xref: /netbsd-src/sys/dev/sdmmc/sdhc.c (revision 181254a7b1bdde6873432bffef2d2decc4b5c22f)
1 /*	$NetBSD: sdhc.c,v 1.107 2020/07/15 15:57:52 msaitoh Exp $	*/
2 /*	$OpenBSD: sdhc.c,v 1.25 2009/01/13 19:44:20 grange Exp $	*/
3 
4 /*
5  * Copyright (c) 2006 Uwe Stuehler <uwe@openbsd.org>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 /*
21  * SD Host Controller driver based on the SD Host Controller Standard
22  * Simplified Specification Version 1.00 (www.sdcard.com).
23  */
24 
25 #include <sys/cdefs.h>
26 __KERNEL_RCSID(0, "$NetBSD: sdhc.c,v 1.107 2020/07/15 15:57:52 msaitoh Exp $");
27 
28 #ifdef _KERNEL_OPT
29 #include "opt_sdmmc.h"
30 #endif
31 
32 #include <sys/param.h>
33 #include <sys/device.h>
34 #include <sys/kernel.h>
35 #include <sys/malloc.h>
36 #include <sys/systm.h>
37 #include <sys/mutex.h>
38 #include <sys/condvar.h>
39 #include <sys/atomic.h>
40 
41 #include <dev/sdmmc/sdhcreg.h>
42 #include <dev/sdmmc/sdhcvar.h>
43 #include <dev/sdmmc/sdmmcchip.h>
44 #include <dev/sdmmc/sdmmcreg.h>
45 #include <dev/sdmmc/sdmmcvar.h>
46 
47 #ifdef SDHC_DEBUG
48 int sdhcdebug = 1;
49 #define DPRINTF(n,s)	do { if ((n) <= sdhcdebug) printf s; } while (0)
50 void	sdhc_dump_regs(struct sdhc_host *);
51 #else
52 #define DPRINTF(n,s)	do {} while (0)
53 #endif
54 
55 #define SDHC_COMMAND_TIMEOUT	hz
56 #define SDHC_BUFFER_TIMEOUT	hz
57 #define SDHC_TRANSFER_TIMEOUT	hz
58 #define SDHC_DMA_TIMEOUT	(hz*3)
59 #define SDHC_TUNING_TIMEOUT	hz
60 
61 struct sdhc_host {
62 	struct sdhc_softc *sc;		/* host controller device */
63 
64 	bus_space_tag_t iot;		/* host register set tag */
65 	bus_space_handle_t ioh;		/* host register set handle */
66 	bus_size_t ios;			/* host register space size */
67 	bus_dma_tag_t dmat;		/* host DMA tag */
68 
69 	device_t sdmmc;			/* generic SD/MMC device */
70 
71 	u_int clkbase;			/* base clock frequency in KHz */
72 	int maxblklen;			/* maximum block length */
73 	uint32_t ocr;			/* OCR value from capabilities */
74 
75 	uint8_t regs[14];		/* host controller state */
76 
77 	uint16_t intr_status;		/* soft interrupt status */
78 	uint16_t intr_error_status;	/* soft error status */
79 	kmutex_t intr_lock;
80 	kcondvar_t intr_cv;
81 
82 	callout_t tuning_timer;
83 	int tuning_timing;
84 	u_int tuning_timer_count;
85 	u_int tuning_timer_pending;
86 
87 	int specver;			/* spec. version */
88 
89 	uint32_t flags;			/* flags for this host */
90 #define SHF_USE_DMA		0x0001
91 #define SHF_USE_4BIT_MODE	0x0002
92 #define SHF_USE_8BIT_MODE	0x0004
93 #define SHF_MODE_DMAEN		0x0008 /* needs SDHC_DMA_ENABLE in mode */
94 #define SHF_USE_ADMA2_32	0x0010
95 #define SHF_USE_ADMA2_64	0x0020
96 #define SHF_USE_ADMA2_MASK	0x0030
97 
98 	bus_dmamap_t		adma_map;
99 	bus_dma_segment_t	adma_segs[1];
100 	void			*adma2;
101 
102 	uint8_t			vdd;	/* last vdd setting */
103 };
104 
105 #define HDEVNAME(hp)	(device_xname((hp)->sc->sc_dev))
106 
107 static uint8_t
108 hread1(struct sdhc_host *hp, bus_size_t reg)
109 {
110 
111 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
112 		return bus_space_read_1(hp->iot, hp->ioh, reg);
113 	return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 3));
114 }
115 
116 static uint16_t
117 hread2(struct sdhc_host *hp, bus_size_t reg)
118 {
119 
120 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
121 		return bus_space_read_2(hp->iot, hp->ioh, reg);
122 	return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 2));
123 }
124 
125 #define HREAD1(hp, reg)		hread1(hp, reg)
126 #define HREAD2(hp, reg)		hread2(hp, reg)
127 #define HREAD4(hp, reg)		\
128 	(bus_space_read_4((hp)->iot, (hp)->ioh, (reg)))
129 
130 
131 static void
132 hwrite1(struct sdhc_host *hp, bus_size_t o, uint8_t val)
133 {
134 
135 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
136 		bus_space_write_1(hp->iot, hp->ioh, o, val);
137 	} else {
138 		const size_t shift = 8 * (o & 3);
139 		o &= -4;
140 		uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
141 		tmp = (val << shift) | (tmp & ~(0xff << shift));
142 		bus_space_write_4(hp->iot, hp->ioh, o, tmp);
143 	}
144 }
145 
146 static void
147 hwrite2(struct sdhc_host *hp, bus_size_t o, uint16_t val)
148 {
149 
150 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
151 		bus_space_write_2(hp->iot, hp->ioh, o, val);
152 	} else {
153 		const size_t shift = 8 * (o & 2);
154 		o &= -4;
155 		uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
156 		tmp = (val << shift) | (tmp & ~(0xffff << shift));
157 		bus_space_write_4(hp->iot, hp->ioh, o, tmp);
158 	}
159 }
160 
161 static void
162 hwrite4(struct sdhc_host *hp, bus_size_t o, uint32_t val)
163 {
164 
165 	bus_space_write_4(hp->iot, hp->ioh, o, val);
166 }
167 
168 #define HWRITE1(hp, reg, val)		hwrite1(hp, reg, val)
169 #define HWRITE2(hp, reg, val)		hwrite2(hp, reg, val)
170 #define HWRITE4(hp, reg, val)		hwrite4(hp, reg, val)
171 
172 #define HCLR1(hp, reg, bits)						\
173 	do if ((bits) != 0) HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits)); while (0)
174 #define HCLR2(hp, reg, bits)						\
175 	do if ((bits) != 0) HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits)); while (0)
176 #define HCLR4(hp, reg, bits)						\
177 	do if ((bits) != 0) HWRITE4((hp), (reg), HREAD4((hp), (reg)) & ~(bits)); while (0)
178 #define HSET1(hp, reg, bits)						\
179 	do if ((bits) != 0) HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits)); while (0)
180 #define HSET2(hp, reg, bits)						\
181 	do if ((bits) != 0) HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits)); while (0)
182 #define HSET4(hp, reg, bits)						\
183 	do if ((bits) != 0) HWRITE4((hp), (reg), HREAD4((hp), (reg)) | (bits)); while (0)
184 
185 static int	sdhc_host_reset(sdmmc_chipset_handle_t);
186 static int	sdhc_host_reset1(sdmmc_chipset_handle_t);
187 static uint32_t	sdhc_host_ocr(sdmmc_chipset_handle_t);
188 static int	sdhc_host_maxblklen(sdmmc_chipset_handle_t);
189 static int	sdhc_card_detect(sdmmc_chipset_handle_t);
190 static int	sdhc_write_protect(sdmmc_chipset_handle_t);
191 static int	sdhc_bus_power(sdmmc_chipset_handle_t, uint32_t);
192 static int	sdhc_bus_clock_ddr(sdmmc_chipset_handle_t, int, bool);
193 static int	sdhc_bus_width(sdmmc_chipset_handle_t, int);
194 static int	sdhc_bus_rod(sdmmc_chipset_handle_t, int);
195 static void	sdhc_card_enable_intr(sdmmc_chipset_handle_t, int);
196 static void	sdhc_card_intr_ack(sdmmc_chipset_handle_t);
197 static void	sdhc_exec_command(sdmmc_chipset_handle_t,
198 		    struct sdmmc_command *);
199 static int	sdhc_signal_voltage(sdmmc_chipset_handle_t, int);
200 static int	sdhc_execute_tuning1(struct sdhc_host *, int);
201 static int	sdhc_execute_tuning(sdmmc_chipset_handle_t, int);
202 static void	sdhc_tuning_timer(void *);
203 static void	sdhc_hw_reset(sdmmc_chipset_handle_t);
204 static int	sdhc_start_command(struct sdhc_host *, struct sdmmc_command *);
205 static int	sdhc_wait_state(struct sdhc_host *, uint32_t, uint32_t);
206 static int	sdhc_soft_reset(struct sdhc_host *, int);
207 static int	sdhc_wait_intr(struct sdhc_host *, int, int, bool);
208 static void	sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *);
209 static int	sdhc_transfer_data_dma(struct sdhc_host *, struct sdmmc_command *);
210 static int	sdhc_transfer_data_pio(struct sdhc_host *, struct sdmmc_command *);
211 static void	sdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
212 static void	sdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
213 static void	esdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
214 static void	esdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
215 
216 static struct sdmmc_chip_functions sdhc_functions = {
217 	/* host controller reset */
218 	.host_reset = sdhc_host_reset,
219 
220 	/* host controller capabilities */
221 	.host_ocr = sdhc_host_ocr,
222 	.host_maxblklen = sdhc_host_maxblklen,
223 
224 	/* card detection */
225 	.card_detect = sdhc_card_detect,
226 
227 	/* write protect */
228 	.write_protect = sdhc_write_protect,
229 
230 	/* bus power, clock frequency, width and ROD(OpenDrain/PushPull) */
231 	.bus_power = sdhc_bus_power,
232 	.bus_clock = NULL,	/* see sdhc_bus_clock_ddr */
233 	.bus_width = sdhc_bus_width,
234 	.bus_rod = sdhc_bus_rod,
235 
236 	/* command execution */
237 	.exec_command = sdhc_exec_command,
238 
239 	/* card interrupt */
240 	.card_enable_intr = sdhc_card_enable_intr,
241 	.card_intr_ack = sdhc_card_intr_ack,
242 
243 	/* UHS functions */
244 	.signal_voltage = sdhc_signal_voltage,
245 	.bus_clock_ddr = sdhc_bus_clock_ddr,
246 	.execute_tuning = sdhc_execute_tuning,
247 	.hw_reset = sdhc_hw_reset,
248 };
249 
250 static int
251 sdhc_cfprint(void *aux, const char *pnp)
252 {
253 	const struct sdmmcbus_attach_args * const saa = aux;
254 	const struct sdhc_host * const hp = saa->saa_sch;
255 
256 	if (pnp) {
257 		aprint_normal("sdmmc at %s", pnp);
258 	}
259 	for (size_t host = 0; host < hp->sc->sc_nhosts; host++) {
260 		if (hp->sc->sc_host[host] == hp) {
261 			aprint_normal(" slot %zu", host);
262 		}
263 	}
264 
265 	return UNCONF;
266 }
267 
268 /*
269  * Called by attachment driver.  For each SD card slot there is one SD
270  * host controller standard register set. (1.3)
271  */
272 int
273 sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot,
274     bus_space_handle_t ioh, bus_size_t iosize)
275 {
276 	struct sdmmcbus_attach_args saa;
277 	struct sdhc_host *hp;
278 	uint32_t caps, caps2;
279 	uint16_t sdhcver;
280 	int error;
281 
282 	/* Allocate one more host structure. */
283 	hp = malloc(sizeof(struct sdhc_host), M_DEVBUF, M_WAITOK|M_ZERO);
284 	if (hp == NULL) {
285 		aprint_error_dev(sc->sc_dev,
286 		    "couldn't alloc memory (sdhc host)\n");
287 		goto err1;
288 	}
289 	sc->sc_host[sc->sc_nhosts++] = hp;
290 
291 	/* Fill in the new host structure. */
292 	hp->sc = sc;
293 	hp->iot = iot;
294 	hp->ioh = ioh;
295 	hp->ios = iosize;
296 	hp->dmat = sc->sc_dmat;
297 
298 	mutex_init(&hp->intr_lock, MUTEX_DEFAULT, IPL_SDMMC);
299 	cv_init(&hp->intr_cv, "sdhcintr");
300 	callout_init(&hp->tuning_timer, CALLOUT_MPSAFE);
301 	callout_setfunc(&hp->tuning_timer, sdhc_tuning_timer, hp);
302 
303 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
304 		sdhcver = SDHC_SPEC_VERS_300 << SDHC_SPEC_VERS_SHIFT;
305 	} else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
306 		sdhcver = HREAD4(hp, SDHC_ESDHC_HOST_CTL_VERSION);
307 	} else if (iosize <= SDHC_HOST_CTL_VERSION) {
308 		sdhcver = SDHC_SPEC_NOVERS << SDHC_SPEC_VERS_SHIFT;
309 	} else {
310 		sdhcver = HREAD2(hp, SDHC_HOST_CTL_VERSION);
311 	}
312 	aprint_normal_dev(sc->sc_dev, "SDHC ");
313 	hp->specver = SDHC_SPEC_VERSION(sdhcver);
314 	switch (SDHC_SPEC_VERSION(sdhcver)) {
315 	case SDHC_SPEC_VERS_100:
316 		aprint_normal("1.0");
317 		break;
318 	case SDHC_SPEC_VERS_200:
319 		aprint_normal("2.0");
320 		break;
321 	case SDHC_SPEC_VERS_300:
322 		aprint_normal("3.0");
323 		break;
324 	case SDHC_SPEC_VERS_400:
325 		aprint_normal("4.0");
326 		break;
327 	case SDHC_SPEC_VERS_410:
328 		aprint_normal("4.1");
329 		break;
330 	case SDHC_SPEC_VERS_420:
331 		aprint_normal("4.2");
332 		break;
333 	case SDHC_SPEC_NOVERS:
334 		hp->specver = -1;
335 		aprint_normal("NO-VERS");
336 		break;
337 	default:
338 		aprint_normal("unknown version(0x%x)",
339 		    SDHC_SPEC_VERSION(sdhcver));
340 		break;
341 	}
342 	if (SDHC_SPEC_VERSION(sdhcver) != SDHC_SPEC_NOVERS)
343 		aprint_normal(", rev %u", SDHC_VENDOR_VERSION(sdhcver));
344 
345 	/*
346 	 * Reset the host controller and enable interrupts.
