xref: /netbsd-src/sys/dev/scsipi/ses.c (revision de1dfb1250df962f1ff3a011772cf58e605aed11)
1 /*	$NetBSD: ses.c,v 1.24 2004/09/09 19:35:33 bouyer Exp $ */
2 /*
3  * Copyright (C) 2000 National Aeronautics & Space Administration
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. The name of the author may not be used to endorse or promote products
12  *    derived from this software without specific prior written permission
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24  *
25  * Author:	mjacob@nas.nasa.gov
26  */
27 
28 #include <sys/cdefs.h>
29 __KERNEL_RCSID(0, "$NetBSD: ses.c,v 1.24 2004/09/09 19:35:33 bouyer Exp $");
30 
31 #include "opt_scsi.h"
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/kernel.h>
36 #include <sys/file.h>
37 #include <sys/stat.h>
38 #include <sys/ioctl.h>
39 #include <sys/scsiio.h>
40 #include <sys/buf.h>
41 #include <sys/uio.h>
42 #include <sys/malloc.h>
43 #include <sys/errno.h>
44 #include <sys/device.h>
45 #include <sys/disklabel.h>
46 #include <sys/disk.h>
47 #include <sys/proc.h>
48 #include <sys/conf.h>
49 #include <sys/vnode.h>
50 #include <machine/stdarg.h>
51 
52 #include <dev/scsipi/scsipi_all.h>
53 #include <dev/scsipi/scsi_all.h>
54 #include <dev/scsipi/scsipi_disk.h>
55 #include <dev/scsipi/scsi_disk.h>
56 #include <dev/scsipi/scsiconf.h>
57 #include <dev/scsipi/ses.h>
58 
59 /*
60  * Platform Independent Driver Internal Definitions for SES devices.
61  */
62 typedef enum {
63 	SES_NONE,
64 	SES_SES_SCSI2,
65 	SES_SES,
66 	SES_SES_PASSTHROUGH,
67 	SES_SEN,
68 	SES_SAFT
69 } enctyp;
70 
71 struct ses_softc;
72 typedef struct ses_softc ses_softc_t;
73 typedef struct {
74 	int (*softc_init)(ses_softc_t *, int);
75 	int (*init_enc)(ses_softc_t *);
76 	int (*get_encstat)(ses_softc_t *, int);
77 	int (*set_encstat)(ses_softc_t *, ses_encstat, int);
78 	int (*get_objstat)(ses_softc_t *, ses_objstat *, int);
79 	int (*set_objstat)(ses_softc_t *, ses_objstat *, int);
80 } encvec;
81 
82 #define	ENCI_SVALID	0x80
83 
84 typedef struct {
85 	uint32_t
86 		enctype	: 8,		/* enclosure type */
87 		subenclosure : 8,	/* subenclosure id */
88 		svalid	: 1,		/* enclosure information valid */
89 		priv	: 15;		/* private data, per object */
90 	uint8_t	encstat[4];	/* state && stats */
91 } encobj;
92 
93 #define	SEN_ID		"UNISYS           SUN_SEN"
94 #define	SEN_ID_LEN	24
95 
96 static enctyp ses_type(struct scsipi_inquiry_data *);
97 
98 
99 /* Forward reference to Enclosure Functions */
100 static int ses_softc_init(ses_softc_t *, int);
101 static int ses_init_enc(ses_softc_t *);
102 static int ses_get_encstat(ses_softc_t *, int);
103 static int ses_set_encstat(ses_softc_t *, uint8_t, int);
104 static int ses_get_objstat(ses_softc_t *, ses_objstat *, int);
105 static int ses_set_objstat(ses_softc_t *, ses_objstat *, int);
106 
107 static int safte_softc_init(ses_softc_t *, int);
108 static int safte_init_enc(ses_softc_t *);
109 static int safte_get_encstat(ses_softc_t *, int);
110 static int safte_set_encstat(ses_softc_t *, uint8_t, int);
111 static int safte_get_objstat(ses_softc_t *, ses_objstat *, int);
112 static int safte_set_objstat(ses_softc_t *, ses_objstat *, int);
113 
114 /*
115  * Platform implementation defines/functions for SES internal kernel stuff
116  */
117 
118 #define	STRNCMP			strncmp
119 #define	PRINTF			printf
120 #define	SES_LOG			ses_log
121 #if	defined(DEBUG) || defined(SCSIDEBUG)
122 #define	SES_VLOG		ses_log
123 #else
124 #define	SES_VLOG		if (0) ses_log
125 #endif
126 #define	SES_MALLOC(amt)		malloc(amt, M_DEVBUF, M_NOWAIT)
127 #define	SES_FREE(ptr, amt)	free(ptr, M_DEVBUF)
128 #define	MEMZERO(dest, amt)	memset(dest, 0, amt)
129 #define	MEMCPY(dest, src, amt)	memcpy(dest, src, amt)
130 #define	RECEIVE_DIAGNOSTIC	0x1c
131 #define	SEND_DIAGNOSTIC		0x1d
132 #define	WRITE_BUFFER		0x3b
133 #define	READ_BUFFER		0x3c
134 
135 static dev_type_open(sesopen);
136 static dev_type_close(sesclose);
137 static dev_type_ioctl(sesioctl);
138 
139 const struct cdevsw ses_cdevsw = {
140 	sesopen, sesclose, noread, nowrite, sesioctl,
141 	nostop, notty, nopoll, nommap, nokqfilter,
142 };
143 
144 static int ses_runcmd(struct ses_softc *, char *, int, char *, int *);
145 static void ses_log(struct ses_softc *, const char *, ...)
146      __attribute__((__format__(__printf__, 2, 3)));
147 
148 /*
149  * General NetBSD kernel stuff.
150  */
151 
152 struct ses_softc {
153 	struct device	sc_device;
154 	struct scsipi_periph *sc_periph;
155 	enctyp		ses_type;	/* type of enclosure */
156 	encvec		ses_vec;	/* vector to handlers */
157 	void *		ses_private;	/* per-type private data */
158 	encobj *	ses_objmap;	/* objects */
159 	u_int32_t	ses_nobjects;	/* number of objects */
160 	ses_encstat	ses_encstat;	/* overall status */
161 	u_int8_t	ses_flags;
162 };
163 #define	SES_FLAG_INVALID	0x01
164 #define	SES_FLAG_OPEN		0x02
165 #define	SES_FLAG_INITIALIZED	0x04
166 
167 #define SESUNIT(x)       (minor((x)))
168 
169 static int ses_match(struct device *, struct cfdata *, void *);
170 static void ses_attach(struct device *, struct device *, void *);
171 static enctyp ses_device_type(struct scsipibus_attach_args *);
172 
173 CFATTACH_DECL(ses, sizeof (struct ses_softc),
174     ses_match, ses_attach, NULL, NULL);
175 
176 extern struct cfdriver ses_cd;
177 
178 static const struct scsipi_periphsw ses_switch = {
179 	NULL,
180 	NULL,
181 	NULL,
182 	NULL
183 };
184 
185 static int
186 ses_match(struct device *parent, struct cfdata *match, void *aux)
187 {
188 	struct scsipibus_attach_args *sa = aux;
189 
190 	switch (ses_device_type(sa)) {
191 	case SES_SES:
192 	case SES_SES_SCSI2:
193 	case SES_SEN:
194 	case SES_SAFT:
195 	case SES_SES_PASSTHROUGH:
196 		/*
197 		 * For these devices, it's a perfect match.
198 		 */
199 		return (24);
200 	default:
201 		return (0);
202 	}
203 }
204 
205 
206 /*
207  * Complete the attachment.
208  *
209  * We have to repeat the rerun of INQUIRY data as above because
210  * it's not until the return from the match routine that we have
211  * the softc available to set stuff in.
212  */
213 static void
214 ses_attach(struct device *parent, struct device *self, void *aux)
215 {
216 	char *tname;
217 	struct ses_softc *softc = (void *)self;
218 	struct scsipibus_attach_args *sa = aux;
219 	struct scsipi_periph *periph = sa->sa_periph;
220 
221 	SC_DEBUG(periph, SCSIPI_DB2, ("ssattach: "));
222 	softc->sc_periph = periph;
223 	periph->periph_dev = &softc->sc_device;
224 	periph->periph_switch = &ses_switch;
225 	periph->periph_openings = 1;
226 
227 	softc->ses_type = ses_device_type(sa);
228 	switch (softc->ses_type) {
229 	case SES_SES:
230 	case SES_SES_SCSI2:
231         case SES_SES_PASSTHROUGH:
232 		softc->ses_vec.softc_init = ses_softc_init;
233 		softc->ses_vec.init_enc = ses_init_enc;
234 		softc->ses_vec.get_encstat = ses_get_encstat;
235 		softc->ses_vec.set_encstat = ses_set_encstat;
236 		softc->ses_vec.get_objstat = ses_get_objstat;
237 		softc->ses_vec.set_objstat = ses_set_objstat;
238 		break;
239         case SES_SAFT:
240 		softc->ses_vec.softc_init = safte_softc_init;
241 		softc->ses_vec.init_enc = safte_init_enc;
242 		softc->ses_vec.get_encstat = safte_get_encstat;
243 		softc->ses_vec.set_encstat = safte_set_encstat;
244 		softc->ses_vec.get_objstat = safte_get_objstat;
245 		softc->ses_vec.set_objstat = safte_set_objstat;
246 		break;
247         case SES_SEN:
248 		break;
249 	case SES_NONE:
250 	default:
251 		break;
252 	}
253 
254 	switch (softc->ses_type) {
255 	default:
256 	case SES_NONE:
257 		tname = "No SES device";
258 		break;
259 	case SES_SES_SCSI2:
260 		tname = "SCSI-2 SES Device";
261 		break;
262 	case SES_SES:
263 		tname = "SCSI-3 SES Device";
264 		break;
265         case SES_SES_PASSTHROUGH:
266 		tname = "SES Passthrough Device";
267 		break;
268         case SES_SEN:
269 		tname = "UNISYS SEN Device (NOT HANDLED YET)";
270 		break;
271         case SES_SAFT:
272 		tname = "SAF-TE Compliant Device";
273 		break;
274 	}
275 	printf("\n%s: %s\n", softc->sc_device.dv_xname, tname);
276 }
277 
278 
279 static enctyp
280 ses_device_type(struct scsipibus_attach_args *sa)
281 {
282 	struct scsipi_inquiry_data *inqp = sa->sa_inqptr;
283 
284 	if (inqp == NULL)
285 		return (SES_NONE);
286 
287 	return (ses_type(inqp));
288 }
289 
290 static int
291 sesopen(dev_t dev, int flags, int fmt, struct proc *p)
292 {
293 	struct ses_softc *softc;
294 	int error, unit;
295 
296 	unit = SESUNIT(dev);
297 	if (unit >= ses_cd.cd_ndevs)
298 		return (ENXIO);
299 	softc = ses_cd.cd_devs[unit];
300 	if (softc == NULL)
301 		return (ENXIO);
302 
303 	if (softc->ses_flags & SES_FLAG_INVALID) {
304 		error = ENXIO;
305 		goto out;
306 	}
307 	if (softc->ses_flags & SES_FLAG_OPEN) {
308 		error = EBUSY;
309 		goto out;
310 	}
311 	if (softc->ses_vec.softc_init == NULL) {
312 		error = ENXIO;
313 		goto out;
314 	}
315 	error = scsipi_adapter_addref(
316 	    softc->sc_periph->periph_channel->chan_adapter);
317 	if (error != 0)
318                 goto out;
319 
320 
321 	softc->ses_flags |= SES_FLAG_OPEN;
322 	if ((softc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
323 		error = (*softc->ses_vec.softc_init)(softc, 1);
324 		if (error)
325 			softc->ses_flags &= ~SES_FLAG_OPEN;
326 		else
327 			softc->ses_flags |= SES_FLAG_INITIALIZED;
328 	}
329 
330 out:
331 	return (error);
332 }
333 
334 static int
335 sesclose(dev_t dev, int flags, int fmt, struct proc *p)
336 {
337 	struct ses_softc *softc;
338 	int unit;
339 
340 	unit = SESUNIT(dev);
341 	if (unit >= ses_cd.cd_ndevs)
342 		return (ENXIO);
343 	softc = ses_cd.cd_devs[unit];
344 	if (softc == NULL)
345 		return (ENXIO);
346 
347 	scsipi_wait_drain(softc->sc_periph);
348 	scsipi_adapter_delref(softc->sc_periph->periph_channel->chan_adapter);
349 	softc->ses_flags &= ~SES_FLAG_OPEN;
350 	return (0);
351 }
352 
353 static int
354 sesioctl(dev_t dev, u_long cmd, caddr_t arg_addr, int flag, struct proc *p)
355 {
356 	ses_encstat tmp;
357 	ses_objstat objs;
358 	ses_object obj, *uobj;
359 	struct ses_softc *ssc = ses_cd.cd_devs[SESUNIT(dev)];
360 	void *addr;
361 	int error, i;
362 
363 
364 	if (arg_addr)
365 		addr = *((caddr_t *) arg_addr);
366 	else
367 		addr = NULL;
368 
369 	SC_DEBUG(ssc->sc_periph, SCSIPI_DB2, ("sesioctl 0x%lx ", cmd));
370 
371 	/*
372 	 * Now check to see whether we're initialized or not.
