |= SDHC_ESDHC_8BIT_MODE; 1200 } else { 1201 reg &= ~SDHC_4BIT_MODE; 1202 if (hp->specver >= SDHC_SPEC_VERS_300) { 1203 reg &= ~SDHC_8BIT_MODE; 1204 } 1205 if (width == 4) { 1206 reg |= SDHC_4BIT_MODE; 1207 } else if (width == 8 && hp->specver >= SDHC_SPEC_VERS_300) { 1208 reg |= SDHC_8BIT_MODE; 1209 } 1210 } 1211 HWRITE1(hp, SDHC_HOST_CTL, reg); 1212 1213 mutex_exit(&hp->intr_lock); 1214 1215 return 0; 1216 } 1217 1218 static int 1219 sdhc_bus_rod(sdmmc_chipset_handle_t sch, int on) 1220 { 1221 struct sdhc_host *hp = (struct sdhc_host *)sch; 1222 1223 if (hp->sc->sc_vendor_rod) 1224 return (*hp->sc->sc_vendor_rod)(hp->sc, on); 1225 1226 return 0; 1227 } 1228 1229 static void 1230 sdhc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable) 1231 { 1232 struct sdhc_host *hp = (struct sdhc_host *)sch; 1233 1234 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) { 1235 mutex_enter(&hp->intr_lock); 1236 if (enable) { 1237 HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT); 1238 HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT); 1239 } else { 1240 HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT); 1241 HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT); 1242 } 1243 mutex_exit(&hp->intr_lock); 1244 } 1245 } 1246 1247 static void 1248 sdhc_card_intr_ack(sdmmc_chipset_handle_t sch) 1249 { 1250 struct sdhc_host *hp = (struct sdhc_host *)sch; 1251 1252 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) { 1253 mutex_enter(&hp->intr_lock); 1254 HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT); 1255 mutex_exit(&hp->intr_lock); 1256 } 1257 } 1258 1259 static int 1260 sdhc_signal_voltage(sdmmc_chipset_handle_t sch, int signal_voltage) 1261 { 1262 struct sdhc_host *hp = (struct sdhc_host *)sch; 1263 1264 mutex_enter(&hp->intr_lock); 1265 switch (signal_voltage) { 1266 case SDMMC_SIGNAL_VOLTAGE_180: 1267 HSET2(hp, SDHC_HOST_CTL2, SDHC_1_8V_SIGNAL_EN); 1268 break; 1269 case SDMMC_SIGNAL_VOLTAGE_330: 1270 HCLR2(hp, SDHC_HOST_CTL2, SDHC_1_8V_SIGNAL_EN); 1271 break; 1272 default: 1273 return EINVAL; 1274 } 1275 mutex_exit(&hp->intr_lock); 1276 1277 return 0; 1278 } 1279 1280 /* 1281 * Sampling clock tuning procedure (UHS) 1282 */ 1283 static int 1284 sdhc_execute_tuning1(struct sdhc_host *hp, int timing) 1285 { 1286 struct sdmmc_command cmd; 1287 uint8_t hostctl; 1288 int opcode, error, retry = 40; 1289 1290 KASSERT(mutex_owned(&hp->intr_lock)); 1291 1292 hp->tuning_timing = timing; 1293 1294 switch (timing) { 1295 case SDMMC_TIMING_MMC_HS200: 1296 opcode = MMC_SEND_TUNING_BLOCK_HS200; 1297 break; 1298 case SDMMC_TIMING_UHS_SDR50: 1299 if (!ISSET(hp->sc->sc_caps2, SDHC_TUNING_SDR50)) 1300 return 0; 1301 /* FALLTHROUGH */ 1302 case SDMMC_TIMING_UHS_SDR104: 1303 opcode = MMC_SEND_TUNING_BLOCK; 1304 break; 1305 default: 1306 return EINVAL; 1307 } 1308 1309 hostctl = HREAD1(hp, SDHC_HOST_CTL); 1310 1311 /* enable buffer read ready interrupt */ 1312 HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_BUFFER_READ_READY); 1313 HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_BUFFER_READ_READY); 1314 1315 /* disable DMA */ 1316 HCLR1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT); 1317 1318 /* reset tuning circuit */ 1319 HCLR2(hp, SDHC_HOST_CTL2, SDHC_SAMPLING_CLOCK_SEL); 1320 1321 /* start of tuning */ 1322 HWRITE2(hp, SDHC_HOST_CTL2, SDHC_EXECUTE_TUNING); 1323 1324 do { 1325 memset(&cmd, 0, sizeof(cmd)); 1326 cmd.c_opcode = opcode; 1327 cmd.c_arg = 0; 1328 cmd.c_flags = SCF_CMD_ADTC | SCF_CMD_READ | SCF_RSP_R1; 1329 if (ISSET(hostctl, SDHC_8BIT_MODE)) { 1330 cmd.c_blklen = cmd.c_datalen = 128; 1331 } else { 1332 cmd.c_blklen = cmd.c_datalen = 64; 1333 } 1334 1335 error = sdhc_start_command(hp, &cmd); 1336 if (error) 1337 break; 1338 1339 if (!sdhc_wait_intr(hp, SDHC_BUFFER_READ_READY, 1340 SDHC_TUNING_TIMEOUT, false)) { 1341 break; 1342 } 1343 1344 delay(1000); 1345 } while (HREAD2(hp, SDHC_HOST_CTL2) & SDHC_EXECUTE_TUNING && --retry); 1346 1347 /* disable buffer read ready interrupt */ 1348 HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_BUFFER_READ_READY); 1349 HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_BUFFER_READ_READY); 1350 1351 if (HREAD2(hp, SDHC_HOST_CTL2) & SDHC_EXECUTE_TUNING) { 1352 HCLR2(hp, SDHC_HOST_CTL2, 1353 