xref: /netbsd-src/sys/dev/scsipi/ses.c (revision b7b7574d3bf8eeb51a1fa3977b59142ec6434a55)
1 /*	$NetBSD: ses.c,v 1.46 2014/03/16 05:20:29 dholland Exp $ */
2 /*
3  * Copyright (C) 2000 National Aeronautics & Space Administration
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. The name of the author may not be used to endorse or promote products
12  *    derived from this software without specific prior written permission
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24  *
25  * Author:	mjacob@nas.nasa.gov
26  */
27 
28 #include <sys/cdefs.h>
29 __KERNEL_RCSID(0, "$NetBSD: ses.c,v 1.46 2014/03/16 05:20:29 dholland Exp $");
30 
31 #include "opt_scsi.h"
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/kernel.h>
36 #include <sys/file.h>
37 #include <sys/stat.h>
38 #include <sys/ioctl.h>
39 #include <sys/scsiio.h>
40 #include <sys/buf.h>
41 #include <sys/uio.h>
42 #include <sys/malloc.h>
43 #include <sys/errno.h>
44 #include <sys/device.h>
45 #include <sys/disklabel.h>
46 #include <sys/disk.h>
47 #include <sys/proc.h>
48 #include <sys/conf.h>
49 #include <sys/vnode.h>
50 
51 #include <dev/scsipi/scsipi_all.h>
52 #include <dev/scsipi/scsipi_disk.h>
53 #include <dev/scsipi/scsi_all.h>
54 #include <dev/scsipi/scsi_disk.h>
55 #include <dev/scsipi/scsipiconf.h>
56 #include <dev/scsipi/scsipi_base.h>
57 #include <dev/scsipi/ses.h>
58 
59 /*
60  * Platform Independent Driver Internal Definitions for SES devices.
61  */
62 typedef enum {
63 	SES_NONE,
64 	SES_SES_SCSI2,
65 	SES_SES,
66 	SES_SES_PASSTHROUGH,
67 	SES_SEN,
68 	SES_SAFT
69 } enctyp;
70 
71 struct ses_softc;
72 typedef struct ses_softc ses_softc_t;
73 typedef struct {
74 	int (*softc_init)(ses_softc_t *, int);
75 	int (*init_enc)(ses_softc_t *);
76 	int (*get_encstat)(ses_softc_t *, int);
77 	int (*set_encstat)(ses_softc_t *, ses_encstat, int);
78 	int (*get_objstat)(ses_softc_t *, ses_objstat *, int);
79 	int (*set_objstat)(ses_softc_t *, ses_objstat *, int);
80 } encvec;
81 
82 #define	ENCI_SVALID	0x80
83 
84 typedef struct {
85 	uint32_t
86 		enctype	: 8,		/* enclosure type */
87 		subenclosure : 8,	/* subenclosure id */
88 		svalid	: 1,		/* enclosure information valid */
89 		priv	: 15;		/* private data, per object */
90 	uint8_t	encstat[4];	/* state && stats */
91 } encobj;
92 
93 #define	SEN_ID		"UNISYS           SUN_SEN"
94 #define	SEN_ID_LEN	24
95 
96 static enctyp ses_type(struct scsipi_inquiry_data *);
97 
98 
99 /* Forward reference to Enclosure Functions */
100 static int ses_softc_init(ses_softc_t *, int);
101 static int ses_init_enc(ses_softc_t *);
102 static int ses_get_encstat(ses_softc_t *, int);
103 static int ses_set_encstat(ses_softc_t *, uint8_t, int);
104 static int ses_get_objstat(ses_softc_t *, ses_objstat *, int);
105 static int ses_set_objstat(ses_softc_t *, ses_objstat *, int);
106 
107 static int safte_softc_init(ses_softc_t *, int);
108 static int safte_init_enc(ses_softc_t *);
109 static int safte_get_encstat(ses_softc_t *, int);
110 static int safte_set_encstat(ses_softc_t *, uint8_t, int);
111 static int safte_get_objstat(ses_softc_t *, ses_objstat *, int);
112 static int safte_set_objstat(ses_softc_t *, ses_objstat *, int);
113 
114 /*
115  * Platform implementation defines/functions for SES internal kernel stuff
116  */
117 
118 #define	STRNCMP			strncmp
119 #define	PRINTF			printf
120 #define	SES_LOG			ses_log
121 #if	defined(DEBUG) || defined(SCSIDEBUG)
122 #define	SES_VLOG		ses_log
123 #else
124 #define	SES_VLOG		if (0) ses_log
125 #endif
126 #define	SES_MALLOC(amt)		malloc(amt, M_DEVBUF, M_NOWAIT)
127 #define	SES_FREE(ptr, amt)	free(ptr, M_DEVBUF)
128 #define	MEMZERO(dest, amt)	memset(dest, 0, amt)
129 #define	MEMCPY(dest, src, amt)	memcpy(dest, src, amt)
130 #define	RECEIVE_DIAGNOSTIC	0x1c
131 #define	SEND_DIAGNOSTIC		0x1d
132 #define	WRITE_BUFFER		0x3b
133 #define	READ_BUFFER		0x3c
134 
135 static dev_type_open(sesopen);
136 static dev_type_close(sesclose);
137 static dev_type_ioctl(sesioctl);
138 
139 const struct cdevsw ses_cdevsw = {
140 	.d_open = sesopen,
141 	.d_close = sesclose,
142 	.d_read = noread,
143 	.d_write = nowrite,
144 	.d_ioctl = sesioctl,
145 	.d_stop = nostop,
146 	.d_tty = notty,
147 	.d_poll = nopoll,
148 	.d_mmap = nommap,
149 	.d_kqfilter = nokqfilter,
150 	.d_flag = D_OTHER
151 };
152 
153 static int ses_runcmd(struct ses_softc *, char *, int, char *, int *);
154 static void ses_log(struct ses_softc *, const char *, ...)
155      __attribute__((__format__(__printf__, 2, 3)));
156 
157 /*
158  * General NetBSD kernel stuff.
159  */
160 
161 struct ses_softc {
162 	device_t	sc_dev;
163 	struct scsipi_periph *sc_periph;
164 	enctyp		ses_type;	/* type of enclosure */
165 	encvec		ses_vec;	/* vector to handlers */
166 	void *		ses_private;	/* per-type private data */
167 	encobj *	ses_objmap;	/* objects */
168 	u_int32_t	ses_nobjects;	/* number of objects */
169 	ses_encstat	ses_encstat;	/* overall status */
170 	u_int8_t	ses_flags;
171 };
172 #define	SES_FLAG_INVALID	0x01
173 #define	SES_FLAG_OPEN		0x02
174 #define	SES_FLAG_INITIALIZED	0x04
175 
176 #define SESUNIT(x)       (minor((x)))
177 
178 static int ses_match(device_t, cfdata_t, void *);
179 static void ses_attach(device_t, device_t, void *);
180 static int ses_detach(device_t, int);
181 static enctyp ses_device_type(struct scsipibus_attach_args *);
182 
183 CFATTACH_DECL_NEW(ses, sizeof (struct ses_softc),
184     ses_match, ses_attach, ses_detach, NULL);
185 
186 extern struct cfdriver ses_cd;
187 
188 static const struct scsipi_periphsw ses_switch = {
189 	NULL,
190 	NULL,
191 	NULL,
192 	NULL
193 };
194 
195 static int
196 ses_match(device_t parent, cfdata_t match, void *aux)
197 {
198 	struct scsipibus_attach_args *sa = aux;
199 
200 	switch (ses_device_type(sa)) {
201 	case SES_SES:
202 	case SES_SES_SCSI2:
203 	case SES_SEN:
204 	case SES_SAFT:
205 	case SES_SES_PASSTHROUGH:
206 		/*
207 		 * For these devices, it's a perfect match.
208 		 */
209 		return (24);
210 	default:
211 		return (0);
212 	}
213 }
214 
215 
216 /*
217  * Complete the attachment.
218  *
219  * We have to repeat the rerun of INQUIRY data as above because
220  * it's not until the return from the match routine that we have
221  * the softc available to set stuff in.
222  */
223 static void
224 ses_attach(device_t parent, device_t self, void *aux)
225 {
226 	const char *tname;
227 	struct ses_softc *softc = device_private(self);
228 	struct scsipibus_attach_args *sa = aux;
229 	struct scsipi_periph *periph = sa->sa_periph;
230 
231 	softc->sc_dev = self;
232 	SC_DEBUG(periph, SCSIPI_DB2, ("ssattach: "));
233 	softc->sc_periph = periph;
234 	periph->periph_dev = self;
235 	periph->periph_switch = &ses_switch;
236 	periph->periph_openings = 1;
237 
238 	softc->ses_type = ses_device_type(sa);
239 	switch (softc->ses_type) {
240 	case SES_SES:
241 	case SES_SES_SCSI2:
242         case SES_SES_PASSTHROUGH:
243 		softc->ses_vec.softc_init = ses_softc_init;
244 		softc->ses_vec.init_enc = ses_init_enc;
245 		softc->ses_vec.get_encstat = ses_get_encstat;
246 		softc->ses_vec.set_encstat = ses_set_encstat;
247 		softc->ses_vec.get_objstat = ses_get_objstat;
248 		softc->ses_vec.set_objstat = ses_set_objstat;
249 		break;
250         case SES_SAFT:
251 		softc->ses_vec.softc_init = safte_softc_init;
252 		softc->ses_vec.init_enc = safte_init_enc;
253 		softc->ses_vec.get_encstat = safte_get_encstat;
254 		softc->ses_vec.set_encstat = safte_set_encstat;
255 		softc->ses_vec.get_objstat = safte_get_objstat;
256 		softc->ses_vec.set_objstat = safte_set_objstat;
257 		break;
258         case SES_SEN:
259 		break;
260 	case SES_NONE:
261 	default:
262 		break;
263 	}
264 
265 	switch (softc->ses_type) {
266 	default:
267 	case SES_NONE:
268 		tname = "No SES device";
269 		break;
270 	case SES_SES_SCSI2:
271 		tname = "SCSI-2 SES Device";
272 		break;
273 	case SES_SES:
274 		tname = "SCSI-3 SES Device";
275 		break;
276         case SES_SES_PASSTHROUGH:
277 		tname = "SES Passthrough Device";
278 		break;
279         case SES_SEN:
280 		tname = "UNISYS SEN Device (NOT HANDLED YET)";
281 		break;
282         case SES_SAFT:
283 		tname = "SAF-TE Compliant Device";
284 		break;
285 	}
286 	printf("\n%s: %s\n", device_xname(softc->sc_dev), tname);
287 }
288 
289 static enctyp
290 ses_device_type(struct scsipibus_attach_args *sa)
291 {
292 	struct scsipi_inquiry_data *inqp = sa->sa_inqptr;
293 
294 	if (inqp == NULL)
295 		return (SES_NONE);
296 
297 	return (ses_type(inqp));
298 }
299 
300 static int
301 sesopen(dev_t dev, int flags, int fmt, struct lwp *l)
302 {
303 	struct ses_softc *softc;
304 	int error, unit;
305 
306 	unit = SESUNIT(dev);
307 	softc = device_lookup_private(&ses_cd, unit);
308 	if (softc == NULL)
309 		return (ENXIO);
310 
311 	if (softc->ses_flags & SES_FLAG_INVALID) {
312 		error = ENXIO;
313 		goto out;
314 	}
315 	if (softc->ses_flags & SES_FLAG_OPEN) {
316 		error = EBUSY;
317 		goto out;
318 	}
319 	if (softc->ses_vec.softc_init == NULL) {
320 		error = ENXIO;
321 		goto out;
322 	}
323 	error = scsipi_adapter_addref(
324 	    softc->sc_periph->periph_channel->chan_adapter);
325 	if (error != 0)
326                 goto out;
327 
328 
329 	softc->ses_flags |= SES_FLAG_OPEN;
330 	if ((softc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
331 		error = (*softc->ses_vec.softc_init)(softc, 1);
332 		if (error)
333 			softc->ses_flags &= ~SES_FLAG_OPEN;
334 		else
335 			softc->ses_flags |= SES_FLAG_INITIALIZED;
336 	}
337 
338 out:
339 	return (error);
340 }
341 
342 static int
343 sesclose(dev_t dev, int flags, int fmt,
344     struct lwp *l)
345 {
346 	struct ses_softc *softc;
347 	int unit;
348 
349 	unit = SESUNIT(dev);
350 	softc = device_lookup_private(&ses_cd, unit);
351 	if (softc == NULL)
352 		return (ENXIO);
353 
354 	scsipi_wait_drain(softc->sc_periph);
355 	scsipi_adapter_delref(softc->sc_periph->periph_channel->chan_adapter);
356 	softc->ses_flags &= ~SES_FLAG_OPEN;
357 	return (0);
358 }
359 
360 static int
361 sesioctl(dev_t dev, u_long cmd, void *arg_addr, int flag, struct lwp *l)
362 {
363 	ses_encstat tmp;
364 	ses_objstat objs;
365 	ses_object obj, *uobj;
366 	struct ses_softc *ssc = device_lookup_private(&ses_cd, SESUNIT(dev));
367 	void *addr;
368 	int error, i;
369 
370 
371 	if (arg_addr)
372 		addr = *((void **) arg_addr);
373 	else
374 		addr = NULL;
375 
376 	SC_DEBUG(ssc->sc_periph, SCSIPI_DB2, ("sesioctl 0x%lx ", cmd));
377 
378 	/*
379 	 * Now check to see whether we're initialized or not.
