xref: /netbsd-src/sys/dev/scsipi/ses.c (revision e4d7c2e329d54c97e0c0bd3016bbe74f550c3d5e)
1 /*	$NetBSD: ses.c,v 1.4 2000/02/20 21:30:44 mjacob Exp $ */
2 /*
3  * Copyright (C) 2000 National Aeronautics & Space Administration
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. The name of the author may not be used to endorse or promote products
12  *    derived from this software without specific prior written permission
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24  *
25  * Author:	mjacob@nas.nasa.gov
26  */
27 
28 
29 #include "opt_scsi.h"
30 
31 #include <sys/types.h>
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/kernel.h>
35 #include <sys/file.h>
36 #include <sys/stat.h>
37 #include <sys/ioctl.h>
38 #include <sys/scsiio.h>
39 #include <sys/buf.h>
40 #include <sys/uio.h>
41 #include <sys/malloc.h>
42 #include <sys/errno.h>
43 #include <sys/device.h>
44 #include <sys/disklabel.h>
45 #include <sys/disk.h>
46 #include <sys/proc.h>
47 #include <sys/conf.h>
48 #include <sys/vnode.h>
49 #include <machine/stdarg.h>
50 
51 #include <dev/scsipi/scsipi_all.h>
52 #include <dev/scsipi/scsi_all.h>
53 #include <dev/scsipi/scsipi_disk.h>
54 #include <dev/scsipi/scsi_disk.h>
55 #include <dev/scsipi/scsiconf.h>
56 #include <dev/scsipi/ses.h>
57 
58 /*
59  * Platform Independent Driver Internal Definitions for SES devices.
60  */
61 typedef enum {
62 	SES_NONE,
63 	SES_SES_SCSI2,
64 	SES_SES,
65 	SES_SES_PASSTHROUGH,
66 	SES_SEN,
67 	SES_SAFT
68 } enctyp;
69 
70 struct ses_softc;
71 typedef struct ses_softc ses_softc_t;
72 typedef struct {
73 	int (*softc_init) 	__P((ses_softc_t *, int));
74 	int (*init_enc)		__P((ses_softc_t *));
75 	int (*get_encstat)	__P((ses_softc_t *, int));
76 	int (*set_encstat)	__P((ses_softc_t *, ses_encstat, int));
77 	int (*get_objstat)	__P((ses_softc_t *, ses_objstat *, int));
78 	int (*set_objstat)	__P((ses_softc_t *, ses_objstat *, int));
79 } encvec;
80 
81 #define	ENCI_SVALID	0x80
82 
83 typedef struct {
84 	uint32_t
85 		enctype	: 8,		/* enclosure type */
86 		subenclosure : 8,	/* subenclosure id */
87 		svalid	: 1,		/* enclosure information valid */
88 		priv	: 15;		/* private data, per object */
89 	uint8_t	encstat[4];	/* state && stats */
90 } encobj;
91 
92 #define	SEN_ID		"UNISYS           SUN_SEN"
93 #define	SEN_ID_LEN	24
94 
95 static enctyp ses_type __P((void *, int));
96 
97 
98 /* Forward reference to Enclosure Functions */
99 static int ses_softc_init __P((ses_softc_t *, int));
100 static int ses_init_enc __P((ses_softc_t *));
101 static int ses_get_encstat __P((ses_softc_t *, int));
102 static int ses_set_encstat __P((ses_softc_t *, uint8_t, int));
103 static int ses_get_objstat __P((ses_softc_t *, ses_objstat *, int));
104 static int ses_set_objstat __P((ses_softc_t *, ses_objstat *, int));
105 
106 static int safte_softc_init __P((ses_softc_t *, int));
107 static int safte_init_enc __P((ses_softc_t *));
108 static int safte_get_encstat __P((ses_softc_t *, int));
109 static int safte_set_encstat __P((ses_softc_t *, uint8_t, int));
110 static int safte_get_objstat __P((ses_softc_t *, ses_objstat *, int));
111 static int safte_set_objstat __P((ses_softc_t *, ses_objstat *, int));
112 
113 /*
114  * Platform implementation defines/functions for SES internal kernel stuff
115  */
116 
117 #define	STRNCMP			strncmp
118 #define	PRINTF			printf
119 #define	SES_LOG			ses_log
120 #if	defined(DEBUG) || defined(SCSIDEBUG)
121 #define	SES_VLOG		ses_log
122 #else
123 #define	SES_VLOG		if (0) ses_log
124 #endif
125 #define	SES_MALLOC(amt)		malloc(amt, M_DEVBUF, M_NOWAIT)
126 #define	SES_FREE(ptr, amt)	free(ptr, M_DEVBUF)
127 #define	MEMZERO			bzero
128 #define	MEMCPY(dest, src, amt)	bcopy(src, dest, amt)
129 #define	RECEIVE_DIAGNOSTIC	0x1c
130 #define	SEND_DIAGNOSTIC		0x1d
131 #define	WRITE_BUFFER		0x3b
132 #define	READ_BUFFER		0x3c
133 
134 int sesopen __P((dev_t, int, int, struct proc *));
135 int sesclose __P((dev_t, int, int, struct proc *));
136 int sesioctl __P((dev_t, u_long, caddr_t, int, struct proc *));
137 
138 static int ses_runcmd	__P((struct ses_softc *, char *, int, char *, int *));
139 static void ses_log	__P((struct ses_softc *, const char *, ...));
140 
141 /*
142  * General NetBSD kernel stuff.
143  */
144 
145 struct ses_softc {
146 	struct device	sc_device;
147 	struct scsipi_link *sc_link;
148 	enctyp		ses_type;	/* type of enclosure */
149 	encvec		ses_vec;	/* vector to handlers */
150 	void *		ses_private;	/* per-type private data */
151 	encobj *	ses_objmap;	/* objects */
152 	u_int32_t	ses_nobjects;	/* number of objects */
153 	ses_encstat	ses_encstat;	/* overall status */
154 	u_int8_t	ses_flags;
155 };
156 #define	SES_FLAG_INVALID	0x01
157 #define	SES_FLAG_OPEN		0x02
158 #define	SES_FLAG_INITIALIZED	0x04
159 
160 #define SESUNIT(x)       (minor((x)))
161 
162 static int ses_match __P((struct device *, struct cfdata *, void *));
163 static void ses_attach __P((struct device *, struct device *, void *));
164 static enctyp ses_device_type __P((struct scsipibus_attach_args *));
165 
166 struct cfattach ses_ca = {
167 	sizeof (struct ses_softc), ses_match, ses_attach
168 };
169 extern struct cfdriver ses_cd;
170 
171 struct scsipi_device ses_switch = {
172 	NULL,
173 	NULL,
174 	NULL,
175 	NULL
176 };
177 
178 
179 int
180 ses_match(parent, match, aux)
181 	struct device *parent;
182 	struct cfdata *match;
183 	void *aux;
184 {
185 	struct scsipibus_attach_args *sa = aux;
186 
187 	switch (ses_device_type(sa)) {
188 	case SES_SES:
189 	case SES_SES_SCSI2:
190 	case SES_SEN:
191 	case SES_SAFT:
192 	case SES_SES_PASSTHROUGH:
193 		/*
194 		 * For these devices, it's a perfect match.
195 		 */
196 		return (24);
197 	default:
198 		return (0);
199 	}
200 }
201 
202 
203 /*
204  * Complete the attachment.
205  *
206  * We have to repeat the rerun of INQUIRY data as above because
207  * it's not until the return from the match routine that we have
208  * the softc available to set stuff in.
209  */
210 void
211 ses_attach(parent, self, aux)
212 	struct device *parent;
213 	struct device *self;
214 	void *aux;
215 {
216 	char *tname;
217 	struct ses_softc *softc = (void *)self;
218 	struct scsipibus_attach_args *sa = aux;
219 	struct scsipi_link *sc_link = sa->sa_sc_link;
220 
221 	SC_DEBUG(sc_link, SDEV_DB2, ("ssattach: "));
222 	softc->sc_link = sa->sa_sc_link;
223 	sc_link->device = &ses_switch;
224 	sc_link->device_softc = softc;
225 	sc_link->openings = 1;
226 
227 	softc->ses_type = ses_device_type(sa);
228 	switch (softc->ses_type) {
229 	case SES_SES:
230 	case SES_SES_SCSI2:
231         case SES_SES_PASSTHROUGH:
232 		softc->ses_vec.softc_init = ses_softc_init;
233 		softc->ses_vec.init_enc = ses_init_enc;
234 		softc->ses_vec.get_encstat = ses_get_encstat;
235 		softc->ses_vec.set_encstat = ses_set_encstat;
236 		softc->ses_vec.get_objstat = ses_get_objstat;
237 		softc->ses_vec.set_objstat = ses_set_objstat;
238 		break;
239         case SES_SAFT:
240 		softc->ses_vec.softc_init = safte_softc_init;
241 		softc->ses_vec.init_enc = safte_init_enc;
242 		softc->ses_vec.get_encstat = safte_get_encstat;
243 		softc->ses_vec.set_encstat = safte_set_encstat;
244 		softc->ses_vec.get_objstat = safte_get_objstat;
245 		softc->ses_vec.set_objstat = safte_set_objstat;
246 		break;
247         case SES_SEN:
248 		break;
249 	case SES_NONE:
250 	default:
251 		break;
252 	}
253 
254 	switch (softc->ses_type) {
255 	default:
256 	case SES_NONE:
257 		tname = "No SES device";
258 		break;
259 	case SES_SES_SCSI2:
260 		tname = "SCSI-2 SES Device";
261 		break;
262 	case SES_SES:
263 		tname = "SCSI-3 SES Device";
264 		break;
265         case SES_SES_PASSTHROUGH:
266 		tname = "SES Passthrough Device";
267 		break;
268         case SES_SEN:
269 		tname = "UNISYS SEN Device (NOT HANDLED YET)";
270 		break;
271         case SES_SAFT:
272 		tname = "SAF-TE Compliant Device";
273 		break;
274 	}
275 	printf("\n%s: %s\n", softc->sc_device.dv_xname, tname);
276 }
277 
278 
279 #define	NETBSD_SAFTE_END	50
280 
281 static enctyp
282 ses_device_type(sa)
283 	struct scsipibus_attach_args *sa;
284 {
285 	struct scsipi_inquiry_data *inqp = sa->sa_inqptr;
286 	int length;
287 
288 	if (inqp == NULL)
289 		return (SES_NONE);
290 
291 	/*
292 	 * If we can get longer data to check for the
293 	 * presence of a  SAF-TE device, try and do so.
294 	 *
295 	 * Because we do deferred target attach in NetBSD,
296 	 * we don't have to run this as a polled command.
