xref: /netbsd-src/sys/dev/scsipi/ses.c (revision f3b496ec9be495acbb17756f05d342b6b7b495e9)
1 /*	$NetBSD: ses.c,v 1.35 2006/09/03 05:20:21 christos Exp $ */
2 /*
3  * Copyright (C) 2000 National Aeronautics & Space Administration
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. The name of the author may not be used to endorse or promote products
12  *    derived from this software without specific prior written permission
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24  *
25  * Author:	mjacob@nas.nasa.gov
26  */
27 
28 #include <sys/cdefs.h>
29 __KERNEL_RCSID(0, "$NetBSD: ses.c,v 1.35 2006/09/03 05:20:21 christos Exp $");
30 
31 #include "opt_scsi.h"
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/kernel.h>
36 #include <sys/file.h>
37 #include <sys/stat.h>
38 #include <sys/ioctl.h>
39 #include <sys/scsiio.h>
40 #include <sys/buf.h>
41 #include <sys/uio.h>
42 #include <sys/malloc.h>
43 #include <sys/errno.h>
44 #include <sys/device.h>
45 #include <sys/disklabel.h>
46 #include <sys/disk.h>
47 #include <sys/proc.h>
48 #include <sys/conf.h>
49 #include <sys/vnode.h>
50 #include <machine/stdarg.h>
51 
52 #include <dev/scsipi/scsipi_all.h>
53 #include <dev/scsipi/scsipi_disk.h>
54 #include <dev/scsipi/scsi_all.h>
55 #include <dev/scsipi/scsi_disk.h>
56 #include <dev/scsipi/scsipiconf.h>
57 #include <dev/scsipi/scsipi_base.h>
58 #include <dev/scsipi/ses.h>
59 
60 /*
61  * Platform Independent Driver Internal Definitions for SES devices.
62  */
63 typedef enum {
64 	SES_NONE,
65 	SES_SES_SCSI2,
66 	SES_SES,
67 	SES_SES_PASSTHROUGH,
68 	SES_SEN,
69 	SES_SAFT
70 } enctyp;
71 
72 struct ses_softc;
73 typedef struct ses_softc ses_softc_t;
74 typedef struct {
75 	int (*softc_init)(ses_softc_t *, int);
76 	int (*init_enc)(ses_softc_t *);
77 	int (*get_encstat)(ses_softc_t *, int);
78 	int (*set_encstat)(ses_softc_t *, ses_encstat, int);
79 	int (*get_objstat)(ses_softc_t *, ses_objstat *, int);
80 	int (*set_objstat)(ses_softc_t *, ses_objstat *, int);
81 } encvec;
82 
83 #define	ENCI_SVALID	0x80
84 
85 typedef struct {
86 	uint32_t
87 		enctype	: 8,		/* enclosure type */
88 		subenclosure : 8,	/* subenclosure id */
89 		svalid	: 1,		/* enclosure information valid */
90 		priv	: 15;		/* private data, per object */
91 	uint8_t	encstat[4];	/* state && stats */
92 } encobj;
93 
94 #define	SEN_ID		"UNISYS           SUN_SEN"
95 #define	SEN_ID_LEN	24
96 
97 static enctyp ses_type(struct scsipi_inquiry_data *);
98 
99 
100 /* Forward reference to Enclosure Functions */
101 static int ses_softc_init(ses_softc_t *, int);
102 static int ses_init_enc(ses_softc_t *);
103 static int ses_get_encstat(ses_softc_t *, int);
104 static int ses_set_encstat(ses_softc_t *, uint8_t, int);
105 static int ses_get_objstat(ses_softc_t *, ses_objstat *, int);
106 static int ses_set_objstat(ses_softc_t *, ses_objstat *, int);
107 
108 static int safte_softc_init(ses_softc_t *, int);
109 static int safte_init_enc(ses_softc_t *);
110 static int safte_get_encstat(ses_softc_t *, int);
111 static int safte_set_encstat(ses_softc_t *, uint8_t, int);
112 static int safte_get_objstat(ses_softc_t *, ses_objstat *, int);
113 static int safte_set_objstat(ses_softc_t *, ses_objstat *, int);
114 
115 /*
116  * Platform implementation defines/functions for SES internal kernel stuff
117  */
118 
119 #define	STRNCMP			strncmp
120 #define	PRINTF			printf
121 #define	SES_LOG			ses_log
122 #if	defined(DEBUG) || defined(SCSIDEBUG)
123 #define	SES_VLOG		ses_log
124 #else
125 #define	SES_VLOG		if (0) ses_log
126 #endif
127 #define	SES_MALLOC(amt)		malloc(amt, M_DEVBUF, M_NOWAIT)
128 #define	SES_FREE(ptr, amt)	free(ptr, M_DEVBUF)
129 #define	MEMZERO(dest, amt)	memset(dest, 0, amt)
130 #define	MEMCPY(dest, src, amt)	memcpy(dest, src, amt)
131 #define	RECEIVE_DIAGNOSTIC	0x1c
132 #define	SEND_DIAGNOSTIC		0x1d
133 #define	WRITE_BUFFER		0x3b
134 #define	READ_BUFFER		0x3c
135 
136 static dev_type_open(sesopen);
137 static dev_type_close(sesclose);
138 static dev_type_ioctl(sesioctl);
139 
140 const struct cdevsw ses_cdevsw = {
141 	sesopen, sesclose, noread, nowrite, sesioctl,
142 	nostop, notty, nopoll, nommap, nokqfilter, D_OTHER,
143 };
144 
145 static int ses_runcmd(struct ses_softc *, char *, int, char *, int *);
146 static void ses_log(struct ses_softc *, const char *, ...)
147      __attribute__((__format__(__printf__, 2, 3)));
148 
149 /*
150  * General NetBSD kernel stuff.
151  */
152 
153 struct ses_softc {
154 	struct device	sc_device;
155 	struct scsipi_periph *sc_periph;
156 	enctyp		ses_type;	/* type of enclosure */
157 	encvec		ses_vec;	/* vector to handlers */
158 	void *		ses_private;	/* per-type private data */
159 	encobj *	ses_objmap;	/* objects */
160 	u_int32_t	ses_nobjects;	/* number of objects */
161 	ses_encstat	ses_encstat;	/* overall status */
162 	u_int8_t	ses_flags;
163 };
164 #define	SES_FLAG_INVALID	0x01
165 #define	SES_FLAG_OPEN		0x02
166 #define	SES_FLAG_INITIALIZED	0x04
167 
168 #define SESUNIT(x)       (minor((x)))
169 
170 static int ses_match(struct device *, struct cfdata *, void *);
171 static void ses_attach(struct device *, struct device *, void *);
172 static enctyp ses_device_type(struct scsipibus_attach_args *);
173 
174 CFATTACH_DECL(ses, sizeof (struct ses_softc),
175     ses_match, ses_attach, NULL, NULL);
176 
177 extern struct cfdriver ses_cd;
178 
179 static const struct scsipi_periphsw ses_switch = {
180 	NULL,
181 	NULL,
182 	NULL,
183 	NULL
184 };
185 
186 static int
187 ses_match(struct device *parent, struct cfdata *match, void *aux)
188 {
189 	struct scsipibus_attach_args *sa = aux;
190 
191 	switch (ses_device_type(sa)) {
192 	case SES_SES:
193 	case SES_SES_SCSI2:
194 	case SES_SEN:
195 	case SES_SAFT:
196 	case SES_SES_PASSTHROUGH:
197 		/*
198 		 * For these devices, it's a perfect match.
199 		 */
200 		return (24);
201 	default:
202 		return (0);
203 	}
204 }
205 
206 
207 /*
208  * Complete the attachment.
209  *
210  * We have to repeat the rerun of INQUIRY data as above because
211  * it's not until the return from the match routine that we have
212  * the softc available to set stuff in.
213  */
214 static void
215 ses_attach(struct device *parent, struct device *self, void *aux)
216 {
217 	const char *tname;
218 	struct ses_softc *softc = device_private(self);
219 	struct scsipibus_attach_args *sa = aux;
220 	struct scsipi_periph *periph = sa->sa_periph;
221 
222 	SC_DEBUG(periph, SCSIPI_DB2, ("ssattach: "));
223 	softc->sc_periph = periph;
224 	periph->periph_dev = &softc->sc_device;
225 	periph->periph_switch = &ses_switch;
226 	periph->periph_openings = 1;
227 
228 	softc->ses_type = ses_device_type(sa);
229 	switch (softc->ses_type) {
230 	case SES_SES:
231 	case SES_SES_SCSI2:
232         case SES_SES_PASSTHROUGH:
233 		softc->ses_vec.softc_init = ses_softc_init;
234 		softc->ses_vec.init_enc = ses_init_enc;
235 		softc->ses_vec.get_encstat = ses_get_encstat;
236 		softc->ses_vec.set_encstat = ses_set_encstat;
237 		softc->ses_vec.get_objstat = ses_get_objstat;
238 		softc->ses_vec.set_objstat = ses_set_objstat;
239 		break;
240         case SES_SAFT:
241 		softc->ses_vec.softc_init = safte_softc_init;
242 		softc->ses_vec.init_enc = safte_init_enc;
243 		softc->ses_vec.get_encstat = safte_get_encstat;
244 		softc->ses_vec.set_encstat = safte_set_encstat;
245 		softc->ses_vec.get_objstat = safte_get_objstat;
246 		softc->ses_vec.set_objstat = safte_set_objstat;
247 		break;
248         case SES_SEN:
249 		break;
250 	case SES_NONE:
251 	default:
252 		break;
253 	}
254 
255 	switch (softc->ses_type) {
256 	default:
257 	case SES_NONE:
258 		tname = "No SES device";
259 		break;
260 	case SES_SES_SCSI2:
261 		tname = "SCSI-2 SES Device";
262 		break;
263 	case SES_SES:
264 		tname = "SCSI-3 SES Device";
265 		break;
266         case SES_SES_PASSTHROUGH:
267 		tname = "SES Passthrough Device";
268 		break;
269         case SES_SEN:
270 		tname = "UNISYS SEN Device (NOT HANDLED YET)";
271 		break;
272         case SES_SAFT:
273 		tname = "SAF-TE Compliant Device";
274 		break;
275 	}
276 	printf("\n%s: %s\n", softc->sc_device.dv_xname, tname);
277 }
278 
279 
280 static enctyp
281 ses_device_type(struct scsipibus_attach_args *sa)
282 {
283 	struct scsipi_inquiry_data *inqp = sa->sa_inqptr;
284 
285 	if (inqp == NULL)
286 		return (SES_NONE);
287 
288 	return (ses_type(inqp));
289 }
290 
291 static int
292 sesopen(dev_t dev, int flags, int fmt, struct lwp *l)
293 {
294 	struct ses_softc *softc;
295 	int error, unit;
296 
297 	unit = SESUNIT(dev);
298 	if (unit >= ses_cd.cd_ndevs)
299 		return (ENXIO);
300 	softc = ses_cd.cd_devs[unit];
301 	if (softc == NULL)
302 		return (ENXIO);
303 
304 	if (softc->ses_flags & SES_FLAG_INVALID) {
305 		error = ENXIO;
306 		goto out;
307 	}
308 	if (softc->ses_flags & SES_FLAG_OPEN) {
309 		error = EBUSY;
310 		goto out;
311 	}
312 	if (softc->ses_vec.softc_init == NULL) {
313 		error = ENXIO;
314 		goto out;
315 	}
316 	error = scsipi_adapter_addref(
317 	    softc->sc_periph->periph_channel->chan_adapter);
318 	if (error != 0)
319                 goto out;
320 
321 
322 	softc->ses_flags |= SES_FLAG_OPEN;
323 	if ((softc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
324 		error = (*softc->ses_vec.softc_init)(softc, 1);
325 		if (error)
326 			softc->ses_flags &= ~SES_FLAG_OPEN;
327 		else
328 			softc->ses_flags |= SES_FLAG_INITIALIZED;
329 	}
330 
331 out:
332 	return (error);
333 }
334 
335 static int
336 sesclose(dev_t dev, int flags, int fmt, struct lwp *l)
337 {
338 	struct ses_softc *softc;
339 	int unit;
340 
341 	unit = SESUNIT(dev);
342 	if (unit >= ses_cd.cd_ndevs)
343 		return (ENXIO);
344 	softc = ses_cd.cd_devs[unit];
345 	if (softc == NULL)
346 		return (ENXIO);
347 
348 	scsipi_wait_drain(softc->sc_periph);
349 	scsipi_adapter_delref(softc->sc_periph->periph_channel->chan_adapter);
350 	softc->ses_flags &= ~SES_FLAG_OPEN;
351 	return (0);
352 }
353 
354 static int
355 sesioctl(dev_t dev, u_long cmd, caddr_t arg_addr, int flag, struct lwp *l)
356 {
357 	ses_encstat tmp;
358 	ses_objstat objs;
359 	ses_object obj, *uobj;
360 	struct ses_softc *ssc = ses_cd.cd_devs[SESUNIT(dev)];
361 	void *addr;
362 	int error, i;
363 
364 
365 	if (arg_addr)
366 		addr = *((caddr_t *) arg_addr);
367 	else
368 		addr = NULL;
369 
370 	SC_DEBUG(ssc->sc_periph, SCSIPI_DB2, ("sesioctl 0x%lx ", cmd));
371 
372 	/*
373 	 * Now check to see whether we're initialized or not.
