1 /* $NetBSD: ses.c,v 1.24 2004/09/09 19:35:33 bouyer Exp $ */ 2 /* 3 * Copyright (C) 2000 National Aeronautics & Space Administration 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. The name of the author may not be used to endorse or promote products 12 * derived from this software without specific prior written permission 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 17 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 20 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 21 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 24 * 25 * Author: mjacob@nas.nasa.gov 26 */ 27 28 #include <sys/cdefs.h> 29 __KERNEL_RCSID(0, "$NetBSD: ses.c,v 1.24 2004/09/09 19:35:33 bouyer Exp $"); 30 31 #include "opt_scsi.h" 32 33 #include <sys/param.h> 34 #include <sys/systm.h> 35 #include <sys/kernel.h> 36 #include <sys/file.h> 37 #include <sys/stat.h> 38 #include <sys/ioctl.h> 39 #include <sys/scsiio.h> 40 #include <sys/buf.h> 41 #include <sys/uio.h> 42 #include <sys/malloc.h> 43 #include <sys/errno.h> 44 #include <sys/device.h> 45 #include <sys/disklabel.h> 46 #include <sys/disk.h> 47 #include <sys/proc.h> 48 #include <sys/conf.h> 49 #include <sys/vnode.h> 50 #include <machine/stdarg.h> 51 52 #include <dev/scsipi/scsipi_all.h> 53 #include <dev/scsipi/scsi_all.h> 54 #include <dev/scsipi/scsipi_disk.h> 55 #include <dev/scsipi/scsi_disk.h> 56 #include <dev/scsipi/scsiconf.h> 57 #include <dev/scsipi/ses.h> 58 59 /* 60 * Platform Independent Driver Internal Definitions for SES devices. 61 */ 62 typedef enum { 63 SES_NONE, 64 SES_SES_SCSI2, 65 SES_SES, 66 SES_SES_PASSTHROUGH, 67 SES_SEN, 68 SES_SAFT 69 } enctyp; 70 71 struct ses_softc; 72 typedef struct ses_softc ses_softc_t; 73 typedef struct { 74 int (*softc_init)(ses_softc_t *, int); 75 int (*init_enc)(ses_softc_t *); 76 int (*get_encstat)(ses_softc_t *, int); 77 int (*set_encstat)(ses_softc_t *, ses_encstat, int); 78 int (*get_objstat)(ses_softc_t *, ses_objstat *, int); 79 int (*set_objstat)(ses_softc_t *, ses_objstat *, int); 80 } encvec; 81 82 #define ENCI_SVALID 0x80 83 84 typedef struct { 85 uint32_t 86 enctype : 8, /* enclosure type */ 87 subenclosure : 8, /* subenclosure id */ 88 svalid : 1, /* enclosure information valid */ 89 priv : 15; /* private data, per object */ 90 uint8_t encstat[4]; /* state && stats */ 91 } encobj; 92 93 #define SEN_ID "UNISYS SUN_SEN" 94 #define SEN_ID_LEN 24 95 96 static enctyp ses_type(struct scsipi_inquiry_data *); 97 98 99 /* Forward reference to Enclosure Functions */ 100 static int ses_softc_init(ses_softc_t *, int); 101 static int ses_init_enc(ses_softc_t *); 102 static int ses_get_encstat(ses_softc_t *, int); 103 static int ses_set_encstat(ses_softc_t *, uint8_t, int); 104 static int ses_get_objstat(ses_softc_t *, ses_objstat *, int); 105 static int ses_set_objstat(ses_softc_t *, ses_objstat *, int); 106 107 static int safte_softc_init(ses_softc_t *, int); 108 static int safte_init_enc(ses_softc_t *); 109 static int safte_get_encstat(ses_softc_t *, int); 110 static int safte_set_encstat(ses_softc_t *, uint8_t, int); 111 static int safte_get_objstat(ses_softc_t *, ses_objstat *, int); 112 static int safte_set_objstat(ses_softc_t *, ses_objstat *, int); 113 114 /* 115 * Platform implementation defines/functions for SES internal kernel stuff 116 */ 117 118 #define STRNCMP strncmp 119 #define PRINTF printf 120 #define SES_LOG ses_log 121 #if defined(DEBUG) || defined(SCSIDEBUG) 122 #define SES_VLOG ses_log 123 #else 124 #define SES_VLOG if (0) ses_log 125 #endif 126 #define SES_MALLOC(amt) malloc(amt, M_DEVBUF, M_NOWAIT) 127 #define SES_FREE(ptr, amt) free(ptr, M_DEVBUF) 128 #define MEMZERO(dest, amt) memset(dest, 0, amt) 129 #define MEMCPY(dest, src, amt) memcpy(dest, src, amt) 130 #define RECEIVE_DIAGNOSTIC 0x1c 131 #define SEND_DIAGNOSTIC 0x1d 132 #define WRITE_BUFFER 0x3b 133 #define READ_BUFFER 0x3c 134 135 static dev_type_open(sesopen); 136 static dev_type_close(sesclose); 137 static dev_type_ioctl(sesioctl); 138 139 const struct cdevsw ses_cdevsw = { 140 sesopen, sesclose, noread, nowrite, sesioctl, 141 nostop, notty, nopoll, nommap, nokqfilter, 142 }; 143 144 static int ses_runcmd(struct ses_softc *, char *, int, char *, int *); 145 static void ses_log(struct ses_softc *, const char *, ...) 146 __attribute__((__format__(__printf__, 2, 3))); 147 148 /* 149 * General NetBSD kernel stuff. 150 */ 151 152 struct ses_softc { 153 struct device sc_device; 154 struct scsipi_periph *sc_periph; 155 enctyp ses_type; /* type of enclosure */ 156 encvec ses_vec; /* vector to handlers */ 157 void * ses_private; /* per-type private data */ 158 encobj * ses_objmap; /* objects */ 159 u_int32_t ses_nobjects; /* number of objects */ 160 ses_encstat ses_encstat; /* overall status */ 161 u_int8_t ses_flags; 162 }; 163 #define SES_FLAG_INVALID 0x01 164 #define SES_FLAG_OPEN 0x02 165 #define SES_FLAG_INITIALIZED 0x04 166 167 #define SESUNIT(x) (minor((x))) 168 169 static int ses_match(struct device *, struct cfdata *, void *); 170 static void ses_attach(struct device *, struct device *, void *); 171 static enctyp ses_device_type(struct scsipibus_attach_args *); 172 173 CFATTACH_DECL(ses, sizeof (struct ses_softc), 174 ses_match, ses_attach, NULL, NULL); 175 176 extern struct cfdriver ses_cd; 177 178 static const struct scsipi_periphsw ses_switch = { 179 NULL, 180 NULL, 181 NULL, 182 NULL 183 }; 184 185 static int 186 ses_match(struct device *parent, struct cfdata *match, void *aux) 187 { 188 struct scsipibus_attach_args *sa = aux; 189 190 switch (ses_device_type(sa)) { 191 case SES_SES: 192 case SES_SES_SCSI2: 193 case SES_SEN: 194 case SES_SAFT: 195 case SES_SES_PASSTHROUGH: 196 /* 197 * For these devices, it's a perfect match. 198 */ 199 return (24); 200 default: 201 return (0); 202 } 203 } 204 205 206 /* 207 * Complete the attachment. 208 * 209 * We have to repeat the rerun of INQUIRY data as above because 210 * it's not until the return from the match routine that we have 211 * the softc available to set stuff in. 212 */ 213 static void 214 ses_attach(struct device *parent, struct device *self, void *aux) 215 { 216 char *tname; 217 struct ses_softc *softc = (void *)self; 218 struct scsipibus_attach_args *sa = aux; 219 struct scsipi_periph *periph = sa->sa_periph; 220 221 SC_DEBUG(periph, SCSIPI_DB2, ("ssattach: ")); 222 softc->sc_periph = periph; 223 periph->periph_dev = &softc->sc_device; 224 periph->periph_switch = &ses_switch; 225 periph->periph_openings = 1; 226 227 softc->ses_type = ses_device_type(sa); 228 switch (softc->ses_type) { 229 case SES_SES: 230 case SES_SES_SCSI2: 231 case SES_SES_PASSTHROUGH: 232 softc->ses_vec.softc_init = ses_softc_init; 233 softc->ses_vec.init_enc = ses_init_enc; 234 softc->ses_vec.get_encstat = ses_get_encstat; 235 softc->ses_vec.set_encstat = ses_set_encstat; 236 softc->ses_vec.get_objstat = ses_get_objstat; 237 softc->ses_vec.set_objstat = ses_set_objstat; 238 break; 239 case SES_SAFT: 240 softc->ses_vec.softc_init = safte_softc_init; 241 softc->ses_vec.init_enc = safte_init_enc; 242 softc->ses_vec.get_encstat = safte_get_encstat; 243 softc->ses_vec.set_encstat = safte_set_encstat; 244 softc->ses_vec.get_objstat = safte_get_objstat; 245 softc->ses_vec.set_objstat = safte_set_objstat; 246 break; 247 case SES_SEN: 248 break; 249 case SES_NONE: 250 default: 251 break; 252 } 253 254 switch (softc->ses_type) { 255 default: 256 case SES_NONE: 257 tname = "No SES device"; 258 break; 259 case SES_SES_SCSI2: 260 tname = "SCSI-2 SES Device"; 261 break; 262 case SES_SES: 263 tname = "SCSI-3 SES Device"; 264 break; 265 case SES_SES_PASSTHROUGH: 266 tname = "SES Passthrough Device"; 267 break; 268 case SES_SEN: 269 tname = "UNISYS SEN Device (NOT HANDLED YET)"; 270 break; 271 case SES_SAFT: 272 tname = "SAF-TE Compliant Device"; 273 break; 274 } 275 printf("\n%s: %s\n", softc->sc_device.dv_xname, tname); 276 } 277 278 279 static enctyp 280 ses_device_type(struct scsipibus_attach_args *sa) 281 { 282 struct scsipi_inquiry_data *inqp = sa->sa_inqptr; 283 284 if (inqp == NULL) 285 return (SES_NONE); 286 287 return (ses_type(inqp)); 288 } 289 290 static int 291 sesopen(dev_t