297 	 */
298 
299 	if (inqp->additional_length >= NETBSD_SAFTE_END-4) {
300 		size_t amt = inqp->additional_length + 4;
301 		struct scsipi_generic cmd;
302 		static u_char more[64];
303 
304 		bzero(&cmd, sizeof(cmd));
305 		cmd.opcode = INQUIRY;
306 		cmd.bytes[3] = amt;
307 		if (scsipi_command(sa->sa_sc_link, &cmd, 6, more, amt,
308 		    SCSIPIRETRIES, 10000, NULL,
309 		    XS_CTL_DATA_IN | XS_CTL_DISCOVERY) == 0) {
310 			length = amt;
311 			inqp = (struct scsipi_inquiry_data *) more;
312 		}
313 	} else {
314 		length = sizeof (struct scsipi_inquiry_data);
315 	}
316 	return (ses_type(inqp, length));
317 }
318 
319 int
320 sesopen(dev, flags, fmt, p)
321 	dev_t dev;
322 	int flags;
323 	int fmt;
324 	struct proc *p;
325 {
326 	struct ses_softc *softc;
327 	int error, unit;
328 
329 	unit = SESUNIT(dev);
330 	if (unit >= ses_cd.cd_ndevs)
331 		return (ENXIO);
332 	softc = ses_cd.cd_devs[unit];
333 	if (softc == NULL)
334 		return (ENXIO);
335 
336 	if (softc->ses_flags & SES_FLAG_INVALID) {
337 		error = ENXIO;
338 		goto out;
339 	}
340 	if (softc->ses_flags & SES_FLAG_OPEN) {
341 		error = EBUSY;
342 		goto out;
343 	}
344 	if (softc->ses_vec.softc_init == NULL) {
345 		error = ENXIO;
346 		goto out;
347 	}
348 	error = scsipi_adapter_addref(softc->sc_link);
349 	if (error != 0)
350                 goto out;
351 
352 
353 	softc->ses_flags |= SES_FLAG_OPEN;
354 	if ((softc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
355 		error = (*softc->ses_vec.softc_init)(softc, 1);
356 		if (error)
357 			softc->ses_flags &= ~SES_FLAG_OPEN;
358 		else
359 			softc->ses_flags |= SES_FLAG_INITIALIZED;
360 	}
361 
362 out:
363 	return (error);
364 }
365 
366 int
367 sesclose(dev, flags, fmt, p)
368 	dev_t dev;
369 	int flags;
370 	int fmt;
371 	struct proc *p;
372 {
373 	struct ses_softc *softc;
374 	int unit;
375 
376 	unit = SESUNIT(dev);
377 	if (unit >= ses_cd.cd_ndevs)
378 		return (ENXIO);
379 	softc = ses_cd.cd_devs[unit];
380 	if (softc == NULL)
381 		return (ENXIO);
382 
383 	scsipi_wait_drain(softc->sc_link);
384 	scsipi_adapter_delref(softc->sc_link);
385 	softc->ses_flags &= ~SES_FLAG_OPEN;
386 	return (0);
387 }
388 
389 int
390 sesioctl(dev, cmd, arg_addr, flag, p)
391 	dev_t dev;
392 	u_long cmd;
393 	caddr_t arg_addr;
394 	int flag;
395 	struct proc *p;
396 {
397 	ses_encstat tmp;
398 	ses_objstat objs;
399 	ses_object obj, *uobj;
400 	struct ses_softc *ssc = ses_cd.cd_devs[SESUNIT(dev)];
401 	void *addr;
402 	int error, i;
403 
404 
405 	if (arg_addr)
406 		addr = *((caddr_t *) arg_addr);
407 	else
408 		addr = NULL;
409 
410 	SC_DEBUG(ssc->sc_link, SDEV_DB2, ("sesioctl 0x%lx ", cmd));
411 
412 	/*
413 	 * Now check to see whether we're initialized or not.
414 	 */
415 	if ((ssc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
416 		return (ENODEV);
417 	}
418 
419 	error = 0;
420 
421 	/*
422 	 * If this command can change the device's state,
423 	 * we must have the device open for writing.
424 	 */
425 	switch (cmd) {
426 	case SESIOC_GETNOBJ:
427 	case SESIOC_GETOBJMAP:
428 	case SESIOC_GETENCSTAT:
429 	case SESIOC_GETOBJSTAT:
430 		break;
431 	default:
432 		if ((flag & FWRITE) == 0) {
433 			return (EBADF);
434 		}
435 	}
436 
437 	switch (cmd) {
438 	case SESIOC_GETNOBJ:
439 		error = copyout(&ssc->ses_nobjects, addr,
440 		    sizeof (ssc->ses_nobjects));
441 		break;
442 
443 	case SESIOC_GETOBJMAP:
444 		for (uobj = addr, i = 0; i != ssc->ses_nobjects; i++, uobj++) {
445 			obj.obj_id = i;
446 			obj.subencid = ssc->ses_objmap[i].subenclosure;
447 			obj.object_type = ssc->ses_objmap[i].enctype;
448 			error = copyout(&obj, uobj, sizeof (ses_object));
449 			if (error) {
450 				break;
451 			}
452 		}
453 		break;
454 
455 	case SESIOC_GETENCSTAT:
456 		error = (*ssc->ses_vec.get_encstat)(ssc, 1);
457 		if (error)
458 			break;
459 		tmp = ssc->ses_encstat & ~ENCI_SVALID;
460 		error = copyout(&tmp, addr, sizeof (ses_encstat));
461 		ssc->ses_encstat = tmp;
462 		break;
463 
464 	case SESIOC_SETENCSTAT:
465 		error = copyin(addr, &tmp, sizeof (ses_encstat));
466 		if (error)
467 			break;
468 		error = (*ssc->ses_vec.set_encstat)(ssc, tmp, 1);
469 		break;
470 
471 	case SESIOC_GETOBJSTAT:
472 		error = copyin(addr, &objs, sizeof (ses_objstat));
473 		if (error)
474 			break;
475 		if (objs.obj_id >= ssc->ses_nobjects) {
476 			error = EINVAL;
477 			break;
478 		}
479 		error = (*ssc->ses_vec.get_objstat)(ssc, &objs, 1);
480 		if (error)
481 			break;
482 		error = copyout(&objs, addr, sizeof (ses_objstat));
483 		/*
484 		 * Always (for now) invalidate entry.
485 		 */
486 		ssc->ses_objmap[objs.obj_id].svalid = 0;
487 		break;
488 
489 	case SESIOC_SETOBJSTAT:
490 		error = copyin(addr, &objs, sizeof (ses_objstat));
491 		if (error)
492 			break;
493 
494 		if (objs.obj_id >= ssc->ses_nobjects) {
495 			error = EINVAL;
496 			break;
497 		}
498 		error = (*ssc->ses_vec.set_objstat)(ssc, &objs, 1);
499 
500 		/*
501 		 * Always (for now) invalidate entry.
502 		 */
503 		ssc->ses_objmap[objs.obj_id].svalid = 0;
504 		break;
505 
506 	case SESIOC_INIT:
507 
508 		error = (*ssc->ses_vec.init_enc)(ssc);
509 		break;
510 
511 	default:
512 		error = scsipi_do_ioctl(ssc->sc_link, dev, cmd, addr, flag, p);
513 		break;
514 	}
515 	return (error);
516 }
517 
518 static int
519 ses_runcmd(struct ses_softc *ssc, char *cdb, int cdbl, char *dptr, int *dlenp)
520 {
521 	struct scsipi_generic sgen;
522 	int dl, flg, error;
523 
524 	if (dptr) {
525 		if ((dl = *dlenp) < 0) {
526 			dl = -dl;
527 			flg = XS_CTL_DATA_OUT;
528 		} else {
529 			flg = XS_CTL_DATA_IN;
530 		}
531 	} else {
532 		dl = 0;
533 		flg = 0;
534 	}
535 
536 	if (cdbl > sizeof (struct scsipi_generic)) {
537 		cdbl = sizeof (struct scsipi_generic);
538 	}
539 	bcopy(cdb, &sgen, cdbl);
540 #ifndef	SCSIDEBUG
541 	flg |= XS_CTL_SILENT;
542 #endif
543 	error = scsipi_command(ssc->sc_link, &sgen, cdbl,
544 	    (u_char *) dptr, dl, SCSIPIRETRIES, 30000, NULL, flg);
545 
546 	if (error == 0 && dptr)
547 		*dlenp = 0;
548 
549 	return (error);
550 }
551 
552 #ifdef	__STDC__
553 static void
554 ses_log(struct ses_softc *ssc, const char *fmt, ...)
555 {
556 	va_list ap;
557 
558 	printf("%s: ", ssc->sc_device.dv_xname);
559 	va_start(ap, fmt);
560 	vprintf(fmt, ap);
561 	va_end(ap);
562 }
563 #else
564 static void
565 ses_log(ssc, fmt, va_alist)
566 	struct ses_softc *ssc;
567 	char *fmt;
568 	va_dcl
569 {
570 	va_list ap;
571 
572 	printf("%s: ", ssc->sc_device.dv_xname);
573 	va_start(ap, fmt);
574 	vprintf(fmt, ap);
575 	va_end(ap);
576 }
577 #endif
578 
579 /*
580  * The code after this point runs on many platforms,
581  * so forgive the slightly awkward and nonconforming
582  * appearance.
583  */
584 
585 /*
586  * Is this a device that supports enclosure services?
587  *
588  * It's a a pretty simple ruleset- if it is device type 0x0D (13), it's
589  * an SES device. If it happens to be an old UNISYS SEN device, we can
590  * handle that too.
591  */
592 
593 #define	SAFTE_START	44
594 #define	SAFTE_END	50
595 #define	SAFTE_LEN	SAFTE_END-SAFTE_START
596 
597 static enctyp
598 ses_type(void *buf, int buflen)
599 {
600 	unsigned char *iqd = buf;
601 
602 	if (buflen < 8+SEN_ID_LEN)
603 		return (SES_NONE);
604 
605 	if ((iqd[0] & 0x1f) == T_ENCLOSURE) {
606 		if (STRNCMP(&iqd[8], SEN_ID, SEN_ID_LEN) == 0) {
607 			return (SES_SEN);
608 		} else if ((iqd[2] & 0x7) > 2) {
609 			return (SES_SES);
610 		} else {
611 			return (SES_SES_SCSI2);
612 		}
613 		return (SES_NONE);
614 	}
615 
616 #ifdef	SES_ENABLE_PASSTHROUGH
617 	if ((iqd[6] & 0x40) && (iqd[2] & 0x7) >= 2) {
618 		/*
619 		 * PassThrough Device.
620 		 */
621 		return (SES_SES_PASSTHROUGH);
622 	}
623 #endif
624 
625 	/*
626 	 * The comparison is short for a reason-
627 	 * some vendors were chopping it short.
628 	 */
629 
630 	if (buflen < SAFTE_END - 2) {
631 		return (SES_NONE);
632 	}
633 
634 	if (STRNCMP((char *)&iqd[SAFTE_START], "SAF-TE", SAFTE_LEN - 2) == 0) {
635 		return (SES_SAFT);
636 	}
637 	return (SES_NONE);
638 }
639 
640 /*
641  * SES Native Type Device Support
642  */
643 
644 /*
645  * SES Diagnostic Page Codes
646  */
647 
648 typedef enum {
649 	SesConfigPage = 0x1,
650 	SesControlPage,
651 #define	SesStatusPage SesControlPage
652 	SesHelpTxt,
653 	SesStringOut,
654 #define	SesStringIn	SesStringOut
655 	SesThresholdOut,
656 #define	SesThresholdIn SesThresholdOut
657 	SesArrayControl,
658 #define	SesArrayStatus	SesArrayControl
659 	SesElementDescriptor,
660 	SesShortStatus
661 } SesDiagPageCodes;
662 
663 /*
664  * minimal amounts
665  */
666 
667 /*
668  * Minimum amount of data, starting from byte 0, to have
669  * the config header.