SDHC_SAMPLING_CLOCK_SEL|SDHC_EXECUTE_TUNING); 1354 sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD); 1355 aprint_error_dev(hp->sc->sc_dev, 1356 "tuning did not complete, using fixed sampling clock\n"); 1357 return EIO; /* tuning did not complete */ 1358 } 1359 1360 if ((HREAD2(hp, SDHC_HOST_CTL2) & SDHC_SAMPLING_CLOCK_SEL) == 0) { 1361 HCLR2(hp, SDHC_HOST_CTL2, 1362 SDHC_SAMPLING_CLOCK_SEL|SDHC_EXECUTE_TUNING); 1363 sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD); 1364 aprint_error_dev(hp->sc->sc_dev, 1365 "tuning failed, using fixed sampling clock\n"); 1366 return EIO; /* tuning failed */ 1367 } 1368 1369 if (hp->tuning_timer_count) { 1370 callout_schedule(&hp->tuning_timer, 1371 hz * hp->tuning_timer_count); 1372 } 1373 1374 return 0; /* tuning completed */ 1375 } 1376 1377 static int 1378 sdhc_execute_tuning(sdmmc_chipset_handle_t sch, int timing) 1379 { 1380 struct sdhc_host *hp = (struct sdhc_host *)sch; 1381 int error; 1382 1383 mutex_enter(&hp->intr_lock); 1384 error = sdhc_execute_tuning1(hp, timing); 1385 mutex_exit(&hp->intr_lock); 1386 return error; 1387 } 1388 1389 static void 1390 sdhc_tuning_timer(void *arg) 1391 { 1392 struct sdhc_host *hp = arg; 1393 1394 atomic_swap_uint(&hp->tuning_timer_pending, 1); 1395 } 1396 1397 static int 1398 sdhc_wait_state(struct sdhc_host *hp, uint32_t mask, uint32_t value) 1399 { 1400 uint32_t state; 1401 int timeout; 1402 1403 for (timeout = 10000; timeout > 0; timeout--) { 1404 if (((state = HREAD4(hp, SDHC_PRESENT_STATE)) & mask) == value) 1405 return 0; 1406 sdmmc_delay(10); 1407 } 1408 aprint_error_dev(hp->sc->sc_dev, "timeout waiting for mask %#x value %#x (state=%#x)\n", 1409 mask, value, state); 1410 return ETIMEDOUT; 1411 } 1412 1413 static void 1414 sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd) 1415 { 1416 struct sdhc_host *hp = (struct sdhc_host *)sch; 1417 int error; 1418 bool probing; 1419 1420 mutex_enter(&hp->intr_lock); 1421 1422 if (atomic_cas_uint(&hp->tuning_timer_pending, 1, 0) == 1) { 1423 (void)sdhc_execute_tuning1(hp, hp->tuning_timing); 1424 } 1425 1426 if (cmd->c_data && ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) { 1427 const uint16_t ready = SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY; 1428 if (ISSET(hp->flags, SHF_USE_DMA)) { 1429 HCLR2(hp, SDHC_NINTR_SIGNAL_EN, ready); 1430 HCLR2(hp, SDHC_NINTR_STATUS_EN, ready); 1431 } else { 1432 HSET2(hp, SDHC_NINTR_SIGNAL_EN, ready); 1433 HSET2(hp, SDHC_NINTR_STATUS_EN, ready); 1434 } 1435 } 1436 1437 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_TIMEOUT)) { 1438 const uint16_t eintr = SDHC_CMD_TIMEOUT_ERROR; 1439 if (cmd->c_data != NULL) { 1440 HCLR2(hp, SDHC_EINTR_SIGNAL_EN, eintr); 1441 HCLR2(hp, SDHC_EINTR_STATUS_EN, eintr); 1442 } else { 1443 HSET2(hp, SDHC_EINTR_SIGNAL_EN, eintr); 1444 HSET2(hp, SDHC_EINTR_STATUS_EN, eintr); 1445 } 1446 } 1447 1448 /* 1449 * Start the MMC command, or mark `cmd' as failed and return. 1450 */ 1451 error = sdhc_start_command(hp, cmd); 1452 if (error) { 1453 cmd->c_error = error; 1454 goto out; 1455 } 1456 1457 /* 1458 * Wait until the command phase is done, or until the command 1459 * is marked done for any other reason. 1460 */ 1461 probing = (cmd->c_flags & SCF_TOUT_OK) != 0; 1462 if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE, SDHC_COMMAND_TIMEOUT, probing)) { 1463 DPRINTF(1,("%s: timeout for command\n", __func__)); 1464 cmd->c_error = ETIMEDOUT; 1465 goto out; 1466 } 1467 1468 /* 1469 * The host controller removes bits [0:7] from the response 1470 * data (CRC) and we pass the data up unchanged to the bus 1471 * driver (without padding). 1472 */ 1473 if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) { 1474 cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE + 0); 1475 if (ISSET(cmd->c_flags, SCF_RSP_136)) { 1476 cmd->c_resp[1] = HREAD4(hp, SDHC_RESPONSE + 4); 1477 cmd->c_resp[2] = HREAD4(hp, SDHC_RESPONSE + 8); 1478 cmd->c_resp[3] = HREAD4(hp, SDHC_RESPONSE + 12); 1479 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_RSP136_CRC)) { 1480 cmd->c_resp[0] = (cmd->c_resp[0] >> 8) | 1481 (cmd->c_resp[1] << 24); 1482 cmd->c_resp[1] = (cmd->c_resp[1] >> 8) | 1483 (cmd->c_resp[2] << 24); 1484 cmd->c_resp[2] = (cmd->c_resp[2] >> 8) | 1485 (cmd->c_resp[3] << 24); 1486 