374 	 */
375 	if ((ssc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
376 		return (ENODEV);
377 	}
378 
379 	error = 0;
380 
381 	/*
382 	 * If this command can change the device's state,
383 	 * we must have the device open for writing.
384 	 */
385 	switch (cmd) {
386 	case SESIOC_GETNOBJ:
387 	case SESIOC_GETOBJMAP:
388 	case SESIOC_GETENCSTAT:
389 	case SESIOC_GETOBJSTAT:
390 		break;
391 	default:
392 		if ((flag & FWRITE) == 0) {
393 			return (EBADF);
394 		}
395 	}
396 
397 	switch (cmd) {
398 	case SESIOC_GETNOBJ:
399 		if (addr == NULL)
400 			return EINVAL;
401 		error = copyout(&ssc->ses_nobjects, addr,
402 		    sizeof (ssc->ses_nobjects));
403 		break;
404 
405 	case SESIOC_GETOBJMAP:
406 		if (addr == NULL)
407 			return EINVAL;
408 		for (uobj = addr, i = 0; i != ssc->ses_nobjects; i++, uobj++) {
409 			obj.obj_id = i;
410 			obj.subencid = ssc->ses_objmap[i].subenclosure;
411 			obj.object_type = ssc->ses_objmap[i].enctype;
412 			error = copyout(&obj, uobj, sizeof (ses_object));
413 			if (error) {
414 				break;
415 			}
416 		}
417 		break;
418 
419 	case SESIOC_GETENCSTAT:
420 		if (addr == NULL)
421 			return EINVAL;
422 		error = (*ssc->ses_vec.get_encstat)(ssc, 1);
423 		if (error)
424 			break;
425 		tmp = ssc->ses_encstat & ~ENCI_SVALID;
426 		error = copyout(&tmp, addr, sizeof (ses_encstat));
427 		ssc->ses_encstat = tmp;
428 		break;
429 
430 	case SESIOC_SETENCSTAT:
431 		if (addr == NULL)
432 			return EINVAL;
433 		error = copyin(addr, &tmp, sizeof (ses_encstat));
434 		if (error)
435 			break;
436 		error = (*ssc->ses_vec.set_encstat)(ssc, tmp, 1);
437 		break;
438 
439 	case SESIOC_GETOBJSTAT:
440 		if (addr == NULL)
441 			return EINVAL;
442 		error = copyin(addr, &objs, sizeof (ses_objstat));
443 		if (error)
444 			break;
445 		if (objs.obj_id >= ssc->ses_nobjects) {
446 			error = EINVAL;
447 			break;
448 		}
449 		error = (*ssc->ses_vec.get_objstat)(ssc, &objs, 1);
450 		if (error)
451 			break;
452 		error = copyout(&objs, addr, sizeof (ses_objstat));
453 		/*
454 		 * Always (for now) invalidate entry.
455 		 */
456 		ssc->ses_objmap[objs.obj_id].svalid = 0;
457 		break;
458 
459 	case SESIOC_SETOBJSTAT:
460 		if (addr == NULL)
461 			return EINVAL;
462 		error = copyin(addr, &objs, sizeof (ses_objstat));
463 		if (error)
464 			break;
465 
466 		if (objs.obj_id >= ssc->ses_nobjects) {
467 			error = EINVAL;
468 			break;
469 		}
470 		error = (*ssc->ses_vec.set_objstat)(ssc, &objs, 1);
471 
472 		/*
473 		 * Always (for now) invalidate entry.
474 		 */
475 		ssc->ses_objmap[objs.obj_id].svalid = 0;
476 		break;
477 
478 	case SESIOC_INIT:
479 
480 		error = (*ssc->ses_vec.init_enc)(ssc);
481 		break;
482 
483 	default:
484 		error = scsipi_do_ioctl(ssc->sc_periph,
485 			    dev, cmd, arg_addr, flag, l);
486 		break;
487 	}
488 	return (error);
489 }
490 
491 static int
492 ses_runcmd(struct ses_softc *ssc, char *cdb, int cdbl, char *dptr, int *dlenp)
493 {
494 	struct scsipi_generic sgen;
495 	int dl, flg, error;
496 
497 	if (dptr) {
498 		if ((dl = *dlenp) < 0) {
499 			dl = -dl;
500 			flg = XS_CTL_DATA_OUT;
501 		} else {
502 			flg = XS_CTL_DATA_IN;
503 		}
504 	} else {
505 		dl = 0;
506 		flg = 0;
507 	}
508 
509 	if (cdbl > sizeof (struct scsipi_generic)) {
510 		cdbl = sizeof (struct scsipi_generic);
511 	}
512 	memcpy(&sgen, cdb, cdbl);
513 #ifndef	SCSIDEBUG
514 	flg |= XS_CTL_SILENT;
515 #endif
516 	error = scsipi_command(ssc->sc_periph, &sgen, cdbl,
517 	    (u_char *) dptr, dl, SCSIPIRETRIES, 30000, NULL, flg);
518 
519 	if (error == 0 && dptr)
520 		*dlenp = 0;
521 
522 	return (error);
523 }
524 
525 static void
526 ses_log(struct ses_softc *ssc, const char *fmt, ...)
527 {
528 	va_list ap;
529 
530 	printf("%s: ", ssc->sc_device.dv_xname);
531 	va_start(ap, fmt);
532 	vprintf(fmt, ap);
533 	va_end(ap);
534 }
535 
536 /*
537  * The code after this point runs on many platforms,
538  * so forgive the slightly awkward and nonconforming
539  * appearance.
540  */
541 
542 /*
543  * Is this a device that supports enclosure services?
544  *
545  * It's a a pretty simple ruleset- if it is device type 0x0D (13), it's
546  * an SES device. If it happens to be an old UNISYS SEN device, we can
547  * handle that too.
548  */
549 
550 #define	SAFTE_START	44
551 #define	SAFTE_END	50
552 #define	SAFTE_LEN	SAFTE_END-SAFTE_START
553 
554 static enctyp
555 ses_type(struct scsipi_inquiry_data *inqp)
556 {
557 	size_t	given_len = inqp->additional_length + 4;
558 
559 	if (given_len < 8+SEN_ID_LEN)
560 		return (SES_NONE);
561 
562 	if ((inqp->device & SID_TYPE) == T_ENCLOSURE) {
563 		if (STRNCMP(inqp->vendor, SEN_ID, SEN_ID_LEN) == 0) {
564 			return (SES_SEN);
565 		} else if ((inqp->version & SID_ANSII) > 2) {
566 			return (SES_SES);
567 		} else {
568 			return (SES_SES_SCSI2);
569 		}
570 		return (SES_NONE);
571 	}
572 
573 #ifdef	SES_ENABLE_PASSTHROUGH
574 	if ((inqp->flags2 & SID_EncServ) && (inqp->version & SID_ANSII) >= 2) {
575 		/*
576 		 * PassThrough Device.
577 		 */
578 		return (SES_SES_PASSTHROUGH);
579 	}
580 #endif
581 
582 	/*
583 	 * The comparison is short for a reason-
584 	 * some vendors were chopping it short.
585 	 */
586 
587 	if (given_len < SAFTE_END - 2) {
588 		return (SES_NONE);
589 	}
590 
591 	if (STRNCMP((char *)&inqp->vendor_specific[8], "SAF-TE",
592 			SAFTE_LEN - 2) == 0) {
593 		return (SES_SAFT);
594 	}
595 
596 	return (SES_NONE);
597 }
598 
599 /*
600  * SES Native Type Device Support
601  */
602 
603 /*
604  * SES Diagnostic Page Codes
605  */
606 
607 typedef enum {
608 	SesConfigPage = 0x1,
609 	SesControlPage,
610 #define	SesStatusPage SesControlPage
611 	SesHelpTxt,
612 	SesStringOut,
613 #define	SesStringIn	SesStringOut
614 	SesThresholdOut,
615 #define	SesThresholdIn SesThresholdOut
616 	SesArrayControl,
617 #define	SesArrayStatus	SesArrayControl
618 	SesElementDescriptor,
619 	SesShortStatus
620 } SesDiagPageCodes;
621 
622 /*
623  * minimal amounts
624  */
625 
626 /*
627  * Minimum amount of data, starting from byte 0, to have
628  * the config header.
629  */
630 #define	SES_CFGHDR_MINLEN	12
631 
632 /*
633  * Minimum amount of data, starting from byte 0, to have
634  * the config header and one enclosure header.
635  */
636 #define	SES_ENCHDR_MINLEN	48
637 
638 /*
639  * Take this value, subtract it from VEnclen and you know
640  * the length of the vendor unique bytes.
