1 /* $NetBSD: sdhc.c,v 1.108 2021/03/13 23:26:47 mlelstv Exp $ */ 2 /* $OpenBSD: sdhc.c,v 1.25 2009/01/13 19:44:20 grange Exp $ */ 3 4 /* 5 * Copyright (c) 2006 Uwe Stuehler <uwe@openbsd.org> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 /* 21 * SD Host Controller driver based on the SD Host Controller Standard 22 * Simplified Specification Version 1.00 (www.sdcard.com). 23 */ 24 25 #include <sys/cdefs.h> 26 __KERNEL_RCSID(0, "$NetBSD: sdhc.c,v 1.108 2021/03/13 23:26:47 mlelstv Exp $"); 27 28 #ifdef _KERNEL_OPT 29 #include "opt_sdmmc.h" 30 #endif 31 32 #include <sys/param.h> 33 #include <sys/device.h> 34 #include <sys/kernel.h> 35 #include <sys/malloc.h> 36 #include <sys/systm.h> 37 #include <sys/mutex.h> 38 #include <sys/condvar.h> 39 #include <sys/atomic.h> 40 41 #include <dev/sdmmc/sdhcreg.h> 42 #include <dev/sdmmc/sdhcvar.h> 43 #include <dev/sdmmc/sdmmcchip.h> 44 #include <dev/sdmmc/sdmmcreg.h> 45 #include <dev/sdmmc/sdmmcvar.h> 46 47 #ifdef SDHC_DEBUG 48 int sdhcdebug = 1; 49 #define DPRINTF(n,s) do { if ((n) <= sdhcdebug) printf s; } while (0) 50 void sdhc_dump_regs(struct sdhc_host *); 51 #else 52 #define DPRINTF(n,s) do {} while (0) 53 #endif 54 55 #define SDHC_COMMAND_TIMEOUT hz 56 #define SDHC_BUFFER_TIMEOUT hz 57 #define SDHC_TRANSFER_TIMEOUT hz 58 #define SDHC_DMA_TIMEOUT (hz*3) 59 #define SDHC_TUNING_TIMEOUT hz 60 61 struct sdhc_host { 62 struct sdhc_softc *sc; /* host controller device */ 63 64 bus_space_tag_t iot; /* host register set tag */ 65 bus_space_handle_t ioh; /* host register set handle */ 66 bus_size_t ios; /* host register space size */ 67 bus_dma_tag_t dmat; /* host DMA tag */ 68 69 device_t sdmmc; /* generic SD/MMC device */ 70 71 u_int clkbase; /* base clock frequency in KHz */ 72 int maxblklen; /* maximum block length */ 73 uint32_t ocr; /* OCR value from capabilities */ 74 75 uint8_t regs[14]; /* host controller state */ 76 77 uint16_t intr_status; /* soft interrupt status */ 78 uint16_t intr_error_status; /* soft error status */ 79 kmutex_t intr_lock; 80 kcondvar_t intr_cv; 81 82 callout_t tuning_timer; 83 int tuning_timing; 84 u_int tuning_timer_count; 85 u_int tuning_timer_pending; 86 87 int specver; /* spec. version */ 88 89 uint32_t flags; /* flags for this host */ 90 #define SHF_USE_DMA 0x0001 91 #define SHF_USE_4BIT_MODE 0x0002 92 #define SHF_USE_8BIT_MODE 0x0004 93 #define SHF_MODE_DMAEN 0x0008 /* needs SDHC_DMA_ENABLE in mode */ 94 #define SHF_USE_ADMA2_32 0x0010 95 #define SHF_USE_ADMA2_64 0x0020 96 #define SHF_USE_ADMA2_MASK 0x0030 97 98 bus_dmamap_t adma_map; 99 bus_dma_segment_t adma_segs[1]; 100 void *adma2; 101 102 uint8_t vdd; /* last vdd setting */ 103 }; 104 105 #define HDEVNAME(hp) (device_xname((hp)->sc->sc_dev)) 106 107 static uint8_t 108 hread1(struct sdhc_host *hp, bus_size_t reg) 109 { 110 111 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) 112 return bus_space_read_1(hp->iot, hp->ioh, reg); 113 return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 3)); 114 } 115 116 static uint16_t 117 hread2(struct sdhc_host *hp, bus_size_t reg) 118 { 119 120 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) 121 return bus_space_read_2(hp->iot, hp->ioh, reg); 122 return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 2)); 123 } 124 125 #define HREAD1(hp, reg) hread1(hp, reg) 126 #define HREAD2(hp, reg) hread2(hp, reg) 127 #define HREAD4(hp, reg) \ 128 (bus_space_read_4((hp)->iot, (hp)->ioh, (reg))) 129 130 131 static void 132 hwrite1(struct sdhc_host *hp, bus_size_t o, uint8_t val) 133 { 134 135 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) { 136 bus_space_write_1(hp->iot, hp->ioh, o, val); 137 } else { 138 const size_t shift = 8 * (o & 3); 139 o &= -4; 140 uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o); 141 tmp = (val << shift) | (tmp & ~(0xff << shift)); 142 bus_space_write_4(hp->iot, hp->ioh, o, tmp); 143 } 144 } 145 146 static void 147 hwrite2(struct sdhc_host *hp, bus_size_t o, uint16_t val) 148 { 149 150 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) { 151 bus_space_write_2(hp->iot, hp->ioh, o, val); 152 } else { 153 const size_t shift = 8 * (o & 2); 154 o &= -4; 155 uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o); 156 tmp = (val << shift) | (tmp & ~(0xffff << shift)); 157 bus_space_write_4(hp->iot, hp->ioh, o, tmp); 158 } 159 } 160 161 static void 162 hwrite4(struct sdhc_host *hp, bus_size_t o, uint32_t val) 163 { 164 165 bus_space_write_4(hp->iot, hp->ioh, o, val); 166 } 167 168 #define HWRITE1(hp, reg, val) hwrite1(hp, reg, val) 169 #define HWRITE2(hp, reg, val) hwrite2(hp, reg, val) 170 #define HWRITE4(hp, reg, val) hwrite4(hp, reg, val) 171 172 #define HCLR1(hp, reg, bits) \ 173 do if ((bits) != 0) HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits)); while (0) 174 #define HCLR2(hp, reg, bits) \ 175 do if ((bits) != 0) HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits)); while (0) 176 #define HCLR4(hp, reg, bits) \ 177 do if ((bits) != 0) HWRITE4((hp), (reg), HREAD4((hp), (reg)) & ~(bits)); while (0) 178 #define HSET1(hp, reg, bits) \ 179 do if ((bits) != 0) HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits)); while (0) 180 #define HSET2(hp, reg, bits) \ 181 do if ((bits) != 0) HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits)); while (0) 182 #define HSET4(hp, reg, bits) \ 183 do if ((bits) != 0) HWRITE4((hp), (reg), HREAD4((hp), (reg)) | (bits)); while (0) 184 185 static int sdhc_host_reset(sdmmc_chipset_handle_t); 186 static int sdhc_host_reset1(sdmmc_chipset_handle_t); 187 static uint32_t sdhc_host_ocr(sdmmc_chipset_handle_t); 188 static int sdhc_host_maxblklen(sdmmc_chipset_handle_t); 189 static int sdhc_card_detect(sdmmc_chipset_handle_t); 190 static int sdhc_write_protect(sdmmc_chipset_handle_t); 191 static int sdhc_bus_power(sdmmc_chipset_handle_t, uint32_t); 192 static int sdhc_bus_clock_ddr(sdmmc_chipset_handle_t, int, bool); 193 static int sdhc_bus_width(sdmmc_chipset_handle_t, int); 194 static int sdhc_bus_rod(sdmmc_chipset_handle_t, int); 195 static void sdhc_card_enable_intr(sdmmc_chipset_handle_t, int); 196 static void sdhc_card_intr_ack(sdmmc_chipset_handle_t); 197 static void sdhc_exec_command(sdmmc_chipset_handle_t, 198 struct sdmmc_command *); 199 static int sdhc_signal_voltage(sdmmc_chipset_handle_t, int); 200 static int sdhc_execute_tuning1(struct sdhc_host *, int); 201 static int sdhc_execute_tuning(sdmmc_chipset_handle_t, int); 202 static void sdhc_tuning_timer(void *); 203 static void sdhc_hw_reset(sdmmc_chipset_handle_t); 204 static int sdhc_start_command(struct sdhc_host *, struct sdmmc_command *); 205 static int sdhc_wait_state(struct sdhc_host *, uint32_t, uint32_t); 206 static int sdhc_soft_reset(struct sdhc_host *, int); 207 static int sdhc_wait_intr(struct sdhc_host *, int, int, bool); 208 static void sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *); 209 static int sdhc_transfer_data_dma(struct sdhc_host *, struct sdmmc_command *); 210 static int sdhc_transfer_data_pio(struct sdhc_host *, struct sdmmc_command *); 211 static void sdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int); 212 static void sdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int); 213 static void esdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int); 214 static void esdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int); 215 216 static struct sdmmc_chip_functions sdhc_functions = { 217 /* host controller reset */ 218 .host_reset = sdhc_host_reset, 219 220 /* host controller capabilities */ 221 .host_ocr = sdhc_host_ocr, 222 .host_maxblklen = sdhc_host_maxblklen, 223 224 /* card detection */ 225 .card_detect = sdhc_card_detect, 226 227 /* write protect */ 228 .write_protect = sdhc_write_protect, 229 230 /* bus power, clock frequency, width and ROD(OpenDrain/PushPull) */ 231 .bus_power = sdhc_bus_power, 232 .bus_clock = NULL, /* see sdhc_bus_clock_ddr */ 233 .bus_width = sdhc_bus_width, 234 .bus_rod = sdhc_bus_rod, 235 236 /* command execution */ 237 .exec_command = sdhc_exec_command, 238 239 /* card interrupt */ 240 .card_enable_intr = sdhc_card_enable_intr, 241 .card_intr_ack = sdhc_card_intr_ack, 242 243 /* UHS functions */ 244 .signal_voltage = sdhc_signal_voltage, 245 .bus_clock_ddr = sdhc_bus_clock_ddr, 246 .execute_tuning = sdhc_execute_tuning, 247 .hw_reset = sdhc_hw_reset, 248 }; 249 250 static int 251 sdhc_cfprint(void *aux, const char *pnp) 252 { 253 const struct sdmmcbus_attach_args * const saa = aux; 254 const struct sdhc_host * const hp = saa->saa_sch; 255 256 if (pnp) { 257 aprint_normal("sdmmc at %s", pnp); 258 } 259 for (size_t host = 0; host < hp->sc->sc_nhosts; host++) { 260 if (hp->sc->sc_host[host] == hp) { 261 aprint_normal(" slot %zu", host); 262 } 263 } 264 265 return UNCONF; 266 } 267 268 /* 269 * Called by attachment driver. For each SD card slot there is one SD 270 * host controller standard register set. (1.3) 271 */ 272 int 273 sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot, 274 bus_space_handle_t ioh, bus_size_t iosize) 275 { 276 struct sdmmcbus_attach_args saa; 277 struct sdhc_host *hp; 278 uint32_t caps, caps2; 279 uint16_t sdhcver; 280 int error; 281 282 /* Allocate one more host structure. */ 283 hp = malloc(sizeof(struct sdhc_host), M_DEVBUF, M_WAITOK|M_ZERO); 284 if (hp == NULL) { 285 aprint_error_dev(sc->sc_dev, 286 "couldn't alloc memory (sdhc host)\n"); 287 goto err1; 288 } 289 sc->sc_host[sc->sc_nhosts++] = hp; 290 291 /* Fill in the new host structure. */ 292 hp->sc = sc; 293 hp->iot = iot; 294 hp->ioh = ioh; 295 hp->ios = iosize; 296 hp->dmat = sc->sc_dmat; 297 298 mutex_init(&hp->intr_lock, MUTEX_DEFAULT, IPL_SDMMC); 