380 	 */
381 	if ((ssc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
382 		return (ENODEV);
383 	}
384 
385 	error = 0;
386 
387 	/*
388 	 * If this command can change the device's state,
389 	 * we must have the device open for writing.
390 	 */
391 	switch (cmd) {
392 	case SESIOC_GETNOBJ:
393 	case SESIOC_GETOBJMAP:
394 	case SESIOC_GETENCSTAT:
395 	case SESIOC_GETOBJSTAT:
396 		break;
397 	default:
398 		if ((flag & FWRITE) == 0) {
399 			return (EBADF);
400 		}
401 	}
402 
403 	switch (cmd) {
404 	case SESIOC_GETNOBJ:
405 		if (addr == NULL)
406 			return EINVAL;
407 		error = copyout(&ssc->ses_nobjects, addr,
408 		    sizeof (ssc->ses_nobjects));
409 		break;
410 
411 	case SESIOC_GETOBJMAP:
412 		if (addr == NULL)
413 			return EINVAL;
414 		for (uobj = addr, i = 0; i != ssc->ses_nobjects; i++, uobj++) {
415 			obj.obj_id = i;
416 			obj.subencid = ssc->ses_objmap[i].subenclosure;
417 			obj.object_type = ssc->ses_objmap[i].enctype;
418 			error = copyout(&obj, uobj, sizeof (ses_object));
419 			if (error) {
420 				break;
421 			}
422 		}
423 		break;
424 
425 	case SESIOC_GETENCSTAT:
426 		if (addr == NULL)
427 			return EINVAL;
428 		error = (*ssc->ses_vec.get_encstat)(ssc, 1);
429 		if (error)
430 			break;
431 		tmp = ssc->ses_encstat & ~ENCI_SVALID;
432 		error = copyout(&tmp, addr, sizeof (ses_encstat));
433 		ssc->ses_encstat = tmp;
434 		break;
435 
436 	case SESIOC_SETENCSTAT:
437 		if (addr == NULL)
438 			return EINVAL;
439 		error = copyin(addr, &tmp, sizeof (ses_encstat));
440 		if (error)
441 			break;
442 		error = (*ssc->ses_vec.set_encstat)(ssc, tmp, 1);
443 		break;
444 
445 	case SESIOC_GETOBJSTAT:
446 		if (addr == NULL)
447 			return EINVAL;
448 		error = copyin(addr, &objs, sizeof (ses_objstat));
449 		if (error)
450 			break;
451 		if (objs.obj_id >= ssc->ses_nobjects) {
452 			error = EINVAL;
453 			break;
454 		}
455 		error = (*ssc->ses_vec.get_objstat)(ssc, &objs, 1);
456 		if (error)
457 			break;
458 		error = copyout(&objs, addr, sizeof (ses_objstat));
459 		/*
460 		 * Always (for now) invalidate entry.
461 		 */
462 		ssc->ses_objmap[objs.obj_id].svalid = 0;
463 		break;
464 
465 	case SESIOC_SETOBJSTAT:
466 		if (addr == NULL)
467 			return EINVAL;
468 		error = copyin(addr, &objs, sizeof (ses_objstat));
469 		if (error)
470 			break;
471 
472 		if (objs.obj_id >= ssc->ses_nobjects) {
473 			error = EINVAL;
474 			break;
475 		}
476 		error = (*ssc->ses_vec.set_objstat)(ssc, &objs, 1);
477 
478 		/*
479 		 * Always (for now) invalidate entry.
480 		 */
481 		ssc->ses_objmap[objs.obj_id].svalid = 0;
482 		break;
483 
484 	case SESIOC_INIT:
485 
486 		error = (*ssc->ses_vec.init_enc)(ssc);
487 		break;
488 
489 	default:
490 		error = scsipi_do_ioctl(ssc->sc_periph,
491 			    dev, cmd, arg_addr, flag, l);
492 		break;
493 	}
494 	return (error);
495 }
496 
497 static int
498 ses_runcmd(struct ses_softc *ssc, char *cdb, int cdbl, char *dptr, int *dlenp)
499 {
500 	struct scsipi_generic sgen;
501 	int dl, flg, error;
502 
503 	if (dptr) {
504 		if ((dl = *dlenp) < 0) {
505 			dl = -dl;
506 			flg = XS_CTL_DATA_OUT;
507 		} else {
508 			flg = XS_CTL_DATA_IN;
509 		}
510 	} else {
511 		dl = 0;
512 		flg = 0;
513 	}
514 
515 	if (cdbl > sizeof (struct scsipi_generic)) {
516 		cdbl = sizeof (struct scsipi_generic);
517 	}
518 	memcpy(&sgen, cdb, cdbl);
519 #ifndef	SCSIDEBUG
520 	flg |= XS_CTL_SILENT;
521 #endif
522 	error = scsipi_command(ssc->sc_periph, &sgen, cdbl,
523 	    (u_char *) dptr, dl, SCSIPIRETRIES, 30000, NULL, flg);
524 
525 	if (error == 0 && dptr)
526 		*dlenp = 0;
527 
528 	return (error);
529 }
530 
531 static void
532 ses_log(struct ses_softc *ssc, const char *fmt, ...)
533 {
534 	va_list ap;
535 
536 	printf("%s: ", device_xname(ssc->sc_dev));
537 	va_start(ap, fmt);
538 	vprintf(fmt, ap);
539 	va_end(ap);
540 }
541 
542 /*
543  * The code after this point runs on many platforms,
544  * so forgive the slightly awkward and nonconforming
545  * appearance.
546  */
547 
548 /*
549  * Is this a device that supports enclosure services?
550  *
551  * It's a a pretty simple ruleset- if it is device type 0x0D (13), it's
552  * an SES device. If it happens to be an old UNISYS SEN device, we can
553  * handle that too.
554  */
555 
556 #define	SAFTE_START	44
557 #define	SAFTE_END	50
558 #define	SAFTE_LEN	SAFTE_END-SAFTE_START
559 
560 static enctyp
561 ses_type(struct scsipi_inquiry_data *inqp)
562 {
563 	size_t	given_len = inqp->additional_length + 4;
564 
565 	if (given_len < 8+SEN_ID_LEN)
566 		return (SES_NONE);
567 
568 	if ((inqp->device & SID_TYPE) == T_ENCLOSURE) {
569 		if (STRNCMP(inqp->vendor, SEN_ID, SEN_ID_LEN) == 0) {
570 			return (SES_SEN);
571 		} else if ((inqp->version & SID_ANSII) > 2) {
572 			return (SES_SES);
573 		} else {
574 			return (SES_SES_SCSI2);
575 		}
576 		return (SES_NONE);
577 	}
578 
579 #ifdef	SES_ENABLE_PASSTHROUGH
580 	if ((inqp->flags2 & SID_EncServ) && (inqp->version & SID_ANSII) >= 2) {
581 		/*
582 		 * PassThrough Device.
583 		 */
584 		return (SES_SES_PASSTHROUGH);
585 	}
586 #endif
587 
588 	/*
589 	 * The comparison is short for a reason-
590 	 * some vendors were chopping it short.
591 	 */
592 
593 	if (given_len < SAFTE_END - 2) {
594 		return (SES_NONE);
595 	}
596 
597 	if (STRNCMP((char *)&inqp->vendor_specific[8], "SAF-TE",
598 			SAFTE_LEN - 2) == 0) {
599 		return (SES_SAFT);
600 	}
601 
602 	return (SES_NONE);
603 }
604 
605 /*
606  * SES Native Type Device Support
607  */
608 
609 /*
610  * SES Diagnostic Page Codes
611  */
612 
613 typedef enum {
614 	SesConfigPage = 0x1,
615 	SesControlPage,
616 #define	SesStatusPage SesControlPage
617 	SesHelpTxt,
618 	SesStringOut,
619 #define	SesStringIn	SesStringOut
620 	SesThresholdOut,
621 #define	SesThresholdIn SesThresholdOut
622 	SesArrayControl,
623 #define	SesArrayStatus	SesArrayControl
624 	SesElementDescriptor,
625 	SesShortStatus
626 } SesDiagPageCodes;
627 
628 /*
629  * minimal amounts
630  */
631 
632 /*
633  * Minimum amount of data, starting from byte 0, to have
634  * the config header.
635  */
636 #define	SES_CFGHDR_MINLEN	12
637 
638 /*
639  * Minimum amount of data, starting from byte 0, to have
640  * the config header and one enclosure header.
641  */
642 #define	SES_ENCHDR_MINLEN	48
643 
644 /*
645  * Take this value, subtract it from VEnclen and you know
646  * the length of the vendor unique bytes.
