xref: /netbsd-src/sys/dev/scsipi/ses.c (revision ce099b40997c43048fb78bd578195f81d2456523)
1 /*	$NetBSD: ses.c,v 1.39 2008/04/05 15:47:01 cegger Exp $ */
2 /*
3  * Copyright (C) 2000 National Aeronautics & Space Administration
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. The name of the author may not be used to endorse or promote products
12  *    derived from this software without specific prior written permission
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24  *
25  * Author:	mjacob@nas.nasa.gov
26  */
27 
28 #include <sys/cdefs.h>
29 __KERNEL_RCSID(0, "$NetBSD: ses.c,v 1.39 2008/04/05 15:47:01 cegger Exp $");
30 
31 #include "opt_scsi.h"
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/kernel.h>
36 #include <sys/file.h>
37 #include <sys/stat.h>
38 #include <sys/ioctl.h>
39 #include <sys/scsiio.h>
40 #include <sys/buf.h>
41 #include <sys/uio.h>
42 #include <sys/malloc.h>
43 #include <sys/errno.h>
44 #include <sys/device.h>
45 #include <sys/disklabel.h>
46 #include <sys/disk.h>
47 #include <sys/proc.h>
48 #include <sys/conf.h>
49 #include <sys/vnode.h>
50 #include <machine/stdarg.h>
51 
52 #include <dev/scsipi/scsipi_all.h>
53 #include <dev/scsipi/scsipi_disk.h>
54 #include <dev/scsipi/scsi_all.h>
55 #include <dev/scsipi/scsi_disk.h>
56 #include <dev/scsipi/scsipiconf.h>
57 #include <dev/scsipi/scsipi_base.h>
58 #include <dev/scsipi/ses.h>
59 
60 /*
61  * Platform Independent Driver Internal Definitions for SES devices.
62  */
63 typedef enum {
64 	SES_NONE,
65 	SES_SES_SCSI2,
66 	SES_SES,
67 	SES_SES_PASSTHROUGH,
68 	SES_SEN,
69 	SES_SAFT
70 } enctyp;
71 
72 struct ses_softc;
73 typedef struct ses_softc ses_softc_t;
74 typedef struct {
75 	int (*softc_init)(ses_softc_t *, int);
76 	int (*init_enc)(ses_softc_t *);
77 	int (*get_encstat)(ses_softc_t *, int);
78 	int (*set_encstat)(ses_softc_t *, ses_encstat, int);
79 	int (*get_objstat)(ses_softc_t *, ses_objstat *, int);
80 	int (*set_objstat)(ses_softc_t *, ses_objstat *, int);
81 } encvec;
82 
83 #define	ENCI_SVALID	0x80
84 
85 typedef struct {
86 	uint32_t
87 		enctype	: 8,		/* enclosure type */
88 		subenclosure : 8,	/* subenclosure id */
89 		svalid	: 1,		/* enclosure information valid */
90 		priv	: 15;		/* private data, per object */
91 	uint8_t	encstat[4];	/* state && stats */
92 } encobj;
93 
94 #define	SEN_ID		"UNISYS           SUN_SEN"
95 #define	SEN_ID_LEN	24
96 
97 static enctyp ses_type(struct scsipi_inquiry_data *);
98 
99 
100 /* Forward reference to Enclosure Functions */
101 static int ses_softc_init(ses_softc_t *, int);
102 static int ses_init_enc(ses_softc_t *);
103 static int ses_get_encstat(ses_softc_t *, int);
104 static int ses_set_encstat(ses_softc_t *, uint8_t, int);
105 static int ses_get_objstat(ses_softc_t *, ses_objstat *, int);
106 static int ses_set_objstat(ses_softc_t *, ses_objstat *, int);
107 
108 static int safte_softc_init(ses_softc_t *, int);
109 static int safte_init_enc(ses_softc_t *);
110 static int safte_get_encstat(ses_softc_t *, int);
111 static int safte_set_encstat(ses_softc_t *, uint8_t, int);
112 static int safte_get_objstat(ses_softc_t *, ses_objstat *, int);
113 static int safte_set_objstat(ses_softc_t *, ses_objstat *, int);
114 
115 /*
116  * Platform implementation defines/functions for SES internal kernel stuff
117  */
118 
119 #define	STRNCMP			strncmp
120 #define	PRINTF			printf
121 #define	SES_LOG			ses_log
122 #if	defined(DEBUG) || defined(SCSIDEBUG)
123 #define	SES_VLOG		ses_log
124 #else
125 #define	SES_VLOG		if (0) ses_log
126 #endif
127 #define	SES_MALLOC(amt)		malloc(amt, M_DEVBUF, M_NOWAIT)
128 #define	SES_FREE(ptr, amt)	free(ptr, M_DEVBUF)
129 #define	MEMZERO(dest, amt)	memset(dest, 0, amt)
130 #define	MEMCPY(dest, src, amt)	memcpy(dest, src, amt)
131 #define	RECEIVE_DIAGNOSTIC	0x1c
132 #define	SEND_DIAGNOSTIC		0x1d
133 #define	WRITE_BUFFER		0x3b
134 #define	READ_BUFFER		0x3c
135 
136 static dev_type_open(sesopen);
137 static dev_type_close(sesclose);
138 static dev_type_ioctl(sesioctl);
139 
140 const struct cdevsw ses_cdevsw = {
141 	sesopen, sesclose, noread, nowrite, sesioctl,
142 	nostop, notty, nopoll, nommap, nokqfilter, D_OTHER,
143 };
144 
145 static int ses_runcmd(struct ses_softc *, char *, int, char *, int *);
146 static void ses_log(struct ses_softc *, const char *, ...)
147      __attribute__((__format__(__printf__, 2, 3)));
148 
149 /*
150  * General NetBSD kernel stuff.
151  */
152 
153 struct ses_softc {
154 	struct device	sc_device;
155 	struct scsipi_periph *sc_periph;
156 	enctyp		ses_type;	/* type of enclosure */
157 	encvec		ses_vec;	/* vector to handlers */
158 	void *		ses_private;	/* per-type private data */
159 	encobj *	ses_objmap;	/* objects */
160 	u_int32_t	ses_nobjects;	/* number of objects */
161 	ses_encstat	ses_encstat;	/* overall status */
162 	u_int8_t	ses_flags;
163 };
164 #define	SES_FLAG_INVALID	0x01
165 #define	SES_FLAG_OPEN		0x02
166 #define	SES_FLAG_INITIALIZED	0x04
167 
168 #define SESUNIT(x)       (minor((x)))
169 
170 static int ses_match(struct device *, struct cfdata *, void *);
171 static void ses_attach(struct device *, struct device *, void *);
172 static enctyp ses_device_type(struct scsipibus_attach_args *);
173 
174 CFATTACH_DECL(ses, sizeof (struct ses_softc),
175     ses_match, ses_attach, NULL, NULL);
176 
177 extern struct cfdriver ses_cd;
178 
179 static const struct scsipi_periphsw ses_switch = {
180 	NULL,
181 	NULL,
182 	NULL,
183 	NULL
184 };
185 
186 static int
187 ses_match(struct device *parent, struct cfdata *match,
188     void *aux)
189 {
190 	struct scsipibus_attach_args *sa = aux;
191 
192 	switch (ses_device_type(sa)) {
193 	case SES_SES:
194 	case SES_SES_SCSI2:
195 	case SES_SEN:
196 	case SES_SAFT:
197 	case SES_SES_PASSTHROUGH:
198 		/*
199 		 * For these devices, it's a perfect match.
200 		 */
201 		return (24);
202 	default:
203 		return (0);
204 	}
205 }
206 
207 
208 /*
209  * Complete the attachment.
210  *
211  * We have to repeat the rerun of INQUIRY data as above because
212  * it's not until the return from the match routine that we have
213  * the softc available to set stuff in.
214  */
215 static void
216 ses_attach(struct device *parent, struct device *self, void *aux)
217 {
218 	const char *tname;
219 	struct ses_softc *softc = device_private(self);
220 	struct scsipibus_attach_args *sa = aux;
221 	struct scsipi_periph *periph = sa->sa_periph;
222 
223 	SC_DEBUG(periph, SCSIPI_DB2, ("ssattach: "));
224 	softc->sc_periph = periph;
225 	periph->periph_dev = &softc->sc_device;
226 	periph->periph_switch = &ses_switch;
227 	periph->periph_openings = 1;
228 
229 	softc->ses_type = ses_device_type(sa);
230 	switch (softc->ses_type) {
231 	case SES_SES:
232 	case SES_SES_SCSI2:
233         case SES_SES_PASSTHROUGH:
234 		softc->ses_vec.softc_init = ses_softc_init;
235 		softc->ses_vec.init_enc = ses_init_enc;
236 		softc->ses_vec.get_encstat = ses_get_encstat;
237 		softc->ses_vec.set_encstat = ses_set_encstat;
238 		softc->ses_vec.get_objstat = ses_get_objstat;
239 		softc->ses_vec.set_objstat = ses_set_objstat;
240 		break;
241         case SES_SAFT:
242 		softc->ses_vec.softc_init = safte_softc_init;
243 		softc->ses_vec.init_enc = safte_init_enc;
244 		softc->ses_vec.get_encstat = safte_get_encstat;
245 		softc->ses_vec.set_encstat = safte_set_encstat;
246 		softc->ses_vec.get_objstat = safte_get_objstat;
247 		softc->ses_vec.set_objstat = safte_set_objstat;
248 		break;
249         case SES_SEN:
250 		break;
251 	case SES_NONE:
252 	default:
253 		break;
254 	}
255 
256 	switch (softc->ses_type) {
257 	default:
258 	case SES_NONE:
259 		tname = "No SES device";
260 		break;
261 	case SES_SES_SCSI2:
262 		tname = "SCSI-2 SES Device";
263 		break;
264 	case SES_SES:
265 		tname = "SCSI-3 SES Device";
266 		break;
267         case SES_SES_PASSTHROUGH:
268 		tname = "SES Passthrough Device";
269 		break;
270         case SES_SEN:
271 		tname = "UNISYS SEN Device (NOT HANDLED YET)";
272 		break;
273         case SES_SAFT:
274 		tname = "SAF-TE Compliant Device";
275 		break;
276 	}
277 	printf("\n%s: %s\n", device_xname(&softc->sc_device), tname);
278 }
279 
280 
281 static enctyp
282 ses_device_type(struct scsipibus_attach_args *sa)
283 {
284 	struct scsipi_inquiry_data *inqp = sa->sa_inqptr;
285 
286 	if (inqp == NULL)
287 		return (SES_NONE);
288 
289 	return (ses_type(inqp));
290 }
291 
292 static int
293 sesopen(dev_t dev, int flags, int fmt, struct lwp *l)
294 {
295 	struct ses_softc *softc;
296 	int error, unit;
297 
298 	unit = SESUNIT(dev);
299 	if (unit >= ses_cd.cd_ndevs)
300 		return (ENXIO);
301 	softc = ses_cd.cd_devs[unit];
302 	if (softc == NULL)
303 		return (ENXIO);
304 
305 	if (softc->ses_flags & SES_FLAG_INVALID) {
306 		error = ENXIO;
307 		goto out;
308 	}
309 	if (softc->ses_flags & SES_FLAG_OPEN) {
310 		error = EBUSY;
311 		goto out;
312 	}
313 	if (softc->ses_vec.softc_init == NULL) {
314 		error = ENXIO;
315 		goto out;
316 	}
317 	error = scsipi_adapter_addref(
318 	    softc->sc_periph->periph_channel->chan_adapter);
319 	if (error != 0)
320                 goto out;
321 
322 
323 	softc->ses_flags |= SES_FLAG_OPEN;
324 	if ((softc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
325 		error = (*softc->ses_vec.softc_init)(softc, 1);
326 		if (error)
327 			softc->ses_flags &= ~SES_FLAG_OPEN;
328 		else
329 			softc->ses_flags |= SES_FLAG_INITIALIZED;
330 	}
331 
332 out:
333 	return (error);
334 }
335 
336 static int
337 sesclose(dev_t dev, int flags, int fmt,
338     struct lwp *l)
339 {
340 	struct ses_softc *softc;
341 	int unit;
342 
343 	unit = SESUNIT(dev);
344 	if (unit >= ses_cd.cd_ndevs)
345 		return (ENXIO);
346 	softc = ses_cd.cd_devs[unit];
347 	if (softc == NULL)
348 		return (ENXIO);
349 
350 	scsipi_wait_drain(softc->sc_periph);
351 	scsipi_adapter_delref(softc->sc_periph->periph_channel->chan_adapter);
352 	softc->ses_flags &= ~SES_FLAG_OPEN;
353 	return (0);
354 }
355 
356 static int
357 sesioctl(dev_t dev, u_long cmd, void *arg_addr, int flag, struct lwp *l)
358 {
359 	ses_encstat tmp;
360 	ses_objstat objs;
361 	ses_object obj, *uobj;
362 	struct ses_softc *ssc = ses_cd.cd_devs[SESUNIT(dev)];
363 	void *addr;
364 	int error, i;
365 
366 
367 	if (arg_addr)
368 		addr = *((void **) arg_addr);
369 	else
370 		addr = NULL;
371 
372 	SC_DEBUG(ssc->sc_periph, SCSIPI_DB2, ("sesioctl 0x%lx ", cmd));
373 
374 	/*
375 	 * Now check to see whether we're initialized or not.