347 	 */
348 	(void)sdhc_host_reset(hp);
349 
350 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
351 		/* init uSDHC registers */
352 		HWRITE4(hp, SDHC_MMC_BOOT, 0);
353 		HWRITE4(hp, SDHC_HOST_CTL, SDHC_USDHC_BURST_LEN_EN |
354 		    SDHC_USDHC_HOST_CTL_RESV23 | SDHC_USDHC_EMODE_LE);
355 		HWRITE4(hp, SDHC_WATERMARK_LEVEL,
356 		    (0x10 << SDHC_WATERMARK_WR_BRST_SHIFT) |
357 		    (0x40 << SDHC_WATERMARK_WRITE_SHIFT) |
358 		    (0x10 << SDHC_WATERMARK_RD_BRST_SHIFT) |
359 		    (0x40 << SDHC_WATERMARK_READ_SHIFT));
360 		HSET4(hp, SDHC_VEND_SPEC,
361 		    SDHC_VEND_SPEC_MBO |
362 		    SDHC_VEND_SPEC_CARD_CLK_SOFT_EN |
363 		    SDHC_VEND_SPEC_IPG_PERCLK_SOFT_EN |
364 		    SDHC_VEND_SPEC_HCLK_SOFT_EN |
365 		    SDHC_VEND_SPEC_IPG_CLK_SOFT_EN |
366 		    SDHC_VEND_SPEC_AC12_WR_CHKBUSY_EN |
367 		    SDHC_VEND_SPEC_FRC_SDCLK_ON);
368 	}
369 
370 	/* Determine host capabilities. */
371 	if (ISSET(sc->sc_flags, SDHC_FLAG_HOSTCAPS)) {
372 		caps = sc->sc_caps;
373 		caps2 = sc->sc_caps2;
374 	} else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
375 		/* uSDHC capability register is little bit different */
376 		caps = HREAD4(hp, SDHC_CAPABILITIES);
377 		caps |= SDHC_8BIT_SUPP;
378 		if (caps & SDHC_ADMA1_SUPP)
379 			caps |= SDHC_ADMA2_SUPP;
380 		sc->sc_caps = caps;
381 		/* uSDHC has no SDHC_CAPABILITIES2 register */
382 		caps2 = sc->sc_caps2 = SDHC_SDR50_SUPP | SDHC_DDR50_SUPP;
383 	} else {
384 		caps = sc->sc_caps = HREAD4(hp, SDHC_CAPABILITIES);
385 		if (hp->specver >= SDHC_SPEC_VERS_300) {
386 			caps2 = sc->sc_caps2 = HREAD4(hp, SDHC_CAPABILITIES2);
387 		} else {
388 			caps2 = sc->sc_caps2 = 0;
389 		}
390 	}
391 
392 	const u_int retuning_mode = (caps2 >> SDHC_RETUNING_MODES_SHIFT) &
393 	    SDHC_RETUNING_MODES_MASK;
394 	if (retuning_mode == SDHC_RETUNING_MODE_1) {
395 		hp->tuning_timer_count = (caps2 >> SDHC_TIMER_COUNT_SHIFT) &
396 		    SDHC_TIMER_COUNT_MASK;
397 		if (hp->tuning_timer_count == 0xf)
398 			hp->tuning_timer_count = 0;
399 		if (hp->tuning_timer_count)
400 			hp->tuning_timer_count =
401 			    1 << (hp->tuning_timer_count - 1);
402 	}
403 
404 	/*
405 	 * Use DMA if the host system and the controller support it.
406 	 * Suports integrated or external DMA egine, with or without
407 	 * SDHC_DMA_ENABLE in the command.
408 	 */
409 	if (ISSET(sc->sc_flags, SDHC_FLAG_FORCE_DMA) ||
410 	    (ISSET(sc->sc_flags, SDHC_FLAG_USE_DMA &&
411 	     ISSET(caps, SDHC_DMA_SUPPORT)))) {
412 		SET(hp->flags, SHF_USE_DMA);
413 
414 		if (ISSET(sc->sc_flags, SDHC_FLAG_USE_ADMA2) &&
415 		    ISSET(caps, SDHC_ADMA2_SUPP)) {
416 			SET(hp->flags, SHF_MODE_DMAEN);
417 			/*
418 			 * 64-bit mode was present in the 2.00 spec, removed
419 			 * from 3.00, and re-added in 4.00 with a different
420 			 * descriptor layout. We only support 2.00 and 3.00
421 			 * descriptors for now.
422 			 */
423 			if (hp->specver == SDHC_SPEC_VERS_200 &&
424 			    ISSET(caps, SDHC_64BIT_SYS_BUS)) {
425 				SET(hp->flags, SHF_USE_ADMA2_64);
426 				aprint_normal(", 64-bit ADMA2");
427 			} else {
428 				SET(hp->flags, SHF_USE_ADMA2_32);
429 				aprint_normal(", 32-bit ADMA2");
430 			}
431 		} else {
432 			if (!ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA) ||
433 			    ISSET(sc->sc_flags, SDHC_FLAG_EXTDMA_DMAEN))
434 				SET(hp->flags, SHF_MODE_DMAEN);
435 			if (sc->sc_vendor_transfer_data_dma) {
436 				aprint_normal(", platform DMA");
437 			} else {
438 				aprint_normal(", SDMA");
439 			}
440 		}
441 	} else {
442 		aprint_normal(", PIO");
443 	}
444 
445 	/*
446 	 * Determine the base clock frequency. (2.2.24)
447 	 */
448 	if (hp->specver >= SDHC_SPEC_VERS_300) {
449 		hp->clkbase = SDHC_BASE_V3_FREQ_KHZ(caps);
450 	} else {
451 		hp->clkbase = SDHC_BASE_FREQ_KHZ(caps);
452 	}
453 	if (hp->clkbase == 0 ||
454 	    ISSET(sc->sc_flags, SDHC_FLAG_NO_CLKBASE)) {
455 		if (sc->sc_clkbase == 0) {
456 			/* The attachment driver must tell us. */
457 			aprint_error_dev(sc->sc_dev,
458 			    "unknown base clock frequency\n");
459 			goto err;
460 		}
461 		hp->clkbase = sc->sc_clkbase;
462 	}
463 	if (hp->clkbase < 10000 || hp->clkbase > 10000 * 256) {
464 		/* SDHC 1.0 supports only 10-63 MHz. */
465 		aprint_error_dev(sc->sc_dev,
466 		    "base clock frequency out of range: %u MHz\n",
467 		    hp->clkbase / 1000);
468 		goto err;
469 	}
470 	aprint_normal(", %u kHz", hp->clkbase);
471 
472 	/*
473 	 * XXX Set the data timeout counter value according to
474 	 * capabilities. (2.2.15)
475 	 */
476 	HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
477 #if 1
478 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
479 		HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
480 #endif
481 
482 	if (ISSET(caps, SDHC_EMBEDDED_SLOT))
483 		aprint_normal(", embedded slot");
484 
485 	/*
486 	 * Determine SD bus voltage levels supported by the controller.
487 	 */
488 	aprint_normal(",");
489 	if (ISSET(caps, SDHC_HIGH_SPEED_SUPP)) {
490 		SET(hp->ocr, MMC_OCR_HCS);
491 		aprint_normal(" HS");
492 	}
493 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_1_8_V)) {
494 		if (ISSET(caps2, SDHC_SDR50_SUPP)) {
495 			SET(hp->ocr, MMC_OCR_S18A);
496 			aprint_normal(" SDR50");
497 		}
498 		if (ISSET(caps2, SDHC_DDR50_SUPP)) {
499 			SET(hp->ocr, MMC_OCR_S18A);
500 			aprint_normal(" DDR50");
501 		}
502 		if (ISSET(caps2, SDHC_SDR104_SUPP)) {
503 			SET(hp->ocr, MMC_OCR_S18A);
504 			aprint_normal(" SDR104 HS200");
505 		}
506 		if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V)) {
507 			SET(hp->ocr, MMC_OCR_1_65V_1_95V);
508 			aprint_normal(" 1.8V");
509 		}
510 	}
511 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V)) {
512 		SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V);
513 		aprint_normal(" 3.0V");
514 	}
515 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V)) {
516 		SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V);
517 		aprint_normal(" 3.3V");
518 	}
519 	if (hp->specver >= SDHC_SPEC_VERS_300) {
520 		aprint_normal(", re-tuning mode %d", retuning_mode + 1);
521 		if (hp->tuning_timer_count)
522 			aprint_normal(" (%us timer)", hp->tuning_timer_count);
523 	}
524 
525 	/*
526 	 * Determine the maximum block length supported by the host
527 	 * controller. (2.2.24)
528 	 */
529 	switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) {
530 	case SDHC_MAX_BLK_LEN_512:
531 		hp->maxblklen = 512;
532 		break;
533 
534 	case SDHC_MAX_BLK_LEN_1024:
535 		hp->maxblklen = 1024;
536 		break;
537 
538 	case SDHC_MAX_BLK_LEN_2048:
539 		hp->maxblklen = 2048;
540 		break;
541 
542 	case SDHC_MAX_BLK_LEN_4096:
543 		hp->maxblklen = 4096;
544 		break;
545 
546 	default:
547 		aprint_error_dev(sc->sc_dev, "max block length unknown\n");
548 		goto err;
549 	}
550 	aprint_normal(", %u byte blocks", hp->maxblklen);
551 	aprint_normal("\n");
552 
553 	if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
554 		int rseg;
555 
556 		/* Allocate ADMA2 descriptor memory */
557 		error = bus_dmamem_alloc(sc->sc_dmat, PAGE_SIZE, PAGE_SIZE,
558 		    PAGE_SIZE, hp->adma_segs, 1, &rseg, BUS_DMA_WAITOK);
559 		if (error) {
560 			aprint_error_dev(sc->sc_dev,
561 			    "ADMA2 dmamem_alloc failed (%d)\n", error);
562 			goto adma_done;
563 		}
564 		error = bus_dmamem_map(sc->sc_dmat, hp->adma_segs, rseg,
565 		    PAGE_SIZE, (void **)&hp->adma2, BUS_DMA_WAITOK);
566 		if (error) {
567 			aprint_error_dev(sc->sc_dev,
568 			    "ADMA2 dmamem_map failed (%d)\n", error);
569 			goto adma_done;
570 		}
571 		error = bus_dmamap_create(sc->sc_dmat, PAGE_SIZE, 1, PAGE_SIZE,
572 		    0, BUS_DMA_WAITOK, &hp->adma_map);
573 		if (error) {
574 			aprint_error_dev(sc->sc_dev,
575 			    "ADMA2 dmamap_create failed (%d)\n", error);
576 			goto adma_done;
577 		}
578 		error = bus_dmamap_load(sc->sc_dmat, hp->adma_map,
579 		    hp->adma2, PAGE_SIZE, NULL,
580 		    BUS_DMA_WAITOK|BUS_DMA_WRITE);
581 		if (error) {
582 			aprint_error_dev(sc->sc_dev,
583 			    "ADMA2 dmamap_load failed (%d)\n", error);
584 			goto adma_done;
585 		}
586 
587 		memset(hp->adma2, 0, PAGE_SIZE);
588 
589 adma_done:
590 		if (error)
591 			CLR(hp->flags, SHF_USE_ADMA2_MASK);
592 	}
593 
594 	/*
595 	 * Attach the generic SD/MMC bus driver.  (The bus driver must
596 	 * not invoke any chipset functions before it is attached.)