373 	 */
374 	if ((ssc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
375 		return (ENODEV);
376 	}
377 
378 	error = 0;
379 
380 	/*
381 	 * If this command can change the device's state,
382 	 * we must have the device open for writing.
383 	 */
384 	switch (cmd) {
385 	case SESIOC_GETNOBJ:
386 	case SESIOC_GETOBJMAP:
387 	case SESIOC_GETENCSTAT:
388 	case SESIOC_GETOBJSTAT:
389 		break;
390 	default:
391 		if ((flag & FWRITE) == 0) {
392 			return (EBADF);
393 		}
394 	}
395 
396 	switch (cmd) {
397 	case SESIOC_GETNOBJ:
398 		error = copyout(&ssc->ses_nobjects, addr,
399 		    sizeof (ssc->ses_nobjects));
400 		break;
401 
402 	case SESIOC_GETOBJMAP:
403 		for (uobj = addr, i = 0; i != ssc->ses_nobjects; i++, uobj++) {
404 			obj.obj_id = i;
405 			obj.subencid = ssc->ses_objmap[i].subenclosure;
406 			obj.object_type = ssc->ses_objmap[i].enctype;
407 			error = copyout(&obj, uobj, sizeof (ses_object));
408 			if (error) {
409 				break;
410 			}
411 		}
412 		break;
413 
414 	case SESIOC_GETENCSTAT:
415 		error = (*ssc->ses_vec.get_encstat)(ssc, 1);
416 		if (error)
417 			break;
418 		tmp = ssc->ses_encstat & ~ENCI_SVALID;
419 		error = copyout(&tmp, addr, sizeof (ses_encstat));
420 		ssc->ses_encstat = tmp;
421 		break;
422 
423 	case SESIOC_SETENCSTAT:
424 		error = copyin(addr, &tmp, sizeof (ses_encstat));
425 		if (error)
426 			break;
427 		error = (*ssc->ses_vec.set_encstat)(ssc, tmp, 1);
428 		break;
429 
430 	case SESIOC_GETOBJSTAT:
431 		error = copyin(addr, &objs, sizeof (ses_objstat));
432 		if (error)
433 			break;
434 		if (objs.obj_id >= ssc->ses_nobjects) {
435 			error = EINVAL;
436 			break;
437 		}
438 		error = (*ssc->ses_vec.get_objstat)(ssc, &objs, 1);
439 		if (error)
440 			break;
441 		error = copyout(&objs, addr, sizeof (ses_objstat));
442 		/*
443 		 * Always (for now) invalidate entry.
444 		 */
445 		ssc->ses_objmap[objs.obj_id].svalid = 0;
446 		break;
447 
448 	case SESIOC_SETOBJSTAT:
449 		error = copyin(addr, &objs, sizeof (ses_objstat));
450 		if (error)
451 			break;
452 
453 		if (objs.obj_id >= ssc->ses_nobjects) {
454 			error = EINVAL;
455 			break;
456 		}
457 		error = (*ssc->ses_vec.set_objstat)(ssc, &objs, 1);
458 
459 		/*
460 		 * Always (for now) invalidate entry.
461 		 */
462 		ssc->ses_objmap[objs.obj_id].svalid = 0;
463 		break;
464 
465 	case SESIOC_INIT:
466 
467 		error = (*ssc->ses_vec.init_enc)(ssc);
468 		break;
469 
470 	default:
471 		error = scsipi_do_ioctl(ssc->sc_periph,
472 			    dev, cmd, arg_addr, flag, p);
473 		break;
474 	}
475 	return (error);
476 }
477 
478 static int
479 ses_runcmd(struct ses_softc *ssc, char *cdb, int cdbl, char *dptr, int *dlenp)
480 {
481 	struct scsipi_generic sgen;
482 	int dl, flg, error;
483 
484 	if (dptr) {
485 		if ((dl = *dlenp) < 0) {
486 			dl = -dl;
487 			flg = XS_CTL_DATA_OUT;
488 		} else {
489 			flg = XS_CTL_DATA_IN;
490 		}
491 	} else {
492 		dl = 0;
493 		flg = 0;
494 	}
495 
496 	if (cdbl > sizeof (struct scsipi_generic)) {
497 		cdbl = sizeof (struct scsipi_generic);
498 	}
499 	memcpy(&sgen, cdb, cdbl);
500 #ifndef	SCSIDEBUG
501 	flg |= XS_CTL_SILENT;
502 #endif
503 	error = scsipi_command(ssc->sc_periph, NULL, &sgen, cdbl,
504 	    (u_char *) dptr, dl, SCSIPIRETRIES, 30000, NULL, flg);
505 
506 	if (error == 0 && dptr)
507 		*dlenp = 0;
508 
509 	return (error);
510 }
511 
512 static void
513 ses_log(struct ses_softc *ssc, const char *fmt, ...)
514 {
515 	va_list ap;
516 
517 	printf("%s: ", ssc->sc_device.dv_xname);
518 	va_start(ap, fmt);
519 	vprintf(fmt, ap);
520 	va_end(ap);
521 }
522 
523 /*
524  * The code after this point runs on many platforms,
525  * so forgive the slightly awkward and nonconforming
526  * appearance.
527  */
528 
529 /*
530  * Is this a device that supports enclosure services?
531  *
532  * It's a a pretty simple ruleset- if it is device type 0x0D (13), it's
533  * an SES device. If it happens to be an old UNISYS SEN device, we can
534  * handle that too.
535  */
536 
537 #define	SAFTE_START	44
538 #define	SAFTE_END	50
539 #define	SAFTE_LEN	SAFTE_END-SAFTE_START
540 
541 static enctyp
542 ses_type(struct scsipi_inquiry_data *inqp)
543 {
544 	size_t	given_len = inqp->additional_length + 4;
545 
546 	if (given_len < 8+SEN_ID_LEN)
547 		return (SES_NONE);
548 
549 	if ((inqp->device & SID_TYPE) == T_ENCLOSURE) {
550 		if (STRNCMP(inqp->vendor, SEN_ID, SEN_ID_LEN) == 0) {
551 			return (SES_SEN);
552 		} else if ((inqp->version & SID_ANSII) > 2) {
553 			return (SES_SES);
554 		} else {
555 			return (SES_SES_SCSI2);
556 		}
557 		return (SES_NONE);
558 	}
559 
560 #ifdef	SES_ENABLE_PASSTHROUGH
561 	if ((inqp->flags2 & SID_EncServ) && (inqp->version & SID_ANSII) >= 2) {
562 		/*
563 		 * PassThrough Device.
564 		 */
565 		return (SES_SES_PASSTHROUGH);
566 	}
567 #endif
568 
569 	/*
570 	 * The comparison is short for a reason-
571 	 * some vendors were chopping it short.
572 	 */
573 
574 	if (given_len < SAFTE_END - 2) {
575 		return (SES_NONE);
576 	}
577 
578 	if (STRNCMP((char *)&inqp->vendor_specific[8], "SAF-TE",
579 			SAFTE_LEN - 2) == 0) {
580 		return (SES_SAFT);
581 	}
582 
583 	return (SES_NONE);
584 }
585 
586 /*
587  * SES Native Type Device Support
588  */
589 
590 /*
591  * SES Diagnostic Page Codes
592  */
593 
594 typedef enum {
595 	SesConfigPage = 0x1,
596 	SesControlPage,
597 #define	SesStatusPage SesControlPage
598 	SesHelpTxt,
599 	SesStringOut,
600 #define	SesStringIn	SesStringOut
601 	SesThresholdOut,
602 #define	SesThresholdIn SesThresholdOut
603 	SesArrayControl,
604 #define	SesArrayStatus	SesArrayControl
605 	SesElementDescriptor,
606 	SesShortStatus
607 } SesDiagPageCodes;
608 
609 /*
610  * minimal amounts
611  */
612 
613 /*
614  * Minimum amount of data, starting from byte 0, to have
615  * the config header.
616  */
617 #define	SES_CFGHDR_MINLEN	12
618 
619 /*
620  * Minimum amount of data, starting from byte 0, to have
621  * the config header and one enclosure header.
622  */
623 #define	SES_ENCHDR_MINLEN	48
624 
625 /*
626  * Take this value, subtract it from VEnclen and you know
627  * the length of the vendor unique bytes.