376 	 */
377 	if ((ssc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
378 		return (ENODEV);
379 	}
380 
381 	error = 0;
382 
383 	/*
384 	 * If this command can change the device's state,
385 	 * we must have the device open for writing.
386 	 */
387 	switch (cmd) {
388 	case SESIOC_GETNOBJ:
389 	case SESIOC_GETOBJMAP:
390 	case SESIOC_GETENCSTAT:
391 	case SESIOC_GETOBJSTAT:
392 		break;
393 	default:
394 		if ((flag & FWRITE) == 0) {
395 			return (EBADF);
396 		}
397 	}
398 
399 	switch (cmd) {
400 	case SESIOC_GETNOBJ:
401 		if (addr == NULL)
402 			return EINVAL;
403 		error = copyout(&ssc->ses_nobjects, addr,
404 		    sizeof (ssc->ses_nobjects));
405 		break;
406 
407 	case SESIOC_GETOBJMAP:
408 		if (addr == NULL)
409 			return EINVAL;
410 		for (uobj = addr, i = 0; i != ssc->ses_nobjects; i++, uobj++) {
411 			obj.obj_id = i;
412 			obj.subencid = ssc->ses_objmap[i].subenclosure;
413 			obj.object_type = ssc->ses_objmap[i].enctype;
414 			error = copyout(&obj, uobj, sizeof (ses_object));
415 			if (error) {
416 				break;
417 			}
418 		}
419 		break;
420 
421 	case SESIOC_GETENCSTAT:
422 		if (addr == NULL)
423 			return EINVAL;
424 		error = (*ssc->ses_vec.get_encstat)(ssc, 1);
425 		if (error)
426 			break;
427 		tmp = ssc->ses_encstat & ~ENCI_SVALID;
428 		error = copyout(&tmp, addr, sizeof (ses_encstat));
429 		ssc->ses_encstat = tmp;
430 		break;
431 
432 	case SESIOC_SETENCSTAT:
433 		if (addr == NULL)
434 			return EINVAL;
435 		error = copyin(addr, &tmp, sizeof (ses_encstat));
436 		if (error)
437 			break;
438 		error = (*ssc->ses_vec.set_encstat)(ssc, tmp, 1);
439 		break;
440 
441 	case SESIOC_GETOBJSTAT:
442 		if (addr == NULL)
443 			return EINVAL;
444 		error = copyin(addr, &objs, sizeof (ses_objstat));
445 		if (error)
446 			break;
447 		if (objs.obj_id >= ssc->ses_nobjects) {
448 			error = EINVAL;
449 			break;
450 		}
451 		error = (*ssc->ses_vec.get_objstat)(ssc, &objs, 1);
452 		if (error)
453 			break;
454 		error = copyout(&objs, addr, sizeof (ses_objstat));
455 		/*
456 		 * Always (for now) invalidate entry.
457 		 */
458 		ssc->ses_objmap[objs.obj_id].svalid = 0;
459 		break;
460 
461 	case SESIOC_SETOBJSTAT:
462 		if (addr == NULL)
463 			return EINVAL;
464 		error = copyin(addr, &objs, sizeof (ses_objstat));
465 		if (error)
466 			break;
467 
468 		if (objs.obj_id >= ssc->ses_nobjects) {
469 			error = EINVAL;
470 			break;
471 		}
472 		error = (*ssc->ses_vec.set_objstat)(ssc, &objs, 1);
473 
474 		/*
475 		 * Always (for now) invalidate entry.
476 		 */
477 		ssc->ses_objmap[objs.obj_id].svalid = 0;
478 		break;
479 
480 	case SESIOC_INIT:
481 
482 		error = (*ssc->ses_vec.init_enc)(ssc);
483 		break;
484 
485 	default:
486 		error = scsipi_do_ioctl(ssc->sc_periph,
487 			    dev, cmd, arg_addr, flag, l);
488 		break;
489 	}
490 	return (error);
491 }
492 
493 static int
494 ses_runcmd(struct ses_softc *ssc, char *cdb, int cdbl, char *dptr, int *dlenp)
495 {
496 	struct scsipi_generic sgen;
497 	int dl, flg, error;
498 
499 	if (dptr) {
500 		if ((dl = *dlenp) < 0) {
501 			dl = -dl;
502 			flg = XS_CTL_DATA_OUT;
503 		} else {
504 			flg = XS_CTL_DATA_IN;
505 		}
506 	} else {
507 		dl = 0;
508 		flg = 0;
509 	}
510 
511 	if (cdbl > sizeof (struct scsipi_generic)) {
512 		cdbl = sizeof (struct scsipi_generic);
513 	}
514 	memcpy(&sgen, cdb, cdbl);
515 #ifndef	SCSIDEBUG
516 	flg |= XS_CTL_SILENT;
517 #endif
518 	error = scsipi_command(ssc->sc_periph, &sgen, cdbl,
519 	    (u_char *) dptr, dl, SCSIPIRETRIES, 30000, NULL, flg);
520 
521 	if (error == 0 && dptr)
522 		*dlenp = 0;
523 
524 	return (error);
525 }
526 
527 static void
528 ses_log(struct ses_softc *ssc, const char *fmt, ...)
529 {
530 	va_list ap;
531 
532 	printf("%s: ", device_xname(&ssc->sc_device));
533 	va_start(ap, fmt);
534 	vprintf(fmt, ap);
535 	va_end(ap);
536 }
537 
538 /*
539  * The code after this point runs on many platforms,
540  * so forgive the slightly awkward and nonconforming
541  * appearance.
542  */
543 
544 /*
545  * Is this a device that supports enclosure services?
546  *
547  * It's a a pretty simple ruleset- if it is device type 0x0D (13), it's
548  * an SES device. If it happens to be an old UNISYS SEN device, we can
549  * handle that too.
550  */
551 
552 #define	SAFTE_START	44
553 #define	SAFTE_END	50
554 #define	SAFTE_LEN	SAFTE_END-SAFTE_START
555 
556 static enctyp
557 ses_type(struct scsipi_inquiry_data *inqp)
558 {
559 	size_t	given_len = inqp->additional_length + 4;
560 
561 	if (given_len < 8+SEN_ID_LEN)
562 		return (SES_NONE);
563 
564 	if ((inqp->device & SID_TYPE) == T_ENCLOSURE) {
565 		if (STRNCMP(inqp->vendor, SEN_ID, SEN_ID_LEN) == 0) {
566 			return (SES_SEN);
567 		} else if ((inqp->version & SID_ANSII) > 2) {
568 			return (SES_SES);
569 		} else {
570 			return (SES_SES_SCSI2);
571 		}
572 		return (SES_NONE);
573 	}
574 
575 #ifdef	SES_ENABLE_PASSTHROUGH
576 	if ((inqp->flags2 & SID_EncServ) && (inqp->version & SID_ANSII) >= 2) {
577 		/*
578 		 * PassThrough Device.
579 		 */
580 		return (SES_SES_PASSTHROUGH);
581 	}
582 #endif
583 
584 	/*
585 	 * The comparison is short for a reason-
586 	 * some vendors were chopping it short.
587 	 */
588 
589 	if (given_len < SAFTE_END - 2) {
590 		return (SES_NONE);
591 	}
592 
593 	if (STRNCMP((char *)&inqp->vendor_specific[8], "SAF-TE",
594 			SAFTE_LEN - 2) == 0) {
595 		return (SES_SAFT);
596 	}
597 
598 	return (SES_NONE);
599 }
600 
601 /*
602  * SES Native Type Device Support
603  */
604 
605 /*
606  * SES Diagnostic Page Codes
607  */
608 
609 typedef enum {
610 	SesConfigPage = 0x1,
611 	SesControlPage,
612 #define	SesStatusPage SesControlPage
613 	SesHelpTxt,
614 	SesStringOut,
615 #define	SesStringIn	SesStringOut
616 	SesThresholdOut,
617 #define	SesThresholdIn SesThresholdOut
618 	SesArrayControl,
619 #define	SesArrayStatus	SesArrayControl
620 	SesElementDescriptor,
621 	SesShortStatus
622 } SesDiagPageCodes;
623 
624 /*
625  * minimal amounts
626  */
627 
628 /*
629  * Minimum amount of data, starting from byte 0, to have
630  * the config header.
631  */
632 #define	SES_CFGHDR_MINLEN	12
633 
634 /*
635  * Minimum amount of data, starting from byte 0, to have
636  * the config header and one enclosure header.
637  */
638 #define	SES_ENCHDR_MINLEN	48
639 
640 /*
641  * Take this value, subtract it from VEnclen and you know
642  * the length of the vendor unique bytes.