647  */
648 #define	SES_ENCHDR_VMIN		36
649 
650 /*
651  * SES Data Structures
652  */
653 
654 typedef struct {
655 	uint32_t GenCode;	/* Generation Code */
656 	uint8_t	Nsubenc;	/* Number of Subenclosures */
657 } SesCfgHdr;
658 
659 typedef struct {
660 	uint8_t	Subencid;	/* SubEnclosure Identifier */
661 	uint8_t	Ntypes;		/* # of supported types */
662 	uint8_t	VEnclen;	/* Enclosure Descriptor Length */
663 } SesEncHdr;
664 
665 typedef struct {
666 	uint8_t	encWWN[8];	/* XXX- Not Right Yet */
667 	uint8_t	encVid[8];
668 	uint8_t	encPid[16];
669 	uint8_t	encRev[4];
670 	uint8_t	encVen[1];
671 } SesEncDesc;
672 
673 typedef struct {
674 	uint8_t	enc_type;		/* type of element */
675 	uint8_t	enc_maxelt;		/* maximum supported */
676 	uint8_t	enc_subenc;		/* in SubEnc # N */
677 	uint8_t	enc_tlen;		/* Type Descriptor Text Length */
678 } SesThdr;
679 
680 typedef struct {
681 	uint8_t	comstatus;
682 	uint8_t	comstat[3];
683 } SesComStat;
684 
685 struct typidx {
686 	int ses_tidx;
687 	int ses_oidx;
688 };
689 
690 struct sscfg {
691 	uint8_t ses_ntypes;	/* total number of types supported */
692 
693 	/*
694 	 * We need to keep a type index as well as an
695 	 * object index for each object in an enclosure.
696 	 */
697 	struct typidx *ses_typidx;
698 
699 	/*
700 	 * We also need to keep track of the number of elements
701 	 * per type of element. This is needed later so that we
702 	 * can find precisely in the returned status data the
703 	 * status for the Nth element of the Kth type.
704 	 */
705 	uint8_t *	ses_eltmap;
706 };
707 
708 
709 /*
710  * (de)canonicalization defines
711  */
712 #define	sbyte(x, byte)		((((uint32_t)(x)) >> (byte * 8)) & 0xff)
713 #define	sbit(x, bit)		(((uint32_t)(x)) << bit)
714 #define	sset8(outp, idx, sval)	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
715 
716 #define	sset16(outp, idx, sval)	\
717 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
718 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
719 
720 
721 #define	sset24(outp, idx, sval)	\
722 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
723 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
724 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
725 
726 
727 #define	sset32(outp, idx, sval)	\
728 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 3), \
729 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
730 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
731 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
732 
733 #define	gbyte(x, byte)	((((uint32_t)(x)) & 0xff) << (byte * 8))
734 #define	gbit(lv, in, idx, shft, mask)	lv = ((in[idx] >> shft) & mask)
735 #define	sget8(inp, idx, lval)	lval = (((uint8_t *)(inp))[idx++])
736 #define	gget8(inp, idx, lval)	lval = (((uint8_t *)(inp))[idx])
737 
738 #define	sget16(inp, idx, lval)	\
739 	lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
740 		(((uint8_t *)(inp))[idx+1]), idx += 2
741 
742 #define	gget16(inp, idx, lval)	\
743 	lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
744 		(((uint8_t *)(inp))[idx+1])
745 
746 #define	sget24(inp, idx, lval)	\
747 	lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
748 		gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
749 			(((uint8_t *)(inp))[idx+2]), idx += 3
750 
751 #define	gget24(inp, idx, lval)	\
752 	lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
753 		gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
754 			(((uint8_t *)(inp))[idx+2])
755 
756 #define	sget32(inp, idx, lval)	\
757 	lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
758 		gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
759 		gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
760 			(((uint8_t *)(inp))[idx+3]), idx += 4
761 
762 #define	gget32(inp, idx, lval)	\
763 	lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
764 		gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
765 		gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
766 			(((uint8_t *)(inp))[idx+3])
767 
768 #define	SCSZ	0x2000
769 #define	CFLEN	(256 + SES_ENCHDR_MINLEN)
770 
771 /*
772  * Routines specific && private to SES only
773  */
774 
775 static int ses_getconfig(ses_softc_t *);
776 static int ses_getputstat(ses_softc_t *, int, SesComStat *, int, int);
777 static int ses_cfghdr(uint8_t *, int, SesCfgHdr *);
778 static int ses_enchdr(uint8_t *, int, uint8_t, SesEncHdr *);
779 static int ses_encdesc(uint8_t *, int, uint8_t, SesEncDesc *);
780 static int ses_getthdr(uint8_t *, int,  int, SesThdr *);
781 static int ses_decode(char *, int, uint8_t *, int, int, SesComStat *);
782 static int ses_encode(char *, int, uint8_t *, int, int, SesComStat *);
783 
784 static int
785 ses_softc_init(ses_softc_t *ssc, int doinit)
786 {
787 	if (doinit == 0) {
788 		struct sscfg *cc;
789 		if (ssc->ses_nobjects) {
790 			SES_FREE(ssc->ses_objmap,
791 			    ssc->ses_nobjects * sizeof (encobj));
792 			ssc->ses_objmap = NULL;
793 		}
794 		if ((cc = ssc->ses_private) != NULL) {
795 			if (cc->ses_eltmap && cc->ses_ntypes) {
796 				SES_FREE(cc->ses_eltmap, cc->ses_ntypes);
797 				cc->ses_eltmap = NULL;
798 				cc->ses_ntypes = 0;
799 			}
800 			if (cc->ses_typidx && ssc->ses_nobjects) {
801 				SES_FREE(cc->ses_typidx,
802 				    ssc->ses_nobjects * sizeof (struct typidx));
803 				cc->ses_typidx = NULL;
804 			}
805 			SES_FREE(cc, sizeof (struct sscfg));
806 			ssc->ses_private = NULL;
807 		}
808 		ssc->ses_nobjects = 0;
809 		return (0);
810 	}
811 	if (ssc->ses_private == NULL) {
812 		ssc->ses_private = SES_MALLOC(sizeof (struct sscfg));
813 	}
814 	if (ssc->ses_private == NULL) {
815 		return (ENOMEM);
816 	}
817 	ssc->ses_nobjects = 0;
818 	ssc->ses_encstat = 0;
819 	return (ses_getconfig(ssc));
820 }
821 
822 static int
823 ses_detach(device_t self, int flags)
824 {
825 	struct ses_softc *ssc = device_private(self);
826 	struct sscfg *cc = ssc->ses_private;
827 
828 	if (ssc->ses_objmap) {
829 		SES_FREE(ssc->ses_objmap, (nobj * sizeof (encobj)));
830 	}
831 	if (cc != NULL) {
832 		if (cc->ses_typidx) {
833 			SES_FREE(cc->ses_typidx,
834 			    (nobj * sizeof (struct typidx)));
835 		}
836 		if (cc->ses_eltmap) {
837 			SES_FREE(cc->ses_eltmap, ntype);
838 		}
839 		SES_FREE(cc, sizeof (struct sscfg));
840 	}
841 
842 	return 0;
843 }
844 
845 static int
846 ses_init_enc(ses_softc_t *ssc)
847 {
848 	return (0);
849 }
850 
851 static int
852 ses_get_encstat(ses_softc_t *ssc, int slpflag)
853 {
854 	SesComStat ComStat;
855 	int status;
856 
857 	if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 1)) != 0) {
858 		return (status);
859 	}
860 	ssc->ses_encstat = ComStat.comstatus | ENCI_SVALID;
861 	return (0);
862 }
863 
864 static int
865 ses_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflag)
866 {
867 	SesComStat ComStat;
868 	int status;
869 
870 	ComStat.comstatus = encstat & 0xf;
871 	if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 0)) != 0) {
872 		return (status);
873 	}
874 	ssc->ses_encstat = encstat & 0xf;	/* note no SVALID set */
875 	return (0);
876 }
877 
878 static int
879 ses_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
880 {
881 	int i = (int)obp->obj_id;
882 
883 	if (ssc->ses_objmap[i].svalid == 0) {
884 		SesComStat ComStat;
885 		int err = ses_getputstat(ssc, i, &ComStat, slpflag, 1);
886 		if (err)
887 			return (err);
888 		ssc->ses_objmap[i].encstat[0] = ComStat.comstatus;
889 		ssc->ses_objmap[i].encstat[1] = ComStat.comstat[0];
890 		ssc->ses_objmap[i].encstat[2] = ComStat.comstat[1];
891 		ssc->ses_objmap[i].encstat[3] = ComStat.comstat[2];
892 		ssc->ses_objmap[i].svalid = 1;
893 	}
894 	obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
895 	obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
896 	obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
897 	obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
898 	return (0);
899 }
900 
901 static int
902 ses_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
903 {
904 	SesComStat ComStat;
905 	int err;
906 	/*
907 	 * If this is clear, we don't do diddly.
908 	 */
909 	if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
910 		return (0);
911 	}
912 	ComStat.comstatus = obp->cstat[0];
913 	ComStat.comstat[0] = obp->cstat[1];
914 	ComStat.comstat[1] = obp->cstat[2];
915 	ComStat.comstat[2] = obp->cstat[3];
916 	err = ses_getputstat(ssc, (int)obp->obj_id, &ComStat, slpflag, 0);
917 	ssc->ses_objmap[(int)obp->obj_id].svalid = 0;
918 	return (err);
919 }
920 
921 static int
922 ses_getconfig(ses_softc_t *ssc)
923 {
924 	struct sscfg *cc;
925 	SesCfgHdr cf;
926 	SesEncHdr hd;
927 	SesEncDesc *cdp;
928 	SesThdr thdr;
929 	int err, amt, i, nobj, ntype, maxima;
930 	char storage[CFLEN], *sdata;
931 	static char cdb[6] = {
932 	    RECEIVE_DIAGNOSTIC, 0x1, SesConfigPage, SCSZ >> 8, SCSZ & 0xff, 0
933 	};
934 
935 	cc = ssc->ses_private;
936 	if (cc == NULL) {
937 		return (ENXIO);
938 	}
939 
940 	sdata = SES_MALLOC(SCSZ);
941 	if (sdata == NULL)
942 		return (ENOMEM);
943 
944 	amt = SCSZ;
945 	err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
946 	if (err) {
947 		SES_FREE(sdata, SCSZ);
948 		return (err);
949 	}
950 	amt = SCSZ - amt;
951 
952 	if (ses_cfghdr((uint8_t *) sdata, amt, &cf)) {
953 		SES_LOG(ssc, "Unable to parse SES Config Header\n");
954 		SES_FREE(sdata, SCSZ);
955 		return (EIO);
956 	}
957 	if (amt < SES_ENCHDR_MINLEN) {
958 		SES_LOG(ssc, "runt enclosure length (%d)\n", amt);
959 		SES_FREE(sdata, SCSZ);
960 		return (EIO);
961 	}
962 
963 	SES_VLOG(ssc, "GenCode %x %d Subenclosures\n", cf.GenCode, cf.Nsubenc);
964 
965 	/*
966 	 * Now waltz through all the subenclosures toting up the
967 	 * number of types available in each. For this, we only
968 	 * really need the enclosure header. However, we get the
969 	 * enclosure descriptor for debug purposes, as well
970 	 * as self-consistency checking purposes.