597 	 */
598 	memset(&saa, 0, sizeof(saa));
599 	saa.saa_busname = "sdmmc";
600 	saa.saa_sct = &sdhc_functions;
601 	saa.saa_sch = hp;
602 	saa.saa_dmat = hp->dmat;
603 	saa.saa_clkmax = hp->clkbase;
604 	if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_CGM))
605 		saa.saa_clkmin = hp->clkbase / 256 / 2046;
606 	else if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_DVS))
607 		saa.saa_clkmin = hp->clkbase / 256 / 16;
608 	else if (hp->sc->sc_clkmsk != 0)
609 		saa.saa_clkmin = hp->clkbase / (hp->sc->sc_clkmsk >>
610 		    (ffs(hp->sc->sc_clkmsk) - 1));
611 	else if (hp->specver >= SDHC_SPEC_VERS_300)
612 		saa.saa_clkmin = hp->clkbase / 0x3ff;
613 	else
614 		saa.saa_clkmin = hp->clkbase / 256;
615 	if (!ISSET(sc->sc_flags, SDHC_FLAG_NO_AUTO_STOP))
616 		saa.saa_caps |= SMC_CAPS_AUTO_STOP;
617 	saa.saa_caps |= SMC_CAPS_4BIT_MODE;
618 	if (ISSET(sc->sc_flags, SDHC_FLAG_8BIT_MODE))
619 		saa.saa_caps |= SMC_CAPS_8BIT_MODE;
620 	if (ISSET(caps, SDHC_HIGH_SPEED_SUPP))
621 		saa.saa_caps |= SMC_CAPS_SD_HIGHSPEED;
622 	if (ISSET(caps2, SDHC_SDR104_SUPP))
623 		saa.saa_caps |= SMC_CAPS_UHS_SDR104 |
624 				SMC_CAPS_UHS_SDR50 |
625 				SMC_CAPS_MMC_HS200;
626 	if (ISSET(caps2, SDHC_SDR50_SUPP))
627 		saa.saa_caps |= SMC_CAPS_UHS_SDR50;
628 	if (ISSET(caps2, SDHC_DDR50_SUPP))
629 		saa.saa_caps |= SMC_CAPS_UHS_DDR50;
630 	if (ISSET(hp->flags, SHF_USE_DMA)) {
631 		saa.saa_caps |= SMC_CAPS_DMA;
632 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
633 			saa.saa_caps |= SMC_CAPS_MULTI_SEG_DMA;
634 	}
635 	if (ISSET(sc->sc_flags, SDHC_FLAG_SINGLE_ONLY))
636 		saa.saa_caps |= SMC_CAPS_SINGLE_ONLY;
637 	if (ISSET(sc->sc_flags, SDHC_FLAG_POLL_CARD_DET))
638 		saa.saa_caps |= SMC_CAPS_POLL_CARD_DET;
639 
640 	if (ISSET(sc->sc_flags, SDHC_FLAG_BROKEN_ADMA2_ZEROLEN))
641 		saa.saa_max_seg = 65535;
642 
643 	hp->sdmmc = config_found(sc->sc_dev, &saa, sdhc_cfprint);
644 
645 	return 0;
646 
647 err:
648 	callout_destroy(&hp->tuning_timer);
649 	cv_destroy(&hp->intr_cv);
650 	mutex_destroy(&hp->intr_lock);
651 	free(hp, M_DEVBUF);
652 	sc->sc_host[--sc->sc_nhosts] = NULL;
653 err1:
654 	return 1;
655 }
656 
657 int
658 sdhc_detach(struct sdhc_softc *sc, int flags)
659 {
660 	struct sdhc_host *hp;
661 	int rv = 0;
662 
663 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
664 		hp = sc->sc_host[n];
665 		if (hp == NULL)
666 			continue;
667 		if (hp->sdmmc != NULL) {
668 			rv = config_detach(hp->sdmmc, flags);
669 			if (rv)
670 				break;
671 			hp->sdmmc = NULL;
672 		}
673 		/* disable interrupts */
674 		if ((flags & DETACH_FORCE) == 0) {
675 			mutex_enter(&hp->intr_lock);
676 			if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
677 				HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
678 			} else {
679 				HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
680 			}
681 			sdhc_soft_reset(hp, SDHC_RESET_ALL);
682 			mutex_exit(&hp->intr_lock);
683 		}
684 		callout_halt(&hp->tuning_timer, NULL);
685 		callout_destroy(&hp->tuning_timer);
686 		cv_destroy(&hp->intr_cv);
687 		mutex_destroy(&hp->intr_lock);
688 		if (hp->ios > 0) {
689 			bus_space_unmap(hp->iot, hp->ioh, hp->ios);
690 			hp->ios = 0;
691 		}
692 		if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
693 			bus_dmamap_unload(sc->sc_dmat, hp->adma_map);
694 			bus_dmamap_destroy(sc->sc_dmat, hp->adma_map);
695 			bus_dmamem_unmap(sc->sc_dmat, hp->adma2, PAGE_SIZE);
696 			bus_dmamem_free(sc->sc_dmat, hp->adma_segs, 1);
697 		}
698 		free(hp, M_DEVBUF);
699 		sc->sc_host[n] = NULL;
700 	}
701 
702 	return rv;
703 }
704 
705 bool
706 sdhc_suspend(device_t dev, const pmf_qual_t *qual)
707 {
708 	struct sdhc_softc *sc = device_private(dev);
709 	struct sdhc_host *hp;
710 	size_t i;
711 
712 	/* XXX poll for command completion or suspend command
713 	 * in progress */
714 
715 	/* Save the host controller state. */
716 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
717 		hp = sc->sc_host[n];
718 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
719 			for (i = 0; i < sizeof hp->regs; i += 4) {
720 				uint32_t v = HREAD4(hp, i);
721 				hp->regs[i + 0] = (v >> 0);
722 				hp->regs[i + 1] = (v >> 8);
723 				if (i + 3 < sizeof hp->regs) {
724 					hp->regs[i + 2] = (v >> 16);
725 					hp->regs[i + 3] = (v >> 24);
726 				}
727 			}
728 		} else {
729 			for (i = 0; i < sizeof hp->regs; i++) {
730 				hp->regs[i] = HREAD1(hp, i);
731 			}
732 		}
733 	}
734 	return true;
735 }
736 
737 bool
738 sdhc_resume(device_t dev, const pmf_qual_t *qual)
739 {
740 	struct sdhc_softc *sc = device_private(dev);
741 	struct sdhc_host *hp;
742 	size_t i;
743 
744 	/* Restore the host controller state. */
745 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
746 		hp = sc->sc_host[n];
747 		(void)sdhc_host_reset(hp);
748 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
749 			for (i = 0; i < sizeof hp->regs; i += 4) {
750 				if (i + 3 < sizeof hp->regs) {
751 					HWRITE4(hp, i,
752 					    (hp->regs[i + 0] << 0)
753 					    | (hp->regs[i + 1] << 8)
754 					    | (hp->regs[i + 2] << 16)
755 					    | (hp->regs[i + 3] << 24));
756 				} else {
757 					HWRITE4(hp, i,
758 					    (hp->regs[i + 0] << 0)
759 					    | (hp->regs[i + 1] << 8));
760 				}
761 			}
762 		} else {
763 			for (i = 0; i < sizeof hp->regs; i++) {
764 				HWRITE1(hp, i, hp->regs[i]);
765 			}
766 		}
767 	}
768 	return true;
769 }
770 
771 bool
772 sdhc_shutdown(device_t dev, int flags)
773 {
774 	struct sdhc_softc *sc = device_private(dev);
775 	struct sdhc_host *hp;
776 
777 	/* XXX chip locks up if we don't disable it before reboot. */
778 	for (size_t i = 0; i < sc->sc_nhosts; i++) {
779 		hp = sc->sc_host[i];
780 		(void)sdhc_host_reset(hp);
781 	}
782 	return true;
783 }
784 
785 /*
786  * Reset the host controller.  Called during initialization, when
787  * cards are removed, upon resume, and during error recovery.
788  */
789 static int
790 sdhc_host_reset1(sdmmc_chipset_handle_t sch)
791 {
792 	struct sdhc_host *hp = (struct sdhc_host *)sch;
793 	uint32_t sdhcimask;
794 	int error;
795 
796 	KASSERT(mutex_owned(&hp->intr_lock));
797 
798 	/* Disable all interrupts. */
799 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
800 		HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
801 	} else {
802 		HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
803 	}
804 
805 	/* Let sdhc_bus_power restore power */
806 	hp->vdd = 0;
807 
808 	/*
809 	 * Reset the entire host controller and wait up to 100ms for
810 	 * the controller to clear the reset bit.
811 	 */
812 	error = sdhc_soft_reset(hp, SDHC_RESET_ALL);
813 	if (error)
814 		goto out;
815 
816 	/* Set data timeout counter value to max for now. */
817 	HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
818 #if 1
819 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
820 		HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
821 #endif
822 
823 	/* Enable interrupts. */
824 	sdhcimask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION |
825 	    SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY |
826 	    SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT |
827 	    SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE;
828 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
829 		sdhcimask |= SDHC_EINTR_STATUS_MASK << 16;
830 		HWRITE4(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
831 		sdhcimask ^=
832 		    (SDHC_EINTR_STATUS_MASK ^ SDHC_EINTR_SIGNAL_MASK) << 16;
833 		sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
834 		HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
835 	} else {
836 		HWRITE2(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
837 		HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK);
838 		sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
839 		HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
840 		HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK);
841 	}
842 
843 out:
844 	return error;
845 }
846 
847 static int
848 sdhc_host_reset(sdmmc_chipset_handle_t sch)
849 {
850 	struct sdhc_host *hp = (struct sdhc_host *)sch;
851 	int error;
852 
853 	mutex_enter(&hp->intr_lock);
854 	error = sdhc_host_reset1(sch);
855 	mutex_exit(&hp->intr_lock);
856 
857 	return error;
858 }
859 
860 static uint32_t
861 sdhc_host_ocr(sdmmc_chipset_handle_t sch)
862 {
863 	struct sdhc_host *hp = (struct sdhc_host *)sch;
864 
865 	return hp->ocr;
866 }
867 
868 static int
869 sdhc_host_maxblklen(sdmmc_chipset_handle_t sch)
870 {
871 	struct sdhc_host *hp = (struct sdhc_host *)sch;
872 
873 	return hp->maxblklen;
874 }
875 
876 /*
877  * Return non-zero if the card is currently inserted.
878  */
879 static int
880 sdhc_card_detect(sdmmc_chipset_handle_t sch)
881 {
882 	struct sdhc_host *hp = (struct sdhc_host *)sch;
883 	int r;
884 
885 	if (hp->sc->sc_vendor_card_detect)
886 		return (*hp->sc->sc_vendor_card_detect)(hp->sc);
887 
888 	r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED);
889 
890 	return r ? 1 : 0;
891 }
892 
893 /*
894  * Return non-zero if the card is currently write-protected.
895  */
896 static int
897 sdhc_write_protect(sdmmc_chipset_handle_t sch)
898 {
899 	struct sdhc_host *hp = (struct sdhc_host *)sch;
900 	int r;
901 
902 	if (hp->sc->sc_vendor_write_protect)
903 		return (*hp->sc->sc_vendor_write_protect)(hp->sc);
904 
905 	r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_WRITE_PROTECT_SWITCH);
906 
907 	return r ? 0 : 1;
908 }
909 
910 /*
911  * Set or change SD bus voltage and enable or disable SD bus power.
912  * Return zero on success.
913  */
914 static int
915 sdhc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr)
916 {
917 	struct sdhc_host *hp = (struct sdhc_host *)sch;
918 	uint8_t vdd;
919 	int error = 0;
920 	const uint32_t pcmask =
921 	    ~(SDHC_BUS_POWER | (SDHC_VOLTAGE_MASK << SDHC_VOLTAGE_SHIFT));
922 	uint32_t reg;
923 
924 	mutex_enter(&hp->intr_lock);
925 
926 	/*
927 	 * Disable bus power before voltage change.
928 	 */
929 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)
930 	    && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_PWR0)) {
931 		hp->vdd = 0;
932 		HWRITE1(hp, SDHC_POWER_CTL, 0);
933 	}
934 
935 	/* If power is disabled, reset the host and return now. */
936 	if (ocr == 0) {
937 		(void)sdhc_host_reset1(hp);
938 		callout_halt(&hp->tuning_timer, &hp->intr_lock);
939 		goto out;
940 	}
941 
942 	/*
943 	 * Select the lowest voltage according to capabilities.
944 	 */
945 	ocr &= hp->ocr;
946 	if (ISSET(ocr, MMC_OCR_1_65V_1_95V)) {
947 		vdd = SDHC_VOLTAGE_1_8V;
948 	} else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V)) {
949 		vdd = SDHC_VOLTAGE_3_0V;
950 	} else if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V)) {
951 		vdd = SDHC_VOLTAGE_3_3V;
952 	} else {
953 		/* Unsupported voltage level requested. */
954 		error = EINVAL;
955 		goto out;
956 	}
957 
958 	/*
959 	 * Did voltage change ?