299 cv_init(&hp->intr_cv, "sdhcintr"); 300 callout_init(&hp->tuning_timer, CALLOUT_MPSAFE); 301 callout_setfunc(&hp->tuning_timer, sdhc_tuning_timer, hp); 302 303 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) { 304 sdhcver = SDHC_SPEC_VERS_300 << SDHC_SPEC_VERS_SHIFT; 305 } else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) { 306 sdhcver = HREAD4(hp, SDHC_ESDHC_HOST_CTL_VERSION); 307 } else if (iosize <= SDHC_HOST_CTL_VERSION) { 308 sdhcver = SDHC_SPEC_NOVERS << SDHC_SPEC_VERS_SHIFT; 309 } else { 310 sdhcver = HREAD2(hp, SDHC_HOST_CTL_VERSION); 311 } 312 aprint_normal_dev(sc->sc_dev, "SDHC "); 313 hp->specver = SDHC_SPEC_VERSION(sdhcver); 314 switch (SDHC_SPEC_VERSION(sdhcver)) { 315 case SDHC_SPEC_VERS_100: 316 aprint_normal("1.0"); 317 break; 318 case SDHC_SPEC_VERS_200: 319 aprint_normal("2.0"); 320 break; 321 case SDHC_SPEC_VERS_300: 322 aprint_normal("3.0"); 323 break; 324 case SDHC_SPEC_VERS_400: 325 aprint_normal("4.0"); 326 break; 327 case SDHC_SPEC_VERS_410: 328 aprint_normal("4.1"); 329 break; 330 case SDHC_SPEC_VERS_420: 331 aprint_normal("4.2"); 332 break; 333 case SDHC_SPEC_NOVERS: 334 hp->specver = -1; 335 aprint_normal("NO-VERS"); 336 break; 337 default: 338 aprint_normal("unknown version(0x%x)", 339 SDHC_SPEC_VERSION(sdhcver)); 340 break; 341 } 342 if (SDHC_SPEC_VERSION(sdhcver) != SDHC_SPEC_NOVERS) 343 aprint_normal(", rev %u", SDHC_VENDOR_VERSION(sdhcver)); 344 345 /* 346 * Reset the host controller and enable interrupts. 347 */ 348 (void)sdhc_host_reset(hp); 349 350 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) { 351 /* init uSDHC registers */ 352 HWRITE4(hp, SDHC_MMC_BOOT, 0); 353 HWRITE4(hp, SDHC_HOST_CTL, SDHC_USDHC_BURST_LEN_EN | 354 SDHC_USDHC_HOST_CTL_RESV23 | SDHC_USDHC_EMODE_LE); 355 HWRITE4(hp, SDHC_WATERMARK_LEVEL, 356 (0x10 << SDHC_WATERMARK_WR_BRST_SHIFT) | 357 (0x40 << SDHC_WATERMARK_WRITE_SHIFT) | 358 (0x10 << SDHC_WATERMARK_RD_BRST_SHIFT) | 359 (0x40 << SDHC_WATERMARK_READ_SHIFT)); 360 HSET4(hp, SDHC_VEND_SPEC, 361 SDHC_VEND_SPEC_MBO | 362 SDHC_VEND_SPEC_CARD_CLK_SOFT_EN | 363 SDHC_VEND_SPEC_IPG_PERCLK_SOFT_EN | 364 SDHC_VEND_SPEC_HCLK_SOFT_EN | 365 SDHC_VEND_SPEC_IPG_CLK_SOFT_EN | 366 SDHC_VEND_SPEC_AC12_WR_CHKBUSY_EN | 367 SDHC_VEND_SPEC_FRC_SDCLK_ON); 368 } 369 370 /* Determine host capabilities. */ 371 if (ISSET(sc->sc_flags, SDHC_FLAG_HOSTCAPS)) { 372 caps = sc->sc_caps; 373 caps2 = sc->sc_caps2; 374 } else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) { 375 /* uSDHC capability register is little bit different */ 376 caps = HREAD4(hp, SDHC_CAPABILITIES); 377 caps |= SDHC_8BIT_SUPP; 378 if (caps & SDHC_ADMA1_SUPP) 379 caps |= SDHC_ADMA2_SUPP; 380 sc->sc_caps = caps; 381 /* uSDHC has no SDHC_CAPABILITIES2 register */ 382 caps2 = sc->sc_caps2 = SDHC_SDR50_SUPP | SDHC_DDR50_SUPP; 383 } else { 384 caps = sc->sc_caps = HREAD4(hp, SDHC_CAPABILITIES); 385 if (hp->specver >= SDHC_SPEC_VERS_300) { 386 caps2 = sc->sc_caps2 = HREAD4(hp, SDHC_CAPABILITIES2); 387 } else { 388 caps2 = sc->sc_caps2 = 0; 389 } 390 } 391 392 aprint_verbose(", caps <%08x/%08x>", caps, caps2); 393 394 const u_int retuning_mode = (caps2 >> SDHC_RETUNING_MODES_SHIFT) & 395 SDHC_RETUNING_MODES_MASK; 396 if (retuning_mode == SDHC_RETUNING_MODE_1) { 397 hp->tuning_timer_count = (caps2 >> SDHC_TIMER_COUNT_SHIFT) & 398 SDHC_TIMER_COUNT_MASK; 399 if (hp->tuning_timer_count == 0xf) 400 hp->tuning_timer_count = 0; 401 if (hp->tuning_timer_count) 402 hp->tuning_timer_count = 403 1 << (hp->tuning_timer_count - 1); 404 } 405 406 /* 407 * Use DMA if the host system and the controller support it. 408 * Suports integrated or external DMA egine, with or without 409 * SDHC_DMA_ENABLE in the command. 410 */ 411 if (ISSET(sc->sc_flags, SDHC_FLAG_FORCE_DMA) || 412 (ISSET(sc->sc_flags, SDHC_FLAG_USE_DMA && 413 ISSET(caps, SDHC_DMA_SUPPORT)))) { 414 SET(hp->flags, SHF_USE_DMA); 415 416 if (ISSET(sc->sc_flags, SDHC_FLAG_USE_ADMA2) && 417 ISSET(caps, SDHC_ADMA2_SUPP)) { 418 SET(hp->flags, SHF_MODE_DMAEN); 419 /* 420 * 64-bit mode was present in the 2.00 spec, removed 421 * from 3.00, and re-added in 4.00 with a different 422 * descriptor layout. We only support 2.00 and 3.00 423 * descriptors for now. 424 */ 425 if (hp->specver == SDHC_SPEC_VERS_200 && 426 ISSET(caps, SDHC_64BIT_SYS_BUS)) { 427 SET(hp->flags, SHF_USE_ADMA2_64); 428 aprint_normal(", 64-bit ADMA2"); 429 } else { 430 SET(hp->flags, SHF_USE_ADMA2_32); 431 aprint_normal(", 32-bit ADMA2"); 432 } 433 } else { 434 if (!ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA) || 435 ISSET(sc->sc_flags, SDHC_FLAG_EXTDMA_DMAEN)) 436 SET(hp->flags, SHF_MODE_DMAEN); 437 if (sc->sc_vendor_transfer_data_dma) { 438 aprint_normal(", platform DMA"); 439 } else { 440 aprint_normal(", SDMA"); 441 } 442 } 443 } else { 444 aprint_normal(", PIO"); 445 } 446 447 /* 448 * Determine the base clock frequency. (2.2.24) 449 */ 450 if (hp->specver >= SDHC_SPEC_VERS_300) { 451 hp->clkbase = SDHC_BASE_V3_FREQ_KHZ(caps); 452 } else { 453 hp->clkbase = SDHC_BASE_FREQ_KHZ(caps); 454 } 455 if (hp->clkbase == 0 || 456 ISSET(sc->sc_flags, SDHC_FLAG_NO_CLKBASE)) { 457 if (sc->sc_clkbase == 0) { 458 /* The attachment driver must tell us. */ 459 aprint_error_dev(sc->sc_dev, 460 "unknown base clock frequency\n"); 461 goto err; 462 } 463 hp->clkbase = sc->sc_clkbase; 464 } 465 if (hp->clkbase < 10000 || hp->clkbase > 10000 * 256) { 466 /* SDHC 1.0 supports only 10-63 MHz. */ 467 aprint_error_dev(sc->sc_dev, 468 "base clock frequency out of range: %u MHz\n", 469 hp->clkbase / 1000); 470 goto err; 471 } 472 aprint_normal(", %u kHz", hp->clkbase); 473 474 /* 475 * XXX Set the data timeout counter value according to 476 * capabilities. (2.2.15) 477 */ 478 HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX); 479 #if 1 480 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) 481 HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16); 482 #endif 483 484 if (ISSET(caps, SDHC_EMBEDDED_SLOT)) 485 aprint_normal(", embedded slot"); 486 487 /* 488 * Determine SD bus voltage levels supported by the controller. 489 */ 490 aprint_normal(","); 491 if (ISSET(caps, SDHC_HIGH_SPEED_SUPP)) { 492 SET(hp->ocr, MMC_OCR_HCS); 493 aprint_normal(" HS"); 494 } 495 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_1_8_V)) { 496 if (ISSET(caps2, SDHC_SDR50_SUPP)) { 497 SET(hp->ocr, MMC_OCR_S18A); 498 aprint_normal(" SDR50"); 499 } 500 if (ISSET(caps2, SDHC_DDR50_SUPP)) { 501 SET(hp->ocr, MMC_OCR_S18A); 502 aprint_normal(" DDR50"); 503 } 504 if (ISSET(caps2, SDHC_SDR104_SUPP)) { 505 SET(hp->ocr, MMC_OCR_S18A); 506 aprint_normal(" SDR104 HS200"); 507 } 508 if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V)) { 509 SET(hp->ocr, MMC_OCR_1_65V_1_95V); 510 aprint_normal(" 1.8V"); 511 } 512 } 513 if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V)) { 514 SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V); 515 aprint_normal(" 3.0V"); 516 } 517 if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V)) { 518 SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V); 519 aprint_normal(" 3.3V"); 520 } 521 if (hp->specver >= SDHC_SPEC_VERS_300) { 522 aprint_normal(", re-tuning mode %d", retuning_mode + 1); 523 if (hp->tuning_timer_count) 524 aprint_normal(" (%us timer)", hp->tuning_timer_count); 525 } 526 527 /* 528 * Determine the maximum block length supported by the host 529 * controller. (2.2.24) 530 */ 531 switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) { 532 case SDHC_MAX_BLK_LEN_512: 533 hp->maxblklen = 512; 534 break; 535 536 case SDHC_MAX_BLK_LEN_1024: 537 hp->maxblklen = 1024; 538 break; 539 540 case SDHC_MAX_BLK_LEN_2048: 541 hp->maxblklen = 2048; 542 break; 543 544 case SDHC_MAX_BLK_LEN_4096: 545 hp->maxblklen = 4096; 546 break; 547 548 default: 549 aprint_error_dev(sc->sc_dev, "max block length unknown\n"); 550 goto err; 551 } 552 aprint_normal(", %u byte blocks", hp->maxblklen); 553 aprint_normal("\n"); 554 555 if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) { 556 int rseg; 557 558 /* Allocate ADMA2 descriptor memory */ 559 error = bus_dmamem_alloc(sc->sc_dmat, PAGE_SIZE, PAGE_SIZE, 560 PAGE_SIZE, hp->adma_segs, 1, &rseg, BUS_DMA_WAITOK); 561 if (error) { 562 aprint_error_dev(sc->sc_dev, 563 "ADMA2 dmamem_alloc failed (%d)\n", error); 564 goto adma_done; 565 } 566 error = bus_dmamem_map(sc->sc_dmat, hp->adma_segs, rseg, 567 PAGE_SIZE, (void **)&hp->adma2, BUS_DMA_WAITOK); 568 if (error) { 569 aprint_error_dev(sc->sc_dev, 570 "ADMA2 dmamem_map failed (%d)\n", error); 571 goto adma_done; 572 } 573 error = bus_dmamap_create(sc->sc_dmat, PAGE_SIZE, 1, PAGE_SIZE, 574 0, BUS_DMA_WAITOK, &hp->adma_map); 575 if (error) { 576 aprint_error_dev(sc->sc_dev, 577 "ADMA2 dmamap_create failed (%d)\n", error); 578 goto adma_done; 579 } 580 error = bus_dmamap_load(sc->sc_dmat, hp->adma_map, 581 hp->adma2, PAGE_SIZE, NULL, 582 BUS_DMA_WAITOK|BUS_DMA_WRITE); 583 if (error) { 584 aprint_error_dev(sc->sc_dev, 585 "ADMA2 dmamap_load failed (%d)\n", error); 586 goto adma_done; 587 } 588 589 memset(hp->adma2, 0, PAGE_SIZE); 590 591 adma_done: 592 if (error) 593 CLR(hp->flags, SHF_USE_ADMA2_MASK); 594 } 595 596 /* 597 * Attach the generic SD/MMC bus driver. (The bus driver must 598 * not invoke any chipset functions before it is attached.) 