670  */
671 #define	SES_CFGHDR_MINLEN	12
672 
673 /*
674  * Minimum amount of data, starting from byte 0, to have
675  * the config header and one enclosure header.
676  */
677 #define	SES_ENCHDR_MINLEN	48
678 
679 /*
680  * Take this value, subtract it from VEnclen and you know
681  * the length of the vendor unique bytes.
682  */
683 #define	SES_ENCHDR_VMIN		36
684 
685 /*
686  * SES Data Structures
687  */
688 
689 typedef struct {
690 	uint32_t GenCode;	/* Generation Code */
691 	uint8_t	Nsubenc;	/* Number of Subenclosures */
692 } SesCfgHdr;
693 
694 typedef struct {
695 	uint8_t	Subencid;	/* SubEnclosure Identifier */
696 	uint8_t	Ntypes;		/* # of supported types */
697 	uint8_t	VEnclen;	/* Enclosure Descriptor Length */
698 } SesEncHdr;
699 
700 typedef struct {
701 	uint8_t	encWWN[8];	/* XXX- Not Right Yet */
702 	uint8_t	encVid[8];
703 	uint8_t	encPid[16];
704 	uint8_t	encRev[4];
705 	uint8_t	encVen[1];
706 } SesEncDesc;
707 
708 typedef struct {
709 	uint8_t	enc_type;		/* type of element */
710 	uint8_t	enc_maxelt;		/* maximum supported */
711 	uint8_t	enc_subenc;		/* in SubEnc # N */
712 	uint8_t	enc_tlen;		/* Type Descriptor Text Length */
713 } SesThdr;
714 
715 typedef struct {
716 	uint8_t	comstatus;
717 	uint8_t	comstat[3];
718 } SesComStat;
719 
720 struct typidx {
721 	int ses_tidx;
722 	int ses_oidx;
723 };
724 
725 struct sscfg {
726 	uint8_t ses_ntypes;	/* total number of types supported */
727 
728 	/*
729 	 * We need to keep a type index as well as an
730 	 * object index for each object in an enclosure.
731 	 */
732 	struct typidx *ses_typidx;
733 
734 	/*
735 	 * We also need to keep track of the number of elements
736 	 * per type of element. This is needed later so that we
737 	 * can find precisely in the returned status data the
738 	 * status for the Nth element of the Kth type.
739 	 */
740 	uint8_t *	ses_eltmap;
741 };
742 
743 
744 /*
745  * (de)canonicalization defines
746  */
747 #define	sbyte(x, byte)		((((uint32_t)(x)) >> (byte * 8)) & 0xff)
748 #define	sbit(x, bit)		(((uint32_t)(x)) << bit)
749 #define	sset8(outp, idx, sval)	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
750 
751 #define	sset16(outp, idx, sval)	\
752 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
753 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
754 
755 
756 #define	sset24(outp, idx, sval)	\
757 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
758 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
759 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
760 
761 
762 #define	sset32(outp, idx, sval)	\
763 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 3), \
764 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
765 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
766 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
767 
768 #define	gbyte(x, byte)	((((uint32_t)(x)) & 0xff) << (byte * 8))
769 #define	gbit(lv, in, idx, shft, mask)	lv = ((in[idx] >> shft) & mask)
770 #define	sget8(inp, idx, lval)	lval = (((uint8_t *)(inp))[idx++])
771 #define	gget8(inp, idx, lval)	lval = (((uint8_t *)(inp))[idx])
772 
773 #define	sget16(inp, idx, lval)	\
774 	lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
775 		(((uint8_t *)(inp))[idx+1]), idx += 2
776 
777 #define	gget16(inp, idx, lval)	\
778 	lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
779 		(((uint8_t *)(inp))[idx+1])
780 
781 #define	sget24(inp, idx, lval)	\
782 	lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
783 		gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
784 			(((uint8_t *)(inp))[idx+2]), idx += 3
785 
786 #define	gget24(inp, idx, lval)	\
787 	lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
788 		gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
789 			(((uint8_t *)(inp))[idx+2])
790 
791 #define	sget32(inp, idx, lval)	\
792 	lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
793 		gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
794 		gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
795 			(((uint8_t *)(inp))[idx+3]), idx += 4
796 
797 #define	gget32(inp, idx, lval)	\
798 	lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
799 		gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
800 		gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
801 			(((uint8_t *)(inp))[idx+3])
802 
803 #define	SCSZ	0x2000
804 #define	CFLEN	(256 + SES_ENCHDR_MINLEN)
805 
806 /*
807  * Routines specific && private to SES only
808  */
809 
810 static int ses_getconfig(ses_softc_t *);
811 static int ses_getputstat(ses_softc_t *, int, SesComStat *, int, int);
812 static int ses_cfghdr(uint8_t *, int, SesCfgHdr *);
813 static int ses_enchdr(uint8_t *, int, uint8_t, SesEncHdr *);
814 static int ses_encdesc(uint8_t *, int, uint8_t, SesEncDesc *);
815 static int ses_getthdr(uint8_t *, int,  int, SesThdr *);
816 static int ses_decode(char *, int, uint8_t *, int, int, SesComStat *);
817 static int ses_encode(char *, int, uint8_t *, int, int, SesComStat *);
818 
819 static int
820 ses_softc_init(ses_softc_t *ssc, int doinit)
821 {
822 	if (doinit == 0) {
823 		struct sscfg *cc;
824 		if (ssc->ses_nobjects) {
825 			SES_FREE(ssc->ses_objmap,
826 			    ssc->ses_nobjects * sizeof (encobj));
827 			ssc->ses_objmap = NULL;
828 		}
829 		if ((cc = ssc->ses_private) != NULL) {
830 			if (cc->ses_eltmap && cc->ses_ntypes) {
831 				SES_FREE(cc->ses_eltmap, cc->ses_ntypes);
832 				cc->ses_eltmap = NULL;
833 				cc->ses_ntypes = 0;
834 			}
835 			if (cc->ses_typidx && ssc->ses_nobjects) {
836 				SES_FREE(cc->ses_typidx,
837 				    ssc->ses_nobjects * sizeof (struct typidx));
838 				cc->ses_typidx = NULL;
839 			}
840 			SES_FREE(cc, sizeof (struct sscfg));
841 			ssc->ses_private = NULL;
842 		}
843 		ssc->ses_nobjects = 0;
844 		return (0);
845 	}
846 	if (ssc->ses_private == NULL) {
847 		ssc->ses_private = SES_MALLOC(sizeof (struct sscfg));
848 	}
849 	if (ssc->ses_private == NULL) {
850 		return (ENOMEM);
851 	}
852 	ssc->ses_nobjects = 0;
853 	ssc->ses_encstat = 0;
854 	return (ses_getconfig(ssc));
855 }
856 
857 static int
858 ses_init_enc(ses_softc_t *ssc)
859 {
860 	return (0);
861 }
862 
863 static int
864 ses_get_encstat(ses_softc_t *ssc, int slpflag)
865 {
866 	SesComStat ComStat;
867 	int status;
868 
869 	if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 1)) != 0) {
870 		return (status);
871 	}
872 	ssc->ses_encstat = ComStat.comstatus | ENCI_SVALID;
873 	return (0);
874 }
875 
876 static int
877 ses_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflag)
878 {
879 	SesComStat ComStat;
880 	int status;
881 
882 	ComStat.comstatus = encstat & 0xf;
883 	if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 0)) != 0) {
884 		return (status);
885 	}
886 	ssc->ses_encstat = encstat & 0xf;	/* note no SVALID set */
887 	return (0);
888 }
889 
890 static int
891 ses_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
892 {
893 	int i = (int)obp->obj_id;
894 
895 	if (ssc->ses_objmap[i].svalid == 0) {
896 		SesComStat ComStat;
897 		int err = ses_getputstat(ssc, i, &ComStat, slpflag, 1);
898 		if (err)
899 			return (err);
900 		ssc->ses_objmap[i].encstat[0] = ComStat.comstatus;
901 		ssc->ses_objmap[i].encstat[1] = ComStat.comstat[0];
902 		ssc->ses_objmap[i].encstat[2] = ComStat.comstat[1];
903 		ssc->ses_objmap[i].encstat[3] = ComStat.comstat[2];
904 		ssc->ses_objmap[i].svalid = 1;
905 	}
906 	obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
907 	obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
908 	obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
909 	obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
910 	return (0);
911 }
912 
913 static int
914 ses_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
915 {
916 	SesComStat ComStat;
917 	int err;
918 	/*
919 	 * If this is clear, we don't do diddly.
920 	 */
921 	if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
922 		return (0);
923 	}
924 	ComStat.comstatus = obp->cstat[0];
925 	ComStat.comstat[0] = obp->cstat[1];
926 	ComStat.comstat[1] = obp->cstat[2];
927 	ComStat.comstat[2] = obp->cstat[3];
928 	err = ses_getputstat(ssc, (int)obp->obj_id, &ComStat, slpflag, 0);
929 	ssc->ses_objmap[(int)obp->obj_id].svalid = 0;
930 	return (err);
931 }
932 
933 static int
934 ses_getconfig(ses_softc_t *ssc)
935 {
936 	struct sscfg *cc;
937 	SesCfgHdr cf;
938 	SesEncHdr hd;
939 	SesEncDesc *cdp;
940 	SesThdr thdr;
941 	int err, amt, i, nobj, ntype, maxima;
942 	char storage[CFLEN], *sdata;
943 	static char cdb[6] = {
944 	    RECEIVE_DIAGNOSTIC, 0x1, SesConfigPage, SCSZ >> 8, SCSZ & 0xff, 0
945 	};
946 
947 	cc = ssc->ses_private;
948 	if (cc == NULL) {
949 		return (ENXIO);
950 	}
951 
952 	sdata = SES_MALLOC(SCSZ);
953 	if (sdata == NULL)
954 		return (ENOMEM);
955 
956 	amt = SCSZ;
957 	err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
958 	if (err) {
959 		SES_FREE(sdata, SCSZ);
960 		return (err);
961 	}
962 	amt = SCSZ - amt;
963 
964 	if (ses_cfghdr((uint8_t *) sdata, amt, &cf)) {
965 		SES_LOG(ssc, "Unable to parse SES Config Header\n");
966 		SES_FREE(sdata, SCSZ);
967 		return (EIO);
968 	}
969 	if (amt < SES_ENCHDR_MINLEN) {
970 		SES_LOG(ssc, "runt enclosure length (%d)\n", amt);
971 		SES_FREE(sdata, SCSZ);
972 		return (EIO);
973 	}
974 
975 	SES_VLOG(ssc, "GenCode %x %d Subenclosures\n", cf.GenCode, cf.Nsubenc);
976 
977 	/*
978 	 * Now waltz through all the subenclosures toting up the
979 	 * number of types available in each. For this, we only
980 	 * really need the enclosure header. However, we get the
981 	 * enclosure descriptor for debug purposes, as well
982 	 * as self-consistency checking purposes.