628  */
629 #define	SES_ENCHDR_VMIN		36
630 
631 /*
632  * SES Data Structures
633  */
634 
635 typedef struct {
636 	uint32_t GenCode;	/* Generation Code */
637 	uint8_t	Nsubenc;	/* Number of Subenclosures */
638 } SesCfgHdr;
639 
640 typedef struct {
641 	uint8_t	Subencid;	/* SubEnclosure Identifier */
642 	uint8_t	Ntypes;		/* # of supported types */
643 	uint8_t	VEnclen;	/* Enclosure Descriptor Length */
644 } SesEncHdr;
645 
646 typedef struct {
647 	uint8_t	encWWN[8];	/* XXX- Not Right Yet */
648 	uint8_t	encVid[8];
649 	uint8_t	encPid[16];
650 	uint8_t	encRev[4];
651 	uint8_t	encVen[1];
652 } SesEncDesc;
653 
654 typedef struct {
655 	uint8_t	enc_type;		/* type of element */
656 	uint8_t	enc_maxelt;		/* maximum supported */
657 	uint8_t	enc_subenc;		/* in SubEnc # N */
658 	uint8_t	enc_tlen;		/* Type Descriptor Text Length */
659 } SesThdr;
660 
661 typedef struct {
662 	uint8_t	comstatus;
663 	uint8_t	comstat[3];
664 } SesComStat;
665 
666 struct typidx {
667 	int ses_tidx;
668 	int ses_oidx;
669 };
670 
671 struct sscfg {
672 	uint8_t ses_ntypes;	/* total number of types supported */
673 
674 	/*
675 	 * We need to keep a type index as well as an
676 	 * object index for each object in an enclosure.
677 	 */
678 	struct typidx *ses_typidx;
679 
680 	/*
681 	 * We also need to keep track of the number of elements
682 	 * per type of element. This is needed later so that we
683 	 * can find precisely in the returned status data the
684 	 * status for the Nth element of the Kth type.
685 	 */
686 	uint8_t *	ses_eltmap;
687 };
688 
689 
690 /*
691  * (de)canonicalization defines
692  */
693 #define	sbyte(x, byte)		((((uint32_t)(x)) >> (byte * 8)) & 0xff)
694 #define	sbit(x, bit)		(((uint32_t)(x)) << bit)
695 #define	sset8(outp, idx, sval)	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
696 
697 #define	sset16(outp, idx, sval)	\
698 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
699 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
700 
701 
702 #define	sset24(outp, idx, sval)	\
703 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
704 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
705 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
706 
707 
708 #define	sset32(outp, idx, sval)	\
709 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 3), \
710 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
711 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
712 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
713 
714 #define	gbyte(x, byte)	((((uint32_t)(x)) & 0xff) << (byte * 8))
715 #define	gbit(lv, in, idx, shft, mask)	lv = ((in[idx] >> shft) & mask)
716 #define	sget8(inp, idx, lval)	lval = (((uint8_t *)(inp))[idx++])
717 #define	gget8(inp, idx, lval)	lval = (((uint8_t *)(inp))[idx])
718 
719 #define	sget16(inp, idx, lval)	\
720 	lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
721 		(((uint8_t *)(inp))[idx+1]), idx += 2
722 
723 #define	gget16(inp, idx, lval)	\
724 	lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
725 		(((uint8_t *)(inp))[idx+1])
726 
727 #define	sget24(inp, idx, lval)	\
728 	lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
729 		gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
730 			(((uint8_t *)(inp))[idx+2]), idx += 3
731 
732 #define	gget24(inp, idx, lval)	\
733 	lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
734 		gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
735 			(((uint8_t *)(inp))[idx+2])
736 
737 #define	sget32(inp, idx, lval)	\
738 	lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
739 		gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
740 		gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
741 			(((uint8_t *)(inp))[idx+3]), idx += 4
742 
743 #define	gget32(inp, idx, lval)	\
744 	lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
745 		gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
746 		gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
747 			(((uint8_t *)(inp))[idx+3])
748 
749 #define	SCSZ	0x2000
750 #define	CFLEN	(256 + SES_ENCHDR_MINLEN)
751 
752 /*
753  * Routines specific && private to SES only
754  */
755 
756 static int ses_getconfig(ses_softc_t *);
757 static int ses_getputstat(ses_softc_t *, int, SesComStat *, int, int);
758 static int ses_cfghdr(uint8_t *, int, SesCfgHdr *);
759 static int ses_enchdr(uint8_t *, int, uint8_t, SesEncHdr *);
760 static int ses_encdesc(uint8_t *, int, uint8_t, SesEncDesc *);
761 static int ses_getthdr(uint8_t *, int,  int, SesThdr *);
762 static int ses_decode(char *, int, uint8_t *, int, int, SesComStat *);
763 static int ses_encode(char *, int, uint8_t *, int, int, SesComStat *);
764 
765 static int
766 ses_softc_init(ses_softc_t *ssc, int doinit)
767 {
768 	if (doinit == 0) {
769 		struct sscfg *cc;
770 		if (ssc->ses_nobjects) {
771 			SES_FREE(ssc->ses_objmap,
772 			    ssc->ses_nobjects * sizeof (encobj));
773 			ssc->ses_objmap = NULL;
774 		}
775 		if ((cc = ssc->ses_private) != NULL) {
776 			if (cc->ses_eltmap && cc->ses_ntypes) {
777 				SES_FREE(cc->ses_eltmap, cc->ses_ntypes);
778 				cc->ses_eltmap = NULL;
779 				cc->ses_ntypes = 0;
780 			}
781 			if (cc->ses_typidx && ssc->ses_nobjects) {
782 				SES_FREE(cc->ses_typidx,
783 				    ssc->ses_nobjects * sizeof (struct typidx));
784 				cc->ses_typidx = NULL;
785 			}
786 			SES_FREE(cc, sizeof (struct sscfg));
787 			ssc->ses_private = NULL;
788 		}
789 		ssc->ses_nobjects = 0;
790 		return (0);
791 	}
792 	if (ssc->ses_private == NULL) {
793 		ssc->ses_private = SES_MALLOC(sizeof (struct sscfg));
794 	}
795 	if (ssc->ses_private == NULL) {
796 		return (ENOMEM);
797 	}
798 	ssc->ses_nobjects = 0;
799 	ssc->ses_encstat = 0;
800 	return (ses_getconfig(ssc));
801 }
802 
803 static int
804 ses_init_enc(ses_softc_t *ssc)
805 {
806 	return (0);
807 }
808 
809 static int
810 ses_get_encstat(ses_softc_t *ssc, int slpflag)
811 {
812 	SesComStat ComStat;
813 	int status;
814 
815 	if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 1)) != 0) {
816 		return (status);
817 	}
818 	ssc->ses_encstat = ComStat.comstatus | ENCI_SVALID;
819 	return (0);
820 }
821 
822 static int
823 ses_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflag)
824 {
825 	SesComStat ComStat;
826 	int status;
827 
828 	ComStat.comstatus = encstat & 0xf;
829 	if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 0)) != 0) {
830 		return (status);
831 	}
832 	ssc->ses_encstat = encstat & 0xf;	/* note no SVALID set */
833 	return (0);
834 }
835 
836 static int
837 ses_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
838 {
839 	int i = (int)obp->obj_id;
840 
841 	if (ssc->ses_objmap[i].svalid == 0) {
842 		SesComStat ComStat;
843 		int err = ses_getputstat(ssc, i, &ComStat, slpflag, 1);
844 		if (err)
845 			return (err);
846 		ssc->ses_objmap[i].encstat[0] = ComStat.comstatus;
847 		ssc->ses_objmap[i].encstat[1] = ComStat.comstat[0];
848 		ssc->ses_objmap[i].encstat[2] = ComStat.comstat[1];
849 		ssc->ses_objmap[i].encstat[3] = ComStat.comstat[2];
850 		ssc->ses_objmap[i].svalid = 1;
851 	}
852 	obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
853 	obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
854 	obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
855 	obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
856 	return (0);
857 }
858 
859 static int
860 ses_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
861 {
862 	SesComStat ComStat;
863 	int err;
864 	/*
865 	 * If this is clear, we don't do diddly.
866 	 */
867 	if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
868 		return (0);
869 	}
870 	ComStat.comstatus = obp->cstat[0];
871 	ComStat.comstat[0] = obp->cstat[1];
872 	ComStat.comstat[1] = obp->cstat[2];
873 	ComStat.comstat[2] = obp->cstat[3];
874 	err = ses_getputstat(ssc, (int)obp->obj_id, &ComStat, slpflag, 0);
875 	ssc->ses_objmap[(int)obp->obj_id].svalid = 0;
876 	return (err);
877 }
878 
879 static int
880 ses_getconfig(ses_softc_t *ssc)
881 {
882 	struct sscfg *cc;
883 	SesCfgHdr cf;
884 	SesEncHdr hd;
885 	SesEncDesc *cdp;
886 	SesThdr thdr;
887 	int err, amt, i, nobj, ntype, maxima;
888 	char storage[CFLEN], *sdata;
889 	static char cdb[6] = {
890 	    RECEIVE_DIAGNOSTIC, 0x1, SesConfigPage, SCSZ >> 8, SCSZ & 0xff, 0
891 	};
892 
893 	cc = ssc->ses_private;
894 	if (cc == NULL) {
895 		return (ENXIO);
896 	}
897 
898 	sdata = SES_MALLOC(SCSZ);
899 	if (sdata == NULL)
900 		return (ENOMEM);
901 
902 	amt = SCSZ;
903 	err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
904 	if (err) {
905 		SES_FREE(sdata, SCSZ);
906 		return (err);
907 	}
908 	amt = SCSZ - amt;
909 
910 	if (ses_cfghdr((uint8_t *) sdata, amt, &cf)) {
911 		SES_LOG(ssc, "Unable to parse SES Config Header\n");
912 		SES_FREE(sdata, SCSZ);
913 		return (EIO);
914 	}
915 	if (amt < SES_ENCHDR_MINLEN) {
916 		SES_LOG(ssc, "runt enclosure length (%d)\n", amt);
917 		SES_FREE(sdata, SCSZ);
918 		return (EIO);
919 	}
920 
921 	SES_VLOG(ssc, "GenCode %x %d Subenclosures\n", cf.GenCode, cf.Nsubenc);
922 
923 	/*
924 	 * Now waltz through all the subenclosures toting up the
925 	 * number of types available in each. For this, we only
926 	 * really need the enclosure header. However, we get the
927 	 * enclosure descriptor for debug purposes, as well
928 	 * as self-consistency checking purposes.