599 */ 600 memset(&saa, 0, sizeof(saa)); 601 saa.saa_busname = "sdmmc"; 602 saa.saa_sct = &sdhc_functions; 603 saa.saa_sch = hp; 604 saa.saa_dmat = hp->dmat; 605 saa.saa_clkmax = hp->clkbase; 606 if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_CGM)) 607 saa.saa_clkmin = hp->clkbase / 256 / 2046; 608 else if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_DVS)) 609 saa.saa_clkmin = hp->clkbase / 256 / 16; 610 else if (hp->sc->sc_clkmsk != 0) 611 saa.saa_clkmin = hp->clkbase / (hp->sc->sc_clkmsk >> 612 (ffs(hp->sc->sc_clkmsk) - 1)); 613 else if (hp->specver >= SDHC_SPEC_VERS_300) 614 saa.saa_clkmin = hp->clkbase / 0x3ff; 615 else 616 saa.saa_clkmin = hp->clkbase / 256; 617 if (!ISSET(sc->sc_flags, SDHC_FLAG_NO_AUTO_STOP)) 618 saa.saa_caps |= SMC_CAPS_AUTO_STOP; 619 saa.saa_caps |= SMC_CAPS_4BIT_MODE; 620 if (ISSET(sc->sc_flags, SDHC_FLAG_8BIT_MODE)) 621 saa.saa_caps |= SMC_CAPS_8BIT_MODE; 622 if (ISSET(caps, SDHC_HIGH_SPEED_SUPP)) 623 saa.saa_caps |= SMC_CAPS_SD_HIGHSPEED; 624 if (ISSET(caps2, SDHC_SDR104_SUPP)) 625 saa.saa_caps |= SMC_CAPS_UHS_SDR104 | 626 SMC_CAPS_UHS_SDR50 | 627 SMC_CAPS_MMC_HS200; 628 if (ISSET(caps2, SDHC_SDR50_SUPP)) 629 saa.saa_caps |= SMC_CAPS_UHS_SDR50; 630 if (ISSET(caps2, SDHC_DDR50_SUPP)) 631 saa.saa_caps |= SMC_CAPS_UHS_DDR50; 632 if (ISSET(hp->flags, SHF_USE_DMA)) { 633 saa.saa_caps |= SMC_CAPS_DMA; 634 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) 635 saa.saa_caps |= SMC_CAPS_MULTI_SEG_DMA; 636 } 637 if (ISSET(sc->sc_flags, SDHC_FLAG_SINGLE_ONLY)) 638 saa.saa_caps |= SMC_CAPS_SINGLE_ONLY; 639 if (ISSET(sc->sc_flags, SDHC_FLAG_POLL_CARD_DET)) 640 saa.saa_caps |= SMC_CAPS_POLL_CARD_DET; 641 642 if (ISSET(sc->sc_flags, SDHC_FLAG_BROKEN_ADMA2_ZEROLEN)) 643 saa.saa_max_seg = 65535; 644 645 hp->sdmmc = config_found(sc->sc_dev, &saa, sdhc_cfprint); 646 647 return 0; 648 649 err: 650 callout_destroy(&hp->tuning_timer); 651 cv_destroy(&hp->intr_cv); 652 mutex_destroy(&hp->intr_lock); 653 free(hp, M_DEVBUF); 654 sc->sc_host[--sc->sc_nhosts] = NULL; 655 err1: 656 return 1; 657 } 658 659 int 660 sdhc_detach(struct sdhc_softc *sc, int flags) 661 { 662 struct sdhc_host *hp; 663 int rv = 0; 664 665 for (size_t n = 0; n < sc->sc_nhosts; n++) { 666 hp = sc->sc_host[n]; 667 if (hp == NULL) 668 continue; 669 if (hp->sdmmc != NULL) { 670 rv = config_detach(hp->sdmmc, flags); 671 if (rv) 672 break; 673 hp->sdmmc = NULL; 674 } 675 /* disable interrupts */ 676 if ((flags & DETACH_FORCE) == 0) { 677 mutex_enter(&hp->intr_lock); 678 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) { 679 HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0); 680 } else { 681 HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0); 682 } 683 sdhc_soft_reset(hp, SDHC_RESET_ALL); 684 mutex_exit(&hp->intr_lock); 685 } 686 callout_halt(&hp->tuning_timer, NULL); 687 callout_destroy(&hp->tuning_timer); 688 cv_destroy(&hp->intr_cv); 689 mutex_destroy(&hp->intr_lock); 690 if (hp->ios > 0) { 691 bus_space_unmap(hp->iot, hp->ioh, hp->ios); 692 hp->ios = 0; 693 } 694 if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) { 695 bus_dmamap_unload(sc->sc_dmat, hp->adma_map); 696 bus_dmamap_destroy(sc->sc_dmat, hp->adma_map); 697 bus_dmamem_unmap(sc->sc_dmat, hp->adma2, PAGE_SIZE); 698 bus_dmamem_free(sc->sc_dmat, hp->adma_segs, 1); 699 } 700 free(hp, M_DEVBUF); 701 sc->sc_host[n] = NULL; 702 } 703 704 return rv; 705 } 706 707 bool 708 sdhc_suspend(device_t dev, const pmf_qual_t *qual) 709 { 710 struct sdhc_softc *sc = device_private(dev); 711 struct sdhc_host *hp; 712 size_t i; 713 714 /* XXX poll for command completion or suspend command 715 * in progress */ 716 717 /* Save the host controller state. */ 718 for (size_t n = 0; n < sc->sc_nhosts; n++) { 719 hp = sc->sc_host[n]; 720 if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) { 721 for (i = 0; i < sizeof hp->regs; i += 4) { 722 uint32_t v = HREAD4(hp, i); 723 hp->regs[i + 0] = (v >> 0); 724 hp->regs[i + 1] = (v >> 8); 725 if (i + 3 < sizeof hp->regs) { 726 hp->regs[i + 2] = (v >> 16); 727 hp->regs[i + 3] = (v >> 24); 728 } 729 } 730 } else { 731 for (i = 0; i < sizeof hp->regs; i++) { 732 hp->regs[i] = HREAD1(hp, i); 733 } 734 } 735 } 736 return true; 737 } 738 739 bool 740 sdhc_resume(device_t dev, const pmf_qual_t *qual) 741 { 742 struct sdhc_softc *sc = device_private(dev); 743 struct sdhc_host *hp; 744 size_t i; 745 746 /* Restore the host controller state. */ 747 for (size_t n = 0; n < sc->sc_nhosts; n++) { 748 hp = sc->sc_host[n]; 749 (void)sdhc_host_reset(hp); 750 if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) { 751 for (i = 0; i < sizeof hp->regs; i += 4) { 752 if (i + 3 < sizeof hp->regs) { 753 HWRITE4(hp, i, 754 (hp->regs[i + 0] << 0) 755 | (hp->regs[i + 1] << 8) 756 | (hp->regs[i + 2] << 16) 757 | (hp->regs[i + 3] << 24)); 758 } else { 759 HWRITE4(hp, i, 760 (hp->regs[i + 0] << 0) 761 | (hp->regs[i + 1] << 8)); 762 } 763 } 764 } else { 765 for (i = 0; i < sizeof hp->regs; i++) { 766 HWRITE1(hp, i, hp->regs[i]); 767 } 768 } 769 } 770 return true; 771 } 772 773 bool 774 sdhc_shutdown(device_t dev, int flags) 775 { 776 struct sdhc_softc *sc = device_private(dev); 777 struct sdhc_host *hp; 778 779 /* XXX chip locks up if we don't disable it before reboot. */ 780 for (size_t i = 0; i < sc->sc_nhosts; i++) { 781 hp = sc->sc_host[i]; 782 (void)sdhc_host_reset(hp); 783 } 784 return true; 785 } 786 787 /* 788 * Reset the host controller. Called during initialization, when 789 * cards are removed, upon resume, and during error recovery. 790 */ 791 static int 792 sdhc_host_reset1(sdmmc_chipset_handle_t sch) 793 { 794 struct sdhc_host *hp = (struct sdhc_host *)sch; 795 uint32_t sdhcimask; 796 int error; 797 798 KASSERT(mutex_owned(&hp->intr_lock)); 799 800 /* Disable all interrupts. */ 801 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) { 802 HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0); 803 } else { 804 HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0); 805 } 806 807 /* Let sdhc_bus_power restore power */ 808 hp->vdd = 0; 809 810 /* 811 * Reset the entire host controller and wait up to 100ms for 812 * the controller to clear the reset bit. 813 */ 814 error = sdhc_soft_reset(hp, SDHC_RESET_ALL); 815 if (error) 816 goto out; 817 818 /* Set data timeout counter value to max for now. */ 819 HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX); 820 #if 1 821 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) 822 HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16); 823 #endif 824 825 /* Enable interrupts. */ 826 sdhcimask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION | 827 SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY | 828 SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT | 829 SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE; 830 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) { 831 sdhcimask |= SDHC_EINTR_STATUS_MASK << 16; 832 HWRITE4(hp, SDHC_NINTR_STATUS_EN, sdhcimask); 833 sdhcimask ^= 834 (SDHC_EINTR_STATUS_MASK ^ SDHC_EINTR_SIGNAL_MASK) << 16; 835 sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY; 836 HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask); 837 } else { 838 HWRITE2(hp, SDHC_NINTR_STATUS_EN, sdhcimask); 839 HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK); 840 sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY; 841 HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask); 842 HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK); 843 } 844 845 out: 846 return error; 847 } 848 849 static int 850 sdhc_host_reset(sdmmc_chipset_handle_t sch) 851 { 852 struct sdhc_host *hp = (struct sdhc_host *)sch; 853 int error; 854 855 mutex_enter(&hp->intr_lock); 856 error = sdhc_host_reset1(sch); 857 mutex_exit(&hp->intr_lock); 858 859 return error; 860 } 861 862 static uint32_t 863 sdhc_host_ocr(sdmmc_chipset_handle_t sch) 864 { 865 struct sdhc_host *hp = (struct sdhc_host *)sch; 866 867 return hp->ocr; 868 } 869 870 static int 871 sdhc_host_maxblklen(sdmmc_chipset_handle_t sch) 872 { 873 struct sdhc_host *hp = (struct sdhc_host *)sch; 874 875 return hp->maxblklen; 876 } 877 878 /* 879 * Return non-zero if the card is currently inserted. 880 */ 881 static int 882 sdhc_card_detect(sdmmc_chipset_handle_t sch) 883 { 884 struct sdhc_host *hp = (struct sdhc_host *)sch; 885 int r; 886 887 if (hp->sc->sc_vendor_card_detect) 888 return (*hp->sc->sc_vendor_card_detect)(hp->sc); 889 890 r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED); 891 892 return r ? 1 : 0; 893 } 894 895 /* 896 * Return non-zero if the card is currently write-protected. 897 */ 898 static int 899 sdhc_write_protect(sdmmc_chipset_handle_t sch) 900 { 901 struct sdhc_host *hp = (struct sdhc_host *)sch; 902 int r; 903 904 if (hp->sc->sc_vendor_write_protect) 905 return (*hp->sc->sc_vendor_write_protect)(hp->sc); 906 907 r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_WRITE_PROTECT_SWITCH); 908 909 return r ? 0 : 1; 910 } 911 912 /* 913 * Set or change SD bus voltage and enable or disable SD bus power. 914 * Return zero on success. 915 */ 916 static int 917 sdhc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr) 918 { 919 struct sdhc_host *hp = (struct sdhc_host *)sch; 920 uint8_t vdd; 921 int error = 0; 922 const uint32_t pcmask = 923 ~(SDHC_BUS_POWER | (SDHC_VOLTAGE_MASK << SDHC_VOLTAGE_SHIFT)); 924 uint32_t reg; 925 926 mutex_enter(&hp->intr_lock); 927 928 /* 929 * Disable bus power before voltage change. 930 */ 931 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS) 932 && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_PWR0)) { 933 hp->vdd = 0; 934 HWRITE1(hp, SDHC_POWER_CTL, 0); 935 } 936 937 /* If power is disabled, reset the host and return now. */ 938 if (ocr == 0) { 939 (void)sdhc_host_reset1(hp); 940 callout_halt(&hp->tuning_timer, &hp->intr_lock); 941 goto out; 942 } 943 944 /* 945 * Select the lowest voltage according to capabilities. 