xref: /netbsd-src/sys/dev/scsipi/ses.c (revision ba65fde2d7fefa7d39838fa5fa855e62bd606b5e)
1 /*	$NetBSD: ses.c,v 1.44 2012/10/27 17:18:38 chs Exp $ */
2 /*
3  * Copyright (C) 2000 National Aeronautics & Space Administration
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. The name of the author may not be used to endorse or promote products
12  *    derived from this software without specific prior written permission
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24  *
25  * Author:	mjacob@nas.nasa.gov
26  */
27 
28 #include <sys/cdefs.h>
29 __KERNEL_RCSID(0, "$NetBSD: ses.c,v 1.44 2012/10/27 17:18:38 chs Exp $");
30 
31 #include "opt_scsi.h"
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/kernel.h>
36 #include <sys/file.h>
37 #include <sys/stat.h>
38 #include <sys/ioctl.h>
39 #include <sys/scsiio.h>
40 #include <sys/buf.h>
41 #include <sys/uio.h>
42 #include <sys/malloc.h>
43 #include <sys/errno.h>
44 #include <sys/device.h>
45 #include <sys/disklabel.h>
46 #include <sys/disk.h>
47 #include <sys/proc.h>
48 #include <sys/conf.h>
49 #include <sys/vnode.h>
50 
51 #include <dev/scsipi/scsipi_all.h>
52 #include <dev/scsipi/scsipi_disk.h>
53 #include <dev/scsipi/scsi_all.h>
54 #include <dev/scsipi/scsi_disk.h>
55 #include <dev/scsipi/scsipiconf.h>
56 #include <dev/scsipi/scsipi_base.h>
57 #include <dev/scsipi/ses.h>
58 
59 /*
60  * Platform Independent Driver Internal Definitions for SES devices.
61  */
62 typedef enum {
63 	SES_NONE,
64 	SES_SES_SCSI2,
65 	SES_SES,
66 	SES_SES_PASSTHROUGH,
67 	SES_SEN,
68 	SES_SAFT
69 } enctyp;
70 
71 struct ses_softc;
72 typedef struct ses_softc ses_softc_t;
73 typedef struct {
74 	int (*softc_init)(ses_softc_t *, int);
75 	int (*init_enc)(ses_softc_t *);
76 	int (*get_encstat)(ses_softc_t *, int);
77 	int (*set_encstat)(ses_softc_t *, ses_encstat, int);
78 	int (*get_objstat)(ses_softc_t *, ses_objstat *, int);
79 	int (*set_objstat)(ses_softc_t *, ses_objstat *, int);
80 } encvec;
81 
82 #define	ENCI_SVALID	0x80
83 
84 typedef struct {
85 	uint32_t
86 		enctype	: 8,		/* enclosure type */
87 		subenclosure : 8,	/* subenclosure id */
88 		svalid	: 1,		/* enclosure information valid */
89 		priv	: 15;		/* private data, per object */
90 	uint8_t	encstat[4];	/* state && stats */
91 } encobj;
92 
93 #define	SEN_ID		"UNISYS           SUN_SEN"
94 #define	SEN_ID_LEN	24
95 
96 static enctyp ses_type(struct scsipi_inquiry_data *);
97 
98 
99 /* Forward reference to Enclosure Functions */
100 static int ses_softc_init(ses_softc_t *, int);
101 static int ses_init_enc(ses_softc_t *);
102 static int ses_get_encstat(ses_softc_t *, int);
103 static int ses_set_encstat(ses_softc_t *, uint8_t, int);
104 static int ses_get_objstat(ses_softc_t *, ses_objstat *, int);
105 static int ses_set_objstat(ses_softc_t *, ses_objstat *, int);
106 
107 static int safte_softc_init(ses_softc_t *, int);
108 static int safte_init_enc(ses_softc_t *);
109 static int safte_get_encstat(ses_softc_t *, int);
110 static int safte_set_encstat(ses_softc_t *, uint8_t, int);
111 static int safte_get_objstat(ses_softc_t *, ses_objstat *, int);
112 static int safte_set_objstat(ses_softc_t *, ses_objstat *, int);
113 
114 /*
115  * Platform implementation defines/functions for SES internal kernel stuff
116  */
117 
118 #define	STRNCMP			strncmp
119 #define	PRINTF			printf
120 #define	SES_LOG			ses_log
121 #if	defined(DEBUG) || defined(SCSIDEBUG)
122 #define	SES_VLOG		ses_log
123 #else
124 #define	SES_VLOG		if (0) ses_log
125 #endif
126 #define	SES_MALLOC(amt)		malloc(amt, M_DEVBUF, M_NOWAIT)
127 #define	SES_FREE(ptr, amt)	free(ptr, M_DEVBUF)
128 #define	MEMZERO(dest, amt)	memset(dest, 0, amt)
129 #define	MEMCPY(dest, src, amt)	memcpy(dest, src, amt)
130 #define	RECEIVE_DIAGNOSTIC	0x1c
131 #define	SEND_DIAGNOSTIC		0x1d
132 #define	WRITE_BUFFER		0x3b
133 #define	READ_BUFFER		0x3c
134 
135 static dev_type_open(sesopen);
136 static dev_type_close(sesclose);
137 static dev_type_ioctl(sesioctl);
138 
139 const struct cdevsw ses_cdevsw = {
140 	sesopen, sesclose, noread, nowrite, sesioctl,
141 	nostop, notty, nopoll, nommap, nokqfilter, D_OTHER,
142 };
143 
144 static int ses_runcmd(struct ses_softc *, char *, int, char *, int *);
145 static void ses_log(struct ses_softc *, const char *, ...)
146      __attribute__((__format__(__printf__, 2, 3)));
147 
148 /*
149  * General NetBSD kernel stuff.
150  */
151 
152 struct ses_softc {
153 	device_t	sc_dev;
154 	struct scsipi_periph *sc_periph;
155 	enctyp		ses_type;	/* type of enclosure */
156 	encvec		ses_vec;	/* vector to handlers */
157 	void *		ses_private;	/* per-type private data */
158 	encobj *	ses_objmap;	/* objects */
159 	u_int32_t	ses_nobjects;	/* number of objects */
160 	ses_encstat	ses_encstat;	/* overall status */
161 	u_int8_t	ses_flags;
162 };
163 #define	SES_FLAG_INVALID	0x01
164 #define	SES_FLAG_OPEN		0x02
165 #define	SES_FLAG_INITIALIZED	0x04
166 
167 #define SESUNIT(x)       (minor((x)))
168 
169 static int ses_match(device_t, cfdata_t, void *);
170 static void ses_attach(device_t, device_t, void *);
171 static enctyp ses_device_type(struct scsipibus_attach_args *);
172 
173 CFATTACH_DECL_NEW(ses, sizeof (struct ses_softc),
174     ses_match, ses_attach, NULL, NULL);
175 
176 extern struct cfdriver ses_cd;
177 
178 static const struct scsipi_periphsw ses_switch = {
179 	NULL,
180 	NULL,
181 	NULL,
182 	NULL
183 };
184 
185 static int
186 ses_match(device_t parent, cfdata_t match, void *aux)
187 {
188 	struct scsipibus_attach_args *sa = aux;
189 
190 	switch (ses_device_type(sa)) {
191 	case SES_SES:
192 	case SES_SES_SCSI2:
193 	case SES_SEN:
194 	case SES_SAFT:
195 	case SES_SES_PASSTHROUGH:
196 		/*
197 		 * For these devices, it's a perfect match.
198 		 */
199 		return (24);
200 	default:
201 		return (0);
202 	}
203 }
204 
205 
206 /*
207  * Complete the attachment.
208  *
209  * We have to repeat the rerun of INQUIRY data as above because
210  * it's not until the return from the match routine that we have
211  * the softc available to set stuff in.
212  */
213 static void
214 ses_attach(device_t parent, device_t self, void *aux)
215 {
216 	const char *tname;
217 	struct ses_softc *softc = device_private(self);
218 	struct scsipibus_attach_args *sa = aux;
219 	struct scsipi_periph *periph = sa->sa_periph;
220 
221 	softc->sc_dev = self;
222 	SC_DEBUG(periph, SCSIPI_DB2, ("ssattach: "));
223 	softc->sc_periph = periph;
224 	periph->periph_dev = self;
225 	periph->periph_switch = &ses_switch;
226 	periph->periph_openings = 1;
227 
228 	softc->ses_type = ses_device_type(sa);
229 	switch (softc->ses_type) {
230 	case SES_SES:
231 	case SES_SES_SCSI2:
232         case SES_SES_PASSTHROUGH:
233 		softc->ses_vec.softc_init = ses_softc_init;
234 		softc->ses_vec.init_enc = ses_init_enc;
235 		softc->ses_vec.get_encstat = ses_get_encstat;
236 		softc->ses_vec.set_encstat = ses_set_encstat;
237 		softc->ses_vec.get_objstat = ses_get_objstat;
238 		softc->ses_vec.set_objstat = ses_set_objstat;
239 		break;
240         case SES_SAFT:
241 		softc->ses_vec.softc_init = safte_softc_init;
242 		softc->ses_vec.init_enc = safte_init_enc;
243 		softc->ses_vec.get_encstat = safte_get_encstat;
244 		softc->ses_vec.set_encstat = safte_set_encstat;
245 		softc->ses_vec.get_objstat = safte_get_objstat;
246 		softc->ses_vec.set_objstat = safte_set_objstat;
247 		break;
248         case SES_SEN:
249 		break;
250 	case SES_NONE:
251 	default:
252 		break;
253 	}
254 
255 	switch (softc->ses_type) {
256 	default:
257 	case SES_NONE:
258 		tname = "No SES device";
259 		break;
260 	case SES_SES_SCSI2:
261 		tname = "SCSI-2 SES Device";
262 		break;
263 	case SES_SES:
264 		tname = "SCSI-3 SES Device";
265 		break;
266         case SES_SES_PASSTHROUGH:
267 		tname = "SES Passthrough Device";
268 		break;
269         case SES_SEN:
270 		tname = "UNISYS SEN Device (NOT HANDLED YET)";
271 		break;
272         case SES_SAFT:
273 		tname = "SAF-TE Compliant Device";
274 		break;
275 	}
276 	printf("\n%s: %s\n", device_xname(softc->sc_dev), tname);
277 }
278 
279 
280 static enctyp
281 ses_device_type(struct scsipibus_attach_args *sa)
282 {
283 	struct scsipi_inquiry_data *inqp = sa->sa_inqptr;
284 
285 	if (inqp == NULL)
286 		return (SES_NONE);
287 
288 	return (ses_type(inqp));
289 }
290 
291 static int
292 sesopen(dev_t dev, int flags, int fmt, struct lwp *l)
293 {
294 	struct ses_softc *softc;
295 	int error, unit;
296 
297 	unit = SESUNIT(dev);
298 	softc = device_lookup_private(&ses_cd, unit);
299 	if (softc == NULL)
300 		return (ENXIO);
301 
302 	if (softc->ses_flags & SES_FLAG_INVALID) {
303 		error = ENXIO;
304 		goto out;
305 	}
306 	if (softc->ses_flags & SES_FLAG_OPEN) {
307 		error = EBUSY;
308 		goto out;
309 	}
310 	if (softc->ses_vec.softc_init == NULL) {
311 		error = ENXIO;
312 		goto out;
313 	}
314 	error = scsipi_adapter_addref(
315 	    softc->sc_periph->periph_channel->chan_adapter);
316 	if (error != 0)
317                 goto out;
318 
319 
320 	softc->ses_flags |= SES_FLAG_OPEN;
321 	if ((softc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
322 		error = (*softc->ses_vec.softc_init)(softc, 1);
323 		if (error)
324 			softc->ses_flags &= ~SES_FLAG_OPEN;
325 		else
326 			softc->ses_flags |= SES_FLAG_INITIALIZED;
327 	}
328 
329 out:
330 	return (error);
331 }
332 
333 static int
334 sesclose(dev_t dev, int flags, int fmt,
335     struct lwp *l)
336 {
337 	struct ses_softc *softc;
338 	int unit;
339 
340 	unit = SESUNIT(dev);
341 	softc = device_lookup_private(&ses_cd, unit);
342 	if (softc == NULL)
343 		return (ENXIO);
344 
345 	scsipi_wait_drain(softc->sc_periph);
346 	scsipi_adapter_delref(softc->sc_periph->periph_channel->chan_adapter);
347 	softc->ses_flags &= ~SES_FLAG_OPEN;
348 	return (0);
349 }
350 
351 static int
352 sesioctl(dev_t dev, u_long cmd, void *arg_addr, int flag, struct lwp *l)
353 {
354 	ses_encstat tmp;
355 	ses_objstat objs;
356 	ses_object obj, *uobj;
357 	struct ses_softc *ssc = device_lookup_private(&ses_cd, SESUNIT(dev));
358 	void *addr;
359 	int error, i;
360 
361 
362 	if (arg_addr)
363 		addr = *((void **) arg_addr);
364 	else
365 		addr = NULL;
366 
367 	SC_DEBUG(ssc->sc_periph, SCSIPI_DB2, ("sesioctl 0x%lx ", cmd));
368 
369 	/*
370 	 * Now check to see whether we're initialized or not.