960 	 */
961 	if (vdd == hp->vdd)
962 		goto out;
963 
964 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
965 		/*
966 		 * Enable bus power.  Wait at least 1 ms (or 74 clocks) plus
967 		 * voltage ramp until power rises.
968 		 */
969 
970 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_SINGLE_POWER_WRITE)) {
971 			HWRITE1(hp, SDHC_POWER_CTL,
972 			    (vdd << SDHC_VOLTAGE_SHIFT) | SDHC_BUS_POWER);
973 		} else {
974 			reg = HREAD1(hp, SDHC_POWER_CTL) & pcmask;
975 			HWRITE1(hp, SDHC_POWER_CTL, reg);
976 			sdmmc_delay(1);
977 			reg |= (vdd << SDHC_VOLTAGE_SHIFT);
978 			HWRITE1(hp, SDHC_POWER_CTL, reg);
979 			sdmmc_delay(1);
980 			reg |= SDHC_BUS_POWER;
981 			HWRITE1(hp, SDHC_POWER_CTL, reg);
982 			sdmmc_delay(10000);
983 		}
984 
985 		/*
986 		 * The host system may not power the bus due to battery low,
987 		 * etc.  In that case, the host controller should clear the
988 		 * bus power bit.
989 		 */
990 		if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) {
991 			error = ENXIO;
992 			goto out;
993 		}
994 	}
995 
996 	/* power successfully changed */
997 	hp->vdd = vdd;
998 
999 out:
1000 	mutex_exit(&hp->intr_lock);
1001 
1002 	return error;
1003 }
1004 
1005 /*
1006  * Return the smallest possible base clock frequency divisor value
1007  * for the CLOCK_CTL register to produce `freq' (KHz).
1008  */
1009 static bool
1010 sdhc_clock_divisor(struct sdhc_host *hp, u_int freq, u_int *divp)
1011 {
1012 	u_int div;
1013 
1014 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_CGM)) {
1015 		for (div = hp->clkbase / freq; div <= 0x3ff; div++) {
1016 			if ((hp->clkbase / div) <= freq) {
1017 				*divp = SDHC_SDCLK_CGM
1018 				    | ((div & 0x300) << SDHC_SDCLK_XDIV_SHIFT)
1019 				    | ((div & 0x0ff) << SDHC_SDCLK_DIV_SHIFT);
1020 				//freq = hp->clkbase / div;
1021 				return true;
1022 			}
1023 		}
1024 		/* No divisor found. */
1025 		return false;
1026 	}
1027 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_DVS)) {
1028 		u_int dvs = (hp->clkbase + freq - 1) / freq;
1029 		u_int roundup = dvs & 1;
1030 		for (dvs >>= 1, div = 1; div <= 256; div <<= 1, dvs >>= 1) {
1031 			if (dvs + roundup <= 16) {
1032 				dvs += roundup - 1;
1033 				*divp = (div << SDHC_SDCLK_DIV_SHIFT)
1034 				    |   (dvs << SDHC_SDCLK_DVS_SHIFT);
1035 				DPRINTF(2,
1036 				    ("%s: divisor for freq %u is %u * %u\n",
1037 				    HDEVNAME(hp), freq, div * 2, dvs + 1));
1038 				//freq = hp->clkbase / (div * 2) * (dvs + 1);
1039 				return true;
1040 			}
1041 			/*
1042 			 * If we drop bits, we need to round up the divisor.
1043 			 */
1044 			roundup |= dvs & 1;
1045 		}
1046 		/* No divisor found. */
1047 		return false;
1048 	}
1049 	if (hp->sc->sc_clkmsk != 0) {
1050 		div = howmany(hp->clkbase, freq);
1051 		if (div > (hp->sc->sc_clkmsk >> (ffs(hp->sc->sc_clkmsk) - 1)))
1052 			return false;
1053 		*divp = div << (ffs(hp->sc->sc_clkmsk) - 1);
1054 		//freq = hp->clkbase / div;
1055 		return true;
1056 	}
1057 	if (hp->specver >= SDHC_SPEC_VERS_300) {
1058 		div = howmany(hp->clkbase, freq);
1059 		div = div > 1 ? howmany(div, 2) : 0;
1060 		if (div > 0x3ff)
1061 			return false;
1062 		*divp = (((div >> 8) & SDHC_SDCLK_XDIV_MASK)
1063 			 << SDHC_SDCLK_XDIV_SHIFT) |
1064 			(((div >> 0) & SDHC_SDCLK_DIV_MASK)
1065 			 << SDHC_SDCLK_DIV_SHIFT);
1066 		//freq = hp->clkbase / (div ? div * 2 : 1);
1067 		return true;
1068 	} else {
1069 		for (div = 1; div <= 256; div *= 2) {
1070 			if ((hp->clkbase / div) <= freq) {
1071 				*divp = (div / 2) << SDHC_SDCLK_DIV_SHIFT;
1072 				//freq = hp->clkbase / div;
1073 				return true;
1074 			}
1075 		}
1076 		/* No divisor found. */
1077 		return false;
1078 	}
1079 	/* No divisor found. */
1080 	return false;
1081 }
1082 
1083 /*
1084  * Set or change SDCLK frequency or disable the SD clock.
1085  * Return zero on success.
1086  */
1087 static int
1088 sdhc_bus_clock_ddr(sdmmc_chipset_handle_t sch, int freq, bool ddr)
1089 {
1090 	struct sdhc_host *hp = (struct sdhc_host *)sch;
1091 	u_int div;
1092 	u_int timo;
1093 	int16_t reg;
1094 	int error = 0;
1095 	bool present __diagused;
1096 
1097 	mutex_enter(&hp->intr_lock);
1098 
1099 #ifdef DIAGNOSTIC
1100 	present = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK);
1101 
1102 	/* Must not stop the clock if commands are in progress. */
1103 	if (present && sdhc_card_detect(hp)) {
1104 		aprint_normal_dev(hp->sc->sc_dev,
1105 		    "%s: command in progress\n", __func__);
1106 	}
1107 #endif
1108 
1109 	if (hp->sc->sc_vendor_bus_clock) {
1110 		error = (*hp->sc->sc_vendor_bus_clock)(hp->sc, freq);
1111 		if (error != 0)
1112 			goto out;
1113 	}
1114 
1115 	/*
1116 	 * Stop SD clock before changing the frequency.
1117 	 */
1118 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
1119 		HCLR4(hp, SDHC_VEND_SPEC,
1120 		    SDHC_VEND_SPEC_CARD_CLK_SOFT_EN |
1121 		    SDHC_VEND_SPEC_FRC_SDCLK_ON);
1122 		if (freq == SDMMC_SDCLK_OFF) {
1123 			goto out;
1124 		}
1125 	} else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1126 		HCLR4(hp, SDHC_CLOCK_CTL, 0xfff8);
1127 		if (freq == SDMMC_SDCLK_OFF) {
1128 			HSET4(hp, SDHC_CLOCK_CTL, 0x80f0);
1129 			goto out;
1130 		}
1131 	} else {
1132 		HCLR2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
1133 		if (freq == SDMMC_SDCLK_OFF)
1134 			goto out;
1135 	}
1136 
1137 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
1138 		if (ddr)
1139 			HSET4(hp, SDHC_MIX_CTRL, SDHC_USDHC_DDR_EN);
1140 		else
1141 			HCLR4(hp, SDHC_MIX_CTRL, SDHC_USDHC_DDR_EN);
1142 	} else if (hp->specver >= SDHC_SPEC_VERS_300) {
1143 		HCLR2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_MASK);
1144 		if (freq > 100000) {
1145 			HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR104);
1146 		} else if (freq > 50000) {
1147 			if (ddr) {
1148 				HSET2(hp, SDHC_HOST_CTL2,
1149 				    SDHC_UHS_MODE_SELECT_DDR50);
1150 			} else {
1151 				HSET2(hp, SDHC_HOST_CTL2,
1152 				    SDHC_UHS_MODE_SELECT_SDR50);
1153 			}
1154 		} else if (freq > 25000) {
1155 			if (ddr) {
1156 				HSET2(hp, SDHC_HOST_CTL2,
1157 				    SDHC_UHS_MODE_SELECT_DDR50);
1158 			} else {
1159 				HSET2(hp, SDHC_HOST_CTL2,
1160 				    SDHC_UHS_MODE_SELECT_SDR25);
1161 			}
1162 		} else if (freq > 400) {
1163 			HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR12);
1164 		}
1165 	}
1166 
1167 	/*
1168 	 * Slow down Ricoh 5U823 controller that isn't reliable
1169 	 * at 100MHz bus clock.
1170 	 */
1171 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_SLOW_SDR50)) {
1172 		if (freq == 100000)
1173 			--freq;
1174 	}
1175 
1176 	/*
1177 	 * Set the minimum base clock frequency divisor.
1178 	 */
1179 	if (!sdhc_clock_divisor(hp, freq, &div)) {
1180 		/* Invalid base clock frequency or `freq' value. */
1181 		aprint_error_dev(hp->sc->sc_dev,
1182 			"Invalid bus clock %d kHz\n", freq);
1183 		error = EINVAL;
1184 		goto out;
1185 	}
1186 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
1187 		if (ddr) {
1188 			/* in ddr mode, divisor >>= 1 */
1189 			div = ((div >> 1) & (SDHC_SDCLK_DIV_MASK <<
1190 			    SDHC_SDCLK_DIV_SHIFT)) |
1191 			    (div & (SDHC_SDCLK_DVS_MASK <<
1192 			    SDHC_SDCLK_DVS_SHIFT));
1193 		}
1194 		for (timo = 1000; timo > 0; timo--) {
1195 			if (ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_SDSTB))
1196 				break;
1197 			sdmmc_delay(10);
1198 		}
1199 		HWRITE4(hp, SDHC_CLOCK_CTL,
1200 		    div | (SDHC_TIMEOUT_MAX << 16) | 0x0f);
1201 	} else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1202 		HWRITE4(hp, SDHC_CLOCK_CTL,
1203 		    div | (SDHC_TIMEOUT_MAX << 16));
1204 	} else {
1205 		reg = HREAD2(hp, SDHC_CLOCK_CTL);
1206 		reg &= (SDHC_INTCLK_STABLE | SDHC_INTCLK_ENABLE);
1207 		HWRITE2(hp, SDHC_CLOCK_CTL, reg | div);
1208 	}
1209 
1210 	/*
1211 	 * Start internal clock.  Wait 10ms for stabilization.
1212 	 */
1213 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
1214 		HSET4(hp, SDHC_VEND_SPEC,
1215 		    SDHC_VEND_SPEC_CARD_CLK_SOFT_EN |
1216 		    SDHC_VEND_SPEC_FRC_SDCLK_ON);
1217 	} else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1218 		sdmmc_delay(10000);
1219 		HSET4(hp, SDHC_CLOCK_CTL,
1220 		    8 | SDHC_INTCLK_ENABLE | SDHC_INTCLK_STABLE);
1221 	} else {
1222 		HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE);
1223 		for (timo = 1000; timo > 0; timo--) {
1224 			if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL),
1225 			    SDHC_INTCLK_STABLE))
1226 				break;
1227 			sdmmc_delay(10);
1228 		}
1229 		if (timo == 0) {
1230 			error = ETIMEDOUT;
1231 			DPRINTF(1,("%s: timeout\n", __func__));
1232 			goto out;
1233 		}
1234 	}
1235 
1236 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
1237 		HSET1(hp, SDHC_SOFTWARE_RESET, SDHC_INIT_ACTIVE);
1238 		/*
1239 		 * Sending 80 clocks at 400kHz takes 200us.
1240 		 * So delay for that time + slop and then
1241 		 * check a few times for completion.
1242 		 */
1243 		sdmmc_delay(210);
1244 		for (timo = 10; timo > 0; timo--) {
1245 			if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET),
1246 			    SDHC_INIT_ACTIVE))
1247 				break;
1248 			sdmmc_delay(10);
1249 		}
1250 		DPRINTF(2,("%s: %u init spins\n", __func__, 10 - timo));
1251 
1252 		/*
1253 		 * Enable SD clock.
1254 		 */
1255 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
1256 			HSET4(hp, SDHC_VEND_SPEC,
1257 			    SDHC_VEND_SPEC_CARD_CLK_SOFT_EN |
1258 			    SDHC_VEND_SPEC_FRC_SDCLK_ON);
1259 		} else {
1260 			HSET4(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
1261 		}
1262 	} else {
1263 		/*
1264 		 * Enable SD clock.
