1 /* $NetBSD: ses.c,v 1.47 2014/07/25 08:10:38 dholland Exp $ */ 2 /* 3 * Copyright (C) 2000 National Aeronautics & Space Administration 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. The name of the author may not be used to endorse or promote products 12 * derived from this software without specific prior written permission 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 17 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 20 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 21 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 24 * 25 * Author: mjacob@nas.nasa.gov 26 */ 27 28 #include <sys/cdefs.h> 29 __KERNEL_RCSID(0, "$NetBSD: ses.c,v 1.47 2014/07/25 08:10:38 dholland Exp $"); 30 31 #include "opt_scsi.h" 32 33 #include <sys/param.h> 34 #include <sys/systm.h> 35 #include <sys/kernel.h> 36 #include <sys/file.h> 37 #include <sys/stat.h> 38 #include <sys/ioctl.h> 39 #include <sys/scsiio.h> 40 #include <sys/buf.h> 41 #include <sys/uio.h> 42 #include <sys/malloc.h> 43 #include <sys/errno.h> 44 #include <sys/device.h> 45 #include <sys/disklabel.h> 46 #include <sys/disk.h> 47 #include <sys/proc.h> 48 #include <sys/conf.h> 49 #include <sys/vnode.h> 50 51 #include <dev/scsipi/scsipi_all.h> 52 #include <dev/scsipi/scsipi_disk.h> 53 #include <dev/scsipi/scsi_all.h> 54 #include <dev/scsipi/scsi_disk.h> 55 #include <dev/scsipi/scsipiconf.h> 56 #include <dev/scsipi/scsipi_base.h> 57 #include <dev/scsipi/ses.h> 58 59 /* 60 * Platform Independent Driver Internal Definitions for SES devices. 61 */ 62 typedef enum { 63 SES_NONE, 64 SES_SES_SCSI2, 65 SES_SES, 66 SES_SES_PASSTHROUGH, 67 SES_SEN, 68 SES_SAFT 69 } enctyp; 70 71 struct ses_softc; 72 typedef struct ses_softc ses_softc_t; 73 typedef struct { 74 int (*softc_init)(ses_softc_t *, int); 75 int (*init_enc)(ses_softc_t *); 76 int (*get_encstat)(ses_softc_t *, int); 77 int (*set_encstat)(ses_softc_t *, ses_encstat, int); 78 int (*get_objstat)(ses_softc_t *, ses_objstat *, int); 79 int (*set_objstat)(ses_softc_t *, ses_objstat *, int); 80 } encvec; 81 82 #define ENCI_SVALID 0x80 83 84 typedef struct { 85 uint32_t 86 enctype : 8, /* enclosure type */ 87 subenclosure : 8, /* subenclosure id */ 88 svalid : 1, /* enclosure information valid */ 89 priv : 15; /* private data, per object */ 90 uint8_t encstat[4]; /* state && stats */ 91 } encobj; 92 93 #define SEN_ID "UNISYS SUN_SEN" 94 #define SEN_ID_LEN 24 95 96 static enctyp ses_type(struct scsipi_inquiry_data *); 97 98 99 /* Forward reference to Enclosure Functions */ 100 static int ses_softc_init(ses_softc_t *, int); 101 static int ses_init_enc(ses_softc_t *); 102 static int ses_get_encstat(ses_softc_t *, int); 103 static int ses_set_encstat(ses_softc_t *, uint8_t, int); 104 static int ses_get_objstat(ses_softc_t *, ses_objstat *, int); 105 static int ses_set_objstat(ses_softc_t *, ses_objstat *, int); 106 107 static int safte_softc_init(ses_softc_t *, int); 108 static int safte_init_enc(ses_softc_t *); 109 static int safte_get_encstat(ses_softc_t *, int); 110 static int safte_set_encstat(ses_softc_t *, uint8_t, int); 111 static int safte_get_objstat(ses_softc_t *, ses_objstat *, int); 112 static int safte_set_objstat(ses_softc_t *, ses_objstat *, int); 113 114 /* 115 * Platform implementation defines/functions for SES internal kernel stuff 116 */ 117 118 #define STRNCMP strncmp 119 #define PRINTF printf 120 #define SES_LOG ses_log 121 #if defined(DEBUG) || defined(SCSIDEBUG) 122 #define SES_VLOG ses_log 123 #else 124 #define SES_VLOG if (0) ses_log 125 #endif 126 #define SES_MALLOC(amt) malloc(amt, M_DEVBUF, M_NOWAIT) 127 #define SES_FREE(ptr, amt) free(ptr, M_DEVBUF) 128 #define MEMZERO(dest, amt) memset(dest, 0, amt) 129 #define MEMCPY(dest, src, amt) memcpy(dest, src, amt) 130 #define RECEIVE_DIAGNOSTIC 0x1c 131 #define SEND_DIAGNOSTIC 0x1d 132 #define WRITE_BUFFER 0x3b 133 #define READ_BUFFER 0x3c 134 135 static dev_type_open(sesopen); 136 static dev_type_close(sesclose); 137 static dev_type_ioctl(sesioctl); 138 139 const struct cdevsw ses_cdevsw = { 140 .d_open = sesopen, 141 .d_close = sesclose, 142 .d_read = noread, 143 .d_write = nowrite, 144 .d_ioctl = sesioctl, 145 .d_stop = nostop, 146 .d_tty = notty, 147 .d_poll = nopoll, 148 .d_mmap = nommap, 149 .d_kqfilter = nokqfilter, 150 .d_discard = nodiscard, 151 .d_flag = D_OTHER 152 }; 153 154 static int ses_runcmd(struct ses_softc *, char *, int, char *, int *); 155 static void ses_log(struct ses_softc *, const char *, ...) 156 __attribute__((__format__(__printf__, 2, 3))); 157 158 /* 159 * General NetBSD kernel stuff. 