643  */
644 #define	SES_ENCHDR_VMIN		36
645 
646 /*
647  * SES Data Structures
648  */
649 
650 typedef struct {
651 	uint32_t GenCode;	/* Generation Code */
652 	uint8_t	Nsubenc;	/* Number of Subenclosures */
653 } SesCfgHdr;
654 
655 typedef struct {
656 	uint8_t	Subencid;	/* SubEnclosure Identifier */
657 	uint8_t	Ntypes;		/* # of supported types */
658 	uint8_t	VEnclen;	/* Enclosure Descriptor Length */
659 } SesEncHdr;
660 
661 typedef struct {
662 	uint8_t	encWWN[8];	/* XXX- Not Right Yet */
663 	uint8_t	encVid[8];
664 	uint8_t	encPid[16];
665 	uint8_t	encRev[4];
666 	uint8_t	encVen[1];
667 } SesEncDesc;
668 
669 typedef struct {
670 	uint8_t	enc_type;		/* type of element */
671 	uint8_t	enc_maxelt;		/* maximum supported */
672 	uint8_t	enc_subenc;		/* in SubEnc # N */
673 	uint8_t	enc_tlen;		/* Type Descriptor Text Length */
674 } SesThdr;
675 
676 typedef struct {
677 	uint8_t	comstatus;
678 	uint8_t	comstat[3];
679 } SesComStat;
680 
681 struct typidx {
682 	int ses_tidx;
683 	int ses_oidx;
684 };
685 
686 struct sscfg {
687 	uint8_t ses_ntypes;	/* total number of types supported */
688 
689 	/*
690 	 * We need to keep a type index as well as an
691 	 * object index for each object in an enclosure.
692 	 */
693 	struct typidx *ses_typidx;
694 
695 	/*
696 	 * We also need to keep track of the number of elements
697 	 * per type of element. This is needed later so that we
698 	 * can find precisely in the returned status data the
699 	 * status for the Nth element of the Kth type.
700 	 */
701 	uint8_t *	ses_eltmap;
702 };
703 
704 
705 /*
706  * (de)canonicalization defines
707  */
708 #define	sbyte(x, byte)		((((uint32_t)(x)) >> (byte * 8)) & 0xff)
709 #define	sbit(x, bit)		(((uint32_t)(x)) << bit)
710 #define	sset8(outp, idx, sval)	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
711 
712 #define	sset16(outp, idx, sval)	\
713 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
714 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
715 
716 
717 #define	sset24(outp, idx, sval)	\
718 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
719 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
720 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
721 
722 
723 #define	sset32(outp, idx, sval)	\
724 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 3), \
725 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
726 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
727 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
728 
729 #define	gbyte(x, byte)	((((uint32_t)(x)) & 0xff) << (byte * 8))
730 #define	gbit(lv, in, idx, shft, mask)	lv = ((in[idx] >> shft) & mask)
731 #define	sget8(inp, idx, lval)	lval = (((uint8_t *)(inp))[idx++])
732 #define	gget8(inp, idx, lval)	lval = (((uint8_t *)(inp))[idx])
733 
734 #define	sget16(inp, idx, lval)	\
735 	lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
736 		(((uint8_t *)(inp))[idx+1]), idx += 2
737 
738 #define	gget16(inp, idx, lval)	\
739 	lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
740 		(((uint8_t *)(inp))[idx+1])
741 
742 #define	sget24(inp, idx, lval)	\
743 	lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
744 		gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
745 			(((uint8_t *)(inp))[idx+2]), idx += 3
746 
747 #define	gget24(inp, idx, lval)	\
748 	lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
749 		gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
750 			(((uint8_t *)(inp))[idx+2])
751 
752 #define	sget32(inp, idx, lval)	\
753 	lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
754 		gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
755 		gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
756 			(((uint8_t *)(inp))[idx+3]), idx += 4
757 
758 #define	gget32(inp, idx, lval)	\
759 	lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
760 		gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
761 		gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
762 			(((uint8_t *)(inp))[idx+3])
763 
764 #define	SCSZ	0x2000
765 #define	CFLEN	(256 + SES_ENCHDR_MINLEN)
766 
767 /*
768  * Routines specific && private to SES only
769  */
770 
771 static int ses_getconfig(ses_softc_t *);
772 static int ses_getputstat(ses_softc_t *, int, SesComStat *, int, int);
773 static int ses_cfghdr(uint8_t *, int, SesCfgHdr *);
774 static int ses_enchdr(uint8_t *, int, uint8_t, SesEncHdr *);
775 static int ses_encdesc(uint8_t *, int, uint8_t, SesEncDesc *);
776 static int ses_getthdr(uint8_t *, int,  int, SesThdr *);
777 static int ses_decode(char *, int, uint8_t *, int, int, SesComStat *);
778 static int ses_encode(char *, int, uint8_t *, int, int, SesComStat *);
779 
780 static int
781 ses_softc_init(ses_softc_t *ssc, int doinit)
782 {
783 	if (doinit == 0) {
784 		struct sscfg *cc;
785 		if (ssc->ses_nobjects) {
786 			SES_FREE(ssc->ses_objmap,
787 			    ssc->ses_nobjects * sizeof (encobj));
788 			ssc->ses_objmap = NULL;
789 		}
790 		if ((cc = ssc->ses_private) != NULL) {
791 			if (cc->ses_eltmap && cc->ses_ntypes) {
792 				SES_FREE(cc->ses_eltmap, cc->ses_ntypes);
793 				cc->ses_eltmap = NULL;
794 				cc->ses_ntypes = 0;
795 			}
796 			if (cc->ses_typidx && ssc->ses_nobjects) {
797 				SES_FREE(cc->ses_typidx,
798 				    ssc->ses_nobjects * sizeof (struct typidx));
799 				cc->ses_typidx = NULL;
800 			}
801 			SES_FREE(cc, sizeof (struct sscfg));
802 			ssc->ses_private = NULL;
803 		}
804 		ssc->ses_nobjects = 0;
805 		return (0);
806 	}
807 	if (ssc->ses_private == NULL) {
808 		ssc->ses_private = SES_MALLOC(sizeof (struct sscfg));
809 	}
810 	if (ssc->ses_private == NULL) {
811 		return (ENOMEM);
812 	}
813 	ssc->ses_nobjects = 0;
814 	ssc->ses_encstat = 0;
815 	return (ses_getconfig(ssc));
816 }
817 
818 static int
819 ses_init_enc(ses_softc_t *ssc)
820 {
821 	return (0);
822 }
823 
824 static int
825 ses_get_encstat(ses_softc_t *ssc, int slpflag)
826 {
827 	SesComStat ComStat;
828 	int status;
829 
830 	if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 1)) != 0) {
831 		return (status);
832 	}
833 	ssc->ses_encstat = ComStat.comstatus | ENCI_SVALID;
834 	return (0);
835 }
836 
837 static int
838 ses_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflag)
839 {
840 	SesComStat ComStat;
841 	int status;
842 
843 	ComStat.comstatus = encstat & 0xf;
844 	if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 0)) != 0) {
845 		return (status);
846 	}
847 	ssc->ses_encstat = encstat & 0xf;	/* note no SVALID set */
848 	return (0);
849 }
850 
851 static int
852 ses_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
853 {
854 	int i = (int)obp->obj_id;
855 
856 	if (ssc->ses_objmap[i].svalid == 0) {
857 		SesComStat ComStat;
858 		int err = ses_getputstat(ssc, i, &ComStat, slpflag, 1);
859 		if (err)
860 			return (err);
861 		ssc->ses_objmap[i].encstat[0] = ComStat.comstatus;
862 		ssc->ses_objmap[i].encstat[1] = ComStat.comstat[0];
863 		ssc->ses_objmap[i].encstat[2] = ComStat.comstat[1];
864 		ssc->ses_objmap[i].encstat[3] = ComStat.comstat[2];
865 		ssc->ses_objmap[i].svalid = 1;
866 	}
867 	obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
868 	obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
869 	obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
870 	obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
871 	return (0);
872 }
873 
874 static int
875 ses_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
876 {
877 	SesComStat ComStat;
878 	int err;
879 	/*
880 	 * If this is clear, we don't do diddly.
881 	 */
882 	if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
883 		return (0);
884 	}
885 	ComStat.comstatus = obp->cstat[0];
886 	ComStat.comstat[0] = obp->cstat[1];
887 	ComStat.comstat[1] = obp->cstat[2];
888 	ComStat.comstat[2] = obp->cstat[3];
889 	err = ses_getputstat(ssc, (int)obp->obj_id, &ComStat, slpflag, 0);
890 	ssc->ses_objmap[(int)obp->obj_id].svalid = 0;
891 	return (err);
892 }
893 
894 static int
895 ses_getconfig(ses_softc_t *ssc)
896 {
897 	struct sscfg *cc;
898 	SesCfgHdr cf;
899 	SesEncHdr hd;
900 	SesEncDesc *cdp;
901 	SesThdr thdr;
902 	int err, amt, i, nobj, ntype, maxima;
903 	char storage[CFLEN], *sdata;
904 	static char cdb[6] = {
905 	    RECEIVE_DIAGNOSTIC, 0x1, SesConfigPage, SCSZ >> 8, SCSZ & 0xff, 0
906 	};
907 
908 	cc = ssc->ses_private;
909 	if (cc == NULL) {
910 		return (ENXIO);
911 	}
912 
913 	sdata = SES_MALLOC(SCSZ);
914 	if (sdata == NULL)
915 		return (ENOMEM);
916 
917 	amt = SCSZ;
918 	err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
919 	if (err) {
920 		SES_FREE(sdata, SCSZ);
921 		return (err);
922 	}
923 	amt = SCSZ - amt;
924 
925 	if (ses_cfghdr((uint8_t *) sdata, amt, &cf)) {
926 		SES_LOG(ssc, "Unable to parse SES Config Header\n");
927 		SES_FREE(sdata, SCSZ);
928 		return (EIO);
929 	}
930 	if (amt < SES_ENCHDR_MINLEN) {
931 		SES_LOG(ssc, "runt enclosure length (%d)\n", amt);
932 		SES_FREE(sdata, SCSZ);
933 		return (EIO);
934 	}
935 
936 	SES_VLOG(ssc, "GenCode %x %d Subenclosures\n", cf.GenCode, cf.Nsubenc);
937 
938 	/*
939 	 * Now waltz through all the subenclosures toting up the
940 	 * number of types available in each. For this, we only
941 	 * really need the enclosure header. However, we get the
942 	 * enclosure descriptor for debug purposes, as well
943 	 * as self-consistency checking purposes.