971 	 */
972 
973 	maxima = cf.Nsubenc + 1;
974 	cdp = (SesEncDesc *) storage;
975 	for (ntype = i = 0; i < maxima; i++) {
976 		MEMZERO((void *)cdp, sizeof (*cdp));
977 		if (ses_enchdr((uint8_t *) sdata, amt, i, &hd)) {
978 			SES_LOG(ssc, "Cannot Extract Enclosure Header %d\n", i);
979 			SES_FREE(sdata, SCSZ);
980 			return (EIO);
981 		}
982 		SES_VLOG(ssc, " SubEnclosure ID %d, %d Types With this ID, En"
983 		    "closure Length %d\n", hd.Subencid, hd.Ntypes, hd.VEnclen);
984 
985 		if (ses_encdesc((uint8_t *)sdata, amt, i, cdp)) {
986 			SES_LOG(ssc, "Can't get Enclosure Descriptor %d\n", i);
987 			SES_FREE(sdata, SCSZ);
988 			return (EIO);
989 		}
990 		SES_VLOG(ssc, " WWN: %02x%02x%02x%02x%02x%02x%02x%02x\n",
991 		    cdp->encWWN[0], cdp->encWWN[1], cdp->encWWN[2],
992 		    cdp->encWWN[3], cdp->encWWN[4], cdp->encWWN[5],
993 		    cdp->encWWN[6], cdp->encWWN[7]);
994 		ntype += hd.Ntypes;
995 	}
996 
997 	/*
998 	 * Now waltz through all the types that are available, getting
999 	 * the type header so we can start adding up the number of
1000 	 * objects available.
1001 	 */
1002 	for (nobj = i = 0; i < ntype; i++) {
1003 		if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
1004 			SES_LOG(ssc, "Can't get Enclosure Type Header %d\n", i);
1005 			SES_FREE(sdata, SCSZ);
1006 			return (EIO);
1007 		}
1008 		SES_LOG(ssc, " Type Desc[%d]: Type 0x%x, MaxElt %d, In Subenc "
1009 		    "%d, Text Length %d\n", i, thdr.enc_type, thdr.enc_maxelt,
1010 		    thdr.enc_subenc, thdr.enc_tlen);
1011 		nobj += thdr.enc_maxelt;
1012 	}
1013 
1014 
1015 	/*
1016 	 * Now allocate the object array and type map.
1017 	 */
1018 
1019 	ssc->ses_objmap = SES_MALLOC(nobj * sizeof (encobj));
1020 	cc->ses_typidx = SES_MALLOC(nobj * sizeof (struct typidx));
1021 	cc->ses_eltmap = SES_MALLOC(ntype);
1022 
1023 	if (ssc->ses_objmap == NULL || cc->ses_typidx == NULL ||
1024 	    cc->ses_eltmap == NULL) {
1025 		if (ssc->ses_objmap) {
1026 			SES_FREE(ssc->ses_objmap, (nobj * sizeof (encobj)));
1027 			ssc->ses_objmap = NULL;
1028 		}
1029 		if (cc->ses_typidx) {
1030 			SES_FREE(cc->ses_typidx,
1031 			    (nobj * sizeof (struct typidx)));
1032 			cc->ses_typidx = NULL;
1033 		}
1034 		if (cc->ses_eltmap) {
1035 			SES_FREE(cc->ses_eltmap, ntype);
1036 			cc->ses_eltmap = NULL;
1037 		}
1038 		SES_FREE(sdata, SCSZ);
1039 		return (ENOMEM);
1040 	}
1041 	MEMZERO(ssc->ses_objmap, nobj * sizeof (encobj));
1042 	MEMZERO(cc->ses_typidx, nobj * sizeof (struct typidx));
1043 	MEMZERO(cc->ses_eltmap, ntype);
1044 	cc->ses_ntypes = (uint8_t) ntype;
1045 	ssc->ses_nobjects = nobj;
1046 
1047 	/*
1048 	 * Now waltz through the # of types again to fill in the types
1049 	 * (and subenclosure ids) of the allocated objects.
1050 	 */
1051 	nobj = 0;
1052 	for (i = 0; i < ntype; i++) {
1053 		int j;
1054 		if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
1055 			continue;
1056 		}
1057 		cc->ses_eltmap[i] = thdr.enc_maxelt;
1058 		for (j = 0; j < thdr.enc_maxelt; j++) {
1059 			cc->ses_typidx[nobj].ses_tidx = i;
1060 			cc->ses_typidx[nobj].ses_oidx = j;
1061 			ssc->ses_objmap[nobj].subenclosure = thdr.enc_subenc;
1062 			ssc->ses_objmap[nobj++].enctype = thdr.enc_type;
1063 		}
1064 	}
1065 	SES_FREE(sdata, SCSZ);
1066 	return (0);
1067 }
1068 
1069 static int
1070 ses_getputstat(ses_softc_t *ssc, int objid, SesComStat *sp, int slp,
1071     int in)
1072 {
1073 	struct sscfg *cc;
1074 	int err, amt, bufsiz, tidx, oidx;
1075 	char cdb[6], *sdata;
1076 
1077 	cc = ssc->ses_private;
1078 	if (cc == NULL) {
1079 		return (ENXIO);
1080 	}
1081 
1082 	/*
1083 	 * If we're just getting overall enclosure status,
1084 	 * we only need 2 bytes of data storage.
1085 	 *
1086 	 * If we're getting anything else, we know how much
1087 	 * storage we need by noting that starting at offset
1088 	 * 8 in returned data, all object status bytes are 4
1089 	 * bytes long, and are stored in chunks of types(M)
1090 	 * and nth+1 instances of type M.
1091 	 */
1092 	if (objid == -1) {
1093 		bufsiz = 2;
1094 	} else {
1095 		bufsiz = (ssc->ses_nobjects * 4) + (cc->ses_ntypes * 4) + 8;
1096 	}
1097 	sdata = SES_MALLOC(bufsiz);
1098 	if (sdata == NULL)
1099 		return (ENOMEM);
1100 
1101 	cdb[0] = RECEIVE_DIAGNOSTIC;
1102 	cdb[1] = 1;
1103 	cdb[2] = SesStatusPage;
1104 	cdb[3] = bufsiz >> 8;
1105 	cdb[4] = bufsiz & 0xff;
1106 	cdb[5] = 0;
1107 	amt = bufsiz;
1108 	err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1109 	if (err) {
1110 		SES_FREE(sdata, bufsiz);
1111 		return (err);
1112 	}
1113 	amt = bufsiz - amt;
1114 
1115 	if (objid == -1) {
1116 		tidx = -1;
1117 		oidx = -1;
1118 	} else {
1119 		tidx = cc->ses_typidx[objid].ses_tidx;
1120 		oidx = cc->ses_typidx[objid].ses_oidx;
1121 	}
1122 	if (in) {
1123 		if (ses_decode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1124 			err = ENODEV;
1125 		}
1126 	} else {
1127 		if (ses_encode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1128 			err = ENODEV;
1129 		} else {
1130 			cdb[0] = SEND_DIAGNOSTIC;
1131 			cdb[1] = 0x10;
1132 			cdb[2] = 0;
1133 			cdb[3] = bufsiz >> 8;
1134 			cdb[4] = bufsiz & 0xff;
1135 			cdb[5] = 0;
1136 			amt = -bufsiz;
1137 			err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1138 		}
1139 	}
1140 	SES_FREE(sdata, bufsiz);
1141 	return (0);
1142 }
1143 
1144 
1145 /*
1146  * Routines to parse returned SES data structures.
1147  * Architecture and compiler independent.
1148  */
1149 
1150 static int
1151 ses_cfghdr(uint8_t *buffer, int buflen, SesCfgHdr *cfp)
1152 {
1153 	if (buflen < SES_CFGHDR_MINLEN) {
1154 		return (-1);
1155 	}
1156 	gget8(buffer, 1, cfp->Nsubenc);
1157 	gget32(buffer, 4, cfp->GenCode);
1158 	return (0);
1159 }
1160 
1161 static int
1162 ses_enchdr(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncHdr *chp)
1163 {
1164 	int s, off = 8;
1165 	for (s = 0; s < SubEncId; s++) {
1166 		if (off + 3 > amt)
1167 			return (-1);
1168 		off += buffer[off+3] + 4;
1169 	}
1170 	if (off + 3 > amt) {
1171 		return (-1);
1172 	}
1173 	gget8(buffer, off+1, chp->Subencid);
1174 	gget8(buffer, off+2, chp->Ntypes);
1175 	gget8(buffer, off+3, chp->VEnclen);
1176 	return (0);
1177 }
1178 
1179 static int
1180 ses_encdesc(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncDesc *cdp)
1181 {
1182 	int s, e, enclen, off = 8;
1183 	for (s = 0; s < SubEncId; s++) {
1184 		if (off + 3 > amt)
1185 			return (-1);
1186 		off += buffer[off+3] + 4;
1187 	}
1188 	if (off + 3 > amt) {
1189 		return (-1);
1190 	}
1191 	gget8(buffer, off+3, enclen);
1192 	off += 4;
1193 	if (off  >= amt)
1194 		return (-1);
1195 
1196 	e = off + enclen;
1197 	if (e > amt) {
1198 		e = amt;
1199 	}
1200 	MEMCPY(cdp, &buffer[off], e - off);
1201 	return (0);
1202 }
1203 
1204 static int
1205 ses_getthdr(uint8_t *buffer, int amt, int nth, SesThdr *thp)
1206 {
1207 	int s, off = 8;
1208 
1209 	if (amt < SES_CFGHDR_MINLEN) {
1210 		return (-1);
1211 	}
1212 	for (s = 0; s < buffer[1]; s++) {
1213 		if (off + 3 > amt)
1214 			return (-1);
1215 		off += buffer[off+3] + 4;
1216 	}
1217 	if (off + 3 > amt) {
1218 		return (-1);
1219 	}
1220 	off += buffer[off+3] + 4 + (nth * 4);
1221 	if (amt < (off + 4))
1222 		return (-1);
1223 
1224 	gget8(buffer, off++, thp->enc_type);
1225 	gget8(buffer, off++, thp->enc_maxelt);
1226 	gget8(buffer, off++, thp->enc_subenc);
1227 	gget8(buffer, off, thp->enc_tlen);
1228 	return (0);
1229 }
1230 
1231 /*
1232  * This function needs a little explanation.
1233  *
1234  * The arguments are:
1235  *
1236  *
1237  *	char *b, int amt
1238  *
1239  *		These describes the raw input SES status data and length.
1240  *
1241  *	uint8_t *ep
1242  *
1243  *		This is a map of the number of types for each element type
1244  *		in the enclosure.
1245  *
1246  *	int elt
1247  *
1248  *		This is the element type being sought. If elt is -1,
1249  *		then overall enclosure status is being sought.
1250  *
1251  *	int elm
1252  *
1253  *		This is the ordinal Mth element of type elt being sought.
1254  *
1255  *	SesComStat *sp
1256  *
1257  *		This is the output area to store the status for
1258  *		the Mth element of type Elt.