946 */ 947 ocr &= hp->ocr; 948 if (ISSET(ocr, MMC_OCR_1_65V_1_95V)) { 949 vdd = SDHC_VOLTAGE_1_8V; 950 } else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V)) { 951 vdd = SDHC_VOLTAGE_3_0V; 952 } else if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V)) { 953 vdd = SDHC_VOLTAGE_3_3V; 954 } else { 955 /* Unsupported voltage level requested. */ 956 error = EINVAL; 957 goto out; 958 } 959 960 /* 961 * Did voltage change ? 962 */ 963 if (vdd == hp->vdd) 964 goto out; 965 966 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) { 967 /* 968 * Enable bus power. Wait at least 1 ms (or 74 clocks) plus 969 * voltage ramp until power rises. 970 */ 971 972 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_SINGLE_POWER_WRITE)) { 973 HWRITE1(hp, SDHC_POWER_CTL, 974 (vdd << SDHC_VOLTAGE_SHIFT) | SDHC_BUS_POWER); 975 } else { 976 reg = HREAD1(hp, SDHC_POWER_CTL) & pcmask; 977 HWRITE1(hp, SDHC_POWER_CTL, reg); 978 sdmmc_delay(1); 979 reg |= (vdd << SDHC_VOLTAGE_SHIFT); 980 HWRITE1(hp, SDHC_POWER_CTL, reg); 981 sdmmc_delay(1); 982 reg |= SDHC_BUS_POWER; 983 HWRITE1(hp, SDHC_POWER_CTL, reg); 984 sdmmc_delay(10000); 985 } 986 987 /* 988 * The host system may not power the bus due to battery low, 989 * etc. In that case, the host controller should clear the 990 * bus power bit. 991 */ 992 if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) { 993 error = ENXIO; 994 goto out; 995 } 996 } 997 998 /* power successfully changed */ 999 hp->vdd = vdd; 1000 1001 out: 1002 mutex_exit(&hp->intr_lock); 1003 1004 return error; 1005 } 1006 1007 /* 1008 * Return the smallest possible base clock frequency divisor value 1009 * for the CLOCK_CTL register to produce `freq' (KHz). 1010 */ 1011 static bool 1012 sdhc_clock_divisor(struct sdhc_host *hp, u_int freq, u_int *divp) 1013 { 1014 u_int div; 1015 1016 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_CGM)) { 1017 for (div = hp->clkbase / freq; div <= 0x3ff; div++) { 1018 if ((hp->clkbase / div) <= freq) { 1019 *divp = SDHC_SDCLK_CGM 1020 | ((div & 0x300) << SDHC_SDCLK_XDIV_SHIFT) 1021 | ((div & 0x0ff) << SDHC_SDCLK_DIV_SHIFT); 1022 //freq = hp->clkbase / div; 1023 return true; 1024 } 1025 } 1026 /* No divisor found. */ 1027 return false; 1028 } 1029 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_DVS)) { 1030 u_int dvs = (hp->clkbase + freq - 1) / freq; 1031 u_int roundup = dvs & 1; 1032 for (dvs >>= 1, div = 1; div <= 256; div <<= 1, dvs >>= 1) { 1033 if (dvs + roundup <= 16) { 1034 dvs += roundup - 1; 1035 *divp = (div << SDHC_SDCLK_DIV_SHIFT) 1036 | (dvs << SDHC_SDCLK_DVS_SHIFT); 1037 DPRINTF(2, 1038 ("%s: divisor for freq %u is %u * %u\n", 1039 HDEVNAME(hp), freq, div * 2, dvs + 1)); 1040 //freq = hp->clkbase / (div * 2) * (dvs + 1); 1041 return true; 1042 } 1043 /* 1044 * If we drop bits, we need to round up the divisor. 1045 */ 1046 roundup |= dvs & 1; 1047 } 1048 /* No divisor found. */ 1049 return false; 1050 } 1051 if (hp->sc->sc_clkmsk != 0) { 1052 div = howmany(hp->clkbase, freq); 1053 if (div > (hp->sc->sc_clkmsk >> (ffs(hp->sc->sc_clkmsk) - 1))) 1054 return false; 1055 *divp = div << (ffs(hp->sc->sc_clkmsk) - 1); 1056 //freq = hp->clkbase / div; 1057 return true; 1058 } 1059 if (hp->specver >= SDHC_SPEC_VERS_300) { 1060 div = howmany(hp->clkbase, freq); 1061 div = div > 1 ? howmany(div, 2) : 0; 1062 if (div > 0x3ff) 1063 return false; 1064 *divp = (((div >> 8) & SDHC_SDCLK_XDIV_MASK) 1065 << SDHC_SDCLK_XDIV_SHIFT) | 1066 (((div >> 0) & SDHC_SDCLK_DIV_MASK) 1067 << SDHC_SDCLK_DIV_SHIFT); 1068 //freq = hp->clkbase / (div ? div * 2 : 1); 1069 return true; 1070 } else { 1071 for (div = 1; div <= 256; div *= 2) { 1072 if ((hp->clkbase / div) <= freq) { 1073 *divp = (div / 2) << SDHC_SDCLK_DIV_SHIFT; 1074 //freq = hp->clkbase / div; 1075 return true; 1076 } 1077 } 1078 /* No divisor found. */ 1079 return false; 1080 } 1081 /* No divisor found. */ 1082 return false; 1083 } 1084 1085 /* 1086 * Set or change SDCLK frequency or disable the SD clock. 1087 * Return zero on success. 1088 */ 1089 static int 1090 sdhc_bus_clock_ddr(sdmmc_chipset_handle_t sch, int freq, bool ddr) 1091 { 1092 struct sdhc_host *hp = (struct sdhc_host *)sch; 1093 u_int div; 1094 u_int timo; 1095 int16_t reg; 1096 int error = 0; 1097 bool present __diagused; 1098 1099 mutex_enter(&hp->intr_lock); 1100 1101 #ifdef DIAGNOSTIC 1102 present = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK); 1103 1104 /* Must not stop the clock if commands are in progress. */ 1105 if (present && sdhc_card_detect(hp)) { 1106 aprint_normal_dev(hp->sc->sc_dev, 1107 "%s: command in progress\n", __func__); 1108 } 1109 #endif 1110 1111 if (hp->sc->sc_vendor_bus_clock) { 1112 error = (*hp->sc->sc_vendor_bus_clock)(hp->sc, freq); 1113 if (error != 0) 1114 goto out; 1115 } 1116 1117 /* 1118 * Stop SD clock before changing the frequency. 1119 */ 1120 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) { 1121 HCLR4(hp, SDHC_VEND_SPEC, 1122 SDHC_VEND_SPEC_CARD_CLK_SOFT_EN | 1123 SDHC_VEND_SPEC_FRC_SDCLK_ON); 1124 if (freq == SDMMC_SDCLK_OFF) { 1125 goto out; 1126 } 1127 } else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) { 1128 HCLR4(hp, SDHC_CLOCK_CTL, 0xfff8); 1129 if (freq == SDMMC_SDCLK_OFF) { 1130 HSET4(hp, SDHC_CLOCK_CTL, 0x80f0); 1131 goto out; 1132 } 1133 } else { 1134 HCLR2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE); 1135 if (freq == SDMMC_SDCLK_OFF) 1136 goto out; 1137 } 1138 1139 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) { 1140 if (ddr) 1141 HSET4(hp, SDHC_MIX_CTRL, SDHC_USDHC_DDR_EN); 1142 else 1143 HCLR4(hp, SDHC_MIX_CTRL, SDHC_USDHC_DDR_EN); 1144 } else if (hp->specver >= SDHC_SPEC_VERS_300) { 1145 HCLR2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_MASK); 1146 if (freq > 100000) { 1147 HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR104); 1148 } else if (freq > 50000) { 1149 if (ddr) { 1150 HSET2(hp, SDHC_HOST_CTL2, 1151 SDHC_UHS_MODE_SELECT_DDR50); 1152 } else { 1153 HSET2(hp, SDHC_HOST_CTL2, 1154 SDHC_UHS_MODE_SELECT_SDR50); 1155 } 1156 } else if (freq > 25000) { 1157 if (ddr) { 1158 HSET2(hp, SDHC_HOST_CTL2, 1159 SDHC_UHS_MODE_SELECT_DDR50); 1160 } else { 1161 HSET2(hp, SDHC_HOST_CTL2, 1162 SDHC_UHS_MODE_SELECT_SDR25); 1163 } 1164 } else if (freq > 400) { 1165 HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR12); 1166 } 1167 } 1168 1169 /* 1170 * Slow down Ricoh 5U823 controller that isn't reliable 1171 * at 100MHz bus clock. 1172 */ 1173 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_SLOW_SDR50)) { 1174 if (freq == 100000) 1175 --freq; 1176 } 1177 1178 /* 1179 * Set the minimum base clock frequency divisor. 1180 */ 1181 if (!sdhc_clock_divisor(hp, freq, &div)) { 1182 /* Invalid base clock frequency or `freq' value. */ 1183 aprint_error_dev(hp->sc->sc_dev, 1184 "Invalid bus clock %d kHz\n", freq); 1185 error = EINVAL; 1186 goto out; 1187 } 1188 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) { 1189 if (ddr) { 1190 /* in ddr mode, divisor >>= 1 */ 1191 div = ((div >> 1) & (SDHC_SDCLK_DIV_MASK << 1192 SDHC_SDCLK_DIV_SHIFT)) | 1193 (div & (SDHC_SDCLK_DVS_MASK << 1194 SDHC_SDCLK_DVS_SHIFT)); 1195 } 1196 for (timo = 1000; timo > 0; timo--) { 1197 if (ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_SDSTB)) 1198 break; 1199 sdmmc_delay(10); 1200 } 1201 HWRITE4(hp, SDHC_CLOCK_CTL, 1202 div | (SDHC_TIMEOUT_MAX << 16) | 0x0f); 1203 } else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) { 1204 HWRITE4(hp, SDHC_CLOCK_CTL, 1205 div | (SDHC_TIMEOUT_MAX << 16)); 1206 } else { 1207 reg = HREAD2(hp, SDHC_CLOCK_CTL); 1208 reg &= (SDHC_INTCLK_STABLE | SDHC_INTCLK_ENABLE); 1209 HWRITE2(hp, SDHC_CLOCK_CTL, reg | div); 1210 } 1211 1212 /* 1213 * Start internal clock. Wait 10ms for stabilization. 1214 */ 1215 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) { 1216 HSET4(hp, SDHC_VEND_SPEC, 1217 SDHC_VEND_SPEC_CARD_CLK_SOFT_EN | 1218 SDHC_VEND_SPEC_FRC_SDCLK_ON); 1219 } else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) { 1220 sdmmc_delay(10000); 1221 HSET4(hp, SDHC_CLOCK_CTL, 1222 8 | SDHC_INTCLK_ENABLE | SDHC_INTCLK_STABLE); 1223 } else { 1224 HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE); 1225 for (timo = 1000; timo > 0; timo--) { 1226 if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL), 1227 SDHC_INTCLK_STABLE)) 1228 break; 1229 sdmmc_delay(10); 1230 } 1231 if (timo == 0) { 1232 error = ETIMEDOUT; 1233 DPRINTF(1,("%s: timeout\n", __func__)); 1234 goto out; 1235 } 1236 } 1237 1238 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) { 1239 HSET1(hp, SDHC_SOFTWARE_RESET, SDHC_INIT_ACTIVE); 1240 /* 1241 * Sending 80 clocks at 400kHz takes 200us. 1242 * So delay for that time + slop and then 1243 * check a few times for completion. 1244 */ 1245 sdmmc_delay(210); 1246 for (timo = 10; timo > 0; timo--) { 1247 if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), 1248 SDHC_INIT_ACTIVE)) 1249 break; 1250 sdmmc_delay(10); 1251 } 1252 DPRINTF(2,("%s: %u init spins\n", __func__, 10 - timo)); 1253 1254 /* 1255 * Enable SD clock. 1256 */ 1257 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) { 1258 HSET4(hp, SDHC_VEND_SPEC, 1259 SDHC_VEND_SPEC_CARD_CLK_SOFT_EN | 1260 SDHC_VEND_SPEC_FRC_SDCLK_ON); 1261 } else { 1262 HSET4(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE); 1263 } 1264 } else { 1265 /* 1266 * Enable SD clock. 1267 */ 1268 HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE); 1269 1270 if (freq > 25000 && 1271 !