944 	 */
945 
946 	maxima = cf.Nsubenc + 1;
947 	cdp = (SesEncDesc *) storage;
948 	for (ntype = i = 0; i < maxima; i++) {
949 		MEMZERO((void *)cdp, sizeof (*cdp));
950 		if (ses_enchdr((uint8_t *) sdata, amt, i, &hd)) {
951 			SES_LOG(ssc, "Cannot Extract Enclosure Header %d\n", i);
952 			SES_FREE(sdata, SCSZ);
953 			return (EIO);
954 		}
955 		SES_VLOG(ssc, " SubEnclosure ID %d, %d Types With this ID, En"
956 		    "closure Length %d\n", hd.Subencid, hd.Ntypes, hd.VEnclen);
957 
958 		if (ses_encdesc((uint8_t *)sdata, amt, i, cdp)) {
959 			SES_LOG(ssc, "Can't get Enclosure Descriptor %d\n", i);
960 			SES_FREE(sdata, SCSZ);
961 			return (EIO);
962 		}
963 		SES_VLOG(ssc, " WWN: %02x%02x%02x%02x%02x%02x%02x%02x\n",
964 		    cdp->encWWN[0], cdp->encWWN[1], cdp->encWWN[2],
965 		    cdp->encWWN[3], cdp->encWWN[4], cdp->encWWN[5],
966 		    cdp->encWWN[6], cdp->encWWN[7]);
967 		ntype += hd.Ntypes;
968 	}
969 
970 	/*
971 	 * Now waltz through all the types that are available, getting
972 	 * the type header so we can start adding up the number of
973 	 * objects available.
974 	 */
975 	for (nobj = i = 0; i < ntype; i++) {
976 		if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
977 			SES_LOG(ssc, "Can't get Enclosure Type Header %d\n", i);
978 			SES_FREE(sdata, SCSZ);
979 			return (EIO);
980 		}
981 		SES_LOG(ssc, " Type Desc[%d]: Type 0x%x, MaxElt %d, In Subenc "
982 		    "%d, Text Length %d\n", i, thdr.enc_type, thdr.enc_maxelt,
983 		    thdr.enc_subenc, thdr.enc_tlen);
984 		nobj += thdr.enc_maxelt;
985 	}
986 
987 
988 	/*
989 	 * Now allocate the object array and type map.
990 	 */
991 
992 	ssc->ses_objmap = SES_MALLOC(nobj * sizeof (encobj));
993 	cc->ses_typidx = SES_MALLOC(nobj * sizeof (struct typidx));
994 	cc->ses_eltmap = SES_MALLOC(ntype);
995 
996 	if (ssc->ses_objmap == NULL || cc->ses_typidx == NULL ||
997 	    cc->ses_eltmap == NULL) {
998 		if (ssc->ses_objmap) {
999 			SES_FREE(ssc->ses_objmap, (nobj * sizeof (encobj)));
1000 			ssc->ses_objmap = NULL;
1001 		}
1002 		if (cc->ses_typidx) {
1003 			SES_FREE(cc->ses_typidx,
1004 			    (nobj * sizeof (struct typidx)));
1005 			cc->ses_typidx = NULL;
1006 		}
1007 		if (cc->ses_eltmap) {
1008 			SES_FREE(cc->ses_eltmap, ntype);
1009 			cc->ses_eltmap = NULL;
1010 		}
1011 		SES_FREE(sdata, SCSZ);
1012 		return (ENOMEM);
1013 	}
1014 	MEMZERO(ssc->ses_objmap, nobj * sizeof (encobj));
1015 	MEMZERO(cc->ses_typidx, nobj * sizeof (struct typidx));
1016 	MEMZERO(cc->ses_eltmap, ntype);
1017 	cc->ses_ntypes = (uint8_t) ntype;
1018 	ssc->ses_nobjects = nobj;
1019 
1020 	/*
1021 	 * Now waltz through the # of types again to fill in the types
1022 	 * (and subenclosure ids) of the allocated objects.
1023 	 */
1024 	nobj = 0;
1025 	for (i = 0; i < ntype; i++) {
1026 		int j;
1027 		if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
1028 			continue;
1029 		}
1030 		cc->ses_eltmap[i] = thdr.enc_maxelt;
1031 		for (j = 0; j < thdr.enc_maxelt; j++) {
1032 			cc->ses_typidx[nobj].ses_tidx = i;
1033 			cc->ses_typidx[nobj].ses_oidx = j;
1034 			ssc->ses_objmap[nobj].subenclosure = thdr.enc_subenc;
1035 			ssc->ses_objmap[nobj++].enctype = thdr.enc_type;
1036 		}
1037 	}
1038 	SES_FREE(sdata, SCSZ);
1039 	return (0);
1040 }
1041 
1042 static int
1043 ses_getputstat(ses_softc_t *ssc, int objid, SesComStat *sp, int slp,
1044     int in)
1045 {
1046 	struct sscfg *cc;
1047 	int err, amt, bufsiz, tidx, oidx;
1048 	char cdb[6], *sdata;
1049 
1050 	cc = ssc->ses_private;
1051 	if (cc == NULL) {
1052 		return (ENXIO);
1053 	}
1054 
1055 	/*
1056 	 * If we're just getting overall enclosure status,
1057 	 * we only need 2 bytes of data storage.
1058 	 *
1059 	 * If we're getting anything else, we know how much
1060 	 * storage we need by noting that starting at offset
1061 	 * 8 in returned data, all object status bytes are 4
1062 	 * bytes long, and are stored in chunks of types(M)
1063 	 * and nth+1 instances of type M.
1064 	 */
1065 	if (objid == -1) {
1066 		bufsiz = 2;
1067 	} else {
1068 		bufsiz = (ssc->ses_nobjects * 4) + (cc->ses_ntypes * 4) + 8;
1069 	}
1070 	sdata = SES_MALLOC(bufsiz);
1071 	if (sdata == NULL)
1072 		return (ENOMEM);
1073 
1074 	cdb[0] = RECEIVE_DIAGNOSTIC;
1075 	cdb[1] = 1;
1076 	cdb[2] = SesStatusPage;
1077 	cdb[3] = bufsiz >> 8;
1078 	cdb[4] = bufsiz & 0xff;
1079 	cdb[5] = 0;
1080 	amt = bufsiz;
1081 	err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1082 	if (err) {
1083 		SES_FREE(sdata, bufsiz);
1084 		return (err);
1085 	}
1086 	amt = bufsiz - amt;
1087 
1088 	if (objid == -1) {
1089 		tidx = -1;
1090 		oidx = -1;
1091 	} else {
1092 		tidx = cc->ses_typidx[objid].ses_tidx;
1093 		oidx = cc->ses_typidx[objid].ses_oidx;
1094 	}
1095 	if (in) {
1096 		if (ses_decode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1097 			err = ENODEV;
1098 		}
1099 	} else {
1100 		if (ses_encode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1101 			err = ENODEV;
1102 		} else {
1103 			cdb[0] = SEND_DIAGNOSTIC;
1104 			cdb[1] = 0x10;
1105 			cdb[2] = 0;
1106 			cdb[3] = bufsiz >> 8;
1107 			cdb[4] = bufsiz & 0xff;
1108 			cdb[5] = 0;
1109 			amt = -bufsiz;
1110 			err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1111 		}
1112 	}
1113 	SES_FREE(sdata, bufsiz);
1114 	return (0);
1115 }
1116 
1117 
1118 /*
1119  * Routines to parse returned SES data structures.
1120  * Architecture and compiler independent.
1121  */
1122 
1123 static int
1124 ses_cfghdr(uint8_t *buffer, int buflen, SesCfgHdr *cfp)
1125 {
1126 	if (buflen < SES_CFGHDR_MINLEN) {
1127 		return (-1);
1128 	}
1129 	gget8(buffer, 1, cfp->Nsubenc);
1130 	gget32(buffer, 4, cfp->GenCode);
1131 	return (0);
1132 }
1133 
1134 static int
1135 ses_enchdr(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncHdr *chp)
1136 {
1137 	int s, off = 8;
1138 	for (s = 0; s < SubEncId; s++) {
1139 		if (off + 3 > amt)
1140 			return (-1);
1141 		off += buffer[off+3] + 4;
1142 	}
1143 	if (off + 3 > amt) {
1144 		return (-1);
1145 	}
1146 	gget8(buffer, off+1, chp->Subencid);
1147 	gget8(buffer, off+2, chp->Ntypes);
1148 	gget8(buffer, off+3, chp->VEnclen);
1149 	return (0);
1150 }
1151 
1152 static int
1153 ses_encdesc(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncDesc *cdp)
1154 {
1155 	int s, e, enclen, off = 8;
1156 	for (s = 0; s < SubEncId; s++) {
1157 		if (off + 3 > amt)
1158 			return (-1);
1159 		off += buffer[off+3] + 4;
1160 	}
1161 	if (off + 3 > amt) {
1162 		return (-1);
1163 	}
1164 	gget8(buffer, off+3, enclen);
1165 	off += 4;
1166 	if (off  >= amt)
1167 		return (-1);
1168 
1169 	e = off + enclen;
1170 	if (e > amt) {
1171 		e = amt;
1172 	}
1173 	MEMCPY(cdp, &buffer[off], e - off);
1174 	return (0);
1175 }
1176 
1177 static int
1178 ses_getthdr(uint8_t *buffer, int amt, int nth, SesThdr *thp)
1179 {
1180 	int s, off = 8;
1181 
1182 	if (amt < SES_CFGHDR_MINLEN) {
1183 		return (-1);
1184 	}
1185 	for (s = 0; s < buffer[1]; s++) {
1186 		if (off + 3 > amt)
1187 			return (-1);
1188 		off += buffer[off+3] + 4;
1189 	}
1190 	if (off + 3 > amt) {
1191 		return (-1);
1192 	}
1193 	off += buffer[off+3] + 4 + (nth * 4);
1194 	if (amt < (off + 4))
1195 		return (-1);
1196 
1197 	gget8(buffer, off++, thp->enc_type);
1198 	gget8(buffer, off++, thp->enc_maxelt);
1199 	gget8(buffer, off++, thp->enc_subenc);
1200 	gget8(buffer, off, thp->enc_tlen);
1201 	return (0);
1202 }
1203 
1204 /*
1205  * This function needs a little explanation.
1206  *
1207  * The arguments are:
1208  *
1209  *
1210  *	char *b, int amt
1211  *
1212  *		These describes the raw input SES status data and length.
1213  *
1214  *	uint8_t *ep
1215  *
1216  *		This is a map of the number of types for each element type
1217  *		in the enclosure.
1218  *
1219  *	int elt
1220  *
1221  *		This is the element type being sought. If elt is -1,
1222  *		then overall enclosure status is being sought.
1223  *
1224  *	int elm
1225  *
1226  *		This is the ordinal Mth element of type elt being sought.
1227  *
1228  *	SesComStat *sp
1229  *
1230  *		This is the output area to store the status for
1231  *		the Mth element of type Elt.
1232  */
1233 
1234 static int
1235 ses_decode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1236 {
1237 	int idx, i;
1238 
1239 	/*
1240 	 * If it's overall enclosure status being sought, get that.
1241 	 * We need at least 2 bytes of status data to get that.
1242 	 */
1243 	if (elt == -1) {
1244 		if (amt < 2)
1245 			return (-1);
1246 		gget8(b, 1, sp->comstatus);
1247 		sp->comstat[0] = 0;
1248 		sp->comstat[1] = 0;
1249 		sp->comstat[2] = 0;
1250 		return (0);
1251 	}
1252 
1253 	/*
1254 	 * Check to make sure that the Mth element is legal for type Elt.