dev, int flags, int fmt, struct proc *p) 292 { 293 struct ses_softc *softc; 294 int error, unit; 295 296 unit = SESUNIT(dev); 297 if (unit >= ses_cd.cd_ndevs) 298 return (ENXIO); 299 softc = ses_cd.cd_devs[unit]; 300 if (softc == NULL) 301 return (ENXIO); 302 303 if (softc->ses_flags & SES_FLAG_INVALID) { 304 error = ENXIO; 305 goto out; 306 } 307 if (softc->ses_flags & SES_FLAG_OPEN) { 308 error = EBUSY; 309 goto out; 310 } 311 if (softc->ses_vec.softc_init == NULL) { 312 error = ENXIO; 313 goto out; 314 } 315 error = scsipi_adapter_addref( 316 softc->sc_periph->periph_channel->chan_adapter); 317 if (error != 0) 318 goto out; 319 320 321 softc->ses_flags |= SES_FLAG_OPEN; 322 if ((softc->ses_flags & SES_FLAG_INITIALIZED) == 0) { 323 error = (*softc->ses_vec.softc_init)(softc, 1); 324 if (error) 325 softc->ses_flags &= ~SES_FLAG_OPEN; 326 else 327 softc->ses_flags |= SES_FLAG_INITIALIZED; 328 } 329 330 out: 331 return (error); 332 } 333 334 static int 335 sesclose(dev_t dev, int flags, int fmt, struct proc *p) 336 { 337 struct ses_softc *softc; 338 int unit; 339 340 unit = SESUNIT(dev); 341 if (unit >= ses_cd.cd_ndevs) 342 return (ENXIO); 343 softc = ses_cd.cd_devs[unit]; 344 if (softc == NULL) 345 return (ENXIO); 346 347 scsipi_wait_drain(softc->sc_periph); 348 scsipi_adapter_delref(softc->sc_periph->periph_channel->chan_adapter); 349 softc->ses_flags &= ~SES_FLAG_OPEN; 350 return (0); 351 } 352 353 static int 354 sesioctl(dev_t dev, u_long cmd, caddr_t arg_addr, int flag, struct proc *p) 355 { 356 ses_encstat tmp; 357 ses_objstat objs; 358 ses_object obj, *uobj; 359 struct ses_softc *ssc = ses_cd.cd_devs[SESUNIT(dev)]; 360 void *addr; 361 int error, i; 362 363 364 if (arg_addr) 365 addr = *((caddr_t *) arg_addr); 366 else 367 addr = NULL; 368 369 SC_DEBUG(ssc->sc_periph, SCSIPI_DB2, ("sesioctl 0x%lx ", cmd)); 370 371 /* 372 * Now check to see whether we're initialized or not. 373 */ 374 if ((ssc->ses_flags & SES_FLAG_INITIALIZED) == 0) { 375 return (ENODEV); 376 } 377 378 error = 0; 379 380 /* 381 * If this command can change the device's state, 382 * we must have the device open for writing. 383 */ 384 switch (cmd) { 385 case SESIOC_GETNOBJ: 386 case SESIOC_GETOBJMAP: 387 case SESIOC_GETENCSTAT: 388 case SESIOC_GETOBJSTAT: 389 break; 390 default: 391 if ((flag & FWRITE) == 0) { 392 return (EBADF); 393 } 394 } 395 396 switch (cmd) { 397 case SESIOC_GETNOBJ: 398 error = copyout(&ssc->ses_nobjects, addr, 399 sizeof (ssc->ses_nobjects)); 400 break; 401 402 case SESIOC_GETOBJMAP: 403 for (uobj = addr, i = 0; i != ssc->ses_nobjects; i++, uobj++) { 404 obj.obj_id = i; 405 obj.subencid = ssc->ses_objmap[i].subenclosure; 406 obj.object_type = ssc->ses_objmap[i].enctype; 407 error = copyout(&obj, uobj, sizeof (ses_object)); 408 if (error) { 409 break; 410 } 411 } 412 break; 413 414 case SESIOC_GETENCSTAT: 415 error = (*ssc->ses_vec.get_encstat)(ssc, 1); 416 if (error) 417 break; 418 tmp = ssc->ses_encstat & ~ENCI_SVALID; 419 error = copyout(&tmp, addr, sizeof (ses_encstat)); 420 ssc->ses_encstat = tmp; 421 break; 422 423 case SESIOC_SETENCSTAT: 424 error = copyin(addr, &tmp, sizeof (ses_encstat)); 425 if (error) 426 break; 427 error = (*ssc->ses_vec.set_encstat)(ssc, tmp, 1); 428 break; 429 430 case SESIOC_GETOBJSTAT: 431 error = copyin(addr, &objs, sizeof (ses_objstat)); 432 if (error) 433 break; 434 if (objs.obj_id >= ssc->ses_nobjects) { 435 error = EINVAL; 436 break; 437 } 438 error = (*ssc->ses_vec.get_objstat)(ssc, &objs, 1); 439 if (error) 440 break; 441 error = copyout(&objs, addr, sizeof (ses_objstat)); 442 /* 443 * Always (for now) invalidate entry. 444 */ 445 ssc->ses_objmap[objs.obj_id].svalid = 0; 446 break; 447 448 case SESIOC_SETOBJSTAT: 449 error = copyin(addr, &objs, sizeof (ses_objstat)); 450 if (error) 451 break; 452 453 if (objs.obj_id >= ssc->ses_nobjects) { 454 error = EINVAL; 455 break; 456 } 457 error = (*ssc->ses_vec.set_objstat)(ssc, &objs, 1); 458 459 /* 460 * Always (for now) invalidate entry. 461 */ 462 ssc->ses_objmap[objs.obj_id].svalid = 0; 463 break; 464 465 case SESIOC_INIT: 466 467 error = (*ssc->ses_vec.init_enc)(ssc); 468 break; 469 470 default: 471 error = scsipi_do_ioctl(ssc->sc_periph, 472 dev, cmd, arg_addr, flag, p); 473 break; 474 } 475 return (error); 476 } 477 478 static int 479 ses_runcmd(struct ses_softc *ssc, char *cdb, int cdbl, char *dptr, int *dlenp) 480 { 481 struct scsipi_generic sgen; 482 int dl, flg, error; 483 484 if (dptr) { 485 if ((dl = *dlenp) < 0) { 486 dl = -dl; 487 flg = XS_CTL_DATA_OUT; 488 } else { 489 flg = XS_CTL_DATA_IN; 490 } 491 } else { 492 dl = 0; 493 flg = 0; 494 } 495 496 if (cdbl > sizeof (struct scsipi_generic)) { 497 cdbl = sizeof (struct scsipi_generic); 498 } 499 memcpy(&sgen, cdb, cdbl); 500 #ifndef SCSIDEBUG 501 flg |= XS_CTL_SILENT; 502 #endif 503 error = scsipi_command(ssc->sc_periph, NULL, &sgen, cdbl, 504 (u_char *) dptr, dl, SCSIPIRETRIES, 30000, NULL, flg); 505 506 if (error == 0 && dptr) 507 *dlenp = 0; 508 509 return (error); 510 } 511 512 static void 513 ses_log(struct ses_softc *ssc, const char *fmt, ...) 514 { 515 va_list ap; 516 517 printf("%s: ", ssc->sc_device.dv_xname); 518 va_start(ap, fmt); 519 vprintf(fmt, ap); 520 va_end(ap); 521 } 522 523 /* 524 * The code after this point runs on many platforms, 525 * so forgive the slightly awkward and nonconforming 526 * appearance. 527 */ 528 529 /* 530 * Is this a device that supports enclosure services? 531 * 532 * It's a a pretty simple ruleset- if it is device type 0x0D (13), it's 533 * an SES device. If it happens to be an old UNISYS SEN device, we can 534 * handle that too. 535 */ 536 537 #define SAFTE_START 44 538 #define SAFTE_END 50 539 #define SAFTE_LEN SAFTE_END-SAFTE_START 540 541 static enctyp 542 ses_type(struct scsipi_inquiry_data *inqp) 543 { 544 size_t given_len = inqp->additional_length + 4; 545 546 if (given_len < 8+SEN_ID_LEN) 547 return (SES_NONE); 548 549 if ((inqp->device & SID_TYPE) == T_ENCLOSURE) { 550 if (STRNCMP(inqp->vendor, SEN_ID, SEN_ID_LEN) == 0) { 551 return (SES_SEN); 552 } else if ((inqp->version & SID_ANSII) > 2) { 553 return (SES_SES); 554 } else { 555 return (SES_SES_SCSI2); 556 } 557 return (SES_NONE); 558 } 559 560 #ifdef SES_ENABLE_PASSTHROUGH 561 if ((inqp->flags2 & SID_EncServ) && (inqp->version & SID_ANSII) >= 2) { 562 /* 563 * PassThrough Device. 564 */ 565 return (SES_SES_PASSTHROUGH); 566 } 567 #endif 568 569 /* 570 * The comparison is short for a reason- 571 * some vendors were chopping it short. 572 */ 573 574 if (given_len < SAFTE_END - 2) { 575 return (SES_NONE); 576 } 577 578 if (STRNCMP((char *)&inqp->vendor_specific[8], "SAF-TE", 579 SAFTE_LEN - 2) == 0) { 580 return (SES_SAFT); 581 } 582 583 return (SES_NONE); 584 } 585 586 /* 587 * SES Native Type Device Support 588 */ 589 590 /* 591 * SES Diagnostic Page Codes 592 */ 593 594 typedef enum { 595 SesConfigPage = 0x1, 596 SesControlPage, 597 #define SesStatusPage SesControlPage 598 SesHelpTxt, 599 SesStringOut, 600 #define SesStringIn SesStringOut 601 SesThresholdOut, 602 #define SesThresholdIn SesThresholdOut 603 SesArrayControl, 604 #define SesArrayStatus SesArrayControl 605 SesElementDescriptor, 606 SesShortStatus 607 } SesDiagPageCodes; 608 609 /* 610 * minimal amounts 611 */ 612 613 /* 614 * Minimum amount of data, starting from byte 0, to have 615 * the config header. 616 */ 617 #define SES_CFGHDR_MINLEN 12 618 619 /* 620 * Minimum amount of data, starting from byte 0, to have 621 * the config header and one enclosure header. 622 */ 623 #define SES_ENCHDR_MINLEN 48 624 625 /* 626 * Take this value, subtract it from VEnclen and you know 627 * the length of the vendor unique bytes. 