160 */ 161 162 struct ses_softc { 163 device_t sc_dev; 164 struct scsipi_periph *sc_periph; 165 enctyp ses_type; /* type of enclosure */ 166 encvec ses_vec; /* vector to handlers */ 167 void * ses_private; /* per-type private data */ 168 encobj * ses_objmap; /* objects */ 169 u_int32_t ses_nobjects; /* number of objects */ 170 ses_encstat ses_encstat; /* overall status */ 171 u_int8_t ses_flags; 172 }; 173 #define SES_FLAG_INVALID 0x01 174 #define SES_FLAG_OPEN 0x02 175 #define SES_FLAG_INITIALIZED 0x04 176 177 #define SESUNIT(x) (minor((x))) 178 179 static int ses_match(device_t, cfdata_t, void *); 180 static void ses_attach(device_t, device_t, void *); 181 static int ses_detach(device_t, int); 182 static enctyp ses_device_type(struct scsipibus_attach_args *); 183 184 CFATTACH_DECL_NEW(ses, sizeof (struct ses_softc), 185 ses_match, ses_attach, ses_detach, NULL); 186 187 extern struct cfdriver ses_cd; 188 189 static const struct scsipi_periphsw ses_switch = { 190 NULL, 191 NULL, 192 NULL, 193 NULL 194 }; 195 196 static int 197 ses_match(device_t parent, cfdata_t match, void *aux) 198 { 199 struct scsipibus_attach_args *sa = aux; 200 201 switch (ses_device_type(sa)) { 202 case SES_SES: 203 case SES_SES_SCSI2: 204 case SES_SEN: 205 case SES_SAFT: 206 case SES_SES_PASSTHROUGH: 207 /* 208 * For these devices, it's a perfect match. 209 */ 210 return (24); 211 default: 212 return (0); 213 } 214 } 215 216 217 /* 218 * Complete the attachment. 219 * 220 * We have to repeat the rerun of INQUIRY data as above because 221 * it's not until the return from the match routine that we have 222 * the softc available to set stuff in. 223 */ 224 static void 225 ses_attach(device_t parent, device_t self, void *aux) 226 { 227 const char *tname; 228 struct ses_softc *softc = device_private(self); 229 struct scsipibus_attach_args *sa = aux; 230 struct scsipi_periph *periph = sa->sa_periph; 231 232 softc->sc_dev = self; 233 SC_DEBUG(periph, SCSIPI_DB2, ("ssattach: ")); 234 softc->sc_periph = periph; 235 periph->periph_dev = self; 236 periph->periph_switch = &ses_switch; 237 periph->periph_openings = 1; 238 239 softc->ses_type = ses_device_type(sa); 240 switch (softc->ses_type) { 241 case SES_SES: 242 case SES_SES_SCSI2: 243 case SES_SES_PASSTHROUGH: 244 softc->ses_vec.softc_init = ses_softc_init; 245 softc->ses_vec.init_enc = ses_init_enc; 246 softc->ses_vec.get_encstat = ses_get_encstat; 247 softc->ses_vec.set_encstat = ses_set_encstat; 248 softc->ses_vec.get_objstat = ses_get_objstat; 249 softc->ses_vec.set_objstat = ses_set_objstat; 250 break; 251 case SES_SAFT: 252 softc->ses_vec.softc_init = safte_softc_init; 253 softc->ses_vec.init_enc = safte_init_enc; 254 softc->ses_vec.get_encstat = safte_get_encstat; 255 softc->ses_vec.set_encstat = safte_set_encstat; 256 softc->ses_vec.get_objstat = safte_get_objstat; 257 softc->ses_vec.set_objstat = safte_set_objstat; 258 break; 259 case SES_SEN: 260 break; 261 case SES_NONE: 262 default: 263 break; 264 } 265 266 switch (softc->ses_type) { 267 default: 268 case SES_NONE: 269 tname = "No SES device"; 270 break; 271 case SES_SES_SCSI2: 272 tname = "SCSI-2 SES Device"; 273 break; 274 case SES_SES: 275 tname = "SCSI-3 SES Device"; 276 break; 277 case SES_SES_PASSTHROUGH: 278 tname = "SES Passthrough Device"; 279 break; 280 case SES_SEN: 281 tname = "UNISYS SEN Device (NOT HANDLED YET)"; 282 break; 283 case SES_SAFT: 284 tname = "SAF-TE Compliant Device"; 285 break; 286 } 287 printf("\n%s: %s\n", device_xname(softc->sc_dev), tname); 288 } 289 290 static enctyp 291 ses_device_type(struct scsipibus_attach_args *sa) 292 { 293 struct scsipi_inquiry_data *inqp = sa->sa_inqptr; 294 295 if (inqp == NULL) 296 return (SES_NONE); 297 298 return (ses_type(inqp)); 299 } 300 301 static int 302 sesopen(dev_t dev, int flags, int fmt, struct lwp *l) 303 { 304 struct ses_softc *softc; 305 int error, unit; 306 307 unit = SESUNIT(dev); 308 softc = device_lookup_private(&ses_cd, unit); 309 if (softc == NULL) 310 return (ENXIO); 311 312 if (softc->ses_flags & SES_FLAG_INVALID) { 313 error = ENXIO; 314 goto out; 315 } 316 if (softc->ses_flags & SES_FLAG_OPEN) { 317 error = EBUSY; 318 goto out; 319 } 320 if (softc->ses_vec.softc_init == NULL) { 321 error = ENXIO; 322 goto out; 323 } 324 error = scsipi_adapter_addref( 325 softc->sc_periph->periph_channel->chan_adapter); 326 if (error != 0) 327 goto out; 328 329 330 softc->ses_flags |= SES_FLAG_OPEN; 331 if ((softc->ses_flags & SES_FLAG_INITIALIZED) == 0) { 332 error = (*softc->ses_vec.softc_init)(softc, 1); 333 if (error) 334 softc->ses_flags &= ~SES_FLAG_OPEN; 335 else 336 softc->ses_flags |= SES_FLAG_INITIALIZED; 337 } 338 339 out: 340 return (error); 341 } 342 343 static int 344 sesclose(dev_t dev, int flags, int fmt, 345 struct lwp *l) 346 { 347 struct ses_softc *softc; 348 int unit; 349 350 unit = SESUNIT(dev); 351 softc = device_lookup_private(&ses_cd, unit); 352 if (softc == NULL) 353 return (ENXIO); 354 355 scsipi_wait_drain(softc->sc_periph); 356 scsipi_adapter_delref(softc->sc_periph->periph_channel->chan_adapter); 357 softc->ses_flags &= ~SES_FLAG_OPEN; 358 return (0); 359 } 360 361 static int 362 sesioctl(dev_t dev, u_long cmd, void *arg_addr, int flag, struct lwp *l) 363 { 364 ses_encstat tmp; 365 ses_objstat objs; 366 ses_object obj, *uobj; 367 struct ses_softc *ssc = device_lookup_private(&ses_cd, SESUNIT(dev)); 368 void *addr; 369 int error, i; 370 371 372 if (arg_addr) 373 addr = *((void **) arg_addr); 374 else 375 addr = NULL; 376 377 SC_DEBUG(ssc->sc_periph, SCSIPI_DB2, ("sesioctl 0x%lx ", cmd)); 378 379 /* 380 * Now check to see whether we're initialized or not. 381 */ 382 if ((ssc->ses_flags & SES_FLAG_INITIALIZED) == 0) { 383 return (ENODEV); 384 } 385 386 error = 0; 387 388 /* 389 * If this command can change the device's state, 390 * we must have the device open for writing. 