929 	 */
930 
931 	maxima = cf.Nsubenc + 1;
932 	cdp = (SesEncDesc *) storage;
933 	for (ntype = i = 0; i < maxima; i++) {
934 		MEMZERO((caddr_t)cdp, sizeof (*cdp));
935 		if (ses_enchdr((uint8_t *) sdata, amt, i, &hd)) {
936 			SES_LOG(ssc, "Cannot Extract Enclosure Header %d\n", i);
937 			SES_FREE(sdata, SCSZ);
938 			return (EIO);
939 		}
940 		SES_VLOG(ssc, " SubEnclosure ID %d, %d Types With this ID, En"
941 		    "closure Length %d\n", hd.Subencid, hd.Ntypes, hd.VEnclen);
942 
943 		if (ses_encdesc((uint8_t *)sdata, amt, i, cdp)) {
944 			SES_LOG(ssc, "Can't get Enclosure Descriptor %d\n", i);
945 			SES_FREE(sdata, SCSZ);
946 			return (EIO);
947 		}
948 		SES_VLOG(ssc, " WWN: %02x%02x%02x%02x%02x%02x%02x%02x\n",
949 		    cdp->encWWN[0], cdp->encWWN[1], cdp->encWWN[2],
950 		    cdp->encWWN[3], cdp->encWWN[4], cdp->encWWN[5],
951 		    cdp->encWWN[6], cdp->encWWN[7]);
952 		ntype += hd.Ntypes;
953 	}
954 
955 	/*
956 	 * Now waltz through all the types that are available, getting
957 	 * the type header so we can start adding up the number of
958 	 * objects available.
959 	 */
960 	for (nobj = i = 0; i < ntype; i++) {
961 		if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
962 			SES_LOG(ssc, "Can't get Enclosure Type Header %d\n", i);
963 			SES_FREE(sdata, SCSZ);
964 			return (EIO);
965 		}
966 		SES_LOG(ssc, " Type Desc[%d]: Type 0x%x, MaxElt %d, In Subenc "
967 		    "%d, Text Length %d\n", i, thdr.enc_type, thdr.enc_maxelt,
968 		    thdr.enc_subenc, thdr.enc_tlen);
969 		nobj += thdr.enc_maxelt;
970 	}
971 
972 
973 	/*
974 	 * Now allocate the object array and type map.
975 	 */
976 
977 	ssc->ses_objmap = SES_MALLOC(nobj * sizeof (encobj));
978 	cc->ses_typidx = SES_MALLOC(nobj * sizeof (struct typidx));
979 	cc->ses_eltmap = SES_MALLOC(ntype);
980 
981 	if (ssc->ses_objmap == NULL || cc->ses_typidx == NULL ||
982 	    cc->ses_eltmap == NULL) {
983 		if (ssc->ses_objmap) {
984 			SES_FREE(ssc->ses_objmap, (nobj * sizeof (encobj)));
985 			ssc->ses_objmap = NULL;
986 		}
987 		if (cc->ses_typidx) {
988 			SES_FREE(cc->ses_typidx,
989 			    (nobj * sizeof (struct typidx)));
990 			cc->ses_typidx = NULL;
991 		}
992 		if (cc->ses_eltmap) {
993 			SES_FREE(cc->ses_eltmap, ntype);
994 			cc->ses_eltmap = NULL;
995 		}
996 		SES_FREE(sdata, SCSZ);
997 		return (ENOMEM);
998 	}
999 	MEMZERO(ssc->ses_objmap, nobj * sizeof (encobj));
1000 	MEMZERO(cc->ses_typidx, nobj * sizeof (struct typidx));
1001 	MEMZERO(cc->ses_eltmap, ntype);
1002 	cc->ses_ntypes = (uint8_t) ntype;
1003 	ssc->ses_nobjects = nobj;
1004 
1005 	/*
1006 	 * Now waltz through the # of types again to fill in the types
1007 	 * (and subenclosure ids) of the allocated objects.
1008 	 */
1009 	nobj = 0;
1010 	for (i = 0; i < ntype; i++) {
1011 		int j;
1012 		if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
1013 			continue;
1014 		}
1015 		cc->ses_eltmap[i] = thdr.enc_maxelt;
1016 		for (j = 0; j < thdr.enc_maxelt; j++) {
1017 			cc->ses_typidx[nobj].ses_tidx = i;
1018 			cc->ses_typidx[nobj].ses_oidx = j;
1019 			ssc->ses_objmap[nobj].subenclosure = thdr.enc_subenc;
1020 			ssc->ses_objmap[nobj++].enctype = thdr.enc_type;
1021 		}
1022 	}
1023 	SES_FREE(sdata, SCSZ);
1024 	return (0);
1025 }
1026 
1027 static int
1028 ses_getputstat(ses_softc_t *ssc, int objid, SesComStat *sp, int slp, int in)
1029 {
1030 	struct sscfg *cc;
1031 	int err, amt, bufsiz, tidx, oidx;
1032 	char cdb[6], *sdata;
1033 
1034 	cc = ssc->ses_private;
1035 	if (cc == NULL) {
1036 		return (ENXIO);
1037 	}
1038 
1039 	/*
1040 	 * If we're just getting overall enclosure status,
1041 	 * we only need 2 bytes of data storage.
1042 	 *
1043 	 * If we're getting anything else, we know how much
1044 	 * storage we need by noting that starting at offset
1045 	 * 8 in returned data, all object status bytes are 4
1046 	 * bytes long, and are stored in chunks of types(M)
1047 	 * and nth+1 instances of type M.
1048 	 */
1049 	if (objid == -1) {
1050 		bufsiz = 2;
1051 	} else {
1052 		bufsiz = (ssc->ses_nobjects * 4) + (cc->ses_ntypes * 4) + 8;
1053 	}
1054 	sdata = SES_MALLOC(bufsiz);
1055 	if (sdata == NULL)
1056 		return (ENOMEM);
1057 
1058 	cdb[0] = RECEIVE_DIAGNOSTIC;
1059 	cdb[1] = 1;
1060 	cdb[2] = SesStatusPage;
1061 	cdb[3] = bufsiz >> 8;
1062 	cdb[4] = bufsiz & 0xff;
1063 	cdb[5] = 0;
1064 	amt = bufsiz;
1065 	err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1066 	if (err) {
1067 		SES_FREE(sdata, bufsiz);
1068 		return (err);
1069 	}
1070 	amt = bufsiz - amt;
1071 
1072 	if (objid == -1) {
1073 		tidx = -1;
1074 		oidx = -1;
1075 	} else {
1076 		tidx = cc->ses_typidx[objid].ses_tidx;
1077 		oidx = cc->ses_typidx[objid].ses_oidx;
1078 	}
1079 	if (in) {
1080 		if (ses_decode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1081 			err = ENODEV;
1082 		}
1083 	} else {
1084 		if (ses_encode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1085 			err = ENODEV;
1086 		} else {
1087 			cdb[0] = SEND_DIAGNOSTIC;
1088 			cdb[1] = 0x10;
1089 			cdb[2] = 0;
1090 			cdb[3] = bufsiz >> 8;
1091 			cdb[4] = bufsiz & 0xff;
1092 			cdb[5] = 0;
1093 			amt = -bufsiz;
1094 			err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1095 		}
1096 	}
1097 	SES_FREE(sdata, bufsiz);
1098 	return (0);
1099 }
1100 
1101 
1102 /*
1103  * Routines to parse returned SES data structures.
1104  * Architecture and compiler independent.
1105  */
1106 
1107 static int
1108 ses_cfghdr(uint8_t *buffer, int buflen, SesCfgHdr *cfp)
1109 {
1110 	if (buflen < SES_CFGHDR_MINLEN) {
1111 		return (-1);
1112 	}
1113 	gget8(buffer, 1, cfp->Nsubenc);
1114 	gget32(buffer, 4, cfp->GenCode);
1115 	return (0);
1116 }
1117 
1118 static int
1119 ses_enchdr(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncHdr *chp)
1120 {
1121 	int s, off = 8;
1122 	for (s = 0; s < SubEncId; s++) {
1123 		if (off + 3 > amt)
1124 			return (-1);
1125 		off += buffer[off+3] + 4;
1126 	}
1127 	if (off + 3 > amt) {
1128 		return (-1);
1129 	}
1130 	gget8(buffer, off+1, chp->Subencid);
1131 	gget8(buffer, off+2, chp->Ntypes);
1132 	gget8(buffer, off+3, chp->VEnclen);
1133 	return (0);
1134 }
1135 
1136 static int
1137 ses_encdesc(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncDesc *cdp)
1138 {
1139 	int s, e, enclen, off = 8;
1140 	for (s = 0; s < SubEncId; s++) {
1141 		if (off + 3 > amt)
1142 			return (-1);
1143 		off += buffer[off+3] + 4;
1144 	}
1145 	if (off + 3 > amt) {
1146 		return (-1);
1147 	}
1148 	gget8(buffer, off+3, enclen);
1149 	off += 4;
1150 	if (off  >= amt)
1151 		return (-1);
1152 
1153 	e = off + enclen;
1154 	if (e > amt) {
1155 		e = amt;
1156 	}
1157 	MEMCPY(cdp, &buffer[off], e - off);
1158 	return (0);
1159 }
1160 
1161 static int
1162 ses_getthdr(uint8_t *buffer, int amt, int nth, SesThdr *thp)
1163 {
1164 	int s, off = 8;
1165 
1166 	if (amt < SES_CFGHDR_MINLEN) {
1167 		return (-1);
1168 	}
1169 	for (s = 0; s < buffer[1]; s++) {
1170 		if (off + 3 > amt)
1171 			return (-1);
1172 		off += buffer[off+3] + 4;
1173 	}
1174 	if (off + 3 > amt) {
1175 		return (-1);
1176 	}
1177 	off += buffer[off+3] + 4 + (nth * 4);
1178 	if (amt < (off + 4))
1179 		return (-1);
1180 
1181 	gget8(buffer, off++, thp->enc_type);
1182 	gget8(buffer, off++, thp->enc_maxelt);
1183 	gget8(buffer, off++, thp->enc_subenc);
1184 	gget8(buffer, off, thp->enc_tlen);
1185 	return (0);
1186 }
1187 
1188 /*
1189  * This function needs a little explanation.
1190  *
1191  * The arguments are:
1192  *
1193  *
1194  *	char *b, int amt
1195  *
1196  *		These describes the raw input SES status data and length.
1197  *
1198  *	uint8_t *ep
1199  *
1200  *		This is a map of the number of types for each element type
1201  *		in the enclosure.
1202  *
1203  *	int elt
1204  *
1205  *		This is the element type being sought. If elt is -1,
1206  *		then overall enclosure status is being sought.
1207  *
1208  *	int elm
1209  *
1210  *		This is the ordinal Mth element of type elt being sought.
1211  *
1212  *	SesComStat *sp
1213  *
1214  *		This is the output area to store the status for
1215  *		the Mth element of type Elt.
1216  */
1217 
1218 static int
1219 ses_decode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1220 {
1221 	int idx, i;
1222 
1223 	/*
1224 	 * If it's overall enclosure status being sought, get that.
1225 	 * We need at least 2 bytes of status data to get that.
1226 	 */
1227 	if (elt == -1) {
1228 		if (amt < 2)
1229 			return (-1);
1230 		gget8(b, 1, sp->comstatus);
1231 		sp->comstat[0] = 0;
1232 		sp->comstat[1] = 0;
1233 		sp->comstat[2] = 0;
1234 		return (0);
1235 	}
1236 
1237 	/*
1238 	 * Check to make sure that the Mth element is legal for type Elt.
1239 	 */
1240 
1241 	if (elm >= ep[elt])
1242 		return (-1);
1243 
1244 	/*
1245 	 * Starting at offset 8, start skipping over the storage
1246 	 * for the element types we're not interested in.