628 */ 629 #define SES_ENCHDR_VMIN 36 630 631 /* 632 * SES Data Structures 633 */ 634 635 typedef struct { 636 uint32_t GenCode; /* Generation Code */ 637 uint8_t Nsubenc; /* Number of Subenclosures */ 638 } SesCfgHdr; 639 640 typedef struct { 641 uint8_t Subencid; /* SubEnclosure Identifier */ 642 uint8_t Ntypes; /* # of supported types */ 643 uint8_t VEnclen; /* Enclosure Descriptor Length */ 644 } SesEncHdr; 645 646 typedef struct { 647 uint8_t encWWN[8]; /* XXX- Not Right Yet */ 648 uint8_t encVid[8]; 649 uint8_t encPid[16]; 650 uint8_t encRev[4]; 651 uint8_t encVen[1]; 652 } SesEncDesc; 653 654 typedef struct { 655 uint8_t enc_type; /* type of element */ 656 uint8_t enc_maxelt; /* maximum supported */ 657 uint8_t enc_subenc; /* in SubEnc # N */ 658 uint8_t enc_tlen; /* Type Descriptor Text Length */ 659 } SesThdr; 660 661 typedef struct { 662 uint8_t comstatus; 663 uint8_t comstat[3]; 664 } SesComStat; 665 666 struct typidx { 667 int ses_tidx; 668 int ses_oidx; 669 }; 670 671 struct sscfg { 672 uint8_t ses_ntypes; /* total number of types supported */ 673 674 /* 675 * We need to keep a type index as well as an 676 * object index for each object in an enclosure. 677 */ 678 struct typidx *ses_typidx; 679 680 /* 681 * We also need to keep track of the number of elements 682 * per type of element. This is needed later so that we 683 * can find precisely in the returned status data the 684 * status for the Nth element of the Kth type. 685 */ 686 uint8_t * ses_eltmap; 687 }; 688 689 690 /* 691 * (de)canonicalization defines 692 */ 693 #define sbyte(x, byte) ((((uint32_t)(x)) >> (byte * 8)) & 0xff) 694 #define sbit(x, bit) (((uint32_t)(x)) << bit) 695 #define sset8(outp, idx, sval) (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0) 696 697 #define sset16(outp, idx, sval) \ 698 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \ 699 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0) 700 701 702 #define sset24(outp, idx, sval) \ 703 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \ 704 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \ 705 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0) 706 707 708 #define sset32(outp, idx, sval) \ 709 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 3), \ 710 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \ 711 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \ 712 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0) 713 714 #define gbyte(x, byte) ((((uint32_t)(x)) & 0xff) << (byte * 8)) 715 #define gbit(lv, in, idx, shft, mask) lv = ((in[idx] >> shft) & mask) 716 #define sget8(inp, idx, lval) lval = (((uint8_t *)(inp))[idx++]) 717 #define gget8(inp, idx, lval) lval = (((uint8_t *)(inp))[idx]) 718 719 #define sget16(inp, idx, lval) \ 720 lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \ 721 (((uint8_t *)(inp))[idx+1]), idx += 2 722 723 #define gget16(inp, idx, lval) \ 724 lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \ 725 (((uint8_t *)(inp))[idx+1]) 726 727 #define sget24(inp, idx, lval) \ 728 lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \ 729 gbyte((((uint8_t *)(inp))[idx+1]), 1) | \ 730 (((uint8_t *)(inp))[idx+2]), idx += 3 731 732 #define gget24(inp, idx, lval) \ 733 lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \ 734 gbyte((((uint8_t *)(inp))[idx+1]), 1) | \ 735 (((uint8_t *)(inp))[idx+2]) 736 737 #define sget32(inp, idx, lval) \ 738 lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \ 739 gbyte((((uint8_t *)(inp))[idx+1]), 2) | \ 740 gbyte((((uint8_t *)(inp))[idx+2]), 1) | \ 741 (((uint8_t *)(inp))[idx+3]), idx += 4 742 743 #define gget32(inp, idx, lval) \ 744 lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \ 745 gbyte((((uint8_t *)(inp))[idx+1]), 2) | \ 746 gbyte((((uint8_t *)(inp))[idx+2]), 1) | \ 747 (((uint8_t *)(inp))[idx+3]) 748 749 #define SCSZ 0x2000 750 #define CFLEN (256 + SES_ENCHDR_MINLEN) 751 752 /* 753 * Routines specific && private to SES only 754 */ 755 756 static int ses_getconfig(ses_softc_t *); 757 static int ses_getputstat(ses_softc_t *, int, SesComStat *, int, int); 758 static int ses_cfghdr(uint8_t *, int, SesCfgHdr *); 759 static int ses_enchdr(uint8_t *, int, uint8_t, SesEncHdr *); 760 static int ses_encdesc(uint8_t *, int, uint8_t, SesEncDesc *); 761 static int ses_getthdr(uint8_t *, int, int, SesThdr *); 762 static int ses_decode(char *, int, uint8_t *, int, int, SesComStat *); 763 static int ses_encode(char *, int, uint8_t *, int, int, SesComStat *); 764 765 static int 766 ses_softc_init(ses_softc_t *ssc, int doinit) 767 { 768 if (doinit == 0) { 769 struct sscfg *cc; 770 if (ssc->ses_nobjects) { 771 SES_FREE(ssc->ses_objmap, 772 ssc->ses_nobjects * sizeof (encobj)); 773 ssc->ses_objmap = NULL; 774 } 775 if ((cc = ssc->ses_private) != NULL) { 776 if (cc->ses_eltmap && cc->ses_ntypes) { 777 SES_FREE(cc->ses_eltmap, cc->ses_ntypes); 778 cc->ses_eltmap = NULL; 779 cc->ses_ntypes = 0; 780 } 781 if (cc->ses_typidx && ssc->ses_nobjects) { 782 SES_FREE(cc->ses_typidx, 783 ssc->ses_nobjects * sizeof (struct typidx)); 784 cc->ses_typidx = NULL; 785 } 786 SES_FREE(cc, sizeof (struct sscfg)); 787 ssc->ses_private = NULL; 788 } 789 ssc->ses_nobjects = 0; 790 return (0); 791 } 792 if (ssc->ses_private == NULL) { 793 ssc->ses_private = SES_MALLOC(sizeof (struct sscfg)); 794 } 795 if (ssc->ses_private == NULL) { 796 return (ENOMEM); 797 } 798 ssc->ses_nobjects = 0; 799 ssc->ses_encstat = 0; 800 return (ses_getconfig(ssc)); 801 } 802 803 static int 804 ses_init_enc(ses_softc_t *ssc) 805 { 806 return (0); 807 } 808 809 static int 810 ses_get_encstat(ses_softc_t *ssc, int slpflag) 811 { 812 SesComStat ComStat; 813 int status; 814 815 if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 1)) != 0) { 816 return (status); 817 } 818 ssc->ses_encstat = ComStat.comstatus | ENCI_SVALID; 819 return (0); 820 } 821 822 static int 823 ses_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflag) 824 { 825 SesComStat ComStat; 826 int status; 827 828 ComStat.comstatus = encstat & 0xf; 829 if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 0)) != 0) { 830 return (status); 831 } 832 ssc->ses_encstat = encstat & 0xf; /* note no SVALID set */ 833 return (0); 834 } 835 836 static int 837 ses_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag) 838 { 839 int i = (int)obp->obj_id; 840 841 if (ssc->ses_objmap[i].svalid == 0) { 842 SesComStat ComStat; 843 int err = ses_getputstat(ssc, i, &ComStat, slpflag, 1); 844 if (err) 845 return (err); 846 ssc->ses_objmap[i].encstat[0] = ComStat.comstatus; 847 ssc->ses_objmap[i].encstat[1] = ComStat.comstat[0]; 848 ssc->ses_objmap[i].encstat[2] = ComStat.comstat[1]; 849 ssc->ses_objmap[i].encstat[3] = ComStat.comstat[2]; 850 ssc->ses_objmap[i].svalid = 1; 851 } 852 obp->cstat[0] = ssc->ses_objmap[i].encstat[0]; 853 obp->cstat[1] = ssc->ses_objmap[i].encstat[1]; 854 obp->cstat[2] = ssc->ses_objmap[i].encstat[2]; 855 obp->cstat[3] = ssc->ses_objmap[i].encstat[3]; 856 return (0); 857 } 858 859 static int 860 ses_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag) 861 { 862 SesComStat ComStat; 863 int err; 864 /* 865 * If this is clear, we don't do diddly. 866 */ 867 if ((obp->cstat[0] & SESCTL_CSEL) == 0) { 868 return (0); 869 } 870 ComStat.comstatus = obp->cstat[0]; 871 ComStat.comstat[0] = obp->cstat[1]; 872 ComStat.comstat[1] = obp->cstat[2]; 873 ComStat.comstat[2] = obp->cstat[3]; 874 err = ses_getputstat(ssc, (int)obp->obj_id, &ComStat, slpflag, 0); 875 ssc->ses_objmap[(int)obp->obj_id].svalid = 0; 876 return (err); 877 } 878 879 static int 880 ses_getconfig(ses_softc_t *ssc) 881 { 882 struct sscfg *cc; 883 SesCfgHdr cf; 884 SesEncHdr hd; 885 SesEncDesc *cdp; 886 SesThdr thdr; 887 int err, amt, i, nobj, ntype, maxima; 888 char storage[CFLEN], *sdata; 889 static char cdb[6] = { 890 RECEIVE_DIAGNOSTIC, 0x1, SesConfigPage, SCSZ >> 8, SCSZ & 0xff, 0 891 }; 892 893 cc = ssc->ses_private; 894 if (cc == NULL) { 895 return (ENXIO); 896 } 897 898 sdata = SES_MALLOC(SCSZ); 899 if (sdata == NULL) 900 return (ENOMEM); 901 902 amt = SCSZ; 903 err = ses_runcmd(ssc, cdb, 6, sdata, &amt); 904 if (err) { 905 SES_FREE(sdata, SCSZ); 906 return (err); 907 } 908 amt = SCSZ - amt; 909 910 if (ses_cfghdr((uint8_t *) sdata, amt, &cf)) { 911 SES_LOG(ssc, "Unable to parse SES Config Header\n"); 912 SES_FREE(sdata, SCSZ); 913 return (EIO); 914 } 915 if (amt < SES_ENCHDR_MINLEN) { 916 SES_LOG(ssc, "runt enclosure length (%d)\n", amt); 917 SES_FREE(sdata, SCSZ); 918 return (EIO); 919 } 920 921 SES_VLOG(ssc, "GenCode %x %d Subenclosures\n", cf.GenCode, cf.Nsubenc); 922 923 /* 924 * Now waltz through all the subenclosures toting up the 925 * number of types available in each. For this, we only 926 * really need the enclosure header. However, we get the 927 * enclosure descriptor for debug purposes, as well 928 * as self-consistency checking purposes. 