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_HS_BIT)) 1272 HSET1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED); 1273 else 1274 HCLR1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED); 1275 } 1276 1277 if (hp->sc->sc_vendor_bus_clock_post) { 1278 error = (*hp->sc->sc_vendor_bus_clock_post)(hp->sc, freq); 1279 if (error != 0) 1280 goto out; 1281 } 1282 1283 out: 1284 mutex_exit(&hp->intr_lock); 1285 1286 return error; 1287 } 1288 1289 static int 1290 sdhc_bus_width(sdmmc_chipset_handle_t sch, int width) 1291 { 1292 struct sdhc_host *hp = (struct sdhc_host *)sch; 1293 int reg; 1294 1295 switch (width) { 1296 case 1: 1297 case 4: 1298 break; 1299 1300 case 8: 1301 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_8BIT_MODE)) 1302 break; 1303 /* FALLTHROUGH */ 1304 default: 1305 DPRINTF(0,("%s: unsupported bus width (%d)\n", 1306 HDEVNAME(hp), width)); 1307 return 1; 1308 } 1309 1310 if (hp->sc->sc_vendor_bus_width) { 1311 const int error = hp->sc->sc_vendor_bus_width(hp->sc, width); 1312 if (error != 0) 1313 return error; 1314 } 1315 1316 mutex_enter(&hp->intr_lock); 1317 1318 reg = HREAD1(hp, SDHC_HOST_CTL); 1319 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) { 1320 reg &= ~(SDHC_4BIT_MODE|SDHC_ESDHC_8BIT_MODE); 1321 if (width == 4) 1322 reg |= SDHC_4BIT_MODE; 1323 else if (width == 8) 1324 reg |= SDHC_ESDHC_8BIT_MODE; 1325 } else { 1326 reg &= ~SDHC_4BIT_MODE; 1327 if (hp->specver >= SDHC_SPEC_VERS_300) { 1328 reg &= ~SDHC_8BIT_MODE; 1329 } 1330 if (width == 4) { 1331 reg |= SDHC_4BIT_MODE; 1332 } else if (width == 8 && hp->specver >= SDHC_SPEC_VERS_300) { 1333 reg |= SDHC_8BIT_MODE; 1334 } 1335 } 1336 HWRITE1(hp, SDHC_HOST_CTL, reg); 1337 1338 mutex_exit(&hp->intr_lock); 1339 1340 return 0; 1341 } 1342 1343 static int 1344 sdhc_bus_rod(sdmmc_chipset_handle_t sch, int on) 1345 { 1346 struct sdhc_host *hp = (struct sdhc_host *)sch; 1347 1348 if (hp->sc->sc_vendor_rod) 1349 return (*hp->sc->sc_vendor_rod)(hp->sc, on); 1350 1351 return 0; 1352 } 1353 1354 static void 1355 sdhc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable) 1356 { 1357 struct sdhc_host *hp = (struct sdhc_host *)sch; 1358 1359 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) { 1360 mutex_enter(&hp->intr_lock); 1361 if (enable) { 1362 HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT); 1363 HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT); 1364 } else { 1365 HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT); 1366 HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT); 1367 } 1368 mutex_exit(&hp->intr_lock); 1369 } 1370 } 1371 1372 static void 1373 sdhc_card_intr_ack(sdmmc_chipset_handle_t sch) 1374 { 1375 struct sdhc_host *hp = (struct sdhc_host *)sch; 1376 1377 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) { 1378 mutex_enter(&hp->intr_lock); 1379 HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT); 1380 mutex_exit(&hp->intr_lock); 1381 } 1382 } 1383 1384 static int 1385 sdhc_signal_voltage(sdmmc_chipset_handle_t sch, int signal_voltage) 1386 { 1387 struct sdhc_host *hp = (struct sdhc_host *)sch; 1388 int error = 0; 1389 1390 if (hp->specver < SDHC_SPEC_VERS_300) 1391 return EINVAL; 1392 1393 mutex_enter(&hp->intr_lock); 1394 switch (signal_voltage) { 1395 case SDMMC_SIGNAL_VOLTAGE_180: 1396 if (hp->sc->sc_vendor_signal_voltage != NULL) { 1397 error = hp->sc->sc_vendor_signal_voltage(hp->sc, 1398 signal_voltage); 1399 if (error != 0) 1400 break; 1401 } 1402 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) 1403 HSET2(hp, SDHC_HOST_CTL2, SDHC_1_8V_SIGNAL_EN); 1404 break; 1405 case SDMMC_SIGNAL_VOLTAGE_330: 1406 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) 1407 HCLR2(hp, SDHC_HOST_CTL2, SDHC_1_8V_SIGNAL_EN); 1408 if (hp->sc->sc_vendor_signal_voltage != NULL) { 1409 error = hp->sc->sc_vendor_signal_voltage(hp->sc, 1410 signal_voltage); 1411 if (error != 0) 1412 break; 1413 } 1414 break; 1415 default: 1416 error = EINVAL; 1417 break; 1418 } 1419 mutex_exit(&hp->intr_lock); 1420 1421 return error; 1422 } 1423 1424 /* 1425 * Sampling clock tuning procedure (UHS) 1426 */ 1427 static int 1428 sdhc_execute_tuning1(struct sdhc_host *hp, int timing) 1429 { 1430 struct sdmmc_command cmd; 1431 uint8_t hostctl; 1432 int opcode, error, retry = 40; 1433 1434 KASSERT(mutex_owned(&hp->intr_lock)); 1435 1436 hp->tuning_timing = timing; 1437 1438 switch (timing) { 1439 case SDMMC_TIMING_MMC_HS200: 1440 opcode = MMC_SEND_TUNING_BLOCK_HS200; 1441 break; 1442 case SDMMC_TIMING_UHS_SDR50: 1443 if (!ISSET(hp->sc->sc_caps2, SDHC_TUNING_SDR50)) 1444 return 0; 1445 /* FALLTHROUGH */ 1446 case SDMMC_TIMING_UHS_SDR104: 1447 opcode = MMC_SEND_TUNING_BLOCK; 1448 break; 1449 default: 1450 return EINVAL; 1451 } 1452 1453 hostctl = HREAD1(hp, SDHC_HOST_CTL); 1454 1455 /* enable buffer read ready interrupt */ 1456 HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_BUFFER_READ_READY); 1457 HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_BUFFER_READ_READY); 1458 1459 /* disable DMA */ 1460 HCLR1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT); 1461 1462 /* reset tuning circuit */ 1463 HCLR2(hp, SDHC_HOST_CTL2, SDHC_SAMPLING_CLOCK_SEL); 1464 1465 /* start of tuning */ 1466 HWRITE2(hp, SDHC_HOST_CTL2, SDHC_EXECUTE_TUNING); 1467 1468 do { 1469 memset(&cmd, 0, sizeof(cmd)); 1470 cmd.c_opcode = opcode; 1471 cmd.c_arg = 0; 1472 cmd.c_flags = SCF_CMD_ADTC | SCF_CMD_READ | SCF_RSP_R1; 1473 if (ISSET(hostctl, SDHC_8BIT_MODE)) { 1474 cmd.c_blklen = cmd.c_datalen = 128; 1475 } else { 1476 cmd.c_blklen = cmd.c_datalen = 64; 1477 } 1478 1479 error = sdhc_start_command(hp, &cmd); 1480 if (error) 1481 break; 1482 1483 if (!sdhc_wait_intr(hp, SDHC_BUFFER_READ_READY, 1484 SDHC_TUNING_TIMEOUT, false)) { 1485 break; 1486 } 1487 1488 delay(1000); 1489 } while (HREAD2(hp, SDHC_HOST_CTL2) & SDHC_EXECUTE_TUNING && --retry); 1490 1491 /* disable buffer read ready interrupt */ 1492 HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_BUFFER_READ_READY); 1493 HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_BUFFER_READ_READY); 1494 1495 if (HREAD2(hp, SDHC_HOST_CTL2) & SDHC_EXECUTE_TUNING) { 1496 HCLR2(hp, SDHC_HOST_CTL2, 1497 SDHC_SAMPLING_CLOCK_SEL|SDHC_EXECUTE_TUNING); 1498 sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD); 1499 aprint_error_dev(hp->sc->sc_dev, 1500 "tuning did not complete, using fixed sampling clock\n"); 1501 return 0; /* tuning did not complete */ 1502 } 1503 1504 if ((HREAD2(hp, SDHC_HOST_CTL2) & SDHC_SAMPLING_CLOCK_SEL) == 0) { 1505 HCLR2(hp, SDHC_HOST_CTL2, 1506 SDHC_SAMPLING_CLOCK_SEL|SDHC_EXECUTE_TUNING); 1507 sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD); 1508 aprint_error_dev(hp->sc->sc_dev, 1509 "tuning failed, using fixed sampling clock\n"); 1510 return 0; /* tuning failed */ 1511 } 1512 1513 if (hp->tuning_timer_count) { 1514 callout_schedule(&hp->tuning_timer, 1515 hz * hp->tuning_timer_count); 1516 } 1517 1518 return 0; /* tuning completed */ 1519 } 1520 1521 static int 1522 sdhc_execute_tuning(sdmmc_chipset_handle_t sch, int timing) 1523 { 1524 struct sdhc_host *hp = (struct sdhc_host *)sch; 1525 int error; 1526 1527 mutex_enter(&hp->intr_lock); 1528 error = sdhc_execute_tuning1(hp, timing); 1529 mutex_exit(&hp->intr_lock); 1530 return error; 1531 } 1532 1533 static void 1534 sdhc_tuning_timer(void *arg) 1535 { 1536 struct sdhc_host *hp = arg; 1537 1538 atomic_swap_uint(&hp->tuning_timer_pending, 1); 1539 } 1540 1541 static void 1542 sdhc_hw_reset(sdmmc_chipset_handle_t sch) 1543 { 1544 struct sdhc_host *hp = (struct sdhc_host *)sch; 1545 struct sdhc_softc *sc = hp->sc; 1546 1547 if (sc->sc_vendor_hw_reset != NULL) 1548 sc->sc_vendor_hw_reset(sc, hp); 1549 } 1550 1551 static int 1552 sdhc_wait_state(struct sdhc_host *hp, uint32_t mask, uint32_t value) 1553 { 1554 uint32_t state; 1555 int timeout; 1556 1557 for (timeout = 100000; timeout > 0; timeout--) { 1558 if (((state = HREAD4(hp, SDHC_PRESENT_STATE)) & mask) == value) 1559 return 0; 1560 sdmmc_delay(10); 1561 } 1562 aprint_error_dev(hp->sc->sc_dev, "timeout waiting for mask %#x value %#x (state=%#x)\n", 1563 mask, value, state); 1564 return ETIMEDOUT; 1565 } 1566 1567 static void 1568 sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd) 1569 { 1570 struct sdhc_host *hp = (struct sdhc_host *)sch; 1571 int error; 1572 bool probing; 1573 1574 mutex_enter(&hp->intr_lock); 1575 1576 if (atomic_cas_uint(&hp->tuning_timer_pending, 1, 0) == 1) { 1577 (void)sdhc_execute_tuning1(hp, hp->tuning_timing); 1578 } 1579 1580 if (cmd->c_data && 1581 ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) { 1582 const uint16_t ready = SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY; 1583 if (ISSET(hp->flags, SHF_USE_DMA)) { 1584 HCLR2(hp, SDHC_NINTR_SIGNAL_EN, ready); 1585 HCLR2(hp, SDHC_NINTR_STATUS_EN, ready); 1586 } else { 1587 HSET2(hp, SDHC_NINTR_SIGNAL_EN, ready); 1588 HSET2(hp, SDHC_NINTR_STATUS_EN, ready); 1589 } 1590 } 1591 1592 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_TIMEOUT)) { 1593 const uint16_t eintr = SDHC_CMD_TIMEOUT_ERROR; 1594 if (cmd->c_data != NULL) { 1595 HCLR2(hp, SDHC_EINTR_SIGNAL_EN, eintr); 1596 HCLR2(hp, SDHC_EINTR_STATUS_EN, eintr); 1597 } else { 1598 HSET2(hp, SDHC_EINTR_SIGNAL_EN, eintr); 1599 HSET2(hp, SDHC_EINTR_STATUS_EN, eintr); 1600 } 1601 } 1602 1603 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_STOP_WITH_TC)) { 1604 if (cmd->c_opcode == MMC_STOP_TRANSMISSION) 1605 SET(cmd->c_flags, SCF_RSP_BSY); 1606 } 1607 1608 /* 1609 * Start the MMC command, or mark `cmd' as failed and return. 1610 */ 1611 error = sdhc_start_command(hp, cmd); 1612 if (error) { 1613 cmd->c_error = error; 1614 goto out; 1615 } 1616 1617 /* 1618 * Wait until the command phase is done, or until the command 1619 * is marked done for any other reason. 