cmd->c_resp[3] = (cmd->c_resp[3] >> 8); 1487 } 1488 } 1489 } 1490 DPRINTF(1,("%s: resp = %08x\n", HDEVNAME(hp), cmd->c_resp[0])); 1491 1492 /* 1493 * If the command has data to transfer in any direction, 1494 * execute the transfer now. 1495 */ 1496 if (cmd->c_error == 0 && cmd->c_data != NULL) 1497 sdhc_transfer_data(hp, cmd); 1498 else if (ISSET(cmd->c_flags, SCF_RSP_BSY)) { 1499 if (!sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE, hz * 10, false)) { 1500 DPRINTF(1,("%s: sdhc_exec_command: RSP_BSY\n", 1501 HDEVNAME(hp))); 1502 cmd->c_error = ETIMEDOUT; 1503 goto out; 1504 } 1505 } 1506 1507 out: 1508 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED) 1509 && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_LED_ON)) { 1510 /* Turn off the LED. */ 1511 HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON); 1512 } 1513 SET(cmd->c_flags, SCF_ITSDONE); 1514 1515 mutex_exit(&hp->intr_lock); 1516 1517 DPRINTF(1,("%s: cmd %d %s (flags=%08x error=%d)\n", HDEVNAME(hp), 1518 cmd->c_opcode, (cmd->c_error == 0) ? "done" : "abort", 1519 cmd->c_flags, cmd->c_error)); 1520 } 1521 1522 static int 1523 sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd) 1524 { 1525 struct sdhc_softc * const sc = hp->sc; 1526 uint16_t blksize = 0; 1527 uint16_t blkcount = 0; 1528 uint16_t mode; 1529 uint16_t command; 1530 uint32_t pmask; 1531 int error; 1532 1533 KASSERT(mutex_owned(&hp->intr_lock)); 1534 1535 DPRINTF(1,("%s: start cmd %d arg=%08x data=%p dlen=%d flags=%08x, status=%#x\n", 1536 HDEVNAME(hp), cmd->c_opcode, cmd->c_arg, cmd->c_data, 1537 cmd->c_datalen, cmd->c_flags, HREAD4(hp, SDHC_NINTR_STATUS))); 1538 1539 /* 1540 * The maximum block length for commands should be the minimum 1541 * of the host buffer size and the card buffer size. (1.7.2) 1542 */ 1543 1544 /* Fragment the data into proper blocks. */ 1545 if (cmd->c_datalen > 0) { 1546 blksize = MIN(cmd->c_datalen, cmd->c_blklen); 1547 blkcount = cmd->c_datalen / blksize; 1548 if (cmd->c_datalen % blksize > 0) { 1549 /* XXX: Split this command. (1.7.4) */ 1550 aprint_error_dev(sc->sc_dev, 1551 "data not a multiple of %u bytes\n", blksize); 1552 return EINVAL; 1553 } 1554 } 1555 1556 /* Check limit imposed by 9-bit block count. (1.7.2) */ 1557 if (blkcount > SDHC_BLOCK_COUNT_MAX) { 1558 aprint_error_dev(sc->sc_dev, "too much data\n"); 1559 return EINVAL; 1560 } 1561 1562 /* Prepare transfer mode register value. (2.2.5) */ 1563 mode = SDHC_BLOCK_COUNT_ENABLE; 1564 if (ISSET(cmd->c_flags, SCF_CMD_READ)) 1565 mode |= SDHC_READ_MODE; 1566 if (blkcount > 1) { 1567 mode |= SDHC_MULTI_BLOCK_MODE; 1568 /* XXX only for memory commands? */ 1569 mode |= SDHC_AUTO_CMD12_ENABLE; 1570 } 1571 if (cmd->c_dmamap != NULL && cmd->c_datalen > 0 && 1572 ISSET(hp->flags, SHF_MODE_DMAEN)) { 1573 mode |= SDHC_DMA_ENABLE; 1574 } 1575 1576 /* 1577 * Prepare command register value. (2.2.6) 1578 */ 1579 command = (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) << SDHC_COMMAND_INDEX_SHIFT; 1580 1581 if (ISSET(cmd->c_flags, SCF_RSP_CRC)) 1582 command |= SDHC_CRC_CHECK_ENABLE; 1583 if (ISSET(cmd->c_flags, SCF_RSP_IDX)) 1584 command |= SDHC_INDEX_CHECK_ENABLE; 1585 if (cmd->c_datalen > 0) 1586 command |= SDHC_DATA_PRESENT_SELECT; 1587 1588 if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT)) 1589 command |= SDHC_NO_RESPONSE; 1590 else if (ISSET(cmd->c_flags, SCF_RSP_136)) 1591 command |= SDHC_RESP_LEN_136; 1592 else if (ISSET(cmd->c_flags, SCF_RSP_BSY)) 1593 command |= SDHC_RESP_LEN_48_CHK_BUSY; 1594 else 1595 command |= SDHC_RESP_LEN_48; 1596 1597 /* Wait until command and optionally data inhibit bits are clear. (1.5) */ 1598 pmask = SDHC_CMD_INHIBIT_CMD; 1599 if (cmd->c_flags & (SCF_CMD_ADTC|SCF_RSP_BSY)) 1600 pmask |= SDHC_CMD_INHIBIT_DAT; 1601 error = sdhc_wait_state(hp, pmask, 0); 1602 if (error) { 1603 (void) sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD); 1604 device_printf(sc->sc_dev, "command or data phase inhibited\n"); 1605 return error; 1606 } 1607 1608 DPRINTF(1,("%s: writing cmd: blksize=%d blkcnt=%d mode=%04x cmd=%04x\n", 1609 HDEVNAME(hp), blksize, blkcount, mode, command)); 1610 1611 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) { 1612 blksize |= (MAX(0, PAGE_SHIFT - 12) & SDHC_DMA_BOUNDARY_MASK) << 1613 SDHC_DMA_BOUNDARY_SHIFT; /* PAGE_SIZE DMA boundary */ 1614 } 1615 1616 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) { 1617 /* Alert the user not to remove the card. */ 1618 HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON); 1619 } 1620 1621 /* Set DMA start address. */ 1622 if (ISSET(hp->flags, SHF_USE_ADMA2_MASK) && cmd->c_data != NULL) { 1623 for (int seg = 0; seg < cmd->c_dmamap->dm_nsegs; seg++) { 1624 bus_addr_t paddr = 1625 cmd->c_dmamap->dm_segs[seg].ds_addr; 1626 uint16_t len = 1627 cmd->c_dmamap->dm_segs[seg].ds_len == 65536 ? 