391 */ 392 switch (cmd) { 393 case SESIOC_GETNOBJ: 394 case SESIOC_GETOBJMAP: 395 case SESIOC_GETENCSTAT: 396 case SESIOC_GETOBJSTAT: 397 break; 398 default: 399 if ((flag & FWRITE) == 0) { 400 return (EBADF); 401 } 402 } 403 404 switch (cmd) { 405 case SESIOC_GETNOBJ: 406 if (addr == NULL) 407 return EINVAL; 408 error = copyout(&ssc->ses_nobjects, addr, 409 sizeof (ssc->ses_nobjects)); 410 break; 411 412 case SESIOC_GETOBJMAP: 413 if (addr == NULL) 414 return EINVAL; 415 for (uobj = addr, i = 0; i != ssc->ses_nobjects; i++, uobj++) { 416 obj.obj_id = i; 417 obj.subencid = ssc->ses_objmap[i].subenclosure; 418 obj.object_type = ssc->ses_objmap[i].enctype; 419 error = copyout(&obj, uobj, sizeof (ses_object)); 420 if (error) { 421 break; 422 } 423 } 424 break; 425 426 case SESIOC_GETENCSTAT: 427 if (addr == NULL) 428 return EINVAL; 429 error = (*ssc->ses_vec.get_encstat)(ssc, 1); 430 if (error) 431 break; 432 tmp = ssc->ses_encstat & ~ENCI_SVALID; 433 error = copyout(&tmp, addr, sizeof (ses_encstat)); 434 ssc->ses_encstat = tmp; 435 break; 436 437 case SESIOC_SETENCSTAT: 438 if (addr == NULL) 439 return EINVAL; 440 error = copyin(addr, &tmp, sizeof (ses_encstat)); 441 if (error) 442 break; 443 error = (*ssc->ses_vec.set_encstat)(ssc, tmp, 1); 444 break; 445 446 case SESIOC_GETOBJSTAT: 447 if (addr == NULL) 448 return EINVAL; 449 error = copyin(addr, &objs, sizeof (ses_objstat)); 450 if (error) 451 break; 452 if (objs.obj_id >= ssc->ses_nobjects) { 453 error = EINVAL; 454 break; 455 } 456 error = (*ssc->ses_vec.get_objstat)(ssc, &objs, 1); 457 if (error) 458 break; 459 error = copyout(&objs, addr, sizeof (ses_objstat)); 460 /* 461 * Always (for now) invalidate entry. 462 */ 463 ssc->ses_objmap[objs.obj_id].svalid = 0; 464 break; 465 466 case SESIOC_SETOBJSTAT: 467 if (addr == NULL) 468 return EINVAL; 469 error = copyin(addr, &objs, sizeof (ses_objstat)); 470 if (error) 471 break; 472 473 if (objs.obj_id >= ssc->ses_nobjects) { 474 error = EINVAL; 475 break; 476 } 477 error = (*ssc->ses_vec.set_objstat)(ssc, &objs, 1); 478 479 /* 480 * Always (for now) invalidate entry. 481 */ 482 ssc->ses_objmap[objs.obj_id].svalid = 0; 483 break; 484 485 case SESIOC_INIT: 486 487 error = (*ssc->ses_vec.init_enc)(ssc); 488 break; 489 490 default: 491 error = scsipi_do_ioctl(ssc->sc_periph, 492 dev, cmd, arg_addr, flag, l); 493 break; 494 } 495 return (error); 496 } 497 498 static int 499 ses_runcmd(struct ses_softc *ssc, char *cdb, int cdbl, char *dptr, int *dlenp) 500 { 501 struct scsipi_generic sgen; 502 int dl, flg, error; 503 504 if (dptr) { 505 if ((dl = *dlenp) < 0) { 506 dl = -dl; 507 flg = XS_CTL_DATA_OUT; 508 } else { 509 flg = XS_CTL_DATA_IN; 510 } 511 } else { 512 dl = 0; 513 flg = 0; 514 } 515 516 if (cdbl > sizeof (struct scsipi_generic)) { 517 cdbl = sizeof (struct scsipi_generic); 518 } 519 memcpy(&sgen, cdb, cdbl); 520 #ifndef SCSIDEBUG 521 flg |= XS_CTL_SILENT; 522 #endif 523 error = scsipi_command(ssc->sc_periph, &sgen, cdbl, 524 (u_char *) dptr, dl, SCSIPIRETRIES, 30000, NULL, flg); 525 526 if (error == 0 && dptr) 527 *dlenp = 0; 528 529 return (error); 530 } 531 532 static void 533 ses_log(struct ses_softc *ssc, const char *fmt, ...) 534 { 535 va_list ap; 536 537 printf("%s: ", device_xname(ssc->sc_dev)); 538 va_start(ap, fmt); 539 vprintf(fmt, ap); 540 va_end(ap); 541 } 542 543 /* 544 * The code after this point runs on many platforms, 545 * so forgive the slightly awkward and nonconforming 546 * appearance. 547 */ 548 549 /* 550 * Is this a device that supports enclosure services? 551 * 552 * It's a a pretty simple ruleset- if it is device type 0x0D (13), it's 553 * an SES device. If it happens to be an old UNISYS SEN device, we can 554 * handle that too. 555 */ 556 557 #define SAFTE_START 44 558 #define SAFTE_END 50 559 #define SAFTE_LEN SAFTE_END-SAFTE_START 560 561 static enctyp 562 ses_type(struct scsipi_inquiry_data *inqp) 563 { 564 size_t given_len = inqp->additional_length + 4; 565 566 if (given_len < 8+SEN_ID_LEN) 567 return (SES_NONE); 568 569 if ((inqp->device & SID_TYPE) == T_ENCLOSURE) { 570 if (STRNCMP(inqp->vendor, SEN_ID, SEN_ID_LEN) == 0) { 571 return (SES_SEN); 572 } else if ((inqp->version & SID_ANSII) > 2) { 573 return (SES_SES); 574 } else { 575 return (SES_SES_SCSI2); 576 } 577 return (SES_NONE); 578 } 579 580 #ifdef SES_ENABLE_PASSTHROUGH 581 if ((inqp->flags2 & SID_EncServ) && (inqp->version & SID_ANSII) >= 2) { 582 /* 583 * PassThrough Device. 584 */ 585 return (SES_SES_PASSTHROUGH); 586 } 587 #endif 588 589 /* 590 * The comparison is short for a reason- 591 * some vendors were chopping it short. 