1255 	 */
1256 
1257 	if (elm >= ep[elt])
1258 		return (-1);
1259 
1260 	/*
1261 	 * Starting at offset 8, start skipping over the storage
1262 	 * for the element types we're not interested in.
1263 	 */
1264 	for (idx = 8, i = 0; i < elt; i++) {
1265 		idx += ((ep[i] + 1) * 4);
1266 	}
1267 
1268 	/*
1269 	 * Skip over Overall status for this element type.
1270 	 */
1271 	idx += 4;
1272 
1273 	/*
1274 	 * And skip to the index for the Mth element that we're going for.
1275 	 */
1276 	idx += (4 * elm);
1277 
1278 	/*
1279 	 * Make sure we haven't overflowed the buffer.
1280 	 */
1281 	if (idx+4 > amt)
1282 		return (-1);
1283 
1284 	/*
1285 	 * Retrieve the status.
1286 	 */
1287 	gget8(b, idx++, sp->comstatus);
1288 	gget8(b, idx++, sp->comstat[0]);
1289 	gget8(b, idx++, sp->comstat[1]);
1290 	gget8(b, idx++, sp->comstat[2]);
1291 #if	0
1292 	PRINTF("Get Elt 0x%x Elm 0x%x (idx %d)\n", elt, elm, idx-4);
1293 #endif
1294 	return (0);
1295 }
1296 
1297 /*
1298  * This is the mirror function to ses_decode, but we set the 'select'
1299  * bit for the object which we're interested in. All other objects,
1300  * after a status fetch, should have that bit off. Hmm. It'd be easy
1301  * enough to ensure this, so we will.
1302  */
1303 
1304 static int
1305 ses_encode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1306 {
1307 	int idx, i;
1308 
1309 	/*
1310 	 * If it's overall enclosure status being sought, get that.
1311 	 * We need at least 2 bytes of status data to get that.
1312 	 */
1313 	if (elt == -1) {
1314 		if (amt < 2)
1315 			return (-1);
1316 		i = 0;
1317 		sset8(b, i, 0);
1318 		sset8(b, i, sp->comstatus & 0xf);
1319 #if	0
1320 		PRINTF("set EncStat %x\n", sp->comstatus);
1321 #endif
1322 		return (0);
1323 	}
1324 
1325 	/*
1326 	 * Check to make sure that the Mth element is legal for type Elt.
1327 	 */
1328 
1329 	if (elm >= ep[elt])
1330 		return (-1);
1331 
1332 	/*
1333 	 * Starting at offset 8, start skipping over the storage
1334 	 * for the element types we're not interested in.
1335 	 */
1336 	for (idx = 8, i = 0; i < elt; i++) {
1337 		idx += ((ep[i] + 1) * 4);
1338 	}
1339 
1340 	/*
1341 	 * Skip over Overall status for this element type.
1342 	 */
1343 	idx += 4;
1344 
1345 	/*
1346 	 * And skip to the index for the Mth element that we're going for.
1347 	 */
1348 	idx += (4 * elm);
1349 
1350 	/*
1351 	 * Make sure we haven't overflowed the buffer.
1352 	 */
1353 	if (idx+4 > amt)
1354 		return (-1);
1355 
1356 	/*
1357 	 * Set the status.
1358 	 */
1359 	sset8(b, idx, sp->comstatus);
1360 	sset8(b, idx, sp->comstat[0]);
1361 	sset8(b, idx, sp->comstat[1]);
1362 	sset8(b, idx, sp->comstat[2]);
1363 	idx -= 4;
1364 
1365 #if	0
1366 	PRINTF("Set Elt 0x%x Elm 0x%x (idx %d) with %x %x %x %x\n",
1367 	    elt, elm, idx, sp->comstatus, sp->comstat[0],
1368 	    sp->comstat[1], sp->comstat[2]);
1369 #endif
1370 
1371 	/*
1372 	 * Now make sure all other 'Select' bits are off.
1373 	 */
1374 	for (i = 8; i < amt; i += 4) {
1375 		if (i != idx)
1376 			b[i] &= ~0x80;
1377 	}
1378 	/*
1379 	 * And make sure the INVOP bit is clear.
1380 	 */
1381 	b[2] &= ~0x10;
1382 
1383 	return (0);
1384 }
1385 
1386 /*
1387  * SAF-TE Type Device Emulation
1388  */
1389 
1390 static int safte_getconfig(ses_softc_t *);
1391 static int safte_rdstat(ses_softc_t *, int);
1392 static int set_objstat_sel(ses_softc_t *, ses_objstat *, int);
1393 static int wrbuf16(ses_softc_t *, uint8_t, uint8_t, uint8_t, uint8_t, int);
1394 static void wrslot_stat(ses_softc_t *, int);
1395 static int perf_slotop(ses_softc_t *, uint8_t, uint8_t, int);
1396 
1397 #define	ALL_ENC_STAT (SES_ENCSTAT_CRITICAL | SES_ENCSTAT_UNRECOV | \
1398 	SES_ENCSTAT_NONCRITICAL | SES_ENCSTAT_INFO)
1399 /*
1400  * SAF-TE specific defines- Mandatory ones only...
1401  */
1402 
1403 /*
1404  * READ BUFFER ('get' commands) IDs- placed in offset 2 of cdb
1405  */
1406 #define	SAFTE_RD_RDCFG	0x00	/* read enclosure configuration */
1407 #define	SAFTE_RD_RDESTS	0x01	/* read enclosure status */
1408 #define	SAFTE_RD_RDDSTS	0x04	/* read drive slot status */
1409 
1410 /*
1411  * WRITE BUFFER ('set' commands) IDs- placed in offset 0 of databuf
1412  */
1413 #define	SAFTE_WT_DSTAT	0x10	/* write device slot status */
1414 #define	SAFTE_WT_SLTOP	0x12	/* perform slot operation */
1415 #define	SAFTE_WT_FANSPD	0x13	/* set fan speed */
1416 #define	SAFTE_WT_ACTPWS	0x14	/* turn on/off power supply */
1417 #define	SAFTE_WT_GLOBAL	0x15	/* send global command */
1418 
1419 
1420 #define	SAFT_SCRATCH	64
1421 #define	NPSEUDO_THERM	16
1422 #define	NPSEUDO_ALARM	1
1423 struct scfg {
1424 	/*
1425 	 * Cached Configuration
1426 	 */
1427 	uint8_t	Nfans;		/* Number of Fans */
1428 	uint8_t	Npwr;		/* Number of Power Supplies */
1429 	uint8_t	Nslots;		/* Number of Device Slots */
1430 	uint8_t	DoorLock;	/* Door Lock Installed */
1431 	uint8_t	Ntherm;		/* Number of Temperature Sensors */
1432 	uint8_t	Nspkrs;		/* Number of Speakers */
1433 	uint8_t Nalarm;		/* Number of Alarms (at least one) */
1434 	/*
1435 	 * Cached Flag Bytes for Global Status
1436 	 */
1437 	uint8_t	flag1;
1438 	uint8_t	flag2;
1439 	/*
1440 	 * What object index ID is where various slots start.
1441 	 */
1442 	uint8_t	pwroff;
1443 	uint8_t	slotoff;
1444 #define	SAFT_ALARM_OFFSET(cc)	(cc)->slotoff - 1
1445 };
1446 
1447 #define	SAFT_FLG1_ALARM		0x1
1448 #define	SAFT_FLG1_GLOBFAIL	0x2
1449 #define	SAFT_FLG1_GLOBWARN	0x4
1450 #define	SAFT_FLG1_ENCPWROFF	0x8
1451 #define	SAFT_FLG1_ENCFANFAIL	0x10
1452 #define	SAFT_FLG1_ENCPWRFAIL	0x20
1453 #define	SAFT_FLG1_ENCDRVFAIL	0x40
1454 #define	SAFT_FLG1_ENCDRVWARN	0x80
1455 
1456 #define	SAFT_FLG2_LOCKDOOR	0x4
1457 #define	SAFT_PRIVATE		sizeof (struct scfg)
1458 
1459 static const char safte_2little[] = "Too Little Data Returned (%d) at line %d\n";
1460 #define	SAFT_BAIL(r, x, k, l)	\
1461 	if (r >= x) { \
1462 		SES_LOG(ssc, safte_2little, x, __LINE__);\
1463 		SES_FREE(k, l); \
1464 		return (EIO); \
1465 	}
1466 
1467 
1468 static int
1469 safte_softc_init(ses_softc_t *ssc, int doinit)
1470 {
1471 	int err, i, r;
1472 	struct scfg *cc;
1473 
1474 	if (doinit == 0) {
1475 		if (ssc->ses_nobjects) {
1476 			if (ssc->ses_objmap) {
1477 				SES_FREE(ssc->ses_objmap,
1478 				    ssc->ses_nobjects * sizeof (encobj));
1479 				ssc->ses_objmap = NULL;
1480 			}
1481 			ssc->ses_nobjects = 0;
1482 		}
1483 		if (ssc->ses_private) {
1484 			SES_FREE(ssc->ses_private, SAFT_PRIVATE);
1485 			ssc->ses_private = NULL;
1486 		}
1487 		return (0);
1488 	}
1489 
1490 	if (ssc->ses_private == NULL) {
1491 		ssc->ses_private = SES_MALLOC(SAFT_PRIVATE);
1492 		if (ssc->ses_private == NULL) {
1493 			return (ENOMEM);
1494 		}
1495 		MEMZERO(ssc->ses_private, SAFT_PRIVATE);
1496 	}
1497 
1498 	ssc->ses_nobjects = 0;
1499 	ssc->ses_encstat = 0;
1500 
1501 	if ((err = safte_getconfig(ssc)) != 0) {
1502 		return (err);
1503 	}
1504 
1505 	/*
1506 	 * The number of objects here, as well as that reported by the
1507 	 * READ_BUFFER/GET_CONFIG call, are the over-temperature flags (15)
1508 	 * that get reported during READ_BUFFER/READ_ENC_STATUS.
1509 	 */
1510 	cc = ssc->ses_private;
1511 	ssc->ses_nobjects = cc->Nfans + cc->Npwr + cc->Nslots + cc->DoorLock +
1512 	    cc->Ntherm + cc->Nspkrs + NPSEUDO_THERM + NPSEUDO_ALARM;
1513 	ssc->ses_objmap = (encobj *)
1514 	    SES_MALLOC(ssc->ses_nobjects * sizeof (encobj));
1515 	if (ssc->ses_objmap == NULL) {
1516 		return (ENOMEM);
1517 	}
1518 	MEMZERO(ssc->ses_objmap, ssc->ses_nobjects * sizeof (encobj));
1519 
1520 	r = 0;
1521 	/*
1522 	 * Note that this is all arranged for the convenience
1523 	 * in later fetches of status.