1628 0 : cmd->c_dmamap->dm_segs[seg].ds_len; 1629 uint16_t attr = 1630 SDHC_ADMA2_VALID | SDHC_ADMA2_ACT_TRANS; 1631 if (seg == cmd->c_dmamap->dm_nsegs - 1) { 1632 attr |= SDHC_ADMA2_END; 1633 } 1634 if (ISSET(hp->flags, SHF_USE_ADMA2_32)) { 1635 struct sdhc_adma2_descriptor32 *desc = 1636 hp->adma2; 1637 desc[seg].attribute = htole16(attr); 1638 desc[seg].length = htole16(len); 1639 desc[seg].address = htole32(paddr); 1640 } else { 1641 struct sdhc_adma2_descriptor64 *desc = 1642 hp->adma2; 1643 desc[seg].attribute = htole16(attr); 1644 desc[seg].length = htole16(len); 1645 desc[seg].address = htole32(paddr & 0xffffffff); 1646 desc[seg].address_hi = htole32( 1647 (uint64_t)paddr >> 32); 1648 } 1649 } 1650 if (ISSET(hp->flags, SHF_USE_ADMA2_32)) { 1651 struct sdhc_adma2_descriptor32 *desc = hp->adma2; 1652 desc[cmd->c_dmamap->dm_nsegs].attribute = htole16(0); 1653 } else { 1654 struct sdhc_adma2_descriptor64 *desc = hp->adma2; 1655 desc[cmd->c_dmamap->dm_nsegs].attribute = htole16(0); 1656 } 1657 bus_dmamap_sync(sc->sc_dmat, hp->adma_map, 0, PAGE_SIZE, 1658 BUS_DMASYNC_PREWRITE); 1659 HCLR1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT); 1660 HSET1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT_ADMA2); 1661 1662 const bus_addr_t desc_addr = hp->adma_map->dm_segs[0].ds_addr; 1663 1664 HWRITE4(hp, SDHC_ADMA_SYSTEM_ADDR, desc_addr & 0xffffffff); 1665 if (ISSET(hp->flags, SHF_USE_ADMA2_64)) { 1666 HWRITE4(hp, SDHC_ADMA_SYSTEM_ADDR + 4, 1667 (uint64_t)desc_addr >> 32); 1668 } 1669 } else if (ISSET(mode, SDHC_DMA_ENABLE) && 1670 !ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA)) { 1671 HWRITE4(hp, SDHC_DMA_ADDR, cmd->c_dmamap->dm_segs[0].ds_addr); 1672 } 1673 1674 /* 1675 * Start a CPU data transfer. Writing to the high order byte 1676 * of the SDHC_COMMAND register triggers the SD command. (1.5) 1677 */ 1678 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) { 1679 HWRITE4(hp, SDHC_BLOCK_SIZE, blksize | (blkcount << 16)); 1680 HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg); 1681 HWRITE4(hp, SDHC_TRANSFER_MODE, mode | (command << 16)); 1682 } else { 1683 HWRITE2(hp, SDHC_BLOCK_SIZE, blksize); 1684 HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount); 1685 HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg); 1686 HWRITE2(hp, SDHC_TRANSFER_MODE, mode); 1687 HWRITE2(hp, SDHC_COMMAND, command); 1688 } 1689 1690 return 0; 1691 } 1692 1693 static void 1694 sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd) 1695 { 1696 struct sdhc_softc *sc = hp->sc; 1697 int error; 1698 1699 KASSERT(mutex_owned(&hp->intr_lock)); 1700 1701 DPRINTF(1,("%s: data transfer: resp=%08x datalen=%u\n", HDEVNAME(hp), 1702 MMC_R1(cmd->c_resp), cmd->c_datalen)); 1703 1704 #ifdef SDHC_DEBUG 1705 /* XXX I forgot why I wanted to know when this happens :-( */ 1706 if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) && 1707 ISSET(MMC_R1(cmd->c_resp), 0xcb00)) { 1708 aprint_error_dev(hp->sc->sc_dev, 1709 "CMD52/53 error response flags %#x\n", 1710 MMC_R1(cmd->c_resp) & 0xff00); 1711 } 1712 #endif 1713 1714 if (cmd->c_dmamap != NULL) { 1715 if (hp->sc->sc_vendor_transfer_data_dma != NULL) { 1716 error = hp->sc->sc_vendor_transfer_data_dma(sc, cmd); 1717 if (error == 0 && !sdhc_wait_intr(hp, 1718 SDHC_TRANSFER_COMPLETE, SDHC_DMA_TIMEOUT, false)) { 1719 DPRINTF(1,("%s: timeout\n", __func__)); 1720 error = ETIMEDOUT; 1721 } 1722 } else { 1723 error = sdhc_transfer_data_dma(hp, cmd); 1724 } 1725 } else 1726 error = sdhc_transfer_data_pio(hp, cmd); 1727 if (error) 1728 cmd->c_error = error; 1729 SET(cmd->c_flags, SCF_ITSDONE); 1730 1731 DPRINTF(1,("%s: data transfer done (error=%d)\n", 1732 HDEVNAME(hp), cmd->c_error)); 1733 } 