1620 */ 1621 probing = (cmd->c_flags & SCF_TOUT_OK) != 0; 1622 if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE, SDHC_COMMAND_TIMEOUT*3, probing)) { 1623 DPRINTF(1,("%s: timeout for command\n", __func__)); 1624 sdmmc_delay(50); 1625 cmd->c_error = ETIMEDOUT; 1626 goto out; 1627 } 1628 1629 /* 1630 * The host controller removes bits [0:7] from the response 1631 * data (CRC) and we pass the data up unchanged to the bus 1632 * driver (without padding). 1633 */ 1634 if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) { 1635 cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE + 0); 1636 if (ISSET(cmd->c_flags, SCF_RSP_136)) { 1637 cmd->c_resp[1] = HREAD4(hp, SDHC_RESPONSE + 4); 1638 cmd->c_resp[2] = HREAD4(hp, SDHC_RESPONSE + 8); 1639 cmd->c_resp[3] = HREAD4(hp, SDHC_RESPONSE + 12); 1640 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_RSP136_CRC)) { 1641 cmd->c_resp[0] = (cmd->c_resp[0] >> 8) | 1642 (cmd->c_resp[1] << 24); 1643 cmd->c_resp[1] = (cmd->c_resp[1] >> 8) | 1644 (cmd->c_resp[2] << 24); 1645 cmd->c_resp[2] = (cmd->c_resp[2] >> 8) | 1646 (cmd->c_resp[3] << 24); 1647 cmd->c_resp[3] = (cmd->c_resp[3] >> 8); 1648 } 1649 } 1650 } 1651 DPRINTF(1,("%s: resp = %08x\n", HDEVNAME(hp), cmd->c_resp[0])); 1652 1653 /* 1654 * If the command has data to transfer in any direction, 1655 * execute the transfer now. 1656 */ 1657 if (cmd->c_error == 0 && cmd->c_data != NULL) 1658 sdhc_transfer_data(hp, cmd); 1659 else if (ISSET(cmd->c_flags, SCF_RSP_BSY)) { 1660 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_BUSY_INTR) && 1661 !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE, hz * 10, false)) { 1662 DPRINTF(1,("%s: sdhc_exec_command: RSP_BSY\n", 1663 HDEVNAME(hp))); 1664 cmd->c_error = ETIMEDOUT; 1665 goto out; 1666 } 1667 } 1668 1669 out: 1670 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED) 1671 && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_LED_ON)) { 1672 /* Turn off the LED. */ 1673 HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON); 1674 } 1675 SET(cmd->c_flags, SCF_ITSDONE); 1676 1677 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_AUTO_STOP) && 1678 cmd->c_opcode == MMC_STOP_TRANSMISSION) 1679 (void)sdhc_soft_reset(hp, SDHC_RESET_CMD|SDHC_RESET_DAT); 1680 1681 mutex_exit(&hp->intr_lock); 1682 1683 DPRINTF(1,("%s: cmd %d %s (flags=%08x error=%d)\n", HDEVNAME(hp), 1684 cmd->c_opcode, (cmd->c_error == 0) ? "done" : "abort", 1685 cmd->c_flags, cmd->c_error)); 1686 } 1687 1688 static int 1689 sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd) 1690 { 1691 struct sdhc_softc * const sc = hp->sc; 1692 uint16_t blksize = 0; 1693 uint16_t blkcount = 0; 1694 uint16_t mode; 1695 uint16_t command; 1696 uint32_t pmask; 1697 int error; 1698 1699 KASSERT(mutex_owned(&hp->intr_lock)); 1700 1701 DPRINTF(1,("%s: start cmd %d arg=%08x data=%p dlen=%d flags=%08x, status=%#x\n", 1702 HDEVNAME(hp), cmd->c_opcode, cmd->c_arg, cmd->c_data, 1703 cmd->c_datalen, cmd->c_flags, HREAD4(hp, SDHC_NINTR_STATUS))); 1704 1705 /* 1706 * The maximum block length for commands should be the minimum 1707 * of the host buffer size and the card buffer size. (1.7.2) 1708 */ 1709 1710 /* Fragment the data into proper blocks. */ 1711 if (cmd->c_datalen > 0) { 1712 blksize = MIN(cmd->c_datalen, cmd->c_blklen); 1713 blkcount = cmd->c_datalen / blksize; 1714 if (cmd->c_datalen % blksize > 0) { 1715 /* XXX: Split this command. (1.7.4) */ 1716 aprint_error_dev(sc->sc_dev, 1717 "data not a multiple of %u bytes\n", blksize); 1718 return EINVAL; 1719 } 1720 } 1721 1722 /* Check limit imposed by 9-bit block count. (1.7.2) */ 1723 if (blkcount > SDHC_BLOCK_COUNT_MAX) { 1724 aprint_error_dev(sc->sc_dev, "too much data\n"); 1725 return EINVAL; 1726 } 1727 1728 /* Prepare transfer mode register value. (2.2.5) */ 1729 mode = 0; 1730 if (ISSET(cmd->c_flags, SCF_CMD_READ)) 1731 mode |= SDHC_READ_MODE; 1732 if (blkcount > 0) { 1733 mode |= SDHC_BLOCK_COUNT_ENABLE; 1734 if (blkcount > 1) { 1735 mode |= SDHC_MULTI_BLOCK_MODE; 1736 if (!ISSET(sc->sc_flags, SDHC_FLAG_NO_AUTO_STOP) 1737 && !ISSET(cmd->c_flags, SCF_NO_STOP)) 1738 mode |= SDHC_AUTO_CMD12_ENABLE; 1739 } 1740 } 1741 if (cmd->c_dmamap != NULL && cmd->c_datalen > 0 && 1742 ISSET(hp->flags, SHF_MODE_DMAEN)) { 1743 mode |= SDHC_DMA_ENABLE; 1744 } 1745 1746 /* 1747 * Prepare command register value. (2.2.6) 1748 */ 1749 command = (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) << SDHC_COMMAND_INDEX_SHIFT; 1750 1751 if (ISSET(cmd->c_flags, SCF_RSP_CRC)) 1752 command |= SDHC_CRC_CHECK_ENABLE; 1753 if (ISSET(cmd->c_flags, SCF_RSP_IDX)) 1754 command |= SDHC_INDEX_CHECK_ENABLE; 1755 if (cmd->c_datalen > 0) 1756 command |= SDHC_DATA_PRESENT_SELECT; 1757 1758 if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT)) 1759 command |= SDHC_NO_RESPONSE; 1760 else if (ISSET(cmd->c_flags, SCF_RSP_136)) 1761 command |= SDHC_RESP_LEN_136; 1762 else if (ISSET(cmd->c_flags, SCF_RSP_BSY)) 1763 command |= SDHC_RESP_LEN_48_CHK_BUSY; 1764 else 1765 command |= SDHC_RESP_LEN_48; 1766 1767 /* Wait until command and optionally data inhibit bits are clear. (1.5) */ 1768 pmask = SDHC_CMD_INHIBIT_CMD; 1769 if (cmd->c_flags & (SCF_CMD_ADTC|SCF_RSP_BSY)) 1770 pmask |= SDHC_CMD_INHIBIT_DAT; 1771 error = sdhc_wait_state(hp, pmask, 0); 1772 if (error) { 1773 (void) sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD); 1774 device_printf(sc->sc_dev, "command or data phase inhibited\n"); 1775 return error; 1776 } 1777 1778 DPRINTF(1,("%s: writing cmd: blksize=%d blkcnt=%d mode=%04x cmd=%04x\n", 1779 HDEVNAME(hp), blksize, blkcount, mode, command)); 1780 1781 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) { 1782 blksize |= (MAX(0, PAGE_SHIFT - 12) & SDHC_DMA_BOUNDARY_MASK) << 1783 SDHC_DMA_BOUNDARY_SHIFT; /* PAGE_SIZE DMA boundary */ 1784 } 1785 1786 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) { 1787 /* Alert the user not to remove the card. */ 1788 HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON); 1789 } 1790 1791 /* Set DMA start address. */ 1792 if (ISSET(hp->flags, SHF_USE_ADMA2_MASK) && cmd->c_data != NULL) { 1793 for (int seg = 0; seg < cmd->c_dmamap->dm_nsegs; seg++) { 1794 bus_addr_t paddr = 1795 cmd->c_dmamap->dm_segs[seg].ds_addr; 1796 uint16_t len = 1797 cmd->c_dmamap->dm_segs[seg].ds_len == 65536 ? 1798 0 : cmd->c_dmamap->dm_segs[seg].ds_len; 1799 uint16_t attr = 1800 SDHC_ADMA2_VALID | SDHC_ADMA2_ACT_TRANS; 1801 if (seg == cmd->c_dmamap->dm_nsegs - 1) { 1802 attr |= SDHC_ADMA2_END; 1803 } 1804 if (ISSET(hp->flags, SHF_USE_ADMA2_32)) { 1805 struct sdhc_adma2_descriptor32 *desc = 1806 hp->adma2; 1807 desc[seg].attribute = htole16(attr); 1808 desc[seg].length = htole16(len); 1809 desc[seg].address = htole32(paddr); 1810 } else { 1811 struct sdhc_adma2_descriptor64 *desc = 1812 hp->adma2; 1813 desc[seg].attribute = htole16(attr); 1814 desc[seg].length = htole16(len); 1815 desc[seg].address = htole32(paddr & 0xffffffff); 1816 desc[seg].address_hi = htole32( 1817 (uint64_t)paddr >> 32); 1818 } 1819 } 1820 if (ISSET(hp->flags, SHF_USE_ADMA2_32)) { 1821 struct sdhc_adma2_descriptor32 *desc = hp->adma2; 1822 desc[cmd->c_dmamap->dm_nsegs].attribute = htole16(0); 1823 } else { 1824 struct sdhc_adma2_descriptor64 *desc = hp->adma2; 1825 desc[cmd->c_dmamap->dm_nsegs].attribute = htole16(0); 1826 } 1827 bus_dmamap_sync(sc->sc_dmat, hp->adma_map, 0, PAGE_SIZE, 1828 BUS_DMASYNC_PREWRITE); 1829 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) { 1830 HCLR4(hp, SDHC_HOST_CTL, SDHC_USDHC_DMA_SELECT); 1831 HSET4(hp, SDHC_HOST_CTL, SDHC_USDHC_DMA_SELECT_ADMA2); 1832 } else { 1833 HCLR1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT); 1834 HSET1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT_ADMA2); 1835 } 1836 1837 const bus_addr_t desc_addr = hp->adma_map->dm_segs[0].ds_addr; 1838 1839 HWRITE4(hp, SDHC_ADMA_SYSTEM_ADDR, desc_addr & 0xffffffff); 1840 if (ISSET(hp->flags, SHF_USE_ADMA2_64)) { 1841 HWRITE4(hp, SDHC_ADMA_SYSTEM_ADDR + 4, 1842 (uint64_t)desc_addr >> 32); 1843 } 1844 } else if (ISSET(mode, SDHC_DMA_ENABLE) && 1845 !ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA)) { 1846 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) { 1847 HCLR4(hp, SDHC_HOST_CTL, SDHC_USDHC_DMA_SELECT); 1848 } 1849 HWRITE4(hp, SDHC_DMA_ADDR, cmd->c_dmamap->dm_segs[0].ds_addr); 1850 } 1851 1852 /* 1853 * Start a CPU data transfer. Writing to the high order byte 1854 * of the SDHC_COMMAND register triggers the SD command. (1.5) 1855 */ 1856 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) { 1857 HWRITE4(hp, SDHC_BLOCK_SIZE, blksize | (blkcount << 16)); 1858 HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg); 1859 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) { 1860 /* mode bits is in MIX_CTRL register on uSDHC */ 1861 HWRITE4(hp, SDHC_MIX_CTRL, mode | 1862 (HREAD4(hp, SDHC_MIX_CTRL) & ~SDHC_TRANSFER_MODE_MASK)); 1863 if (cmd->c_opcode == MMC_STOP_TRANSMISSION) 1864 command |= SDHC_COMMAND_TYPE_ABORT; 1865 HWRITE4(hp, SDHC_TRANSFER_MODE, command << 16); 1866 } else { 1867 HWRITE4(hp, SDHC_TRANSFER_MODE, mode | (command << 16)); 1868 } 1869 } else { 1870 HWRITE2(hp, SDHC_BLOCK_SIZE, blksize); 1871 HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount); 1872 HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg); 1873 HWRITE2(hp, SDHC_TRANSFER_MODE, mode); 1874 HWRITE2(hp, SDHC_COMMAND, command); 1875 } 1876 1877 return 0; 1878 } 1879 1880 static void 1881 sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd) 1882 { 1883 struct sdhc_softc *sc = hp->sc; 1884 int error; 1885 1886 KASSERT(mutex_owned(&hp->intr_lock)); 1887 1888 DPRINTF(1,("%s: data transfer: resp=%08x datalen=%u\n", HDEVNAME(hp), 