371 	 */
372 	if ((ssc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
373 		return (ENODEV);
374 	}
375 
376 	error = 0;
377 
378 	/*
379 	 * If this command can change the device's state,
380 	 * we must have the device open for writing.
381 	 */
382 	switch (cmd) {
383 	case SESIOC_GETNOBJ:
384 	case SESIOC_GETOBJMAP:
385 	case SESIOC_GETENCSTAT:
386 	case SESIOC_GETOBJSTAT:
387 		break;
388 	default:
389 		if ((flag & FWRITE) == 0) {
390 			return (EBADF);
391 		}
392 	}
393 
394 	switch (cmd) {
395 	case SESIOC_GETNOBJ:
396 		if (addr == NULL)
397 			return EINVAL;
398 		error = copyout(&ssc->ses_nobjects, addr,
399 		    sizeof (ssc->ses_nobjects));
400 		break;
401 
402 	case SESIOC_GETOBJMAP:
403 		if (addr == NULL)
404 			return EINVAL;
405 		for (uobj = addr, i = 0; i != ssc->ses_nobjects; i++, uobj++) {
406 			obj.obj_id = i;
407 			obj.subencid = ssc->ses_objmap[i].subenclosure;
408 			obj.object_type = ssc->ses_objmap[i].enctype;
409 			error = copyout(&obj, uobj, sizeof (ses_object));
410 			if (error) {
411 				break;
412 			}
413 		}
414 		break;
415 
416 	case SESIOC_GETENCSTAT:
417 		if (addr == NULL)
418 			return EINVAL;
419 		error = (*ssc->ses_vec.get_encstat)(ssc, 1);
420 		if (error)
421 			break;
422 		tmp = ssc->ses_encstat & ~ENCI_SVALID;
423 		error = copyout(&tmp, addr, sizeof (ses_encstat));
424 		ssc->ses_encstat = tmp;
425 		break;
426 
427 	case SESIOC_SETENCSTAT:
428 		if (addr == NULL)
429 			return EINVAL;
430 		error = copyin(addr, &tmp, sizeof (ses_encstat));
431 		if (error)
432 			break;
433 		error = (*ssc->ses_vec.set_encstat)(ssc, tmp, 1);
434 		break;
435 
436 	case SESIOC_GETOBJSTAT:
437 		if (addr == NULL)
438 			return EINVAL;
439 		error = copyin(addr, &objs, sizeof (ses_objstat));
440 		if (error)
441 			break;
442 		if (objs.obj_id >= ssc->ses_nobjects) {
443 			error = EINVAL;
444 			break;
445 		}
446 		error = (*ssc->ses_vec.get_objstat)(ssc, &objs, 1);
447 		if (error)
448 			break;
449 		error = copyout(&objs, addr, sizeof (ses_objstat));
450 		/*
451 		 * Always (for now) invalidate entry.
452 		 */
453 		ssc->ses_objmap[objs.obj_id].svalid = 0;
454 		break;
455 
456 	case SESIOC_SETOBJSTAT:
457 		if (addr == NULL)
458 			return EINVAL;
459 		error = copyin(addr, &objs, sizeof (ses_objstat));
460 		if (error)
461 			break;
462 
463 		if (objs.obj_id >= ssc->ses_nobjects) {
464 			error = EINVAL;
465 			break;
466 		}
467 		error = (*ssc->ses_vec.set_objstat)(ssc, &objs, 1);
468 
469 		/*
470 		 * Always (for now) invalidate entry.
471 		 */
472 		ssc->ses_objmap[objs.obj_id].svalid = 0;
473 		break;
474 
475 	case SESIOC_INIT:
476 
477 		error = (*ssc->ses_vec.init_enc)(ssc);
478 		break;
479 
480 	default:
481 		error = scsipi_do_ioctl(ssc->sc_periph,
482 			    dev, cmd, arg_addr, flag, l);
483 		break;
484 	}
485 	return (error);
486 }
487 
488 static int
489 ses_runcmd(struct ses_softc *ssc, char *cdb, int cdbl, char *dptr, int *dlenp)
490 {
491 	struct scsipi_generic sgen;
492 	int dl, flg, error;
493 
494 	if (dptr) {
495 		if ((dl = *dlenp) < 0) {
496 			dl = -dl;
497 			flg = XS_CTL_DATA_OUT;
498 		} else {
499 			flg = XS_CTL_DATA_IN;
500 		}
501 	} else {
502 		dl = 0;
503 		flg = 0;
504 	}
505 
506 	if (cdbl > sizeof (struct scsipi_generic)) {
507 		cdbl = sizeof (struct scsipi_generic);
508 	}
509 	memcpy(&sgen, cdb, cdbl);
510 #ifndef	SCSIDEBUG
511 	flg |= XS_CTL_SILENT;
512 #endif
513 	error = scsipi_command(ssc->sc_periph, &sgen, cdbl,
514 	    (u_char *) dptr, dl, SCSIPIRETRIES, 30000, NULL, flg);
515 
516 	if (error == 0 && dptr)
517 		*dlenp = 0;
518 
519 	return (error);
520 }
521 
522 static void
523 ses_log(struct ses_softc *ssc, const char *fmt, ...)
524 {
525 	va_list ap;
526 
527 	printf("%s: ", device_xname(ssc->sc_dev));
528 	va_start(ap, fmt);
529 	vprintf(fmt, ap);
530 	va_end(ap);
531 }
532 
533 /*
534  * The code after this point runs on many platforms,
535  * so forgive the slightly awkward and nonconforming
536  * appearance.
537  */
538 
539 /*
540  * Is this a device that supports enclosure services?
541  *
542  * It's a a pretty simple ruleset- if it is device type 0x0D (13), it's
543  * an SES device. If it happens to be an old UNISYS SEN device, we can
544  * handle that too.
545  */
546 
547 #define	SAFTE_START	44
548 #define	SAFTE_END	50
549 #define	SAFTE_LEN	SAFTE_END-SAFTE_START
550 
551 static enctyp
552 ses_type(struct scsipi_inquiry_data *inqp)
553 {
554 	size_t	given_len = inqp->additional_length + 4;
555 
556 	if (given_len < 8+SEN_ID_LEN)
557 		return (SES_NONE);
558 
559 	if ((inqp->device & SID_TYPE) == T_ENCLOSURE) {
560 		if (STRNCMP(inqp->vendor, SEN_ID, SEN_ID_LEN) == 0) {
561 			return (SES_SEN);
562 		} else if ((inqp->version & SID_ANSII) > 2) {
563 			return (SES_SES);
564 		} else {
565 			return (SES_SES_SCSI2);
566 		}
567 		return (SES_NONE);
568 	}
569 
570 #ifdef	SES_ENABLE_PASSTHROUGH
571 	if ((inqp->flags2 & SID_EncServ) && (inqp->version & SID_ANSII) >= 2) {
572 		/*
573 		 * PassThrough Device.
574 		 */
575 		return (SES_SES_PASSTHROUGH);
576 	}
577 #endif
578 
579 	/*
580 	 * The comparison is short for a reason-
581 	 * some vendors were chopping it short.
582 	 */
583 
584 	if (given_len < SAFTE_END - 2) {
585 		return (SES_NONE);
586 	}
587 
588 	if (STRNCMP((char *)&inqp->vendor_specific[8], "SAF-TE",
589 			SAFTE_LEN - 2) == 0) {
590 		return (SES_SAFT);
591 	}
592 
593 	return (SES_NONE);
594 }
595 
596 /*
597  * SES Native Type Device Support
598  */
599 
600 /*
601  * SES Diagnostic Page Codes
602  */
603 
604 typedef enum {
605 	SesConfigPage = 0x1,
606 	SesControlPage,
607 #define	SesStatusPage SesControlPage
608 	SesHelpTxt,
609 	SesStringOut,
610 #define	SesStringIn	SesStringOut
611 	SesThresholdOut,
612 #define	SesThresholdIn SesThresholdOut
613 	SesArrayControl,
614 #define	SesArrayStatus	SesArrayControl
615 	SesElementDescriptor,
616 	SesShortStatus
617 } SesDiagPageCodes;
618 
619 /*
620  * minimal amounts
621  */
622 
623 /*
624  * Minimum amount of data, starting from byte 0, to have
625  * the config header.
626  */
627 #define	SES_CFGHDR_MINLEN	12
628 
629 /*
630  * Minimum amount of data, starting from byte 0, to have
631  * the config header and one enclosure header.
632  */
633 #define	SES_ENCHDR_MINLEN	48
634 
635 /*
636  * Take this value, subtract it from VEnclen and you know
637  * the length of the vendor unique bytes.