1734 1735 static int 1736 sdhc_transfer_data_dma(struct sdhc_host *hp, struct sdmmc_command *cmd) 1737 { 1738 bus_dma_segment_t *dm_segs = cmd->c_dmamap->dm_segs; 1739 bus_addr_t posaddr; 1740 bus_addr_t segaddr; 1741 bus_size_t seglen; 1742 u_int seg = 0; 1743 int error = 0; 1744 int status; 1745 1746 KASSERT(mutex_owned(&hp->intr_lock)); 1747 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_DMA_INTERRUPT); 1748 KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_DMA_INTERRUPT); 1749 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE); 1750 KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE); 1751 1752 for (;;) { 1753 status = sdhc_wait_intr(hp, 1754 SDHC_DMA_INTERRUPT|SDHC_TRANSFER_COMPLETE, 1755 SDHC_DMA_TIMEOUT, false); 1756 1757 if (status & SDHC_TRANSFER_COMPLETE) { 1758 break; 1759 } 1760 if (!status) { 1761 DPRINTF(1,("%s: timeout\n", __func__)); 1762 error = ETIMEDOUT; 1763 break; 1764 } 1765 1766 if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) { 1767 continue; 1768 } 1769 1770 if ((status & SDHC_DMA_INTERRUPT) == 0) { 1771 continue; 1772 } 1773 1774 /* DMA Interrupt (boundary crossing) */ 1775 1776 segaddr = dm_segs[seg].ds_addr; 1777 seglen = dm_segs[seg].ds_len; 1778 posaddr = HREAD4(hp, SDHC_DMA_ADDR); 1779 1780 if ((seg == (cmd->c_dmamap->dm_nsegs-1)) && (posaddr == (segaddr + seglen))) { 1781 continue; 1782 } 1783 if ((posaddr >= segaddr) && (posaddr < (segaddr + seglen))) 1784 HWRITE4(hp, SDHC_DMA_ADDR, posaddr); 1785 else if ((posaddr >= segaddr) && (posaddr == (segaddr + seglen)) && (seg + 1) < cmd->c_dmamap->dm_nsegs) 1786 HWRITE4(hp, SDHC_DMA_ADDR, dm_segs[++seg].ds_addr); 1787 KASSERT(seg < cmd->c_dmamap->dm_nsegs); 1788 } 1789 1790 if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) { 1791 bus_dmamap_sync(hp->sc->sc_dmat, hp->adma_map, 0, 1792 PAGE_SIZE, BUS_DMASYNC_POSTWRITE); 1793 } 1794 1795 return error; 1796 } 1797 1798 static int 1799 sdhc_transfer_data_pio(struct sdhc_host *hp, struct sdmmc_command *cmd) 1800 { 1801 uint8_t *data = cmd->c_data; 1802 void (*pio_func)(struct sdhc_host *, uint8_t *, u_int); 1803 u_int len, datalen; 1804 u_int imask; 1805 u_int pmask; 1806 int error = 0; 1807 1808 KASSERT(mutex_owned(&hp->intr_lock)); 1809 1810 if (ISSET(cmd->c_flags, SCF_CMD_READ)) { 1811 imask = SDHC_BUFFER_READ_READY; 1812 pmask = SDHC_BUFFER_READ_ENABLE; 1813 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) { 1814 pio_func = esdhc_read_data_pio; 1815 } else { 1816 pio_func = sdhc_read_data_pio; 1817 } 1818 } else { 1819 imask = SDHC_BUFFER_WRITE_READY; 1820 pmask = SDHC_BUFFER_WRITE_ENABLE; 1821 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) { 1822 pio_func = esdhc_write_data_pio; 1823 } else { 1824 pio_func = sdhc_write_data_pio; 1825 } 1826 } 1827 datalen = cmd->c_datalen; 1828 1829 KASSERT(mutex_owned(&hp->intr_lock)); 1830 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & imask); 1831 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE); 1832 KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE); 1833 1834 while (datalen > 0) { 1835 if (!ISSET(HREAD4(hp, SDHC_PRESENT_STATE), imask)) { 1836 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) { 1837 HSET4(hp, SDHC_NINTR_SIGNAL_EN, imask); 1838 } else { 1839 HSET2(hp, SDHC_NINTR_SIGNAL_EN, imask); 1840 } 1841 if (!sdhc_wait_intr(hp, imask, SDHC_BUFFER_TIMEOUT, false)) { 1842 DPRINTF(1,("%s: timeout\n", __func__)); 1843 error = ETIMEDOUT; 1844 break; 1845 } 1846 1847 error = sdhc_wait_state(hp, pmask, pmask); 1848 if (error) 1849 break; 1850 } 1851 1852 len = MIN(datalen, cmd->c_blklen); 1853 (*pio_func)(hp, data, len); 1854 DPRINTF(2,("%s: pio data transfer %u @ %p\n", 1855 HDEVNAME(hp), len, data)); 1856 1857 data += len; 1858 datalen -= len; 1859 } 1860 1861 if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE, 1862 SDHC_TRANSFER_TIMEOUT, false)) { 1863 DPRINTF(1,("%s: timeout for transfer\n", __func__)); 1864 error = ETIMEDOUT; 1865 } 1866 1867 return error; 1868 } 1869 1870 static void 1871 sdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen) 1872 { 1873 1874 if (((__uintptr_t)data & 3) == 0) { 1875 while (datalen > 3) { 1876 *(uint32_t *)data = le32toh(HREAD4(hp, SDHC_DATA)); 1877 data += 4; 1878 datalen -= 4; 1879 } 1880 if (datalen > 1) { 1881 *(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA)); 1882 data += 2; 1883 datalen -= 2; 1884 } 1885 if (datalen > 0) { 1886 *data = HREAD1(hp, SDHC_DATA); 1887 data += 1; 1888 datalen -= 1; 1889 } 1890 } else if (((__uintptr_t)data & 1) == 0) { 1891 while (datalen > 1) { 1892 *(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA)); 1893 data += 2; 1894 datalen -= 2; 1895 } 1896 if (datalen > 0) { 1897 *data = HREAD1(hp, SDHC_DATA); 1898 data += 1; 1899 datalen -= 1; 1900 } 1901 } else { 1902 while (datalen > 0) { 1903 *data = HREAD1(hp, SDHC_DATA); 1904 data += 1; 1905 datalen -= 1; 1906 } 1907 } 1908 } 1909 1910 static void 1911 sdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen) 1912 { 1913 1914 if (((__uintptr_t)data & 3) == 0) { 1915 while (datalen > 3) { 1916 HWRITE4(hp, SDHC_DATA, htole32(*(uint32_t *)data)); 1917 data += 4; 1918 datalen -= 4; 1919 } 1920 if (datalen > 1) { 1921 HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data)); 1922 data += 2; 1923 datalen -= 2; 1924 } 1925 if (datalen > 0) { 1926 HWRITE1(hp, SDHC_DATA, *data); 1927 data += 1; 1928 datalen -= 1; 1929 } 1930 } else if (((__uintptr_t)data & 1) == 0) { 1931 while (datalen > 1) { 1932 HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data)); 1933 data += 2; 1934 datalen -= 2; 1935 } 1936 if (datalen > 0) { 1937 HWRITE1(hp, SDHC_DATA, *data); 1938 data += 1; 1939 datalen -= 1; 1940 } 1941 } else { 1942 while (datalen > 0) { 1943 HWRITE1(hp, SDHC_DATA, *data); 1944 data += 1; 1945 datalen -= 1; 1946 } 1947 } 1948 } 1949 1950 static void 1951 esdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen) 1952 { 1953 uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS); 1954 uint32_t v; 1955 1956 const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_READ_SHIFT) & SDHC_WATERMARK_READ_MASK; 1957 size_t count = 0; 1958 1959 while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) { 1960 if (count == 0) { 1961 /* 1962 * If we've drained "watermark" words, we need to wait 1963 * a little bit so the read FIFO can refill. 1964 */ 1965 sdmmc_delay(10); 1966 count = watermark; 1967 } 1968 v = HREAD4(hp, SDHC_DATA); 1969 v = le32toh(v); 1970 *(uint32_t *)data = v; 1971 data += 4; 1972 datalen -= 4; 1973 status = HREAD2(hp, SDHC_NINTR_STATUS); 1974 count--; 1975 } 1976 if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) { 1977 if (count == 0) { 1978 sdmmc_delay(10); 1979 } 1980 v = HREAD4(hp, SDHC_DATA); 1981 v = le32toh(v); 1982 do { 1983 *data++ = v; 1984 v >>= 8; 1985 } while (--datalen > 0); 1986 } 1987 } 1988 1989 static void 1990 esdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen) 1991 { 1992 uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS); 1993 uint32_t v; 1994 1995 const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_WRITE_SHIFT) & SDHC_WATERMARK_WRITE_MASK; 1996 size_t count = watermark; 1997 1998 while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) { 1999 if (count == 0) { 2000 sdmmc_delay(10); 2001 count = watermark; 2002 } 2003 v = *(uint32_t *)data; 2004 v = htole32(v); 2005 HWRITE4(hp, SDHC_DATA, v); 2006 data += 4; 2007 datalen -= 4; 2008 status = HREAD2(hp, SDHC_NINTR_STATUS); 2009 count--; 2010 } 2011 if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) { 2012 if (count == 0) { 2013 sdmmc_delay(10); 2014 } 2015 v = *(uint32_t *)data; 2016 v = htole32(v); 2017 HWRITE4(hp, SDHC_DATA, v); 2018 } 2019 } 2020 2021 /* Prepare for another command. */ 2022 static int 2023 sdhc_soft_reset(struct sdhc_host *hp, int mask) 2024 { 2025 int timo; 2026 2027 KASSERT(mutex_owned(&hp->intr_lock)); 2028 2029 DPRINTF(1,("%s: software reset reg=%08x\n", HDEVNAME(hp), mask)); 2030 2031 /* Request the reset. */ 2032 HWRITE1(hp, SDHC_SOFTWARE_RESET, mask); 2033 2034 /* 2035 * If necessary, wait for the controller to set the bits to 2036 * acknowledge the reset. 2037 */ 2038 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_WAIT_RESET) && 2039 ISSET(mask, (SDHC_RESET_DAT | SDHC_RESET_CMD))) { 2040 for (timo = 10000; timo > 0; timo--) { 2041 if (ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask)) 2042 break; 2043 /* Short delay because I worry we may miss it... */ 2044 sdmmc_delay(1); 2045 } 2046 if (timo == 0) { 2047 DPRINTF(1,("%s: timeout for reset on\n", __func__)); 2048 return ETIMEDOUT; 2049 } 2050 } 2051 2052 /* 2053 * Wait for the controller to clear the bits to indicate that 2054 * the reset has completed. 