929 */ 930 931 maxima = cf.Nsubenc + 1; 932 cdp = (SesEncDesc *) storage; 933 for (ntype = i = 0; i < maxima; i++) { 934 MEMZERO((caddr_t)cdp, sizeof (*cdp)); 935 if (ses_enchdr((uint8_t *) sdata, amt, i, &hd)) { 936 SES_LOG(ssc, "Cannot Extract Enclosure Header %d\n", i); 937 SES_FREE(sdata, SCSZ); 938 return (EIO); 939 } 940 SES_VLOG(ssc, " SubEnclosure ID %d, %d Types With this ID, En" 941 "closure Length %d\n", hd.Subencid, hd.Ntypes, hd.VEnclen); 942 943 if (ses_encdesc((uint8_t *)sdata, amt, i, cdp)) { 944 SES_LOG(ssc, "Can't get Enclosure Descriptor %d\n", i); 945 SES_FREE(sdata, SCSZ); 946 return (EIO); 947 } 948 SES_VLOG(ssc, " WWN: %02x%02x%02x%02x%02x%02x%02x%02x\n", 949 cdp->encWWN[0], cdp->encWWN[1], cdp->encWWN[2], 950 cdp->encWWN[3], cdp->encWWN[4], cdp->encWWN[5], 951 cdp->encWWN[6], cdp->encWWN[7]); 952 ntype += hd.Ntypes; 953 } 954 955 /* 956 * Now waltz through all the types that are available, getting 957 * the type header so we can start adding up the number of 958 * objects available. 959 */ 960 for (nobj = i = 0; i < ntype; i++) { 961 if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) { 962 SES_LOG(ssc, "Can't get Enclosure Type Header %d\n", i); 963 SES_FREE(sdata, SCSZ); 964 return (EIO); 965 } 966 SES_LOG(ssc, " Type Desc[%d]: Type 0x%x, MaxElt %d, In Subenc " 967 "%d, Text Length %d\n", i, thdr.enc_type, thdr.enc_maxelt, 968 thdr.enc_subenc, thdr.enc_tlen); 969 nobj += thdr.enc_maxelt; 970 } 971 972 973 /* 974 * Now allocate the object array and type map. 975 */ 976 977 ssc->ses_objmap = SES_MALLOC(nobj * sizeof (encobj)); 978 cc->ses_typidx = SES_MALLOC(nobj * sizeof (struct typidx)); 979 cc->ses_eltmap = SES_MALLOC(ntype); 980 981 if (ssc->ses_objmap == NULL || cc->ses_typidx == NULL || 982 cc->ses_eltmap == NULL) { 983 if (ssc->ses_objmap) { 984 SES_FREE(ssc->ses_objmap, (nobj * sizeof (encobj))); 985 ssc->ses_objmap = NULL; 986 } 987 if (cc->ses_typidx) { 988 SES_FREE(cc->ses_typidx, 989 (nobj * sizeof (struct typidx))); 990 cc->ses_typidx = NULL; 991 } 992 if (cc->ses_eltmap) { 993 SES_FREE(cc->ses_eltmap, ntype); 994 cc->ses_eltmap = NULL; 995 } 996 SES_FREE(sdata, SCSZ); 997 return (ENOMEM); 998 } 999 MEMZERO(ssc->ses_objmap, nobj * sizeof (encobj)); 1000 MEMZERO(cc->ses_typidx, nobj * sizeof (struct typidx)); 1001 MEMZERO(cc->ses_eltmap, ntype); 1002 cc->ses_ntypes = (uint8_t) ntype; 1003 ssc->ses_nobjects = nobj; 1004 1005 /* 1006 * Now waltz through the # of types again to fill in the types 1007 * (and subenclosure ids) of the allocated objects. 1008 */ 1009 nobj = 0; 1010 for (i = 0; i < ntype; i++) { 1011 int j; 1012 if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) { 1013 continue; 1014 } 1015 cc->ses_eltmap[i] = thdr.enc_maxelt; 1016 for (j = 0; j < thdr.enc_maxelt; j++) { 1017 cc->ses_typidx[nobj].ses_tidx = i; 1018 cc->ses_typidx[nobj].ses_oidx = j; 1019 ssc->ses_objmap[nobj].subenclosure = thdr.enc_subenc; 1020 ssc->ses_objmap[nobj++].enctype = thdr.enc_type; 1021 } 1022 } 1023 SES_FREE(sdata, SCSZ); 1024 return (0); 1025 } 1026 1027 static int 1028 ses_getputstat(ses_softc_t *ssc, int objid, SesComStat *sp, int slp, int in) 1029 { 1030 struct sscfg *cc; 1031 int err, amt, bufsiz, tidx, oidx; 1032 char cdb[6], *sdata; 1033 1034 cc = ssc->ses_private; 1035 if (cc == NULL) { 1036 return (ENXIO); 1037 } 1038 1039 /* 1040 * If we're just getting overall enclosure status, 1041 * we only need 2 bytes of data storage. 1042 * 1043 * If we're getting anything else, we know how much 1044 * storage we need by noting that starting at offset 1045 * 8 in returned data, all object status bytes are 4 1046 * bytes long, and are stored in chunks of types(M) 1047 * and nth+1 instances of type M. 1048 */ 1049 if (objid == -1) { 1050 bufsiz = 2; 1051 } else { 1052 bufsiz = (ssc->ses_nobjects * 4) + (cc->ses_ntypes * 4) + 8; 1053 } 1054 sdata = SES_MALLOC(bufsiz); 1055 if (sdata == NULL) 1056 return (ENOMEM); 1057 1058 cdb[0] = RECEIVE_DIAGNOSTIC; 1059 cdb[1] = 1; 1060 cdb[2] = SesStatusPage; 1061 cdb[3] = bufsiz >> 8; 1062 cdb[4] = bufsiz & 0xff; 1063 cdb[5] = 0; 1064 amt = bufsiz; 1065 err = ses_runcmd(ssc, cdb, 6, sdata, &amt); 1066 if (err) { 1067 SES_FREE(sdata, bufsiz); 1068 return (err); 1069 } 1070 amt = bufsiz - amt; 1071 1072 if (objid == -1) { 1073 tidx = -1; 1074 oidx = -1; 1075 } else { 1076 tidx = cc->ses_typidx[objid].ses_tidx; 1077 oidx = cc->ses_typidx[objid].ses_oidx; 1078 } 1079 if (in) { 1080 if (ses_decode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) { 1081 err = ENODEV; 1082 } 1083 } else { 1084 if (ses_encode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) { 1085 err = ENODEV; 1086 } else { 1087 cdb[0] = SEND_DIAGNOSTIC; 1088 cdb[1] = 0x10; 1089 cdb[2] = 0; 1090 cdb[3] = bufsiz >> 8; 1091 cdb[4] = bufsiz & 0xff; 1092 cdb[5] = 0; 1093 amt = -bufsiz; 1094 err = ses_runcmd(ssc, cdb, 6, sdata, &amt); 1095 } 1096 } 1097 SES_FREE(sdata, bufsiz); 1098 return (0); 1099 } 1100 1101 1102 /* 1103 * Routines to parse returned SES data structures. 1104 * Architecture and compiler independent. 1105 */ 1106 1107 static int 1108 ses_cfghdr(uint8_t *buffer, int buflen, SesCfgHdr *cfp) 1109 { 1110 if (buflen < SES_CFGHDR_MINLEN) { 1111 return (-1); 1112 } 1113 gget8(buffer, 1, cfp->Nsubenc); 1114 gget32(buffer, 4, cfp->GenCode); 1115 return (0); 1116 } 1117 1118 static int 1119 ses_enchdr(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncHdr *chp) 1120 { 1121 int s, off = 8; 1122 for (s = 0; s < SubEncId; s++) { 1123 if (off + 3 > amt) 1124 return (-1); 1125 off += buffer[off+3] + 4; 1126 } 1127 if (off + 3 > amt) { 1128 return (-1); 1129 } 1130 gget8(buffer, off+1, chp->Subencid); 1131 gget8(buffer, off+2, chp->Ntypes); 1132 gget8(buffer, off+3, chp->VEnclen); 1133 return (0); 1134 } 1135 1136 static int 1137 ses_encdesc(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncDesc *cdp) 1138 { 1139 int s, e, enclen, off = 8; 1140 for (s = 0; s < SubEncId; s++) { 1141 if (off + 3 > amt) 1142 return (-1); 1143 off += buffer[off+3] + 4; 1144 } 1145 if (off + 3 > amt) { 1146 return (-1); 1147 } 1148 gget8(buffer, off+3, enclen); 1149 off += 4; 1150 if (off >= amt) 1151 return (-1); 1152 1153 e = off + enclen; 1154 if (e > amt) { 1155 e = amt; 1156 } 1157 MEMCPY(cdp, &buffer[off], e - off); 1158 return (0); 1159 } 1160 1161 static int 1162 ses_getthdr(uint8_t *buffer, int amt, int nth, SesThdr *thp) 1163 { 1164 int s, off = 8; 1165 1166 if (amt < SES_CFGHDR_MINLEN) { 1167 return (-1); 1168 } 1169 for (s = 0; s < buffer[1]; s++) { 1170 if (off + 3 > amt) 1171 return (-1); 1172 off += buffer[off+3] + 4; 1173 } 1174 if (off + 3 > amt) { 1175 return (-1); 1176 } 1177 off += buffer[off+3] + 4 + (nth * 4); 1178 if (amt < (off + 4)) 1179 return (-1); 1180 1181 gget8(buffer, off++, thp->enc_type); 1182 gget8(buffer, off++, thp->enc_maxelt); 1183 gget8(buffer, off++, thp->enc_subenc); 1184 gget8(buffer, off, thp->enc_tlen); 1185 return (0); 1186 } 1187 1188 /* 1189 * This function needs a little explanation. 1190 * 1191 * The arguments are: 1192 * 1193 * 1194 * char *b, int amt 1195 * 1196 * These describes the raw input SES status data and length. 1197 * 1198 * uint8_t *ep 1199 * 1200 * This is a map of the number of types for each element type 1201 * in the enclosure. 1202 * 1203 * int elt 1204 * 1205 * This is the element type being sought. If elt is -1, 1206 * then overall enclosure status is being sought. 1207 * 1208 * int elm 1209 * 1210 * This is the ordinal Mth element of type elt being sought. 