592 */ 593 594 if (given_len < SAFTE_END - 2) { 595 return (SES_NONE); 596 } 597 598 if (STRNCMP((char *)&inqp->vendor_specific[8], "SAF-TE", 599 SAFTE_LEN - 2) == 0) { 600 return (SES_SAFT); 601 } 602 603 return (SES_NONE); 604 } 605 606 /* 607 * SES Native Type Device Support 608 */ 609 610 /* 611 * SES Diagnostic Page Codes 612 */ 613 614 typedef enum { 615 SesConfigPage = 0x1, 616 SesControlPage, 617 #define SesStatusPage SesControlPage 618 SesHelpTxt, 619 SesStringOut, 620 #define SesStringIn SesStringOut 621 SesThresholdOut, 622 #define SesThresholdIn SesThresholdOut 623 SesArrayControl, 624 #define SesArrayStatus SesArrayControl 625 SesElementDescriptor, 626 SesShortStatus 627 } SesDiagPageCodes; 628 629 /* 630 * minimal amounts 631 */ 632 633 /* 634 * Minimum amount of data, starting from byte 0, to have 635 * the config header. 636 */ 637 #define SES_CFGHDR_MINLEN 12 638 639 /* 640 * Minimum amount of data, starting from byte 0, to have 641 * the config header and one enclosure header. 642 */ 643 #define SES_ENCHDR_MINLEN 48 644 645 /* 646 * Take this value, subtract it from VEnclen and you know 647 * the length of the vendor unique bytes. 648 */ 649 #define SES_ENCHDR_VMIN 36 650 651 /* 652 * SES Data Structures 653 */ 654 655 typedef struct { 656 uint32_t GenCode; /* Generation Code */ 657 uint8_t Nsubenc; /* Number of Subenclosures */ 658 } SesCfgHdr; 659 660 typedef struct { 661 uint8_t Subencid; /* SubEnclosure Identifier */ 662 uint8_t Ntypes; /* # of supported types */ 663 uint8_t VEnclen; /* Enclosure Descriptor Length */ 664 } SesEncHdr; 665 666 typedef struct { 667 uint8_t encWWN[8]; /* XXX- Not Right Yet */ 668 uint8_t encVid[8]; 669 uint8_t encPid[16]; 670 uint8_t encRev[4]; 671 uint8_t encVen[1]; 672 } SesEncDesc; 673 674 typedef struct { 675 uint8_t enc_type; /* type of element */ 676 uint8_t enc_maxelt; /* maximum supported */ 677 uint8_t enc_subenc; /* in SubEnc # N */ 678 uint8_t enc_tlen; /* Type Descriptor Text Length */ 679 } SesThdr; 680 681 typedef struct { 682 uint8_t comstatus; 683 uint8_t comstat[3]; 684 } SesComStat; 685 686 struct typidx { 687 int ses_tidx; 688 int ses_oidx; 689 }; 690 691 struct sscfg { 692 uint8_t ses_ntypes; /* total number of types supported */ 693 694 /* 695 * We need to keep a type index as well as an 696 * object index for each object in an enclosure. 697 */ 698 struct typidx *ses_typidx; 699 700 /* 701 * We also need to keep track of the number of elements 702 * per type of element. This is needed later so that we 703 * can find precisely in the returned status data the 704 * status for the Nth element of the Kth type. 705 */ 706 uint8_t * ses_eltmap; 707 }; 708 709 710 /* 711 * (de)canonicalization defines 712 */ 713 #define sbyte(x, byte) ((((uint32_t)(x)) >> (byte * 8)) & 0xff) 714 #define sbit(x, bit) (((uint32_t)(x)) << bit) 715 #define sset8(outp, idx, sval) (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0) 716 717 #define sset16(outp, idx, sval) \ 718 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \ 719 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0) 720 721 722 #define sset24(outp, idx, sval) \ 723 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \ 724 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \ 725 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0) 726 727 728 #define sset32(outp, idx, sval) \ 729 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 3), \ 730 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \ 731 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \ 732 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0) 733 734 #define gbyte(x, byte) ((((uint32_t)(x)) & 0xff) << (byte * 8)) 735 #define gbit(lv, in, idx, shft, mask) lv = ((in[idx] >> shft) & mask) 736 #define sget8(inp, idx, lval) lval = (((uint8_t *)(inp))[idx++]) 737 #define gget8(inp, idx, lval) lval = (((uint8_t *)(inp))[idx]) 738 739 #define sget16(inp, idx, lval) \ 740 lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \ 741 (((uint8_t *)(inp))[idx+1]), idx += 2 742 743 #define gget16(inp, idx, lval) \ 744 lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \ 745 (((uint8_t *)(inp))[idx+1]) 746 747 #define sget24(inp, idx, lval) \ 748 lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \ 749 gbyte((((uint8_t *)(inp))[idx+1]), 1) | \ 750 (((uint8_t *)(inp))[idx+2]), idx += 3 751 752 #define gget24(inp, idx, lval) \ 753 lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \ 754 gbyte((((uint8_t *)(inp))[idx+1]), 1) | \ 755 (((uint8_t *)(inp))[idx+2]) 756 757 #define sget32(inp, idx, lval) \ 758 lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \ 759 gbyte((((uint8_t *)(inp))[idx+1]), 2) | \ 760 gbyte((((uint8_t *)(inp))[idx+2]), 1) | \ 761 (((uint8_t *)(inp))[idx+3]), idx += 4 762 763 #define gget32(inp, idx, lval) \ 764 lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \ 765 gbyte((((uint8_t *)(inp))[idx+1]), 2) | \ 766 gbyte((((uint8_t *)(inp))[idx+2]), 1) | \ 767 (((uint8_t *)(inp))[idx+3]) 768 769 #define SCSZ 0x2000 770 #define CFLEN (256 + SES_ENCHDR_MINLEN) 771 772 /* 773 * Routines specific && private to SES only 774 */ 775 776 static int ses_getconfig(ses_softc_t *); 777 static int ses_getputstat(ses_softc_t *, int, SesComStat *, int, int); 778 static int ses_cfghdr(uint8_t *, int, SesCfgHdr *); 779 static int ses_enchdr(uint8_t *, int, uint8_t, SesEncHdr *); 780 static int ses_encdesc(uint8_t *, int, uint8_t, SesEncDesc *); 781 static int ses_getthdr(uint8_t *, int, int, SesThdr *); 782 static int ses_decode(char *, int, uint8_t *, int, int, SesComStat *); 783 static int ses_encode(char *, int, uint8_t *, int, int, SesComStat *); 784 785 static int 786 ses_softc_init(ses_softc_t *ssc, int doinit) 787 { 788 if (doinit == 0) { 789 struct sscfg *cc; 790 if (ssc->ses_nobjects) { 791 SES_FREE(ssc->ses_objmap, 792 ssc->ses_nobjects * sizeof (encobj)); 793 ssc->ses_objmap = NULL; 794 } 795 if ((cc = ssc->ses_private) != NULL) { 796 if (cc->ses_eltmap && cc->ses_ntypes) { 797 SES_FREE(cc->ses_eltmap, cc->ses_ntypes); 798 cc->ses_eltmap = NULL; 799 cc->ses_ntypes = 0; 800 } 801 if (cc->ses_typidx && ssc->ses_nobjects) { 802 SES_FREE(cc->ses_typidx, 803 ssc->ses_nobjects * sizeof (struct typidx)); 804 cc->ses_typidx = NULL; 805 } 806 SES_FREE(cc, sizeof (struct sscfg)); 807 ssc->ses_private = NULL; 808 } 809 ssc->ses_nobjects = 0; 810 return (0); 811 } 812 if (ssc->ses_private == NULL) { 813 ssc->ses_private = SES_MALLOC(sizeof (struct sscfg)); 814 } 815 if (ssc->ses_private == NULL) { 816 return (ENOMEM); 817 } 818 ssc->ses_nobjects = 0; 819 ssc->ses_encstat = 0; 820 return (ses_getconfig(ssc)); 821 } 822 823 static int 824 ses_detach(device_t self, int flags) 825 { 826 struct ses_softc *ssc = device_private(self); 827 struct sscfg *cc = ssc->ses_private; 828 829 if (ssc->ses_objmap) { 830 SES_FREE(ssc->ses_objmap, (nobj * sizeof (encobj))); 831 } 832 if (cc != NULL) { 833 if (cc->ses_typidx) { 834 SES_FREE(cc->ses_typidx, 835 (nobj * sizeof (struct typidx))); 836 } 837 if (cc->ses_eltmap) { 838 SES_FREE(cc->ses_eltmap, ntype); 839 } 840 SES_FREE(cc, sizeof (struct sscfg)); 841 } 842 843 return 0; 844 } 845 846 static int 847 ses_init_enc(ses_softc_t *ssc) 848 { 849 return (0); 850 } 851 852 static int 853 ses_get_encstat(ses_softc_t *ssc, int slpflag) 854 { 855 SesComStat ComStat; 856 int status; 857 858 if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 1)) != 0) { 859 return (status); 860 } 861 ssc->ses_encstat = ComStat.comstatus | ENCI_SVALID; 862 return (0); 863 } 864 865 static int 866 ses_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflag) 867 { 868 SesComStat ComStat; 869 int status; 870 871 ComStat.comstatus = encstat & 0xf; 872 if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 0)) != 0) { 873 return (status); 874 } 875 ssc->ses_encstat = encstat & 0xf; /* note no SVALID set */ 876 return (0); 877 } 878 879 static int 880 ses_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag) 881 { 882 int i = (int)obp->obj_id; 883 884 if (ssc->ses_objmap[i].svalid == 0) { 885 SesComStat ComStat; 886 int err = ses_getputstat(ssc, i, &ComStat, slpflag, 1); 887 if (err) 888 return (err); 889 ssc->ses_objmap[i].encstat[0] = ComStat.comstatus; 890 ssc->ses_objmap[i].encstat[1] = ComStat.comstat[0]; 891 ssc->ses_objmap[i].encstat[2] = ComStat.comstat[1]; 892 ssc->ses_objmap[i].encstat[3] = ComStat.comstat[2]; 893 ssc->ses_objmap[i].svalid = 1; 894 } 895 obp->cstat[0] = ssc->ses_objmap[i].encstat[0]; 896 obp->cstat[1] = ssc->ses_objmap[i].encstat[1]; 897 obp->cstat[2] = ssc->ses_objmap[i].encstat[2]; 898 obp->cstat[3] = ssc->ses_objmap[i].encstat[3]; 899 return (0); 900 } 901 902 static int 903 ses_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag) 904 { 905 SesComStat ComStat; 906 int err; 907 /* 908 * If this is clear, we don't do diddly. 909 */ 910 if ((obp->cstat[0] & SESCTL_CSEL) == 0) { 911 return (0); 912 } 913 ComStat.comstatus = obp->cstat[0]; 914 ComStat.comstat[0] = obp->cstat[1]; 915 ComStat.comstat[1] = obp->cstat[2]; 916 ComStat.comstat[2] = obp->cstat[3]; 917 err = ses_getputstat(ssc, (int)obp->obj_id, &ComStat, slpflag, 0); 918 ssc->ses_objmap[(int)obp->obj_id].svalid = 0; 919 return (err); 920 } 921 922 static int 923 ses_getconfig(ses_softc_t *ssc) 924 { 925 struct sscfg *cc; 926 SesCfgHdr cf; 927 SesEncHdr hd; 928 SesEncDesc *cdp; 929 SesThdr thdr; 930 int err, amt, i, nobj, ntype, maxima; 931 char storage[CFLEN], *sdata; 932 static char cdb[6] = { 933 RECEIVE_DIAGNOSTIC, 0x1, SesConfigPage, SCSZ >> 8, SCSZ & 0xff, 0 934 }; 935 936 cc = ssc->ses_private; 937 if (cc == NULL) { 938 return (ENXIO); 939 } 940 941 sdata = SES_MALLOC(SCSZ); 942 if (sdata == NULL) 943 return (ENOMEM); 944 945 amt = SCSZ; 946 err = ses_runcmd(ssc, cdb, 6, sdata, &amt); 947 if (err) { 948 SES_FREE(sdata, SCSZ); 949 return (err); 950 } 951 amt = SCSZ - amt; 952 953 if (ses_cfghdr((uint8_t *) sdata, amt, &cf)) { 954 SES_LOG(ssc, "Unable to parse SES Config Header\n"); 955 SES_FREE(sdata, SCSZ); 956 return (EIO); 957 } 958 if (amt < SES_ENCHDR_MINLEN) { 959 SES_LOG(ssc, "runt enclosure length (%d)\n", amt); 960 SES_FREE(sdata, SCSZ); 961 return (EIO); 962 } 963 964 SES_VLOG(ssc, "GenCode %x %d Subenclosures\n", cf.GenCode, cf.Nsubenc); 965 966 /* 967 * Now waltz through all the subenclosures toting up the 968 * number of types available in each. For this, we only 969 * really need the enclosure header. However, we get the 970 * enclosure descriptor for debug purposes, as well 971 * as self-consistency checking purposes. 