641  */
642 #define	SES_ENCHDR_VMIN		36
643 
644 /*
645  * SES Data Structures
646  */
647 
648 typedef struct {
649 	uint32_t GenCode;	/* Generation Code */
650 	uint8_t	Nsubenc;	/* Number of Subenclosures */
651 } SesCfgHdr;
652 
653 typedef struct {
654 	uint8_t	Subencid;	/* SubEnclosure Identifier */
655 	uint8_t	Ntypes;		/* # of supported types */
656 	uint8_t	VEnclen;	/* Enclosure Descriptor Length */
657 } SesEncHdr;
658 
659 typedef struct {
660 	uint8_t	encWWN[8];	/* XXX- Not Right Yet */
661 	uint8_t	encVid[8];
662 	uint8_t	encPid[16];
663 	uint8_t	encRev[4];
664 	uint8_t	encVen[1];
665 } SesEncDesc;
666 
667 typedef struct {
668 	uint8_t	enc_type;		/* type of element */
669 	uint8_t	enc_maxelt;		/* maximum supported */
670 	uint8_t	enc_subenc;		/* in SubEnc # N */
671 	uint8_t	enc_tlen;		/* Type Descriptor Text Length */
672 } SesThdr;
673 
674 typedef struct {
675 	uint8_t	comstatus;
676 	uint8_t	comstat[3];
677 } SesComStat;
678 
679 struct typidx {
680 	int ses_tidx;
681 	int ses_oidx;
682 };
683 
684 struct sscfg {
685 	uint8_t ses_ntypes;	/* total number of types supported */
686 
687 	/*
688 	 * We need to keep a type index as well as an
689 	 * object index for each object in an enclosure.
690 	 */
691 	struct typidx *ses_typidx;
692 
693 	/*
694 	 * We also need to keep track of the number of elements
695 	 * per type of element. This is needed later so that we
696 	 * can find precisely in the returned status data the
697 	 * status for the Nth element of the Kth type.
698 	 */
699 	uint8_t *	ses_eltmap;
700 };
701 
702 
703 /*
704  * (de)canonicalization defines
705  */
706 #define	sbyte(x, byte)		((((uint32_t)(x)) >> (byte * 8)) & 0xff)
707 #define	sbit(x, bit)		(((uint32_t)(x)) << bit)
708 #define	sset8(outp, idx, sval)	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
709 
710 #define	sset16(outp, idx, sval)	\
711 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
712 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
713 
714 
715 #define	sset24(outp, idx, sval)	\
716 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
717 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
718 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
719 
720 
721 #define	sset32(outp, idx, sval)	\
722 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 3), \
723 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
724 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
725 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
726 
727 #define	gbyte(x, byte)	((((uint32_t)(x)) & 0xff) << (byte * 8))
728 #define	gbit(lv, in, idx, shft, mask)	lv = ((in[idx] >> shft) & mask)
729 #define	sget8(inp, idx, lval)	lval = (((uint8_t *)(inp))[idx++])
730 #define	gget8(inp, idx, lval)	lval = (((uint8_t *)(inp))[idx])
731 
732 #define	sget16(inp, idx, lval)	\
733 	lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
734 		(((uint8_t *)(inp))[idx+1]), idx += 2
735 
736 #define	gget16(inp, idx, lval)	\
737 	lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
738 		(((uint8_t *)(inp))[idx+1])
739 
740 #define	sget24(inp, idx, lval)	\
741 	lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
742 		gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
743 			(((uint8_t *)(inp))[idx+2]), idx += 3
744 
745 #define	gget24(inp, idx, lval)	\
746 	lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
747 		gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
748 			(((uint8_t *)(inp))[idx+2])
749 
750 #define	sget32(inp, idx, lval)	\
751 	lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
752 		gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
753 		gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
754 			(((uint8_t *)(inp))[idx+3]), idx += 4
755 
756 #define	gget32(inp, idx, lval)	\
757 	lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
758 		gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
759 		gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
760 			(((uint8_t *)(inp))[idx+3])
761 
762 #define	SCSZ	0x2000
763 #define	CFLEN	(256 + SES_ENCHDR_MINLEN)
764 
765 /*
766  * Routines specific && private to SES only
767  */
768 
769 static int ses_getconfig(ses_softc_t *);
770 static int ses_getputstat(ses_softc_t *, int, SesComStat *, int, int);
771 static int ses_cfghdr(uint8_t *, int, SesCfgHdr *);
772 static int ses_enchdr(uint8_t *, int, uint8_t, SesEncHdr *);
773 static int ses_encdesc(uint8_t *, int, uint8_t, SesEncDesc *);
774 static int ses_getthdr(uint8_t *, int,  int, SesThdr *);
775 static int ses_decode(char *, int, uint8_t *, int, int, SesComStat *);
776 static int ses_encode(char *, int, uint8_t *, int, int, SesComStat *);
777 
778 static int
779 ses_softc_init(ses_softc_t *ssc, int doinit)
780 {
781 	if (doinit == 0) {
782 		struct sscfg *cc;
783 		if (ssc->ses_nobjects) {
784 			SES_FREE(ssc->ses_objmap,
785 			    ssc->ses_nobjects * sizeof (encobj));
786 			ssc->ses_objmap = NULL;
787 		}
788 		if ((cc = ssc->ses_private) != NULL) {
789 			if (cc->ses_eltmap && cc->ses_ntypes) {
790 				SES_FREE(cc->ses_eltmap, cc->ses_ntypes);
791 				cc->ses_eltmap = NULL;
792 				cc->ses_ntypes = 0;
793 			}
794 			if (cc->ses_typidx && ssc->ses_nobjects) {
795 				SES_FREE(cc->ses_typidx,
796 				    ssc->ses_nobjects * sizeof (struct typidx));
797 				cc->ses_typidx = NULL;
798 			}
799 			SES_FREE(cc, sizeof (struct sscfg));
800 			ssc->ses_private = NULL;
801 		}
802 		ssc->ses_nobjects = 0;
803 		return (0);
804 	}
805 	if (ssc->ses_private == NULL) {
806 		ssc->ses_private = SES_MALLOC(sizeof (struct sscfg));
807 	}
808 	if (ssc->ses_private == NULL) {
809 		return (ENOMEM);
810 	}
811 	ssc->ses_nobjects = 0;
812 	ssc->ses_encstat = 0;
813 	return (ses_getconfig(ssc));
814 }
815 
816 static int
817 ses_init_enc(ses_softc_t *ssc)
818 {
819 	return (0);
820 }
821 
822 static int
823 ses_get_encstat(ses_softc_t *ssc, int slpflag)
824 {
825 	SesComStat ComStat;
826 	int status;
827 
828 	if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 1)) != 0) {
829 		return (status);
830 	}
831 	ssc->ses_encstat = ComStat.comstatus | ENCI_SVALID;
832 	return (0);
833 }
834 
835 static int
836 ses_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflag)
837 {
838 	SesComStat ComStat;
839 	int status;
840 
841 	ComStat.comstatus = encstat & 0xf;
842 	if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 0)) != 0) {
843 		return (status);
844 	}
845 	ssc->ses_encstat = encstat & 0xf;	/* note no SVALID set */
846 	return (0);
847 }
848 
849 static int
850 ses_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
851 {
852 	int i = (int)obp->obj_id;
853 
854 	if (ssc->ses_objmap[i].svalid == 0) {
855 		SesComStat ComStat;
856 		int err = ses_getputstat(ssc, i, &ComStat, slpflag, 1);
857 		if (err)
858 			return (err);
859 		ssc->ses_objmap[i].encstat[0] = ComStat.comstatus;
860 		ssc->ses_objmap[i].encstat[1] = ComStat.comstat[0];
861 		ssc->ses_objmap[i].encstat[2] = ComStat.comstat[1];
862 		ssc->ses_objmap[i].encstat[3] = ComStat.comstat[2];
863 		ssc->ses_objmap[i].svalid = 1;
864 	}
865 	obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
866 	obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
867 	obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
868 	obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
869 	return (0);
870 }
871 
872 static int
873 ses_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
874 {
875 	SesComStat ComStat;
876 	int err;
877 	/*
878 	 * If this is clear, we don't do diddly.
879 	 */
880 	if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
881 		return (0);
882 	}
883 	ComStat.comstatus = obp->cstat[0];
884 	ComStat.comstat[0] = obp->cstat[1];
885 	ComStat.comstat[1] = obp->cstat[2];
886 	ComStat.comstat[2] = obp->cstat[3];
887 	err = ses_getputstat(ssc, (int)obp->obj_id, &ComStat, slpflag, 0);
888 	ssc->ses_objmap[(int)obp->obj_id].svalid = 0;
889 	return (err);
890 }
891 
892 static int
893 ses_getconfig(ses_softc_t *ssc)
894 {
895 	struct sscfg *cc;
896 	SesCfgHdr cf;
897 	SesEncHdr hd;
898 	SesEncDesc *cdp;
899 	SesThdr thdr;
900 	int err, amt, i, nobj, ntype, maxima;
901 	char storage[CFLEN], *sdata;
902 	static char cdb[6] = {
903 	    RECEIVE_DIAGNOSTIC, 0x1, SesConfigPage, SCSZ >> 8, SCSZ & 0xff, 0
904 	};
905 
906 	cc = ssc->ses_private;
907 	if (cc == NULL) {
908 		return (ENXIO);
909 	}
910 
911 	sdata = SES_MALLOC(SCSZ);
912 	if (sdata == NULL)
913 		return (ENOMEM);
914 
915 	amt = SCSZ;
916 	err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
917 	if (err) {
918 		SES_FREE(sdata, SCSZ);
919 		return (err);
920 	}
921 	amt = SCSZ - amt;
922 
923 	if (ses_cfghdr((uint8_t *) sdata, amt, &cf)) {
924 		SES_LOG(ssc, "Unable to parse SES Config Header\n");
925 		SES_FREE(sdata, SCSZ);
926 		return (EIO);
927 	}
928 	if (amt < SES_ENCHDR_MINLEN) {
929 		SES_LOG(ssc, "runt enclosure length (%d)\n", amt);
930 		SES_FREE(sdata, SCSZ);
931 		return (EIO);
932 	}
933 
934 	SES_VLOG(ssc, "GenCode %x %d Subenclosures\n", cf.GenCode, cf.Nsubenc);
935 
936 	/*
937 	 * Now waltz through all the subenclosures toting up the
938 	 * number of types available in each. For this, we only
939 	 * really need the enclosure header. However, we get the
940 	 * enclosure descriptor for debug purposes, as well
941 	 * as self-consistency checking purposes.