983 	 */
984 
985 	maxima = cf.Nsubenc + 1;
986 	cdp = (SesEncDesc *) storage;
987 	for (ntype = i = 0; i < maxima; i++) {
988 		MEMZERO((caddr_t)cdp, sizeof (*cdp));
989 		if (ses_enchdr((uint8_t *) sdata, amt, i, &hd)) {
990 			SES_LOG(ssc, "Cannot Extract Enclosure Header %d\n", i);
991 			SES_FREE(sdata, SCSZ);
992 			return (EIO);
993 		}
994 		SES_VLOG(ssc, " SubEnclosure ID %d, %d Types With this ID, En"
995 		    "closure Length %d\n", hd.Subencid, hd.Ntypes, hd.VEnclen);
996 
997 		if (ses_encdesc((uint8_t *)sdata, amt, i, cdp)) {
998 			SES_LOG(ssc, "Can't get Enclosure Descriptor %d\n", i);
999 			SES_FREE(sdata, SCSZ);
1000 			return (EIO);
1001 		}
1002 		SES_VLOG(ssc, " WWN: %02x%02x%02x%02x%02x%02x%02x%02x\n",
1003 		    cdp->encWWN[0], cdp->encWWN[1], cdp->encWWN[2],
1004 		    cdp->encWWN[3], cdp->encWWN[4], cdp->encWWN[5],
1005 		    cdp->encWWN[6], cdp->encWWN[7]);
1006 		ntype += hd.Ntypes;
1007 	}
1008 
1009 	/*
1010 	 * Now waltz through all the types that are available, getting
1011 	 * the type header so we can start adding up the number of
1012 	 * objects available.
1013 	 */
1014 	for (nobj = i = 0; i < ntype; i++) {
1015 		if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
1016 			SES_LOG(ssc, "Can't get Enclosure Type Header %d\n", i);
1017 			SES_FREE(sdata, SCSZ);
1018 			return (EIO);
1019 		}
1020 		SES_LOG(ssc, " Type Desc[%d]: Type 0x%x, MaxElt %d, In Subenc "
1021 		    "%d, Text Length %d\n", i, thdr.enc_type, thdr.enc_maxelt,
1022 		    thdr.enc_subenc, thdr.enc_tlen);
1023 		nobj += thdr.enc_maxelt;
1024 	}
1025 
1026 
1027 	/*
1028 	 * Now allocate the object array and type map.
1029 	 */
1030 
1031 	ssc->ses_objmap = SES_MALLOC(nobj * sizeof (encobj));
1032 	cc->ses_typidx = SES_MALLOC(nobj * sizeof (struct typidx));
1033 	cc->ses_eltmap = SES_MALLOC(ntype);
1034 
1035 	if (ssc->ses_objmap == NULL || cc->ses_typidx == NULL ||
1036 	    cc->ses_eltmap == NULL) {
1037 		if (ssc->ses_objmap) {
1038 			SES_FREE(ssc->ses_objmap, (nobj * sizeof (encobj)));
1039 			ssc->ses_objmap = NULL;
1040 		}
1041 		if (cc->ses_typidx) {
1042 			SES_FREE(cc->ses_typidx,
1043 			    (nobj * sizeof (struct typidx)));
1044 			cc->ses_typidx = NULL;
1045 		}
1046 		if (cc->ses_eltmap) {
1047 			SES_FREE(cc->ses_eltmap, ntype);
1048 			cc->ses_eltmap = NULL;
1049 		}
1050 		SES_FREE(sdata, SCSZ);
1051 		return (ENOMEM);
1052 	}
1053 	MEMZERO(ssc->ses_objmap, nobj * sizeof (encobj));
1054 	MEMZERO(cc->ses_typidx, nobj * sizeof (struct typidx));
1055 	MEMZERO(cc->ses_eltmap, ntype);
1056 	cc->ses_ntypes = (uint8_t) ntype;
1057 	ssc->ses_nobjects = nobj;
1058 
1059 	/*
1060 	 * Now waltz through the # of types again to fill in the types
1061 	 * (and subenclosure ids) of the allocated objects.
1062 	 */
1063 	nobj = 0;
1064 	for (i = 0; i < ntype; i++) {
1065 		int j;
1066 		if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
1067 			continue;
1068 		}
1069 		cc->ses_eltmap[i] = thdr.enc_maxelt;
1070 		for (j = 0; j < thdr.enc_maxelt; j++) {
1071 			cc->ses_typidx[nobj].ses_tidx = i;
1072 			cc->ses_typidx[nobj].ses_oidx = j;
1073 			ssc->ses_objmap[nobj].subenclosure = thdr.enc_subenc;
1074 			ssc->ses_objmap[nobj++].enctype = thdr.enc_type;
1075 		}
1076 	}
1077 	SES_FREE(sdata, SCSZ);
1078 	return (0);
1079 }
1080 
1081 static int
1082 ses_getputstat(ses_softc_t *ssc, int objid, SesComStat *sp, int slp, int in)
1083 {
1084 	struct sscfg *cc;
1085 	int err, amt, bufsiz, tidx, oidx;
1086 	char cdb[6], *sdata;
1087 
1088 	cc = ssc->ses_private;
1089 	if (cc == NULL) {
1090 		return (ENXIO);
1091 	}
1092 
1093 	/*
1094 	 * If we're just getting overall enclosure status,
1095 	 * we only need 2 bytes of data storage.
1096 	 *
1097 	 * If we're getting anything else, we know how much
1098 	 * storage we need by noting that starting at offset
1099 	 * 8 in returned data, all object status bytes are 4
1100 	 * bytes long, and are stored in chunks of types(M)
1101 	 * and nth+1 instances of type M.
1102 	 */
1103 	if (objid == -1) {
1104 		bufsiz = 2;
1105 	} else {
1106 		bufsiz = (ssc->ses_nobjects * 4) + (cc->ses_ntypes * 4) + 8;
1107 	}
1108 	sdata = SES_MALLOC(bufsiz);
1109 	if (sdata == NULL)
1110 		return (ENOMEM);
1111 
1112 	cdb[0] = RECEIVE_DIAGNOSTIC;
1113 	cdb[1] = 1;
1114 	cdb[2] = SesStatusPage;
1115 	cdb[3] = bufsiz >> 8;
1116 	cdb[4] = bufsiz & 0xff;
1117 	cdb[5] = 0;
1118 	amt = bufsiz;
1119 	err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1120 	if (err) {
1121 		SES_FREE(sdata, bufsiz);
1122 		return (err);
1123 	}
1124 	amt = bufsiz - amt;
1125 
1126 	if (objid == -1) {
1127 		tidx = -1;
1128 		oidx = -1;
1129 	} else {
1130 		tidx = cc->ses_typidx[objid].ses_tidx;
1131 		oidx = cc->ses_typidx[objid].ses_oidx;
1132 	}
1133 	if (in) {
1134 		if (ses_decode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1135 			err = ENODEV;
1136 		}
1137 	} else {
1138 		if (ses_encode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1139 			err = ENODEV;
1140 		} else {
1141 			cdb[0] = SEND_DIAGNOSTIC;
1142 			cdb[1] = 0x10;
1143 			cdb[2] = 0;
1144 			cdb[3] = bufsiz >> 8;
1145 			cdb[4] = bufsiz & 0xff;
1146 			cdb[5] = 0;
1147 			amt = -bufsiz;
1148 			err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1149 		}
1150 	}
1151 	SES_FREE(sdata, bufsiz);
1152 	return (0);
1153 }
1154 
1155 
1156 /*
1157  * Routines to parse returned SES data structures.
1158  * Architecture and compiler independent.
1159  */
1160 
1161 static int
1162 ses_cfghdr(uint8_t *buffer, int buflen, SesCfgHdr *cfp)
1163 {
1164 	if (buflen < SES_CFGHDR_MINLEN) {
1165 		return (-1);
1166 	}
1167 	gget8(buffer, 1, cfp->Nsubenc);
1168 	gget32(buffer, 4, cfp->GenCode);
1169 	return (0);
1170 }
1171 
1172 static int
1173 ses_enchdr(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncHdr *chp)
1174 {
1175 	int s, off = 8;
1176 	for (s = 0; s < SubEncId; s++) {
1177 		if (off + 3 > amt)
1178 			return (-1);
1179 		off += buffer[off+3] + 4;
1180 	}
1181 	if (off + 3 > amt) {
1182 		return (-1);
1183 	}
1184 	gget8(buffer, off+1, chp->Subencid);
1185 	gget8(buffer, off+2, chp->Ntypes);
1186 	gget8(buffer, off+3, chp->VEnclen);
1187 	return (0);
1188 }
1189 
1190 static int
1191 ses_encdesc(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncDesc *cdp)
1192 {
1193 	int s, e, enclen, off = 8;
1194 	for (s = 0; s < SubEncId; s++) {
1195 		if (off + 3 > amt)
1196 			return (-1);
1197 		off += buffer[off+3] + 4;
1198 	}
1199 	if (off + 3 > amt) {
1200 		return (-1);
1201 	}
1202 	gget8(buffer, off+3, enclen);
1203 	off += 4;
1204 	if (off  >= amt)
1205 		return (-1);
1206 
1207 	e = off + enclen;
1208 	if (e > amt) {
1209 		e = amt;
1210 	}
1211 	MEMCPY(cdp, &buffer[off], e - off);
1212 	return (0);
1213 }
1214 
1215 static int
1216 ses_getthdr(uint8_t *buffer, int amt, int nth, SesThdr *thp)
1217 {
1218 	int s, off = 8;
1219 
1220 	if (amt < SES_CFGHDR_MINLEN) {
1221 		return (-1);
1222 	}
1223 	for (s = 0; s < buffer[1]; s++) {
1224 		if (off + 3 > amt)
1225 			return (-1);
1226 		off += buffer[off+3] + 4;
1227 	}
1228 	if (off + 3 > amt) {
1229 		return (-1);
1230 	}
1231 	off += buffer[off+3] + 4 + (nth * 4);
1232 	if (amt < (off + 4))
1233 		return (-1);
1234 
1235 	gget8(buffer, off++, thp->enc_type);
1236 	gget8(buffer, off++, thp->enc_maxelt);
1237 	gget8(buffer, off++, thp->enc_subenc);
1238 	gget8(buffer, off, thp->enc_tlen);
1239 	return (0);
1240 }
1241 
1242 /*
1243  * This function needs a little explanation.
1244  *
1245  * The arguments are:
1246  *
1247  *
1248  *	char *b, int amt
1249  *
1250  *		These describes the raw input SES status data and length.
1251  *
1252  *	uint8_t *ep
1253  *
1254  *		This is a map of the number of types for each element type
1255  *		in the enclosure.
1256  *
1257  *	int elt
1258  *
1259  *		This is the element type being sought. If elt is -1,
1260  *		then overall enclosure status is being sought.
1261  *
1262  *	int elm
1263  *
1264  *		This is the ordinal Mth element of type elt being sought.