1247 	 */
1248 	for (idx = 8, i = 0; i < elt; i++) {
1249 		idx += ((ep[i] + 1) * 4);
1250 	}
1251 
1252 	/*
1253 	 * Skip over Overall status for this element type.
1254 	 */
1255 	idx += 4;
1256 
1257 	/*
1258 	 * And skip to the index for the Mth element that we're going for.
1259 	 */
1260 	idx += (4 * elm);
1261 
1262 	/*
1263 	 * Make sure we haven't overflowed the buffer.
1264 	 */
1265 	if (idx+4 > amt)
1266 		return (-1);
1267 
1268 	/*
1269 	 * Retrieve the status.
1270 	 */
1271 	gget8(b, idx++, sp->comstatus);
1272 	gget8(b, idx++, sp->comstat[0]);
1273 	gget8(b, idx++, sp->comstat[1]);
1274 	gget8(b, idx++, sp->comstat[2]);
1275 #if	0
1276 	PRINTF("Get Elt 0x%x Elm 0x%x (idx %d)\n", elt, elm, idx-4);
1277 #endif
1278 	return (0);
1279 }
1280 
1281 /*
1282  * This is the mirror function to ses_decode, but we set the 'select'
1283  * bit for the object which we're interested in. All other objects,
1284  * after a status fetch, should have that bit off. Hmm. It'd be easy
1285  * enough to ensure this, so we will.
1286  */
1287 
1288 static int
1289 ses_encode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1290 {
1291 	int idx, i;
1292 
1293 	/*
1294 	 * If it's overall enclosure status being sought, get that.
1295 	 * We need at least 2 bytes of status data to get that.
1296 	 */
1297 	if (elt == -1) {
1298 		if (amt < 2)
1299 			return (-1);
1300 		i = 0;
1301 		sset8(b, i, 0);
1302 		sset8(b, i, sp->comstatus & 0xf);
1303 #if	0
1304 		PRINTF("set EncStat %x\n", sp->comstatus);
1305 #endif
1306 		return (0);
1307 	}
1308 
1309 	/*
1310 	 * Check to make sure that the Mth element is legal for type Elt.
1311 	 */
1312 
1313 	if (elm >= ep[elt])
1314 		return (-1);
1315 
1316 	/*
1317 	 * Starting at offset 8, start skipping over the storage
1318 	 * for the element types we're not interested in.
1319 	 */
1320 	for (idx = 8, i = 0; i < elt; i++) {
1321 		idx += ((ep[i] + 1) * 4);
1322 	}
1323 
1324 	/*
1325 	 * Skip over Overall status for this element type.
1326 	 */
1327 	idx += 4;
1328 
1329 	/*
1330 	 * And skip to the index for the Mth element that we're going for.
1331 	 */
1332 	idx += (4 * elm);
1333 
1334 	/*
1335 	 * Make sure we haven't overflowed the buffer.
1336 	 */
1337 	if (idx+4 > amt)
1338 		return (-1);
1339 
1340 	/*
1341 	 * Set the status.
1342 	 */
1343 	sset8(b, idx, sp->comstatus);
1344 	sset8(b, idx, sp->comstat[0]);
1345 	sset8(b, idx, sp->comstat[1]);
1346 	sset8(b, idx, sp->comstat[2]);
1347 	idx -= 4;
1348 
1349 #if	0
1350 	PRINTF("Set Elt 0x%x Elm 0x%x (idx %d) with %x %x %x %x\n",
1351 	    elt, elm, idx, sp->comstatus, sp->comstat[0],
1352 	    sp->comstat[1], sp->comstat[2]);
1353 #endif
1354 
1355 	/*
1356 	 * Now make sure all other 'Select' bits are off.
1357 	 */
1358 	for (i = 8; i < amt; i += 4) {
1359 		if (i != idx)
1360 			b[i] &= ~0x80;
1361 	}
1362 	/*
1363 	 * And make sure the INVOP bit is clear.
1364 	 */
1365 	b[2] &= ~0x10;
1366 
1367 	return (0);
1368 }
1369 
1370 /*
1371  * SAF-TE Type Device Emulation
1372  */
1373 
1374 static int safte_getconfig(ses_softc_t *);
1375 static int safte_rdstat(ses_softc_t *, int);
1376 static int set_objstat_sel(ses_softc_t *, ses_objstat *, int);
1377 static int wrbuf16(ses_softc_t *, uint8_t, uint8_t, uint8_t, uint8_t, int);
1378 static void wrslot_stat(ses_softc_t *, int);
1379 static int perf_slotop(ses_softc_t *, uint8_t, uint8_t, int);
1380 
1381 #define	ALL_ENC_STAT (SES_ENCSTAT_CRITICAL | SES_ENCSTAT_UNRECOV | \
1382 	SES_ENCSTAT_NONCRITICAL | SES_ENCSTAT_INFO)
1383 /*
1384  * SAF-TE specific defines- Mandatory ones only...
1385  */
1386 
1387 /*
1388  * READ BUFFER ('get' commands) IDs- placed in offset 2 of cdb
1389  */
1390 #define	SAFTE_RD_RDCFG	0x00	/* read enclosure configuration */
1391 #define	SAFTE_RD_RDESTS	0x01	/* read enclosure status */
1392 #define	SAFTE_RD_RDDSTS	0x04	/* read drive slot status */
1393 
1394 /*
1395  * WRITE BUFFER ('set' commands) IDs- placed in offset 0 of databuf
1396  */
1397 #define	SAFTE_WT_DSTAT	0x10	/* write device slot status */
1398 #define	SAFTE_WT_SLTOP	0x12	/* perform slot operation */
1399 #define	SAFTE_WT_FANSPD	0x13	/* set fan speed */
1400 #define	SAFTE_WT_ACTPWS	0x14	/* turn on/off power supply */
1401 #define	SAFTE_WT_GLOBAL	0x15	/* send global command */
1402 
1403 
1404 #define	SAFT_SCRATCH	64
1405 #define	NPSEUDO_THERM	16
1406 #define	NPSEUDO_ALARM	1
1407 struct scfg {
1408 	/*
1409 	 * Cached Configuration
1410 	 */
1411 	uint8_t	Nfans;		/* Number of Fans */
1412 	uint8_t	Npwr;		/* Number of Power Supplies */
1413 	uint8_t	Nslots;		/* Number of Device Slots */
1414 	uint8_t	DoorLock;	/* Door Lock Installed */
1415 	uint8_t	Ntherm;		/* Number of Temperature Sensors */
1416 	uint8_t	Nspkrs;		/* Number of Speakers */
1417 	uint8_t Nalarm;		/* Number of Alarms (at least one) */
1418 	/*
1419 	 * Cached Flag Bytes for Global Status
1420 	 */
1421 	uint8_t	flag1;
1422 	uint8_t	flag2;
1423 	/*
1424 	 * What object index ID is where various slots start.
1425 	 */
1426 	uint8_t	pwroff;
1427 	uint8_t	slotoff;
1428 #define	SAFT_ALARM_OFFSET(cc)	(cc)->slotoff - 1
1429 };
1430 
1431 #define	SAFT_FLG1_ALARM		0x1
1432 #define	SAFT_FLG1_GLOBFAIL	0x2
1433 #define	SAFT_FLG1_GLOBWARN	0x4
1434 #define	SAFT_FLG1_ENCPWROFF	0x8
1435 #define	SAFT_FLG1_ENCFANFAIL	0x10
1436 #define	SAFT_FLG1_ENCPWRFAIL	0x20
1437 #define	SAFT_FLG1_ENCDRVFAIL	0x40
1438 #define	SAFT_FLG1_ENCDRVWARN	0x80
1439 
1440 #define	SAFT_FLG2_LOCKDOOR	0x4
1441 #define	SAFT_PRIVATE		sizeof (struct scfg)
1442 
1443 static const char safte_2little[] = "Too Little Data Returned (%d) at line %d\n";
1444 #define	SAFT_BAIL(r, x, k, l)	\
1445 	if (r >= x) { \
1446 		SES_LOG(ssc, safte_2little, x, __LINE__);\
1447 		SES_FREE(k, l); \
1448 		return (EIO); \
1449 	}
1450 
1451 
1452 static int
1453 safte_softc_init(ses_softc_t *ssc, int doinit)
1454 {
1455 	int err, i, r;
1456 	struct scfg *cc;
1457 
1458 	if (doinit == 0) {
1459 		if (ssc->ses_nobjects) {
1460 			if (ssc->ses_objmap) {
1461 				SES_FREE(ssc->ses_objmap,
1462 				    ssc->ses_nobjects * sizeof (encobj));
1463 				ssc->ses_objmap = NULL;
1464 			}
1465 			ssc->ses_nobjects = 0;
1466 		}
1467 		if (ssc->ses_private) {
1468 			SES_FREE(ssc->ses_private, SAFT_PRIVATE);
1469 			ssc->ses_private = NULL;
1470 		}
1471 		return (0);
1472 	}
1473 
1474 	if (ssc->ses_private == NULL) {
1475 		ssc->ses_private = SES_MALLOC(SAFT_PRIVATE);
1476 		if (ssc->ses_private == NULL) {
1477 			return (ENOMEM);
1478 		}
1479 		MEMZERO(ssc->ses_private, SAFT_PRIVATE);
1480 	}
1481 
1482 	ssc->ses_nobjects = 0;
1483 	ssc->ses_encstat = 0;
1484 
1485 	if ((err = safte_getconfig(ssc)) != 0) {
1486 		return (err);
1487 	}
1488 
1489 	/*
1490 	 * The number of objects here, as well as that reported by the
1491 	 * READ_BUFFER/GET_CONFIG call, are the over-temperature flags (15)
1492 	 * that get reported during READ_BUFFER/READ_ENC_STATUS.
1493 	 */
1494 	cc = ssc->ses_private;
1495 	ssc->ses_nobjects = cc->Nfans + cc->Npwr + cc->Nslots + cc->DoorLock +
1496 	    cc->Ntherm + cc->Nspkrs + NPSEUDO_THERM + NPSEUDO_ALARM;
1497 	ssc->ses_objmap = (encobj *)
1498 	    SES_MALLOC(ssc->ses_nobjects * sizeof (encobj));
1499 	if (ssc->ses_objmap == NULL) {
1500 		return (ENOMEM);
1501 	}
1502 	MEMZERO(ssc->ses_objmap, ssc->ses_nobjects * sizeof (encobj));
1503 
1504 	r = 0;
1505 	/*
1506 	 * Note that this is all arranged for the convenience
1507 	 * in later fetches of status.