2055 */ 2056 for (timo = 10; timo > 0; timo--) { 2057 if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask)) 2058 break; 2059 sdmmc_delay(10000); 2060 } 2061 if (timo == 0) { 2062 DPRINTF(1,("%s: timeout reg=%08x\n", HDEVNAME(hp), 2063 HREAD1(hp, SDHC_SOFTWARE_RESET))); 2064 return ETIMEDOUT; 2065 } 2066 2067 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) { 2068 HSET4(hp, SDHC_DMA_CTL, SDHC_DMA_SNOOP); 2069 } 2070 2071 return 0; 2072 } 2073 2074 static int 2075 sdhc_wait_intr(struct sdhc_host *hp, int mask, int timo, bool probing) 2076 { 2077 int status, error, nointr; 2078 2079 KASSERT(mutex_owned(&hp->intr_lock)); 2080 2081 mask |= SDHC_ERROR_INTERRUPT; 2082 2083 nointr = 0; 2084 status = hp->intr_status & mask; 2085 while (status == 0) { 2086 if (cv_timedwait(&hp->intr_cv, &hp->intr_lock, timo) 2087 == EWOULDBLOCK) { 2088 nointr = 1; 2089 break; 2090 } 2091 status = hp->intr_status & mask; 2092 } 2093 error = hp->intr_error_status; 2094 2095 DPRINTF(2,("%s: intr status %#x error %#x\n", HDEVNAME(hp), status, 2096 error)); 2097 2098 hp->intr_status &= ~status; 2099 hp->intr_error_status &= ~error; 2100 2101 if (ISSET(status, SDHC_ERROR_INTERRUPT)) { 2102 if (ISSET(error, SDHC_DMA_ERROR)) 2103 device_printf(hp->sc->sc_dev,"dma error\n"); 2104 if (ISSET(error, SDHC_ADMA_ERROR)) 2105 device_printf(hp->sc->sc_dev,"adma error\n"); 2106 if (ISSET(error, SDHC_AUTO_CMD12_ERROR)) 2107 device_printf(hp->sc->sc_dev,"auto_cmd12 error\n"); 2108 if (ISSET(error, SDHC_CURRENT_LIMIT_ERROR)) 2109 device_printf(hp->sc->sc_dev,"current limit error\n"); 2110 if (ISSET(error, SDHC_DATA_END_BIT_ERROR)) 2111 device_printf(hp->sc->sc_dev,"data end bit error\n"); 2112 if (ISSET(error, SDHC_DATA_CRC_ERROR)) 2113 device_printf(hp->sc->sc_dev,"data crc error\n"); 2114 if (ISSET(error, SDHC_DATA_TIMEOUT_ERROR)) 2115 device_printf(hp->sc->sc_dev,"data timeout error\n"); 2116 if (ISSET(error, SDHC_CMD_INDEX_ERROR)) 2117 device_printf(hp->sc->sc_dev,"cmd index error\n"); 2118 if (ISSET(error, SDHC_CMD_END_BIT_ERROR)) 2119 device_printf(hp->sc->sc_dev,"cmd end bit error\n"); 2120 if (ISSET(error, SDHC_CMD_CRC_ERROR)) 2121 device_printf(hp->sc->sc_dev,"cmd crc error\n"); 2122 if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR)) { 2123 if (!probing) 2124 device_printf(hp->sc->sc_dev,"cmd timeout error\n"); 2125 #ifdef SDHC_DEBUG 2126 else if (sdhcdebug > 0) 2127 device_printf(hp->sc->sc_dev,"cmd timeout (expected)\n"); 2128 #endif 2129 } 2130 if ((error & ~SDHC_EINTR_STATUS_MASK) != 0) 2131 device_printf(hp->sc->sc_dev,"vendor error %#x\n", 2132 (error & ~SDHC_EINTR_STATUS_MASK)); 2133 if (error == 0) 2134 device_printf(hp->sc->sc_dev,"no error\n"); 2135 2136 /* Command timeout has higher priority than command complete. */ 2137 if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR)) 2138 CLR(status, SDHC_COMMAND_COMPLETE); 2139 2140 /* Transfer complete has higher priority than data timeout. */ 2141 if (ISSET(status, SDHC_TRANSFER_COMPLETE)) 2142 CLR(error, SDHC_DATA_TIMEOUT_ERROR); 2143 } 2144 2145 if (nointr || 2146 (ISSET(status, SDHC_ERROR_INTERRUPT) && error)) { 2147 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) 2148 (void)sdhc_soft_reset(hp, SDHC_RESET_CMD|SDHC_RESET_DAT); 2149 hp->intr_error_status = 0; 2150 status = 0; 2151 } 2152 2153 return status; 2154 } 2155 2156 /* 2157 * Established by attachment driver at interrupt priority IPL_SDMMC. 2158 */ 2159 int 2160 sdhc_intr(void *arg) 2161 { 2162 struct sdhc_softc *sc = (struct sdhc_softc *)arg; 2163 struct sdhc_host *hp; 2164 int done = 0; 2165 uint16_t status; 2166 uint16_t error; 2167 2168 /* We got an interrupt, but we don't know from which slot. */ 2169 for (size_t host = 0; host < sc->sc_nhosts; host++) { 2170 hp = sc->sc_host[host]; 2171 if (hp == NULL) 2172 continue; 2173 2174 mutex_enter(&hp->intr_lock); 2175 2176 if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) { 2177 /* Find out which interrupts are pending. */ 2178 uint32_t xstatus = HREAD4(hp, SDHC_NINTR_STATUS); 2179 status = xstatus; 2180 error = xstatus >> 16; 2181 