1265  *
1266  *	SesComStat *sp
1267  *
1268  *		This is the output area to store the status for
1269  *		the Mth element of type Elt.
1270  */
1271 
1272 static int
1273 ses_decode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1274 {
1275 	int idx, i;
1276 
1277 	/*
1278 	 * If it's overall enclosure status being sought, get that.
1279 	 * We need at least 2 bytes of status data to get that.
1280 	 */
1281 	if (elt == -1) {
1282 		if (amt < 2)
1283 			return (-1);
1284 		gget8(b, 1, sp->comstatus);
1285 		sp->comstat[0] = 0;
1286 		sp->comstat[1] = 0;
1287 		sp->comstat[2] = 0;
1288 		return (0);
1289 	}
1290 
1291 	/*
1292 	 * Check to make sure that the Mth element is legal for type Elt.
1293 	 */
1294 
1295 	if (elm >= ep[elt])
1296 		return (-1);
1297 
1298 	/*
1299 	 * Starting at offset 8, start skipping over the storage
1300 	 * for the element types we're not interested in.
1301 	 */
1302 	for (idx = 8, i = 0; i < elt; i++) {
1303 		idx += ((ep[i] + 1) * 4);
1304 	}
1305 
1306 	/*
1307 	 * Skip over Overall status for this element type.
1308 	 */
1309 	idx += 4;
1310 
1311 	/*
1312 	 * And skip to the index for the Mth element that we're going for.
1313 	 */
1314 	idx += (4 * elm);
1315 
1316 	/*
1317 	 * Make sure we haven't overflowed the buffer.
1318 	 */
1319 	if (idx+4 > amt)
1320 		return (-1);
1321 
1322 	/*
1323 	 * Retrieve the status.
1324 	 */
1325 	gget8(b, idx++, sp->comstatus);
1326 	gget8(b, idx++, sp->comstat[0]);
1327 	gget8(b, idx++, sp->comstat[1]);
1328 	gget8(b, idx++, sp->comstat[2]);
1329 #if	0
1330 	PRINTF("Get Elt 0x%x Elm 0x%x (idx %d)\n", elt, elm, idx-4);
1331 #endif
1332 	return (0);
1333 }
1334 
1335 /*
1336  * This is the mirror function to ses_decode, but we set the 'select'
1337  * bit for the object which we're interested in. All other objects,
1338  * after a status fetch, should have that bit off. Hmm. It'd be easy
1339  * enough to ensure this, so we will.
1340  */
1341 
1342 static int
1343 ses_encode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1344 {
1345 	int idx, i;
1346 
1347 	/*
1348 	 * If it's overall enclosure status being sought, get that.
1349 	 * We need at least 2 bytes of status data to get that.
1350 	 */
1351 	if (elt == -1) {
1352 		if (amt < 2)
1353 			return (-1);
1354 		i = 0;
1355 		sset8(b, i, 0);
1356 		sset8(b, i, sp->comstatus & 0xf);
1357 #if	0
1358 		PRINTF("set EncStat %x\n", sp->comstatus);
1359 #endif
1360 		return (0);
1361 	}
1362 
1363 	/*
1364 	 * Check to make sure that the Mth element is legal for type Elt.
1365 	 */
1366 
1367 	if (elm >= ep[elt])
1368 		return (-1);
1369 
1370 	/*
1371 	 * Starting at offset 8, start skipping over the storage
1372 	 * for the element types we're not interested in.
1373 	 */
1374 	for (idx = 8, i = 0; i < elt; i++) {
1375 		idx += ((ep[i] + 1) * 4);
1376 	}
1377 
1378 	/*
1379 	 * Skip over Overall status for this element type.
1380 	 */
1381 	idx += 4;
1382 
1383 	/*
1384 	 * And skip to the index for the Mth element that we're going for.
1385 	 */
1386 	idx += (4 * elm);
1387 
1388 	/*
1389 	 * Make sure we haven't overflowed the buffer.
1390 	 */
1391 	if (idx+4 > amt)
1392 		return (-1);
1393 
1394 	/*
1395 	 * Set the status.
1396 	 */
1397 	sset8(b, idx, sp->comstatus);
1398 	sset8(b, idx, sp->comstat[0]);
1399 	sset8(b, idx, sp->comstat[1]);
1400 	sset8(b, idx, sp->comstat[2]);
1401 	idx -= 4;
1402 
1403 #if	0
1404 	PRINTF("Set Elt 0x%x Elm 0x%x (idx %d) with %x %x %x %x\n",
1405 	    elt, elm, idx, sp->comstatus, sp->comstat[0],
1406 	    sp->comstat[1], sp->comstat[2]);
1407 #endif
1408 
1409 	/*
1410 	 * Now make sure all other 'Select' bits are off.
1411 	 */
1412 	for (i = 8; i < amt; i += 4) {
1413 		if (i != idx)
1414 			b[i] &= ~0x80;
1415 	}
1416 	/*
1417 	 * And make sure the INVOP bit is clear.
1418 	 */
1419 	b[2] &= ~0x10;
1420 
1421 	return (0);
1422 }
1423 
1424 /*
1425  * SAF-TE Type Device Emulation
1426  */
1427 
1428 static int safte_getconfig(ses_softc_t *);
1429 static int safte_rdstat(ses_softc_t *, int);;
1430 static int set_objstat_sel(ses_softc_t *, ses_objstat *, int);
1431 static int wrbuf16(ses_softc_t *, uint8_t, uint8_t, uint8_t, uint8_t, int);
1432 static void wrslot_stat(ses_softc_t *, int);
1433 static int perf_slotop(ses_softc_t *, uint8_t, uint8_t, int);
1434 
1435 #define	ALL_ENC_STAT (SES_ENCSTAT_CRITICAL | SES_ENCSTAT_UNRECOV | \
1436 	SES_ENCSTAT_NONCRITICAL | SES_ENCSTAT_INFO)
1437 /*
1438  * SAF-TE specific defines- Mandatory ones only...
1439  */
1440 
1441 /*
1442  * READ BUFFER ('get' commands) IDs- placed in offset 2 of cdb
1443  */
1444 #define	SAFTE_RD_RDCFG	0x00	/* read enclosure configuration */
1445 #define	SAFTE_RD_RDESTS	0x01	/* read enclosure status */
1446 #define	SAFTE_RD_RDDSTS	0x04	/* read drive slot status */
1447 
1448 /*
1449  * WRITE BUFFER ('set' commands) IDs- placed in offset 0 of databuf
1450  */
1451 #define	SAFTE_WT_DSTAT	0x10	/* write device slot status */
1452 #define	SAFTE_WT_SLTOP	0x12	/* perform slot operation */
1453 #define	SAFTE_WT_FANSPD	0x13	/* set fan speed */
1454 #define	SAFTE_WT_ACTPWS	0x14	/* turn on/off power supply */
1455 #define	SAFTE_WT_GLOBAL	0x15	/* send global command */
1456 
1457 
1458 #define	SAFT_SCRATCH	64
1459 #define	NPSEUDO_THERM	16
1460 #define	NPSEUDO_ALARM	1
1461 struct scfg {
1462 	/*
1463 	 * Cached Configuration
1464 	 */
1465 	uint8_t	Nfans;		/* Number of Fans */
1466 	uint8_t	Npwr;		/* Number of Power Supplies */
1467 	uint8_t	Nslots;		/* Number of Device Slots */
1468 	uint8_t	DoorLock;	/* Door Lock Installed */
1469 	uint8_t	Ntherm;		/* Number of Temperature Sensors */
1470 	uint8_t	Nspkrs;		/* Number of Speakers */
1471 	uint8_t Nalarm;		/* Number of Alarms (at least one) */
1472 	/*
1473 	 * Cached Flag Bytes for Global Status
1474 	 */
1475 	uint8_t	flag1;
1476 	uint8_t	flag2;
1477 	/*
1478 	 * What object index ID is where various slots start.
1479 	 */
1480 	uint8_t	pwroff;
1481 	uint8_t	slotoff;
1482 #define	SAFT_ALARM_OFFSET(cc)	(cc)->slotoff - 1
1483 };
1484 
1485 #define	SAFT_FLG1_ALARM		0x1
1486 #define	SAFT_FLG1_GLOBFAIL	0x2
1487 #define	SAFT_FLG1_GLOBWARN	0x4
1488 #define	SAFT_FLG1_ENCPWROFF	0x8
1489 #define	SAFT_FLG1_ENCFANFAIL	0x10
1490 #define	SAFT_FLG1_ENCPWRFAIL	0x20
1491 #define	SAFT_FLG1_ENCDRVFAIL	0x40
1492 #define	SAFT_FLG1_ENCDRVWARN	0x80
1493 
1494 #define	SAFT_FLG2_LOCKDOOR	0x4
1495 #define	SAFT_PRIVATE		sizeof (struct scfg)
1496 
1497 static char *safte_2little = "Too Little Data Returned (%d) at line %d\n";
1498 #define	SAFT_BAIL(r, x, k, l)	\
1499 	if (r >= x) { \
1500 		SES_LOG(ssc, safte_2little, x, __LINE__);\
1501 		SES_FREE(k, l); \
1502 		return (EIO); \
1503 	}
1504 
1505 
1506 int
1507 safte_softc_init(ses_softc_t *ssc, int doinit)
1508 {
1509 	int err, i, r;
1510 	struct scfg *cc;
1511 
1512 	if (doinit == 0) {
1513 		if (ssc->ses_nobjects) {
1514 			if (ssc->ses_objmap) {
1515 				SES_FREE(ssc->ses_objmap,
1516 				    ssc->ses_nobjects * sizeof (encobj));
1517 				ssc->ses_objmap = NULL;
1518 			}
1519 			ssc->ses_nobjects = 0;
1520 		}
1521 		if (ssc->ses_private) {
1522 			SES_FREE(ssc->ses_private, SAFT_PRIVATE);
1523 			ssc->ses_private = NULL;
1524 		}
1525 		return (0);
1526 	}
1527 
1528 	if (ssc->ses_private == NULL) {
1529 		ssc->ses_private = SES_MALLOC(SAFT_PRIVATE);
1530 		if (ssc->ses_private == NULL) {
1531 			return (ENOMEM);
1532 		}
1533 		MEMZERO(ssc->ses_private, SAFT_PRIVATE);
1534 	}
1535 
1536 	ssc->ses_nobjects = 0;
1537 	ssc->ses_encstat = 0;
1538 
1539 	if ((err = safte_getconfig(ssc)) != 0) {
1540 		return (err);
1541 	}
1542 
1543 	/*
1544 	 * The number of objects here, as well as that reported by the
1545 	 * READ_BUFFER/GET_CONFIG call, are the over-temperature flags (15)
1546 	 * that get reported during READ_BUFFER/READ_ENC_STATUS.