1259  */
1260 
1261 static int
1262 ses_decode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1263 {
1264 	int idx, i;
1265 
1266 	/*
1267 	 * If it's overall enclosure status being sought, get that.
1268 	 * We need at least 2 bytes of status data to get that.
1269 	 */
1270 	if (elt == -1) {
1271 		if (amt < 2)
1272 			return (-1);
1273 		gget8(b, 1, sp->comstatus);
1274 		sp->comstat[0] = 0;
1275 		sp->comstat[1] = 0;
1276 		sp->comstat[2] = 0;
1277 		return (0);
1278 	}
1279 
1280 	/*
1281 	 * Check to make sure that the Mth element is legal for type Elt.
1282 	 */
1283 
1284 	if (elm >= ep[elt])
1285 		return (-1);
1286 
1287 	/*
1288 	 * Starting at offset 8, start skipping over the storage
1289 	 * for the element types we're not interested in.
1290 	 */
1291 	for (idx = 8, i = 0; i < elt; i++) {
1292 		idx += ((ep[i] + 1) * 4);
1293 	}
1294 
1295 	/*
1296 	 * Skip over Overall status for this element type.
1297 	 */
1298 	idx += 4;
1299 
1300 	/*
1301 	 * And skip to the index for the Mth element that we're going for.
1302 	 */
1303 	idx += (4 * elm);
1304 
1305 	/*
1306 	 * Make sure we haven't overflowed the buffer.
1307 	 */
1308 	if (idx+4 > amt)
1309 		return (-1);
1310 
1311 	/*
1312 	 * Retrieve the status.
1313 	 */
1314 	gget8(b, idx++, sp->comstatus);
1315 	gget8(b, idx++, sp->comstat[0]);
1316 	gget8(b, idx++, sp->comstat[1]);
1317 	gget8(b, idx++, sp->comstat[2]);
1318 #if	0
1319 	PRINTF("Get Elt 0x%x Elm 0x%x (idx %d)\n", elt, elm, idx-4);
1320 #endif
1321 	return (0);
1322 }
1323 
1324 /*
1325  * This is the mirror function to ses_decode, but we set the 'select'
1326  * bit for the object which we're interested in. All other objects,
1327  * after a status fetch, should have that bit off. Hmm. It'd be easy
1328  * enough to ensure this, so we will.
1329  */
1330 
1331 static int
1332 ses_encode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1333 {
1334 	int idx, i;
1335 
1336 	/*
1337 	 * If it's overall enclosure status being sought, get that.
1338 	 * We need at least 2 bytes of status data to get that.
1339 	 */
1340 	if (elt == -1) {
1341 		if (amt < 2)
1342 			return (-1);
1343 		i = 0;
1344 		sset8(b, i, 0);
1345 		sset8(b, i, sp->comstatus & 0xf);
1346 #if	0
1347 		PRINTF("set EncStat %x\n", sp->comstatus);
1348 #endif
1349 		return (0);
1350 	}
1351 
1352 	/*
1353 	 * Check to make sure that the Mth element is legal for type Elt.
1354 	 */
1355 
1356 	if (elm >= ep[elt])
1357 		return (-1);
1358 
1359 	/*
1360 	 * Starting at offset 8, start skipping over the storage
1361 	 * for the element types we're not interested in.
1362 	 */
1363 	for (idx = 8, i = 0; i < elt; i++) {
1364 		idx += ((ep[i] + 1) * 4);
1365 	}
1366 
1367 	/*
1368 	 * Skip over Overall status for this element type.
1369 	 */
1370 	idx += 4;
1371 
1372 	/*
1373 	 * And skip to the index for the Mth element that we're going for.
1374 	 */
1375 	idx += (4 * elm);
1376 
1377 	/*
1378 	 * Make sure we haven't overflowed the buffer.
1379 	 */
1380 	if (idx+4 > amt)
1381 		return (-1);
1382 
1383 	/*
1384 	 * Set the status.
1385 	 */
1386 	sset8(b, idx, sp->comstatus);
1387 	sset8(b, idx, sp->comstat[0]);
1388 	sset8(b, idx, sp->comstat[1]);
1389 	sset8(b, idx, sp->comstat[2]);
1390 	idx -= 4;
1391 
1392 #if	0
1393 	PRINTF("Set Elt 0x%x Elm 0x%x (idx %d) with %x %x %x %x\n",
1394 	    elt, elm, idx, sp->comstatus, sp->comstat[0],
1395 	    sp->comstat[1], sp->comstat[2]);
1396 #endif
1397 
1398 	/*
1399 	 * Now make sure all other 'Select' bits are off.
1400 	 */
1401 	for (i = 8; i < amt; i += 4) {
1402 		if (i != idx)
1403 			b[i] &= ~0x80;
1404 	}
1405 	/*
1406 	 * And make sure the INVOP bit is clear.
1407 	 */
1408 	b[2] &= ~0x10;
1409 
1410 	return (0);
1411 }
1412 
1413 /*
1414  * SAF-TE Type Device Emulation
1415  */
1416 
1417 static int safte_getconfig(ses_softc_t *);
1418 static int safte_rdstat(ses_softc_t *, int);
1419 static int set_objstat_sel(ses_softc_t *, ses_objstat *, int);
1420 static int wrbuf16(ses_softc_t *, uint8_t, uint8_t, uint8_t, uint8_t, int);
1421 static void wrslot_stat(ses_softc_t *, int);
1422 static int perf_slotop(ses_softc_t *, uint8_t, uint8_t, int);
1423 
1424 #define	ALL_ENC_STAT (SES_ENCSTAT_CRITICAL | SES_ENCSTAT_UNRECOV | \
1425 	SES_ENCSTAT_NONCRITICAL | SES_ENCSTAT_INFO)
1426 /*
1427  * SAF-TE specific defines- Mandatory ones only...
1428  */
1429 
1430 /*
1431  * READ BUFFER ('get' commands) IDs- placed in offset 2 of cdb
1432  */
1433 #define	SAFTE_RD_RDCFG	0x00	/* read enclosure configuration */
1434 #define	SAFTE_RD_RDESTS	0x01	/* read enclosure status */
1435 #define	SAFTE_RD_RDDSTS	0x04	/* read drive slot status */
1436 
1437 /*
1438  * WRITE BUFFER ('set' commands) IDs- placed in offset 0 of databuf
1439  */
1440 #define	SAFTE_WT_DSTAT	0x10	/* write device slot status */
1441 #define	SAFTE_WT_SLTOP	0x12	/* perform slot operation */
1442 #define	SAFTE_WT_FANSPD	0x13	/* set fan speed */
1443 #define	SAFTE_WT_ACTPWS	0x14	/* turn on/off power supply */
1444 #define	SAFTE_WT_GLOBAL	0x15	/* send global command */
1445 
1446 
1447 #define	SAFT_SCRATCH	64
1448 #define	NPSEUDO_THERM	16
1449 #define	NPSEUDO_ALARM	1
1450 struct scfg {
1451 	/*
1452 	 * Cached Configuration
1453 	 */
1454 	uint8_t	Nfans;		/* Number of Fans */
1455 	uint8_t	Npwr;		/* Number of Power Supplies */
1456 	uint8_t	Nslots;		/* Number of Device Slots */
1457 	uint8_t	DoorLock;	/* Door Lock Installed */
1458 	uint8_t	Ntherm;		/* Number of Temperature Sensors */
1459 	uint8_t	Nspkrs;		/* Number of Speakers */
1460 	uint8_t Nalarm;		/* Number of Alarms (at least one) */
1461 	/*
1462 	 * Cached Flag Bytes for Global Status
1463 	 */
1464 	uint8_t	flag1;
1465 	uint8_t	flag2;
1466 	/*
1467 	 * What object index ID is where various slots start.
1468 	 */
1469 	uint8_t	pwroff;
1470 	uint8_t	slotoff;
1471 #define	SAFT_ALARM_OFFSET(cc)	(cc)->slotoff - 1
1472 };
1473 
1474 #define	SAFT_FLG1_ALARM		0x1
1475 #define	SAFT_FLG1_GLOBFAIL	0x2
1476 #define	SAFT_FLG1_GLOBWARN	0x4
1477 #define	SAFT_FLG1_ENCPWROFF	0x8
1478 #define	SAFT_FLG1_ENCFANFAIL	0x10
1479 #define	SAFT_FLG1_ENCPWRFAIL	0x20
1480 #define	SAFT_FLG1_ENCDRVFAIL	0x40
1481 #define	SAFT_FLG1_ENCDRVWARN	0x80
1482 
1483 #define	SAFT_FLG2_LOCKDOOR	0x4
1484 #define	SAFT_PRIVATE		sizeof (struct scfg)
1485 
1486 static const char safte_2little[] = "Too Little Data Returned (%d) at line %d\n";
1487 #define	SAFT_BAIL(r, x, k, l)	\
1488 	if (r >= x) { \
1489 		SES_LOG(ssc, safte_2little, x, __LINE__);\
1490 		SES_FREE(k, l); \
1491 		return (EIO); \
1492 	}
1493 
1494 
1495 static int
1496 safte_softc_init(ses_softc_t *ssc, int doinit)
1497 {
1498 	int err, i, r;
1499 	struct scfg *cc;
1500 
1501 	if (doinit == 0) {
1502 		if (ssc->ses_nobjects) {
1503 			if (ssc->ses_objmap) {
1504 				SES_FREE(ssc->ses_objmap,
1505 				    ssc->ses_nobjects * sizeof (encobj));
1506 				ssc->ses_objmap = NULL;
1507 			}
1508 			ssc->ses_nobjects = 0;
1509 		}
1510 		if (ssc->ses_private) {
1511 			SES_FREE(ssc->ses_private, SAFT_PRIVATE);
1512 			ssc->ses_private = NULL;
1513 		}
1514 		return (0);
1515 	}
1516 
1517 	if (ssc->ses_private == NULL) {
1518 		ssc->ses_private = SES_MALLOC(SAFT_PRIVATE);
1519 		if (ssc->ses_private == NULL) {
1520 			return (ENOMEM);
1521 		}
1522 		MEMZERO(ssc->ses_private, SAFT_PRIVATE);
1523 	}
1524 
1525 	ssc->ses_nobjects = 0;
1526 	ssc->ses_encstat = 0;
1527 
1528 	if ((err = safte_getconfig(ssc)) != 0) {
1529 		return (err);
1530 	}
1531 
1532 	/*
1533 	 * The number of objects here, as well as that reported by the
1534 	 * READ_BUFFER/GET_CONFIG call, are the over-temperature flags (15)
1535 	 * that get reported during READ_BUFFER/READ_ENC_STATUS.
1536 	 */
1537 	cc = ssc->ses_private;
1538 	ssc->ses_nobjects = cc->Nfans + cc->Npwr + cc->Nslots + cc->DoorLock +
1539 	    cc->Ntherm + cc->Nspkrs + NPSEUDO_THERM + NPSEUDO_ALARM;
1540 	ssc->ses_objmap = (encobj *)
1541 	    SES_MALLOC(ssc->ses_nobjects * sizeof (encobj));
1542 	if (ssc->ses_objmap == NULL) {
1543 		return (ENOMEM);
1544 	}
1545 	MEMZERO(ssc->ses_objmap, ssc->ses_nobjects * sizeof (encobj));
1546 
1547 	r = 0;
1548 	/*
1549 	 * Note that this is all arranged for the convenience
1550 	 * in later fetches of status.