if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) { 2182 if ((error & SDHC_NINTR_STATUS_MASK) != 0) 2183 SET(status, SDHC_ERROR_INTERRUPT); 2184 } 2185 if (error) 2186 xstatus |= SDHC_ERROR_INTERRUPT; 2187 else if (!ISSET(status, SDHC_NINTR_STATUS_MASK)) 2188 goto next_port; /* no interrupt for us */ 2189 /* Acknowledge the interrupts we are about to handle. */ 2190 HWRITE4(hp, SDHC_NINTR_STATUS, xstatus); 2191 } else { 2192 /* Find out which interrupts are pending. */ 2193 error = 0; 2194 status = HREAD2(hp, SDHC_NINTR_STATUS); 2195 if (!ISSET(status, SDHC_NINTR_STATUS_MASK)) 2196 goto next_port; /* no interrupt for us */ 2197 /* Acknowledge the interrupts we are about to handle. */ 2198 HWRITE2(hp, SDHC_NINTR_STATUS, status); 2199 if (ISSET(status, SDHC_ERROR_INTERRUPT)) { 2200 /* Acknowledge error interrupts. */ 2201 error = HREAD2(hp, SDHC_EINTR_STATUS); 2202 HWRITE2(hp, SDHC_EINTR_STATUS, error); 2203 } 2204 } 2205 2206 DPRINTF(2,("%s: interrupt status=%x error=%x\n", HDEVNAME(hp), 2207 status, error)); 2208 2209 /* Claim this interrupt. */ 2210 done = 1; 2211 2212 if (ISSET(status, SDHC_ERROR_INTERRUPT) && 2213 ISSET(error, SDHC_ADMA_ERROR)) { 2214 uint8_t adma_err = HREAD1(hp, SDHC_ADMA_ERROR_STATUS); 2215 printf("%s: ADMA error, status %02x\n", HDEVNAME(hp), 2216 adma_err); 2217 } 2218 2219 /* 2220 * Wake up the sdmmc event thread to scan for cards. 2221 */ 2222 if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)) { 2223 if (hp->sdmmc != NULL) { 2224 sdmmc_needs_discover(hp->sdmmc); 2225 } 2226 if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) { 2227 HCLR4(hp, SDHC_NINTR_STATUS_EN, 2228 status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)); 2229 HCLR4(hp, SDHC_NINTR_SIGNAL_EN, 2230 status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)); 2231 } 2232 } 2233 2234 /* 2235 * Schedule re-tuning process (UHS). 2236 */ 2237 if (ISSET(status, SDHC_RETUNING_EVENT)) { 2238 atomic_swap_uint(&hp->tuning_timer_pending, 1); 2239 } 2240 2241 /* 2242 * Wake up the blocking process to service command 2243 * related interrupt(s). 2244 */ 2245 if (ISSET(status, SDHC_COMMAND_COMPLETE|SDHC_ERROR_INTERRUPT| 2246 SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY| 2247 SDHC_TRANSFER_COMPLETE|SDHC_DMA_INTERRUPT)) { 2248 hp->intr_error_status |= error; 2249 hp->intr_status |= status; 2250 if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) { 2251 HCLR4(hp, SDHC_NINTR_SIGNAL_EN, 2252 status & (SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY)); 2253 } 2254 cv_broadcast(&hp->intr_cv); 2255 } 2256 2257 /* 2258 * Service SD card interrupts. 2259 */ 2260 if (!ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED) 2261 && ISSET(status, SDHC_CARD_INTERRUPT)) { 2262 DPRINTF(0,("%s: card interrupt\n", HDEVNAME(hp))); 2263 HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT); 2264 sdmmc_card_intr(hp->sdmmc); 2265 } 2266 next_port: 2267 mutex_exit(&hp->intr_lock); 2268 } 2269 2270 return done; 2271 } 2272 2273 kmutex_t * 2274 sdhc_host_lock(struct sdhc_host *hp) 2275 { 2276 return &hp->intr_lock; 2277 } 2278 2279 #ifdef SDHC_DEBUG 2280 void 2281 sdhc_dump_regs(struct sdhc_host *hp) 2282 { 2283 2284 printf("0x%02x PRESENT_STATE: %x\n", SDHC_PRESENT_STATE, 2285 HREAD4(hp, SDHC_PRESENT_STATE)); 2286 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) 2287 printf("0x%02x POWER_CTL: %x\n", SDHC_POWER_CTL, 2288 HREAD1(hp, SDHC_POWER_CTL)); 2289 printf("0x%02x NINTR_STATUS: %x\n", SDHC_NINTR_STATUS, 2290 HREAD2(hp, SDHC_NINTR_STATUS)); 2291 printf("0x%02x EINTR_STATUS: %x\n", SDHC_EINTR_STATUS, 2292 HREAD2(hp, SDHC_EINTR_STATUS)); 2293 printf("0x%02x NINTR_STATUS_EN: %x\n", SDHC_NINTR_STATUS_EN, 2294 HREAD2(hp, SDHC_NINTR_STATUS_EN)); 2295 printf("0x%02x EINTR_STATUS_EN: %x\n", SDHC_EINTR_STATUS_EN, 2296 HREAD2(hp, SDHC_EINTR_STATUS_EN)); 2297 printf("0x%02x NINTR_SIGNAL_EN: %x\n", SDHC_NINTR_SIGNAL_EN, 2298 HREAD2(hp, SDHC_NINTR_SIGNAL_EN)); 2299 printf("0x%02x EINTR_SIGNAL_EN: %x\n", SDHC_EINTR_SIGNAL_EN, 2300 HREAD2(hp, SDHC_EINTR_SIGNAL_EN)); 2301 printf("0x%02x CAPABILITIES: %x\n", SDHC_CAPABILITIES, 2302 HREAD4(hp, SDHC_CAPABILITIES)); 2303 printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES, 2304 HREAD4(hp, SDHC_MAX_CAPABILITIES)); 2305 } 2306 #endif 2307