942 	 */
943 
944 	maxima = cf.Nsubenc + 1;
945 	cdp = (SesEncDesc *) storage;
946 	for (ntype = i = 0; i < maxima; i++) {
947 		MEMZERO((caddr_t)cdp, sizeof (*cdp));
948 		if (ses_enchdr((uint8_t *) sdata, amt, i, &hd)) {
949 			SES_LOG(ssc, "Cannot Extract Enclosure Header %d\n", i);
950 			SES_FREE(sdata, SCSZ);
951 			return (EIO);
952 		}
953 		SES_VLOG(ssc, " SubEnclosure ID %d, %d Types With this ID, En"
954 		    "closure Length %d\n", hd.Subencid, hd.Ntypes, hd.VEnclen);
955 
956 		if (ses_encdesc((uint8_t *)sdata, amt, i, cdp)) {
957 			SES_LOG(ssc, "Can't get Enclosure Descriptor %d\n", i);
958 			SES_FREE(sdata, SCSZ);
959 			return (EIO);
960 		}
961 		SES_VLOG(ssc, " WWN: %02x%02x%02x%02x%02x%02x%02x%02x\n",
962 		    cdp->encWWN[0], cdp->encWWN[1], cdp->encWWN[2],
963 		    cdp->encWWN[3], cdp->encWWN[4], cdp->encWWN[5],
964 		    cdp->encWWN[6], cdp->encWWN[7]);
965 		ntype += hd.Ntypes;
966 	}
967 
968 	/*
969 	 * Now waltz through all the types that are available, getting
970 	 * the type header so we can start adding up the number of
971 	 * objects available.
972 	 */
973 	for (nobj = i = 0; i < ntype; i++) {
974 		if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
975 			SES_LOG(ssc, "Can't get Enclosure Type Header %d\n", i);
976 			SES_FREE(sdata, SCSZ);
977 			return (EIO);
978 		}
979 		SES_LOG(ssc, " Type Desc[%d]: Type 0x%x, MaxElt %d, In Subenc "
980 		    "%d, Text Length %d\n", i, thdr.enc_type, thdr.enc_maxelt,
981 		    thdr.enc_subenc, thdr.enc_tlen);
982 		nobj += thdr.enc_maxelt;
983 	}
984 
985 
986 	/*
987 	 * Now allocate the object array and type map.
988 	 */
989 
990 	ssc->ses_objmap = SES_MALLOC(nobj * sizeof (encobj));
991 	cc->ses_typidx = SES_MALLOC(nobj * sizeof (struct typidx));
992 	cc->ses_eltmap = SES_MALLOC(ntype);
993 
994 	if (ssc->ses_objmap == NULL || cc->ses_typidx == NULL ||
995 	    cc->ses_eltmap == NULL) {
996 		if (ssc->ses_objmap) {
997 			SES_FREE(ssc->ses_objmap, (nobj * sizeof (encobj)));
998 			ssc->ses_objmap = NULL;
999 		}
1000 		if (cc->ses_typidx) {
1001 			SES_FREE(cc->ses_typidx,
1002 			    (nobj * sizeof (struct typidx)));
1003 			cc->ses_typidx = NULL;
1004 		}
1005 		if (cc->ses_eltmap) {
1006 			SES_FREE(cc->ses_eltmap, ntype);
1007 			cc->ses_eltmap = NULL;
1008 		}
1009 		SES_FREE(sdata, SCSZ);
1010 		return (ENOMEM);
1011 	}
1012 	MEMZERO(ssc->ses_objmap, nobj * sizeof (encobj));
1013 	MEMZERO(cc->ses_typidx, nobj * sizeof (struct typidx));
1014 	MEMZERO(cc->ses_eltmap, ntype);
1015 	cc->ses_ntypes = (uint8_t) ntype;
1016 	ssc->ses_nobjects = nobj;
1017 
1018 	/*
1019 	 * Now waltz through the # of types again to fill in the types
1020 	 * (and subenclosure ids) of the allocated objects.
1021 	 */
1022 	nobj = 0;
1023 	for (i = 0; i < ntype; i++) {
1024 		int j;
1025 		if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
1026 			continue;
1027 		}
1028 		cc->ses_eltmap[i] = thdr.enc_maxelt;
1029 		for (j = 0; j < thdr.enc_maxelt; j++) {
1030 			cc->ses_typidx[nobj].ses_tidx = i;
1031 			cc->ses_typidx[nobj].ses_oidx = j;
1032 			ssc->ses_objmap[nobj].subenclosure = thdr.enc_subenc;
1033 			ssc->ses_objmap[nobj++].enctype = thdr.enc_type;
1034 		}
1035 	}
1036 	SES_FREE(sdata, SCSZ);
1037 	return (0);
1038 }
1039 
1040 static int
1041 ses_getputstat(ses_softc_t *ssc, int objid, SesComStat *sp, int slp, int in)
1042 {
1043 	struct sscfg *cc;
1044 	int err, amt, bufsiz, tidx, oidx;
1045 	char cdb[6], *sdata;
1046 
1047 	cc = ssc->ses_private;
1048 	if (cc == NULL) {
1049 		return (ENXIO);
1050 	}
1051 
1052 	/*
1053 	 * If we're just getting overall enclosure status,
1054 	 * we only need 2 bytes of data storage.
1055 	 *
1056 	 * If we're getting anything else, we know how much
1057 	 * storage we need by noting that starting at offset
1058 	 * 8 in returned data, all object status bytes are 4
1059 	 * bytes long, and are stored in chunks of types(M)
1060 	 * and nth+1 instances of type M.
1061 	 */
1062 	if (objid == -1) {
1063 		bufsiz = 2;
1064 	} else {
1065 		bufsiz = (ssc->ses_nobjects * 4) + (cc->ses_ntypes * 4) + 8;
1066 	}
1067 	sdata = SES_MALLOC(bufsiz);
1068 	if (sdata == NULL)
1069 		return (ENOMEM);
1070 
1071 	cdb[0] = RECEIVE_DIAGNOSTIC;
1072 	cdb[1] = 1;
1073 	cdb[2] = SesStatusPage;
1074 	cdb[3] = bufsiz >> 8;
1075 	cdb[4] = bufsiz & 0xff;
1076 	cdb[5] = 0;
1077 	amt = bufsiz;
1078 	err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1079 	if (err) {
1080 		SES_FREE(sdata, bufsiz);
1081 		return (err);
1082 	}
1083 	amt = bufsiz - amt;
1084 
1085 	if (objid == -1) {
1086 		tidx = -1;
1087 		oidx = -1;
1088 	} else {
1089 		tidx = cc->ses_typidx[objid].ses_tidx;
1090 		oidx = cc->ses_typidx[objid].ses_oidx;
1091 	}
1092 	if (in) {
1093 		if (ses_decode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1094 			err = ENODEV;
1095 		}
1096 	} else {
1097 		if (ses_encode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1098 			err = ENODEV;
1099 		} else {
1100 			cdb[0] = SEND_DIAGNOSTIC;
1101 			cdb[1] = 0x10;
1102 			cdb[2] = 0;
1103 			cdb[3] = bufsiz >> 8;
1104 			cdb[4] = bufsiz & 0xff;
1105 			cdb[5] = 0;
1106 			amt = -bufsiz;
1107 			err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1108 		}
1109 	}
1110 	SES_FREE(sdata, bufsiz);
1111 	return (0);
1112 }
1113 
1114 
1115 /*
1116  * Routines to parse returned SES data structures.
1117  * Architecture and compiler independent.
1118  */
1119 
1120 static int
1121 ses_cfghdr(uint8_t *buffer, int buflen, SesCfgHdr *cfp)
1122 {
1123 	if (buflen < SES_CFGHDR_MINLEN) {
1124 		return (-1);
1125 	}
1126 	gget8(buffer, 1, cfp->Nsubenc);
1127 	gget32(buffer, 4, cfp->GenCode);
1128 	return (0);
1129 }
1130 
1131 static int
1132 ses_enchdr(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncHdr *chp)
1133 {
1134 	int s, off = 8;
1135 	for (s = 0; s < SubEncId; s++) {
1136 		if (off + 3 > amt)
1137 			return (-1);
1138 		off += buffer[off+3] + 4;
1139 	}
1140 	if (off + 3 > amt) {
1141 		return (-1);
1142 	}
1143 	gget8(buffer, off+1, chp->Subencid);
1144 	gget8(buffer, off+2, chp->Ntypes);
1145 	gget8(buffer, off+3, chp->VEnclen);
1146 	return (0);
1147 }
1148 
1149 static int
1150 ses_encdesc(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncDesc *cdp)
1151 {
1152 	int s, e, enclen, off = 8;
1153 	for (s = 0; s < SubEncId; s++) {
1154 		if (off + 3 > amt)
1155 			return (-1);
1156 		off += buffer[off+3] + 4;
1157 	}
1158 	if (off + 3 > amt) {
1159 		return (-1);
1160 	}
1161 	gget8(buffer, off+3, enclen);
1162 	off += 4;
1163 	if (off  >= amt)
1164 		return (-1);
1165 
1166 	e = off + enclen;
1167 	if (e > amt) {
1168 		e = amt;
1169 	}
1170 	MEMCPY(cdp, &buffer[off], e - off);
1171 	return (0);
1172 }
1173 
1174 static int
1175 ses_getthdr(uint8_t *buffer, int amt, int nth, SesThdr *thp)
1176 {
1177 	int s, off = 8;
1178 
1179 	if (amt < SES_CFGHDR_MINLEN) {
1180 		return (-1);
1181 	}
1182 	for (s = 0; s < buffer[1]; s++) {
1183 		if (off + 3 > amt)
1184 			return (-1);
1185 		off += buffer[off+3] + 4;
1186 	}
1187 	if (off + 3 > amt) {
1188 		return (-1);
1189 	}
1190 	off += buffer[off+3] + 4 + (nth * 4);
1191 	if (amt < (off + 4))
1192 		return (-1);
1193 
1194 	gget8(buffer, off++, thp->enc_type);
1195 	gget8(buffer, off++, thp->enc_maxelt);
1196 	gget8(buffer, off++, thp->enc_subenc);
1197 	gget8(buffer, off, thp->enc_tlen);
1198 	return (0);
1199 }
1200 
1201 /*
1202  * This function needs a little explanation.
1203  *
1204  * The arguments are:
1205  *
1206  *
1207  *	char *b, int amt
1208  *
1209  *		These describes the raw input SES status data and length.
1210  *
1211  *	uint8_t *ep
1212  *
1213  *		This is a map of the number of types for each element type
1214  *		in the enclosure.
1215  *
1216  *	int elt
1217  *
1218  *		This is the element type being sought. If elt is -1,
1219  *		then overall enclosure status is being sought.
1220  *
1221  *	int elm
1222  *
1223  *		This is the ordinal Mth element of type elt being sought.
1224  *
1225  *	SesComStat *sp
1226  *
1227  *		This is the output area to store the status for
1228  *		the Mth element of type Elt.
1229  */
1230 
1231 static int
1232 ses_decode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1233 {
1234 	int idx, i;
1235 
1236 	/*
1237 	 * If it's overall enclosure status being sought, get that.
1238 	 * We need at least 2 bytes of status data to get that.
1239 	 */
1240 	if (elt == -1) {
1241 		if (amt < 2)
1242 			return (-1);
1243 		gget8(b, 1, sp->comstatus);
1244 		sp->comstat[0] = 0;
1245 		sp->comstat[1] = 0;
1246 		sp->comstat[2] = 0;
1247 		return (0);
1248 	}
1249 
1250 	/*
1251 	 * Check to make sure that the Mth element is legal for type Elt.