638  */
639 #define	SES_ENCHDR_VMIN		36
640 
641 /*
642  * SES Data Structures
643  */
644 
645 typedef struct {
646 	uint32_t GenCode;	/* Generation Code */
647 	uint8_t	Nsubenc;	/* Number of Subenclosures */
648 } SesCfgHdr;
649 
650 typedef struct {
651 	uint8_t	Subencid;	/* SubEnclosure Identifier */
652 	uint8_t	Ntypes;		/* # of supported types */
653 	uint8_t	VEnclen;	/* Enclosure Descriptor Length */
654 } SesEncHdr;
655 
656 typedef struct {
657 	uint8_t	encWWN[8];	/* XXX- Not Right Yet */
658 	uint8_t	encVid[8];
659 	uint8_t	encPid[16];
660 	uint8_t	encRev[4];
661 	uint8_t	encVen[1];
662 } SesEncDesc;
663 
664 typedef struct {
665 	uint8_t	enc_type;		/* type of element */
666 	uint8_t	enc_maxelt;		/* maximum supported */
667 	uint8_t	enc_subenc;		/* in SubEnc # N */
668 	uint8_t	enc_tlen;		/* Type Descriptor Text Length */
669 } SesThdr;
670 
671 typedef struct {
672 	uint8_t	comstatus;
673 	uint8_t	comstat[3];
674 } SesComStat;
675 
676 struct typidx {
677 	int ses_tidx;
678 	int ses_oidx;
679 };
680 
681 struct sscfg {
682 	uint8_t ses_ntypes;	/* total number of types supported */
683 
684 	/*
685 	 * We need to keep a type index as well as an
686 	 * object index for each object in an enclosure.
687 	 */
688 	struct typidx *ses_typidx;
689 
690 	/*
691 	 * We also need to keep track of the number of elements
692 	 * per type of element. This is needed later so that we
693 	 * can find precisely in the returned status data the
694 	 * status for the Nth element of the Kth type.
695 	 */
696 	uint8_t *	ses_eltmap;
697 };
698 
699 
700 /*
701  * (de)canonicalization defines
702  */
703 #define	sbyte(x, byte)		((((uint32_t)(x)) >> (byte * 8)) & 0xff)
704 #define	sbit(x, bit)		(((uint32_t)(x)) << bit)
705 #define	sset8(outp, idx, sval)	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
706 
707 #define	sset16(outp, idx, sval)	\
708 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
709 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
710 
711 
712 #define	sset24(outp, idx, sval)	\
713 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
714 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
715 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
716 
717 
718 #define	sset32(outp, idx, sval)	\
719 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 3), \
720 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
721 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
722 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
723 
724 #define	gbyte(x, byte)	((((uint32_t)(x)) & 0xff) << (byte * 8))
725 #define	gbit(lv, in, idx, shft, mask)	lv = ((in[idx] >> shft) & mask)
726 #define	sget8(inp, idx, lval)	lval = (((uint8_t *)(inp))[idx++])
727 #define	gget8(inp, idx, lval)	lval = (((uint8_t *)(inp))[idx])
728 
729 #define	sget16(inp, idx, lval)	\
730 	lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
731 		(((uint8_t *)(inp))[idx+1]), idx += 2
732 
733 #define	gget16(inp, idx, lval)	\
734 	lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
735 		(((uint8_t *)(inp))[idx+1])
736 
737 #define	sget24(inp, idx, lval)	\
738 	lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
739 		gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
740 			(((uint8_t *)(inp))[idx+2]), idx += 3
741 
742 #define	gget24(inp, idx, lval)	\
743 	lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
744 		gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
745 			(((uint8_t *)(inp))[idx+2])
746 
747 #define	sget32(inp, idx, lval)	\
748 	lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
749 		gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
750 		gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
751 			(((uint8_t *)(inp))[idx+3]), idx += 4
752 
753 #define	gget32(inp, idx, lval)	\
754 	lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
755 		gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
756 		gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
757 			(((uint8_t *)(inp))[idx+3])
758 
759 #define	SCSZ	0x2000
760 #define	CFLEN	(256 + SES_ENCHDR_MINLEN)
761 
762 /*
763  * Routines specific && private to SES only
764  */
765 
766 static int ses_getconfig(ses_softc_t *);
767 static int ses_getputstat(ses_softc_t *, int, SesComStat *, int, int);
768 static int ses_cfghdr(uint8_t *, int, SesCfgHdr *);
769 static int ses_enchdr(uint8_t *, int, uint8_t, SesEncHdr *);
770 static int ses_encdesc(uint8_t *, int, uint8_t, SesEncDesc *);
771 static int ses_getthdr(uint8_t *, int,  int, SesThdr *);
772 static int ses_decode(char *, int, uint8_t *, int, int, SesComStat *);
773 static int ses_encode(char *, int, uint8_t *, int, int, SesComStat *);
774 
775 static int
776 ses_softc_init(ses_softc_t *ssc, int doinit)
777 {
778 	if (doinit == 0) {
779 		struct sscfg *cc;
780 		if (ssc->ses_nobjects) {
781 			SES_FREE(ssc->ses_objmap,
782 			    ssc->ses_nobjects * sizeof (encobj));
783 			ssc->ses_objmap = NULL;
784 		}
785 		if ((cc = ssc->ses_private) != NULL) {
786 			if (cc->ses_eltmap && cc->ses_ntypes) {
787 				SES_FREE(cc->ses_eltmap, cc->ses_ntypes);
788 				cc->ses_eltmap = NULL;
789 				cc->ses_ntypes = 0;
790 			}
791 			if (cc->ses_typidx && ssc->ses_nobjects) {
792 				SES_FREE(cc->ses_typidx,
793 				    ssc->ses_nobjects * sizeof (struct typidx));
794 				cc->ses_typidx = NULL;
795 			}
796 			SES_FREE(cc, sizeof (struct sscfg));
797 			ssc->ses_private = NULL;
798 		}
799 		ssc->ses_nobjects = 0;
800 		return (0);
801 	}
802 	if (ssc->ses_private == NULL) {
803 		ssc->ses_private = SES_MALLOC(sizeof (struct sscfg));
804 	}
805 	if (ssc->ses_private == NULL) {
806 		return (ENOMEM);
807 	}
808 	ssc->ses_nobjects = 0;
809 	ssc->ses_encstat = 0;
810 	return (ses_getconfig(ssc));
811 }
812 
813 static int
814 ses_init_enc(ses_softc_t *ssc)
815 {
816 	return (0);
817 }
818 
819 static int
820 ses_get_encstat(ses_softc_t *ssc, int slpflag)
821 {
822 	SesComStat ComStat;
823 	int status;
824 
825 	if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 1)) != 0) {
826 		return (status);
827 	}
828 	ssc->ses_encstat = ComStat.comstatus | ENCI_SVALID;
829 	return (0);
830 }
831 
832 static int
833 ses_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflag)
834 {
835 	SesComStat ComStat;
836 	int status;
837 
838 	ComStat.comstatus = encstat & 0xf;
839 	if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 0)) != 0) {
840 		return (status);
841 	}
842 	ssc->ses_encstat = encstat & 0xf;	/* note no SVALID set */
843 	return (0);
844 }
845 
846 static int
847 ses_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
848 {
849 	int i = (int)obp->obj_id;
850 
851 	if (ssc->ses_objmap[i].svalid == 0) {
852 		SesComStat ComStat;
853 		int err = ses_getputstat(ssc, i, &ComStat, slpflag, 1);
854 		if (err)
855 			return (err);
856 		ssc->ses_objmap[i].encstat[0] = ComStat.comstatus;
857 		ssc->ses_objmap[i].encstat[1] = ComStat.comstat[0];
858 		ssc->ses_objmap[i].encstat[2] = ComStat.comstat[1];
859 		ssc->ses_objmap[i].encstat[3] = ComStat.comstat[2];
860 		ssc->ses_objmap[i].svalid = 1;
861 	}
862 	obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
863 	obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
864 	obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
865 	obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
866 	return (0);
867 }
868 
869 static int
870 ses_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
871 {
872 	SesComStat ComStat;
873 	int err;
874 	/*
875 	 * If this is clear, we don't do diddly.
876 	 */
877 	if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
878 		return (0);
879 	}
880 	ComStat.comstatus = obp->cstat[0];
881 	ComStat.comstat[0] = obp->cstat[1];
882 	ComStat.comstat[1] = obp->cstat[2];
883 	ComStat.comstat[2] = obp->cstat[3];
884 	err = ses_getputstat(ssc, (int)obp->obj_id, &ComStat, slpflag, 0);
885 	ssc->ses_objmap[(int)obp->obj_id].svalid = 0;
886 	return (err);
887 }
888 
889 static int
890 ses_getconfig(ses_softc_t *ssc)
891 {
892 	struct sscfg *cc;
893 	SesCfgHdr cf;
894 	SesEncHdr hd;
895 	SesEncDesc *cdp;
896 	SesThdr thdr;
897 	int err, amt, i, nobj, ntype, maxima;
898 	char storage[CFLEN], *sdata;
899 	static char cdb[6] = {
900 	    RECEIVE_DIAGNOSTIC, 0x1, SesConfigPage, SCSZ >> 8, SCSZ & 0xff, 0
901 	};
902 
903 	cc = ssc->ses_private;
904 	if (cc == NULL) {
905 		return (ENXIO);
906 	}
907 
908 	sdata = SES_MALLOC(SCSZ);
909 	if (sdata == NULL)
910 		return (ENOMEM);
911 
912 	amt = SCSZ;
913 	err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
914 	if (err) {
915 		SES_FREE(sdata, SCSZ);
916 		return (err);
917 	}
918 	amt = SCSZ - amt;
919 
920 	if (ses_cfghdr((uint8_t *) sdata, amt, &cf)) {
921 		SES_LOG(ssc, "Unable to parse SES Config Header\n");
922 		SES_FREE(sdata, SCSZ);
923 		return (EIO);
924 	}
925 	if (amt < SES_ENCHDR_MINLEN) {
926 		SES_LOG(ssc, "runt enclosure length (%d)\n", amt);
927 		SES_FREE(sdata, SCSZ);
928 		return (EIO);
929 	}
930 
931 	SES_VLOG(ssc, "GenCode %x %d Subenclosures\n", cf.GenCode, cf.Nsubenc);
932 
933 	/*
934 	 * Now waltz through all the subenclosures toting up the
935 	 * number of types available in each. For this, we only
936 	 * really need the enclosure header. However, we get the
937 	 * enclosure descriptor for debug purposes, as well
938 	 * as self-consistency checking purposes.