1265 		 */
1266 		HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
1267 
1268 		if (freq > 25000 &&
1269 		    !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_HS_BIT))
1270 			HSET1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
1271 		else
1272 			HCLR1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
1273 	}
1274 
1275 	if (hp->sc->sc_vendor_bus_clock_post) {
1276 		error = (*hp->sc->sc_vendor_bus_clock_post)(hp->sc, freq);
1277 		if (error != 0)
1278 			goto out;
1279 	}
1280 
1281 out:
1282 	mutex_exit(&hp->intr_lock);
1283 
1284 	return error;
1285 }
1286 
1287 static int
1288 sdhc_bus_width(sdmmc_chipset_handle_t sch, int width)
1289 {
1290 	struct sdhc_host *hp = (struct sdhc_host *)sch;
1291 	int reg;
1292 
1293 	switch (width) {
1294 	case 1:
1295 	case 4:
1296 		break;
1297 
1298 	case 8:
1299 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_8BIT_MODE))
1300 			break;
1301 		/* FALLTHROUGH */
1302 	default:
1303 		DPRINTF(0,("%s: unsupported bus width (%d)\n",
1304 		    HDEVNAME(hp), width));
1305 		return 1;
1306 	}
1307 
1308 	if (hp->sc->sc_vendor_bus_width) {
1309 		const int error = hp->sc->sc_vendor_bus_width(hp->sc, width);
1310 		if (error != 0)
1311 			return error;
1312 	}
1313 
1314 	mutex_enter(&hp->intr_lock);
1315 
1316 	reg = HREAD1(hp, SDHC_HOST_CTL);
1317 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
1318 		reg &= ~(SDHC_4BIT_MODE|SDHC_ESDHC_8BIT_MODE);
1319 		if (width == 4)
1320 			reg |= SDHC_4BIT_MODE;
1321 		else if (width == 8)
1322 			reg |= SDHC_ESDHC_8BIT_MODE;
1323 	} else {
1324 		reg &= ~SDHC_4BIT_MODE;
1325 		if (hp->specver >= SDHC_SPEC_VERS_300) {
1326 			reg &= ~SDHC_8BIT_MODE;
1327 		}
1328 		if (width == 4) {
1329 			reg |= SDHC_4BIT_MODE;
1330 		} else if (width == 8 && hp->specver >= SDHC_SPEC_VERS_300) {
1331 			reg |= SDHC_8BIT_MODE;
1332 		}
1333 	}
1334 	HWRITE1(hp, SDHC_HOST_CTL, reg);
1335 
1336 	mutex_exit(&hp->intr_lock);
1337 
1338 	return 0;
1339 }
1340 
1341 static int
1342 sdhc_bus_rod(sdmmc_chipset_handle_t sch, int on)
1343 {
1344 	struct sdhc_host *hp = (struct sdhc_host *)sch;
1345 
1346 	if (hp->sc->sc_vendor_rod)
1347 		return (*hp->sc->sc_vendor_rod)(hp->sc, on);
1348 
1349 	return 0;
1350 }
1351 
1352 static void
1353 sdhc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable)
1354 {
1355 	struct sdhc_host *hp = (struct sdhc_host *)sch;
1356 
1357 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
1358 		mutex_enter(&hp->intr_lock);
1359 		if (enable) {
1360 			HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1361 			HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
1362 		} else {
1363 			HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
1364 			HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1365 		}
1366 		mutex_exit(&hp->intr_lock);
1367 	}
1368 }
1369 
1370 static void
1371 sdhc_card_intr_ack(sdmmc_chipset_handle_t sch)
1372 {
1373 	struct sdhc_host *hp = (struct sdhc_host *)sch;
1374 
1375 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
1376 		mutex_enter(&hp->intr_lock);
1377 		HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1378 		mutex_exit(&hp->intr_lock);
1379 	}
1380 }
1381 
1382 static int
1383 sdhc_signal_voltage(sdmmc_chipset_handle_t sch, int signal_voltage)
1384 {
1385 	struct sdhc_host *hp = (struct sdhc_host *)sch;
1386 	int error = 0;
1387 
1388 	if (hp->specver < SDHC_SPEC_VERS_300)
1389 		return EINVAL;
1390 
1391 	mutex_enter(&hp->intr_lock);
1392 	switch (signal_voltage) {
1393 	case SDMMC_SIGNAL_VOLTAGE_180:
1394 		if (hp->sc->sc_vendor_signal_voltage != NULL) {
1395 			error = hp->sc->sc_vendor_signal_voltage(hp->sc,
1396 			    signal_voltage);
1397 			if (error != 0)
1398 				break;
1399 		}
1400 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC))
1401 			HSET2(hp, SDHC_HOST_CTL2, SDHC_1_8V_SIGNAL_EN);
1402 		break;
1403 	case SDMMC_SIGNAL_VOLTAGE_330:
1404 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC))
1405 			HCLR2(hp, SDHC_HOST_CTL2, SDHC_1_8V_SIGNAL_EN);
1406 		if (hp->sc->sc_vendor_signal_voltage != NULL) {
1407 			error = hp->sc->sc_vendor_signal_voltage(hp->sc,
1408 			    signal_voltage);
1409 			if (error != 0)
1410 				break;
1411 		}
1412 		break;
1413 	default:
1414 		error = EINVAL;
1415 		break;
1416 	}
1417 	mutex_exit(&hp->intr_lock);
1418 
1419 	return error;
1420 }
1421 
1422 /*
1423  * Sampling clock tuning procedure (UHS)
1424  */
1425 static int
1426 sdhc_execute_tuning1(struct sdhc_host *hp, int timing)
1427 {
1428 	struct sdmmc_command cmd;
1429 	uint8_t hostctl;
1430 	int opcode, error, retry = 40;
1431 
1432 	KASSERT(mutex_owned(&hp->intr_lock));
1433 
1434 	hp->tuning_timing = timing;
1435 
1436 	switch (timing) {
1437 	case SDMMC_TIMING_MMC_HS200:
1438 		opcode = MMC_SEND_TUNING_BLOCK_HS200;
1439 		break;
1440 	case SDMMC_TIMING_UHS_SDR50:
1441 		if (!ISSET(hp->sc->sc_caps2, SDHC_TUNING_SDR50))
1442 			return 0;
1443 		/* FALLTHROUGH */
1444 	case SDMMC_TIMING_UHS_SDR104:
1445 		opcode = MMC_SEND_TUNING_BLOCK;
1446 		break;
1447 	default:
1448 		return EINVAL;
1449 	}
1450 
1451 	hostctl = HREAD1(hp, SDHC_HOST_CTL);
1452 
1453 	/* enable buffer read ready interrupt */
1454 	HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_BUFFER_READ_READY);
1455 	HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_BUFFER_READ_READY);
1456 
1457 	/* disable DMA */
1458 	HCLR1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT);
1459 
1460 	/* reset tuning circuit */
1461 	HCLR2(hp, SDHC_HOST_CTL2, SDHC_SAMPLING_CLOCK_SEL);
1462 
1463 	/* start of tuning */
1464 	HWRITE2(hp, SDHC_HOST_CTL2, SDHC_EXECUTE_TUNING);
1465 
1466 	do {
1467 		memset(&cmd, 0, sizeof(cmd));
1468 		cmd.c_opcode = opcode;
1469 		cmd.c_arg = 0;
1470 		cmd.c_flags = SCF_CMD_ADTC | SCF_CMD_READ | SCF_RSP_R1;
1471 		if (ISSET(hostctl, SDHC_8BIT_MODE)) {
1472 			cmd.c_blklen = cmd.c_datalen = 128;
1473 		} else {
1474 			cmd.c_blklen = cmd.c_datalen = 64;
1475 		}
1476 
1477 		error = sdhc_start_command(hp, &cmd);
1478 		if (error)
1479 			break;
1480 
1481 		if (!sdhc_wait_intr(hp, SDHC_BUFFER_READ_READY,
1482 		    SDHC_TUNING_TIMEOUT, false)) {
1483 			break;
1484 		}
1485 
1486 		delay(1000);
1487 	} while (HREAD2(hp, SDHC_HOST_CTL2) & SDHC_EXECUTE_TUNING && --retry);
1488 
1489 	/* disable buffer read ready interrupt */
1490 	HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_BUFFER_READ_READY);
1491 	HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_BUFFER_READ_READY);
1492 
1493 	if (HREAD2(hp, SDHC_HOST_CTL2) & SDHC_EXECUTE_TUNING) {
1494 		HCLR2(hp, SDHC_HOST_CTL2,
1495 		    SDHC_SAMPLING_CLOCK_SEL|SDHC_EXECUTE_TUNING);
1496 		sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
1497 		aprint_error_dev(hp->sc->sc_dev,
1498 		    "tuning did not complete, using fixed sampling clock\n");
1499 		return 0;		/* tuning did not complete */
1500 	}
1501 
1502 	if ((HREAD2(hp, SDHC_HOST_CTL2) & SDHC_SAMPLING_CLOCK_SEL) == 0) {
1503 		HCLR2(hp, SDHC_HOST_CTL2,
1504 		    SDHC_SAMPLING_CLOCK_SEL|SDHC_EXECUTE_TUNING);
1505 		sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
1506 		aprint_error_dev(hp->sc->sc_dev,
1507 		    "tuning failed, using fixed sampling clock\n");
1508 		return 0;		/* tuning failed */
1509 	}
1510 
1511 	if (hp->tuning_timer_count) {
1512 		callout_schedule(&hp->tuning_timer,
1513 		    hz * hp->tuning_timer_count);
1514 	}
1515 
1516 	return 0;		/* tuning completed */
1517 }
1518 
1519 static int
1520 sdhc_execute_tuning(sdmmc_chipset_handle_t sch, int timing)
1521 {
1522 	struct sdhc_host *hp = (struct sdhc_host *)sch;
1523 	int error;
1524 
1525 	mutex_enter(&hp->intr_lock);
1526 	error = sdhc_execute_tuning1(hp, timing);
1527 	mutex_exit(&hp->intr_lock);
1528 	return error;
1529 }
1530 
1531 static void
1532 sdhc_tuning_timer(void *arg)
1533 {
1534 	struct sdhc_host *hp = arg;
1535 
1536 	atomic_swap_uint(&hp->tuning_timer_pending, 1);
1537 }
1538 
1539 static void
1540 sdhc_hw_reset(sdmmc_chipset_handle_t sch)
1541 {
1542 	struct sdhc_host *hp = (struct sdhc_host *)sch;
1543 	struct sdhc_softc *sc = hp->sc;
1544 
1545 	if (sc->sc_vendor_hw_reset != NULL)
1546 		sc->sc_vendor_hw_reset(sc, hp);
1547 }
1548 
1549 static int
1550 sdhc_wait_state(struct sdhc_host *hp, uint32_t mask, uint32_t value)
1551 {
1552 	uint32_t state;
1553 	int timeout;
1554 
1555 	for (timeout = 100000; timeout > 0; timeout--) {
1556 		if (((state = HREAD4(hp, SDHC_PRESENT_STATE)) & mask) == value)
1557 			return 0;
1558 		sdmmc_delay(10);
1559 	}
1560 	aprint_error_dev(hp->sc->sc_dev, "timeout waiting for mask %#x value %#x (state=%#x)\n",
1561 	    mask, value, state);
1562 	return ETIMEDOUT;
1563 }
1564 
1565 static void
1566 sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
1567 {
1568 	struct sdhc_host *hp = (struct sdhc_host *)sch;
1569 	int error;
1570 	bool probing;
1571 
1572 	mutex_enter(&hp->intr_lock);
1573 
1574 	if (atomic_cas_uint(&hp->tuning_timer_pending, 1, 0) == 1) {
1575 		(void)sdhc_execute_tuning1(hp, hp->tuning_timing);
1576 	}
1577 
1578 	if (cmd->c_data &&
1579 	    ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
1580 		const uint16_t ready = SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY;
1581 		if (ISSET(hp->flags, SHF_USE_DMA)) {
1582 			HCLR2(hp, SDHC_NINTR_SIGNAL_EN, ready);
1583 			HCLR2(hp, SDHC_NINTR_STATUS_EN, ready);
1584 		} else {
1585 			HSET2(hp, SDHC_NINTR_SIGNAL_EN, ready);
1586 			HSET2(hp, SDHC_NINTR_STATUS_EN, ready);
1587 		}
1588 	}
1589 
1590 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_TIMEOUT)) {
1591 		const uint16_t eintr = SDHC_CMD_TIMEOUT_ERROR;
1592 		if (cmd->c_data != NULL) {
1593 			HCLR2(hp, SDHC_EINTR_SIGNAL_EN, eintr);
1594 			HCLR2(hp, SDHC_EINTR_STATUS_EN, eintr);
1595 		} else {
1596 			HSET2(hp, SDHC_EINTR_SIGNAL_EN, eintr);
1597 			HSET2(hp, SDHC_EINTR_STATUS_EN, eintr);
1598 		}
1599 	}
1600 
1601 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_STOP_WITH_TC)) {
1602 		if (cmd->c_opcode == MMC_STOP_TRANSMISSION)
1603 			SET(cmd->c_flags, SCF_RSP_BSY);
1604 	}
1605 
1606 	/*
1607 	 * Start the MMC command, or mark `cmd' as failed and return.
1608 	 */
1609 	error = sdhc_start_command(hp, cmd);
1610 	if (error) {
1611 		cmd->c_error = error;
1612 		goto out;
1613 	}
1614 
1615 	/*
1616 	 * Wait until the command phase is done, or until the command
1617 	 * is marked done for any other reason.