1252 	 */
1253 
1254 	if (elm >= ep[elt])
1255 		return (-1);
1256 
1257 	/*
1258 	 * Starting at offset 8, start skipping over the storage
1259 	 * for the element types we're not interested in.
1260 	 */
1261 	for (idx = 8, i = 0; i < elt; i++) {
1262 		idx += ((ep[i] + 1) * 4);
1263 	}
1264 
1265 	/*
1266 	 * Skip over Overall status for this element type.
1267 	 */
1268 	idx += 4;
1269 
1270 	/*
1271 	 * And skip to the index for the Mth element that we're going for.
1272 	 */
1273 	idx += (4 * elm);
1274 
1275 	/*
1276 	 * Make sure we haven't overflowed the buffer.
1277 	 */
1278 	if (idx+4 > amt)
1279 		return (-1);
1280 
1281 	/*
1282 	 * Retrieve the status.
1283 	 */
1284 	gget8(b, idx++, sp->comstatus);
1285 	gget8(b, idx++, sp->comstat[0]);
1286 	gget8(b, idx++, sp->comstat[1]);
1287 	gget8(b, idx++, sp->comstat[2]);
1288 #if	0
1289 	PRINTF("Get Elt 0x%x Elm 0x%x (idx %d)\n", elt, elm, idx-4);
1290 #endif
1291 	return (0);
1292 }
1293 
1294 /*
1295  * This is the mirror function to ses_decode, but we set the 'select'
1296  * bit for the object which we're interested in. All other objects,
1297  * after a status fetch, should have that bit off. Hmm. It'd be easy
1298  * enough to ensure this, so we will.
1299  */
1300 
1301 static int
1302 ses_encode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1303 {
1304 	int idx, i;
1305 
1306 	/*
1307 	 * If it's overall enclosure status being sought, get that.
1308 	 * We need at least 2 bytes of status data to get that.
1309 	 */
1310 	if (elt == -1) {
1311 		if (amt < 2)
1312 			return (-1);
1313 		i = 0;
1314 		sset8(b, i, 0);
1315 		sset8(b, i, sp->comstatus & 0xf);
1316 #if	0
1317 		PRINTF("set EncStat %x\n", sp->comstatus);
1318 #endif
1319 		return (0);
1320 	}
1321 
1322 	/*
1323 	 * Check to make sure that the Mth element is legal for type Elt.
1324 	 */
1325 
1326 	if (elm >= ep[elt])
1327 		return (-1);
1328 
1329 	/*
1330 	 * Starting at offset 8, start skipping over the storage
1331 	 * for the element types we're not interested in.
1332 	 */
1333 	for (idx = 8, i = 0; i < elt; i++) {
1334 		idx += ((ep[i] + 1) * 4);
1335 	}
1336 
1337 	/*
1338 	 * Skip over Overall status for this element type.
1339 	 */
1340 	idx += 4;
1341 
1342 	/*
1343 	 * And skip to the index for the Mth element that we're going for.
1344 	 */
1345 	idx += (4 * elm);
1346 
1347 	/*
1348 	 * Make sure we haven't overflowed the buffer.
1349 	 */
1350 	if (idx+4 > amt)
1351 		return (-1);
1352 
1353 	/*
1354 	 * Set the status.
1355 	 */
1356 	sset8(b, idx, sp->comstatus);
1357 	sset8(b, idx, sp->comstat[0]);
1358 	sset8(b, idx, sp->comstat[1]);
1359 	sset8(b, idx, sp->comstat[2]);
1360 	idx -= 4;
1361 
1362 #if	0
1363 	PRINTF("Set Elt 0x%x Elm 0x%x (idx %d) with %x %x %x %x\n",
1364 	    elt, elm, idx, sp->comstatus, sp->comstat[0],
1365 	    sp->comstat[1], sp->comstat[2]);
1366 #endif
1367 
1368 	/*
1369 	 * Now make sure all other 'Select' bits are off.
1370 	 */
1371 	for (i = 8; i < amt; i += 4) {
1372 		if (i != idx)
1373 			b[i] &= ~0x80;
1374 	}
1375 	/*
1376 	 * And make sure the INVOP bit is clear.
1377 	 */
1378 	b[2] &= ~0x10;
1379 
1380 	return (0);
1381 }
1382 
1383 /*
1384  * SAF-TE Type Device Emulation
1385  */
1386 
1387 static int safte_getconfig(ses_softc_t *);
1388 static int safte_rdstat(ses_softc_t *, int);
1389 static int set_objstat_sel(ses_softc_t *, ses_objstat *, int);
1390 static int wrbuf16(ses_softc_t *, uint8_t, uint8_t, uint8_t, uint8_t, int);
1391 static void wrslot_stat(ses_softc_t *, int);
1392 static int perf_slotop(ses_softc_t *, uint8_t, uint8_t, int);
1393 
1394 #define	ALL_ENC_STAT (SES_ENCSTAT_CRITICAL | SES_ENCSTAT_UNRECOV | \
1395 	SES_ENCSTAT_NONCRITICAL | SES_ENCSTAT_INFO)
1396 /*
1397  * SAF-TE specific defines- Mandatory ones only...
1398  */
1399 
1400 /*
1401  * READ BUFFER ('get' commands) IDs- placed in offset 2 of cdb
1402  */
1403 #define	SAFTE_RD_RDCFG	0x00	/* read enclosure configuration */
1404 #define	SAFTE_RD_RDESTS	0x01	/* read enclosure status */
1405 #define	SAFTE_RD_RDDSTS	0x04	/* read drive slot status */
1406 
1407 /*
1408  * WRITE BUFFER ('set' commands) IDs- placed in offset 0 of databuf
1409  */
1410 #define	SAFTE_WT_DSTAT	0x10	/* write device slot status */
1411 #define	SAFTE_WT_SLTOP	0x12	/* perform slot operation */
1412 #define	SAFTE_WT_FANSPD	0x13	/* set fan speed */
1413 #define	SAFTE_WT_ACTPWS	0x14	/* turn on/off power supply */
1414 #define	SAFTE_WT_GLOBAL	0x15	/* send global command */
1415 
1416 
1417 #define	SAFT_SCRATCH	64
1418 #define	NPSEUDO_THERM	16
1419 #define	NPSEUDO_ALARM	1
1420 struct scfg {
1421 	/*
1422 	 * Cached Configuration
1423 	 */
1424 	uint8_t	Nfans;		/* Number of Fans */
1425 	uint8_t	Npwr;		/* Number of Power Supplies */
1426 	uint8_t	Nslots;		/* Number of Device Slots */
1427 	uint8_t	DoorLock;	/* Door Lock Installed */
1428 	uint8_t	Ntherm;		/* Number of Temperature Sensors */
1429 	uint8_t	Nspkrs;		/* Number of Speakers */
1430 	uint8_t Nalarm;		/* Number of Alarms (at least one) */
1431 	/*
1432 	 * Cached Flag Bytes for Global Status
1433 	 */
1434 	uint8_t	flag1;
1435 	uint8_t	flag2;
1436 	/*
1437 	 * What object index ID is where various slots start.
1438 	 */
1439 	uint8_t	pwroff;
1440 	uint8_t	slotoff;
1441 #define	SAFT_ALARM_OFFSET(cc)	(cc)->slotoff - 1
1442 };
1443 
1444 #define	SAFT_FLG1_ALARM		0x1
1445 #define	SAFT_FLG1_GLOBFAIL	0x2
1446 #define	SAFT_FLG1_GLOBWARN	0x4
1447 #define	SAFT_FLG1_ENCPWROFF	0x8
1448 #define	SAFT_FLG1_ENCFANFAIL	0x10
1449 #define	SAFT_FLG1_ENCPWRFAIL	0x20
1450 #define	SAFT_FLG1_ENCDRVFAIL	0x40
1451 #define	SAFT_FLG1_ENCDRVWARN	0x80
1452 
1453 #define	SAFT_FLG2_LOCKDOOR	0x4
1454 #define	SAFT_PRIVATE		sizeof (struct scfg)
1455 
1456 static const char safte_2little[] = "Too Little Data Returned (%d) at line %d\n";
1457 #define	SAFT_BAIL(r, x, k, l)	\
1458 	if (r >= x) { \
1459 		SES_LOG(ssc, safte_2little, x, __LINE__);\
1460 		SES_FREE(k, l); \
1461 		return (EIO); \
1462 	}
1463 
1464 
1465 static int
1466 safte_softc_init(ses_softc_t *ssc, int doinit)
1467 {
1468 	int err, i, r;
1469 	struct scfg *cc;
1470 
1471 	if (doinit == 0) {
1472 		if (ssc->ses_nobjects) {
1473 			if (ssc->ses_objmap) {
1474 				SES_FREE(ssc->ses_objmap,
1475 				    ssc->ses_nobjects * sizeof (encobj));
1476 				ssc->ses_objmap = NULL;
1477 			}
1478 			ssc->ses_nobjects = 0;
1479 		}
1480 		if (ssc->ses_private) {
1481 			SES_FREE(ssc->ses_private, SAFT_PRIVATE);
1482 			ssc->ses_private = NULL;
1483 		}
1484 		return (0);
1485 	}
1486 
1487 	if (ssc->ses_private == NULL) {
1488 		ssc->ses_private = SES_MALLOC(SAFT_PRIVATE);
1489 		if (ssc->ses_private == NULL) {
1490 			return (ENOMEM);
1491 		}
1492 		MEMZERO(ssc->ses_private, SAFT_PRIVATE);
1493 	}
1494 
1495 	ssc->ses_nobjects = 0;
1496 	ssc->ses_encstat = 0;
1497 
1498 	if ((err = safte_getconfig(ssc)) != 0) {
1499 		return (err);
1500 	}
1501 
1502 	/*
1503 	 * The number of objects here, as well as that reported by the
1504 	 * READ_BUFFER/GET_CONFIG call, are the over-temperature flags (15)
1505 	 * that get reported during READ_BUFFER/READ_ENC_STATUS.
1506 	 */
1507 	cc = ssc->ses_private;
1508 	ssc->ses_nobjects = cc->Nfans + cc->Npwr + cc->Nslots + cc->DoorLock +
1509 	    cc->Ntherm + cc->Nspkrs + NPSEUDO_THERM + NPSEUDO_ALARM;
1510 	ssc->ses_objmap = (encobj *)
1511 	    SES_MALLOC(ssc->ses_nobjects * sizeof (encobj));
1512 	if (ssc->ses_objmap == NULL) {
1513 		return (ENOMEM);
1514 	}
1515 	MEMZERO(ssc->ses_objmap, ssc->ses_nobjects * sizeof (encobj));
1516 
1517 	r = 0;
1518 	/*
1519 	 * Note that this is all arranged for the convenience
1520 	 * in later fetches of status.