939 	 */
940 
941 	maxima = cf.Nsubenc + 1;
942 	cdp = (SesEncDesc *) storage;
943 	for (ntype = i = 0; i < maxima; i++) {
944 		MEMZERO((void *)cdp, sizeof (*cdp));
945 		if (ses_enchdr((uint8_t *) sdata, amt, i, &hd)) {
946 			SES_LOG(ssc, "Cannot Extract Enclosure Header %d\n", i);
947 			SES_FREE(sdata, SCSZ);
948 			return (EIO);
949 		}
950 		SES_VLOG(ssc, " SubEnclosure ID %d, %d Types With this ID, En"
951 		    "closure Length %d\n", hd.Subencid, hd.Ntypes, hd.VEnclen);
952 
953 		if (ses_encdesc((uint8_t *)sdata, amt, i, cdp)) {
954 			SES_LOG(ssc, "Can't get Enclosure Descriptor %d\n", i);
955 			SES_FREE(sdata, SCSZ);
956 			return (EIO);
957 		}
958 		SES_VLOG(ssc, " WWN: %02x%02x%02x%02x%02x%02x%02x%02x\n",
959 		    cdp->encWWN[0], cdp->encWWN[1], cdp->encWWN[2],
960 		    cdp->encWWN[3], cdp->encWWN[4], cdp->encWWN[5],
961 		    cdp->encWWN[6], cdp->encWWN[7]);
962 		ntype += hd.Ntypes;
963 	}
964 
965 	/*
966 	 * Now waltz through all the types that are available, getting
967 	 * the type header so we can start adding up the number of
968 	 * objects available.
969 	 */
970 	for (nobj = i = 0; i < ntype; i++) {
971 		if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
972 			SES_LOG(ssc, "Can't get Enclosure Type Header %d\n", i);
973 			SES_FREE(sdata, SCSZ);
974 			return (EIO);
975 		}
976 		SES_LOG(ssc, " Type Desc[%d]: Type 0x%x, MaxElt %d, In Subenc "
977 		    "%d, Text Length %d\n", i, thdr.enc_type, thdr.enc_maxelt,
978 		    thdr.enc_subenc, thdr.enc_tlen);
979 		nobj += thdr.enc_maxelt;
980 	}
981 
982 
983 	/*
984 	 * Now allocate the object array and type map.
985 	 */
986 
987 	ssc->ses_objmap = SES_MALLOC(nobj * sizeof (encobj));
988 	cc->ses_typidx = SES_MALLOC(nobj * sizeof (struct typidx));
989 	cc->ses_eltmap = SES_MALLOC(ntype);
990 
991 	if (ssc->ses_objmap == NULL || cc->ses_typidx == NULL ||
992 	    cc->ses_eltmap == NULL) {
993 		if (ssc->ses_objmap) {
994 			SES_FREE(ssc->ses_objmap, (nobj * sizeof (encobj)));
995 			ssc->ses_objmap = NULL;
996 		}
997 		if (cc->ses_typidx) {
998 			SES_FREE(cc->ses_typidx,
999 			    (nobj * sizeof (struct typidx)));
1000 			cc->ses_typidx = NULL;
1001 		}
1002 		if (cc->ses_eltmap) {
1003 			SES_FREE(cc->ses_eltmap, ntype);
1004 			cc->ses_eltmap = NULL;
1005 		}
1006 		SES_FREE(sdata, SCSZ);
1007 		return (ENOMEM);
1008 	}
1009 	MEMZERO(ssc->ses_objmap, nobj * sizeof (encobj));
1010 	MEMZERO(cc->ses_typidx, nobj * sizeof (struct typidx));
1011 	MEMZERO(cc->ses_eltmap, ntype);
1012 	cc->ses_ntypes = (uint8_t) ntype;
1013 	ssc->ses_nobjects = nobj;
1014 
1015 	/*
1016 	 * Now waltz through the # of types again to fill in the types
1017 	 * (and subenclosure ids) of the allocated objects.
1018 	 */
1019 	nobj = 0;
1020 	for (i = 0; i < ntype; i++) {
1021 		int j;
1022 		if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
1023 			continue;
1024 		}
1025 		cc->ses_eltmap[i] = thdr.enc_maxelt;
1026 		for (j = 0; j < thdr.enc_maxelt; j++) {
1027 			cc->ses_typidx[nobj].ses_tidx = i;
1028 			cc->ses_typidx[nobj].ses_oidx = j;
1029 			ssc->ses_objmap[nobj].subenclosure = thdr.enc_subenc;
1030 			ssc->ses_objmap[nobj++].enctype = thdr.enc_type;
1031 		}
1032 	}
1033 	SES_FREE(sdata, SCSZ);
1034 	return (0);
1035 }
1036 
1037 static int
1038 ses_getputstat(ses_softc_t *ssc, int objid, SesComStat *sp, int slp,
1039     int in)
1040 {
1041 	struct sscfg *cc;
1042 	int err, amt, bufsiz, tidx, oidx;
1043 	char cdb[6], *sdata;
1044 
1045 	cc = ssc->ses_private;
1046 	if (cc == NULL) {
1047 		return (ENXIO);
1048 	}
1049 
1050 	/*
1051 	 * If we're just getting overall enclosure status,
1052 	 * we only need 2 bytes of data storage.
1053 	 *
1054 	 * If we're getting anything else, we know how much
1055 	 * storage we need by noting that starting at offset
1056 	 * 8 in returned data, all object status bytes are 4
1057 	 * bytes long, and are stored in chunks of types(M)
1058 	 * and nth+1 instances of type M.
1059 	 */
1060 	if (objid == -1) {
1061 		bufsiz = 2;
1062 	} else {
1063 		bufsiz = (ssc->ses_nobjects * 4) + (cc->ses_ntypes * 4) + 8;
1064 	}
1065 	sdata = SES_MALLOC(bufsiz);
1066 	if (sdata == NULL)
1067 		return (ENOMEM);
1068 
1069 	cdb[0] = RECEIVE_DIAGNOSTIC;
1070 	cdb[1] = 1;
1071 	cdb[2] = SesStatusPage;
1072 	cdb[3] = bufsiz >> 8;
1073 	cdb[4] = bufsiz & 0xff;
1074 	cdb[5] = 0;
1075 	amt = bufsiz;
1076 	err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1077 	if (err) {
1078 		SES_FREE(sdata, bufsiz);
1079 		return (err);
1080 	}
1081 	amt = bufsiz - amt;
1082 
1083 	if (objid == -1) {
1084 		tidx = -1;
1085 		oidx = -1;
1086 	} else {
1087 		tidx = cc->ses_typidx[objid].ses_tidx;
1088 		oidx = cc->ses_typidx[objid].ses_oidx;
1089 	}
1090 	if (in) {
1091 		if (ses_decode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1092 			err = ENODEV;
1093 		}
1094 	} else {
1095 		if (ses_encode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1096 			err = ENODEV;
1097 		} else {
1098 			cdb[0] = SEND_DIAGNOSTIC;
1099 			cdb[1] = 0x10;
1100 			cdb[2] = 0;
1101 			cdb[3] = bufsiz >> 8;
1102 			cdb[4] = bufsiz & 0xff;
1103 			cdb[5] = 0;
1104 			amt = -bufsiz;
1105 			err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1106 		}
1107 	}
1108 	SES_FREE(sdata, bufsiz);
1109 	return (0);
1110 }
1111 
1112 
1113 /*
1114  * Routines to parse returned SES data structures.
1115  * Architecture and compiler independent.
1116  */
1117 
1118 static int
1119 ses_cfghdr(uint8_t *buffer, int buflen, SesCfgHdr *cfp)
1120 {
1121 	if (buflen < SES_CFGHDR_MINLEN) {
1122 		return (-1);
1123 	}
1124 	gget8(buffer, 1, cfp->Nsubenc);
1125 	gget32(buffer, 4, cfp->GenCode);
1126 	return (0);
1127 }
1128 
1129 static int
1130 ses_enchdr(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncHdr *chp)
1131 {
1132 	int s, off = 8;
1133 	for (s = 0; s < SubEncId; s++) {
1134 		if (off + 3 > amt)
1135 			return (-1);
1136 		off += buffer[off+3] + 4;
1137 	}
1138 	if (off + 3 > amt) {
1139 		return (-1);
1140 	}
1141 	gget8(buffer, off+1, chp->Subencid);
1142 	gget8(buffer, off+2, chp->Ntypes);
1143 	gget8(buffer, off+3, chp->VEnclen);
1144 	return (0);
1145 }
1146 
1147 static int
1148 ses_encdesc(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncDesc *cdp)
1149 {
1150 	int s, e, enclen, off = 8;
1151 	for (s = 0; s < SubEncId; s++) {
1152 		if (off + 3 > amt)
1153 			return (-1);
1154 		off += buffer[off+3] + 4;
1155 	}
1156 	if (off + 3 > amt) {
1157 		return (-1);
1158 	}
1159 	gget8(buffer, off+3, enclen);
1160 	off += 4;
1161 	if (off  >= amt)
1162 		return (-1);
1163 
1164 	e = off + enclen;
1165 	if (e > amt) {
1166 		e = amt;
1167 	}
1168 	MEMCPY(cdp, &buffer[off], e - off);
1169 	return (0);
1170 }
1171 
1172 static int
1173 ses_getthdr(uint8_t *buffer, int amt, int nth, SesThdr *thp)
1174 {
1175 	int s, off = 8;
1176 
1177 	if (amt < SES_CFGHDR_MINLEN) {
1178 		return (-1);
1179 	}
1180 	for (s = 0; s < buffer[1]; s++) {
1181 		if (off + 3 > amt)
1182 			return (-1);
1183 		off += buffer[off+3] + 4;
1184 	}
1185 	if (off + 3 > amt) {
1186 		return (-1);
1187 	}
1188 	off += buffer[off+3] + 4 + (nth * 4);
1189 	if (amt < (off + 4))
1190 		return (-1);
1191 
1192 	gget8(buffer, off++, thp->enc_type);
1193 	gget8(buffer, off++, thp->enc_maxelt);
1194 	gget8(buffer, off++, thp->enc_subenc);
1195 	gget8(buffer, off, thp->enc_tlen);
1196 	return (0);
1197 }
1198 
1199 /*
1200  * This function needs a little explanation.
1201  *
1202  * The arguments are:
1203  *
1204  *
1205  *	char *b, int amt
1206  *
1207  *		These describes the raw input SES status data and length.
1208  *
1209  *	uint8_t *ep
1210  *
1211  *		This is a map of the number of types for each element type
1212  *		in the enclosure.
1213  *
1214  *	int elt
1215  *
1216  *		This is the element type being sought. If elt is -1,
1217  *		then overall enclosure status is being sought.
1218  *
1219  *	int elm
1220  *
1221  *		This is the ordinal Mth element of type elt being sought.
1222  *
1223  *	SesComStat *sp
1224  *
1225  *		This is the output area to store the status for
1226  *		the Mth element of type Elt.
1227  */
1228 
1229 static int
1230 ses_decode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1231 {
1232 	int idx, i;
1233 
1234 	/*
1235 	 * If it's overall enclosure status being sought, get that.
1236 	 * We need at least 2 bytes of status data to get that.
1237 	 */
1238 	if (elt == -1) {
1239 		if (amt < 2)
1240 			return (-1);
1241 		gget8(b, 1, sp->comstatus);
1242 		sp->comstat[0] = 0;
1243 		sp->comstat[1] = 0;
1244 		sp->comstat[2] = 0;
1245 		return (0);
1246 	}
1247 
1248 	/*
1249 	 * Check to make sure that the Mth element is legal for type Elt.