1547 	 */
1548 	cc = ssc->ses_private;
1549 	ssc->ses_nobjects = cc->Nfans + cc->Npwr + cc->Nslots + cc->DoorLock +
1550 	    cc->Ntherm + cc->Nspkrs + NPSEUDO_THERM + NPSEUDO_ALARM;
1551 	ssc->ses_objmap = (encobj *)
1552 	    SES_MALLOC(ssc->ses_nobjects * sizeof (encobj));
1553 	if (ssc->ses_objmap == NULL) {
1554 		return (ENOMEM);
1555 	}
1556 	MEMZERO(ssc->ses_objmap, ssc->ses_nobjects * sizeof (encobj));
1557 
1558 	r = 0;
1559 	/*
1560 	 * Note that this is all arranged for the convenience
1561 	 * in later fetches of status.
1562 	 */
1563 	for (i = 0; i < cc->Nfans; i++)
1564 		ssc->ses_objmap[r++].enctype = SESTYP_FAN;
1565 	cc->pwroff = (uint8_t) r;
1566 	for (i = 0; i < cc->Npwr; i++)
1567 		ssc->ses_objmap[r++].enctype = SESTYP_POWER;
1568 	for (i = 0; i < cc->DoorLock; i++)
1569 		ssc->ses_objmap[r++].enctype = SESTYP_DOORLOCK;
1570 	for (i = 0; i < cc->Nspkrs; i++)
1571 		ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1572 	for (i = 0; i < cc->Ntherm; i++)
1573 		ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1574 	for (i = 0; i < NPSEUDO_THERM; i++)
1575 		ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1576 	ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1577 	cc->slotoff = (uint8_t) r;
1578 	for (i = 0; i < cc->Nslots; i++)
1579 		ssc->ses_objmap[r++].enctype = SESTYP_DEVICE;
1580 	return (0);
1581 }
1582 
1583 int
1584 safte_init_enc(ses_softc_t *ssc)
1585 {
1586 	int err, amt;
1587 	char *sdata;
1588 	static char cdb0[6] = { SEND_DIAGNOSTIC };
1589 	static char cdb[10] =
1590 	    { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
1591 
1592 	sdata = SES_MALLOC(SAFT_SCRATCH);
1593 	if (sdata == NULL)
1594 		return (ENOMEM);
1595 
1596 	err = ses_runcmd(ssc, cdb0, 6, NULL, 0);
1597 	if (err) {
1598 		SES_FREE(sdata, SAFT_SCRATCH);
1599 		return (err);
1600 	}
1601 	sdata[0] = SAFTE_WT_GLOBAL;
1602 	MEMZERO(&sdata[1], 15);
1603 	amt = -SAFT_SCRATCH;
1604 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1605 	SES_FREE(sdata, SAFT_SCRATCH);
1606 	return (err);
1607 }
1608 
1609 int
1610 safte_get_encstat(ses_softc_t *ssc, int slpflg)
1611 {
1612 	return (safte_rdstat(ssc, slpflg));
1613 }
1614 
1615 int
1616 safte_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflg)
1617 {
1618 	struct scfg *cc = ssc->ses_private;
1619 	if (cc == NULL)
1620 		return (0);
1621 	/*
1622 	 * Since SAF-TE devices aren't necessarily sticky in terms
1623 	 * of state, make our soft copy of enclosure status 'sticky'-
1624 	 * that is, things set in enclosure status stay set (as implied
1625 	 * by conditions set in reading object status) until cleared.
1626 	 */
1627 	ssc->ses_encstat &= ~ALL_ENC_STAT;
1628 	ssc->ses_encstat |= (encstat & ALL_ENC_STAT);
1629 	ssc->ses_encstat |= ENCI_SVALID;
1630 	cc->flag1 &= ~(SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL|SAFT_FLG1_GLOBWARN);
1631 	if ((encstat & (SES_ENCSTAT_CRITICAL|SES_ENCSTAT_UNRECOV)) != 0) {
1632 		cc->flag1 |= SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL;
1633 	} else if ((encstat & SES_ENCSTAT_NONCRITICAL) != 0) {
1634 		cc->flag1 |= SAFT_FLG1_GLOBWARN;
1635 	}
1636 	return (wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slpflg));
1637 }
1638 
1639 int
1640 safte_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflg)
1641 {
1642 	int i = (int)obp->obj_id;
1643 
1644 	if ((ssc->ses_encstat & ENCI_SVALID) == 0 ||
1645 	    (ssc->ses_objmap[i].svalid) == 0) {
1646 		int err = safte_rdstat(ssc, slpflg);
1647 		if (err)
1648 			return (err);
1649 	}
1650 	obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
1651 	obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
1652 	obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
1653 	obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
1654 	return (0);
1655 }
1656 
1657 
1658 int
1659 safte_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slp)
1660 {
1661 	int idx, err;
1662 	encobj *ep;
1663 	struct scfg *cc;
1664 
1665 
1666 	SES_VLOG(ssc, "safte_set_objstat(%d): %x %x %x %x\n",
1667 	    (int)obp->obj_id, obp->cstat[0], obp->cstat[1], obp->cstat[2],
1668 	    obp->cstat[3]);
1669 
1670 	/*
1671 	 * If this is clear, we don't do diddly.
1672 	 */
1673 	if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
1674 		return (0);
1675 	}
1676 
1677 	err = 0;
1678 	/*
1679 	 * Check to see if the common bits are set and do them first.
1680 	 */
1681 	if (obp->cstat[0] & ~SESCTL_CSEL) {
1682 		err = set_objstat_sel(ssc, obp, slp);
1683 		if (err)
1684 			return (err);
1685 	}
1686 
1687 	cc = ssc->ses_private;
1688 	if (cc == NULL)
1689 		return (0);
1690 
1691 	idx = (int)obp->obj_id;
1692 	ep = &ssc->ses_objmap[idx];
1693 
1694 	switch (ep->enctype) {
1695 	case SESTYP_DEVICE:
1696 	{
1697 		uint8_t slotop = 0;
1698 		/*
1699 		 * XXX: I should probably cache the previous state
1700 		 * XXX: of SESCTL_DEVOFF so that when it goes from
1701 		 * XXX: true to false I can then set PREPARE FOR OPERATION
1702 		 * XXX: flag in PERFORM SLOT OPERATION write buffer command.
1703 		 */
1704 		if (obp->cstat[2] & (SESCTL_RQSINS|SESCTL_RQSRMV)) {
1705 			slotop |= 0x2;
1706 		}
1707 		if (obp->cstat[2] & SESCTL_RQSID) {
1708 			slotop |= 0x4;
1709 		}
1710 		err = perf_slotop(ssc, (uint8_t) idx - (uint8_t) cc->slotoff,
1711 		    slotop, slp);
1712 		if (err)
1713 			return (err);
1714 		if (obp->cstat[3] & SESCTL_RQSFLT) {
1715 			ep->priv |= 0x2;
1716 		} else {
1717 			ep->priv &= ~0x2;
1718 		}
1719 		if (ep->priv & 0xc6) {
1720 			ep->priv &= ~0x1;
1721 		} else {
1722 			ep->priv |= 0x1;	/* no errors */
1723 		}
1724 		wrslot_stat(ssc, slp);
1725 		break;
1726 	}
1727 	case SESTYP_POWER:
1728 		if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1729 			cc->flag1 |= SAFT_FLG1_ENCPWRFAIL;
1730 		} else {
1731 			cc->flag1 &= ~SAFT_FLG1_ENCPWRFAIL;
1732 		}
1733 		err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1734 		    cc->flag2, 0, slp);
1735 		if (err)
1736 			return (err);
1737 		if (obp->cstat[3] & SESCTL_RQSTON) {
1738 			(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1739 				idx - cc->pwroff, 0, 0, slp);
1740 		} else {
1741 			(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1742 				idx - cc->pwroff, 0, 1, slp);
1743 		}
1744 		break;
1745 	case SESTYP_FAN:
1746 		if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1747 			cc->flag1 |= SAFT_FLG1_ENCFANFAIL;
1748 		} else {
1749 			cc->flag1 &= ~SAFT_FLG1_ENCFANFAIL;
1750 		}
1751 		err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1752 		    cc->flag2, 0, slp);
1753 		if (err)
1754 			return (err);
1755 		if (obp->cstat[3] & SESCTL_RQSTON) {
1756 			uint8_t fsp;
1757 			if ((obp->cstat[3] & 0x7) == 7) {
1758 				fsp = 4;
1759 			} else if ((obp->cstat[3] & 0x7) == 6) {
1760 				fsp = 3;
1761 			} else if ((obp->cstat[3] & 0x7) == 4) {
1762 				fsp = 2;
1763 			} else {
1764 				fsp = 1;
1765 			}
1766 			(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, fsp, 0, slp);
1767 		} else {
1768 			(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
1769 		}
1770 		break;
1771 	case SESTYP_DOORLOCK:
1772 		if (obp->cstat[3] & 0x1) {
1773 			cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
1774 		} else {
1775 			cc->flag2 |= SAFT_FLG2_LOCKDOOR;
1776 		}
1777 		(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1778 		    cc->flag2, 0, slp);
1779 		break;
1780 	case SESTYP_ALARM:
1781 		/*
1782 		 * On all nonzero but the 'muted' bit, we turn on the alarm,
1783 		 */
1784 		obp->cstat[3] &= ~0xa;
1785 		if (obp->cstat[3] & 0x40) {
1786 			cc->flag2 &= ~SAFT_FLG1_ALARM;
1787 		} else if (obp->cstat[3] != 0) {
1788 			cc->flag2 |= SAFT_FLG1_ALARM;
1789 		} else {
1790 			cc->flag2 &= ~SAFT_FLG1_ALARM;
1791 		}
1792 		ep->priv = obp->cstat[3];
1793 		(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1794 			cc->flag2, 0, slp);
1795 		break;
1796 	default:
1797 		break;
1798 	}
1799 	ep->svalid = 0;
1800 	return (0);
1801 }
1802 
1803 static int
1804 safte_getconfig(ses_softc_t *ssc)
1805 {
1806 	struct scfg *cfg;
1807 	int err, amt;
1808 	char *sdata;
1809 	static char cdb[10] =
1810 	    { READ_BUFFER, 1, SAFTE_RD_RDCFG, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
1811 
1812 	cfg = ssc->ses_private;
1813 	if (cfg == NULL)
1814 		return (ENXIO);
1815 
1816 	sdata = SES_MALLOC(SAFT_SCRATCH);
1817 	if (sdata == NULL)
1818 		return (ENOMEM);
1819 
1820 	amt = SAFT_SCRATCH;
1821 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1822 	if (err) {
1823 		SES_FREE(sdata, SAFT_SCRATCH);
1824 		return (err);
1825 	}
1826 	amt = SAFT_SCRATCH - amt;
1827 	if (amt < 6) {
1828 		SES_LOG(ssc, "too little data (%d) for configuration\n", amt);
1829 		SES_FREE(sdata, SAFT_SCRATCH);
1830 		return (EIO);
1831 	}
1832 	SES_VLOG(ssc, "Nfans %d Npwr %d Nslots %d Lck %d Ntherm %d Nspkrs %d\n",
1833 	    sdata[0], sdata[1], sdata[2], sdata[3], sdata[4], sdata[5]);
1834 	cfg->Nfans = sdata[0];
1835 	cfg->Npwr = sdata[1];
1836 	cfg->Nslots = sdata[2];
1837 	cfg->DoorLock = sdata[3];
1838 	cfg->Ntherm = sdata[4];
1839 	cfg->Nspkrs = sdata[5];
1840 	cfg->Nalarm = NPSEUDO_ALARM;
1841 	SES_FREE(sdata, SAFT_SCRATCH);
1842 	return (0);
1843 }
1844 
1845 static int
1846 safte_rdstat(ses_softc_t *ssc, int slpflg)
1847 {
1848 	int err, oid, r, i, hiwater, nitems, amt;
1849 	uint16_t tempflags;
1850 	size_t buflen;
1851 	uint8_t status, oencstat;
1852 	char *sdata, cdb[10];
1853 	struct scfg *cc = ssc->ses_private;
1854 
1855 
1856 	/*
1857 	 * The number of objects overstates things a bit,
1858 	 * both for the bogus 'thermometer' entries and
1859 	 * the drive status (which isn't read at the same
1860 	 * time as the enclosure status), but that's okay.