1521 	 */
1522 	for (i = 0; i < cc->Nfans; i++)
1523 		ssc->ses_objmap[r++].enctype = SESTYP_FAN;
1524 	cc->pwroff = (uint8_t) r;
1525 	for (i = 0; i < cc->Npwr; i++)
1526 		ssc->ses_objmap[r++].enctype = SESTYP_POWER;
1527 	for (i = 0; i < cc->DoorLock; i++)
1528 		ssc->ses_objmap[r++].enctype = SESTYP_DOORLOCK;
1529 	for (i = 0; i < cc->Nspkrs; i++)
1530 		ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1531 	for (i = 0; i < cc->Ntherm; i++)
1532 		ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1533 	for (i = 0; i < NPSEUDO_THERM; i++)
1534 		ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1535 	ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1536 	cc->slotoff = (uint8_t) r;
1537 	for (i = 0; i < cc->Nslots; i++)
1538 		ssc->ses_objmap[r++].enctype = SESTYP_DEVICE;
1539 	return (0);
1540 }
1541 
1542 static int
1543 safte_init_enc(ses_softc_t *ssc)
1544 {
1545 	int err, amt;
1546 	char *sdata;
1547 	static char cdb0[6] = { SEND_DIAGNOSTIC };
1548 	static char cdb[10] =
1549 	    { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
1550 
1551 	sdata = SES_MALLOC(SAFT_SCRATCH);
1552 	if (sdata == NULL)
1553 		return (ENOMEM);
1554 
1555 	err = ses_runcmd(ssc, cdb0, 6, NULL, 0);
1556 	if (err) {
1557 		SES_FREE(sdata, SAFT_SCRATCH);
1558 		return (err);
1559 	}
1560 	sdata[0] = SAFTE_WT_GLOBAL;
1561 	MEMZERO(&sdata[1], 15);
1562 	amt = -SAFT_SCRATCH;
1563 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1564 	SES_FREE(sdata, SAFT_SCRATCH);
1565 	return (err);
1566 }
1567 
1568 static int
1569 safte_get_encstat(ses_softc_t *ssc, int slpflg)
1570 {
1571 	return (safte_rdstat(ssc, slpflg));
1572 }
1573 
1574 static int
1575 safte_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflg)
1576 {
1577 	struct scfg *cc = ssc->ses_private;
1578 	if (cc == NULL)
1579 		return (0);
1580 	/*
1581 	 * Since SAF-TE devices aren't necessarily sticky in terms
1582 	 * of state, make our soft copy of enclosure status 'sticky'-
1583 	 * that is, things set in enclosure status stay set (as implied
1584 	 * by conditions set in reading object status) until cleared.
1585 	 */
1586 	ssc->ses_encstat &= ~ALL_ENC_STAT;
1587 	ssc->ses_encstat |= (encstat & ALL_ENC_STAT);
1588 	ssc->ses_encstat |= ENCI_SVALID;
1589 	cc->flag1 &= ~(SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL|SAFT_FLG1_GLOBWARN);
1590 	if ((encstat & (SES_ENCSTAT_CRITICAL|SES_ENCSTAT_UNRECOV)) != 0) {
1591 		cc->flag1 |= SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL;
1592 	} else if ((encstat & SES_ENCSTAT_NONCRITICAL) != 0) {
1593 		cc->flag1 |= SAFT_FLG1_GLOBWARN;
1594 	}
1595 	return (wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slpflg));
1596 }
1597 
1598 static int
1599 safte_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflg)
1600 {
1601 	int i = (int)obp->obj_id;
1602 
1603 	if ((ssc->ses_encstat & ENCI_SVALID) == 0 ||
1604 	    (ssc->ses_objmap[i].svalid) == 0) {
1605 		int err = safte_rdstat(ssc, slpflg);
1606 		if (err)
1607 			return (err);
1608 	}
1609 	obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
1610 	obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
1611 	obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
1612 	obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
1613 	return (0);
1614 }
1615 
1616 
1617 static int
1618 safte_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slp)
1619 {
1620 	int idx, err;
1621 	encobj *ep;
1622 	struct scfg *cc;
1623 
1624 
1625 	SES_VLOG(ssc, "safte_set_objstat(%d): %x %x %x %x\n",
1626 	    (int)obp->obj_id, obp->cstat[0], obp->cstat[1], obp->cstat[2],
1627 	    obp->cstat[3]);
1628 
1629 	/*
1630 	 * If this is clear, we don't do diddly.
1631 	 */
1632 	if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
1633 		return (0);
1634 	}
1635 
1636 	err = 0;
1637 	/*
1638 	 * Check to see if the common bits are set and do them first.
1639 	 */
1640 	if (obp->cstat[0] & ~SESCTL_CSEL) {
1641 		err = set_objstat_sel(ssc, obp, slp);
1642 		if (err)
1643 			return (err);
1644 	}
1645 
1646 	cc = ssc->ses_private;
1647 	if (cc == NULL)
1648 		return (0);
1649 
1650 	idx = (int)obp->obj_id;
1651 	ep = &ssc->ses_objmap[idx];
1652 
1653 	switch (ep->enctype) {
1654 	case SESTYP_DEVICE:
1655 	{
1656 		uint8_t slotop = 0;
1657 		/*
1658 		 * XXX: I should probably cache the previous state
1659 		 * XXX: of SESCTL_DEVOFF so that when it goes from
1660 		 * XXX: true to false I can then set PREPARE FOR OPERATION
1661 		 * XXX: flag in PERFORM SLOT OPERATION write buffer command.
1662 		 */
1663 		if (obp->cstat[2] & (SESCTL_RQSINS|SESCTL_RQSRMV)) {
1664 			slotop |= 0x2;
1665 		}
1666 		if (obp->cstat[2] & SESCTL_RQSID) {
1667 			slotop |= 0x4;
1668 		}
1669 		err = perf_slotop(ssc, (uint8_t) idx - (uint8_t) cc->slotoff,
1670 		    slotop, slp);
1671 		if (err)
1672 			return (err);
1673 		if (obp->cstat[3] & SESCTL_RQSFLT) {
1674 			ep->priv |= 0x2;
1675 		} else {
1676 			ep->priv &= ~0x2;
1677 		}
1678 		if (ep->priv & 0xc6) {
1679 			ep->priv &= ~0x1;
1680 		} else {
1681 			ep->priv |= 0x1;	/* no errors */
1682 		}
1683 		wrslot_stat(ssc, slp);
1684 		break;
1685 	}
1686 	case SESTYP_POWER:
1687 		if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1688 			cc->flag1 |= SAFT_FLG1_ENCPWRFAIL;
1689 		} else {
1690 			cc->flag1 &= ~SAFT_FLG1_ENCPWRFAIL;
1691 		}
1692 		err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1693 		    cc->flag2, 0, slp);
1694 		if (err)
1695 			return (err);
1696 		if (obp->cstat[3] & SESCTL_RQSTON) {
1697 			(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1698 				idx - cc->pwroff, 0, 0, slp);
1699 		} else {
1700 			(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1701 				idx - cc->pwroff, 0, 1, slp);
1702 		}
1703 		break;
1704 	case SESTYP_FAN:
1705 		if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1706 			cc->flag1 |= SAFT_FLG1_ENCFANFAIL;
1707 		} else {
1708 			cc->flag1 &= ~SAFT_FLG1_ENCFANFAIL;
1709 		}
1710 		err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1711 		    cc->flag2, 0, slp);
1712 		if (err)
1713 			return (err);
1714 		if (obp->cstat[3] & SESCTL_RQSTON) {
1715 			uint8_t fsp;
1716 			if ((obp->cstat[3] & 0x7) == 7) {
1717 				fsp = 4;
1718 			} else if ((obp->cstat[3] & 0x7) == 6) {
1719 				fsp = 3;
1720 			} else if ((obp->cstat[3] & 0x7) == 4) {
1721 				fsp = 2;
1722 			} else {
1723 				fsp = 1;
1724 			}
1725 			(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, fsp, 0, slp);
1726 		} else {
1727 			(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
1728 		}
1729 		break;
1730 	case SESTYP_DOORLOCK:
1731 		if (obp->cstat[3] & 0x1) {
1732 			cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
1733 		} else {
1734 			cc->flag2 |= SAFT_FLG2_LOCKDOOR;
1735 		}
1736 		(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1737 		    cc->flag2, 0, slp);
1738 		break;
1739 	case SESTYP_ALARM:
1740 		/*
1741 		 * On all nonzero but the 'muted' bit, we turn on the alarm,
1742 		 */
1743 		obp->cstat[3] &= ~0xa;
1744 		if (obp->cstat[3] & 0x40) {
1745 			cc->flag2 &= ~SAFT_FLG1_ALARM;
1746 		} else if (obp->cstat[3] != 0) {
1747 			cc->flag2 |= SAFT_FLG1_ALARM;
1748 		} else {
1749 			cc->flag2 &= ~SAFT_FLG1_ALARM;
1750 		}
1751 		ep->priv = obp->cstat[3];
1752 		(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1753 			cc->flag2, 0, slp);
1754 		break;
1755 	default:
1756 		break;
1757 	}
1758 	ep->svalid = 0;
1759 	return (0);
1760 }
1761 
1762 static int
1763 safte_getconfig(ses_softc_t *ssc)
1764 {
1765 	struct scfg *cfg;
1766 	int err, amt;
1767 	char *sdata;
1768 	static char cdb[10] =
1769 	    { READ_BUFFER, 1, SAFTE_RD_RDCFG, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
1770 
1771 	cfg = ssc->ses_private;
1772 	if (cfg == NULL)
1773 		return (ENXIO);
1774 
1775 	sdata = SES_MALLOC(SAFT_SCRATCH);
1776 	if (sdata == NULL)
1777 		return (ENOMEM);
1778 
1779 	amt = SAFT_SCRATCH;
1780 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1781 	if (err) {
1782 		SES_FREE(sdata, SAFT_SCRATCH);
1783 		return (err);
1784 	}
1785 	amt = SAFT_SCRATCH - amt;
1786 	if (amt < 6) {
1787 		SES_LOG(ssc, "too little data (%d) for configuration\n", amt);
1788 		SES_FREE(sdata, SAFT_SCRATCH);
1789 		return (EIO);
1790 	}
1791 	SES_VLOG(ssc, "Nfans %d Npwr %d Nslots %d Lck %d Ntherm %d Nspkrs %d\n",
1792 	    sdata[0], sdata[1], sdata[2], sdata[3], sdata[4], sdata[5]);
1793 	cfg->Nfans = sdata[0];
1794 	cfg->Npwr = sdata[1];
1795 	cfg->Nslots = sdata[2];
1796 	cfg->DoorLock = sdata[3];
1797 	cfg->Ntherm = sdata[4];
1798 	cfg->Nspkrs = sdata[5];
1799 	cfg->Nalarm = NPSEUDO_ALARM;
1800 	SES_FREE(sdata, SAFT_SCRATCH);
1801 	return (0);
1802 }
1803 
1804 static int
1805 safte_rdstat(ses_softc_t *ssc, int slpflg)
1806 {
1807 	int err, oid, r, i, hiwater, nitems, amt;
1808 	uint16_t tempflags;
1809 	size_t buflen;
1810 	uint8_t status, oencstat;
1811 	char *sdata, cdb[10];
1812 	struct scfg *cc = ssc->ses_private;
1813 
1814 
1815 	/*
1816 	 * The number of objects overstates things a bit,
1817 	 * both for the bogus 'thermometer' entries and
1818 	 * the drive status (which isn't read at the same
1819 	 * time as the enclosure status), but that's okay.