1508 	 */
1509 	for (i = 0; i < cc->Nfans; i++)
1510 		ssc->ses_objmap[r++].enctype = SESTYP_FAN;
1511 	cc->pwroff = (uint8_t) r;
1512 	for (i = 0; i < cc->Npwr; i++)
1513 		ssc->ses_objmap[r++].enctype = SESTYP_POWER;
1514 	for (i = 0; i < cc->DoorLock; i++)
1515 		ssc->ses_objmap[r++].enctype = SESTYP_DOORLOCK;
1516 	for (i = 0; i < cc->Nspkrs; i++)
1517 		ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1518 	for (i = 0; i < cc->Ntherm; i++)
1519 		ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1520 	for (i = 0; i < NPSEUDO_THERM; i++)
1521 		ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1522 	ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1523 	cc->slotoff = (uint8_t) r;
1524 	for (i = 0; i < cc->Nslots; i++)
1525 		ssc->ses_objmap[r++].enctype = SESTYP_DEVICE;
1526 	return (0);
1527 }
1528 
1529 static int
1530 safte_init_enc(ses_softc_t *ssc)
1531 {
1532 	int err, amt;
1533 	char *sdata;
1534 	static char cdb0[6] = { SEND_DIAGNOSTIC };
1535 	static char cdb[10] =
1536 	    { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
1537 
1538 	sdata = SES_MALLOC(SAFT_SCRATCH);
1539 	if (sdata == NULL)
1540 		return (ENOMEM);
1541 
1542 	err = ses_runcmd(ssc, cdb0, 6, NULL, 0);
1543 	if (err) {
1544 		SES_FREE(sdata, SAFT_SCRATCH);
1545 		return (err);
1546 	}
1547 	sdata[0] = SAFTE_WT_GLOBAL;
1548 	MEMZERO(&sdata[1], 15);
1549 	amt = -SAFT_SCRATCH;
1550 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1551 	SES_FREE(sdata, SAFT_SCRATCH);
1552 	return (err);
1553 }
1554 
1555 static int
1556 safte_get_encstat(ses_softc_t *ssc, int slpflg)
1557 {
1558 	return (safte_rdstat(ssc, slpflg));
1559 }
1560 
1561 static int
1562 safte_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflg)
1563 {
1564 	struct scfg *cc = ssc->ses_private;
1565 	if (cc == NULL)
1566 		return (0);
1567 	/*
1568 	 * Since SAF-TE devices aren't necessarily sticky in terms
1569 	 * of state, make our soft copy of enclosure status 'sticky'-
1570 	 * that is, things set in enclosure status stay set (as implied
1571 	 * by conditions set in reading object status) until cleared.
1572 	 */
1573 	ssc->ses_encstat &= ~ALL_ENC_STAT;
1574 	ssc->ses_encstat |= (encstat & ALL_ENC_STAT);
1575 	ssc->ses_encstat |= ENCI_SVALID;
1576 	cc->flag1 &= ~(SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL|SAFT_FLG1_GLOBWARN);
1577 	if ((encstat & (SES_ENCSTAT_CRITICAL|SES_ENCSTAT_UNRECOV)) != 0) {
1578 		cc->flag1 |= SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL;
1579 	} else if ((encstat & SES_ENCSTAT_NONCRITICAL) != 0) {
1580 		cc->flag1 |= SAFT_FLG1_GLOBWARN;
1581 	}
1582 	return (wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slpflg));
1583 }
1584 
1585 static int
1586 safte_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflg)
1587 {
1588 	int i = (int)obp->obj_id;
1589 
1590 	if ((ssc->ses_encstat & ENCI_SVALID) == 0 ||
1591 	    (ssc->ses_objmap[i].svalid) == 0) {
1592 		int err = safte_rdstat(ssc, slpflg);
1593 		if (err)
1594 			return (err);
1595 	}
1596 	obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
1597 	obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
1598 	obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
1599 	obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
1600 	return (0);
1601 }
1602 
1603 
1604 static int
1605 safte_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slp)
1606 {
1607 	int idx, err;
1608 	encobj *ep;
1609 	struct scfg *cc;
1610 
1611 
1612 	SES_VLOG(ssc, "safte_set_objstat(%d): %x %x %x %x\n",
1613 	    (int)obp->obj_id, obp->cstat[0], obp->cstat[1], obp->cstat[2],
1614 	    obp->cstat[3]);
1615 
1616 	/*
1617 	 * If this is clear, we don't do diddly.
1618 	 */
1619 	if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
1620 		return (0);
1621 	}
1622 
1623 	err = 0;
1624 	/*
1625 	 * Check to see if the common bits are set and do them first.
1626 	 */
1627 	if (obp->cstat[0] & ~SESCTL_CSEL) {
1628 		err = set_objstat_sel(ssc, obp, slp);
1629 		if (err)
1630 			return (err);
1631 	}
1632 
1633 	cc = ssc->ses_private;
1634 	if (cc == NULL)
1635 		return (0);
1636 
1637 	idx = (int)obp->obj_id;
1638 	ep = &ssc->ses_objmap[idx];
1639 
1640 	switch (ep->enctype) {
1641 	case SESTYP_DEVICE:
1642 	{
1643 		uint8_t slotop = 0;
1644 		/*
1645 		 * XXX: I should probably cache the previous state
1646 		 * XXX: of SESCTL_DEVOFF so that when it goes from
1647 		 * XXX: true to false I can then set PREPARE FOR OPERATION
1648 		 * XXX: flag in PERFORM SLOT OPERATION write buffer command.
1649 		 */
1650 		if (obp->cstat[2] & (SESCTL_RQSINS|SESCTL_RQSRMV)) {
1651 			slotop |= 0x2;
1652 		}
1653 		if (obp->cstat[2] & SESCTL_RQSID) {
1654 			slotop |= 0x4;
1655 		}
1656 		err = perf_slotop(ssc, (uint8_t) idx - (uint8_t) cc->slotoff,
1657 		    slotop, slp);
1658 		if (err)
1659 			return (err);
1660 		if (obp->cstat[3] & SESCTL_RQSFLT) {
1661 			ep->priv |= 0x2;
1662 		} else {
1663 			ep->priv &= ~0x2;
1664 		}
1665 		if (ep->priv & 0xc6) {
1666 			ep->priv &= ~0x1;
1667 		} else {
1668 			ep->priv |= 0x1;	/* no errors */
1669 		}
1670 		wrslot_stat(ssc, slp);
1671 		break;
1672 	}
1673 	case SESTYP_POWER:
1674 		if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1675 			cc->flag1 |= SAFT_FLG1_ENCPWRFAIL;
1676 		} else {
1677 			cc->flag1 &= ~SAFT_FLG1_ENCPWRFAIL;
1678 		}
1679 		err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1680 		    cc->flag2, 0, slp);
1681 		if (err)
1682 			return (err);
1683 		if (obp->cstat[3] & SESCTL_RQSTON) {
1684 			(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1685 				idx - cc->pwroff, 0, 0, slp);
1686 		} else {
1687 			(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1688 				idx - cc->pwroff, 0, 1, slp);
1689 		}
1690 		break;
1691 	case SESTYP_FAN:
1692 		if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1693 			cc->flag1 |= SAFT_FLG1_ENCFANFAIL;
1694 		} else {
1695 			cc->flag1 &= ~SAFT_FLG1_ENCFANFAIL;
1696 		}
1697 		err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1698 		    cc->flag2, 0, slp);
1699 		if (err)
1700 			return (err);
1701 		if (obp->cstat[3] & SESCTL_RQSTON) {
1702 			uint8_t fsp;
1703 			if ((obp->cstat[3] & 0x7) == 7) {
1704 				fsp = 4;
1705 			} else if ((obp->cstat[3] & 0x7) == 6) {
1706 				fsp = 3;
1707 			} else if ((obp->cstat[3] & 0x7) == 4) {
1708 				fsp = 2;
1709 			} else {
1710 				fsp = 1;
1711 			}
1712 			(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, fsp, 0, slp);
1713 		} else {
1714 			(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
1715 		}
1716 		break;
1717 	case SESTYP_DOORLOCK:
1718 		if (obp->cstat[3] & 0x1) {
1719 			cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
1720 		} else {
1721 			cc->flag2 |= SAFT_FLG2_LOCKDOOR;
1722 		}
1723 		(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1724 		    cc->flag2, 0, slp);
1725 		break;
1726 	case SESTYP_ALARM:
1727 		/*
1728 		 * On all nonzero but the 'muted' bit, we turn on the alarm,
1729 		 */
1730 		obp->cstat[3] &= ~0xa;
1731 		if (obp->cstat[3] & 0x40) {
1732 			cc->flag2 &= ~SAFT_FLG1_ALARM;
1733 		} else if (obp->cstat[3] != 0) {
1734 			cc->flag2 |= SAFT_FLG1_ALARM;
1735 		} else {
1736 			cc->flag2 &= ~SAFT_FLG1_ALARM;
1737 		}
1738 		ep->priv = obp->cstat[3];
1739 		(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1740 			cc->flag2, 0, slp);
1741 		break;
1742 	default:
1743 		break;
1744 	}
1745 	ep->svalid = 0;
1746 	return (0);
1747 }
1748 
1749 static int
1750 safte_getconfig(ses_softc_t *ssc)
1751 {
1752 	struct scfg *cfg;
1753 	int err, amt;
1754 	char *sdata;
1755 	static char cdb[10] =
1756 	    { READ_BUFFER, 1, SAFTE_RD_RDCFG, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
1757 
1758 	cfg = ssc->ses_private;
1759 	if (cfg == NULL)
1760 		return (ENXIO);
1761 
1762 	sdata = SES_MALLOC(SAFT_SCRATCH);
1763 	if (sdata == NULL)
1764 		return (ENOMEM);
1765 
1766 	amt = SAFT_SCRATCH;
1767 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1768 	if (err) {
1769 		SES_FREE(sdata, SAFT_SCRATCH);
1770 		return (err);
1771 	}
1772 	amt = SAFT_SCRATCH - amt;
1773 	if (amt < 6) {
1774 		SES_LOG(ssc, "too little data (%d) for configuration\n", amt);
1775 		SES_FREE(sdata, SAFT_SCRATCH);
1776 		return (EIO);
1777 	}
1778 	SES_VLOG(ssc, "Nfans %d Npwr %d Nslots %d Lck %d Ntherm %d Nspkrs %d\n",
1779 	    sdata[0], sdata[1], sdata[2], sdata[3], sdata[4], sdata[5]);
1780 	cfg->Nfans = sdata[0];
1781 	cfg->Npwr = sdata[1];
1782 	cfg->Nslots = sdata[2];
1783 	cfg->DoorLock = sdata[3];
1784 	cfg->Ntherm = sdata[4];
1785 	cfg->Nspkrs = sdata[5];
1786 	cfg->Nalarm = NPSEUDO_ALARM;
1787 	SES_FREE(sdata, SAFT_SCRATCH);
1788 	return (0);
1789 }
1790 
1791 static int
1792 safte_rdstat(ses_softc_t *ssc, int slpflg)
1793 {
1794 	int err, oid, r, i, hiwater, nitems, amt;
1795 	uint16_t tempflags;
1796 	size_t buflen;
1797 	uint8_t status, oencstat;
1798 	char *sdata, cdb[10];
1799 	struct scfg *cc = ssc->ses_private;
1800 
1801 
1802 	/*
1803 	 * The number of objects overstates things a bit,
1804 	 * both for the bogus 'thermometer' entries and
1805 	 * the drive status (which isn't read at the same
1806 	 * time as the enclosure status), but that's okay.