1524 	 */
1525 	for (i = 0; i < cc->Nfans; i++)
1526 		ssc->ses_objmap[r++].enctype = SESTYP_FAN;
1527 	cc->pwroff = (uint8_t) r;
1528 	for (i = 0; i < cc->Npwr; i++)
1529 		ssc->ses_objmap[r++].enctype = SESTYP_POWER;
1530 	for (i = 0; i < cc->DoorLock; i++)
1531 		ssc->ses_objmap[r++].enctype = SESTYP_DOORLOCK;
1532 	for (i = 0; i < cc->Nspkrs; i++)
1533 		ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1534 	for (i = 0; i < cc->Ntherm; i++)
1535 		ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1536 	for (i = 0; i < NPSEUDO_THERM; i++)
1537 		ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1538 	ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1539 	cc->slotoff = (uint8_t) r;
1540 	for (i = 0; i < cc->Nslots; i++)
1541 		ssc->ses_objmap[r++].enctype = SESTYP_DEVICE;
1542 	return (0);
1543 }
1544 
1545 static int
1546 safte_init_enc(ses_softc_t *ssc)
1547 {
1548 	int err, amt;
1549 	char *sdata;
1550 	static char cdb0[6] = { SEND_DIAGNOSTIC };
1551 	static char cdb[10] =
1552 	    { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
1553 
1554 	sdata = SES_MALLOC(SAFT_SCRATCH);
1555 	if (sdata == NULL)
1556 		return (ENOMEM);
1557 
1558 	err = ses_runcmd(ssc, cdb0, 6, NULL, 0);
1559 	if (err) {
1560 		SES_FREE(sdata, SAFT_SCRATCH);
1561 		return (err);
1562 	}
1563 	sdata[0] = SAFTE_WT_GLOBAL;
1564 	MEMZERO(&sdata[1], 15);
1565 	amt = -SAFT_SCRATCH;
1566 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1567 	SES_FREE(sdata, SAFT_SCRATCH);
1568 	return (err);
1569 }
1570 
1571 static int
1572 safte_get_encstat(ses_softc_t *ssc, int slpflg)
1573 {
1574 	return (safte_rdstat(ssc, slpflg));
1575 }
1576 
1577 static int
1578 safte_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflg)
1579 {
1580 	struct scfg *cc = ssc->ses_private;
1581 	if (cc == NULL)
1582 		return (0);
1583 	/*
1584 	 * Since SAF-TE devices aren't necessarily sticky in terms
1585 	 * of state, make our soft copy of enclosure status 'sticky'-
1586 	 * that is, things set in enclosure status stay set (as implied
1587 	 * by conditions set in reading object status) until cleared.
1588 	 */
1589 	ssc->ses_encstat &= ~ALL_ENC_STAT;
1590 	ssc->ses_encstat |= (encstat & ALL_ENC_STAT);
1591 	ssc->ses_encstat |= ENCI_SVALID;
1592 	cc->flag1 &= ~(SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL|SAFT_FLG1_GLOBWARN);
1593 	if ((encstat & (SES_ENCSTAT_CRITICAL|SES_ENCSTAT_UNRECOV)) != 0) {
1594 		cc->flag1 |= SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL;
1595 	} else if ((encstat & SES_ENCSTAT_NONCRITICAL) != 0) {
1596 		cc->flag1 |= SAFT_FLG1_GLOBWARN;
1597 	}
1598 	return (wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slpflg));
1599 }
1600 
1601 static int
1602 safte_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflg)
1603 {
1604 	int i = (int)obp->obj_id;
1605 
1606 	if ((ssc->ses_encstat & ENCI_SVALID) == 0 ||
1607 	    (ssc->ses_objmap[i].svalid) == 0) {
1608 		int err = safte_rdstat(ssc, slpflg);
1609 		if (err)
1610 			return (err);
1611 	}
1612 	obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
1613 	obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
1614 	obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
1615 	obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
1616 	return (0);
1617 }
1618 
1619 
1620 static int
1621 safte_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slp)
1622 {
1623 	int idx, err;
1624 	encobj *ep;
1625 	struct scfg *cc;
1626 
1627 
1628 	SES_VLOG(ssc, "safte_set_objstat(%d): %x %x %x %x\n",
1629 	    (int)obp->obj_id, obp->cstat[0], obp->cstat[1], obp->cstat[2],
1630 	    obp->cstat[3]);
1631 
1632 	/*
1633 	 * If this is clear, we don't do diddly.
1634 	 */
1635 	if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
1636 		return (0);
1637 	}
1638 
1639 	err = 0;
1640 	/*
1641 	 * Check to see if the common bits are set and do them first.
1642 	 */
1643 	if (obp->cstat[0] & ~SESCTL_CSEL) {
1644 		err = set_objstat_sel(ssc, obp, slp);
1645 		if (err)
1646 			return (err);
1647 	}
1648 
1649 	cc = ssc->ses_private;
1650 	if (cc == NULL)
1651 		return (0);
1652 
1653 	idx = (int)obp->obj_id;
1654 	ep = &ssc->ses_objmap[idx];
1655 
1656 	switch (ep->enctype) {
1657 	case SESTYP_DEVICE:
1658 	{
1659 		uint8_t slotop = 0;
1660 		/*
1661 		 * XXX: I should probably cache the previous state
1662 		 * XXX: of SESCTL_DEVOFF so that when it goes from
1663 		 * XXX: true to false I can then set PREPARE FOR OPERATION
1664 		 * XXX: flag in PERFORM SLOT OPERATION write buffer command.
1665 		 */
1666 		if (obp->cstat[2] & (SESCTL_RQSINS|SESCTL_RQSRMV)) {
1667 			slotop |= 0x2;
1668 		}
1669 		if (obp->cstat[2] & SESCTL_RQSID) {
1670 			slotop |= 0x4;
1671 		}
1672 		err = perf_slotop(ssc, (uint8_t) idx - (uint8_t) cc->slotoff,
1673 		    slotop, slp);
1674 		if (err)
1675 			return (err);
1676 		if (obp->cstat[3] & SESCTL_RQSFLT) {
1677 			ep->priv |= 0x2;
1678 		} else {
1679 			ep->priv &= ~0x2;
1680 		}
1681 		if (ep->priv & 0xc6) {
1682 			ep->priv &= ~0x1;
1683 		} else {
1684 			ep->priv |= 0x1;	/* no errors */
1685 		}
1686 		wrslot_stat(ssc, slp);
1687 		break;
1688 	}
1689 	case SESTYP_POWER:
1690 		if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1691 			cc->flag1 |= SAFT_FLG1_ENCPWRFAIL;
1692 		} else {
1693 			cc->flag1 &= ~SAFT_FLG1_ENCPWRFAIL;
1694 		}
1695 		err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1696 		    cc->flag2, 0, slp);
1697 		if (err)
1698 			return (err);
1699 		if (obp->cstat[3] & SESCTL_RQSTON) {
1700 			(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1701 				idx - cc->pwroff, 0, 0, slp);
1702 		} else {
1703 			(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1704 				idx - cc->pwroff, 0, 1, slp);
1705 		}
1706 		break;
1707 	case SESTYP_FAN:
1708 		if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1709 			cc->flag1 |= SAFT_FLG1_ENCFANFAIL;
1710 		} else {
1711 			cc->flag1 &= ~SAFT_FLG1_ENCFANFAIL;
1712 		}
1713 		err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1714 		    cc->flag2, 0, slp);
1715 		if (err)
1716 			return (err);
1717 		if (obp->cstat[3] & SESCTL_RQSTON) {
1718 			uint8_t fsp;
1719 			if ((obp->cstat[3] & 0x7) == 7) {
1720 				fsp = 4;
1721 			} else if ((obp->cstat[3] & 0x7) == 6) {
1722 				fsp = 3;
1723 			} else if ((obp->cstat[3] & 0x7) == 4) {
1724 				fsp = 2;
1725 			} else {
1726 				fsp = 1;
1727 			}
1728 			(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, fsp, 0, slp);
1729 		} else {
1730 			(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
1731 		}
1732 		break;
1733 	case SESTYP_DOORLOCK:
1734 		if (obp->cstat[3] & 0x1) {
1735 			cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
1736 		} else {
1737 			cc->flag2 |= SAFT_FLG2_LOCKDOOR;
1738 		}
1739 		(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1740 		    cc->flag2, 0, slp);
1741 		break;
1742 	case SESTYP_ALARM:
1743 		/*
1744 		 * On all nonzero but the 'muted' bit, we turn on the alarm,
1745 		 */
1746 		obp->cstat[3] &= ~0xa;
1747 		if (obp->cstat[3] & 0x40) {
1748 			cc->flag2 &= ~SAFT_FLG1_ALARM;
1749 		} else if (obp->cstat[3] != 0) {
1750 			cc->flag2 |= SAFT_FLG1_ALARM;
1751 		} else {
1752 			cc->flag2 &= ~SAFT_FLG1_ALARM;
1753 		}
1754 		ep->priv = obp->cstat[3];
1755 		(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1756 			cc->flag2, 0, slp);
1757 		break;
1758 	default:
1759 		break;
1760 	}
1761 	ep->svalid = 0;
1762 	return (0);
1763 }
1764 
1765 static int
1766 safte_getconfig(ses_softc_t *ssc)
1767 {
1768 	struct scfg *cfg;
1769 	int err, amt;
1770 	char *sdata;
1771 	static char cdb[10] =
1772 	    { READ_BUFFER, 1, SAFTE_RD_RDCFG, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
1773 
1774 	cfg = ssc->ses_private;
1775 	if (cfg == NULL)
1776 		return (ENXIO);
1777 
1778 	sdata = SES_MALLOC(SAFT_SCRATCH);
1779 	if (sdata == NULL)
1780 		return (ENOMEM);
1781 
1782 	amt = SAFT_SCRATCH;
1783 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1784 	if (err) {
1785 		SES_FREE(sdata, SAFT_SCRATCH);
1786 		return (err);
1787 	}
1788 	amt = SAFT_SCRATCH - amt;
1789 	if (amt < 6) {
1790 		SES_LOG(ssc, "too little data (%d) for configuration\n", amt);
1791 		SES_FREE(sdata, SAFT_SCRATCH);
1792 		return (EIO);
1793 	}
1794 	SES_VLOG(ssc, "Nfans %d Npwr %d Nslots %d Lck %d Ntherm %d Nspkrs %d\n",
1795 	    sdata[0], sdata[1], sdata[2], sdata[3], sdata[4], sdata[5]);
1796 	cfg->Nfans = sdata[0];
1797 	cfg->Npwr = sdata[1];
1798 	cfg->Nslots = sdata[2];
1799 	cfg->DoorLock = sdata[3];
1800 	cfg->Ntherm = sdata[4];
1801 	cfg->Nspkrs = sdata[5];
1802 	cfg->Nalarm = NPSEUDO_ALARM;
1803 	SES_FREE(sdata, SAFT_SCRATCH);
1804 	return (0);
1805 }
1806 
1807 static int
1808 safte_rdstat(ses_softc_t *ssc, int slpflg)
1809 {
1810 	int err, oid, r, i, hiwater, nitems, amt;
1811 	uint16_t tempflags;
1812 	size_t buflen;
1813 	uint8_t status, oencstat;
1814 	char *sdata, cdb[10];
1815 	struct scfg *cc = ssc->ses_private;
1816 
1817 
1818 	/*
1819 	 * The number of objects overstates things a bit,
1820 	 * both for the bogus 'thermometer' entries and
1821 	 * the drive status (which isn't read at the same
1822 	 * time as the enclosure status), but that's okay.