1618 	 */
1619 	probing = (cmd->c_flags & SCF_TOUT_OK) != 0;
1620 	if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE, SDHC_COMMAND_TIMEOUT*3, probing)) {
1621 		DPRINTF(1,("%s: timeout for command\n", __func__));
1622 		sdmmc_delay(50);
1623 		cmd->c_error = ETIMEDOUT;
1624 		goto out;
1625 	}
1626 
1627 	/*
1628 	 * The host controller removes bits [0:7] from the response
1629 	 * data (CRC) and we pass the data up unchanged to the bus
1630 	 * driver (without padding).
1631 	 */
1632 	if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
1633 		cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE + 0);
1634 		if (ISSET(cmd->c_flags, SCF_RSP_136)) {
1635 			cmd->c_resp[1] = HREAD4(hp, SDHC_RESPONSE + 4);
1636 			cmd->c_resp[2] = HREAD4(hp, SDHC_RESPONSE + 8);
1637 			cmd->c_resp[3] = HREAD4(hp, SDHC_RESPONSE + 12);
1638 			if (ISSET(hp->sc->sc_flags, SDHC_FLAG_RSP136_CRC)) {
1639 				cmd->c_resp[0] = (cmd->c_resp[0] >> 8) |
1640 				    (cmd->c_resp[1] << 24);
1641 				cmd->c_resp[1] = (cmd->c_resp[1] >> 8) |
1642 				    (cmd->c_resp[2] << 24);
1643 				cmd->c_resp[2] = (cmd->c_resp[2] >> 8) |
1644 				    (cmd->c_resp[3] << 24);
1645 				cmd->c_resp[3] = (cmd->c_resp[3] >> 8);
1646 			}
1647 		}
1648 	}
1649 	DPRINTF(1,("%s: resp = %08x\n", HDEVNAME(hp), cmd->c_resp[0]));
1650 
1651 	/*
1652 	 * If the command has data to transfer in any direction,
1653 	 * execute the transfer now.
1654 	 */
1655 	if (cmd->c_error == 0 && cmd->c_data != NULL)
1656 		sdhc_transfer_data(hp, cmd);
1657 	else if (ISSET(cmd->c_flags, SCF_RSP_BSY)) {
1658 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_BUSY_INTR) &&
1659 		    !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE, hz * 10, false)) {
1660 			DPRINTF(1,("%s: sdhc_exec_command: RSP_BSY\n",
1661 			    HDEVNAME(hp)));
1662 			cmd->c_error = ETIMEDOUT;
1663 			goto out;
1664 		}
1665 	}
1666 
1667 out:
1668 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)
1669 	    && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_LED_ON)) {
1670 		/* Turn off the LED. */
1671 		HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
1672 	}
1673 	SET(cmd->c_flags, SCF_ITSDONE);
1674 
1675 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_AUTO_STOP) &&
1676 	    cmd->c_opcode == MMC_STOP_TRANSMISSION)
1677 		(void)sdhc_soft_reset(hp, SDHC_RESET_CMD|SDHC_RESET_DAT);
1678 
1679 	mutex_exit(&hp->intr_lock);
1680 
1681 	DPRINTF(1,("%s: cmd %d %s (flags=%08x error=%d)\n", HDEVNAME(hp),
1682 	    cmd->c_opcode, (cmd->c_error == 0) ? "done" : "abort",
1683 	    cmd->c_flags, cmd->c_error));
1684 }
1685 
1686 static int
1687 sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd)
1688 {
1689 	struct sdhc_softc * const sc = hp->sc;
1690 	uint16_t blksize = 0;
1691 	uint16_t blkcount = 0;
1692 	uint16_t mode;
1693 	uint16_t command;
1694 	uint32_t pmask;
1695 	int error;
1696 
1697 	KASSERT(mutex_owned(&hp->intr_lock));
1698 
1699 	DPRINTF(1,("%s: start cmd %d arg=%08x data=%p dlen=%d flags=%08x, status=%#x\n",
1700 	    HDEVNAME(hp), cmd->c_opcode, cmd->c_arg, cmd->c_data,
1701 	    cmd->c_datalen, cmd->c_flags, HREAD4(hp, SDHC_NINTR_STATUS)));
1702 
1703 	/*
1704 	 * The maximum block length for commands should be the minimum
1705 	 * of the host buffer size and the card buffer size. (1.7.2)
1706 	 */
1707 
1708 	/* Fragment the data into proper blocks. */
1709 	if (cmd->c_datalen > 0) {
1710 		blksize = MIN(cmd->c_datalen, cmd->c_blklen);
1711 		blkcount = cmd->c_datalen / blksize;
1712 		if (cmd->c_datalen % blksize > 0) {
1713 			/* XXX: Split this command. (1.7.4) */
1714 			aprint_error_dev(sc->sc_dev,
1715 			    "data not a multiple of %u bytes\n", blksize);
1716 			return EINVAL;
1717 		}
1718 	}
1719 
1720 	/* Check limit imposed by 9-bit block count. (1.7.2) */
1721 	if (blkcount > SDHC_BLOCK_COUNT_MAX) {
1722 		aprint_error_dev(sc->sc_dev, "too much data\n");
1723 		return EINVAL;
1724 	}
1725 
1726 	/* Prepare transfer mode register value. (2.2.5) */
1727 	mode = SDHC_BLOCK_COUNT_ENABLE;
1728 	if (ISSET(cmd->c_flags, SCF_CMD_READ))
1729 		mode |= SDHC_READ_MODE;
1730 	if (blkcount > 1) {
1731 		mode |= SDHC_MULTI_BLOCK_MODE;
1732 		/* XXX only for memory commands? */
1733 		if (!ISSET(sc->sc_flags, SDHC_FLAG_NO_AUTO_STOP))
1734 			mode |= SDHC_AUTO_CMD12_ENABLE;
1735 	}
1736 	if (cmd->c_dmamap != NULL && cmd->c_datalen > 0 &&
1737 	    ISSET(hp->flags,  SHF_MODE_DMAEN)) {
1738 		mode |= SDHC_DMA_ENABLE;
1739 	}
1740 
1741 	/*
1742 	 * Prepare command register value. (2.2.6)
1743 	 */
1744 	command = (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) << SDHC_COMMAND_INDEX_SHIFT;
1745 
1746 	if (ISSET(cmd->c_flags, SCF_RSP_CRC))
1747 		command |= SDHC_CRC_CHECK_ENABLE;
1748 	if (ISSET(cmd->c_flags, SCF_RSP_IDX))
1749 		command |= SDHC_INDEX_CHECK_ENABLE;
1750 	if (cmd->c_datalen > 0)
1751 		command |= SDHC_DATA_PRESENT_SELECT;
1752 
1753 	if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT))
1754 		command |= SDHC_NO_RESPONSE;
1755 	else if (ISSET(cmd->c_flags, SCF_RSP_136))
1756 		command |= SDHC_RESP_LEN_136;
1757 	else if (ISSET(cmd->c_flags, SCF_RSP_BSY))
1758 		command |= SDHC_RESP_LEN_48_CHK_BUSY;
1759 	else
1760 		command |= SDHC_RESP_LEN_48;
1761 
1762 	/* Wait until command and optionally data inhibit bits are clear. (1.5) */
1763 	pmask = SDHC_CMD_INHIBIT_CMD;
1764 	if (cmd->c_flags & (SCF_CMD_ADTC|SCF_RSP_BSY))
1765 		pmask |= SDHC_CMD_INHIBIT_DAT;
1766 	error = sdhc_wait_state(hp, pmask, 0);
1767 	if (error) {
1768 		(void) sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
1769 		device_printf(sc->sc_dev, "command or data phase inhibited\n");
1770 		return error;
1771 	}
1772 
1773 	DPRINTF(1,("%s: writing cmd: blksize=%d blkcnt=%d mode=%04x cmd=%04x\n",
1774 	    HDEVNAME(hp), blksize, blkcount, mode, command));
1775 
1776 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
1777 		blksize |= (MAX(0, PAGE_SHIFT - 12) & SDHC_DMA_BOUNDARY_MASK) <<
1778 		    SDHC_DMA_BOUNDARY_SHIFT;	/* PAGE_SIZE DMA boundary */
1779 	}
1780 
1781 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1782 		/* Alert the user not to remove the card. */
1783 		HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
1784 	}
1785 
1786 	/* Set DMA start address. */
1787 	if (ISSET(hp->flags, SHF_USE_ADMA2_MASK) && cmd->c_data != NULL) {
1788 		for (int seg = 0; seg < cmd->c_dmamap->dm_nsegs; seg++) {
1789 			bus_addr_t paddr =
1790 			    cmd->c_dmamap->dm_segs[seg].ds_addr;
1791 			uint16_t len =
1792 			    cmd->c_dmamap->dm_segs[seg].ds_len == 65536 ?
1793 			    0 : cmd->c_dmamap->dm_segs[seg].ds_len;
1794 			uint16_t attr =
1795 			    SDHC_ADMA2_VALID | SDHC_ADMA2_ACT_TRANS;
1796 			if (seg == cmd->c_dmamap->dm_nsegs - 1) {
1797 				attr |= SDHC_ADMA2_END;
1798 			}
1799 			if (ISSET(hp->flags, SHF_USE_ADMA2_32)) {
1800 				struct sdhc_adma2_descriptor32 *desc =
1801 				    hp->adma2;
1802 				desc[seg].attribute = htole16(attr);
1803 				desc[seg].length = htole16(len);
1804 				desc[seg].address = htole32(paddr);
1805 			} else {
1806 				struct sdhc_adma2_descriptor64 *desc =
1807 				    hp->adma2;
1808 				desc[seg].attribute = htole16(attr);
1809 				desc[seg].length = htole16(len);
1810 				desc[seg].address = htole32(paddr & 0xffffffff);
1811 				desc[seg].address_hi = htole32(
1812 				    (uint64_t)paddr >> 32);
1813 			}
1814 		}
1815 		if (ISSET(hp->flags, SHF_USE_ADMA2_32)) {
1816 			struct sdhc_adma2_descriptor32 *desc = hp->adma2;
1817 			desc[cmd->c_dmamap->dm_nsegs].attribute = htole16(0);
1818 		} else {
1819 			struct sdhc_adma2_descriptor64 *desc = hp->adma2;
1820 			desc[cmd->c_dmamap->dm_nsegs].attribute = htole16(0);
1821 		}
1822 		bus_dmamap_sync(sc->sc_dmat, hp->adma_map, 0, PAGE_SIZE,
1823 		    BUS_DMASYNC_PREWRITE);
1824 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
1825 			HCLR4(hp, SDHC_HOST_CTL, SDHC_USDHC_DMA_SELECT);
1826 			HSET4(hp, SDHC_HOST_CTL, SDHC_USDHC_DMA_SELECT_ADMA2);
1827 		} else {
1828 			HCLR1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT);
1829 			HSET1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT_ADMA2);
1830 		}
1831 
1832 		const bus_addr_t desc_addr = hp->adma_map->dm_segs[0].ds_addr;
1833 
1834 		HWRITE4(hp, SDHC_ADMA_SYSTEM_ADDR, desc_addr & 0xffffffff);
1835 		if (ISSET(hp->flags, SHF_USE_ADMA2_64)) {
1836 			HWRITE4(hp, SDHC_ADMA_SYSTEM_ADDR + 4,
1837 			    (uint64_t)desc_addr >> 32);
1838 		}
1839 	} else if (ISSET(mode, SDHC_DMA_ENABLE) &&
1840 	    !ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA)) {
1841 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
1842 			HCLR4(hp, SDHC_HOST_CTL, SDHC_USDHC_DMA_SELECT);
1843 		}
1844 		HWRITE4(hp, SDHC_DMA_ADDR, cmd->c_dmamap->dm_segs[0].ds_addr);
1845 	}
1846 
1847 	/*
1848 	 * Start a CPU data transfer.  Writing to the high order byte
1849 	 * of the SDHC_COMMAND register triggers the SD command. (1.5)
1850 	 */
1851 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
1852 		HWRITE4(hp, SDHC_BLOCK_SIZE, blksize | (blkcount << 16));
1853 		HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
1854 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
1855 			/* mode bits is in MIX_CTRL register on uSDHC */
1856 			HWRITE4(hp, SDHC_MIX_CTRL, mode |
1857 			    (HREAD4(hp, SDHC_MIX_CTRL) & ~SDHC_TRANSFER_MODE_MASK));
1858 			if (cmd->c_opcode == MMC_STOP_TRANSMISSION)
1859 				command |= SDHC_COMMAND_TYPE_ABORT;
1860 			HWRITE4(hp, SDHC_TRANSFER_MODE, command << 16);
1861 		} else {
1862 			HWRITE4(hp, SDHC_TRANSFER_MODE, mode | (command << 16));
1863 		}
1864 	} else {
1865 		HWRITE2(hp, SDHC_BLOCK_SIZE, blksize);
1866 		HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount);
1867 		HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
1868 		HWRITE2(hp, SDHC_TRANSFER_MODE, mode);
1869 		HWRITE2(hp, SDHC_COMMAND, command);
1870 	}
1871 
1872 	return 0;
1873 }
1874 
1875 static void
1876 sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd)
1877 {
1878 	struct sdhc_softc *sc = hp->sc;
1879 	int error;
1880 
1881 	KASSERT(mutex_owned(&hp->intr_lock));
1882 
1883 	DPRINTF(1,("%s: data transfer: resp=%08x datalen=%u\n", HDEVNAME(hp),
1884 	    MMC_R1(cmd->c_resp), cmd->c_datalen));
1885 
1886 #ifdef SDHC_DEBUG
1887 	/* XXX I forgot why I wanted to know when this happens :-( */