1250 	 */
1251 
1252 	if (elm >= ep[elt])
1253 		return (-1);
1254 
1255 	/*
1256 	 * Starting at offset 8, start skipping over the storage
1257 	 * for the element types we're not interested in.
1258 	 */
1259 	for (idx = 8, i = 0; i < elt; i++) {
1260 		idx += ((ep[i] + 1) * 4);
1261 	}
1262 
1263 	/*
1264 	 * Skip over Overall status for this element type.
1265 	 */
1266 	idx += 4;
1267 
1268 	/*
1269 	 * And skip to the index for the Mth element that we're going for.
1270 	 */
1271 	idx += (4 * elm);
1272 
1273 	/*
1274 	 * Make sure we haven't overflowed the buffer.
1275 	 */
1276 	if (idx+4 > amt)
1277 		return (-1);
1278 
1279 	/*
1280 	 * Retrieve the status.
1281 	 */
1282 	gget8(b, idx++, sp->comstatus);
1283 	gget8(b, idx++, sp->comstat[0]);
1284 	gget8(b, idx++, sp->comstat[1]);
1285 	gget8(b, idx++, sp->comstat[2]);
1286 #if	0
1287 	PRINTF("Get Elt 0x%x Elm 0x%x (idx %d)\n", elt, elm, idx-4);
1288 #endif
1289 	return (0);
1290 }
1291 
1292 /*
1293  * This is the mirror function to ses_decode, but we set the 'select'
1294  * bit for the object which we're interested in. All other objects,
1295  * after a status fetch, should have that bit off. Hmm. It'd be easy
1296  * enough to ensure this, so we will.
1297  */
1298 
1299 static int
1300 ses_encode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1301 {
1302 	int idx, i;
1303 
1304 	/*
1305 	 * If it's overall enclosure status being sought, get that.
1306 	 * We need at least 2 bytes of status data to get that.
1307 	 */
1308 	if (elt == -1) {
1309 		if (amt < 2)
1310 			return (-1);
1311 		i = 0;
1312 		sset8(b, i, 0);
1313 		sset8(b, i, sp->comstatus & 0xf);
1314 #if	0
1315 		PRINTF("set EncStat %x\n", sp->comstatus);
1316 #endif
1317 		return (0);
1318 	}
1319 
1320 	/*
1321 	 * Check to make sure that the Mth element is legal for type Elt.
1322 	 */
1323 
1324 	if (elm >= ep[elt])
1325 		return (-1);
1326 
1327 	/*
1328 	 * Starting at offset 8, start skipping over the storage
1329 	 * for the element types we're not interested in.
1330 	 */
1331 	for (idx = 8, i = 0; i < elt; i++) {
1332 		idx += ((ep[i] + 1) * 4);
1333 	}
1334 
1335 	/*
1336 	 * Skip over Overall status for this element type.
1337 	 */
1338 	idx += 4;
1339 
1340 	/*
1341 	 * And skip to the index for the Mth element that we're going for.
1342 	 */
1343 	idx += (4 * elm);
1344 
1345 	/*
1346 	 * Make sure we haven't overflowed the buffer.
1347 	 */
1348 	if (idx+4 > amt)
1349 		return (-1);
1350 
1351 	/*
1352 	 * Set the status.
1353 	 */
1354 	sset8(b, idx, sp->comstatus);
1355 	sset8(b, idx, sp->comstat[0]);
1356 	sset8(b, idx, sp->comstat[1]);
1357 	sset8(b, idx, sp->comstat[2]);
1358 	idx -= 4;
1359 
1360 #if	0
1361 	PRINTF("Set Elt 0x%x Elm 0x%x (idx %d) with %x %x %x %x\n",
1362 	    elt, elm, idx, sp->comstatus, sp->comstat[0],
1363 	    sp->comstat[1], sp->comstat[2]);
1364 #endif
1365 
1366 	/*
1367 	 * Now make sure all other 'Select' bits are off.
1368 	 */
1369 	for (i = 8; i < amt; i += 4) {
1370 		if (i != idx)
1371 			b[i] &= ~0x80;
1372 	}
1373 	/*
1374 	 * And make sure the INVOP bit is clear.
1375 	 */
1376 	b[2] &= ~0x10;
1377 
1378 	return (0);
1379 }
1380 
1381 /*
1382  * SAF-TE Type Device Emulation
1383  */
1384 
1385 static int safte_getconfig(ses_softc_t *);
1386 static int safte_rdstat(ses_softc_t *, int);
1387 static int set_objstat_sel(ses_softc_t *, ses_objstat *, int);
1388 static int wrbuf16(ses_softc_t *, uint8_t, uint8_t, uint8_t, uint8_t, int);
1389 static void wrslot_stat(ses_softc_t *, int);
1390 static int perf_slotop(ses_softc_t *, uint8_t, uint8_t, int);
1391 
1392 #define	ALL_ENC_STAT (SES_ENCSTAT_CRITICAL | SES_ENCSTAT_UNRECOV | \
1393 	SES_ENCSTAT_NONCRITICAL | SES_ENCSTAT_INFO)
1394 /*
1395  * SAF-TE specific defines- Mandatory ones only...
1396  */
1397 
1398 /*
1399  * READ BUFFER ('get' commands) IDs- placed in offset 2 of cdb
1400  */
1401 #define	SAFTE_RD_RDCFG	0x00	/* read enclosure configuration */
1402 #define	SAFTE_RD_RDESTS	0x01	/* read enclosure status */
1403 #define	SAFTE_RD_RDDSTS	0x04	/* read drive slot status */
1404 
1405 /*
1406  * WRITE BUFFER ('set' commands) IDs- placed in offset 0 of databuf
1407  */
1408 #define	SAFTE_WT_DSTAT	0x10	/* write device slot status */
1409 #define	SAFTE_WT_SLTOP	0x12	/* perform slot operation */
1410 #define	SAFTE_WT_FANSPD	0x13	/* set fan speed */
1411 #define	SAFTE_WT_ACTPWS	0x14	/* turn on/off power supply */
1412 #define	SAFTE_WT_GLOBAL	0x15	/* send global command */
1413 
1414 
1415 #define	SAFT_SCRATCH	64
1416 #define	NPSEUDO_THERM	16
1417 #define	NPSEUDO_ALARM	1
1418 struct scfg {
1419 	/*
1420 	 * Cached Configuration
1421 	 */
1422 	uint8_t	Nfans;		/* Number of Fans */
1423 	uint8_t	Npwr;		/* Number of Power Supplies */
1424 	uint8_t	Nslots;		/* Number of Device Slots */
1425 	uint8_t	DoorLock;	/* Door Lock Installed */
1426 	uint8_t	Ntherm;		/* Number of Temperature Sensors */
1427 	uint8_t	Nspkrs;		/* Number of Speakers */
1428 	uint8_t Nalarm;		/* Number of Alarms (at least one) */
1429 	/*
1430 	 * Cached Flag Bytes for Global Status
1431 	 */
1432 	uint8_t	flag1;
1433 	uint8_t	flag2;
1434 	/*
1435 	 * What object index ID is where various slots start.
1436 	 */
1437 	uint8_t	pwroff;
1438 	uint8_t	slotoff;
1439 #define	SAFT_ALARM_OFFSET(cc)	(cc)->slotoff - 1
1440 };
1441 
1442 #define	SAFT_FLG1_ALARM		0x1
1443 #define	SAFT_FLG1_GLOBFAIL	0x2
1444 #define	SAFT_FLG1_GLOBWARN	0x4
1445 #define	SAFT_FLG1_ENCPWROFF	0x8
1446 #define	SAFT_FLG1_ENCFANFAIL	0x10
1447 #define	SAFT_FLG1_ENCPWRFAIL	0x20
1448 #define	SAFT_FLG1_ENCDRVFAIL	0x40
1449 #define	SAFT_FLG1_ENCDRVWARN	0x80
1450 
1451 #define	SAFT_FLG2_LOCKDOOR	0x4
1452 #define	SAFT_PRIVATE		sizeof (struct scfg)
1453 
1454 static const char safte_2little[] = "Too Little Data Returned (%d) at line %d\n";
1455 #define	SAFT_BAIL(r, x, k, l)	\
1456 	if (r >= x) { \
1457 		SES_LOG(ssc, safte_2little, x, __LINE__);\
1458 		SES_FREE(k, l); \
1459 		return (EIO); \
1460 	}
1461 
1462 
1463 static int
1464 safte_softc_init(ses_softc_t *ssc, int doinit)
1465 {
1466 	int err, i, r;
1467 	struct scfg *cc;
1468 
1469 	if (doinit == 0) {
1470 		if (ssc->ses_nobjects) {
1471 			if (ssc->ses_objmap) {
1472 				SES_FREE(ssc->ses_objmap,
1473 				    ssc->ses_nobjects * sizeof (encobj));
1474 				ssc->ses_objmap = NULL;
1475 			}
1476 			ssc->ses_nobjects = 0;
1477 		}
1478 		if (ssc->ses_private) {
1479 			SES_FREE(ssc->ses_private, SAFT_PRIVATE);
1480 			ssc->ses_private = NULL;
1481 		}
1482 		return (0);
1483 	}
1484 
1485 	if (ssc->ses_private == NULL) {
1486 		ssc->ses_private = SES_MALLOC(SAFT_PRIVATE);
1487 		if (ssc->ses_private == NULL) {
1488 			return (ENOMEM);
1489 		}
1490 		MEMZERO(ssc->ses_private, SAFT_PRIVATE);
1491 	}
1492 
1493 	ssc->ses_nobjects = 0;
1494 	ssc->ses_encstat = 0;
1495 
1496 	if ((err = safte_getconfig(ssc)) != 0) {
1497 		return (err);
1498 	}
1499 
1500 	/*
1501 	 * The number of objects here, as well as that reported by the
1502 	 * READ_BUFFER/GET_CONFIG call, are the over-temperature flags (15)
1503 	 * that get reported during READ_BUFFER/READ_ENC_STATUS.
1504 	 */
1505 	cc = ssc->ses_private;
1506 	ssc->ses_nobjects = cc->Nfans + cc->Npwr + cc->Nslots + cc->DoorLock +
1507 	    cc->Ntherm + cc->Nspkrs + NPSEUDO_THERM + NPSEUDO_ALARM;
1508 	ssc->ses_objmap = (encobj *)
1509 	    SES_MALLOC(ssc->ses_nobjects * sizeof (encobj));
1510 	if (ssc->ses_objmap == NULL) {
1511 		return (ENOMEM);
1512 	}
1513 	MEMZERO(ssc->ses_objmap, ssc->ses_nobjects * sizeof (encobj));
1514 
1515 	r = 0;
1516 	/*
1517 	 * Note that this is all arranged for the convenience
1518 	 * in later fetches of status.