1861 	 */
1862 	buflen = 4 * cc->Nslots;
1863 	if (ssc->ses_nobjects > buflen)
1864 		buflen = ssc->ses_nobjects;
1865 	sdata = SES_MALLOC(buflen);
1866 	if (sdata == NULL)
1867 		return (ENOMEM);
1868 
1869 	cdb[0] = READ_BUFFER;
1870 	cdb[1] = 1;
1871 	cdb[2] = SAFTE_RD_RDESTS;
1872 	cdb[3] = 0;
1873 	cdb[4] = 0;
1874 	cdb[5] = 0;
1875 	cdb[6] = 0;
1876 	cdb[7] = (buflen >> 8) & 0xff;
1877 	cdb[8] = buflen & 0xff;
1878 	cdb[9] = 0;
1879 	amt = buflen;
1880 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1881 	if (err) {
1882 		SES_FREE(sdata, buflen);
1883 		return (err);
1884 	}
1885 	hiwater = buflen - amt;
1886 
1887 
1888 	/*
1889 	 * invalidate all status bits.
1890 	 */
1891 	for (i = 0; i < ssc->ses_nobjects; i++)
1892 		ssc->ses_objmap[i].svalid = 0;
1893 	oencstat = ssc->ses_encstat & ALL_ENC_STAT;
1894 	ssc->ses_encstat = 0;
1895 
1896 
1897 	/*
1898 	 * Now parse returned buffer.
1899 	 * If we didn't get enough data back,
1900 	 * that's considered a fatal error.
1901 	 */
1902 	oid = r = 0;
1903 
1904 	for (nitems = i = 0; i < cc->Nfans; i++) {
1905 		SAFT_BAIL(r, hiwater, sdata, buflen);
1906 		/*
1907 		 * 0 = Fan Operational
1908 		 * 1 = Fan is malfunctioning
1909 		 * 2 = Fan is not present
1910 		 * 0x80 = Unknown or Not Reportable Status
1911 		 */
1912 		ssc->ses_objmap[oid].encstat[1] = 0;	/* resvd */
1913 		ssc->ses_objmap[oid].encstat[2] = 0;	/* resvd */
1914 		switch ((int)(uint8_t)sdata[r]) {
1915 		case 0:
1916 			nitems++;
1917 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1918 			/*
1919 			 * We could get fancier and cache
1920 			 * fan speeds that we have set, but
1921 			 * that isn't done now.
1922 			 */
1923 			ssc->ses_objmap[oid].encstat[3] = 7;
1924 			break;
1925 
1926 		case 1:
1927 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1928 			/*
1929 			 * FAIL and FAN STOPPED synthesized
1930 			 */
1931 			ssc->ses_objmap[oid].encstat[3] = 0x40;
1932 			/*
1933 			 * Enclosure marked with CRITICAL error
1934 			 * if only one fan or no thermometers,
1935 			 * else the NONCRITICAL error is set.
1936 			 */
1937 			if (cc->Nfans == 1 || cc->Ntherm == 0)
1938 				ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1939 			else
1940 				ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1941 			break;
1942 		case 2:
1943 			ssc->ses_objmap[oid].encstat[0] =
1944 			    SES_OBJSTAT_NOTINSTALLED;
1945 			ssc->ses_objmap[oid].encstat[3] = 0;
1946 			/*
1947 			 * Enclosure marked with CRITICAL error
1948 			 * if only one fan or no thermometers,
1949 			 * else the NONCRITICAL error is set.
1950 			 */
1951 			if (cc->Nfans == 1)
1952 				ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1953 			else
1954 				ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1955 			break;
1956 		case 0x80:
1957 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1958 			ssc->ses_objmap[oid].encstat[3] = 0;
1959 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
1960 			break;
1961 		default:
1962 			ssc->ses_objmap[oid].encstat[0] =
1963 			    SES_OBJSTAT_UNSUPPORTED;
1964 			SES_LOG(ssc, "Unknown fan%d status 0x%x\n", i,
1965 			    sdata[r] & 0xff);
1966 			break;
1967 		}
1968 		ssc->ses_objmap[oid++].svalid = 1;
1969 		r++;
1970 	}
1971 
1972 	/*
1973 	 * No matter how you cut it, no cooling elements when there
1974 	 * should be some there is critical.
1975 	 */
1976 	if (cc->Nfans && nitems == 0) {
1977 		ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1978 	}
1979 
1980 
1981 	for (i = 0; i < cc->Npwr; i++) {
1982 		SAFT_BAIL(r, hiwater, sdata, buflen);
1983 		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1984 		ssc->ses_objmap[oid].encstat[1] = 0;	/* resvd */
1985 		ssc->ses_objmap[oid].encstat[2] = 0;	/* resvd */
1986 		ssc->ses_objmap[oid].encstat[3] = 0x20;	/* requested on */
1987 		switch ((uint8_t)sdata[r]) {
1988 		case 0x00:	/* pws operational and on */
1989 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1990 			break;
1991 		case 0x01:	/* pws operational and off */
1992 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1993 			ssc->ses_objmap[oid].encstat[3] = 0x10;
1994 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
1995 			break;
1996 		case 0x10:	/* pws is malfunctioning and commanded on */
1997 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1998 			ssc->ses_objmap[oid].encstat[3] = 0x61;
1999 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2000 			break;
2001 
2002 		case 0x11:	/* pws is malfunctioning and commanded off */
2003 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
2004 			ssc->ses_objmap[oid].encstat[3] = 0x51;
2005 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2006 			break;
2007 		case 0x20:	/* pws is not present */
2008 			ssc->ses_objmap[oid].encstat[0] =
2009 			    SES_OBJSTAT_NOTINSTALLED;
2010 			ssc->ses_objmap[oid].encstat[3] = 0;
2011 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
2012 			break;
2013 		case 0x21:	/* pws is present */
2014 			/*
2015 			 * This is for enclosures that cannot tell whether the
2016 			 * device is on or malfunctioning, but know that it is
2017 			 * present. Just fall through.
2018 			 */
2019 			/* FALLTHROUGH */
2020 		case 0x80:	/* Unknown or Not Reportable Status */
2021 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2022 			ssc->ses_objmap[oid].encstat[3] = 0;
2023 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
2024 			break;
2025 		default:
2026 			SES_LOG(ssc, "unknown power supply %d status (0x%x)\n",
2027 			    i, sdata[r] & 0xff);
2028 			break;
2029 		}
2030 		ssc->ses_objmap[oid++].svalid = 1;
2031 		r++;
2032 	}
2033 
2034 	/*
2035 	 * Skip over Slot SCSI IDs
2036 	 */
2037 	r += cc->Nslots;
2038 
2039 	/*
2040 	 * We always have doorlock status, no matter what,
2041 	 * but we only save the status if we have one.
2042 	 */
2043 	SAFT_BAIL(r, hiwater, sdata, buflen);
2044 	if (cc->DoorLock) {
2045 		/*
2046 		 * 0 = Door Locked
2047 		 * 1 = Door Unlocked, or no Lock Installed
2048 		 * 0x80 = Unknown or Not Reportable Status
2049 		 */
2050 		ssc->ses_objmap[oid].encstat[1] = 0;
2051 		ssc->ses_objmap[oid].encstat[2] = 0;
2052 		switch ((uint8_t)sdata[r]) {
2053 		case 0:
2054 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2055 			ssc->ses_objmap[oid].encstat[3] = 0;
2056 			break;
2057 		case 1:
2058 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2059 			ssc->ses_objmap[oid].encstat[3] = 1;
2060 			break;
2061 		case 0x80:
2062 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2063 			ssc->ses_objmap[oid].encstat[3] = 0;
2064 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
2065 			break;
2066 		default:
2067 			ssc->ses_objmap[oid].encstat[0] =
2068 			    SES_OBJSTAT_UNSUPPORTED;
2069 			SES_LOG(ssc, "unknown lock status 0x%x\n",
2070 			    sdata[r] & 0xff);
2071 			break;
2072 		}
2073 		ssc->ses_objmap[oid++].svalid = 1;
2074 	}
2075 	r++;
2076 
2077 	/*
2078 	 * We always have speaker status, no matter what,
2079 	 * but we only save the status if we have one.
2080 	 */
2081 	SAFT_BAIL(r, hiwater, sdata, buflen);
2082 	if (cc->Nspkrs) {
2083 		ssc->ses_objmap[oid].encstat[1] = 0;
2084 		ssc->ses_objmap[oid].encstat[2] = 0;
2085 		if (sdata[r] == 1) {
2086 			/*
2087 			 * We need to cache tone urgency indicators.
2088 			 * Someday.
2089 			 */
2090 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
2091 			ssc->ses_objmap[oid].encstat[3] = 0x8;
2092 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2093 		} else if (sdata[r] == 0) {
2094 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2095 			ssc->ses_objmap[oid].encstat[3] = 0;
2096 		} else {
2097 			ssc->ses_objmap[oid].encstat[0] =
2098 			    SES_OBJSTAT_UNSUPPORTED;
2099 			ssc->ses_objmap[oid].encstat[3] = 0;
2100 			SES_LOG(ssc, "unknown spkr status 0x%x\n",
2101 			    sdata[r] & 0xff);
2102 		}
2103 		ssc->ses_objmap[oid++].svalid = 1;
2104 	}
2105 	r++;
2106 
2107 	for (i = 0; i < cc->Ntherm; i++) {
2108 		SAFT_BAIL(r, hiwater, sdata, buflen);
2109 		/*
2110 		 * Status is a range from -10 to 245 deg Celsius,
2111 		 * which we need to normalize to -20 to -245 according
2112 		 * to the latest SCSI spec, which makes little
2113 		 * sense since this would overflow an 8bit value.
2114 		 * Well, still, the base normalization is -20,
2115 		 * not -10, so we have to adjust.
2116 		 *
2117 		 * So what's over and under temperature?
2118 		 * Hmm- we'll state that 'normal' operating
2119 		 * is 10 to 40 deg Celsius.
2120 		 */
2121 		ssc->ses_objmap[oid].encstat[1] = 0;
2122 		ssc->ses_objmap[oid].encstat[2] =
2123 		    ((unsigned int) sdata[r]) - 10;
2124 		if (sdata[r] < 20) {
2125 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2126 			/*
2127 			 * Set 'under temperature' failure.