1888 	if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) &&
1889 	    ISSET(MMC_R1(cmd->c_resp), 0xcb00)) {
1890 		aprint_error_dev(hp->sc->sc_dev,
1891 		    "CMD52/53 error response flags %#x\n",
1892 		    MMC_R1(cmd->c_resp) & 0xff00);
1893 	}
1894 #endif
1895 
1896 	if (cmd->c_dmamap != NULL) {
1897 		if (hp->sc->sc_vendor_transfer_data_dma != NULL) {
1898 			error = hp->sc->sc_vendor_transfer_data_dma(sc, cmd);
1899 			if (error == 0 && !sdhc_wait_intr(hp,
1900 			    SDHC_TRANSFER_COMPLETE, SDHC_DMA_TIMEOUT, false)) {
1901 				DPRINTF(1,("%s: timeout\n", __func__));
1902 				error = ETIMEDOUT;
1903 			}
1904 		} else {
1905 			error = sdhc_transfer_data_dma(hp, cmd);
1906 		}
1907 	} else
1908 		error = sdhc_transfer_data_pio(hp, cmd);
1909 	if (error)
1910 		cmd->c_error = error;
1911 	SET(cmd->c_flags, SCF_ITSDONE);
1912 
1913 	DPRINTF(1,("%s: data transfer done (error=%d)\n",
1914 	    HDEVNAME(hp), cmd->c_error));
1915 }
1916 
1917 static int
1918 sdhc_transfer_data_dma(struct sdhc_host *hp, struct sdmmc_command *cmd)
1919 {
1920 	bus_dma_segment_t *dm_segs = cmd->c_dmamap->dm_segs;
1921 	bus_addr_t posaddr;
1922 	bus_addr_t segaddr;
1923 	bus_size_t seglen;
1924 	u_int seg = 0;
1925 	int error = 0;
1926 	int status;
1927 
1928 	KASSERT(mutex_owned(&hp->intr_lock));
1929 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_DMA_INTERRUPT);
1930 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_DMA_INTERRUPT);
1931 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
1932 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
1933 
1934 	for (;;) {
1935 		status = sdhc_wait_intr(hp,
1936 		    SDHC_DMA_INTERRUPT|SDHC_TRANSFER_COMPLETE,
1937 		    SDHC_DMA_TIMEOUT, false);
1938 
1939 		if (status & SDHC_TRANSFER_COMPLETE) {
1940 			break;
1941 		}
1942 		if (!status) {
1943 			DPRINTF(1,("%s: timeout\n", __func__));
1944 			error = ETIMEDOUT;
1945 			break;
1946 		}
1947 
1948 		if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
1949 			continue;
1950 		}
1951 
1952 		if ((status & SDHC_DMA_INTERRUPT) == 0) {
1953 			continue;
1954 		}
1955 
1956 		/* DMA Interrupt (boundary crossing) */
1957 
1958 		segaddr = dm_segs[seg].ds_addr;
1959 		seglen = dm_segs[seg].ds_len;
1960 		posaddr = HREAD4(hp, SDHC_DMA_ADDR);
1961 
1962 		if ((seg == (cmd->c_dmamap->dm_nsegs-1)) && (posaddr == (segaddr + seglen))) {
1963 			continue;
1964 		}
1965 		if ((posaddr >= segaddr) && (posaddr < (segaddr + seglen)))
1966 			HWRITE4(hp, SDHC_DMA_ADDR, posaddr);
1967 		else if ((posaddr >= segaddr) && (posaddr == (segaddr + seglen)) && (seg + 1) < cmd->c_dmamap->dm_nsegs)
1968 			HWRITE4(hp, SDHC_DMA_ADDR, dm_segs[++seg].ds_addr);
1969 		KASSERT(seg < cmd->c_dmamap->dm_nsegs);
1970 	}
1971 
1972 	if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
1973 		bus_dmamap_sync(hp->sc->sc_dmat, hp->adma_map, 0,
1974 		    PAGE_SIZE, BUS_DMASYNC_POSTWRITE);
1975 	}
1976 
1977 	return error;
1978 }
1979 
1980 static int
1981 sdhc_transfer_data_pio(struct sdhc_host *hp, struct sdmmc_command *cmd)
1982 {
1983 	uint8_t *data = cmd->c_data;
1984 	void (*pio_func)(struct sdhc_host *, uint8_t *, u_int);
1985 	u_int len, datalen;
1986 	u_int imask;
1987 	u_int pmask;
1988 	int error = 0;
1989 
1990 	KASSERT(mutex_owned(&hp->intr_lock));
1991 
1992 	if (ISSET(cmd->c_flags, SCF_CMD_READ)) {
1993 		imask = SDHC_BUFFER_READ_READY;
1994 		pmask = SDHC_BUFFER_READ_ENABLE;
1995 		if (ISSET(hp->sc->sc_flags,
1996 		    SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
1997 			pio_func = esdhc_read_data_pio;
1998 		} else {
1999 			pio_func = sdhc_read_data_pio;
2000 		}
2001 	} else {
2002 		imask = SDHC_BUFFER_WRITE_READY;
2003 		pmask = SDHC_BUFFER_WRITE_ENABLE;
2004 		if (ISSET(hp->sc->sc_flags,
2005 		    SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
2006 			pio_func = esdhc_write_data_pio;
2007 		} else {
2008 			pio_func = sdhc_write_data_pio;
2009 		}
2010 	}
2011 	datalen = cmd->c_datalen;
2012 
2013 	KASSERT(mutex_owned(&hp->intr_lock));
2014 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & imask);
2015 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
2016 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
2017 
2018 	while (datalen > 0) {
2019 		if (!ISSET(HREAD4(hp, SDHC_PRESENT_STATE), pmask)) {
2020 			if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
2021 				HSET4(hp, SDHC_NINTR_SIGNAL_EN, imask);
2022 			} else {
2023 				HSET2(hp, SDHC_NINTR_SIGNAL_EN, imask);
2024 			}
2025 			if (!sdhc_wait_intr(hp, imask, SDHC_BUFFER_TIMEOUT, false)) {
2026 				DPRINTF(1,("%s: timeout\n", __func__));
2027 				error = ETIMEDOUT;
2028 				break;
2029 			}
2030 
2031 			error = sdhc_wait_state(hp, pmask, pmask);
2032 			if (error)
2033 				break;
2034 		}
2035 
2036 		len = MIN(datalen, cmd->c_blklen);
2037 		(*pio_func)(hp, data, len);
2038 		DPRINTF(2,("%s: pio data transfer %u @ %p\n",
2039 		    HDEVNAME(hp), len, data));
2040 
2041 		data += len;
2042 		datalen -= len;
2043 	}
2044 
2045 	if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
2046 	    SDHC_TRANSFER_TIMEOUT, false)) {
2047 		DPRINTF(1,("%s: timeout for transfer\n", __func__));
2048 		error = ETIMEDOUT;
2049 	}
2050 
2051 	return error;
2052 }
2053 
2054 static void
2055 sdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
2056 {
2057 
2058 	if (((__uintptr_t)data & 3) == 0) {
2059 		while (datalen > 3) {
2060 			*(uint32_t *)data = le32toh(HREAD4(hp, SDHC_DATA));
2061 			data += 4;
2062 			datalen -= 4;
2063 		}
2064 		if (datalen > 1) {
2065 			*(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
2066 			data += 2;
2067 			datalen -= 2;
2068 		}
2069 		if (datalen > 0) {
2070 			*data = HREAD1(hp, SDHC_DATA);
2071 			data += 1;
2072 			datalen -= 1;
2073 		}
2074 	} else if (((__uintptr_t)data & 1) == 0) {
2075 		while (datalen > 1) {
2076 			*(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
2077 			data += 2;
2078 			datalen -= 2;
2079 		}
2080 		if (datalen > 0) {
2081 			*data = HREAD1(hp, SDHC_DATA);
2082 			data += 1;
2083 			datalen -= 1;
2084 		}
2085 	} else {
2086 		while (datalen > 0) {
2087 			*data = HREAD1(hp, SDHC_DATA);
2088 			data += 1;
2089 			datalen -= 1;
2090 		}
2091 	}
2092 }
2093 
2094 static void
2095 sdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
2096 {
2097 
2098 	if (((__uintptr_t)data & 3) == 0) {
2099 		while (datalen > 3) {
2100 			HWRITE4(hp, SDHC_DATA, htole32(*(uint32_t *)data));
2101 			data += 4;
2102 			datalen -= 4;
2103 		}
2104 		if (datalen > 1) {
2105 			HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
2106 			data += 2;
2107 			datalen -= 2;
2108 		}
2109 		if (datalen > 0) {
2110 			HWRITE1(hp, SDHC_DATA, *data);
2111 			data += 1;
2112 			datalen -= 1;
2113 		}
2114 	} else if (((__uintptr_t)data & 1) == 0) {
2115 		while (datalen > 1) {
2116 			HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
2117 			data += 2;
2118 			datalen -= 2;
2119 		}
2120 		if (datalen > 0) {
2121 			HWRITE1(hp, SDHC_DATA, *data);
2122 			data += 1;
2123 			datalen -= 1;
2124 		}
2125 	} else {
2126 		while (datalen > 0) {
2127 			HWRITE1(hp, SDHC_DATA, *data);
2128 			data += 1;
2129 			datalen -= 1;
2130 		}
2131 	}
2132 }
2133 
2134 static void
2135 esdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
2136 {
2137 	uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
2138 	uint32_t v;
2139 
2140 	const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_READ_SHIFT) & SDHC_WATERMARK_READ_MASK;
2141 	size_t count = 0;
2142 
2143 	while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
2144 		if (count == 0) {
2145 			/*
2146 			 * If we've drained "watermark" words, we need to wait
2147 			 * a little bit so the read FIFO can refill.
2148 			 */
2149 			sdmmc_delay(10);
2150 			count = watermark;
2151 		}
2152 		v = HREAD4(hp, SDHC_DATA);
2153 		v = le32toh(v);
2154 		*(uint32_t *)data = v;
2155 		data += 4;
2156 		datalen -= 4;
2157 		status = HREAD2(hp, SDHC_NINTR_STATUS);
2158 		count--;
2159 	}
2160 	if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
2161 		if (count == 0) {
2162 			sdmmc_delay(10);
2163 		}
2164 		v = HREAD4(hp, SDHC_DATA);
2165 		v = le32toh(v);
2166 		do {
2167 			*data++ = v;
2168 			v >>= 8;
2169 		} while (--datalen > 0);
2170 	}
2171 }
2172 
2173 static void
2174 esdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
2175 {
2176 	uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
2177 	uint32_t v;
2178 
2179 	const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_WRITE_SHIFT) & SDHC_WATERMARK_WRITE_MASK;
2180 	size_t count = watermark;
2181 
2182 	while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
2183 		if (count == 0) {
2184 			sdmmc_delay(10);
2185 			count = watermark;
2186 		}
2187 		v = *(uint32_t *)data;
2188 		v = htole32(v);
2189 		HWRITE4(hp, SDHC_DATA, v);
2190 		data += 4;
2191 		datalen -= 4;
2192 		status = HREAD2(hp, SDHC_NINTR_STATUS);
2193 		count--;
2194 	}
2195 	if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
2196 		if (count == 0) {
2197 			sdmmc_delay(10);
2198 		}
2199 		v = *(uint32_t *)data;
2200 		v = htole32(v);
2201 		HWRITE4(hp, SDHC_DATA, v);
2202 	}
2203 }
2204 
2205 /* Prepare for another command. */
2206 static int
2207 sdhc_soft_reset(struct sdhc_host *hp, int mask)
2208 {
2209 	int timo;
2210 
2211 	KASSERT(mutex_owned(&hp->intr_lock));
2212 
2213 	DPRINTF(1,("%s: software reset reg=%08x\n", HDEVNAME(hp), mask));
2214 
2215 	/* Request the reset.  */
2216 	HWRITE1(hp, SDHC_SOFTWARE_RESET, mask);
2217 
2218 	/*
2219 	 * If necessary, wait for the controller to set the bits to
2220 	 * acknowledge the reset.
2221 	 */
2222 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_WAIT_RESET) &&
2223 	    ISSET(mask, (SDHC_RESET_DAT | SDHC_RESET_CMD))) {
2224 		for (timo = 10000; timo > 0; timo--) {
2225 			if (ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
2226 				break;
2227 			/* Short delay because I worry we may miss it...  */
2228 			sdmmc_delay(1);
2229 		}
2230 		if (timo == 0) {
2231 			DPRINTF(1,("%s: timeout for reset on\n", __func__));
2232 			return ETIMEDOUT;
2233 		}
2234 	}
2235 
2236 	/*
2237 	 * Wait for the controller to clear the bits to indicate that
2238 	 * the reset has completed.