1519 	 */
1520 	for (i = 0; i < cc->Nfans; i++)
1521 		ssc->ses_objmap[r++].enctype = SESTYP_FAN;
1522 	cc->pwroff = (uint8_t) r;
1523 	for (i = 0; i < cc->Npwr; i++)
1524 		ssc->ses_objmap[r++].enctype = SESTYP_POWER;
1525 	for (i = 0; i < cc->DoorLock; i++)
1526 		ssc->ses_objmap[r++].enctype = SESTYP_DOORLOCK;
1527 	for (i = 0; i < cc->Nspkrs; i++)
1528 		ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1529 	for (i = 0; i < cc->Ntherm; i++)
1530 		ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1531 	for (i = 0; i < NPSEUDO_THERM; i++)
1532 		ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1533 	ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1534 	cc->slotoff = (uint8_t) r;
1535 	for (i = 0; i < cc->Nslots; i++)
1536 		ssc->ses_objmap[r++].enctype = SESTYP_DEVICE;
1537 	return (0);
1538 }
1539 
1540 static int
1541 safte_init_enc(ses_softc_t *ssc)
1542 {
1543 	int err, amt;
1544 	char *sdata;
1545 	static char cdb0[6] = { SEND_DIAGNOSTIC };
1546 	static char cdb[10] =
1547 	    { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
1548 
1549 	sdata = SES_MALLOC(SAFT_SCRATCH);
1550 	if (sdata == NULL)
1551 		return (ENOMEM);
1552 
1553 	err = ses_runcmd(ssc, cdb0, 6, NULL, 0);
1554 	if (err) {
1555 		SES_FREE(sdata, SAFT_SCRATCH);
1556 		return (err);
1557 	}
1558 	sdata[0] = SAFTE_WT_GLOBAL;
1559 	MEMZERO(&sdata[1], 15);
1560 	amt = -SAFT_SCRATCH;
1561 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1562 	SES_FREE(sdata, SAFT_SCRATCH);
1563 	return (err);
1564 }
1565 
1566 static int
1567 safte_get_encstat(ses_softc_t *ssc, int slpflg)
1568 {
1569 	return (safte_rdstat(ssc, slpflg));
1570 }
1571 
1572 static int
1573 safte_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflg)
1574 {
1575 	struct scfg *cc = ssc->ses_private;
1576 	if (cc == NULL)
1577 		return (0);
1578 	/*
1579 	 * Since SAF-TE devices aren't necessarily sticky in terms
1580 	 * of state, make our soft copy of enclosure status 'sticky'-
1581 	 * that is, things set in enclosure status stay set (as implied
1582 	 * by conditions set in reading object status) until cleared.
1583 	 */
1584 	ssc->ses_encstat &= ~ALL_ENC_STAT;
1585 	ssc->ses_encstat |= (encstat & ALL_ENC_STAT);
1586 	ssc->ses_encstat |= ENCI_SVALID;
1587 	cc->flag1 &= ~(SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL|SAFT_FLG1_GLOBWARN);
1588 	if ((encstat & (SES_ENCSTAT_CRITICAL|SES_ENCSTAT_UNRECOV)) != 0) {
1589 		cc->flag1 |= SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL;
1590 	} else if ((encstat & SES_ENCSTAT_NONCRITICAL) != 0) {
1591 		cc->flag1 |= SAFT_FLG1_GLOBWARN;
1592 	}
1593 	return (wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slpflg));
1594 }
1595 
1596 static int
1597 safte_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflg)
1598 {
1599 	int i = (int)obp->obj_id;
1600 
1601 	if ((ssc->ses_encstat & ENCI_SVALID) == 0 ||
1602 	    (ssc->ses_objmap[i].svalid) == 0) {
1603 		int err = safte_rdstat(ssc, slpflg);
1604 		if (err)
1605 			return (err);
1606 	}
1607 	obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
1608 	obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
1609 	obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
1610 	obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
1611 	return (0);
1612 }
1613 
1614 
1615 static int
1616 safte_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slp)
1617 {
1618 	int idx, err;
1619 	encobj *ep;
1620 	struct scfg *cc;
1621 
1622 
1623 	SES_VLOG(ssc, "safte_set_objstat(%d): %x %x %x %x\n",
1624 	    (int)obp->obj_id, obp->cstat[0], obp->cstat[1], obp->cstat[2],
1625 	    obp->cstat[3]);
1626 
1627 	/*
1628 	 * If this is clear, we don't do diddly.
1629 	 */
1630 	if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
1631 		return (0);
1632 	}
1633 
1634 	err = 0;
1635 	/*
1636 	 * Check to see if the common bits are set and do them first.
1637 	 */
1638 	if (obp->cstat[0] & ~SESCTL_CSEL) {
1639 		err = set_objstat_sel(ssc, obp, slp);
1640 		if (err)
1641 			return (err);
1642 	}
1643 
1644 	cc = ssc->ses_private;
1645 	if (cc == NULL)
1646 		return (0);
1647 
1648 	idx = (int)obp->obj_id;
1649 	ep = &ssc->ses_objmap[idx];
1650 
1651 	switch (ep->enctype) {
1652 	case SESTYP_DEVICE:
1653 	{
1654 		uint8_t slotop = 0;
1655 		/*
1656 		 * XXX: I should probably cache the previous state
1657 		 * XXX: of SESCTL_DEVOFF so that when it goes from
1658 		 * XXX: true to false I can then set PREPARE FOR OPERATION
1659 		 * XXX: flag in PERFORM SLOT OPERATION write buffer command.
1660 		 */
1661 		if (obp->cstat[2] & (SESCTL_RQSINS|SESCTL_RQSRMV)) {
1662 			slotop |= 0x2;
1663 		}
1664 		if (obp->cstat[2] & SESCTL_RQSID) {
1665 			slotop |= 0x4;
1666 		}
1667 		err = perf_slotop(ssc, (uint8_t) idx - (uint8_t) cc->slotoff,
1668 		    slotop, slp);
1669 		if (err)
1670 			return (err);
1671 		if (obp->cstat[3] & SESCTL_RQSFLT) {
1672 			ep->priv |= 0x2;
1673 		} else {
1674 			ep->priv &= ~0x2;
1675 		}
1676 		if (ep->priv & 0xc6) {
1677 			ep->priv &= ~0x1;
1678 		} else {
1679 			ep->priv |= 0x1;	/* no errors */
1680 		}
1681 		wrslot_stat(ssc, slp);
1682 		break;
1683 	}
1684 	case SESTYP_POWER:
1685 		if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1686 			cc->flag1 |= SAFT_FLG1_ENCPWRFAIL;
1687 		} else {
1688 			cc->flag1 &= ~SAFT_FLG1_ENCPWRFAIL;
1689 		}
1690 		err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1691 		    cc->flag2, 0, slp);
1692 		if (err)
1693 			return (err);
1694 		if (obp->cstat[3] & SESCTL_RQSTON) {
1695 			(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1696 				idx - cc->pwroff, 0, 0, slp);
1697 		} else {
1698 			(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1699 				idx - cc->pwroff, 0, 1, slp);
1700 		}
1701 		break;
1702 	case SESTYP_FAN:
1703 		if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1704 			cc->flag1 |= SAFT_FLG1_ENCFANFAIL;
1705 		} else {
1706 			cc->flag1 &= ~SAFT_FLG1_ENCFANFAIL;
1707 		}
1708 		err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1709 		    cc->flag2, 0, slp);
1710 		if (err)
1711 			return (err);
1712 		if (obp->cstat[3] & SESCTL_RQSTON) {
1713 			uint8_t fsp;
1714 			if ((obp->cstat[3] & 0x7) == 7) {
1715 				fsp = 4;
1716 			} else if ((obp->cstat[3] & 0x7) == 6) {
1717 				fsp = 3;
1718 			} else if ((obp->cstat[3] & 0x7) == 4) {
1719 				fsp = 2;
1720 			} else {
1721 				fsp = 1;
1722 			}
1723 			(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, fsp, 0, slp);
1724 		} else {
1725 			(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
1726 		}
1727 		break;
1728 	case SESTYP_DOORLOCK:
1729 		if (obp->cstat[3] & 0x1) {
1730 			cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
1731 		} else {
1732 			cc->flag2 |= SAFT_FLG2_LOCKDOOR;
1733 		}
1734 		(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1735 		    cc->flag2, 0, slp);
1736 		break;
1737 	case SESTYP_ALARM:
1738 		/*
1739 		 * On all nonzero but the 'muted' bit, we turn on the alarm,
1740 		 */
1741 		obp->cstat[3] &= ~0xa;
1742 		if (obp->cstat[3] & 0x40) {
1743 			cc->flag2 &= ~SAFT_FLG1_ALARM;
1744 		} else if (obp->cstat[3] != 0) {
1745 			cc->flag2 |= SAFT_FLG1_ALARM;
1746 		} else {
1747 			cc->flag2 &= ~SAFT_FLG1_ALARM;
1748 		}
1749 		ep->priv = obp->cstat[3];
1750 		(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1751 			cc->flag2, 0, slp);
1752 		break;
1753 	default:
1754 		break;
1755 	}
1756 	ep->svalid = 0;
1757 	return (0);
1758 }
1759 
1760 static int
1761 safte_getconfig(ses_softc_t *ssc)
1762 {
1763 	struct scfg *cfg;
1764 	int err, amt;
1765 	char *sdata;
1766 	static char cdb[10] =
1767 	    { READ_BUFFER, 1, SAFTE_RD_RDCFG, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
1768 
1769 	cfg = ssc->ses_private;
1770 	if (cfg == NULL)
1771 		return (ENXIO);
1772 
1773 	sdata = SES_MALLOC(SAFT_SCRATCH);
1774 	if (sdata == NULL)
1775 		return (ENOMEM);
1776 
1777 	amt = SAFT_SCRATCH;
1778 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1779 	if (err) {
1780 		SES_FREE(sdata, SAFT_SCRATCH);
1781 		return (err);
1782 	}
1783 	amt = SAFT_SCRATCH - amt;
1784 	if (amt < 6) {
1785 		SES_LOG(ssc, "too little data (%d) for configuration\n", amt);
1786 		SES_FREE(sdata, SAFT_SCRATCH);
1787 		return (EIO);
1788 	}
1789 	SES_VLOG(ssc, "Nfans %d Npwr %d Nslots %d Lck %d Ntherm %d Nspkrs %d\n",
1790 	    sdata[0], sdata[1], sdata[2], sdata[3], sdata[4], sdata[5]);
1791 	cfg->Nfans = sdata[0];
1792 	cfg->Npwr = sdata[1];
1793 	cfg->Nslots = sdata[2];
1794 	cfg->DoorLock = sdata[3];
1795 	cfg->Ntherm = sdata[4];
1796 	cfg->Nspkrs = sdata[5];
1797 	cfg->Nalarm = NPSEUDO_ALARM;
1798 	SES_FREE(sdata, SAFT_SCRATCH);
1799 	return (0);
1800 }
1801 
1802 static int
1803 safte_rdstat(ses_softc_t *ssc, int slpflg)
1804 {
1805 	int err, oid, r, i, hiwater, nitems, amt;
1806 	uint16_t tempflags;
1807 	size_t buflen;
1808 	uint8_t status, oencstat;
1809 	char *sdata, cdb[10];
1810 	struct scfg *cc = ssc->ses_private;
1811 
1812 
1813 	/*
1814 	 * The number of objects overstates things a bit,
1815 	 * both for the bogus 'thermometer' entries and
1816 	 * the drive status (which isn't read at the same
1817 	 * time as the enclosure status), but that's okay.