1807 	 */
1808 	buflen = 4 * cc->Nslots;
1809 	if (ssc->ses_nobjects > buflen)
1810 		buflen = ssc->ses_nobjects;
1811 	sdata = SES_MALLOC(buflen);
1812 	if (sdata == NULL)
1813 		return (ENOMEM);
1814 
1815 	cdb[0] = READ_BUFFER;
1816 	cdb[1] = 1;
1817 	cdb[2] = SAFTE_RD_RDESTS;
1818 	cdb[3] = 0;
1819 	cdb[4] = 0;
1820 	cdb[5] = 0;
1821 	cdb[6] = 0;
1822 	cdb[7] = (buflen >> 8) & 0xff;
1823 	cdb[8] = buflen & 0xff;
1824 	cdb[9] = 0;
1825 	amt = buflen;
1826 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1827 	if (err) {
1828 		SES_FREE(sdata, buflen);
1829 		return (err);
1830 	}
1831 	hiwater = buflen - amt;
1832 
1833 
1834 	/*
1835 	 * invalidate all status bits.
1836 	 */
1837 	for (i = 0; i < ssc->ses_nobjects; i++)
1838 		ssc->ses_objmap[i].svalid = 0;
1839 	oencstat = ssc->ses_encstat & ALL_ENC_STAT;
1840 	ssc->ses_encstat = 0;
1841 
1842 
1843 	/*
1844 	 * Now parse returned buffer.
1845 	 * If we didn't get enough data back,
1846 	 * that's considered a fatal error.
1847 	 */
1848 	oid = r = 0;
1849 
1850 	for (nitems = i = 0; i < cc->Nfans; i++) {
1851 		SAFT_BAIL(r, hiwater, sdata, buflen);
1852 		/*
1853 		 * 0 = Fan Operational
1854 		 * 1 = Fan is malfunctioning
1855 		 * 2 = Fan is not present
1856 		 * 0x80 = Unknown or Not Reportable Status
1857 		 */
1858 		ssc->ses_objmap[oid].encstat[1] = 0;	/* resvd */
1859 		ssc->ses_objmap[oid].encstat[2] = 0;	/* resvd */
1860 		switch ((int)(uint8_t)sdata[r]) {
1861 		case 0:
1862 			nitems++;
1863 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1864 			/*
1865 			 * We could get fancier and cache
1866 			 * fan speeds that we have set, but
1867 			 * that isn't done now.
1868 			 */
1869 			ssc->ses_objmap[oid].encstat[3] = 7;
1870 			break;
1871 
1872 		case 1:
1873 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1874 			/*
1875 			 * FAIL and FAN STOPPED synthesized
1876 			 */
1877 			ssc->ses_objmap[oid].encstat[3] = 0x40;
1878 			/*
1879 			 * Enclosure marked with CRITICAL error
1880 			 * if only one fan or no thermometers,
1881 			 * else the NONCRITICAL error is set.
1882 			 */
1883 			if (cc->Nfans == 1 || cc->Ntherm == 0)
1884 				ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1885 			else
1886 				ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1887 			break;
1888 		case 2:
1889 			ssc->ses_objmap[oid].encstat[0] =
1890 			    SES_OBJSTAT_NOTINSTALLED;
1891 			ssc->ses_objmap[oid].encstat[3] = 0;
1892 			/*
1893 			 * Enclosure marked with CRITICAL error
1894 			 * if only one fan or no thermometers,
1895 			 * else the NONCRITICAL error is set.
1896 			 */
1897 			if (cc->Nfans == 1)
1898 				ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1899 			else
1900 				ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1901 			break;
1902 		case 0x80:
1903 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1904 			ssc->ses_objmap[oid].encstat[3] = 0;
1905 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
1906 			break;
1907 		default:
1908 			ssc->ses_objmap[oid].encstat[0] =
1909 			    SES_OBJSTAT_UNSUPPORTED;
1910 			SES_LOG(ssc, "Unknown fan%d status 0x%x\n", i,
1911 			    sdata[r] & 0xff);
1912 			break;
1913 		}
1914 		ssc->ses_objmap[oid++].svalid = 1;
1915 		r++;
1916 	}
1917 
1918 	/*
1919 	 * No matter how you cut it, no cooling elements when there
1920 	 * should be some there is critical.
1921 	 */
1922 	if (cc->Nfans && nitems == 0) {
1923 		ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1924 	}
1925 
1926 
1927 	for (i = 0; i < cc->Npwr; i++) {
1928 		SAFT_BAIL(r, hiwater, sdata, buflen);
1929 		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1930 		ssc->ses_objmap[oid].encstat[1] = 0;	/* resvd */
1931 		ssc->ses_objmap[oid].encstat[2] = 0;	/* resvd */
1932 		ssc->ses_objmap[oid].encstat[3] = 0x20;	/* requested on */
1933 		switch ((uint8_t)sdata[r]) {
1934 		case 0x00:	/* pws operational and on */
1935 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1936 			break;
1937 		case 0x01:	/* pws operational and off */
1938 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1939 			ssc->ses_objmap[oid].encstat[3] = 0x10;
1940 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
1941 			break;
1942 		case 0x10:	/* pws is malfunctioning and commanded on */
1943 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1944 			ssc->ses_objmap[oid].encstat[3] = 0x61;
1945 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1946 			break;
1947 
1948 		case 0x11:	/* pws is malfunctioning and commanded off */
1949 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
1950 			ssc->ses_objmap[oid].encstat[3] = 0x51;
1951 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1952 			break;
1953 		case 0x20:	/* pws is not present */
1954 			ssc->ses_objmap[oid].encstat[0] =
1955 			    SES_OBJSTAT_NOTINSTALLED;
1956 			ssc->ses_objmap[oid].encstat[3] = 0;
1957 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
1958 			break;
1959 		case 0x21:	/* pws is present */
1960 			/*
1961 			 * This is for enclosures that cannot tell whether the
1962 			 * device is on or malfunctioning, but know that it is
1963 			 * present. Just fall through.
1964 			 */
1965 			/* FALLTHROUGH */
1966 		case 0x80:	/* Unknown or Not Reportable Status */
1967 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1968 			ssc->ses_objmap[oid].encstat[3] = 0;
1969 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
1970 			break;
1971 		default:
1972 			SES_LOG(ssc, "unknown power supply %d status (0x%x)\n",
1973 			    i, sdata[r] & 0xff);
1974 			break;
1975 		}
1976 		ssc->ses_objmap[oid++].svalid = 1;
1977 		r++;
1978 	}
1979 
1980 	/*
1981 	 * Skip over Slot SCSI IDs
1982 	 */
1983 	r += cc->Nslots;
1984 
1985 	/*
1986 	 * We always have doorlock status, no matter what,
1987 	 * but we only save the status if we have one.
1988 	 */
1989 	SAFT_BAIL(r, hiwater, sdata, buflen);
1990 	if (cc->DoorLock) {
1991 		/*
1992 		 * 0 = Door Locked
1993 		 * 1 = Door Unlocked, or no Lock Installed
1994 		 * 0x80 = Unknown or Not Reportable Status
1995 		 */
1996 		ssc->ses_objmap[oid].encstat[1] = 0;
1997 		ssc->ses_objmap[oid].encstat[2] = 0;
1998 		switch ((uint8_t)sdata[r]) {
1999 		case 0:
2000 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2001 			ssc->ses_objmap[oid].encstat[3] = 0;
2002 			break;
2003 		case 1:
2004 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2005 			ssc->ses_objmap[oid].encstat[3] = 1;
2006 			break;
2007 		case 0x80:
2008 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2009 			ssc->ses_objmap[oid].encstat[3] = 0;
2010 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
2011 			break;
2012 		default:
2013 			ssc->ses_objmap[oid].encstat[0] =
2014 			    SES_OBJSTAT_UNSUPPORTED;
2015 			SES_LOG(ssc, "unknown lock status 0x%x\n",
2016 			    sdata[r] & 0xff);
2017 			break;
2018 		}
2019 		ssc->ses_objmap[oid++].svalid = 1;
2020 	}
2021 	r++;
2022 
2023 	/*
2024 	 * We always have speaker status, no matter what,
2025 	 * but we only save the status if we have one.
2026 	 */
2027 	SAFT_BAIL(r, hiwater, sdata, buflen);
2028 	if (cc->Nspkrs) {
2029 		ssc->ses_objmap[oid].encstat[1] = 0;
2030 		ssc->ses_objmap[oid].encstat[2] = 0;
2031 		if (sdata[r] == 1) {
2032 			/*
2033 			 * We need to cache tone urgency indicators.
2034 			 * Someday.
2035 			 */
2036 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
2037 			ssc->ses_objmap[oid].encstat[3] = 0x8;
2038 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2039 		} else if (sdata[r] == 0) {
2040 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2041 			ssc->ses_objmap[oid].encstat[3] = 0;
2042 		} else {
2043 			ssc->ses_objmap[oid].encstat[0] =
2044 			    SES_OBJSTAT_UNSUPPORTED;
2045 			ssc->ses_objmap[oid].encstat[3] = 0;
2046 			SES_LOG(ssc, "unknown spkr status 0x%x\n",
2047 			    sdata[r] & 0xff);
2048 		}
2049 		ssc->ses_objmap[oid++].svalid = 1;
2050 	}
2051 	r++;
2052 
2053 	for (i = 0; i < cc->Ntherm; i++) {
2054 		SAFT_BAIL(r, hiwater, sdata, buflen);
2055 		/*
2056 		 * Status is a range from -10 to 245 deg Celsius,
2057 		 * which we need to normalize to -20 to -245 according
2058 		 * to the latest SCSI spec, which makes little
2059 		 * sense since this would overflow an 8bit value.
2060 		 * Well, still, the base normalization is -20,
2061 		 * not -10, so we have to adjust.
2062 		 *
2063 		 * So what's over and under temperature?
2064 		 * Hmm- we'll state that 'normal' operating
2065 		 * is 10 to 40 deg Celsius.
2066 		 */
2067 
2068 		/*
2069 		 * Actually.... All of the units that people out in the world
2070 		 * seem to have do not come even close to setting a value that
2071 		 * complies with this spec.
2072 		 *
2073 		 * The closest explanation I could find was in an
2074 		 * LSI-Logic manual, which seemed to indicate that
2075 		 * this value would be set by whatever the I2C code
2076 		 * would interpolate from the output of an LM75
2077 		 * temperature sensor.
2078 		 *
2079 		 * This means that it is impossible to use the actual
2080 		 * numeric value to predict anything. But we don't want
2081 		 * to lose the value. So, we'll propagate the *uncorrected*
2082 		 * value and set SES_OBJSTAT_NOTAVAIL. We'll depend on the
2083 		 * temperature flags for warnings.