1820 	 */
1821 	buflen = 4 * cc->Nslots;
1822 	if (ssc->ses_nobjects > buflen)
1823 		buflen = ssc->ses_nobjects;
1824 	sdata = SES_MALLOC(buflen);
1825 	if (sdata == NULL)
1826 		return (ENOMEM);
1827 
1828 	cdb[0] = READ_BUFFER;
1829 	cdb[1] = 1;
1830 	cdb[2] = SAFTE_RD_RDESTS;
1831 	cdb[3] = 0;
1832 	cdb[4] = 0;
1833 	cdb[5] = 0;
1834 	cdb[6] = 0;
1835 	cdb[7] = (buflen >> 8) & 0xff;
1836 	cdb[8] = buflen & 0xff;
1837 	cdb[9] = 0;
1838 	amt = buflen;
1839 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1840 	if (err) {
1841 		SES_FREE(sdata, buflen);
1842 		return (err);
1843 	}
1844 	hiwater = buflen - amt;
1845 
1846 
1847 	/*
1848 	 * invalidate all status bits.
1849 	 */
1850 	for (i = 0; i < ssc->ses_nobjects; i++)
1851 		ssc->ses_objmap[i].svalid = 0;
1852 	oencstat = ssc->ses_encstat & ALL_ENC_STAT;
1853 	ssc->ses_encstat = 0;
1854 
1855 
1856 	/*
1857 	 * Now parse returned buffer.
1858 	 * If we didn't get enough data back,
1859 	 * that's considered a fatal error.
1860 	 */
1861 	oid = r = 0;
1862 
1863 	for (nitems = i = 0; i < cc->Nfans; i++) {
1864 		SAFT_BAIL(r, hiwater, sdata, buflen);
1865 		/*
1866 		 * 0 = Fan Operational
1867 		 * 1 = Fan is malfunctioning
1868 		 * 2 = Fan is not present
1869 		 * 0x80 = Unknown or Not Reportable Status
1870 		 */
1871 		ssc->ses_objmap[oid].encstat[1] = 0;	/* resvd */
1872 		ssc->ses_objmap[oid].encstat[2] = 0;	/* resvd */
1873 		switch ((int)(uint8_t)sdata[r]) {
1874 		case 0:
1875 			nitems++;
1876 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1877 			/*
1878 			 * We could get fancier and cache
1879 			 * fan speeds that we have set, but
1880 			 * that isn't done now.
1881 			 */
1882 			ssc->ses_objmap[oid].encstat[3] = 7;
1883 			break;
1884 
1885 		case 1:
1886 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1887 			/*
1888 			 * FAIL and FAN STOPPED synthesized
1889 			 */
1890 			ssc->ses_objmap[oid].encstat[3] = 0x40;
1891 			/*
1892 			 * Enclosure marked with CRITICAL error
1893 			 * if only one fan or no thermometers,
1894 			 * else the NONCRITICAL error is set.
1895 			 */
1896 			if (cc->Nfans == 1 || cc->Ntherm == 0)
1897 				ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1898 			else
1899 				ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1900 			break;
1901 		case 2:
1902 			ssc->ses_objmap[oid].encstat[0] =
1903 			    SES_OBJSTAT_NOTINSTALLED;
1904 			ssc->ses_objmap[oid].encstat[3] = 0;
1905 			/*
1906 			 * Enclosure marked with CRITICAL error
1907 			 * if only one fan or no thermometers,
1908 			 * else the NONCRITICAL error is set.
1909 			 */
1910 			if (cc->Nfans == 1)
1911 				ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1912 			else
1913 				ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1914 			break;
1915 		case 0x80:
1916 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1917 			ssc->ses_objmap[oid].encstat[3] = 0;
1918 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
1919 			break;
1920 		default:
1921 			ssc->ses_objmap[oid].encstat[0] =
1922 			    SES_OBJSTAT_UNSUPPORTED;
1923 			SES_LOG(ssc, "Unknown fan%d status 0x%x\n", i,
1924 			    sdata[r] & 0xff);
1925 			break;
1926 		}
1927 		ssc->ses_objmap[oid++].svalid = 1;
1928 		r++;
1929 	}
1930 
1931 	/*
1932 	 * No matter how you cut it, no cooling elements when there
1933 	 * should be some there is critical.
1934 	 */
1935 	if (cc->Nfans && nitems == 0) {
1936 		ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1937 	}
1938 
1939 
1940 	for (i = 0; i < cc->Npwr; i++) {
1941 		SAFT_BAIL(r, hiwater, sdata, buflen);
1942 		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1943 		ssc->ses_objmap[oid].encstat[1] = 0;	/* resvd */
1944 		ssc->ses_objmap[oid].encstat[2] = 0;	/* resvd */
1945 		ssc->ses_objmap[oid].encstat[3] = 0x20;	/* requested on */
1946 		switch ((uint8_t)sdata[r]) {
1947 		case 0x00:	/* pws operational and on */
1948 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1949 			break;
1950 		case 0x01:	/* pws operational and off */
1951 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1952 			ssc->ses_objmap[oid].encstat[3] = 0x10;
1953 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
1954 			break;
1955 		case 0x10:	/* pws is malfunctioning and commanded on */
1956 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1957 			ssc->ses_objmap[oid].encstat[3] = 0x61;
1958 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1959 			break;
1960 
1961 		case 0x11:	/* pws is malfunctioning and commanded off */
1962 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
1963 			ssc->ses_objmap[oid].encstat[3] = 0x51;
1964 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1965 			break;
1966 		case 0x20:	/* pws is not present */
1967 			ssc->ses_objmap[oid].encstat[0] =
1968 			    SES_OBJSTAT_NOTINSTALLED;
1969 			ssc->ses_objmap[oid].encstat[3] = 0;
1970 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
1971 			break;
1972 		case 0x21:	/* pws is present */
1973 			/*
1974 			 * This is for enclosures that cannot tell whether the
1975 			 * device is on or malfunctioning, but know that it is
1976 			 * present. Just fall through.
1977 			 */
1978 			/* FALLTHROUGH */
1979 		case 0x80:	/* Unknown or Not Reportable Status */
1980 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1981 			ssc->ses_objmap[oid].encstat[3] = 0;
1982 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
1983 			break;
1984 		default:
1985 			SES_LOG(ssc, "unknown power supply %d status (0x%x)\n",
1986 			    i, sdata[r] & 0xff);
1987 			break;
1988 		}
1989 		ssc->ses_objmap[oid++].svalid = 1;
1990 		r++;
1991 	}
1992 
1993 	/*
1994 	 * Skip over Slot SCSI IDs
1995 	 */
1996 	r += cc->Nslots;
1997 
1998 	/*
1999 	 * We always have doorlock status, no matter what,
2000 	 * but we only save the status if we have one.
2001 	 */
2002 	SAFT_BAIL(r, hiwater, sdata, buflen);
2003 	if (cc->DoorLock) {
2004 		/*
2005 		 * 0 = Door Locked
2006 		 * 1 = Door Unlocked, or no Lock Installed
2007 		 * 0x80 = Unknown or Not Reportable Status
2008 		 */
2009 		ssc->ses_objmap[oid].encstat[1] = 0;
2010 		ssc->ses_objmap[oid].encstat[2] = 0;
2011 		switch ((uint8_t)sdata[r]) {
2012 		case 0:
2013 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2014 			ssc->ses_objmap[oid].encstat[3] = 0;
2015 			break;
2016 		case 1:
2017 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2018 			ssc->ses_objmap[oid].encstat[3] = 1;
2019 			break;
2020 		case 0x80:
2021 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2022 			ssc->ses_objmap[oid].encstat[3] = 0;
2023 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
2024 			break;
2025 		default:
2026 			ssc->ses_objmap[oid].encstat[0] =
2027 			    SES_OBJSTAT_UNSUPPORTED;
2028 			SES_LOG(ssc, "unknown lock status 0x%x\n",
2029 			    sdata[r] & 0xff);
2030 			break;
2031 		}
2032 		ssc->ses_objmap[oid++].svalid = 1;
2033 	}
2034 	r++;
2035 
2036 	/*
2037 	 * We always have speaker status, no matter what,
2038 	 * but we only save the status if we have one.
2039 	 */
2040 	SAFT_BAIL(r, hiwater, sdata, buflen);
2041 	if (cc->Nspkrs) {
2042 		ssc->ses_objmap[oid].encstat[1] = 0;
2043 		ssc->ses_objmap[oid].encstat[2] = 0;
2044 		if (sdata[r] == 1) {
2045 			/*
2046 			 * We need to cache tone urgency indicators.
2047 			 * Someday.
2048 			 */
2049 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
2050 			ssc->ses_objmap[oid].encstat[3] = 0x8;
2051 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2052 		} else if (sdata[r] == 0) {
2053 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2054 			ssc->ses_objmap[oid].encstat[3] = 0;
2055 		} else {
2056 			ssc->ses_objmap[oid].encstat[0] =
2057 			    SES_OBJSTAT_UNSUPPORTED;
2058 			ssc->ses_objmap[oid].encstat[3] = 0;
2059 			SES_LOG(ssc, "unknown spkr status 0x%x\n",
2060 			    sdata[r] & 0xff);
2061 		}
2062 		ssc->ses_objmap[oid++].svalid = 1;
2063 	}
2064 	r++;
2065 
2066 	for (i = 0; i < cc->Ntherm; i++) {
2067 		SAFT_BAIL(r, hiwater, sdata, buflen);
2068 		/*
2069 		 * Status is a range from -10 to 245 deg Celsius,
2070 		 * which we need to normalize to -20 to -245 according
2071 		 * to the latest SCSI spec, which makes little
2072 		 * sense since this would overflow an 8bit value.
2073 		 * Well, still, the base normalization is -20,
2074 		 * not -10, so we have to adjust.
2075 		 *
2076 		 * So what's over and under temperature?
2077 		 * Hmm- we'll state that 'normal' operating
2078 		 * is 10 to 40 deg Celsius.
2079 		 */
2080 
2081 		/*
2082 		 * Actually.... All of the units that people out in the world
2083 		 * seem to have do not come even close to setting a value that
2084 		 * complies with this spec.
2085 		 *
2086 		 * The closest explanation I could find was in an
2087 		 * LSI-Logic manual, which seemed to indicate that
2088 		 * this value would be set by whatever the I2C code
2089 		 * would interpolate from the output of an LM75
2090 		 * temperature sensor.
2091 		 *
2092 		 * This means that it is impossible to use the actual
2093 		 * numeric value to predict anything. But we don't want
2094 		 * to lose the value. So, we'll propagate the *uncorrected*
2095 		 * value and set SES_OBJSTAT_NOTAVAIL. We'll depend on the
2096 		 * temperature flags for warnings.