1818 	 */
1819 	buflen = 4 * cc->Nslots;
1820 	if (ssc->ses_nobjects > buflen)
1821 		buflen = ssc->ses_nobjects;
1822 	sdata = SES_MALLOC(buflen);
1823 	if (sdata == NULL)
1824 		return (ENOMEM);
1825 
1826 	cdb[0] = READ_BUFFER;
1827 	cdb[1] = 1;
1828 	cdb[2] = SAFTE_RD_RDESTS;
1829 	cdb[3] = 0;
1830 	cdb[4] = 0;
1831 	cdb[5] = 0;
1832 	cdb[6] = 0;
1833 	cdb[7] = (buflen >> 8) & 0xff;
1834 	cdb[8] = buflen & 0xff;
1835 	cdb[9] = 0;
1836 	amt = buflen;
1837 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1838 	if (err) {
1839 		SES_FREE(sdata, buflen);
1840 		return (err);
1841 	}
1842 	hiwater = buflen - amt;
1843 
1844 
1845 	/*
1846 	 * invalidate all status bits.
1847 	 */
1848 	for (i = 0; i < ssc->ses_nobjects; i++)
1849 		ssc->ses_objmap[i].svalid = 0;
1850 	oencstat = ssc->ses_encstat & ALL_ENC_STAT;
1851 	ssc->ses_encstat = 0;
1852 
1853 
1854 	/*
1855 	 * Now parse returned buffer.
1856 	 * If we didn't get enough data back,
1857 	 * that's considered a fatal error.
1858 	 */
1859 	oid = r = 0;
1860 
1861 	for (nitems = i = 0; i < cc->Nfans; i++) {
1862 		SAFT_BAIL(r, hiwater, sdata, buflen);
1863 		/*
1864 		 * 0 = Fan Operational
1865 		 * 1 = Fan is malfunctioning
1866 		 * 2 = Fan is not present
1867 		 * 0x80 = Unknown or Not Reportable Status
1868 		 */
1869 		ssc->ses_objmap[oid].encstat[1] = 0;	/* resvd */
1870 		ssc->ses_objmap[oid].encstat[2] = 0;	/* resvd */
1871 		switch ((int)(uint8_t)sdata[r]) {
1872 		case 0:
1873 			nitems++;
1874 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1875 			/*
1876 			 * We could get fancier and cache
1877 			 * fan speeds that we have set, but
1878 			 * that isn't done now.
1879 			 */
1880 			ssc->ses_objmap[oid].encstat[3] = 7;
1881 			break;
1882 
1883 		case 1:
1884 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1885 			/*
1886 			 * FAIL and FAN STOPPED synthesized
1887 			 */
1888 			ssc->ses_objmap[oid].encstat[3] = 0x40;
1889 			/*
1890 			 * Enclosure marked with CRITICAL error
1891 			 * if only one fan or no thermometers,
1892 			 * else the NONCRITICAL error is set.
1893 			 */
1894 			if (cc->Nfans == 1 || cc->Ntherm == 0)
1895 				ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1896 			else
1897 				ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1898 			break;
1899 		case 2:
1900 			ssc->ses_objmap[oid].encstat[0] =
1901 			    SES_OBJSTAT_NOTINSTALLED;
1902 			ssc->ses_objmap[oid].encstat[3] = 0;
1903 			/*
1904 			 * Enclosure marked with CRITICAL error
1905 			 * if only one fan or no thermometers,
1906 			 * else the NONCRITICAL error is set.
1907 			 */
1908 			if (cc->Nfans == 1)
1909 				ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1910 			else
1911 				ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1912 			break;
1913 		case 0x80:
1914 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1915 			ssc->ses_objmap[oid].encstat[3] = 0;
1916 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
1917 			break;
1918 		default:
1919 			ssc->ses_objmap[oid].encstat[0] =
1920 			    SES_OBJSTAT_UNSUPPORTED;
1921 			SES_LOG(ssc, "Unknown fan%d status 0x%x\n", i,
1922 			    sdata[r] & 0xff);
1923 			break;
1924 		}
1925 		ssc->ses_objmap[oid++].svalid = 1;
1926 		r++;
1927 	}
1928 
1929 	/*
1930 	 * No matter how you cut it, no cooling elements when there
1931 	 * should be some there is critical.
1932 	 */
1933 	if (cc->Nfans && nitems == 0) {
1934 		ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1935 	}
1936 
1937 
1938 	for (i = 0; i < cc->Npwr; i++) {
1939 		SAFT_BAIL(r, hiwater, sdata, buflen);
1940 		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1941 		ssc->ses_objmap[oid].encstat[1] = 0;	/* resvd */
1942 		ssc->ses_objmap[oid].encstat[2] = 0;	/* resvd */
1943 		ssc->ses_objmap[oid].encstat[3] = 0x20;	/* requested on */
1944 		switch ((uint8_t)sdata[r]) {
1945 		case 0x00:	/* pws operational and on */
1946 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1947 			break;
1948 		case 0x01:	/* pws operational and off */
1949 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1950 			ssc->ses_objmap[oid].encstat[3] = 0x10;
1951 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
1952 			break;
1953 		case 0x10:	/* pws is malfunctioning and commanded on */
1954 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1955 			ssc->ses_objmap[oid].encstat[3] = 0x61;
1956 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1957 			break;
1958 
1959 		case 0x11:	/* pws is malfunctioning and commanded off */
1960 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
1961 			ssc->ses_objmap[oid].encstat[3] = 0x51;
1962 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1963 			break;
1964 		case 0x20:	/* pws is not present */
1965 			ssc->ses_objmap[oid].encstat[0] =
1966 			    SES_OBJSTAT_NOTINSTALLED;
1967 			ssc->ses_objmap[oid].encstat[3] = 0;
1968 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
1969 			break;
1970 		case 0x21:	/* pws is present */
1971 			/*
1972 			 * This is for enclosures that cannot tell whether the
1973 			 * device is on or malfunctioning, but know that it is
1974 			 * present. Just fall through.
1975 			 */
1976 			/* FALLTHROUGH */
1977 		case 0x80:	/* Unknown or Not Reportable Status */
1978 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1979 			ssc->ses_objmap[oid].encstat[3] = 0;
1980 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
1981 			break;
1982 		default:
1983 			SES_LOG(ssc, "unknown power supply %d status (0x%x)\n",
1984 			    i, sdata[r] & 0xff);
1985 			break;
1986 		}
1987 		ssc->ses_objmap[oid++].svalid = 1;
1988 		r++;
1989 	}
1990 
1991 	/*
1992 	 * Skip over Slot SCSI IDs
1993 	 */
1994 	r += cc->Nslots;
1995 
1996 	/*
1997 	 * We always have doorlock status, no matter what,
1998 	 * but we only save the status if we have one.
1999 	 */
2000 	SAFT_BAIL(r, hiwater, sdata, buflen);
2001 	if (cc->DoorLock) {
2002 		/*
2003 		 * 0 = Door Locked
2004 		 * 1 = Door Unlocked, or no Lock Installed
2005 		 * 0x80 = Unknown or Not Reportable Status
2006 		 */
2007 		ssc->ses_objmap[oid].encstat[1] = 0;
2008 		ssc->ses_objmap[oid].encstat[2] = 0;
2009 		switch ((uint8_t)sdata[r]) {
2010 		case 0:
2011 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2012 			ssc->ses_objmap[oid].encstat[3] = 0;
2013 			break;
2014 		case 1:
2015 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2016 			ssc->ses_objmap[oid].encstat[3] = 1;
2017 			break;
2018 		case 0x80:
2019 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2020 			ssc->ses_objmap[oid].encstat[3] = 0;
2021 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
2022 			break;
2023 		default:
2024 			ssc->ses_objmap[oid].encstat[0] =
2025 			    SES_OBJSTAT_UNSUPPORTED;
2026 			SES_LOG(ssc, "unknown lock status 0x%x\n",
2027 			    sdata[r] & 0xff);
2028 			break;
2029 		}
2030 		ssc->ses_objmap[oid++].svalid = 1;
2031 	}
2032 	r++;
2033 
2034 	/*
2035 	 * We always have speaker status, no matter what,
2036 	 * but we only save the status if we have one.
2037 	 */
2038 	SAFT_BAIL(r, hiwater, sdata, buflen);
2039 	if (cc->Nspkrs) {
2040 		ssc->ses_objmap[oid].encstat[1] = 0;
2041 		ssc->ses_objmap[oid].encstat[2] = 0;
2042 		if (sdata[r] == 1) {
2043 			/*
2044 			 * We need to cache tone urgency indicators.
2045 			 * Someday.
2046 			 */
2047 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
2048 			ssc->ses_objmap[oid].encstat[3] = 0x8;
2049 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2050 		} else if (sdata[r] == 0) {
2051 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2052 			ssc->ses_objmap[oid].encstat[3] = 0;
2053 		} else {
2054 			ssc->ses_objmap[oid].encstat[0] =
2055 			    SES_OBJSTAT_UNSUPPORTED;
2056 			ssc->ses_objmap[oid].encstat[3] = 0;
2057 			SES_LOG(ssc, "unknown spkr status 0x%x\n",
2058 			    sdata[r] & 0xff);
2059 		}
2060 		ssc->ses_objmap[oid++].svalid = 1;
2061 	}
2062 	r++;
2063 
2064 	for (i = 0; i < cc->Ntherm; i++) {
2065 		SAFT_BAIL(r, hiwater, sdata, buflen);
2066 		/*
2067 		 * Status is a range from -10 to 245 deg Celsius,
2068 		 * which we need to normalize to -20 to -245 according
2069 		 * to the latest SCSI spec, which makes little
2070 		 * sense since this would overflow an 8bit value.
2071 		 * Well, still, the base normalization is -20,
2072 		 * not -10, so we have to adjust.
2073 		 *
2074 		 * So what's over and under temperature?
2075 		 * Hmm- we'll state that 'normal' operating
2076 		 * is 10 to 40 deg Celsius.
2077 		 */
2078 
2079 		/*
2080 		 * Actually.... All of the units that people out in the world
2081 		 * seem to have do not come even close to setting a value that
2082 		 * complies with this spec.
2083 		 *
2084 		 * The closest explanation I could find was in an
2085 		 * LSI-Logic manual, which seemed to indicate that
2086 		 * this value would be set by whatever the I2C code
2087 		 * would interpolate from the output of an LM75
2088 		 * temperature sensor.
2089 		 *
2090 		 * This means that it is impossible to use the actual
2091 		 * numeric value to predict anything. But we don't want
2092 		 * to lose the value. So, we'll propagate the *uncorrected*
2093 		 * value and set SES_OBJSTAT_NOTAVAIL. We'll depend on the
2094 		 * temperature flags for warnings.