2084 		 */
2085 		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NOTAVAIL;
2086 		ssc->ses_objmap[oid].encstat[1] = 0;
2087 		ssc->ses_objmap[oid].encstat[2] = sdata[r];
2088 		ssc->ses_objmap[oid].encstat[3] = 0;
2089 		ssc->ses_objmap[oid++].svalid = 1;
2090 		r++;
2091 	}
2092 
2093 	/*
2094 	 * Now, for "pseudo" thermometers, we have two bytes
2095 	 * of information in enclosure status- 16 bits. Actually,
2096 	 * the MSB is a single TEMP ALERT flag indicating whether
2097 	 * any other bits are set, but, thanks to fuzzy thinking,
2098 	 * in the SAF-TE spec, this can also be set even if no
2099 	 * other bits are set, thus making this really another
2100 	 * binary temperature sensor.
2101 	 */
2102 
2103 	SAFT_BAIL(r, hiwater, sdata, buflen);
2104 	tempflags = sdata[r++];
2105 	SAFT_BAIL(r, hiwater, sdata, buflen);
2106 	tempflags |= (tempflags << 8) | sdata[r++];
2107 
2108 	for (i = 0; i < NPSEUDO_THERM; i++) {
2109 		ssc->ses_objmap[oid].encstat[1] = 0;
2110 		if (tempflags & (1 << (NPSEUDO_THERM - i - 1))) {
2111 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2112 			ssc->ses_objmap[4].encstat[2] = 0xff;
2113 			/*
2114 			 * Set 'over temperature' failure.
2115 			 */
2116 			ssc->ses_objmap[oid].encstat[3] = 8;
2117 			ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2118 		} else {
2119 			/*
2120 			 * We used to say 'not available' and synthesize a
2121 			 * nominal 30 deg (C)- that was wrong. Actually,
2122 			 * Just say 'OK', and use the reserved value of
2123 			 * zero.
2124 			 */
2125 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2126 			ssc->ses_objmap[oid].encstat[2] = 0;
2127 			ssc->ses_objmap[oid].encstat[3] = 0;
2128 		}
2129 		ssc->ses_objmap[oid++].svalid = 1;
2130 	}
2131 
2132 	/*
2133 	 * Get alarm status.
2134 	 */
2135 	ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2136 	ssc->ses_objmap[oid].encstat[3] = ssc->ses_objmap[oid].priv;
2137 	ssc->ses_objmap[oid++].svalid = 1;
2138 
2139 	/*
2140 	 * Now get drive slot status
2141 	 */
2142 	cdb[2] = SAFTE_RD_RDDSTS;
2143 	amt = buflen;
2144 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2145 	if (err) {
2146 		SES_FREE(sdata, buflen);
2147 		return (err);
2148 	}
2149 	hiwater = buflen - amt;
2150 	for (r = i = 0; i < cc->Nslots; i++, r += 4) {
2151 		SAFT_BAIL(r+3, hiwater, sdata, buflen);
2152 		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNSUPPORTED;
2153 		ssc->ses_objmap[oid].encstat[1] = (uint8_t) i;
2154 		ssc->ses_objmap[oid].encstat[2] = 0;
2155 		ssc->ses_objmap[oid].encstat[3] = 0;
2156 		status = sdata[r+3];
2157 		if ((status & 0x1) == 0) {	/* no device */
2158 			ssc->ses_objmap[oid].encstat[0] =
2159 			    SES_OBJSTAT_NOTINSTALLED;
2160 		} else {
2161 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2162 		}
2163 		if (status & 0x2) {
2164 			ssc->ses_objmap[oid].encstat[2] = 0x8;
2165 		}
2166 		if ((status & 0x4) == 0) {
2167 			ssc->ses_objmap[oid].encstat[3] = 0x10;
2168 		}
2169 		ssc->ses_objmap[oid++].svalid = 1;
2170 	}
2171 	/* see comment below about sticky enclosure status */
2172 	ssc->ses_encstat |= ENCI_SVALID | oencstat;
2173 	SES_FREE(sdata, buflen);
2174 	return (0);
2175 }
2176 
2177 static int
2178 set_objstat_sel(ses_softc_t *ssc, ses_objstat *obp, int slp)
2179 {
2180 	int idx;
2181 	encobj *ep;
2182 	struct scfg *cc = ssc->ses_private;
2183 
2184 	if (cc == NULL)
2185 		return (0);
2186 
2187 	idx = (int)obp->obj_id;
2188 	ep = &ssc->ses_objmap[idx];
2189 
2190 	switch (ep->enctype) {
2191 	case SESTYP_DEVICE:
2192 		if (obp->cstat[0] & SESCTL_PRDFAIL) {
2193 			ep->priv |= 0x40;
2194 		}
2195 		/* SESCTL_RSTSWAP has no correspondence in SAF-TE */
2196 		if (obp->cstat[0] & SESCTL_DISABLE) {
2197 			ep->priv |= 0x80;
2198 			/*
2199 			 * Hmm. Try to set the 'No Drive' flag.
2200 			 * Maybe that will count as a 'disable'.
2201 			 */
2202 		}
2203 		if (ep->priv & 0xc6) {
2204 			ep->priv &= ~0x1;
2205 		} else {
2206 			ep->priv |= 0x1;	/* no errors */
2207 		}
2208 		wrslot_stat(ssc, slp);
2209 		break;
2210 	case SESTYP_POWER:
2211 		/*
2212 		 * Okay- the only one that makes sense here is to
2213 		 * do the 'disable' for a power supply.
2214 		 */
2215 		if (obp->cstat[0] & SESCTL_DISABLE) {
2216 			(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
2217 				idx - cc->pwroff, 0, 0, slp);
2218 		}
2219 		break;
2220 	case SESTYP_FAN:
2221 		/*
2222 		 * Okay- the only one that makes sense here is to
2223 		 * set fan speed to zero on disable.
2224 		 */
2225 		if (obp->cstat[0] & SESCTL_DISABLE) {
2226 			/* remember- fans are the first items, so idx works */
2227 			(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
2228 		}
2229 		break;
2230 	case SESTYP_DOORLOCK:
2231 		/*
2232 		 * Well, we can 'disable' the lock.
2233 		 */
2234 		if (obp->cstat[0] & SESCTL_DISABLE) {
2235 			cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
2236 			(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2237 				cc->flag2, 0, slp);
2238 		}
2239 		break;
2240 	case SESTYP_ALARM:
2241 		/*
2242 		 * Well, we can 'disable' the alarm.
2243 		 */
2244 		if (obp->cstat[0] & SESCTL_DISABLE) {
2245 			cc->flag2 &= ~SAFT_FLG1_ALARM;
2246 			ep->priv |= 0x40;	/* Muted */
2247 			(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2248 				cc->flag2, 0, slp);
2249 		}
2250 		break;
2251 	default:
2252 		break;
2253 	}
2254 	ep->svalid = 0;
2255 	return (0);
2256 }
2257 
2258 /*
2259  * This function handles all of the 16 byte WRITE BUFFER commands.
2260  */
2261 static int
2262 wrbuf16(ses_softc_t *ssc, uint8_t op, uint8_t b1, uint8_t b2,
2263     uint8_t b3, int slp)
2264 {
2265 	int err, amt;
2266 	char *sdata;
2267 	struct scfg *cc = ssc->ses_private;
2268 	static char cdb[10] = { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
2269 
2270 	if (cc == NULL)
2271 		return (0);
2272 
2273 	sdata = SES_MALLOC(16);
2274 	if (sdata == NULL)
2275 		return (ENOMEM);
2276 
2277 	SES_VLOG(ssc, "saf_wrbuf16 %x %x %x %x\n", op, b1, b2, b3);
2278 
2279 	sdata[0] = op;
2280 	sdata[1] = b1;
2281 	sdata[2] = b2;
2282 	sdata[3] = b3;
2283 	MEMZERO(&sdata[4], 12);
2284 	amt = -16;
2285 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2286 	SES_FREE(sdata, 16);
2287 	return (err);
2288 }
2289 
2290 /*
2291  * This function updates the status byte for the device slot described.
2292  *
2293  * Since this is an optional SAF-TE command, there's no point in
2294  * returning an error.
2295  */
2296 static void
2297 wrslot_stat(ses_softc_t *ssc, int slp)
2298 {
2299 	int i, amt;
2300 	encobj *ep;
2301 	char cdb[10], *sdata;
2302 	struct scfg *cc = ssc->ses_private;
2303 
2304 	if (cc == NULL)
2305 		return;
2306 
2307 	SES_VLOG(ssc, "saf_wrslot\n");
2308 	cdb[0] = WRITE_BUFFER;
2309 	cdb[1] = 1;
2310 	cdb[2] = 0;
2311 	cdb[3] = 0;
2312 	cdb[4] = 0;
2313 	cdb[5] = 0;
2314 	cdb[6] = 0;
2315 	cdb[7] = 0;
2316 	cdb[8] = cc->Nslots * 3 + 1;
2317 	cdb[9] = 0;
2318 
2319 	sdata = SES_MALLOC(cc->Nslots * 3 + 1);
2320 	if (sdata == NULL)
2321 		return;
2322 	MEMZERO(sdata, cc->Nslots * 3 + 1);
2323 
2324 	sdata[0] = SAFTE_WT_DSTAT;
2325 	for (i = 0; i < cc->Nslots; i++) {
2326 		ep = &ssc->ses_objmap[cc->slotoff + i];
2327 		SES_VLOG(ssc, "saf_wrslot %d <- %x\n", i, ep->priv & 0xff);
2328 		sdata[1 + (3 * i)] = ep->priv & 0xff;
2329 	}
2330 	amt = -(cc->Nslots * 3 + 1);
2331 	(void) ses_runcmd(ssc, cdb, 10, sdata, &amt);
2332 	SES_FREE(sdata, cc->Nslots * 3 + 1);
2333 }
2334 
2335 /*
2336  * This function issues the "PERFORM SLOT OPERATION" command.
2337  */
2338 static int
2339 perf_slotop(ses_softc_t *ssc, uint8_t slot, uint8_t opflag, int slp)
2340 {
2341 	int err, amt;
2342 	char *sdata;
2343 	struct scfg *cc = ssc->ses_private;
2344 	static char cdb[10] =
2345 	    { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
2346 
2347 	if (cc == NULL)
2348 		return (0);
2349 
2350 	sdata = SES_MALLOC(SAFT_SCRATCH);
2351 	if (sdata == NULL)
2352 		return (ENOMEM);
2353 	MEMZERO(sdata, SAFT_SCRATCH);
2354 
2355 	sdata[0] = SAFTE_WT_SLTOP;
2356 	sdata[1] = slot;
2357 	sdata[2] = opflag;
2358 	SES_VLOG(ssc, "saf_slotop slot %d op %x\n", slot, opflag);
2359 	amt = -SAFT_SCRATCH;
2360 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2361 	SES_FREE(sdata, SAFT_SCRATCH);
2362 	return (err);
2363 }
2364