2128 			 */
2129 			ssc->ses_objmap[oid].encstat[3] = 2;
2130 			ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2131 		} else if (sdata[r] > 30) {
2132 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2133 			/*
2134 			 * Set 'over temperature' failure.
2135 			 */
2136 			ssc->ses_objmap[oid].encstat[3] = 8;
2137 			ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2138 		} else {
2139 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2140 		}
2141 		ssc->ses_objmap[oid++].svalid = 1;
2142 		r++;
2143 	}
2144 
2145 	/*
2146 	 * Now, for "pseudo" thermometers, we have two bytes
2147 	 * of information in enclosure status- 16 bits. Actually,
2148 	 * the MSB is a single TEMP ALERT flag indicating whether
2149 	 * any other bits are set, but, thanks to fuzzy thinking,
2150 	 * in the SAF-TE spec, this can also be set even if no
2151 	 * other bits are set, thus making this really another
2152 	 * binary temperature sensor.
2153 	 */
2154 
2155 	SAFT_BAIL(r, hiwater, sdata, buflen);
2156 	tempflags = sdata[r++];
2157 	SAFT_BAIL(r, hiwater, sdata, buflen);
2158 	tempflags |= (tempflags << 8) | sdata[r++];
2159 
2160 	for (i = 0; i < NPSEUDO_THERM; i++) {
2161 		ssc->ses_objmap[oid].encstat[1] = 0;
2162 		if (tempflags & (1 << (NPSEUDO_THERM - i - 1))) {
2163 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2164 			ssc->ses_objmap[4].encstat[2] = 0xff;
2165 			/*
2166 			 * Set 'over temperature' failure.
2167 			 */
2168 			ssc->ses_objmap[oid].encstat[3] = 8;
2169 			ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2170 		} else {
2171 			/*
2172 			 * We used to say 'not available' and synthesize a
2173 			 * nominal 30 deg (C)- that was wrong. Actually,
2174 			 * Just say 'OK', and use the reserved value of
2175 			 * zero.
2176 			 */
2177 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2178 			ssc->ses_objmap[oid].encstat[2] = 0;
2179 			ssc->ses_objmap[oid].encstat[3] = 0;
2180 		}
2181 		ssc->ses_objmap[oid++].svalid = 1;
2182 	}
2183 
2184 	/*
2185 	 * Get alarm status.
2186 	 */
2187 	ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2188 	ssc->ses_objmap[oid].encstat[3] = ssc->ses_objmap[oid].priv;
2189 	ssc->ses_objmap[oid++].svalid = 1;
2190 
2191 	/*
2192 	 * Now get drive slot status
2193 	 */
2194 	cdb[2] = SAFTE_RD_RDDSTS;
2195 	amt = buflen;
2196 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2197 	if (err) {
2198 		SES_FREE(sdata, buflen);
2199 		return (err);
2200 	}
2201 	hiwater = buflen - amt;
2202 	for (r = i = 0; i < cc->Nslots; i++, r += 4) {
2203 		SAFT_BAIL(r+3, hiwater, sdata, buflen);
2204 		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNSUPPORTED;
2205 		ssc->ses_objmap[oid].encstat[1] = (uint8_t) i;
2206 		ssc->ses_objmap[oid].encstat[2] = 0;
2207 		ssc->ses_objmap[oid].encstat[3] = 0;
2208 		status = sdata[r+3];
2209 		if ((status & 0x1) == 0) {	/* no device */
2210 			ssc->ses_objmap[oid].encstat[0] =
2211 			    SES_OBJSTAT_NOTINSTALLED;
2212 		} else {
2213 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2214 		}
2215 		if (status & 0x2) {
2216 			ssc->ses_objmap[oid].encstat[2] = 0x8;
2217 		}
2218 		if ((status & 0x4) == 0) {
2219 			ssc->ses_objmap[oid].encstat[3] = 0x10;
2220 		}
2221 		ssc->ses_objmap[oid++].svalid = 1;
2222 	}
2223 	/* see comment below about sticky enclosure status */
2224 	ssc->ses_encstat |= ENCI_SVALID | oencstat;
2225 	SES_FREE(sdata, buflen);
2226 	return (0);
2227 }
2228 
2229 static int
2230 set_objstat_sel(ses_softc_t *ssc, ses_objstat *obp, int slp)
2231 {
2232 	int idx;
2233 	encobj *ep;
2234 	struct scfg *cc = ssc->ses_private;
2235 
2236 	if (cc == NULL)
2237 		return (0);
2238 
2239 	idx = (int)obp->obj_id;
2240 	ep = &ssc->ses_objmap[idx];
2241 
2242 	switch (ep->enctype) {
2243 	case SESTYP_DEVICE:
2244 		if (obp->cstat[0] & SESCTL_PRDFAIL) {
2245 			ep->priv |= 0x40;
2246 		}
2247 		/* SESCTL_RSTSWAP has no correspondence in SAF-TE */
2248 		if (obp->cstat[0] & SESCTL_DISABLE) {
2249 			ep->priv |= 0x80;
2250 			/*
2251 			 * Hmm. Try to set the 'No Drive' flag.
2252 			 * Maybe that will count as a 'disable'.
2253 			 */
2254 		}
2255 		if (ep->priv & 0xc6) {
2256 			ep->priv &= ~0x1;
2257 		} else {
2258 			ep->priv |= 0x1;	/* no errors */
2259 		}
2260 		wrslot_stat(ssc, slp);
2261 		break;
2262 	case SESTYP_POWER:
2263 		/*
2264 		 * Okay- the only one that makes sense here is to
2265 		 * do the 'disable' for a power supply.
2266 		 */
2267 		if (obp->cstat[0] & SESCTL_DISABLE) {
2268 			(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
2269 				idx - cc->pwroff, 0, 0, slp);
2270 		}
2271 		break;
2272 	case SESTYP_FAN:
2273 		/*
2274 		 * Okay- the only one that makes sense here is to
2275 		 * set fan speed to zero on disable.
2276 		 */
2277 		if (obp->cstat[0] & SESCTL_DISABLE) {
2278 			/* remember- fans are the first items, so idx works */
2279 			(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
2280 		}
2281 		break;
2282 	case SESTYP_DOORLOCK:
2283 		/*
2284 		 * Well, we can 'disable' the lock.
2285 		 */
2286 		if (obp->cstat[0] & SESCTL_DISABLE) {
2287 			cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
2288 			(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2289 				cc->flag2, 0, slp);
2290 		}
2291 		break;
2292 	case SESTYP_ALARM:
2293 		/*
2294 		 * Well, we can 'disable' the alarm.
2295 		 */
2296 		if (obp->cstat[0] & SESCTL_DISABLE) {
2297 			cc->flag2 &= ~SAFT_FLG1_ALARM;
2298 			ep->priv |= 0x40;	/* Muted */
2299 			(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2300 				cc->flag2, 0, slp);
2301 		}
2302 		break;
2303 	default:
2304 		break;
2305 	}
2306 	ep->svalid = 0;
2307 	return (0);
2308 }
2309 
2310 /*
2311  * This function handles all of the 16 byte WRITE BUFFER commands.
2312  */
2313 static int
2314 wrbuf16(ses_softc_t *ssc, uint8_t op, uint8_t b1, uint8_t b2,
2315     uint8_t b3, int slp)
2316 {
2317 	int err, amt;
2318 	char *sdata;
2319 	struct scfg *cc = ssc->ses_private;
2320 	static char cdb[10] = { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
2321 
2322 	if (cc == NULL)
2323 		return (0);
2324 
2325 	sdata = SES_MALLOC(16);
2326 	if (sdata == NULL)
2327 		return (ENOMEM);
2328 
2329 	SES_VLOG(ssc, "saf_wrbuf16 %x %x %x %x\n", op, b1, b2, b3);
2330 
2331 	sdata[0] = op;
2332 	sdata[1] = b1;
2333 	sdata[2] = b2;
2334 	sdata[3] = b3;
2335 	MEMZERO(&sdata[4], 12);
2336 	amt = -16;
2337 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2338 	SES_FREE(sdata, 16);
2339 	return (err);
2340 }
2341 
2342 /*
2343  * This function updates the status byte for the device slot described.
2344  *
2345  * Since this is an optional SAF-TE command, there's no point in
2346  * returning an error.
2347  */
2348 static void
2349 wrslot_stat(ses_softc_t *ssc, int slp)
2350 {
2351 	int i, amt;
2352 	encobj *ep;
2353 	char cdb[10], *sdata;
2354 	struct scfg *cc = ssc->ses_private;
2355 
2356 	if (cc == NULL)
2357 		return;
2358 
2359 	SES_VLOG(ssc, "saf_wrslot\n");
2360 	cdb[0] = WRITE_BUFFER;
2361 	cdb[1] = 1;
2362 	cdb[2] = 0;
2363 	cdb[3] = 0;
2364 	cdb[4] = 0;
2365 	cdb[5] = 0;
2366 	cdb[6] = 0;
2367 	cdb[7] = 0;
2368 	cdb[8] = cc->Nslots * 3 + 1;
2369 	cdb[9] = 0;
2370 
2371 	sdata = SES_MALLOC(cc->Nslots * 3 + 1);
2372 	if (sdata == NULL)
2373 		return;
2374 	MEMZERO(sdata, cc->Nslots * 3 + 1);
2375 
2376 	sdata[0] = SAFTE_WT_DSTAT;
2377 	for (i = 0; i < cc->Nslots; i++) {
2378 		ep = &ssc->ses_objmap[cc->slotoff + i];
2379 		SES_VLOG(ssc, "saf_wrslot %d <- %x\n", i, ep->priv & 0xff);
2380 		sdata[1 + (3 * i)] = ep->priv & 0xff;
2381 	}
2382 	amt = -(cc->Nslots * 3 + 1);
2383 	(void) ses_runcmd(ssc, cdb, 10, sdata, &amt);
2384 	SES_FREE(sdata, cc->Nslots * 3 + 1);
2385 }
2386 
2387 /*
2388  * This function issues the "PERFORM SLOT OPERATION" command.
2389  */
2390 static int
2391 perf_slotop(ses_softc_t *ssc, uint8_t slot, uint8_t opflag, int slp)
2392 {
2393 	int err, amt;
2394 	char *sdata;
2395 	struct scfg *cc = ssc->ses_private;
2396 	static char cdb[10] =
2397 	    { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
2398 
2399 	if (cc == NULL)
2400 		return (0);
2401 
2402 	sdata = SES_MALLOC(SAFT_SCRATCH);
2403 	if (sdata == NULL)
2404 		return (ENOMEM);
2405 	MEMZERO(sdata, SAFT_SCRATCH);
2406 
2407 	sdata[0] = SAFTE_WT_SLTOP;
2408 	sdata[1] = slot;
2409 	sdata[2] = opflag;
2410 	SES_VLOG(ssc, "saf_slotop slot %d op %x\n", slot, opflag);
2411 	amt = -SAFT_SCRATCH;
2412 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2413 	SES_FREE(sdata, SAFT_SCRATCH);
2414 	return (err);
2415 }
2416