1211 * 1212 * SesComStat *sp 1213 * 1214 * This is the output area to store the status for 1215 * the Mth element of type Elt. 1216 */ 1217 1218 static int 1219 ses_decode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp) 1220 { 1221 int idx, i; 1222 1223 /* 1224 * If it's overall enclosure status being sought, get that. 1225 * We need at least 2 bytes of status data to get that. 1226 */ 1227 if (elt == -1) { 1228 if (amt < 2) 1229 return (-1); 1230 gget8(b, 1, sp->comstatus); 1231 sp->comstat[0] = 0; 1232 sp->comstat[1] = 0; 1233 sp->comstat[2] = 0; 1234 return (0); 1235 } 1236 1237 /* 1238 * Check to make sure that the Mth element is legal for type Elt. 1239 */ 1240 1241 if (elm >= ep[elt]) 1242 return (-1); 1243 1244 /* 1245 * Starting at offset 8, start skipping over the storage 1246 * for the element types we're not interested in. 1247 */ 1248 for (idx = 8, i = 0; i < elt; i++) { 1249 idx += ((ep[i] + 1) * 4); 1250 } 1251 1252 /* 1253 * Skip over Overall status for this element type. 1254 */ 1255 idx += 4; 1256 1257 /* 1258 * And skip to the index for the Mth element that we're going for. 1259 */ 1260 idx += (4 * elm); 1261 1262 /* 1263 * Make sure we haven't overflowed the buffer. 1264 */ 1265 if (idx+4 > amt) 1266 return (-1); 1267 1268 /* 1269 * Retrieve the status. 1270 */ 1271 gget8(b, idx++, sp->comstatus); 1272 gget8(b, idx++, sp->comstat[0]); 1273 gget8(b, idx++, sp->comstat[1]); 1274 gget8(b, idx++, sp->comstat[2]); 1275 #if 0 1276 PRINTF("Get Elt 0x%x Elm 0x%x (idx %d)\n", elt, elm, idx-4); 1277 #endif 1278 return (0); 1279 } 1280 1281 /* 1282 * This is the mirror function to ses_decode, but we set the 'select' 1283 * bit for the object which we're interested in. All other objects, 1284 * after a status fetch, should have that bit off. Hmm. It'd be easy 1285 * enough to ensure this, so we will. 1286 */ 1287 1288 static int 1289 ses_encode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp) 1290 { 1291 int idx, i; 1292 1293 /* 1294 * If it's overall enclosure status being sought, get that. 1295 * We need at least 2 bytes of status data to get that. 1296 */ 1297 if (elt == -1) { 1298 if (amt < 2) 1299 return (-1); 1300 i = 0; 1301 sset8(b, i, 0); 1302 sset8(b, i, sp->comstatus & 0xf); 1303 #if 0 1304 PRINTF("set EncStat %x\n", sp->comstatus); 1305 #endif 1306 return (0); 1307 } 1308 1309 /* 1310 * Check to make sure that the Mth element is legal for type Elt. 1311 */ 1312 1313 if (elm >= ep[elt]) 1314 return (-1); 1315 1316 /* 1317 * Starting at offset 8, start skipping over the storage 1318 * for the element types we're not interested in. 1319 */ 1320 for (idx = 8, i = 0; i < elt; i++) { 1321 idx += ((ep[i] + 1) * 4); 1322 } 1323 1324 /* 1325 * Skip over Overall status for this element type. 1326 */ 1327 idx += 4; 1328 1329 /* 1330 * And skip to the index for the Mth element that we're going for. 1331 */ 1332 idx += (4 * elm); 1333 1334 /* 1335 * Make sure we haven't overflowed the buffer. 1336 */ 1337 if (idx+4 > amt) 1338 return (-1); 1339 1340 /* 1341 * Set the status. 1342 */ 1343 sset8(b, idx, sp->comstatus); 1344 sset8(b, idx, sp->comstat[0]); 1345 sset8(b, idx, sp->comstat[1]); 1346 sset8(b, idx, sp->comstat[2]); 1347 idx -= 4; 1348 1349 #if 0 1350 PRINTF("Set Elt 0x%x Elm 0x%x (idx %d) with %x %x %x %x\n", 1351 elt, elm, idx, sp->comstatus, sp->comstat[0], 1352 sp->comstat[1], sp->comstat[2]); 1353 #endif 1354 1355 /* 1356 * Now make sure all other 'Select' bits are off. 1357 */ 1358 for (i = 8; i < amt; i += 4) { 1359 if (i != idx) 1360 b[i] &= ~0x80; 1361 } 1362 /* 1363 * And make sure the INVOP bit is clear. 1364 */ 1365 b[2] &= ~0x10; 1366 1367 return (0); 1368 } 1369 1370 /* 1371 * SAF-TE Type Device Emulation 1372 */ 1373 1374 static int safte_getconfig(ses_softc_t *); 1375 static int safte_rdstat(ses_softc_t *, int); 1376 static int set_objstat_sel(ses_softc_t *, ses_objstat *, int); 1377 static int wrbuf16(ses_softc_t *, uint8_t, uint8_t, uint8_t, uint8_t, int); 1378 static void wrslot_stat(ses_softc_t *, int); 1379 static int perf_slotop(ses_softc_t *, uint8_t, uint8_t, int); 1380 1381 #define ALL_ENC_STAT (SES_ENCSTAT_CRITICAL | SES_ENCSTAT_UNRECOV | \ 1382 SES_ENCSTAT_NONCRITICAL | SES_ENCSTAT_INFO) 1383 /* 1384 * SAF-TE specific defines- Mandatory ones only... 1385 */ 1386 1387 /* 1388 * READ BUFFER ('get' commands) IDs- placed in offset 2 of cdb 1389 */ 1390 #define SAFTE_RD_RDCFG 0x00 /* read enclosure configuration */ 1391 #define SAFTE_RD_RDESTS 0x01 /* read enclosure status */ 1392 #define SAFTE_RD_RDDSTS 0x04 /* read drive slot status */ 1393 1394 /* 1395 * WRITE BUFFER ('set' commands) IDs- placed in offset 0 of databuf 1396 */ 1397 #define SAFTE_WT_DSTAT 0x10 /* write device slot status */ 1398 #define SAFTE_WT_SLTOP 0x12 /* perform slot operation */ 1399 #define SAFTE_WT_FANSPD 0x13 /* set fan speed */ 1400 #define SAFTE_WT_ACTPWS 0x14 /* turn on/off power supply */ 1401 #define SAFTE_WT_GLOBAL 0x15 /* send global command */ 1402 1403 1404 #define SAFT_SCRATCH 64 1405 #define NPSEUDO_THERM 16 1406 #define NPSEUDO_ALARM 1 1407 struct scfg { 1408 /* 1409 * Cached Configuration 1410 */ 1411 uint8_t Nfans; /* Number of Fans */ 1412 uint8_t Npwr; /* Number of Power Supplies */ 1413 uint8_t Nslots; /* Number of Device Slots */ 1414 uint8_t DoorLock; /* Door Lock Installed */ 1415 uint8_t Ntherm; /* Number of Temperature Sensors */ 1416 uint8_t Nspkrs; /* Number of Speakers */ 1417 uint8_t Nalarm; /* Number of Alarms (at least one) */ 1418 /* 1419 * Cached Flag Bytes for Global Status 1420 */ 1421 uint8_t flag1; 1422 uint8_t flag2; 1423 /* 1424 * What object index ID is where various slots start. 1425 */ 1426 uint8_t pwroff; 1427 uint8_t slotoff; 1428 #define SAFT_ALARM_OFFSET(cc) (cc)->slotoff - 1 1429 }; 1430 1431 #define SAFT_FLG1_ALARM 0x1 1432 #define SAFT_FLG1_GLOBFAIL 0x2 1433 #define SAFT_FLG1_GLOBWARN 0x4 1434 #define SAFT_FLG1_ENCPWROFF 0x8 1435 #define SAFT_FLG1_ENCFANFAIL 0x10 1436 #define SAFT_FLG1_ENCPWRFAIL 0x20 1437 #define SAFT_FLG1_ENCDRVFAIL 0x40 1438 #define SAFT_FLG1_ENCDRVWARN 0x80 1439 1440 #define SAFT_FLG2_LOCKDOOR 0x4 1441 #define SAFT_PRIVATE sizeof (struct scfg) 1442 1443 static const char safte_2little[] = "Too Little Data Returned (%d) at line %d\n"; 1444 #define SAFT_BAIL(r, x, k, l) \ 1445 if (r >= x) { \ 1446 SES_LOG(ssc, safte_2little, x, __LINE__);\ 1447 SES_FREE(k, l); \ 1448 return (EIO); \ 1449 } 1450 1451 1452 static int 1453 safte_softc_init(ses_softc_t *ssc, int doinit) 1454 { 1455 int err, i, r; 1456 struct scfg *cc; 1457 1458 if (doinit == 0) { 1459 if (ssc->ses_nobjects) { 1460 if (ssc->ses_objmap) { 1461 SES_FREE(ssc->ses_objmap, 1462 ssc->ses_nobjects * sizeof (encobj)); 1463 ssc->ses_objmap = NULL; 1464 } 1465 ssc->ses_nobjects = 0; 1466 } 1467 if (ssc->ses_private) { 1468 SES_FREE(ssc->ses_private, SAFT_PRIVATE); 1469 ssc->ses_private = NULL; 1470 } 1471 return (0); 1472 } 1473 1474 if (ssc->ses_private == NULL) { 1475 ssc->ses_private = SES_MALLOC(SAFT_PRIVATE); 1476 if (ssc->ses_private == NULL) { 1477 return (ENOMEM); 1478 } 1479 MEMZERO(ssc->ses_private, SAFT_PRIVATE); 1480 } 1481 1482 ssc->ses_nobjects = 0; 1483 ssc->ses_encstat = 0; 1484 1485 if ((err = safte_getconfig(ssc)) != 0) { 1486 return (err); 1487 } 1488 1489 /* 1490 * The number of objects here, as well as that reported by the 1491 * READ_BUFFER/GET_CONFIG call, are the over-temperature flags (15) 1492 * that get reported during READ_BUFFER/READ_ENC_STATUS. 1493 */ 1494 cc = ssc->ses_private; 1495 ssc->ses_nobjects = cc->Nfans + cc->Npwr + cc->Nslots + cc->DoorLock + 1496 cc->Ntherm + cc->Nspkrs + NPSEUDO_THERM + NPSEUDO_ALARM; 1497 ssc->ses_objmap = (encobj *) 1498 SES_MALLOC(ssc->ses_nobjects * sizeof (encobj)); 1499 if (ssc->ses_objmap == NULL) { 1500 return (ENOMEM); 1501 } 1502 MEMZERO(ssc->ses_objmap, ssc->ses_nobjects * sizeof (encobj)); 1503 1504 r = 0; 1505 /* 1506 * Note that this is all arranged for the convenience 1507 * in later fetches of status. 