1551 	 */
1552 	for (i = 0; i < cc->Nfans; i++)
1553 		ssc->ses_objmap[r++].enctype = SESTYP_FAN;
1554 	cc->pwroff = (uint8_t) r;
1555 	for (i = 0; i < cc->Npwr; i++)
1556 		ssc->ses_objmap[r++].enctype = SESTYP_POWER;
1557 	for (i = 0; i < cc->DoorLock; i++)
1558 		ssc->ses_objmap[r++].enctype = SESTYP_DOORLOCK;
1559 	for (i = 0; i < cc->Nspkrs; i++)
1560 		ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1561 	for (i = 0; i < cc->Ntherm; i++)
1562 		ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1563 	for (i = 0; i < NPSEUDO_THERM; i++)
1564 		ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1565 	ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1566 	cc->slotoff = (uint8_t) r;
1567 	for (i = 0; i < cc->Nslots; i++)
1568 		ssc->ses_objmap[r++].enctype = SESTYP_DEVICE;
1569 	return (0);
1570 }
1571 
1572 static int
1573 safte_init_enc(ses_softc_t *ssc)
1574 {
1575 	int err, amt;
1576 	char *sdata;
1577 	static char cdb0[6] = { SEND_DIAGNOSTIC };
1578 	static char cdb[10] =
1579 	    { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
1580 
1581 	sdata = SES_MALLOC(SAFT_SCRATCH);
1582 	if (sdata == NULL)
1583 		return (ENOMEM);
1584 
1585 	err = ses_runcmd(ssc, cdb0, 6, NULL, 0);
1586 	if (err) {
1587 		SES_FREE(sdata, SAFT_SCRATCH);
1588 		return (err);
1589 	}
1590 	sdata[0] = SAFTE_WT_GLOBAL;
1591 	MEMZERO(&sdata[1], 15);
1592 	amt = -SAFT_SCRATCH;
1593 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1594 	SES_FREE(sdata, SAFT_SCRATCH);
1595 	return (err);
1596 }
1597 
1598 static int
1599 safte_get_encstat(ses_softc_t *ssc, int slpflg)
1600 {
1601 	return (safte_rdstat(ssc, slpflg));
1602 }
1603 
1604 static int
1605 safte_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflg)
1606 {
1607 	struct scfg *cc = ssc->ses_private;
1608 	if (cc == NULL)
1609 		return (0);
1610 	/*
1611 	 * Since SAF-TE devices aren't necessarily sticky in terms
1612 	 * of state, make our soft copy of enclosure status 'sticky'-
1613 	 * that is, things set in enclosure status stay set (as implied
1614 	 * by conditions set in reading object status) until cleared.
1615 	 */
1616 	ssc->ses_encstat &= ~ALL_ENC_STAT;
1617 	ssc->ses_encstat |= (encstat & ALL_ENC_STAT);
1618 	ssc->ses_encstat |= ENCI_SVALID;
1619 	cc->flag1 &= ~(SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL|SAFT_FLG1_GLOBWARN);
1620 	if ((encstat & (SES_ENCSTAT_CRITICAL|SES_ENCSTAT_UNRECOV)) != 0) {
1621 		cc->flag1 |= SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL;
1622 	} else if ((encstat & SES_ENCSTAT_NONCRITICAL) != 0) {
1623 		cc->flag1 |= SAFT_FLG1_GLOBWARN;
1624 	}
1625 	return (wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slpflg));
1626 }
1627 
1628 static int
1629 safte_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflg)
1630 {
1631 	int i = (int)obp->obj_id;
1632 
1633 	if ((ssc->ses_encstat & ENCI_SVALID) == 0 ||
1634 	    (ssc->ses_objmap[i].svalid) == 0) {
1635 		int err = safte_rdstat(ssc, slpflg);
1636 		if (err)
1637 			return (err);
1638 	}
1639 	obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
1640 	obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
1641 	obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
1642 	obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
1643 	return (0);
1644 }
1645 
1646 
1647 static int
1648 safte_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slp)
1649 {
1650 	int idx, err;
1651 	encobj *ep;
1652 	struct scfg *cc;
1653 
1654 
1655 	SES_VLOG(ssc, "safte_set_objstat(%d): %x %x %x %x\n",
1656 	    (int)obp->obj_id, obp->cstat[0], obp->cstat[1], obp->cstat[2],
1657 	    obp->cstat[3]);
1658 
1659 	/*
1660 	 * If this is clear, we don't do diddly.
1661 	 */
1662 	if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
1663 		return (0);
1664 	}
1665 
1666 	err = 0;
1667 	/*
1668 	 * Check to see if the common bits are set and do them first.
1669 	 */
1670 	if (obp->cstat[0] & ~SESCTL_CSEL) {
1671 		err = set_objstat_sel(ssc, obp, slp);
1672 		if (err)
1673 			return (err);
1674 	}
1675 
1676 	cc = ssc->ses_private;
1677 	if (cc == NULL)
1678 		return (0);
1679 
1680 	idx = (int)obp->obj_id;
1681 	ep = &ssc->ses_objmap[idx];
1682 
1683 	switch (ep->enctype) {
1684 	case SESTYP_DEVICE:
1685 	{
1686 		uint8_t slotop = 0;
1687 		/*
1688 		 * XXX: I should probably cache the previous state
1689 		 * XXX: of SESCTL_DEVOFF so that when it goes from
1690 		 * XXX: true to false I can then set PREPARE FOR OPERATION
1691 		 * XXX: flag in PERFORM SLOT OPERATION write buffer command.
1692 		 */
1693 		if (obp->cstat[2] & (SESCTL_RQSINS|SESCTL_RQSRMV)) {
1694 			slotop |= 0x2;
1695 		}
1696 		if (obp->cstat[2] & SESCTL_RQSID) {
1697 			slotop |= 0x4;
1698 		}
1699 		err = perf_slotop(ssc, (uint8_t) idx - (uint8_t) cc->slotoff,
1700 		    slotop, slp);
1701 		if (err)
1702 			return (err);
1703 		if (obp->cstat[3] & SESCTL_RQSFLT) {
1704 			ep->priv |= 0x2;
1705 		} else {
1706 			ep->priv &= ~0x2;
1707 		}
1708 		if (ep->priv & 0xc6) {
1709 			ep->priv &= ~0x1;
1710 		} else {
1711 			ep->priv |= 0x1;	/* no errors */
1712 		}
1713 		wrslot_stat(ssc, slp);
1714 		break;
1715 	}
1716 	case SESTYP_POWER:
1717 		if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1718 			cc->flag1 |= SAFT_FLG1_ENCPWRFAIL;
1719 		} else {
1720 			cc->flag1 &= ~SAFT_FLG1_ENCPWRFAIL;
1721 		}
1722 		err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1723 		    cc->flag2, 0, slp);
1724 		if (err)
1725 			return (err);
1726 		if (obp->cstat[3] & SESCTL_RQSTON) {
1727 			(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1728 				idx - cc->pwroff, 0, 0, slp);
1729 		} else {
1730 			(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1731 				idx - cc->pwroff, 0, 1, slp);
1732 		}
1733 		break;
1734 	case SESTYP_FAN:
1735 		if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1736 			cc->flag1 |= SAFT_FLG1_ENCFANFAIL;
1737 		} else {
1738 			cc->flag1 &= ~SAFT_FLG1_ENCFANFAIL;
1739 		}
1740 		err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1741 		    cc->flag2, 0, slp);
1742 		if (err)
1743 			return (err);
1744 		if (obp->cstat[3] & SESCTL_RQSTON) {
1745 			uint8_t fsp;
1746 			if ((obp->cstat[3] & 0x7) == 7) {
1747 				fsp = 4;
1748 			} else if ((obp->cstat[3] & 0x7) == 6) {
1749 				fsp = 3;
1750 			} else if ((obp->cstat[3] & 0x7) == 4) {
1751 				fsp = 2;
1752 			} else {
1753 				fsp = 1;
1754 			}
1755 			(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, fsp, 0, slp);
1756 		} else {
1757 			(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
1758 		}
1759 		break;
1760 	case SESTYP_DOORLOCK:
1761 		if (obp->cstat[3] & 0x1) {
1762 			cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
1763 		} else {
1764 			cc->flag2 |= SAFT_FLG2_LOCKDOOR;
1765 		}
1766 		(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1767 		    cc->flag2, 0, slp);
1768 		break;
1769 	case SESTYP_ALARM:
1770 		/*
1771 		 * On all nonzero but the 'muted' bit, we turn on the alarm,
1772 		 */
1773 		obp->cstat[3] &= ~0xa;
1774 		if (obp->cstat[3] & 0x40) {
1775 			cc->flag2 &= ~SAFT_FLG1_ALARM;
1776 		} else if (obp->cstat[3] != 0) {
1777 			cc->flag2 |= SAFT_FLG1_ALARM;
1778 		} else {
1779 			cc->flag2 &= ~SAFT_FLG1_ALARM;
1780 		}
1781 		ep->priv = obp->cstat[3];
1782 		(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1783 			cc->flag2, 0, slp);
1784 		break;
1785 	default:
1786 		break;
1787 	}
1788 	ep->svalid = 0;
1789 	return (0);
1790 }
1791 
1792 static int
1793 safte_getconfig(ses_softc_t *ssc)
1794 {
1795 	struct scfg *cfg;
1796 	int err, amt;
1797 	char *sdata;
1798 	static char cdb[10] =
1799 	    { READ_BUFFER, 1, SAFTE_RD_RDCFG, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
1800 
1801 	cfg = ssc->ses_private;
1802 	if (cfg == NULL)
1803 		return (ENXIO);
1804 
1805 	sdata = SES_MALLOC(SAFT_SCRATCH);
1806 	if (sdata == NULL)
1807 		return (ENOMEM);
1808 
1809 	amt = SAFT_SCRATCH;
1810 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1811 	if (err) {
1812 		SES_FREE(sdata, SAFT_SCRATCH);
1813 		return (err);
1814 	}
1815 	amt = SAFT_SCRATCH - amt;
1816 	if (amt < 6) {
1817 		SES_LOG(ssc, "too little data (%d) for configuration\n", amt);
1818 		SES_FREE(sdata, SAFT_SCRATCH);
1819 		return (EIO);
1820 	}
1821 	SES_VLOG(ssc, "Nfans %d Npwr %d Nslots %d Lck %d Ntherm %d Nspkrs %d\n",
1822 	    sdata[0], sdata[1], sdata[2], sdata[3], sdata[4], sdata[5]);
1823 	cfg->Nfans = sdata[0];
1824 	cfg->Npwr = sdata[1];
1825 	cfg->Nslots = sdata[2];
1826 	cfg->DoorLock = sdata[3];
1827 	cfg->Ntherm = sdata[4];
1828 	cfg->Nspkrs = sdata[5];
1829 	cfg->Nalarm = NPSEUDO_ALARM;
1830 	SES_FREE(sdata, SAFT_SCRATCH);
1831 	return (0);
1832 }
1833 
1834 static int
1835 safte_rdstat(ses_softc_t *ssc, int slpflg)
1836 {
1837 	int err, oid, r, i, hiwater, nitems, amt;
1838 	uint16_t tempflags;
1839 	size_t buflen;
1840 	uint8_t status, oencstat;
1841 	char *sdata, cdb[10];
1842 	struct scfg *cc = ssc->ses_private;
1843 
1844 
1845 	/*
1846 	 * The number of objects overstates things a bit,
1847 	 * both for the bogus 'thermometer' entries and
1848 	 * the drive status (which isn't read at the same
1849 	 * time as the enclosure status), but that's okay.