2239 	 */
2240 	for (timo = 10; timo > 0; timo--) {
2241 		if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
2242 			break;
2243 		sdmmc_delay(10000);
2244 	}
2245 	if (timo == 0) {
2246 		DPRINTF(1,("%s: timeout reg=%08x\n", HDEVNAME(hp),
2247 		    HREAD1(hp, SDHC_SOFTWARE_RESET)));
2248 		return ETIMEDOUT;
2249 	}
2250 
2251 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
2252 		HSET4(hp, SDHC_DMA_CTL, SDHC_DMA_SNOOP);
2253 	}
2254 
2255 	return 0;
2256 }
2257 
2258 static int
2259 sdhc_wait_intr(struct sdhc_host *hp, int mask, int timo, bool probing)
2260 {
2261 	int status, error, nointr;
2262 
2263 	KASSERT(mutex_owned(&hp->intr_lock));
2264 
2265 	mask |= SDHC_ERROR_INTERRUPT;
2266 
2267 	nointr = 0;
2268 	status = hp->intr_status & mask;
2269 	while (status == 0) {
2270 		if (cv_timedwait(&hp->intr_cv, &hp->intr_lock, timo)
2271 		    == EWOULDBLOCK) {
2272 			nointr = 1;
2273 			break;
2274 		}
2275 		status = hp->intr_status & mask;
2276 	}
2277 	error = hp->intr_error_status;
2278 
2279 	DPRINTF(2,("%s: intr status %#x error %#x\n", HDEVNAME(hp), status,
2280 	    error));
2281 
2282 	hp->intr_status &= ~status;
2283 	hp->intr_error_status &= ~error;
2284 
2285 	if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
2286 		if (ISSET(error, SDHC_DMA_ERROR))
2287 			device_printf(hp->sc->sc_dev,"dma error\n");
2288 		if (ISSET(error, SDHC_ADMA_ERROR))
2289 			device_printf(hp->sc->sc_dev,"adma error\n");
2290 		if (ISSET(error, SDHC_AUTO_CMD12_ERROR))
2291 			device_printf(hp->sc->sc_dev,"auto_cmd12 error\n");
2292 		if (ISSET(error, SDHC_CURRENT_LIMIT_ERROR))
2293 			device_printf(hp->sc->sc_dev,"current limit error\n");
2294 		if (ISSET(error, SDHC_DATA_END_BIT_ERROR))
2295 			device_printf(hp->sc->sc_dev,"data end bit error\n");
2296 		if (ISSET(error, SDHC_DATA_CRC_ERROR))
2297 			device_printf(hp->sc->sc_dev,"data crc error\n");
2298 		if (ISSET(error, SDHC_DATA_TIMEOUT_ERROR))
2299 			device_printf(hp->sc->sc_dev,"data timeout error\n");
2300 		if (ISSET(error, SDHC_CMD_INDEX_ERROR))
2301 			device_printf(hp->sc->sc_dev,"cmd index error\n");
2302 		if (ISSET(error, SDHC_CMD_END_BIT_ERROR))
2303 			device_printf(hp->sc->sc_dev,"cmd end bit error\n");
2304 		if (ISSET(error, SDHC_CMD_CRC_ERROR))
2305 			device_printf(hp->sc->sc_dev,"cmd crc error\n");
2306 		if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR)) {
2307 			if (!probing)
2308 				device_printf(hp->sc->sc_dev,"cmd timeout error\n");
2309 #ifdef SDHC_DEBUG
2310 			else if (sdhcdebug > 0)
2311 				device_printf(hp->sc->sc_dev,"cmd timeout (expected)\n");
2312 #endif
2313 		}
2314 		if ((error & ~SDHC_EINTR_STATUS_MASK) != 0)
2315 			device_printf(hp->sc->sc_dev,"vendor error %#x\n",
2316 				(error & ~SDHC_EINTR_STATUS_MASK));
2317 		if (error == 0)
2318 			device_printf(hp->sc->sc_dev,"no error\n");
2319 
2320 		/* Command timeout has higher priority than command complete. */
2321 		if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR))
2322 			CLR(status, SDHC_COMMAND_COMPLETE);
2323 
2324 		/* Transfer complete has higher priority than data timeout. */
2325 		if (ISSET(status, SDHC_TRANSFER_COMPLETE))
2326 			CLR(error, SDHC_DATA_TIMEOUT_ERROR);
2327 	}
2328 
2329 	if (nointr ||
2330 	    (ISSET(status, SDHC_ERROR_INTERRUPT) && error)) {
2331 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
2332 			(void)sdhc_soft_reset(hp, SDHC_RESET_CMD|SDHC_RESET_DAT);
2333 		hp->intr_error_status = 0;
2334 		status = 0;
2335 	}
2336 
2337 	return status;
2338 }
2339 
2340 /*
2341  * Established by attachment driver at interrupt priority IPL_SDMMC.
2342  */
2343 int
2344 sdhc_intr(void *arg)
2345 {
2346 	struct sdhc_softc *sc = (struct sdhc_softc *)arg;
2347 	struct sdhc_host *hp;
2348 	int done = 0;
2349 	uint16_t status;
2350 	uint16_t error;
2351 
2352 	/* We got an interrupt, but we don't know from which slot. */
2353 	for (size_t host = 0; host < sc->sc_nhosts; host++) {
2354 		hp = sc->sc_host[host];
2355 		if (hp == NULL)
2356 			continue;
2357 
2358 		mutex_enter(&hp->intr_lock);
2359 
2360 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
2361 			/* Find out which interrupts are pending. */
2362 			uint32_t xstatus = HREAD4(hp, SDHC_NINTR_STATUS);
2363 			status = xstatus;
2364 			error = xstatus >> 16;
2365 			if (ISSET(sc->sc_flags, SDHC_FLAG_USDHC) &&
2366 			    (xstatus & SDHC_TRANSFER_COMPLETE) &&
2367 			    !(xstatus & SDHC_DMA_INTERRUPT)) {
2368 				/* read again due to uSDHC errata */
2369 				status = xstatus = HREAD4(hp,
2370 				    SDHC_NINTR_STATUS);
2371 				error = xstatus >> 16;
2372 			}
2373 			if (ISSET(sc->sc_flags,
2374 			    SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
2375 				if ((error & SDHC_NINTR_STATUS_MASK) != 0)
2376 					SET(status, SDHC_ERROR_INTERRUPT);
2377 			}
2378 			if (error)
2379 				xstatus |= SDHC_ERROR_INTERRUPT;
2380 			else if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
2381 				goto next_port; /* no interrupt for us */
2382 			/* Acknowledge the interrupts we are about to handle. */
2383 			HWRITE4(hp, SDHC_NINTR_STATUS, xstatus);
2384 		} else {
2385 			/* Find out which interrupts are pending. */
2386 			error = 0;
2387 			status = HREAD2(hp, SDHC_NINTR_STATUS);
2388 			if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
2389 				goto next_port; /* no interrupt for us */
2390 			/* Acknowledge the interrupts we are about to handle. */
2391 			HWRITE2(hp, SDHC_NINTR_STATUS, status);
2392 			if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
2393 				/* Acknowledge error interrupts. */
2394 				error = HREAD2(hp, SDHC_EINTR_STATUS);
2395 				HWRITE2(hp, SDHC_EINTR_STATUS, error);
2396 			}
2397 		}
2398 
2399 		DPRINTF(2,("%s: interrupt status=%x error=%x\n", HDEVNAME(hp),
2400 		    status, error));
2401 
2402 		/* Claim this interrupt. */
2403 		done = 1;
2404 
2405 		if (ISSET(status, SDHC_ERROR_INTERRUPT) &&
2406 		    ISSET(error, SDHC_ADMA_ERROR)) {
2407 			uint8_t adma_err = HREAD1(hp, SDHC_ADMA_ERROR_STATUS);
2408 			printf("%s: ADMA error, status %02x\n", HDEVNAME(hp),
2409 			    adma_err);
2410 		}
2411 
2412 		/*
2413 		 * Wake up the sdmmc event thread to scan for cards.
2414 		 */
2415 		if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)) {
2416 			if (hp->sdmmc != NULL) {
2417 				sdmmc_needs_discover(hp->sdmmc);
2418 			}
2419 			if (ISSET(sc->sc_flags,
2420 			    SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
2421 				HCLR4(hp, SDHC_NINTR_STATUS_EN,
2422 				    status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
2423 				HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
2424 				    status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
2425 			}
2426 		}
2427 
2428 		/*
2429 		 * Schedule re-tuning process (UHS).
2430 		 */
2431 		if (ISSET(status, SDHC_RETUNING_EVENT)) {
2432 			atomic_swap_uint(&hp->tuning_timer_pending, 1);
2433 		}
2434 
2435 		/*
2436 		 * Wake up the blocking process to service command
2437 		 * related interrupt(s).
2438 		 */
2439 		if (ISSET(status, SDHC_COMMAND_COMPLETE|SDHC_ERROR_INTERRUPT|
2440 		    SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY|
2441 		    SDHC_TRANSFER_COMPLETE|SDHC_DMA_INTERRUPT)) {
2442 			hp->intr_error_status |= error;
2443 			hp->intr_status |= status;
2444 			if (ISSET(sc->sc_flags,
2445 			    SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
2446 				HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
2447 				    status & (SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY));
2448 			}
2449 			cv_broadcast(&hp->intr_cv);
2450 		}
2451 
2452 		/*
2453 		 * Service SD card interrupts.
2454 		 */
2455 		if (!ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)
2456 		    && ISSET(status, SDHC_CARD_INTERRUPT)) {
2457 			DPRINTF(0,("%s: card interrupt\n", HDEVNAME(hp)));
2458 			HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
2459 			sdmmc_card_intr(hp->sdmmc);
2460 		}
2461 next_port:
2462 		mutex_exit(&hp->intr_lock);
2463 	}
2464 
2465 	return done;
2466 }
2467 
2468 kmutex_t *
2469 sdhc_host_lock(struct sdhc_host *hp)
2470 {
2471 	return &hp->intr_lock;
2472 }
2473 
2474 uint8_t
2475 sdhc_host_read_1(struct sdhc_host *hp, int reg)
2476 {
2477 	return HREAD1(hp, reg);
2478 }
2479 
2480 uint16_t
2481 sdhc_host_read_2(struct sdhc_host *hp, int reg)
2482 {
2483 	return HREAD2(hp, reg);
2484 }
2485 
2486 uint32_t
2487 sdhc_host_read_4(struct sdhc_host *hp, int reg)
2488 {
2489 	return HREAD4(hp, reg);
2490 }
2491 
2492 void
2493 sdhc_host_write_1(struct sdhc_host *hp, int reg, uint8_t val)
2494 {
2495 	HWRITE1(hp, reg, val);
2496 }
2497 
2498 void
2499 sdhc_host_write_2(struct sdhc_host *hp, int reg, uint16_t val)
2500 {
2501 	HWRITE2(hp, reg, val);
2502 }
2503 
2504 void
2505 sdhc_host_write_4(struct sdhc_host *hp, int reg, uint32_t val)
2506 {
2507 	HWRITE4(hp, reg, val);
2508 }
2509 
2510 #ifdef SDHC_DEBUG
2511 void
2512 sdhc_dump_regs(struct sdhc_host *hp)
2513 {
2514 
2515 	printf("0x%02x PRESENT_STATE:    %x\n", SDHC_PRESENT_STATE,
2516 	    HREAD4(hp, SDHC_PRESENT_STATE));
2517 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
2518 		printf("0x%02x POWER_CTL:        %x\n", SDHC_POWER_CTL,
2519 		    HREAD1(hp, SDHC_POWER_CTL));
2520 	printf("0x%02x NINTR_STATUS:     %x\n", SDHC_NINTR_STATUS,
2521 	    HREAD2(hp, SDHC_NINTR_STATUS));
2522 	printf("0x%02x EINTR_STATUS:     %x\n", SDHC_EINTR_STATUS,
2523 	    HREAD2(hp, SDHC_EINTR_STATUS));
2524 	printf("0x%02x NINTR_STATUS_EN:  %x\n", SDHC_NINTR_STATUS_EN,
2525 	    HREAD2(hp, SDHC_NINTR_STATUS_EN));
2526 	printf("0x%02x EINTR_STATUS_EN:  %x\n", SDHC_EINTR_STATUS_EN,
2527 	    HREAD2(hp, SDHC_EINTR_STATUS_EN));
2528 	printf("0x%02x NINTR_SIGNAL_EN:  %x\n", SDHC_NINTR_SIGNAL_EN,
2529 	    HREAD2(hp, SDHC_NINTR_SIGNAL_EN));
2530 	printf("0x%02x EINTR_SIGNAL_EN:  %x\n", SDHC_EINTR_SIGNAL_EN,
2531 	    HREAD2(hp, SDHC_EINTR_SIGNAL_EN));
2532 	printf("0x%02x CAPABILITIES:     %x\n", SDHC_CAPABILITIES,
2533 	    HREAD4(hp, SDHC_CAPABILITIES));
2534 	printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES,
2535 	    HREAD4(hp, SDHC_MAX_CAPABILITIES));
2536 }
2537 #endif
2538