1823 	 */
1824 	buflen = 4 * cc->Nslots;
1825 	if (ssc->ses_nobjects > buflen)
1826 		buflen = ssc->ses_nobjects;
1827 	sdata = SES_MALLOC(buflen);
1828 	if (sdata == NULL)
1829 		return (ENOMEM);
1830 
1831 	cdb[0] = READ_BUFFER;
1832 	cdb[1] = 1;
1833 	cdb[2] = SAFTE_RD_RDESTS;
1834 	cdb[3] = 0;
1835 	cdb[4] = 0;
1836 	cdb[5] = 0;
1837 	cdb[6] = 0;
1838 	cdb[7] = (buflen >> 8) & 0xff;
1839 	cdb[8] = buflen & 0xff;
1840 	cdb[9] = 0;
1841 	amt = buflen;
1842 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1843 	if (err) {
1844 		SES_FREE(sdata, buflen);
1845 		return (err);
1846 	}
1847 	hiwater = buflen - amt;
1848 
1849 
1850 	/*
1851 	 * invalidate all status bits.
1852 	 */
1853 	for (i = 0; i < ssc->ses_nobjects; i++)
1854 		ssc->ses_objmap[i].svalid = 0;
1855 	oencstat = ssc->ses_encstat & ALL_ENC_STAT;
1856 	ssc->ses_encstat = 0;
1857 
1858 
1859 	/*
1860 	 * Now parse returned buffer.
1861 	 * If we didn't get enough data back,
1862 	 * that's considered a fatal error.
1863 	 */
1864 	oid = r = 0;
1865 
1866 	for (nitems = i = 0; i < cc->Nfans; i++) {
1867 		SAFT_BAIL(r, hiwater, sdata, buflen);
1868 		/*
1869 		 * 0 = Fan Operational
1870 		 * 1 = Fan is malfunctioning
1871 		 * 2 = Fan is not present
1872 		 * 0x80 = Unknown or Not Reportable Status
1873 		 */
1874 		ssc->ses_objmap[oid].encstat[1] = 0;	/* resvd */
1875 		ssc->ses_objmap[oid].encstat[2] = 0;	/* resvd */
1876 		switch ((int)(uint8_t)sdata[r]) {
1877 		case 0:
1878 			nitems++;
1879 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1880 			/*
1881 			 * We could get fancier and cache
1882 			 * fan speeds that we have set, but
1883 			 * that isn't done now.
1884 			 */
1885 			ssc->ses_objmap[oid].encstat[3] = 7;
1886 			break;
1887 
1888 		case 1:
1889 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1890 			/*
1891 			 * FAIL and FAN STOPPED synthesized
1892 			 */
1893 			ssc->ses_objmap[oid].encstat[3] = 0x40;
1894 			/*
1895 			 * Enclosure marked with CRITICAL error
1896 			 * if only one fan or no thermometers,
1897 			 * else the NONCRITICAL error is set.
1898 			 */
1899 			if (cc->Nfans == 1 || cc->Ntherm == 0)
1900 				ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1901 			else
1902 				ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1903 			break;
1904 		case 2:
1905 			ssc->ses_objmap[oid].encstat[0] =
1906 			    SES_OBJSTAT_NOTINSTALLED;
1907 			ssc->ses_objmap[oid].encstat[3] = 0;
1908 			/*
1909 			 * Enclosure marked with CRITICAL error
1910 			 * if only one fan or no thermometers,
1911 			 * else the NONCRITICAL error is set.
1912 			 */
1913 			if (cc->Nfans == 1)
1914 				ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1915 			else
1916 				ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1917 			break;
1918 		case 0x80:
1919 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1920 			ssc->ses_objmap[oid].encstat[3] = 0;
1921 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
1922 			break;
1923 		default:
1924 			ssc->ses_objmap[oid].encstat[0] =
1925 			    SES_OBJSTAT_UNSUPPORTED;
1926 			SES_LOG(ssc, "Unknown fan%d status 0x%x\n", i,
1927 			    sdata[r] & 0xff);
1928 			break;
1929 		}
1930 		ssc->ses_objmap[oid++].svalid = 1;
1931 		r++;
1932 	}
1933 
1934 	/*
1935 	 * No matter how you cut it, no cooling elements when there
1936 	 * should be some there is critical.
1937 	 */
1938 	if (cc->Nfans && nitems == 0) {
1939 		ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1940 	}
1941 
1942 
1943 	for (i = 0; i < cc->Npwr; i++) {
1944 		SAFT_BAIL(r, hiwater, sdata, buflen);
1945 		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1946 		ssc->ses_objmap[oid].encstat[1] = 0;	/* resvd */
1947 		ssc->ses_objmap[oid].encstat[2] = 0;	/* resvd */
1948 		ssc->ses_objmap[oid].encstat[3] = 0x20;	/* requested on */
1949 		switch ((uint8_t)sdata[r]) {
1950 		case 0x00:	/* pws operational and on */
1951 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1952 			break;
1953 		case 0x01:	/* pws operational and off */
1954 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1955 			ssc->ses_objmap[oid].encstat[3] = 0x10;
1956 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
1957 			break;
1958 		case 0x10:	/* pws is malfunctioning and commanded on */
1959 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1960 			ssc->ses_objmap[oid].encstat[3] = 0x61;
1961 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1962 			break;
1963 
1964 		case 0x11:	/* pws is malfunctioning and commanded off */
1965 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
1966 			ssc->ses_objmap[oid].encstat[3] = 0x51;
1967 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1968 			break;
1969 		case 0x20:	/* pws is not present */
1970 			ssc->ses_objmap[oid].encstat[0] =
1971 			    SES_OBJSTAT_NOTINSTALLED;
1972 			ssc->ses_objmap[oid].encstat[3] = 0;
1973 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
1974 			break;
1975 		case 0x21:	/* pws is present */
1976 			/*
1977 			 * This is for enclosures that cannot tell whether the
1978 			 * device is on or malfunctioning, but know that it is
1979 			 * present. Just fall through.
1980 			 */
1981 			/* FALLTHROUGH */
1982 		case 0x80:	/* Unknown or Not Reportable Status */
1983 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1984 			ssc->ses_objmap[oid].encstat[3] = 0;
1985 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
1986 			break;
1987 		default:
1988 			SES_LOG(ssc, "unknown power supply %d status (0x%x)\n",
1989 			    i, sdata[r] & 0xff);
1990 			break;
1991 		}
1992 		ssc->ses_objmap[oid++].svalid = 1;
1993 		r++;
1994 	}
1995 
1996 	/*
1997 	 * Skip over Slot SCSI IDs
1998 	 */
1999 	r += cc->Nslots;
2000 
2001 	/*
2002 	 * We always have doorlock status, no matter what,
2003 	 * but we only save the status if we have one.
2004 	 */
2005 	SAFT_BAIL(r, hiwater, sdata, buflen);
2006 	if (cc->DoorLock) {
2007 		/*
2008 		 * 0 = Door Locked
2009 		 * 1 = Door Unlocked, or no Lock Installed
2010 		 * 0x80 = Unknown or Not Reportable Status
2011 		 */
2012 		ssc->ses_objmap[oid].encstat[1] = 0;
2013 		ssc->ses_objmap[oid].encstat[2] = 0;
2014 		switch ((uint8_t)sdata[r]) {
2015 		case 0:
2016 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2017 			ssc->ses_objmap[oid].encstat[3] = 0;
2018 			break;
2019 		case 1:
2020 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2021 			ssc->ses_objmap[oid].encstat[3] = 1;
2022 			break;
2023 		case 0x80:
2024 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2025 			ssc->ses_objmap[oid].encstat[3] = 0;
2026 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
2027 			break;
2028 		default:
2029 			ssc->ses_objmap[oid].encstat[0] =
2030 			    SES_OBJSTAT_UNSUPPORTED;
2031 			SES_LOG(ssc, "unknown lock status 0x%x\n",
2032 			    sdata[r] & 0xff);
2033 			break;
2034 		}
2035 		ssc->ses_objmap[oid++].svalid = 1;
2036 	}
2037 	r++;
2038 
2039 	/*
2040 	 * We always have speaker status, no matter what,
2041 	 * but we only save the status if we have one.
2042 	 */
2043 	SAFT_BAIL(r, hiwater, sdata, buflen);
2044 	if (cc->Nspkrs) {
2045 		ssc->ses_objmap[oid].encstat[1] = 0;
2046 		ssc->ses_objmap[oid].encstat[2] = 0;
2047 		if (sdata[r] == 1) {
2048 			/*
2049 			 * We need to cache tone urgency indicators.
2050 			 * Someday.
2051 			 */
2052 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
2053 			ssc->ses_objmap[oid].encstat[3] = 0x8;
2054 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2055 		} else if (sdata[r] == 0) {
2056 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2057 			ssc->ses_objmap[oid].encstat[3] = 0;
2058 		} else {
2059 			ssc->ses_objmap[oid].encstat[0] =
2060 			    SES_OBJSTAT_UNSUPPORTED;
2061 			ssc->ses_objmap[oid].encstat[3] = 0;
2062 			SES_LOG(ssc, "unknown spkr status 0x%x\n",
2063 			    sdata[r] & 0xff);
2064 		}
2065 		ssc->ses_objmap[oid++].svalid = 1;
2066 	}
2067 	r++;
2068 
2069 	for (i = 0; i < cc->Ntherm; i++) {
2070 		SAFT_BAIL(r, hiwater, sdata, buflen);
2071 		/*
2072 		 * Status is a range from -10 to 245 deg Celsius,
2073 		 * which we need to normalize to -20 to -245 according
2074 		 * to the latest SCSI spec, which makes little
2075 		 * sense since this would overflow an 8bit value.
2076 		 * Well, still, the base normalization is -20,
2077 		 * not -10, so we have to adjust.
2078 		 *
2079 		 * So what's over and under temperature?
2080 		 * Hmm- we'll state that 'normal' operating
2081 		 * is 10 to 40 deg Celsius.
2082 		 */
2083 
2084 		/*
2085 		 * Actually.... All of the units that people out in the world
2086 		 * seem to have do not come even close to setting a value that
2087 		 * complies with this spec.
2088 		 *
2089 		 * The closest explanation I could find was in an
2090 		 * LSI-Logic manual, which seemed to indicate that
2091 		 * this value would be set by whatever the I2C code
2092 		 * would interpolate from the output of an LM75
2093 		 * temperature sensor.
2094 		 *
2095 		 * This means that it is impossible to use the actual
2096 		 * numeric value to predict anything. But we don't want
2097 		 * to lose the value. So, we'll propagate the *uncorrected*
2098 		 * value and set SES_OBJSTAT_NOTAVAIL. We'll depend on the
2099 		 * temperature flags for warnings.