1850 	 */
1851 	buflen = 4 * cc->Nslots;
1852 	if (ssc->ses_nobjects > buflen)
1853 		buflen = ssc->ses_nobjects;
1854 	sdata = SES_MALLOC(buflen);
1855 	if (sdata == NULL)
1856 		return (ENOMEM);
1857 
1858 	cdb[0] = READ_BUFFER;
1859 	cdb[1] = 1;
1860 	cdb[2] = SAFTE_RD_RDESTS;
1861 	cdb[3] = 0;
1862 	cdb[4] = 0;
1863 	cdb[5] = 0;
1864 	cdb[6] = 0;
1865 	cdb[7] = (buflen >> 8) & 0xff;
1866 	cdb[8] = buflen & 0xff;
1867 	cdb[9] = 0;
1868 	amt = buflen;
1869 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1870 	if (err) {
1871 		SES_FREE(sdata, buflen);
1872 		return (err);
1873 	}
1874 	hiwater = buflen - amt;
1875 
1876 
1877 	/*
1878 	 * invalidate all status bits.
1879 	 */
1880 	for (i = 0; i < ssc->ses_nobjects; i++)
1881 		ssc->ses_objmap[i].svalid = 0;
1882 	oencstat = ssc->ses_encstat & ALL_ENC_STAT;
1883 	ssc->ses_encstat = 0;
1884 
1885 
1886 	/*
1887 	 * Now parse returned buffer.
1888 	 * If we didn't get enough data back,
1889 	 * that's considered a fatal error.
1890 	 */
1891 	oid = r = 0;
1892 
1893 	for (nitems = i = 0; i < cc->Nfans; i++) {
1894 		SAFT_BAIL(r, hiwater, sdata, buflen);
1895 		/*
1896 		 * 0 = Fan Operational
1897 		 * 1 = Fan is malfunctioning
1898 		 * 2 = Fan is not present
1899 		 * 0x80 = Unknown or Not Reportable Status
1900 		 */
1901 		ssc->ses_objmap[oid].encstat[1] = 0;	/* resvd */
1902 		ssc->ses_objmap[oid].encstat[2] = 0;	/* resvd */
1903 		switch ((int)(uint8_t)sdata[r]) {
1904 		case 0:
1905 			nitems++;
1906 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1907 			/*
1908 			 * We could get fancier and cache
1909 			 * fan speeds that we have set, but
1910 			 * that isn't done now.
1911 			 */
1912 			ssc->ses_objmap[oid].encstat[3] = 7;
1913 			break;
1914 
1915 		case 1:
1916 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1917 			/*
1918 			 * FAIL and FAN STOPPED synthesized
1919 			 */
1920 			ssc->ses_objmap[oid].encstat[3] = 0x40;
1921 			/*
1922 			 * Enclosure marked with CRITICAL error
1923 			 * if only one fan or no thermometers,
1924 			 * else the NONCRITICAL error is set.
1925 			 */
1926 			if (cc->Nfans == 1 || cc->Ntherm == 0)
1927 				ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1928 			else
1929 				ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1930 			break;
1931 		case 2:
1932 			ssc->ses_objmap[oid].encstat[0] =
1933 			    SES_OBJSTAT_NOTINSTALLED;
1934 			ssc->ses_objmap[oid].encstat[3] = 0;
1935 			/*
1936 			 * Enclosure marked with CRITICAL error
1937 			 * if only one fan or no thermometers,
1938 			 * else the NONCRITICAL error is set.
1939 			 */
1940 			if (cc->Nfans == 1)
1941 				ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1942 			else
1943 				ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1944 			break;
1945 		case 0x80:
1946 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1947 			ssc->ses_objmap[oid].encstat[3] = 0;
1948 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
1949 			break;
1950 		default:
1951 			ssc->ses_objmap[oid].encstat[0] =
1952 			    SES_OBJSTAT_UNSUPPORTED;
1953 			SES_LOG(ssc, "Unknown fan%d status 0x%x\n", i,
1954 			    sdata[r] & 0xff);
1955 			break;
1956 		}
1957 		ssc->ses_objmap[oid++].svalid = 1;
1958 		r++;
1959 	}
1960 
1961 	/*
1962 	 * No matter how you cut it, no cooling elements when there
1963 	 * should be some there is critical.
1964 	 */
1965 	if (cc->Nfans && nitems == 0) {
1966 		ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1967 	}
1968 
1969 
1970 	for (i = 0; i < cc->Npwr; i++) {
1971 		SAFT_BAIL(r, hiwater, sdata, buflen);
1972 		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1973 		ssc->ses_objmap[oid].encstat[1] = 0;	/* resvd */
1974 		ssc->ses_objmap[oid].encstat[2] = 0;	/* resvd */
1975 		ssc->ses_objmap[oid].encstat[3] = 0x20;	/* requested on */
1976 		switch ((uint8_t)sdata[r]) {
1977 		case 0x00:	/* pws operational and on */
1978 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1979 			break;
1980 		case 0x01:	/* pws operational and off */
1981 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1982 			ssc->ses_objmap[oid].encstat[3] = 0x10;
1983 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
1984 			break;
1985 		case 0x10:	/* pws is malfunctioning and commanded on */
1986 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1987 			ssc->ses_objmap[oid].encstat[3] = 0x61;
1988 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1989 			break;
1990 
1991 		case 0x11:	/* pws is malfunctioning and commanded off */
1992 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
1993 			ssc->ses_objmap[oid].encstat[3] = 0x51;
1994 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1995 			break;
1996 		case 0x20:	/* pws is not present */
1997 			ssc->ses_objmap[oid].encstat[0] =
1998 			    SES_OBJSTAT_NOTINSTALLED;
1999 			ssc->ses_objmap[oid].encstat[3] = 0;
2000 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
2001 			break;
2002 		case 0x21:	/* pws is present */
2003 			/*
2004 			 * This is for enclosures that cannot tell whether the
2005 			 * device is on or malfunctioning, but know that it is
2006 			 * present. Just fall through.
2007 			 */
2008 			/* FALLTHROUGH */
2009 		case 0x80:	/* Unknown or Not Reportable Status */
2010 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2011 			ssc->ses_objmap[oid].encstat[3] = 0;
2012 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
2013 			break;
2014 		default:
2015 			SES_LOG(ssc, "unknown power supply %d status (0x%x)\n",
2016 			    i, sdata[r] & 0xff);
2017 			break;
2018 		}
2019 		ssc->ses_objmap[oid++].svalid = 1;
2020 		r++;
2021 	}
2022 
2023 	/*
2024 	 * Skip over Slot SCSI IDs
2025 	 */
2026 	r += cc->Nslots;
2027 
2028 	/*
2029 	 * We always have doorlock status, no matter what,
2030 	 * but we only save the status if we have one.
2031 	 */
2032 	SAFT_BAIL(r, hiwater, sdata, buflen);
2033 	if (cc->DoorLock) {
2034 		/*
2035 		 * 0 = Door Locked
2036 		 * 1 = Door Unlocked, or no Lock Installed
2037 		 * 0x80 = Unknown or Not Reportable Status
2038 		 */
2039 		ssc->ses_objmap[oid].encstat[1] = 0;
2040 		ssc->ses_objmap[oid].encstat[2] = 0;
2041 		switch ((uint8_t)sdata[r]) {
2042 		case 0:
2043 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2044 			ssc->ses_objmap[oid].encstat[3] = 0;
2045 			break;
2046 		case 1:
2047 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2048 			ssc->ses_objmap[oid].encstat[3] = 1;
2049 			break;
2050 		case 0x80:
2051 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2052 			ssc->ses_objmap[oid].encstat[3] = 0;
2053 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
2054 			break;
2055 		default:
2056 			ssc->ses_objmap[oid].encstat[0] =
2057 			    SES_OBJSTAT_UNSUPPORTED;
2058 			SES_LOG(ssc, "unknown lock status 0x%x\n",
2059 			    sdata[r] & 0xff);
2060 			break;
2061 		}
2062 		ssc->ses_objmap[oid++].svalid = 1;
2063 	}
2064 	r++;
2065 
2066 	/*
2067 	 * We always have speaker status, no matter what,
2068 	 * but we only save the status if we have one.
2069 	 */
2070 	SAFT_BAIL(r, hiwater, sdata, buflen);
2071 	if (cc->Nspkrs) {
2072 		ssc->ses_objmap[oid].encstat[1] = 0;
2073 		ssc->ses_objmap[oid].encstat[2] = 0;
2074 		if (sdata[r] == 1) {
2075 			/*
2076 			 * We need to cache tone urgency indicators.
2077 			 * Someday.
2078 			 */
2079 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
2080 			ssc->ses_objmap[oid].encstat[3] = 0x8;
2081 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2082 		} else if (sdata[r] == 0) {
2083 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2084 			ssc->ses_objmap[oid].encstat[3] = 0;
2085 		} else {
2086 			ssc->ses_objmap[oid].encstat[0] =
2087 			    SES_OBJSTAT_UNSUPPORTED;
2088 			ssc->ses_objmap[oid].encstat[3] = 0;
2089 			SES_LOG(ssc, "unknown spkr status 0x%x\n",
2090 			    sdata[r] & 0xff);
2091 		}
2092 		ssc->ses_objmap[oid++].svalid = 1;
2093 	}
2094 	r++;
2095 
2096 	for (i = 0; i < cc->Ntherm; i++) {
2097 		SAFT_BAIL(r, hiwater, sdata, buflen);
2098 		/*
2099 		 * Status is a range from -10 to 245 deg Celsius,
2100 		 * which we need to normalize to -20 to -245 according
2101 		 * to the latest SCSI spec, which makes little
2102 		 * sense since this would overflow an 8bit value.
2103 		 * Well, still, the base normalization is -20,
2104 		 * not -10, so we have to adjust.
2105 		 *
2106 		 * So what's over and under temperature?
2107 		 * Hmm- we'll state that 'normal' operating
2108 		 * is 10 to 40 deg Celsius.
2109 		 */
2110 
2111 		/*
2112 		 * Actually.... All of the units that people out in the world
2113 		 * seem to have do not come even close to setting a value that
2114 		 * complies with this spec.
2115 		 *
2116 		 * The closest explanation I could find was in an
2117 		 * LSI-Logic manual, which seemed to indicate that
2118 		 * this value would be set by whatever the I2C code
2119 		 * would interpolate from the output of an LM75
2120 		 * temperature sensor.