2097 		 */
2098 		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NOTAVAIL;
2099 		ssc->ses_objmap[oid].encstat[1] = 0;
2100 		ssc->ses_objmap[oid].encstat[2] = sdata[r];
2101 		ssc->ses_objmap[oid].encstat[3] = 0;
2102 		ssc->ses_objmap[oid++].svalid = 1;
2103 		r++;
2104 	}
2105 
2106 	/*
2107 	 * Now, for "pseudo" thermometers, we have two bytes
2108 	 * of information in enclosure status- 16 bits. Actually,
2109 	 * the MSB is a single TEMP ALERT flag indicating whether
2110 	 * any other bits are set, but, thanks to fuzzy thinking,
2111 	 * in the SAF-TE spec, this can also be set even if no
2112 	 * other bits are set, thus making this really another
2113 	 * binary temperature sensor.
2114 	 */
2115 
2116 	SAFT_BAIL(r, hiwater, sdata, buflen);
2117 	tempflags = sdata[r++];
2118 	SAFT_BAIL(r, hiwater, sdata, buflen);
2119 	tempflags |= (tempflags << 8) | sdata[r++];
2120 
2121 	for (i = 0; i < NPSEUDO_THERM; i++) {
2122 		ssc->ses_objmap[oid].encstat[1] = 0;
2123 		if (tempflags & (1 << (NPSEUDO_THERM - i - 1))) {
2124 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2125 			ssc->ses_objmap[4].encstat[2] = 0xff;
2126 			/*
2127 			 * Set 'over temperature' failure.
2128 			 */
2129 			ssc->ses_objmap[oid].encstat[3] = 8;
2130 			ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2131 		} else {
2132 			/*
2133 			 * We used to say 'not available' and synthesize a
2134 			 * nominal 30 deg (C)- that was wrong. Actually,
2135 			 * Just say 'OK', and use the reserved value of
2136 			 * zero.
2137 			 */
2138 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2139 			ssc->ses_objmap[oid].encstat[2] = 0;
2140 			ssc->ses_objmap[oid].encstat[3] = 0;
2141 		}
2142 		ssc->ses_objmap[oid++].svalid = 1;
2143 	}
2144 
2145 	/*
2146 	 * Get alarm status.
2147 	 */
2148 	ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2149 	ssc->ses_objmap[oid].encstat[3] = ssc->ses_objmap[oid].priv;
2150 	ssc->ses_objmap[oid++].svalid = 1;
2151 
2152 	/*
2153 	 * Now get drive slot status
2154 	 */
2155 	cdb[2] = SAFTE_RD_RDDSTS;
2156 	amt = buflen;
2157 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2158 	if (err) {
2159 		SES_FREE(sdata, buflen);
2160 		return (err);
2161 	}
2162 	hiwater = buflen - amt;
2163 	for (r = i = 0; i < cc->Nslots; i++, r += 4) {
2164 		SAFT_BAIL(r+3, hiwater, sdata, buflen);
2165 		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNSUPPORTED;
2166 		ssc->ses_objmap[oid].encstat[1] = (uint8_t) i;
2167 		ssc->ses_objmap[oid].encstat[2] = 0;
2168 		ssc->ses_objmap[oid].encstat[3] = 0;
2169 		status = sdata[r+3];
2170 		if ((status & 0x1) == 0) {	/* no device */
2171 			ssc->ses_objmap[oid].encstat[0] =
2172 			    SES_OBJSTAT_NOTINSTALLED;
2173 		} else {
2174 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2175 		}
2176 		if (status & 0x2) {
2177 			ssc->ses_objmap[oid].encstat[2] = 0x8;
2178 		}
2179 		if ((status & 0x4) == 0) {
2180 			ssc->ses_objmap[oid].encstat[3] = 0x10;
2181 		}
2182 		ssc->ses_objmap[oid++].svalid = 1;
2183 	}
2184 	/* see comment below about sticky enclosure status */
2185 	ssc->ses_encstat |= ENCI_SVALID | oencstat;
2186 	SES_FREE(sdata, buflen);
2187 	return (0);
2188 }
2189 
2190 static int
2191 set_objstat_sel(ses_softc_t *ssc, ses_objstat *obp, int slp)
2192 {
2193 	int idx;
2194 	encobj *ep;
2195 	struct scfg *cc = ssc->ses_private;
2196 
2197 	if (cc == NULL)
2198 		return (0);
2199 
2200 	idx = (int)obp->obj_id;
2201 	ep = &ssc->ses_objmap[idx];
2202 
2203 	switch (ep->enctype) {
2204 	case SESTYP_DEVICE:
2205 		if (obp->cstat[0] & SESCTL_PRDFAIL) {
2206 			ep->priv |= 0x40;
2207 		}
2208 		/* SESCTL_RSTSWAP has no correspondence in SAF-TE */
2209 		if (obp->cstat[0] & SESCTL_DISABLE) {
2210 			ep->priv |= 0x80;
2211 			/*
2212 			 * Hmm. Try to set the 'No Drive' flag.
2213 			 * Maybe that will count as a 'disable'.
2214 			 */
2215 		}
2216 		if (ep->priv & 0xc6) {
2217 			ep->priv &= ~0x1;
2218 		} else {
2219 			ep->priv |= 0x1;	/* no errors */
2220 		}
2221 		wrslot_stat(ssc, slp);
2222 		break;
2223 	case SESTYP_POWER:
2224 		/*
2225 		 * Okay- the only one that makes sense here is to
2226 		 * do the 'disable' for a power supply.
2227 		 */
2228 		if (obp->cstat[0] & SESCTL_DISABLE) {
2229 			(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
2230 				idx - cc->pwroff, 0, 0, slp);
2231 		}
2232 		break;
2233 	case SESTYP_FAN:
2234 		/*
2235 		 * Okay- the only one that makes sense here is to
2236 		 * set fan speed to zero on disable.
2237 		 */
2238 		if (obp->cstat[0] & SESCTL_DISABLE) {
2239 			/* remember- fans are the first items, so idx works */
2240 			(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
2241 		}
2242 		break;
2243 	case SESTYP_DOORLOCK:
2244 		/*
2245 		 * Well, we can 'disable' the lock.
2246 		 */
2247 		if (obp->cstat[0] & SESCTL_DISABLE) {
2248 			cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
2249 			(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2250 				cc->flag2, 0, slp);
2251 		}
2252 		break;
2253 	case SESTYP_ALARM:
2254 		/*
2255 		 * Well, we can 'disable' the alarm.
2256 		 */
2257 		if (obp->cstat[0] & SESCTL_DISABLE) {
2258 			cc->flag2 &= ~SAFT_FLG1_ALARM;
2259 			ep->priv |= 0x40;	/* Muted */
2260 			(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2261 				cc->flag2, 0, slp);
2262 		}
2263 		break;
2264 	default:
2265 		break;
2266 	}
2267 	ep->svalid = 0;
2268 	return (0);
2269 }
2270 
2271 /*
2272  * This function handles all of the 16 byte WRITE BUFFER commands.
2273  */
2274 static int
2275 wrbuf16(ses_softc_t *ssc, uint8_t op, uint8_t b1, uint8_t b2,
2276     uint8_t b3, int slp)
2277 {
2278 	int err, amt;
2279 	char *sdata;
2280 	struct scfg *cc = ssc->ses_private;
2281 	static char cdb[10] = { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
2282 
2283 	if (cc == NULL)
2284 		return (0);
2285 
2286 	sdata = SES_MALLOC(16);
2287 	if (sdata == NULL)
2288 		return (ENOMEM);
2289 
2290 	SES_VLOG(ssc, "saf_wrbuf16 %x %x %x %x\n", op, b1, b2, b3);
2291 
2292 	sdata[0] = op;
2293 	sdata[1] = b1;
2294 	sdata[2] = b2;
2295 	sdata[3] = b3;
2296 	MEMZERO(&sdata[4], 12);
2297 	amt = -16;
2298 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2299 	SES_FREE(sdata, 16);
2300 	return (err);
2301 }
2302 
2303 /*
2304  * This function updates the status byte for the device slot described.
2305  *
2306  * Since this is an optional SAF-TE command, there's no point in
2307  * returning an error.
2308  */
2309 static void
2310 wrslot_stat(ses_softc_t *ssc, int slp)
2311 {
2312 	int i, amt;
2313 	encobj *ep;
2314 	char cdb[10], *sdata;
2315 	struct scfg *cc = ssc->ses_private;
2316 
2317 	if (cc == NULL)
2318 		return;
2319 
2320 	SES_VLOG(ssc, "saf_wrslot\n");
2321 	cdb[0] = WRITE_BUFFER;
2322 	cdb[1] = 1;
2323 	cdb[2] = 0;
2324 	cdb[3] = 0;
2325 	cdb[4] = 0;
2326 	cdb[5] = 0;
2327 	cdb[6] = 0;
2328 	cdb[7] = 0;
2329 	cdb[8] = cc->Nslots * 3 + 1;
2330 	cdb[9] = 0;
2331 
2332 	sdata = SES_MALLOC(cc->Nslots * 3 + 1);
2333 	if (sdata == NULL)
2334 		return;
2335 	MEMZERO(sdata, cc->Nslots * 3 + 1);
2336 
2337 	sdata[0] = SAFTE_WT_DSTAT;
2338 	for (i = 0; i < cc->Nslots; i++) {
2339 		ep = &ssc->ses_objmap[cc->slotoff + i];
2340 		SES_VLOG(ssc, "saf_wrslot %d <- %x\n", i, ep->priv & 0xff);
2341 		sdata[1 + (3 * i)] = ep->priv & 0xff;
2342 	}
2343 	amt = -(cc->Nslots * 3 + 1);
2344 	(void) ses_runcmd(ssc, cdb, 10, sdata, &amt);
2345 	SES_FREE(sdata, cc->Nslots * 3 + 1);
2346 }
2347 
2348 /*
2349  * This function issues the "PERFORM SLOT OPERATION" command.
2350  */
2351 static int
2352 perf_slotop(ses_softc_t *ssc, uint8_t slot, uint8_t opflag, int slp)
2353 {
2354 	int err, amt;
2355 	char *sdata;
2356 	struct scfg *cc = ssc->ses_private;
2357 	static char cdb[10] =
2358 	    { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
2359 
2360 	if (cc == NULL)
2361 		return (0);
2362 
2363 	sdata = SES_MALLOC(SAFT_SCRATCH);
2364 	if (sdata == NULL)
2365 		return (ENOMEM);
2366 	MEMZERO(sdata, SAFT_SCRATCH);
2367 
2368 	sdata[0] = SAFTE_WT_SLTOP;
2369 	sdata[1] = slot;
2370 	sdata[2] = opflag;
2371 	SES_VLOG(ssc, "saf_slotop slot %d op %x\n", slot, opflag);
2372 	amt = -SAFT_SCRATCH;
2373 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2374 	SES_FREE(sdata, SAFT_SCRATCH);
2375 	return (err);
2376 }
2377