972 */ 973 974 maxima = cf.Nsubenc + 1; 975 cdp = (SesEncDesc *) storage; 976 for (ntype = i = 0; i < maxima; i++) { 977 MEMZERO((void *)cdp, sizeof (*cdp)); 978 if (ses_enchdr((uint8_t *) sdata, amt, i, &hd)) { 979 SES_LOG(ssc, "Cannot Extract Enclosure Header %d\n", i); 980 SES_FREE(sdata, SCSZ); 981 return (EIO); 982 } 983 SES_VLOG(ssc, " SubEnclosure ID %d, %d Types With this ID, En" 984 "closure Length %d\n", hd.Subencid, hd.Ntypes, hd.VEnclen); 985 986 if (ses_encdesc((uint8_t *)sdata, amt, i, cdp)) { 987 SES_LOG(ssc, "Can't get Enclosure Descriptor %d\n", i); 988 SES_FREE(sdata, SCSZ); 989 return (EIO); 990 } 991 SES_VLOG(ssc, " WWN: %02x%02x%02x%02x%02x%02x%02x%02x\n", 992 cdp->encWWN[0], cdp->encWWN[1], cdp->encWWN[2], 993 cdp->encWWN[3], cdp->encWWN[4], cdp->encWWN[5], 994 cdp->encWWN[6], cdp->encWWN[7]); 995 ntype += hd.Ntypes; 996 } 997 998 /* 999 * Now waltz through all the types that are available, getting 1000 * the type header so we can start adding up the number of 1001 * objects available. 1002 */ 1003 for (nobj = i = 0; i < ntype; i++) { 1004 if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) { 1005 SES_LOG(ssc, "Can't get Enclosure Type Header %d\n", i); 1006 SES_FREE(sdata, SCSZ); 1007 return (EIO); 1008 } 1009 SES_LOG(ssc, " Type Desc[%d]: Type 0x%x, MaxElt %d, In Subenc " 1010 "%d, Text Length %d\n", i, thdr.enc_type, thdr.enc_maxelt, 1011 thdr.enc_subenc, thdr.enc_tlen); 1012 nobj += thdr.enc_maxelt; 1013 } 1014 1015 1016 /* 1017 * Now allocate the object array and type map. 1018 */ 1019 1020 ssc->ses_objmap = SES_MALLOC(nobj * sizeof (encobj)); 1021 cc->ses_typidx = SES_MALLOC(nobj * sizeof (struct typidx)); 1022 cc->ses_eltmap = SES_MALLOC(ntype); 1023 1024 if (ssc->ses_objmap == NULL || cc->ses_typidx == NULL || 1025 cc->ses_eltmap == NULL) { 1026 if (ssc->ses_objmap) { 1027 SES_FREE(ssc->ses_objmap, (nobj * sizeof (encobj))); 1028 ssc->ses_objmap = NULL; 1029 } 1030 if (cc->ses_typidx) { 1031 SES_FREE(cc->ses_typidx, 1032 (nobj * sizeof (struct typidx))); 1033 cc->ses_typidx = NULL; 1034 } 1035 if (cc->ses_eltmap) { 1036 SES_FREE(cc->ses_eltmap, ntype); 1037 cc->ses_eltmap = NULL; 1038 } 1039 SES_FREE(sdata, SCSZ); 1040 return (ENOMEM); 1041 } 1042 MEMZERO(ssc->ses_objmap, nobj * sizeof (encobj)); 1043 MEMZERO(cc->ses_typidx, nobj * sizeof (struct typidx)); 1044 MEMZERO(cc->ses_eltmap, ntype); 1045 cc->ses_ntypes = (uint8_t) ntype; 1046 ssc->ses_nobjects = nobj; 1047 1048 /* 1049 * Now waltz through the # of types again to fill in the types 1050 * (and subenclosure ids) of the allocated objects. 1051 */ 1052 nobj = 0; 1053 for (i = 0; i < ntype; i++) { 1054 int j; 1055 if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) { 1056 continue; 1057 } 1058 cc->ses_eltmap[i] = thdr.enc_maxelt; 1059 for (j = 0; j < thdr.enc_maxelt; j++) { 1060 cc->ses_typidx[nobj].ses_tidx = i; 1061 cc->ses_typidx[nobj].ses_oidx = j; 1062 ssc->ses_objmap[nobj].subenclosure = thdr.enc_subenc; 1063 ssc->ses_objmap[nobj++].enctype = thdr.enc_type; 1064 } 1065 } 1066 SES_FREE(sdata, SCSZ); 1067 return (0); 1068 } 1069 1070 static int 1071 ses_getputstat(ses_softc_t *ssc, int objid, SesComStat *sp, int slp, 1072 int in) 1073 { 1074 struct sscfg *cc; 1075 int err, amt, bufsiz, tidx, oidx; 1076 char cdb[6], *sdata; 1077 1078 cc = ssc->ses_private; 1079 if (cc == NULL) { 1080 return (ENXIO); 1081 } 1082 1083 /* 1084 * If we're just getting overall enclosure status, 1085 * we only need 2 bytes of data storage. 1086 * 1087 * If we're getting anything else, we know how much 1088 * storage we need by noting that starting at offset 1089 * 8 in returned data, all object status bytes are 4 1090 * bytes long, and are stored in chunks of types(M) 1091 * and nth+1 instances of type M. 1092 */ 1093 if (objid == -1) { 1094 bufsiz = 2; 1095 } else { 1096 bufsiz = (ssc->ses_nobjects * 4) + (cc->ses_ntypes * 4) + 8; 1097 } 1098 sdata = SES_MALLOC(bufsiz); 1099 if (sdata == NULL) 1100 return (ENOMEM); 1101 1102 cdb[0] = RECEIVE_DIAGNOSTIC; 1103 cdb[1] = 1; 1104 cdb[2] = SesStatusPage; 1105 cdb[3] = bufsiz >> 8; 1106 cdb[4] = bufsiz & 0xff; 1107 cdb[5] = 0; 1108 amt = bufsiz; 1109 err = ses_runcmd(ssc, cdb, 6, sdata, &amt); 1110 if (err) { 1111 SES_FREE(sdata, bufsiz); 1112 return (err); 1113 } 1114 amt = bufsiz - amt; 1115 1116 if (objid == -1) { 1117 tidx = -1; 1118 oidx = -1; 1119 } else { 1120 tidx = cc->ses_typidx[objid].ses_tidx; 1121 oidx = cc->ses_typidx[objid].ses_oidx; 1122 } 1123 if (in) { 1124 if (ses_decode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) { 1125 err = ENODEV; 1126 } 1127 } else { 1128 if (ses_encode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) { 1129 err = ENODEV; 1130 } else { 1131 cdb[0] = SEND_DIAGNOSTIC; 1132 cdb[1] = 0x10; 1133 cdb[2] = 0; 1134 cdb[3] = bufsiz >> 8; 1135 cdb[4] = bufsiz & 0xff; 1136 cdb[5] = 0; 1137 amt = -bufsiz; 1138 err = ses_runcmd(ssc, cdb, 6, sdata, &amt); 1139 } 1140 } 1141 SES_FREE(sdata, bufsiz); 1142 return (0); 1143 } 1144 1145 1146 /* 1147 * Routines to parse returned SES data structures. 1148 * Architecture and compiler independent. 