1508 */ 1509 for (i = 0; i < cc->Nfans; i++) 1510 ssc->ses_objmap[r++].enctype = SESTYP_FAN; 1511 cc->pwroff = (uint8_t) r; 1512 for (i = 0; i < cc->Npwr; i++) 1513 ssc->ses_objmap[r++].enctype = SESTYP_POWER; 1514 for (i = 0; i < cc->DoorLock; i++) 1515 ssc->ses_objmap[r++].enctype = SESTYP_DOORLOCK; 1516 for (i = 0; i < cc->Nspkrs; i++) 1517 ssc->ses_objmap[r++].enctype = SESTYP_ALARM; 1518 for (i = 0; i < cc->Ntherm; i++) 1519 ssc->ses_objmap[r++].enctype = SESTYP_THERM; 1520 for (i = 0; i < NPSEUDO_THERM; i++) 1521 ssc->ses_objmap[r++].enctype = SESTYP_THERM; 1522 ssc->ses_objmap[r++].enctype = SESTYP_ALARM; 1523 cc->slotoff = (uint8_t) r; 1524 for (i = 0; i < cc->Nslots; i++) 1525 ssc->ses_objmap[r++].enctype = SESTYP_DEVICE; 1526 return (0); 1527 } 1528 1529 static int 1530 safte_init_enc(ses_softc_t *ssc) 1531 { 1532 int err, amt; 1533 char *sdata; 1534 static char cdb0[6] = { SEND_DIAGNOSTIC }; 1535 static char cdb[10] = 1536 { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 }; 1537 1538 sdata = SES_MALLOC(SAFT_SCRATCH); 1539 if (sdata == NULL) 1540 return (ENOMEM); 1541 1542 err = ses_runcmd(ssc, cdb0, 6, NULL, 0); 1543 if (err) { 1544 SES_FREE(sdata, SAFT_SCRATCH); 1545 return (err); 1546 } 1547 sdata[0] = SAFTE_WT_GLOBAL; 1548 MEMZERO(&sdata[1], 15); 1549 amt = -SAFT_SCRATCH; 1550 err = ses_runcmd(ssc, cdb, 10, sdata, &amt); 1551 SES_FREE(sdata, SAFT_SCRATCH); 1552 return (err); 1553 } 1554 1555 static int 1556 safte_get_encstat(ses_softc_t *ssc, int slpflg) 1557 { 1558 return (safte_rdstat(ssc, slpflg)); 1559 } 1560 1561 static int 1562 safte_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflg) 1563 { 1564 struct scfg *cc = ssc->ses_private; 1565 if (cc == NULL) 1566 return (0); 1567 /* 1568 * Since SAF-TE devices aren't necessarily sticky in terms 1569 * of state, make our soft copy of enclosure status 'sticky'- 1570 * that is, things set in enclosure status stay set (as implied 1571 * by conditions set in reading object status) until cleared. 1572 */ 1573 ssc->ses_encstat &= ~ALL_ENC_STAT; 1574 ssc->ses_encstat |= (encstat & ALL_ENC_STAT); 1575 ssc->ses_encstat |= ENCI_SVALID; 1576 cc->flag1 &= ~(SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL|SAFT_FLG1_GLOBWARN); 1577 if ((encstat & (SES_ENCSTAT_CRITICAL|SES_ENCSTAT_UNRECOV)) != 0) { 1578 cc->flag1 |= SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL; 1579 } else if ((encstat & SES_ENCSTAT_NONCRITICAL) != 0) { 1580 cc->flag1 |= SAFT_FLG1_GLOBWARN; 1581 } 1582 return (wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slpflg)); 1583 } 1584 1585 static int 1586 safte_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflg) 1587 { 1588 int i = (int)obp->obj_id; 1589 1590 if ((ssc->ses_encstat & ENCI_SVALID) == 0 || 1591 (ssc->ses_objmap[i].svalid) == 0) { 1592 int err = safte_rdstat(ssc, slpflg); 1593 if (err) 1594 return (err); 1595 } 1596 obp->cstat[0] = ssc->ses_objmap[i].encstat[0]; 1597 obp->cstat[1] = ssc->ses_objmap[i].encstat[1]; 1598 obp->cstat[2] = ssc->ses_objmap[i].encstat[2]; 1599 obp->cstat[3] = ssc->ses_objmap[i].encstat[3]; 1600 return (0); 1601 } 1602 1603 1604 static int 1605 safte_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slp) 1606 { 1607 int idx, err; 1608 encobj *ep; 1609 struct scfg *cc; 1610 1611 1612 SES_VLOG(ssc, "safte_set_objstat(%d): %x %x %x %x\n", 1613 (int)obp->obj_id, obp->cstat[0], obp->cstat[1], obp->cstat[2], 1614 obp->cstat[3]); 1615 1616 /* 1617 * If this is clear, we don't do diddly. 1618 */ 1619 if ((obp->cstat[0] & SESCTL_CSEL) == 0) { 1620 return (0); 1621 } 1622 1623 err = 0; 1624 /* 1625 * Check to see if the common bits are set and do them first. 1626 */ 1627 if (obp->cstat[0] & ~SESCTL_CSEL) { 1628 err = set_objstat_sel(ssc, obp, slp); 1629 if (err) 1630 return (err); 1631 } 1632 1633 cc = ssc->ses_private; 1634 if (cc == NULL) 1635 return (0); 1636 1637 idx = (int)obp->obj_id; 1638 ep = &ssc->ses_objmap[idx]; 1639 1640 switch (ep->enctype) { 1641 case SESTYP_DEVICE: 1642 { 1643 uint8_t slotop = 0; 1644 /* 1645 * XXX: I should probably cache the previous state 1646 * XXX: of SESCTL_DEVOFF so that when it goes from 1647 * XXX: true to false I can then set PREPARE FOR OPERATION 1648 * XXX: flag in PERFORM SLOT OPERATION write buffer command. 1649 */ 1650 if (obp->cstat[2] & (SESCTL_RQSINS|SESCTL_RQSRMV)) { 1651 slotop |= 0x2; 1652 } 1653 if (obp->cstat[2] & SESCTL_RQSID) { 1654 slotop |= 0x4; 1655 } 1656 err = perf_slotop(ssc, (uint8_t) idx - (uint8_t) cc->slotoff, 1657 slotop, slp); 1658 if (err) 1659 return (err); 1660 if (obp->cstat[3] & SESCTL_RQSFLT) { 1661 ep->priv |= 0x2; 1662 } else { 1663 ep->priv &= ~0x2; 1664 } 1665 if (ep->priv & 0xc6) { 1666 ep->priv &= ~0x1; 1667 } else { 1668 ep->priv |= 0x1; /* no errors */ 1669 } 1670 wrslot_stat(ssc, slp); 1671 break; 1672 } 1673 case SESTYP_POWER: 1674 if (obp->cstat[3] & SESCTL_RQSTFAIL) { 1675 cc->flag1 |= SAFT_FLG1_ENCPWRFAIL; 1676 } else { 1677 cc->flag1 &= ~SAFT_FLG1_ENCPWRFAIL; 1678 } 1679 err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, 1680 cc->flag2, 0, slp); 1681 if (err) 1682 return (err); 1683 if (obp->cstat[3] & SESCTL_RQSTON) { 1684 (void) wrbuf16(ssc, SAFTE_WT_ACTPWS, 1685 idx - cc->pwroff, 0, 0, slp); 1686 } else { 1687 (void) wrbuf16(ssc, SAFTE_WT_ACTPWS, 1688 idx - cc->pwroff, 0, 1, slp); 1689 } 1690 break; 1691 case SESTYP_FAN: 1692 if (obp->cstat[3] & SESCTL_RQSTFAIL) { 1693 cc->flag1 |= SAFT_FLG1_ENCFANFAIL; 1694 } else { 1695 cc->flag1 &= ~SAFT_FLG1_ENCFANFAIL; 1696 } 1697 err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, 1698 cc->flag2, 0, slp); 1699 if (err) 1700 return (err); 1701 if (obp->cstat[3] & SESCTL_RQSTON) { 1702 uint8_t fsp; 1703 if ((obp->cstat[3] & 0x7) == 7) { 1704 fsp = 4; 1705 } else if ((obp->cstat[3] & 0x7) == 6) { 1706 fsp = 3; 1707 } else if ((obp->cstat[3] & 0x7) == 4) { 1708 fsp = 2; 1709 } else { 1710 fsp = 1; 1711 } 1712 (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, fsp, 0, slp); 1713 } else { 1714 (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp); 1715 } 1716 break; 1717 case SESTYP_DOORLOCK: 1718 if (obp->cstat[3] & 0x1) { 1719 cc->flag2 &= ~SAFT_FLG2_LOCKDOOR; 1720 } else { 1721 cc->flag2 |= SAFT_FLG2_LOCKDOOR; 1722 } 1723 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, 1724 cc->flag2, 0, slp); 1725 break; 1726 case SESTYP_ALARM: 1727 /* 1728 * On all nonzero but the 'muted' bit, we turn on the alarm, 1729 */ 1730 obp->cstat[3] &= ~0xa; 1731 if (obp->cstat[3] & 0x40) { 1732 cc->flag2 &= ~SAFT_FLG1_ALARM; 1733 } else if (obp->cstat[3] != 0) { 1734 cc->flag2 |= SAFT_FLG1_ALARM; 1735 } else { 1736 cc->flag2 &= ~SAFT_FLG1_ALARM; 1737 } 1738 ep->priv = obp->cstat[3]; 1739 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, 1740 cc->flag2, 0, slp); 1741 break; 1742 default: 1743 break; 1744 } 1745 ep->svalid = 0; 1746 return (0); 1747 } 1748 1749 static int 1750 safte_getconfig(ses_softc_t *ssc) 1751 { 1752 struct scfg *cfg; 1753 int err, amt; 1754 char *sdata; 1755 static char cdb[10] = 1756 { READ_BUFFER, 1, SAFTE_RD_RDCFG, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 }; 1757 1758 cfg = ssc->ses_private; 1759 if (cfg == NULL) 1760 return (ENXIO); 1761 1762 sdata = SES_MALLOC(SAFT_SCRATCH); 1763 if (sdata == NULL) 1764 return (ENOMEM); 1765 1766 amt = SAFT_SCRATCH; 1767 err = ses_runcmd(ssc, cdb, 10, sdata, &amt); 1768 if (err) { 1769 SES_FREE(sdata, SAFT_SCRATCH); 1770 return (err); 1771 } 1772 amt = SAFT_SCRATCH - amt; 1773 if (amt < 6) { 1774 SES_LOG(ssc, "too little data (%d) for configuration\n", amt); 1775 SES_FREE(sdata, SAFT_SCRATCH); 1776 return (EIO); 1777 } 1778 SES_VLOG(ssc, "Nfans %d Npwr %d Nslots %d Lck %d Ntherm %d Nspkrs %d\n", 1779 sdata[0], sdata[1], sdata[2], sdata[3], sdata[4], sdata[5]); 1780 cfg->Nfans = sdata[0]; 1781 cfg->Npwr = sdata[1]; 1782 cfg->Nslots = sdata[2]; 1783 cfg->DoorLock = sdata[3]; 1784 cfg->Ntherm = sdata[4]; 1785 cfg->Nspkrs = sdata[5]; 1786 cfg->Nalarm = NPSEUDO_ALARM; 1787 SES_FREE(sdata, SAFT_SCRATCH); 1788 return (0); 1789 } 1790 1791 static int 1792 safte_rdstat(ses_softc_t *ssc, int slpflg) 1793 { 1794 int err, oid, r, i, hiwater, nitems, amt; 1795 uint16_t tempflags; 1796 size_t buflen; 1797 uint8_t status, oencstat; 1798 char *sdata, cdb[10]; 1799 struct scfg *cc = ssc->ses_private; 1800 1801 1802 /* 1803 * The number of objects overstates things a bit, 1804 * both for the bogus 'thermometer' entries and 1805 * the drive status (which isn't read at the same 1806 * time as the enclosure status), but that's okay. 1807 */ 1808 buflen = 4 * cc->Nslots; 1809 if (ssc->ses_nobjects > buflen) 1810 buflen = ssc->ses_nobjects; 1811 sdata = SES_MALLOC(buflen); 1812 if (sdata == NULL) 1813 return (ENOMEM); 1814 1815 cdb[0] = READ_BUFFER; 1816 cdb[1] = 1; 1817 cdb[2] = SAFTE_RD_RDESTS; 1818 cdb[3] = 0; 1819 cdb[4] = 0; 1820 cdb[5] = 0; 1821 cdb[6] = 0; 1822 cdb[7] = (buflen >> 8) & 0xff; 1823 cdb[8] = buflen & 0xff; 1824 cdb[9] = 0; 1825 amt = buflen; 1826 err = ses_runcmd(ssc, cdb, 10, sdata, &amt); 1827 if (err) { 1828 SES_FREE(sdata, buflen); 1829 return (err); 1830 } 1831 hiwater = buflen - amt; 1832 1833 1834 /* 1835 * invalidate all status bits. 1836 */ 1837 for (i = 0; i < ssc->ses_nobjects; i++) 1838 ssc->ses_objmap[i].svalid = 0; 1839 oencstat = ssc->ses_encstat & ALL_ENC_STAT; 1840 ssc->ses_encstat = 0; 1841 1842 1843 /* 1844 * Now parse returned buffer. 