1889 MMC_R1(cmd->c_resp), cmd->c_datalen)); 1890 1891 #ifdef SDHC_DEBUG 1892 /* XXX I forgot why I wanted to know when this happens :-( */ 1893 if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) && 1894 ISSET(MMC_R1(cmd->c_resp), 0xcb00)) { 1895 aprint_error_dev(hp->sc->sc_dev, 1896 "CMD52/53 error response flags %#x\n", 1897 MMC_R1(cmd->c_resp) & 0xff00); 1898 } 1899 #endif 1900 1901 if (cmd->c_dmamap != NULL) { 1902 if (hp->sc->sc_vendor_transfer_data_dma != NULL) { 1903 error = hp->sc->sc_vendor_transfer_data_dma(sc, cmd); 1904 if (error == 0 && !sdhc_wait_intr(hp, 1905 SDHC_TRANSFER_COMPLETE, SDHC_DMA_TIMEOUT, false)) { 1906 DPRINTF(1,("%s: timeout\n", __func__)); 1907 error = ETIMEDOUT; 1908 } 1909 } else { 1910 error = sdhc_transfer_data_dma(hp, cmd); 1911 } 1912 } else 1913 error = sdhc_transfer_data_pio(hp, cmd); 1914 if (error) 1915 cmd->c_error = error; 1916 SET(cmd->c_flags, SCF_ITSDONE); 1917 1918 DPRINTF(1,("%s: data transfer done (error=%d)\n", 1919 HDEVNAME(hp), cmd->c_error)); 1920 } 1921 1922 static int 1923 sdhc_transfer_data_dma(struct sdhc_host *hp, struct sdmmc_command *cmd) 1924 { 1925 bus_dma_segment_t *dm_segs = cmd->c_dmamap->dm_segs; 1926 bus_addr_t posaddr; 1927 bus_addr_t segaddr; 1928 bus_size_t seglen; 1929 u_int seg = 0; 1930 int error = 0; 1931 int status; 1932 1933 KASSERT(mutex_owned(&hp->intr_lock)); 1934 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_DMA_INTERRUPT); 1935 KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_DMA_INTERRUPT); 1936 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE); 1937 KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE); 1938 1939 for (;;) { 1940 status = sdhc_wait_intr(hp, 1941 SDHC_DMA_INTERRUPT|SDHC_TRANSFER_COMPLETE, 1942 SDHC_DMA_TIMEOUT, false); 1943 1944 if (status & SDHC_TRANSFER_COMPLETE) { 1945 break; 1946 } 1947 if (!status) { 1948 DPRINTF(1,("%s: timeout\n", __func__)); 1949 error = ETIMEDOUT; 1950 break; 1951 } 1952 1953 if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) { 1954 continue; 1955 } 1956 1957 if ((status & SDHC_DMA_INTERRUPT) == 0) { 1958 continue; 1959 } 1960 1961 /* DMA Interrupt (boundary crossing) */ 1962 1963 segaddr = dm_segs[seg].ds_addr; 1964 seglen = dm_segs[seg].ds_len; 1965 posaddr = HREAD4(hp, SDHC_DMA_ADDR); 1966 1967 if ((seg == (cmd->c_dmamap->dm_nsegs-1)) && (posaddr == (segaddr + seglen))) { 1968 continue; 1969 } 1970 if ((posaddr >= segaddr) && (posaddr < (segaddr + seglen))) 1971 HWRITE4(hp, SDHC_DMA_ADDR, posaddr); 1972 else if ((posaddr >= segaddr) && (posaddr == (segaddr + seglen)) && (seg + 1) < cmd->c_dmamap->dm_nsegs) 1973 HWRITE4(hp, SDHC_DMA_ADDR, dm_segs[++seg].ds_addr); 1974 KASSERT(seg < cmd->c_dmamap->dm_nsegs); 1975 } 1976 1977 if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) { 1978 bus_dmamap_sync(hp->sc->sc_dmat, hp->adma_map, 0, 1979 PAGE_SIZE, BUS_DMASYNC_POSTWRITE); 1980 } 1981 1982 return error; 1983 } 1984 1985 static int 1986 sdhc_transfer_data_pio(struct sdhc_host *hp, struct sdmmc_command *cmd) 1987 { 1988 uint8_t *data = cmd->c_data; 1989 void (*pio_func)(struct sdhc_host *, uint8_t *, u_int); 1990 u_int len, datalen; 1991 u_int imask; 1992 u_int pmask; 1993 int error = 0; 1994 1995 KASSERT(mutex_owned(&hp->intr_lock)); 1996 1997 if (ISSET(cmd->c_flags, SCF_CMD_READ)) { 1998 imask = SDHC_BUFFER_READ_READY; 1999 pmask = SDHC_BUFFER_READ_ENABLE; 2000 if (ISSET(hp->sc->sc_flags, 2001 SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) { 2002 pio_func = esdhc_read_data_pio; 2003 } else { 2004 pio_func = sdhc_read_data_pio; 2005 } 2006 } else { 2007 imask = SDHC_BUFFER_WRITE_READY; 2008 pmask = SDHC_BUFFER_WRITE_ENABLE; 2009 if (ISSET(hp->sc->sc_flags, 2010 SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) { 2011 pio_func = esdhc_write_data_pio; 2012 } else { 2013 pio_func = sdhc_write_data_pio; 2014 } 2015 } 2016 datalen = cmd->c_datalen; 2017 2018 KASSERT(mutex_owned(&hp->intr_lock)); 2019 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & imask); 2020 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE); 2021 KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE); 2022 2023 while (datalen > 0) { 2024 if (!ISSET(HREAD4(hp, SDHC_PRESENT_STATE), pmask)) { 2025 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) { 2026 HSET4(hp, SDHC_NINTR_SIGNAL_EN, imask); 2027 } else { 2028 HSET2(hp, SDHC_NINTR_SIGNAL_EN, imask); 2029 } 2030 if (!sdhc_wait_intr(hp, imask, SDHC_BUFFER_TIMEOUT, false)) { 2031 DPRINTF(1,("%s: timeout\n", __func__)); 2032 error = ETIMEDOUT; 2033 break; 2034 } 2035 2036 error = sdhc_wait_state(hp, pmask, pmask); 2037 if (error) 2038 break; 2039 } 2040 2041 len = MIN(datalen, cmd->c_blklen); 2042 (*pio_func)(hp, data, len); 2043 DPRINTF(2,("%s: pio data transfer %u @ %p\n", 2044 HDEVNAME(hp), len, data)); 2045 2046 data += len; 2047 datalen -= len; 2048 } 2049 2050 if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE, 2051 SDHC_TRANSFER_TIMEOUT, false)) { 2052 DPRINTF(1,("%s: timeout for transfer\n", __func__)); 2053 error = ETIMEDOUT; 2054 } 2055 2056 return error; 2057 } 2058 2059 static void 2060 sdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen) 2061 { 2062 2063 if (((__uintptr_t)data & 3) == 0) { 2064 while (datalen > 3) { 2065 *(uint32_t *)data = le32toh(HREAD4(hp, SDHC_DATA)); 2066 data += 4; 2067 datalen -= 4; 2068 } 2069 if (datalen > 1) { 2070 *(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA)); 2071 data += 2; 2072 datalen -= 2; 2073 } 2074 if (datalen > 0) { 2075 *data = HREAD1(hp, SDHC_DATA); 2076 data += 1; 2077 datalen -= 1; 2078 } 2079 } else if (((__uintptr_t)data & 1) == 0) { 2080 while (datalen > 1) { 2081 *(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA)); 2082 data += 2; 2083 datalen -= 2; 2084 } 2085 if (datalen > 0) { 2086 *data = HREAD1(hp, SDHC_DATA); 2087 data += 1; 2088 datalen -= 1; 2089 } 2090 } else { 2091 while (datalen > 0) { 2092 *data = HREAD1(hp, SDHC_DATA); 2093 data += 1; 2094 datalen -= 1; 2095 } 2096 } 2097 } 2098 2099 static void 2100 sdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen) 2101 { 2102 2103 if (((__uintptr_t)data & 3) == 0) { 2104 while (datalen > 3) { 2105 HWRITE4(hp, SDHC_DATA, htole32(*(uint32_t *)data)); 2106 data += 4; 2107 datalen -= 4; 2108 } 2109 if (datalen > 1) { 2110 HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data)); 2111 data += 2; 2112 datalen -= 2; 2113 } 2114 if (datalen > 0) { 2115 HWRITE1(hp, SDHC_DATA, *data); 2116 data += 1; 2117 datalen -= 1; 2118 } 2119 } else if (((__uintptr_t)data & 1) == 0) { 2120 while (datalen > 1) { 2121 HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data)); 2122 data += 2; 2123 datalen -= 2; 2124 } 2125 if (datalen > 0) { 2126 HWRITE1(hp, SDHC_DATA, *data); 2127 data += 1; 2128 datalen -= 1; 2129 } 2130 } else { 2131 while (datalen > 0) { 2132 HWRITE1(hp, SDHC_DATA, *data); 2133 data += 1; 2134 datalen -= 1; 2135 } 2136 } 2137 } 2138 2139 static void 2140 esdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen) 2141 { 2142 uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS); 2143 uint32_t v; 2144 2145 const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_READ_SHIFT) & SDHC_WATERMARK_READ_MASK; 2146 size_t count = 0; 2147 2148 while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) { 2149 if (count == 0) { 2150 /* 2151 * If we've drained "watermark" words, we need to wait 2152 * a little bit so the read FIFO can refill. 2153 */ 2154 sdmmc_delay(10); 2155 count = watermark; 2156 } 2157 v = HREAD4(hp, SDHC_DATA); 2158 v = le32toh(v); 2159 *(uint32_t *)data = v; 2160 data += 4; 2161 datalen -= 4; 2162 status = HREAD2(hp, SDHC_NINTR_STATUS); 2163 count--; 2164 } 2165 if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) { 2166 if (count == 0) { 2167 sdmmc_delay(10); 2168 } 2169 v = HREAD4(hp, SDHC_DATA); 2170 v = le32toh(v); 2171 do { 2172 *data++ = v; 2173 v >>= 8; 2174 } while (--datalen > 0); 2175 } 2176 } 2177 2178 static void 2179 esdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen) 2180 { 2181 uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS); 2182 uint32_t v; 2183 2184 const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_WRITE_SHIFT) & SDHC_WATERMARK_WRITE_MASK; 2185 size_t count = watermark; 2186 2187 while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) { 2188 if (count == 0) { 2189 sdmmc_delay(10); 2190 count = watermark; 2191 } 2192 v = *(uint32_t *)data; 2193 v = htole32(v); 2194 HWRITE4(hp, SDHC_DATA, v); 2195 data += 4; 2196 datalen -= 4; 2197 status = HREAD2(hp, SDHC_NINTR_STATUS); 2198 count--; 2199 } 2200 if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) { 2201 if (count == 0) { 2202 sdmmc_delay(10); 2203 } 2204 v = *(uint32_t *)data; 2205 v = htole32(v); 2206 HWRITE4(hp, SDHC_DATA, v); 2207 } 2208 } 2209 2210 /* Prepare for another command. */ 2211 static int 2212 sdhc_soft_reset(struct sdhc_host *hp, int mask) 2213 { 2214 int timo; 2215 2216 KASSERT(mutex_owned(&hp->intr_lock)); 2217 2218 DPRINTF(1,("%s: software reset reg=%08x\n", HDEVNAME(hp), mask)); 2219 2220 /* Request the reset. */ 2221 HWRITE1(hp, SDHC_SOFTWARE_RESET, mask); 2222 2223 /* 2224 * If necessary, wait for the controller to set the bits to 2225 * acknowledge the reset. 2226 */ 2227 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_WAIT_RESET) && 2228 ISSET(mask, (SDHC_RESET_DAT | SDHC_RESET_CMD))) { 2229 for (timo = 10000; timo > 0; timo--) { 2230 if (ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask)) 2231 break; 2232 /* Short delay because I worry we may miss it... */ 2233 sdmmc_delay(1); 2234 } 2235 if (timo == 0) { 2236 DPRINTF(1,("%s: timeout for reset on\n", __func__)); 2237 return ETIMEDOUT; 2238 } 2239 } 2240 2241 /* 2242 * Wait for the controller to clear the bits to indicate that 2243 * the reset has completed. 