1149 */ 1150 1151 static int 1152 ses_cfghdr(uint8_t *buffer, int buflen, SesCfgHdr *cfp) 1153 { 1154 if (buflen < SES_CFGHDR_MINLEN) { 1155 return (-1); 1156 } 1157 gget8(buffer, 1, cfp->Nsubenc); 1158 gget32(buffer, 4, cfp->GenCode); 1159 return (0); 1160 } 1161 1162 static int 1163 ses_enchdr(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncHdr *chp) 1164 { 1165 int s, off = 8; 1166 for (s = 0; s < SubEncId; s++) { 1167 if (off + 3 > amt) 1168 return (-1); 1169 off += buffer[off+3] + 4; 1170 } 1171 if (off + 3 > amt) { 1172 return (-1); 1173 } 1174 gget8(buffer, off+1, chp->Subencid); 1175 gget8(buffer, off+2, chp->Ntypes); 1176 gget8(buffer, off+3, chp->VEnclen); 1177 return (0); 1178 } 1179 1180 static int 1181 ses_encdesc(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncDesc *cdp) 1182 { 1183 int s, e, enclen, off = 8; 1184 for (s = 0; s < SubEncId; s++) { 1185 if (off + 3 > amt) 1186 return (-1); 1187 off += buffer[off+3] + 4; 1188 } 1189 if (off + 3 > amt) { 1190 return (-1); 1191 } 1192 gget8(buffer, off+3, enclen); 1193 off += 4; 1194 if (off >= amt) 1195 return (-1); 1196 1197 e = off + enclen; 1198 if (e > amt) { 1199 e = amt; 1200 } 1201 MEMCPY(cdp, &buffer[off], e - off); 1202 return (0); 1203 } 1204 1205 static int 1206 ses_getthdr(uint8_t *buffer, int amt, int nth, SesThdr *thp) 1207 { 1208 int s, off = 8; 1209 1210 if (amt < SES_CFGHDR_MINLEN) { 1211 return (-1); 1212 } 1213 for (s = 0; s < buffer[1]; s++) { 1214 if (off + 3 > amt) 1215 return (-1); 1216 off += buffer[off+3] + 4; 1217 } 1218 if (off + 3 > amt) { 1219 return (-1); 1220 } 1221 off += buffer[off+3] + 4 + (nth * 4); 1222 if (amt < (off + 4)) 1223 return (-1); 1224 1225 gget8(buffer, off++, thp->enc_type); 1226 gget8(buffer, off++, thp->enc_maxelt); 1227 gget8(buffer, off++, thp->enc_subenc); 1228 gget8(buffer, off, thp->enc_tlen); 1229 return (0); 1230 } 1231 1232 /* 1233 * This function needs a little explanation. 1234 * 1235 * The arguments are: 1236 * 1237 * 1238 * char *b, int amt 1239 * 1240 * These describes the raw input SES status data and length. 1241 * 1242 * uint8_t *ep 1243 * 1244 * This is a map of the number of types for each element type 1245 * in the enclosure. 1246 * 1247 * int elt 1248 * 1249 * This is the element type being sought. If elt is -1, 1250 * then overall enclosure status is being sought. 1251 * 1252 * int elm 1253 * 1254 * This is the ordinal Mth element of type elt being sought. 1255 * 1256 * SesComStat *sp 1257 * 1258 * This is the output area to store the status for 1259 * the Mth element of type Elt. 1260 */ 1261 1262 static int 1263 ses_decode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp) 1264 { 1265 int idx, i; 1266 1267 /* 1268 * If it's overall enclosure status being sought, get that. 1269 * We need at least 2 bytes of status data to get that. 1270 */ 1271 if (elt == -1) { 1272 if (amt < 2) 1273 return (-1); 1274 gget8(b, 1, sp->comstatus); 1275 sp->comstat[0] = 0; 1276 sp->comstat[1] = 0; 1277 sp->comstat[2] = 0; 1278 return (0); 1279 } 1280 1281 /* 1282 * Check to make sure that the Mth element is legal for type Elt. 1283 */ 1284 1285 if (elm >= ep[elt]) 1286 return (-1); 1287 1288 /* 1289 * Starting at offset 8, start skipping over the storage 1290 * for the element types we're not interested in. 1291 */ 1292 for (idx = 8, i = 0; i < elt; i++) { 1293 idx += ((ep[i] + 1) * 4); 1294 } 1295 1296 /* 1297 * Skip over Overall status for this element type. 1298 */ 1299 idx += 4; 1300 1301 /* 1302 * And skip to the index for the Mth element that we're going for. 1303 */ 1304 idx += (4 * elm); 1305 1306 /* 1307 * Make sure we haven't overflowed the buffer. 1308 */ 1309 if (idx+4 > amt) 1310 return (-1); 1311 1312 /* 1313 * Retrieve the status. 1314 */ 1315 gget8(b, idx++, sp->comstatus); 1316 gget8(b, idx++, sp->comstat[0]); 1317 gget8(b, idx++, sp->comstat[1]); 1318 gget8(b, idx++, sp->comstat[2]); 1319 #if 0 1320 PRINTF("Get Elt 0x%x Elm 0x%x (idx %d)\n", elt, elm, idx-4); 1321 #endif 1322 return (0); 1323 } 1324 1325 /* 1326 * This is the mirror function to ses_decode, but we set the 'select' 1327 * bit for the object which we're interested in. All other objects, 1328 * after a status fetch, should have that bit off. Hmm. It'd be easy 1329 * enough to ensure this, so we will. 1330 */ 1331 1332 static int 1333 ses_encode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp) 1334 { 1335 int idx, i; 1336 1337 /* 1338 * If it's overall enclosure status being sought, get that. 1339 * We need at least 2 bytes of status data to get that. 1340 */ 1341 if (elt == -1) { 1342 if (amt < 2) 1343 return (-1); 1344 i = 0; 1345 sset8(b, i, 0); 1346 sset8(b, i, sp->comstatus & 0xf); 1347 #if 0 1348 PRINTF("set EncStat %x\n", sp->comstatus); 1349 #endif 1350 return (0); 1351 } 1352 1353 /* 1354 * Check to make sure that the Mth element is legal for type Elt. 1355 */ 1356 1357 if (elm >= ep[elt]) 1358 return (-1); 1359 1360 /* 1361 * Starting at offset 8, start skipping over the storage 1362 * for the element types we're not interested in. 1363 */ 1364 for (idx = 8, i = 0; i < elt; i++) { 1365 idx += ((ep[i] + 1) * 4); 1366 } 1367 1368 /* 1369 * Skip over Overall status for this element type. 1370 */ 1371 idx += 4; 1372 1373 /* 1374 * And skip to the index for the Mth element that we're going for. 1375 */ 1376 idx += (4 * elm); 1377 1378 /* 1379 * Make sure we haven't overflowed the buffer. 