2121 		 *
2122 		 * This means that it is impossible to use the actual
2123 		 * numeric value to predict anything. But we don't want
2124 		 * to lose the value. So, we'll propagate the *uncorrected*
2125 		 * value and set SES_OBJSTAT_NOTAVAIL. We'll depend on the
2126 		 * temperature flags for warnings.
2127 		 */
2128 		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NOTAVAIL;
2129 		ssc->ses_objmap[oid].encstat[1] = 0;
2130 		ssc->ses_objmap[oid].encstat[2] = sdata[r];
2131 		ssc->ses_objmap[oid].encstat[3] = 0;
2132 		ssc->ses_objmap[oid++].svalid = 1;
2133 		r++;
2134 	}
2135 
2136 	/*
2137 	 * Now, for "pseudo" thermometers, we have two bytes
2138 	 * of information in enclosure status- 16 bits. Actually,
2139 	 * the MSB is a single TEMP ALERT flag indicating whether
2140 	 * any other bits are set, but, thanks to fuzzy thinking,
2141 	 * in the SAF-TE spec, this can also be set even if no
2142 	 * other bits are set, thus making this really another
2143 	 * binary temperature sensor.
2144 	 */
2145 
2146 	SAFT_BAIL(r, hiwater, sdata, buflen);
2147 	tempflags = sdata[r++];
2148 	SAFT_BAIL(r, hiwater, sdata, buflen);
2149 	tempflags |= (tempflags << 8) | sdata[r++];
2150 
2151 	for (i = 0; i < NPSEUDO_THERM; i++) {
2152 		ssc->ses_objmap[oid].encstat[1] = 0;
2153 		if (tempflags & (1 << (NPSEUDO_THERM - i - 1))) {
2154 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2155 			ssc->ses_objmap[4].encstat[2] = 0xff;
2156 			/*
2157 			 * Set 'over temperature' failure.
2158 			 */
2159 			ssc->ses_objmap[oid].encstat[3] = 8;
2160 			ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2161 		} else {
2162 			/*
2163 			 * We used to say 'not available' and synthesize a
2164 			 * nominal 30 deg (C)- that was wrong. Actually,
2165 			 * Just say 'OK', and use the reserved value of
2166 			 * zero.
2167 			 */
2168 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2169 			ssc->ses_objmap[oid].encstat[2] = 0;
2170 			ssc->ses_objmap[oid].encstat[3] = 0;
2171 		}
2172 		ssc->ses_objmap[oid++].svalid = 1;
2173 	}
2174 
2175 	/*
2176 	 * Get alarm status.
2177 	 */
2178 	ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2179 	ssc->ses_objmap[oid].encstat[3] = ssc->ses_objmap[oid].priv;
2180 	ssc->ses_objmap[oid++].svalid = 1;
2181 
2182 	/*
2183 	 * Now get drive slot status
2184 	 */
2185 	cdb[2] = SAFTE_RD_RDDSTS;
2186 	amt = buflen;
2187 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2188 	if (err) {
2189 		SES_FREE(sdata, buflen);
2190 		return (err);
2191 	}
2192 	hiwater = buflen - amt;
2193 	for (r = i = 0; i < cc->Nslots; i++, r += 4) {
2194 		SAFT_BAIL(r+3, hiwater, sdata, buflen);
2195 		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNSUPPORTED;
2196 		ssc->ses_objmap[oid].encstat[1] = (uint8_t) i;
2197 		ssc->ses_objmap[oid].encstat[2] = 0;
2198 		ssc->ses_objmap[oid].encstat[3] = 0;
2199 		status = sdata[r+3];
2200 		if ((status & 0x1) == 0) {	/* no device */
2201 			ssc->ses_objmap[oid].encstat[0] =
2202 			    SES_OBJSTAT_NOTINSTALLED;
2203 		} else {
2204 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2205 		}
2206 		if (status & 0x2) {
2207 			ssc->ses_objmap[oid].encstat[2] = 0x8;
2208 		}
2209 		if ((status & 0x4) == 0) {
2210 			ssc->ses_objmap[oid].encstat[3] = 0x10;
2211 		}
2212 		ssc->ses_objmap[oid++].svalid = 1;
2213 	}
2214 	/* see comment below about sticky enclosure status */
2215 	ssc->ses_encstat |= ENCI_SVALID | oencstat;
2216 	SES_FREE(sdata, buflen);
2217 	return (0);
2218 }
2219 
2220 static int
2221 set_objstat_sel(ses_softc_t *ssc, ses_objstat *obp, int slp)
2222 {
2223 	int idx;
2224 	encobj *ep;
2225 	struct scfg *cc = ssc->ses_private;
2226 
2227 	if (cc == NULL)
2228 		return (0);
2229 
2230 	idx = (int)obp->obj_id;
2231 	ep = &ssc->ses_objmap[idx];
2232 
2233 	switch (ep->enctype) {
2234 	case SESTYP_DEVICE:
2235 		if (obp->cstat[0] & SESCTL_PRDFAIL) {
2236 			ep->priv |= 0x40;
2237 		}
2238 		/* SESCTL_RSTSWAP has no correspondence in SAF-TE */
2239 		if (obp->cstat[0] & SESCTL_DISABLE) {
2240 			ep->priv |= 0x80;
2241 			/*
2242 			 * Hmm. Try to set the 'No Drive' flag.
2243 			 * Maybe that will count as a 'disable'.
2244 			 */
2245 		}
2246 		if (ep->priv & 0xc6) {
2247 			ep->priv &= ~0x1;
2248 		} else {
2249 			ep->priv |= 0x1;	/* no errors */
2250 		}
2251 		wrslot_stat(ssc, slp);
2252 		break;
2253 	case SESTYP_POWER:
2254 		/*
2255 		 * Okay- the only one that makes sense here is to
2256 		 * do the 'disable' for a power supply.
2257 		 */
2258 		if (obp->cstat[0] & SESCTL_DISABLE) {
2259 			(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
2260 				idx - cc->pwroff, 0, 0, slp);
2261 		}
2262 		break;
2263 	case SESTYP_FAN:
2264 		/*
2265 		 * Okay- the only one that makes sense here is to
2266 		 * set fan speed to zero on disable.
2267 		 */
2268 		if (obp->cstat[0] & SESCTL_DISABLE) {
2269 			/* remember- fans are the first items, so idx works */
2270 			(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
2271 		}
2272 		break;
2273 	case SESTYP_DOORLOCK:
2274 		/*
2275 		 * Well, we can 'disable' the lock.
2276 		 */
2277 		if (obp->cstat[0] & SESCTL_DISABLE) {
2278 			cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
2279 			(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2280 				cc->flag2, 0, slp);
2281 		}
2282 		break;
2283 	case SESTYP_ALARM:
2284 		/*
2285 		 * Well, we can 'disable' the alarm.
2286 		 */
2287 		if (obp->cstat[0] & SESCTL_DISABLE) {
2288 			cc->flag2 &= ~SAFT_FLG1_ALARM;
2289 			ep->priv |= 0x40;	/* Muted */
2290 			(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2291 				cc->flag2, 0, slp);
2292 		}
2293 		break;
2294 	default:
2295 		break;
2296 	}
2297 	ep->svalid = 0;
2298 	return (0);
2299 }
2300 
2301 /*
2302  * This function handles all of the 16 byte WRITE BUFFER commands.
2303  */
2304 static int
2305 wrbuf16(ses_softc_t *ssc, uint8_t op, uint8_t b1, uint8_t b2,
2306     uint8_t b3, int slp)
2307 {
2308 	int err, amt;
2309 	char *sdata;
2310 	struct scfg *cc = ssc->ses_private;
2311 	static char cdb[10] = { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
2312 
2313 	if (cc == NULL)
2314 		return (0);
2315 
2316 	sdata = SES_MALLOC(16);
2317 	if (sdata == NULL)
2318 		return (ENOMEM);
2319 
2320 	SES_VLOG(ssc, "saf_wrbuf16 %x %x %x %x\n", op, b1, b2, b3);
2321 
2322 	sdata[0] = op;
2323 	sdata[1] = b1;
2324 	sdata[2] = b2;
2325 	sdata[3] = b3;
2326 	MEMZERO(&sdata[4], 12);
2327 	amt = -16;
2328 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2329 	SES_FREE(sdata, 16);
2330 	return (err);
2331 }
2332 
2333 /*
2334  * This function updates the status byte for the device slot described.
2335  *
2336  * Since this is an optional SAF-TE command, there's no point in
2337  * returning an error.
2338  */
2339 static void
2340 wrslot_stat(ses_softc_t *ssc, int slp)
2341 {
2342 	int i, amt;
2343 	encobj *ep;
2344 	char cdb[10], *sdata;
2345 	struct scfg *cc = ssc->ses_private;
2346 
2347 	if (cc == NULL)
2348 		return;
2349 
2350 	SES_VLOG(ssc, "saf_wrslot\n");
2351 	cdb[0] = WRITE_BUFFER;
2352 	cdb[1] = 1;
2353 	cdb[2] = 0;
2354 	cdb[3] = 0;
2355 	cdb[4] = 0;
2356 	cdb[5] = 0;
2357 	cdb[6] = 0;
2358 	cdb[7] = 0;
2359 	cdb[8] = cc->Nslots * 3 + 1;
2360 	cdb[9] = 0;
2361 
2362 	sdata = SES_MALLOC(cc->Nslots * 3 + 1);
2363 	if (sdata == NULL)
2364 		return;
2365 	MEMZERO(sdata, cc->Nslots * 3 + 1);
2366 
2367 	sdata[0] = SAFTE_WT_DSTAT;
2368 	for (i = 0; i < cc->Nslots; i++) {
2369 		ep = &ssc->ses_objmap[cc->slotoff + i];
2370 		SES_VLOG(ssc, "saf_wrslot %d <- %x\n", i, ep->priv & 0xff);
2371 		sdata[1 + (3 * i)] = ep->priv & 0xff;
2372 	}
2373 	amt = -(cc->Nslots * 3 + 1);
2374 	(void) ses_runcmd(ssc, cdb, 10, sdata, &amt);
2375 	SES_FREE(sdata, cc->Nslots * 3 + 1);
2376 }
2377 
2378 /*
2379  * This function issues the "PERFORM SLOT OPERATION" command.
2380  */
2381 static int
2382 perf_slotop(ses_softc_t *ssc, uint8_t slot, uint8_t opflag, int slp)
2383 {
2384 	int err, amt;
2385 	char *sdata;
2386 	struct scfg *cc = ssc->ses_private;
2387 	static char cdb[10] =
2388 	    { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
2389 
2390 	if (cc == NULL)
2391 		return (0);
2392 
2393 	sdata = SES_MALLOC(SAFT_SCRATCH);
2394 	if (sdata == NULL)
2395 		return (ENOMEM);
2396 	MEMZERO(sdata, SAFT_SCRATCH);
2397 
2398 	sdata[0] = SAFTE_WT_SLTOP;
2399 	sdata[1] = slot;
2400 	sdata[2] = opflag;
2401 	SES_VLOG(ssc, "saf_slotop slot %d op %x\n", slot, opflag);
2402 	amt = -SAFT_SCRATCH;
2403 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2404 	SES_FREE(sdata, SAFT_SCRATCH);
2405 	return (err);
2406 }
2407