1845 * If we didn't get enough data back, 1846 * that's considered a fatal error. 1847 */ 1848 oid = r = 0; 1849 1850 for (nitems = i = 0; i < cc->Nfans; i++) { 1851 SAFT_BAIL(r, hiwater, sdata, buflen); 1852 /* 1853 * 0 = Fan Operational 1854 * 1 = Fan is malfunctioning 1855 * 2 = Fan is not present 1856 * 0x80 = Unknown or Not Reportable Status 1857 */ 1858 ssc->ses_objmap[oid].encstat[1] = 0; /* resvd */ 1859 ssc->ses_objmap[oid].encstat[2] = 0; /* resvd */ 1860 switch ((int)(uint8_t)sdata[r]) { 1861 case 0: 1862 nitems++; 1863 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK; 1864 /* 1865 * We could get fancier and cache 1866 * fan speeds that we have set, but 1867 * that isn't done now. 1868 */ 1869 ssc->ses_objmap[oid].encstat[3] = 7; 1870 break; 1871 1872 case 1: 1873 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT; 1874 /* 1875 * FAIL and FAN STOPPED synthesized 1876 */ 1877 ssc->ses_objmap[oid].encstat[3] = 0x40; 1878 /* 1879 * Enclosure marked with CRITICAL error 1880 * if only one fan or no thermometers, 1881 * else the NONCRITICAL error is set. 1882 */ 1883 if (cc->Nfans == 1 || cc->Ntherm == 0) 1884 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL; 1885 else 1886 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL; 1887 break; 1888 case 2: 1889 ssc->ses_objmap[oid].encstat[0] = 1890 SES_OBJSTAT_NOTINSTALLED; 1891 ssc->ses_objmap[oid].encstat[3] = 0; 1892 /* 1893 * Enclosure marked with CRITICAL error 1894 * if only one fan or no thermometers, 1895 * else the NONCRITICAL error is set. 1896 */ 1897 if (cc->Nfans == 1) 1898 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL; 1899 else 1900 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL; 1901 break; 1902 case 0x80: 1903 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN; 1904 ssc->ses_objmap[oid].encstat[3] = 0; 1905 ssc->ses_encstat |= SES_ENCSTAT_INFO; 1906 break; 1907 default: 1908 ssc->ses_objmap[oid].encstat[0] = 1909 SES_OBJSTAT_UNSUPPORTED; 1910 SES_LOG(ssc, "Unknown fan%d status 0x%x\n", i, 1911 sdata[r] & 0xff); 1912 break; 1913 } 1914 ssc->ses_objmap[oid++].svalid = 1; 1915 r++; 1916 } 1917 1918 /* 1919 * No matter how you cut it, no cooling elements when there 1920 * should be some there is critical. 1921 */ 1922 if (cc->Nfans && nitems == 0) { 1923 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL; 1924 } 1925 1926 1927 for (i = 0; i < cc->Npwr; i++) { 1928 SAFT_BAIL(r, hiwater, sdata, buflen); 1929 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN; 1930 ssc->ses_objmap[oid].encstat[1] = 0; /* resvd */ 1931 ssc->ses_objmap[oid].encstat[2] = 0; /* resvd */ 1932 ssc->ses_objmap[oid].encstat[3] = 0x20; /* requested on */ 1933 switch ((uint8_t)sdata[r]) { 1934 case 0x00: /* pws operational and on */ 1935 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK; 1936 break; 1937 case 0x01: /* pws operational and off */ 1938 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK; 1939 ssc->ses_objmap[oid].encstat[3] = 0x10; 1940 ssc->ses_encstat |= SES_ENCSTAT_INFO; 1941 break; 1942 case 0x10: /* pws is malfunctioning and commanded on */ 1943 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT; 1944 ssc->ses_objmap[oid].encstat[3] = 0x61; 1945 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL; 1946 break; 1947 1948 case 0x11: /* pws is malfunctioning and commanded off */ 1949 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT; 1950 ssc->ses_objmap[oid].encstat[3] = 0x51; 1951 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL; 1952 break; 1953 case 0x20: /* pws is not present */ 1954 ssc->ses_objmap[oid].encstat[0] = 1955 SES_OBJSTAT_NOTINSTALLED; 1956 ssc->ses_objmap[oid].encstat[3] = 0; 1957 ssc->ses_encstat |= SES_ENCSTAT_INFO; 1958 break; 1959 case 0x21: /* pws is present */ 1960 /* 1961 * This is for enclosures that cannot tell whether the 1962 * device is on or malfunctioning, but know that it is 1963 * present. Just fall through. 1964 */ 1965 /* FALLTHROUGH */ 1966 case 0x80: /* Unknown or Not Reportable Status */ 1967 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN; 1968 ssc->ses_objmap[oid].encstat[3] = 0; 1969 ssc->ses_encstat |= SES_ENCSTAT_INFO; 1970 break; 1971 default: 1972 SES_LOG(ssc, "unknown power supply %d status (0x%x)\n", 1973 i, sdata[r] & 0xff); 1974 break; 1975 } 1976 ssc->ses_objmap[oid++].svalid = 1; 1977 r++; 1978 } 1979 1980 /* 1981 * Skip over Slot SCSI IDs 1982 */ 1983 r += cc->Nslots; 1984 1985 /* 1986 * We always have doorlock status, no matter what, 1987 * but we only save the status if we have one. 1988 */ 1989 SAFT_BAIL(r, hiwater, sdata, buflen); 1990 if (cc->DoorLock) { 1991 /* 1992 * 0 = Door Locked 1993 * 1 = Door Unlocked, or no Lock Installed 1994 * 0x80 = Unknown or Not Reportable Status 1995 */ 1996 ssc->ses_objmap[oid].encstat[1] = 0; 1997 ssc->ses_objmap[oid].encstat[2] = 0; 1998 switch ((uint8_t)sdata[r]) { 1999 case 0: 2000 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK; 2001 ssc->ses_objmap[oid].encstat[3] = 0; 2002 break; 2003 case 1: 2004 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK; 2005 ssc->ses_objmap[oid].encstat[3] = 1; 2006 break; 2007 case 0x80: 2008 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN; 2009 ssc->ses_objmap[oid].encstat[3] = 0; 2010 ssc->ses_encstat |= SES_ENCSTAT_INFO; 2011 break; 2012 default: 2013 ssc->ses_objmap[oid].encstat[0] = 2014 SES_OBJSTAT_UNSUPPORTED; 2015 SES_LOG(ssc, "unknown lock status 0x%x\n", 2016 sdata[r] & 0xff); 2017 break; 2018 } 2019 ssc->ses_objmap[oid++].svalid = 1; 2020 } 2021 r++; 2022 2023 /* 2024 * We always have speaker status, no matter what, 2025 * but we only save the status if we have one. 2026 */ 2027 SAFT_BAIL(r, hiwater, sdata, buflen); 2028 if (cc->Nspkrs) { 2029 ssc->ses_objmap[oid].encstat[1] = 0; 2030 ssc->ses_objmap[oid].encstat[2] = 0; 2031 if (sdata[r] == 1) { 2032 /* 2033 * We need to cache tone urgency indicators. 2034 * Someday. 2035 */ 2036 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT; 2037 ssc->ses_objmap[oid].encstat[3] = 0x8; 2038 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL; 2039 } else if (sdata[r] == 0) { 2040 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK; 2041 ssc->ses_objmap[oid].encstat[3] = 0; 2042 } else { 2043 ssc->ses_objmap[oid].encstat[0] = 2044 SES_OBJSTAT_UNSUPPORTED; 2045 ssc->ses_objmap[oid].encstat[3] = 0; 2046 SES_LOG(ssc, "unknown spkr status 0x%x\n", 2047 sdata[r] & 0xff); 2048 } 2049 ssc->ses_objmap[oid++].svalid = 1; 2050 } 2051 r++; 2052 2053 for (i = 0; i < cc->Ntherm; i++) { 2054 SAFT_BAIL(r, hiwater, sdata, buflen); 2055 /* 2056 * Status is a range from -10 to 245 deg Celsius, 2057 * which we need to normalize to -20 to -245 according 2058 * to the latest SCSI spec, which makes little 2059 * sense since this would overflow an 8bit value. 2060 * Well, still, the base normalization is -20, 2061 * not -10, so we have to adjust. 2062 * 2063 * So what's over and under temperature? 2064 * Hmm- we'll state that 'normal' operating 2065 * is 10 to 40 deg Celsius. 2066 */ 2067 2068 /* 2069 * Actually.... All of the units that people out in the world 2070 * seem to have do not come even close to setting a value that 2071 * complies with this spec. 2072 * 2073 * The closest explanation I could find was in an 2074 * LSI-Logic manual, which seemed to indicate that 2075 * this value would be set by whatever the I2C code 2076 * would interpolate from the output of an LM75 2077 * temperature sensor. 