2244 */ 2245 for (timo = 10; timo > 0; timo--) { 2246 if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask)) 2247 break; 2248 sdmmc_delay(10000); 2249 } 2250 if (timo == 0) { 2251 DPRINTF(1,("%s: timeout reg=%08x\n", HDEVNAME(hp), 2252 HREAD1(hp, SDHC_SOFTWARE_RESET))); 2253 return ETIMEDOUT; 2254 } 2255 2256 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) { 2257 HSET4(hp, SDHC_DMA_CTL, SDHC_DMA_SNOOP); 2258 } 2259 2260 return 0; 2261 } 2262 2263 static int 2264 sdhc_wait_intr(struct sdhc_host *hp, int mask, int timo, bool probing) 2265 { 2266 int status, error, nointr; 2267 2268 KASSERT(mutex_owned(&hp->intr_lock)); 2269 2270 mask |= SDHC_ERROR_INTERRUPT; 2271 2272 nointr = 0; 2273 status = hp->intr_status & mask; 2274 while (status == 0) { 2275 if (cv_timedwait(&hp->intr_cv, &hp->intr_lock, timo) 2276 == EWOULDBLOCK) { 2277 nointr = 1; 2278 break; 2279 } 2280 status = hp->intr_status & mask; 2281 } 2282 error = hp->intr_error_status; 2283 2284 DPRINTF(2,("%s: intr status %#x error %#x\n", HDEVNAME(hp), status, 2285 error)); 2286 2287 hp->intr_status &= ~status; 2288 hp->intr_error_status &= ~error; 2289 2290 if (ISSET(status, SDHC_ERROR_INTERRUPT)) { 2291 if (ISSET(error, SDHC_DMA_ERROR)) 2292 device_printf(hp->sc->sc_dev,"dma error\n"); 2293 if (ISSET(error, SDHC_ADMA_ERROR)) 2294 device_printf(hp->sc->sc_dev,"adma error\n"); 2295 if (ISSET(error, SDHC_AUTO_CMD12_ERROR)) 2296 device_printf(hp->sc->sc_dev,"auto_cmd12 error\n"); 2297 if (ISSET(error, SDHC_CURRENT_LIMIT_ERROR)) 2298 device_printf(hp->sc->sc_dev,"current limit error\n"); 2299 if (ISSET(error, SDHC_DATA_END_BIT_ERROR)) 2300 device_printf(hp->sc->sc_dev,"data end bit error\n"); 2301 if (ISSET(error, SDHC_DATA_CRC_ERROR)) 2302 device_printf(hp->sc->sc_dev,"data crc error\n"); 2303 if (ISSET(error, SDHC_DATA_TIMEOUT_ERROR)) 2304 device_printf(hp->sc->sc_dev,"data timeout error\n"); 2305 if (ISSET(error, SDHC_CMD_INDEX_ERROR)) 2306 device_printf(hp->sc->sc_dev,"cmd index error\n"); 2307 if (ISSET(error, SDHC_CMD_END_BIT_ERROR)) 2308 device_printf(hp->sc->sc_dev,"cmd end bit error\n"); 2309 if (ISSET(error, SDHC_CMD_CRC_ERROR)) 2310 device_printf(hp->sc->sc_dev,"cmd crc error\n"); 2311 if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR)) { 2312 if (!probing) 2313 device_printf(hp->sc->sc_dev,"cmd timeout error\n"); 2314 #ifdef SDHC_DEBUG 2315 else if (sdhcdebug > 0) 2316 device_printf(hp->sc->sc_dev,"cmd timeout (expected)\n"); 2317 #endif 2318 } 2319 if ((error & ~SDHC_EINTR_STATUS_MASK) != 0) 2320 device_printf(hp->sc->sc_dev,"vendor error %#x\n", 2321 (error & ~SDHC_EINTR_STATUS_MASK)); 2322 if (error == 0) 2323 device_printf(hp->sc->sc_dev,"no error\n"); 2324 2325 /* Command timeout has higher priority than command complete. */ 2326 if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR)) 2327 CLR(status, SDHC_COMMAND_COMPLETE); 2328 2329 /* Transfer complete has higher priority than data timeout. */ 2330 if (ISSET(status, SDHC_TRANSFER_COMPLETE)) 2331 CLR(error, SDHC_DATA_TIMEOUT_ERROR); 2332 } 2333 2334 if (nointr || 2335 (ISSET(status, SDHC_ERROR_INTERRUPT) && error)) { 2336 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) 2337 (void)sdhc_soft_reset(hp, SDHC_RESET_CMD|SDHC_RESET_DAT); 2338 hp->intr_error_status = 0; 2339 status = 0; 2340 } 2341 2342 return status; 2343 } 2344 2345 /* 2346 * Established by attachment driver at interrupt priority IPL_SDMMC. 2347 */ 2348 int 2349 sdhc_intr(void *arg) 2350 { 2351 struct sdhc_softc *sc = (struct sdhc_softc *)arg; 2352 struct sdhc_host *hp; 2353 int done = 0; 2354 uint16_t status; 2355 uint16_t error; 2356 2357 /* We got an interrupt, but we don't know from which slot. */ 2358 for (size_t host = 0; host < sc->sc_nhosts; host++) { 2359 hp = sc->sc_host[host]; 2360 if (hp == NULL) 2361 continue; 2362 2363 mutex_enter(&hp->intr_lock); 2364 2365 if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) { 2366 /* Find out which interrupts are pending. */ 2367 uint32_t xstatus = HREAD4(hp, SDHC_NINTR_STATUS); 2368 status = xstatus; 2369 error = xstatus >> 16; 2370 if (ISSET(sc->sc_flags, SDHC_FLAG_USDHC) && 2371 (xstatus & SDHC_TRANSFER_COMPLETE) && 2372 !(xstatus & SDHC_DMA_INTERRUPT)) { 2373 /* read again due to uSDHC errata */ 2374 status = xstatus = HREAD4(hp, 2375 SDHC_NINTR_STATUS); 2376 error = xstatus >> 16; 2377 } 2378 if (ISSET(sc->sc_flags, 2379 SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) { 2380 if ((error & SDHC_NINTR_STATUS_MASK) != 0) 2381 SET(status, SDHC_ERROR_INTERRUPT); 2382 } 2383 if (error) 2384 xstatus |= SDHC_ERROR_INTERRUPT; 2385 else if (!ISSET(status, SDHC_NINTR_STATUS_MASK)) 2386 goto next_port; /* no interrupt for us */ 2387 /* Acknowledge the interrupts we are about to handle. */ 2388 HWRITE4(hp, SDHC_NINTR_STATUS, xstatus); 2389 } else { 2390 /* Find out which interrupts are pending. */ 2391 error = 0; 2392 status = HREAD2(hp, SDHC_NINTR_STATUS); 2393 if (!ISSET(status, SDHC_NINTR_STATUS_MASK)) 2394 goto next_port; /* no interrupt for us */ 2395 /* Acknowledge the interrupts we are about to handle. */ 2396 HWRITE2(hp, SDHC_NINTR_STATUS, status); 2397 if (ISSET(status, SDHC_ERROR_INTERRUPT)) { 2398 /* Acknowledge error interrupts. */ 2399 error = HREAD2(hp, SDHC_EINTR_STATUS); 2400 HWRITE2(hp, SDHC_EINTR_STATUS, error); 2401 } 2402 } 2403 2404 DPRINTF(2,("%s: interrupt status=%x error=%x\n", HDEVNAME(hp), 2405 status, error)); 2406 2407 /* Claim this interrupt. */ 2408 done = 1; 2409 2410 if (ISSET(status, SDHC_ERROR_INTERRUPT) && 2411 ISSET(error, SDHC_ADMA_ERROR)) { 2412 uint8_t adma_err = HREAD1(hp, SDHC_ADMA_ERROR_STATUS); 2413 printf("%s: ADMA error, status %02x\n", HDEVNAME(hp), 2414 adma_err); 2415 } 2416 2417 /* 2418 * Wake up the sdmmc event thread to scan for cards. 2419 */ 2420 if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)) { 2421 if (hp->sdmmc != NULL) { 2422 sdmmc_needs_discover(hp->sdmmc); 2423 } 2424 if (ISSET(sc->sc_flags, 2425 SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) { 2426 HCLR4(hp, SDHC_NINTR_STATUS_EN, 2427 status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)); 2428 HCLR4(hp, SDHC_NINTR_SIGNAL_EN, 2429 status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)); 2430 } 2431 } 2432 2433 /* 2434 * Schedule re-tuning process (UHS). 2435 */ 2436 if (ISSET(status, SDHC_RETUNING_EVENT)) { 2437 atomic_swap_uint(&hp->tuning_timer_pending, 1); 2438 } 2439 2440 /* 2441 * Wake up the blocking process to service command 2442 * related interrupt(s). 2443 */ 2444 if (ISSET(status, SDHC_COMMAND_COMPLETE|SDHC_ERROR_INTERRUPT| 2445 SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY| 2446 SDHC_TRANSFER_COMPLETE|SDHC_DMA_INTERRUPT)) { 2447 hp->intr_error_status |= error; 2448 hp->intr_status |= status; 2449 if (ISSET(sc->sc_flags, 2450 SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) { 2451 HCLR4(hp, SDHC_NINTR_SIGNAL_EN, 2452 status & (SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY)); 2453 } 2454 cv_broadcast(&hp->intr_cv); 2455 } 2456 2457 /* 2458 * Service SD card interrupts. 2459 */ 2460 if (!ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC) 2461 && ISSET(status, SDHC_CARD_INTERRUPT)) { 2462 DPRINTF(0,("%s: card interrupt\n", HDEVNAME(hp))); 2463 HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT); 2464 sdmmc_card_intr(hp->sdmmc); 2465 } 2466 next_port: 2467 mutex_exit(&hp->intr_lock); 2468 } 2469 2470 return done; 2471 } 2472 2473 kmutex_t * 2474 sdhc_host_lock(struct sdhc_host *hp) 2475 { 2476 return &hp->intr_lock; 2477 } 2478 2479 uint8_t 2480 sdhc_host_read_1(struct sdhc_host *hp, int reg) 2481 { 2482 return HREAD1(hp, reg); 2483 } 2484 2485 uint16_t 2486 sdhc_host_read_2(struct sdhc_host *hp, int reg) 2487 { 2488 return HREAD2(hp, reg); 2489 } 2490 2491 uint32_t 2492 sdhc_host_read_4(struct sdhc_host *hp, int reg) 2493 { 2494 return HREAD4(hp, reg); 2495 } 2496 2497 void 2498 sdhc_host_write_1(struct sdhc_host *hp, int reg, uint8_t val) 2499 { 2500 HWRITE1(hp, reg, val); 2501 } 2502 2503 void 2504 sdhc_host_write_2(struct sdhc_host *hp, int reg, uint16_t val) 2505 { 2506 HWRITE2(hp, reg, val); 2507 } 2508 2509 void 2510 sdhc_host_write_4(struct sdhc_host *hp, int reg, uint32_t val) 2511 { 2512 HWRITE4(hp, reg, val); 2513 } 2514 2515 #ifdef SDHC_DEBUG 2516 void 2517 sdhc_dump_regs(struct sdhc_host *hp) 2518 { 2519 2520 printf("0x%02x PRESENT_STATE: %x\n", SDHC_PRESENT_STATE, 2521 HREAD4(hp, SDHC_PRESENT_STATE)); 2522 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) 2523 printf("0x%02x POWER_CTL: %x\n", SDHC_POWER_CTL, 2524 HREAD1(hp, SDHC_POWER_CTL)); 2525 printf("0x%02x NINTR_STATUS: %x\n", SDHC_NINTR_STATUS, 2526 HREAD2(hp, SDHC_NINTR_STATUS)); 2527 printf("0x%02x EINTR_STATUS: %x\n", SDHC_EINTR_STATUS, 2528 HREAD2(hp, SDHC_EINTR_STATUS)); 2529 printf("0x%02x NINTR_STATUS_EN: %x\n", SDHC_NINTR_STATUS_EN, 2530 HREAD2(hp, SDHC_NINTR_STATUS_EN)); 2531 printf("0x%02x EINTR_STATUS_EN: %x\n", SDHC_EINTR_STATUS_EN, 2532 HREAD2(hp, SDHC_EINTR_STATUS_EN)); 2533 printf("0x%02x NINTR_SIGNAL_EN: %x\n", SDHC_NINTR_SIGNAL_EN, 2534 HREAD2(hp, SDHC_NINTR_SIGNAL_EN)); 2535 printf("0x%02x EINTR_SIGNAL_EN: %x\n", SDHC_EINTR_SIGNAL_EN, 2536 HREAD2(hp, SDHC_EINTR_SIGNAL_EN)); 2537 printf("0x%02x CAPABILITIES: %x\n", SDHC_CAPABILITIES, 2538 HREAD4(hp, SDHC_CAPABILITIES)); 2539 printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES, 2540 HREAD4(hp, SDHC_MAX_CAPABILITIES)); 2541 } 2542 #endif 2543