2100 		 */
2101 		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NOTAVAIL;
2102 		ssc->ses_objmap[oid].encstat[1] = 0;
2103 		ssc->ses_objmap[oid].encstat[2] = sdata[r];
2104 		ssc->ses_objmap[oid].encstat[3] = 0;
2105 		ssc->ses_objmap[oid++].svalid = 1;
2106 		r++;
2107 	}
2108 
2109 	/*
2110 	 * Now, for "pseudo" thermometers, we have two bytes
2111 	 * of information in enclosure status- 16 bits. Actually,
2112 	 * the MSB is a single TEMP ALERT flag indicating whether
2113 	 * any other bits are set, but, thanks to fuzzy thinking,
2114 	 * in the SAF-TE spec, this can also be set even if no
2115 	 * other bits are set, thus making this really another
2116 	 * binary temperature sensor.
2117 	 */
2118 
2119 	SAFT_BAIL(r, hiwater, sdata, buflen);
2120 	tempflags = sdata[r++];
2121 	SAFT_BAIL(r, hiwater, sdata, buflen);
2122 	tempflags |= (tempflags << 8) | sdata[r++];
2123 
2124 	for (i = 0; i < NPSEUDO_THERM; i++) {
2125 		ssc->ses_objmap[oid].encstat[1] = 0;
2126 		if (tempflags & (1 << (NPSEUDO_THERM - i - 1))) {
2127 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2128 			ssc->ses_objmap[4].encstat[2] = 0xff;
2129 			/*
2130 			 * Set 'over temperature' failure.
2131 			 */
2132 			ssc->ses_objmap[oid].encstat[3] = 8;
2133 			ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2134 		} else {
2135 			/*
2136 			 * We used to say 'not available' and synthesize a
2137 			 * nominal 30 deg (C)- that was wrong. Actually,
2138 			 * Just say 'OK', and use the reserved value of
2139 			 * zero.
2140 			 */
2141 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2142 			ssc->ses_objmap[oid].encstat[2] = 0;
2143 			ssc->ses_objmap[oid].encstat[3] = 0;
2144 		}
2145 		ssc->ses_objmap[oid++].svalid = 1;
2146 	}
2147 
2148 	/*
2149 	 * Get alarm status.
2150 	 */
2151 	ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2152 	ssc->ses_objmap[oid].encstat[3] = ssc->ses_objmap[oid].priv;
2153 	ssc->ses_objmap[oid++].svalid = 1;
2154 
2155 	/*
2156 	 * Now get drive slot status
2157 	 */
2158 	cdb[2] = SAFTE_RD_RDDSTS;
2159 	amt = buflen;
2160 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2161 	if (err) {
2162 		SES_FREE(sdata, buflen);
2163 		return (err);
2164 	}
2165 	hiwater = buflen - amt;
2166 	for (r = i = 0; i < cc->Nslots; i++, r += 4) {
2167 		SAFT_BAIL(r+3, hiwater, sdata, buflen);
2168 		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNSUPPORTED;
2169 		ssc->ses_objmap[oid].encstat[1] = (uint8_t) i;
2170 		ssc->ses_objmap[oid].encstat[2] = 0;
2171 		ssc->ses_objmap[oid].encstat[3] = 0;
2172 		status = sdata[r+3];
2173 		if ((status & 0x1) == 0) {	/* no device */
2174 			ssc->ses_objmap[oid].encstat[0] =
2175 			    SES_OBJSTAT_NOTINSTALLED;
2176 		} else {
2177 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2178 		}
2179 		if (status & 0x2) {
2180 			ssc->ses_objmap[oid].encstat[2] = 0x8;
2181 		}
2182 		if ((status & 0x4) == 0) {
2183 			ssc->ses_objmap[oid].encstat[3] = 0x10;
2184 		}
2185 		ssc->ses_objmap[oid++].svalid = 1;
2186 	}
2187 	/* see comment below about sticky enclosure status */
2188 	ssc->ses_encstat |= ENCI_SVALID | oencstat;
2189 	SES_FREE(sdata, buflen);
2190 	return (0);
2191 }
2192 
2193 static int
2194 set_objstat_sel(ses_softc_t *ssc, ses_objstat *obp, int slp)
2195 {
2196 	int idx;
2197 	encobj *ep;
2198 	struct scfg *cc = ssc->ses_private;
2199 
2200 	if (cc == NULL)
2201 		return (0);
2202 
2203 	idx = (int)obp->obj_id;
2204 	ep = &ssc->ses_objmap[idx];
2205 
2206 	switch (ep->enctype) {
2207 	case SESTYP_DEVICE:
2208 		if (obp->cstat[0] & SESCTL_PRDFAIL) {
2209 			ep->priv |= 0x40;
2210 		}
2211 		/* SESCTL_RSTSWAP has no correspondence in SAF-TE */
2212 		if (obp->cstat[0] & SESCTL_DISABLE) {
2213 			ep->priv |= 0x80;
2214 			/*
2215 			 * Hmm. Try to set the 'No Drive' flag.
2216 			 * Maybe that will count as a 'disable'.
2217 			 */
2218 		}
2219 		if (ep->priv & 0xc6) {
2220 			ep->priv &= ~0x1;
2221 		} else {
2222 			ep->priv |= 0x1;	/* no errors */
2223 		}
2224 		wrslot_stat(ssc, slp);
2225 		break;
2226 	case SESTYP_POWER:
2227 		/*
2228 		 * Okay- the only one that makes sense here is to
2229 		 * do the 'disable' for a power supply.
2230 		 */
2231 		if (obp->cstat[0] & SESCTL_DISABLE) {
2232 			(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
2233 				idx - cc->pwroff, 0, 0, slp);
2234 		}
2235 		break;
2236 	case SESTYP_FAN:
2237 		/*
2238 		 * Okay- the only one that makes sense here is to
2239 		 * set fan speed to zero on disable.
2240 		 */
2241 		if (obp->cstat[0] & SESCTL_DISABLE) {
2242 			/* remember- fans are the first items, so idx works */
2243 			(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
2244 		}
2245 		break;
2246 	case SESTYP_DOORLOCK:
2247 		/*
2248 		 * Well, we can 'disable' the lock.
2249 		 */
2250 		if (obp->cstat[0] & SESCTL_DISABLE) {
2251 			cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
2252 			(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2253 				cc->flag2, 0, slp);
2254 		}
2255 		break;
2256 	case SESTYP_ALARM:
2257 		/*
2258 		 * Well, we can 'disable' the alarm.
2259 		 */
2260 		if (obp->cstat[0] & SESCTL_DISABLE) {
2261 			cc->flag2 &= ~SAFT_FLG1_ALARM;
2262 			ep->priv |= 0x40;	/* Muted */
2263 			(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2264 				cc->flag2, 0, slp);
2265 		}
2266 		break;
2267 	default:
2268 		break;
2269 	}
2270 	ep->svalid = 0;
2271 	return (0);
2272 }
2273 
2274 /*
2275  * This function handles all of the 16 byte WRITE BUFFER commands.
2276  */
2277 static int
2278 wrbuf16(ses_softc_t *ssc, uint8_t op, uint8_t b1, uint8_t b2,
2279     uint8_t b3, int slp)
2280 {
2281 	int err, amt;
2282 	char *sdata;
2283 	struct scfg *cc = ssc->ses_private;
2284 	static char cdb[10] = { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
2285 
2286 	if (cc == NULL)
2287 		return (0);
2288 
2289 	sdata = SES_MALLOC(16);
2290 	if (sdata == NULL)
2291 		return (ENOMEM);
2292 
2293 	SES_VLOG(ssc, "saf_wrbuf16 %x %x %x %x\n", op, b1, b2, b3);
2294 
2295 	sdata[0] = op;
2296 	sdata[1] = b1;
2297 	sdata[2] = b2;
2298 	sdata[3] = b3;
2299 	MEMZERO(&sdata[4], 12);
2300 	amt = -16;
2301 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2302 	SES_FREE(sdata, 16);
2303 	return (err);
2304 }
2305 
2306 /*
2307  * This function updates the status byte for the device slot described.
2308  *
2309  * Since this is an optional SAF-TE command, there's no point in
2310  * returning an error.
2311  */
2312 static void
2313 wrslot_stat(ses_softc_t *ssc, int slp)
2314 {
2315 	int i, amt;
2316 	encobj *ep;
2317 	char cdb[10], *sdata;
2318 	struct scfg *cc = ssc->ses_private;
2319 
2320 	if (cc == NULL)
2321 		return;
2322 
2323 	SES_VLOG(ssc, "saf_wrslot\n");
2324 	cdb[0] = WRITE_BUFFER;
2325 	cdb[1] = 1;
2326 	cdb[2] = 0;
2327 	cdb[3] = 0;
2328 	cdb[4] = 0;
2329 	cdb[5] = 0;
2330 	cdb[6] = 0;
2331 	cdb[7] = 0;
2332 	cdb[8] = cc->Nslots * 3 + 1;
2333 	cdb[9] = 0;
2334 
2335 	sdata = SES_MALLOC(cc->Nslots * 3 + 1);
2336 	if (sdata == NULL)
2337 		return;
2338 	MEMZERO(sdata, cc->Nslots * 3 + 1);
2339 
2340 	sdata[0] = SAFTE_WT_DSTAT;
2341 	for (i = 0; i < cc->Nslots; i++) {
2342 		ep = &ssc->ses_objmap[cc->slotoff + i];
2343 		SES_VLOG(ssc, "saf_wrslot %d <- %x\n", i, ep->priv & 0xff);
2344 		sdata[1 + (3 * i)] = ep->priv & 0xff;
2345 	}
2346 	amt = -(cc->Nslots * 3 + 1);
2347 	(void) ses_runcmd(ssc, cdb, 10, sdata, &amt);
2348 	SES_FREE(sdata, cc->Nslots * 3 + 1);
2349 }
2350 
2351 /*
2352  * This function issues the "PERFORM SLOT OPERATION" command.
2353  */
2354 static int
2355 perf_slotop(ses_softc_t *ssc, uint8_t slot, uint8_t opflag, int slp)
2356 {
2357 	int err, amt;
2358 	char *sdata;
2359 	struct scfg *cc = ssc->ses_private;
2360 	static char cdb[10] =
2361 	    { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
2362 
2363 	if (cc == NULL)
2364 		return (0);
2365 
2366 	sdata = SES_MALLOC(SAFT_SCRATCH);
2367 	if (sdata == NULL)
2368 		return (ENOMEM);
2369 	MEMZERO(sdata, SAFT_SCRATCH);
2370 
2371 	sdata[0] = SAFTE_WT_SLTOP;
2372 	sdata[1] = slot;
2373 	sdata[2] = opflag;
2374 	SES_VLOG(ssc, "saf_slotop slot %d op %x\n", slot, opflag);
2375 	amt = -SAFT_SCRATCH;
2376 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2377 	SES_FREE(sdata, SAFT_SCRATCH);
2378 	return (err);
2379 }
2380