2078 * 2079 * This means that it is impossible to use the actual 2080 * numeric value to predict anything. But we don't want 2081 * to lose the value. So, we'll propagate the *uncorrected* 2082 * value and set SES_OBJSTAT_NOTAVAIL. We'll depend on the 2083 * temperature flags for warnings. 2084 */ 2085 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NOTAVAIL; 2086 ssc->ses_objmap[oid].encstat[1] = 0; 2087 ssc->ses_objmap[oid].encstat[2] = sdata[r]; 2088 ssc->ses_objmap[oid].encstat[3] = 0; 2089 ssc->ses_objmap[oid++].svalid = 1; 2090 r++; 2091 } 2092 2093 /* 2094 * Now, for "pseudo" thermometers, we have two bytes 2095 * of information in enclosure status- 16 bits. Actually, 2096 * the MSB is a single TEMP ALERT flag indicating whether 2097 * any other bits are set, but, thanks to fuzzy thinking, 2098 * in the SAF-TE spec, this can also be set even if no 2099 * other bits are set, thus making this really another 2100 * binary temperature sensor. 2101 */ 2102 2103 SAFT_BAIL(r, hiwater, sdata, buflen); 2104 tempflags = sdata[r++]; 2105 SAFT_BAIL(r, hiwater, sdata, buflen); 2106 tempflags |= (tempflags << 8) | sdata[r++]; 2107 2108 for (i = 0; i < NPSEUDO_THERM; i++) { 2109 ssc->ses_objmap[oid].encstat[1] = 0; 2110 if (tempflags & (1 << (NPSEUDO_THERM - i - 1))) { 2111 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT; 2112 ssc->ses_objmap[4].encstat[2] = 0xff; 2113 /* 2114 * Set 'over temperature' failure. 2115 */ 2116 ssc->ses_objmap[oid].encstat[3] = 8; 2117 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL; 2118 } else { 2119 /* 2120 * We used to say 'not available' and synthesize a 2121 * nominal 30 deg (C)- that was wrong. Actually, 2122 * Just say 'OK', and use the reserved value of 2123 * zero. 2124 */ 2125 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK; 2126 ssc->ses_objmap[oid].encstat[2] = 0; 2127 ssc->ses_objmap[oid].encstat[3] = 0; 2128 } 2129 ssc->ses_objmap[oid++].svalid = 1; 2130 } 2131 2132 /* 2133 * Get alarm status. 2134 */ 2135 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK; 2136 ssc->ses_objmap[oid].encstat[3] = ssc->ses_objmap[oid].priv; 2137 ssc->ses_objmap[oid++].svalid = 1; 2138 2139 /* 2140 * Now get drive slot status 2141 */ 2142 cdb[2] = SAFTE_RD_RDDSTS; 2143 amt = buflen; 2144 err = ses_runcmd(ssc, cdb, 10, sdata, &amt); 2145 if (err) { 2146 SES_FREE(sdata, buflen); 2147 return (err); 2148 } 2149 hiwater = buflen - amt; 2150 for (r = i = 0; i < cc->Nslots; i++, r += 4) { 2151 SAFT_BAIL(r+3, hiwater, sdata, buflen); 2152 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNSUPPORTED; 2153 ssc->ses_objmap[oid].encstat[1] = (uint8_t) i; 2154 ssc->ses_objmap[oid].encstat[2] = 0; 2155 ssc->ses_objmap[oid].encstat[3] = 0; 2156 status = sdata[r+3]; 2157 if ((status & 0x1) == 0) { /* no device */ 2158 ssc->ses_objmap[oid].encstat[0] = 2159 SES_OBJSTAT_NOTINSTALLED; 2160 } else { 2161 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK; 2162 } 2163 if (status & 0x2) { 2164 ssc->ses_objmap[oid].encstat[2] = 0x8; 2165 } 2166 if ((status & 0x4) == 0) { 2167 ssc->ses_objmap[oid].encstat[3] = 0x10; 2168 } 2169 ssc->ses_objmap[oid++].svalid = 1; 2170 } 2171 /* see comment below about sticky enclosure status */ 2172 ssc->ses_encstat |= ENCI_SVALID | oencstat; 2173 SES_FREE(sdata, buflen); 2174 return (0); 2175 } 2176 2177 static int 2178 set_objstat_sel(ses_softc_t *ssc, ses_objstat *obp, int slp) 2179 { 2180 int idx; 2181 encobj *ep; 2182 struct scfg *cc = ssc->ses_private; 2183 2184 if (cc == NULL) 2185 return (0); 2186 2187 idx = (int)obp->obj_id; 2188 ep = &ssc->ses_objmap[idx]; 2189 2190 switch (ep->enctype) { 2191 case SESTYP_DEVICE: 2192 if (obp->cstat[0] & SESCTL_PRDFAIL) { 2193 ep->priv |= 0x40; 2194 } 2195 /* SESCTL_RSTSWAP has no correspondence in SAF-TE */ 2196 if (obp->cstat[0] & SESCTL_DISABLE) { 2197 ep->priv |= 0x80; 2198 /* 2199 * Hmm. Try to set the 'No Drive' flag. 2200 * Maybe that will count as a 'disable'. 2201 */ 2202 } 2203 if (ep->priv & 0xc6) { 2204 ep->priv &= ~0x1; 2205 } else { 2206 ep->priv |= 0x1; /* no errors */ 2207 } 2208 wrslot_stat(ssc, slp); 2209 break; 2210 case SESTYP_POWER: 2211 /* 2212 * Okay- the only one that makes sense here is to 2213 * do the 'disable' for a power supply. 2214 */ 2215 if (obp->cstat[0] & SESCTL_DISABLE) { 2216 (void) wrbuf16(ssc, SAFTE_WT_ACTPWS, 2217 idx - cc->pwroff, 0, 0, slp); 2218 } 2219 break; 2220 case SESTYP_FAN: 2221 /* 2222 * Okay- the only one that makes sense here is to 2223 * set fan speed to zero on disable. 2224 */ 2225 if (obp->cstat[0] & SESCTL_DISABLE) { 2226 /* remember- fans are the first items, so idx works */ 2227 (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp); 2228 } 2229 break; 2230 case SESTYP_DOORLOCK: 2231 /* 2232 * Well, we can 'disable' the lock. 2233 */ 2234 if (obp->cstat[0] & SESCTL_DISABLE) { 2235 cc->flag2 &= ~SAFT_FLG2_LOCKDOOR; 2236 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, 2237 cc->flag2, 0, slp); 2238 } 2239 break; 2240 case SESTYP_ALARM: 2241 /* 2242 * Well, we can 'disable' the alarm. 2243 */ 2244 if (obp->cstat[0] & SESCTL_DISABLE) { 2245 cc->flag2 &= ~SAFT_FLG1_ALARM; 2246 ep->priv |= 0x40; /* Muted */ 2247 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, 2248 cc->flag2, 0, slp); 2249 } 2250 break; 2251 default: 2252 break; 2253 } 2254 ep->svalid = 0; 2255 return (0); 2256 } 2257 2258 /* 2259 * This function handles all of the 16 byte WRITE BUFFER commands. 2260 */ 2261 static int 2262 wrbuf16(ses_softc_t *ssc, uint8_t op, uint8_t b1, uint8_t b2, 2263 uint8_t b3, int slp) 2264 { 2265 int err, amt; 2266 char *sdata; 2267 struct scfg *cc = ssc->ses_private; 2268 static char cdb[10] = { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 }; 2269 2270 if (cc == NULL) 2271 return (0); 2272 2273 sdata = SES_MALLOC(16); 2274 if (sdata == NULL) 2275 return (ENOMEM); 2276 2277 SES_VLOG(ssc, "saf_wrbuf16 %x %x %x %x\n", op, b1, b2, b3); 2278 2279 sdata[0] = op; 2280 sdata[1] = b1; 2281 sdata[2] = b2; 2282 sdata[3] = b3; 2283 MEMZERO(&sdata[4], 12); 2284 amt = -16; 2285 err = ses_runcmd(ssc, cdb, 10, sdata, &amt); 2286 SES_FREE(sdata, 16); 2287 return (err); 2288 } 2289 2290 /* 2291 * This function updates the status byte for the device slot described. 2292 * 2293 * Since this is an optional SAF-TE command, there's no point in 2294 * returning an error. 2295 */ 2296 static void 2297 wrslot_stat(ses_softc_t *ssc, int slp) 2298 { 2299 int i, amt; 2300 encobj *ep; 2301 char cdb[10], *sdata; 2302 struct scfg *cc = ssc->ses_private; 2303 2304 if (cc == NULL) 2305 return; 2306 2307 SES_VLOG(ssc, "saf_wrslot\n"); 2308 cdb[0] = WRITE_BUFFER; 2309 cdb[1] = 1; 2310 cdb[2] = 0; 2311 cdb[3] = 0; 2312 cdb[4] = 0; 2313 cdb[5] = 0; 2314 cdb[6] = 0; 2315 cdb[7] = 0; 2316 cdb[8] = cc->Nslots * 3 + 1; 2317 cdb[9] = 0; 2318 2319 sdata = SES_MALLOC(cc->Nslots * 3 + 1); 2320 if (sdata == NULL) 2321 return; 2322 MEMZERO(sdata, cc->Nslots * 3 + 1); 2323 2324 sdata[0] = SAFTE_WT_DSTAT; 2325 for (i = 0; i < cc->Nslots; i++) { 2326 ep = &ssc->ses_objmap[cc->slotoff + i]; 2327 SES_VLOG(ssc, "saf_wrslot %d <- %x\n", i, ep->priv & 0xff); 2328 sdata[1 + (3 * i)] = ep->priv & 0xff; 2329 } 2330 amt = -(cc->Nslots * 3 + 1); 2331 (void) ses_runcmd(ssc, cdb, 10, sdata, &amt); 2332 SES_FREE(sdata, cc->Nslots * 3 + 1); 2333 } 2334 2335 /* 2336 * This function issues the "PERFORM SLOT OPERATION" command. 2337 */ 2338 static int 2339 perf_slotop(ses_softc_t *ssc, uint8_t slot, uint8_t opflag, int slp) 2340 { 2341 int err, amt; 2342 char *sdata; 2343 struct scfg *cc = ssc->ses_private; 2344 static char cdb[10] = 2345 { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 }; 2346 2347 if (cc == NULL) 2348 return (0); 2349 2350 sdata = SES_MALLOC(SAFT_SCRATCH); 2351 if (sdata == NULL) 2352 return (ENOMEM); 2353 MEMZERO(sdata, SAFT_SCRATCH); 2354 2355 sdata[0] = SAFTE_WT_SLTOP; 2356 sdata[1] = slot; 2357 sdata[2] = opflag; 2358 SES_VLOG(ssc, "saf_slotop slot %d op %x\n", slot, opflag); 2359 amt = -SAFT_SCRATCH; 2360 err = ses_runcmd(ssc, cdb, 10, sdata, &amt); 2361 SES_FREE(sdata, SAFT_SCRATCH); 2362 return (err); 2363 } 2364