2095 		 */
2096 		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NOTAVAIL;
2097 		ssc->ses_objmap[oid].encstat[1] = 0;
2098 		ssc->ses_objmap[oid].encstat[2] = sdata[r];
2099 		ssc->ses_objmap[oid].encstat[3] = 0;
2100 		ssc->ses_objmap[oid++].svalid = 1;
2101 		r++;
2102 	}
2103 
2104 	/*
2105 	 * Now, for "pseudo" thermometers, we have two bytes
2106 	 * of information in enclosure status- 16 bits. Actually,
2107 	 * the MSB is a single TEMP ALERT flag indicating whether
2108 	 * any other bits are set, but, thanks to fuzzy thinking,
2109 	 * in the SAF-TE spec, this can also be set even if no
2110 	 * other bits are set, thus making this really another
2111 	 * binary temperature sensor.
2112 	 */
2113 
2114 	SAFT_BAIL(r, hiwater, sdata, buflen);
2115 	tempflags = sdata[r++];
2116 	SAFT_BAIL(r, hiwater, sdata, buflen);
2117 	tempflags |= (tempflags << 8) | sdata[r++];
2118 
2119 	for (i = 0; i < NPSEUDO_THERM; i++) {
2120 		ssc->ses_objmap[oid].encstat[1] = 0;
2121 		if (tempflags & (1 << (NPSEUDO_THERM - i - 1))) {
2122 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2123 			ssc->ses_objmap[4].encstat[2] = 0xff;
2124 			/*
2125 			 * Set 'over temperature' failure.
2126 			 */
2127 			ssc->ses_objmap[oid].encstat[3] = 8;
2128 			ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2129 		} else {
2130 			/*
2131 			 * We used to say 'not available' and synthesize a
2132 			 * nominal 30 deg (C)- that was wrong. Actually,
2133 			 * Just say 'OK', and use the reserved value of
2134 			 * zero.
2135 			 */
2136 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2137 			ssc->ses_objmap[oid].encstat[2] = 0;
2138 			ssc->ses_objmap[oid].encstat[3] = 0;
2139 		}
2140 		ssc->ses_objmap[oid++].svalid = 1;
2141 	}
2142 
2143 	/*
2144 	 * Get alarm status.
2145 	 */
2146 	ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2147 	ssc->ses_objmap[oid].encstat[3] = ssc->ses_objmap[oid].priv;
2148 	ssc->ses_objmap[oid++].svalid = 1;
2149 
2150 	/*
2151 	 * Now get drive slot status
2152 	 */
2153 	cdb[2] = SAFTE_RD_RDDSTS;
2154 	amt = buflen;
2155 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2156 	if (err) {
2157 		SES_FREE(sdata, buflen);
2158 		return (err);
2159 	}
2160 	hiwater = buflen - amt;
2161 	for (r = i = 0; i < cc->Nslots; i++, r += 4) {
2162 		SAFT_BAIL(r+3, hiwater, sdata, buflen);
2163 		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNSUPPORTED;
2164 		ssc->ses_objmap[oid].encstat[1] = (uint8_t) i;
2165 		ssc->ses_objmap[oid].encstat[2] = 0;
2166 		ssc->ses_objmap[oid].encstat[3] = 0;
2167 		status = sdata[r+3];
2168 		if ((status & 0x1) == 0) {	/* no device */
2169 			ssc->ses_objmap[oid].encstat[0] =
2170 			    SES_OBJSTAT_NOTINSTALLED;
2171 		} else {
2172 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2173 		}
2174 		if (status & 0x2) {
2175 			ssc->ses_objmap[oid].encstat[2] = 0x8;
2176 		}
2177 		if ((status & 0x4) == 0) {
2178 			ssc->ses_objmap[oid].encstat[3] = 0x10;
2179 		}
2180 		ssc->ses_objmap[oid++].svalid = 1;
2181 	}
2182 	/* see comment below about sticky enclosure status */
2183 	ssc->ses_encstat |= ENCI_SVALID | oencstat;
2184 	SES_FREE(sdata, buflen);
2185 	return (0);
2186 }
2187 
2188 static int
2189 set_objstat_sel(ses_softc_t *ssc, ses_objstat *obp, int slp)
2190 {
2191 	int idx;
2192 	encobj *ep;
2193 	struct scfg *cc = ssc->ses_private;
2194 
2195 	if (cc == NULL)
2196 		return (0);
2197 
2198 	idx = (int)obp->obj_id;
2199 	ep = &ssc->ses_objmap[idx];
2200 
2201 	switch (ep->enctype) {
2202 	case SESTYP_DEVICE:
2203 		if (obp->cstat[0] & SESCTL_PRDFAIL) {
2204 			ep->priv |= 0x40;
2205 		}
2206 		/* SESCTL_RSTSWAP has no correspondence in SAF-TE */
2207 		if (obp->cstat[0] & SESCTL_DISABLE) {
2208 			ep->priv |= 0x80;
2209 			/*
2210 			 * Hmm. Try to set the 'No Drive' flag.
2211 			 * Maybe that will count as a 'disable'.
2212 			 */
2213 		}
2214 		if (ep->priv & 0xc6) {
2215 			ep->priv &= ~0x1;
2216 		} else {
2217 			ep->priv |= 0x1;	/* no errors */
2218 		}
2219 		wrslot_stat(ssc, slp);
2220 		break;
2221 	case SESTYP_POWER:
2222 		/*
2223 		 * Okay- the only one that makes sense here is to
2224 		 * do the 'disable' for a power supply.
2225 		 */
2226 		if (obp->cstat[0] & SESCTL_DISABLE) {
2227 			(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
2228 				idx - cc->pwroff, 0, 0, slp);
2229 		}
2230 		break;
2231 	case SESTYP_FAN:
2232 		/*
2233 		 * Okay- the only one that makes sense here is to
2234 		 * set fan speed to zero on disable.
2235 		 */
2236 		if (obp->cstat[0] & SESCTL_DISABLE) {
2237 			/* remember- fans are the first items, so idx works */
2238 			(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
2239 		}
2240 		break;
2241 	case SESTYP_DOORLOCK:
2242 		/*
2243 		 * Well, we can 'disable' the lock.
2244 		 */
2245 		if (obp->cstat[0] & SESCTL_DISABLE) {
2246 			cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
2247 			(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2248 				cc->flag2, 0, slp);
2249 		}
2250 		break;
2251 	case SESTYP_ALARM:
2252 		/*
2253 		 * Well, we can 'disable' the alarm.
2254 		 */
2255 		if (obp->cstat[0] & SESCTL_DISABLE) {
2256 			cc->flag2 &= ~SAFT_FLG1_ALARM;
2257 			ep->priv |= 0x40;	/* Muted */
2258 			(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2259 				cc->flag2, 0, slp);
2260 		}
2261 		break;
2262 	default:
2263 		break;
2264 	}
2265 	ep->svalid = 0;
2266 	return (0);
2267 }
2268 
2269 /*
2270  * This function handles all of the 16 byte WRITE BUFFER commands.
2271  */
2272 static int
2273 wrbuf16(ses_softc_t *ssc, uint8_t op, uint8_t b1, uint8_t b2,
2274     uint8_t b3, int slp)
2275 {
2276 	int err, amt;
2277 	char *sdata;
2278 	struct scfg *cc = ssc->ses_private;
2279 	static char cdb[10] = { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
2280 
2281 	if (cc == NULL)
2282 		return (0);
2283 
2284 	sdata = SES_MALLOC(16);
2285 	if (sdata == NULL)
2286 		return (ENOMEM);
2287 
2288 	SES_VLOG(ssc, "saf_wrbuf16 %x %x %x %x\n", op, b1, b2, b3);
2289 
2290 	sdata[0] = op;
2291 	sdata[1] = b1;
2292 	sdata[2] = b2;
2293 	sdata[3] = b3;
2294 	MEMZERO(&sdata[4], 12);
2295 	amt = -16;
2296 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2297 	SES_FREE(sdata, 16);
2298 	return (err);
2299 }
2300 
2301 /*
2302  * This function updates the status byte for the device slot described.
2303  *
2304  * Since this is an optional SAF-TE command, there's no point in
2305  * returning an error.
2306  */
2307 static void
2308 wrslot_stat(ses_softc_t *ssc, int slp)
2309 {
2310 	int i, amt;
2311 	encobj *ep;
2312 	char cdb[10], *sdata;
2313 	struct scfg *cc = ssc->ses_private;
2314 
2315 	if (cc == NULL)
2316 		return;
2317 
2318 	SES_VLOG(ssc, "saf_wrslot\n");
2319 	cdb[0] = WRITE_BUFFER;
2320 	cdb[1] = 1;
2321 	cdb[2] = 0;
2322 	cdb[3] = 0;
2323 	cdb[4] = 0;
2324 	cdb[5] = 0;
2325 	cdb[6] = 0;
2326 	cdb[7] = 0;
2327 	cdb[8] = cc->Nslots * 3 + 1;
2328 	cdb[9] = 0;
2329 
2330 	sdata = SES_MALLOC(cc->Nslots * 3 + 1);
2331 	if (sdata == NULL)
2332 		return;
2333 	MEMZERO(sdata, cc->Nslots * 3 + 1);
2334 
2335 	sdata[0] = SAFTE_WT_DSTAT;
2336 	for (i = 0; i < cc->Nslots; i++) {
2337 		ep = &ssc->ses_objmap[cc->slotoff + i];
2338 		SES_VLOG(ssc, "saf_wrslot %d <- %x\n", i, ep->priv & 0xff);
2339 		sdata[1 + (3 * i)] = ep->priv & 0xff;
2340 	}
2341 	amt = -(cc->Nslots * 3 + 1);
2342 	(void) ses_runcmd(ssc, cdb, 10, sdata, &amt);
2343 	SES_FREE(sdata, cc->Nslots * 3 + 1);
2344 }
2345 
2346 /*
2347  * This function issues the "PERFORM SLOT OPERATION" command.
2348  */
2349 static int
2350 perf_slotop(ses_softc_t *ssc, uint8_t slot, uint8_t opflag, int slp)
2351 {
2352 	int err, amt;
2353 	char *sdata;
2354 	struct scfg *cc = ssc->ses_private;
2355 	static char cdb[10] =
2356 	    { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
2357 
2358 	if (cc == NULL)
2359 		return (0);
2360 
2361 	sdata = SES_MALLOC(SAFT_SCRATCH);
2362 	if (sdata == NULL)
2363 		return (ENOMEM);
2364 	MEMZERO(sdata, SAFT_SCRATCH);
2365 
2366 	sdata[0] = SAFTE_WT_SLTOP;
2367 	sdata[1] = slot;
2368 	sdata[2] = opflag;
2369 	SES_VLOG(ssc, "saf_slotop slot %d op %x\n", slot, opflag);
2370 	amt = -SAFT_SCRATCH;
2371 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2372 	SES_FREE(sdata, SAFT_SCRATCH);
2373 	return (err);
2374 }
2375