1380 */ 1381 if (idx+4 > amt) 1382 return (-1); 1383 1384 /* 1385 * Set the status. 1386 */ 1387 sset8(b, idx, sp->comstatus); 1388 sset8(b, idx, sp->comstat[0]); 1389 sset8(b, idx, sp->comstat[1]); 1390 sset8(b, idx, sp->comstat[2]); 1391 idx -= 4; 1392 1393 #if 0 1394 PRINTF("Set Elt 0x%x Elm 0x%x (idx %d) with %x %x %x %x\n", 1395 elt, elm, idx, sp->comstatus, sp->comstat[0], 1396 sp->comstat[1], sp->comstat[2]); 1397 #endif 1398 1399 /* 1400 * Now make sure all other 'Select' bits are off. 1401 */ 1402 for (i = 8; i < amt; i += 4) { 1403 if (i != idx) 1404 b[i] &= ~0x80; 1405 } 1406 /* 1407 * And make sure the INVOP bit is clear. 1408 */ 1409 b[2] &= ~0x10; 1410 1411 return (0); 1412 } 1413 1414 /* 1415 * SAF-TE Type Device Emulation 1416 */ 1417 1418 static int safte_getconfig(ses_softc_t *); 1419 static int safte_rdstat(ses_softc_t *, int); 1420 static int set_objstat_sel(ses_softc_t *, ses_objstat *, int); 1421 static int wrbuf16(ses_softc_t *, uint8_t, uint8_t, uint8_t, uint8_t, int); 1422 static void wrslot_stat(ses_softc_t *, int); 1423 static int perf_slotop(ses_softc_t *, uint8_t, uint8_t, int); 1424 1425 #define ALL_ENC_STAT (SES_ENCSTAT_CRITICAL | SES_ENCSTAT_UNRECOV | \ 1426 SES_ENCSTAT_NONCRITICAL | SES_ENCSTAT_INFO) 1427 /* 1428 * SAF-TE specific defines- Mandatory ones only... 1429 */ 1430 1431 /* 1432 * READ BUFFER ('get' commands) IDs- placed in offset 2 of cdb 1433 */ 1434 #define SAFTE_RD_RDCFG 0x00 /* read enclosure configuration */ 1435 #define SAFTE_RD_RDESTS 0x01 /* read enclosure status */ 1436 #define SAFTE_RD_RDDSTS 0x04 /* read drive slot status */ 1437 1438 /* 1439 * WRITE BUFFER ('set' commands) IDs- placed in offset 0 of databuf 1440 */ 1441 #define SAFTE_WT_DSTAT 0x10 /* write device slot status */ 1442 #define SAFTE_WT_SLTOP 0x12 /* perform slot operation */ 1443 #define SAFTE_WT_FANSPD 0x13 /* set fan speed */ 1444 #define SAFTE_WT_ACTPWS 0x14 /* turn on/off power supply */ 1445 #define SAFTE_WT_GLOBAL 0x15 /* send global command */ 1446 1447 1448 #define SAFT_SCRATCH 64 1449 #define NPSEUDO_THERM 16 1450 #define NPSEUDO_ALARM 1 1451 struct scfg { 1452 /* 1453 * Cached Configuration 1454 */ 1455 uint8_t Nfans; /* Number of Fans */ 1456 uint8_t Npwr; /* Number of Power Supplies */ 1457 uint8_t Nslots; /* Number of Device Slots */ 1458 uint8_t DoorLock; /* Door Lock Installed */ 1459 uint8_t Ntherm; /* Number of Temperature Sensors */ 1460 uint8_t Nspkrs; /* Number of Speakers */ 1461 uint8_t Nalarm; /* Number of Alarms (at least one) */ 1462 /* 1463 * Cached Flag Bytes for Global Status 1464 */ 1465 uint8_t flag1; 1466 uint8_t flag2; 1467 /* 1468 * What object index ID is where various slots start. 1469 */ 1470 uint8_t pwroff; 1471 uint8_t slotoff; 1472 #define SAFT_ALARM_OFFSET(cc) (cc)->slotoff - 1 1473 }; 1474 1475 #define SAFT_FLG1_ALARM 0x1 1476 #define SAFT_FLG1_GLOBFAIL 0x2 1477 #define SAFT_FLG1_GLOBWARN 0x4 1478 #define SAFT_FLG1_ENCPWROFF 0x8 1479 #define SAFT_FLG1_ENCFANFAIL 0x10 1480 #define SAFT_FLG1_ENCPWRFAIL 0x20 1481 #define SAFT_FLG1_ENCDRVFAIL 0x40 1482 #define SAFT_FLG1_ENCDRVWARN 0x80 1483 1484 #define SAFT_FLG2_LOCKDOOR 0x4 1485 #define SAFT_PRIVATE sizeof (struct scfg) 1486 1487 static const char safte_2little[] = "Too Little Data Returned (%d) at line %d\n"; 1488 #define SAFT_BAIL(r, x, k, l) \ 1489 if (r >= x) { \ 1490 SES_LOG(ssc, safte_2little, x, __LINE__);\ 1491 SES_FREE(k, l); \ 1492 return (EIO); \ 1493 } 1494 1495 1496 static int 1497 safte_softc_init(ses_softc_t *ssc, int doinit) 1498 { 1499 int err, i, r; 1500 struct scfg *cc; 1501 1502 if (doinit == 0) { 1503 if (ssc->ses_nobjects) { 1504 if (ssc->ses_objmap) { 1505 SES_FREE(ssc->ses_objmap, 1506 ssc->ses_nobjects * sizeof (encobj)); 1507 ssc->ses_objmap = NULL; 1508 } 1509 ssc->ses_nobjects = 0; 1510 } 1511 if (ssc->ses_private) { 1512 SES_FREE(ssc->ses_private, SAFT_PRIVATE); 1513 ssc->ses_private = NULL; 1514 } 1515 return (0); 1516 } 1517 1518 if (ssc->ses_private == NULL) { 1519 ssc->ses_private = SES_MALLOC(SAFT_PRIVATE); 1520 if (ssc->ses_private == NULL) { 1521 return (ENOMEM); 1522 } 1523 MEMZERO(ssc->ses_private, SAFT_PRIVATE); 1524 } 1525 1526 ssc->ses_nobjects = 0; 1527 ssc->ses_encstat = 0; 1528 1529 if ((err = safte_getconfig(ssc)) != 0) { 1530 return (err); 1531 } 1532 1533 /* 1534 * The number of objects here, as well as that reported by the 1535 * READ_BUFFER/GET_CONFIG call, are the over-temperature flags (15) 1536 * that get reported during READ_BUFFER/READ_ENC_STATUS. 1537 */ 1538 cc = ssc->ses_private; 1539 ssc->ses_nobjects = cc->Nfans + cc->Npwr + cc->Nslots + cc->DoorLock + 1540 cc->Ntherm + cc->Nspkrs + NPSEUDO_THERM + NPSEUDO_ALARM; 1541 ssc->ses_objmap = (encobj *) 1542 SES_MALLOC(ssc->ses_nobjects * sizeof (encobj)); 1543 if (ssc->ses_objmap == NULL) { 1544 return (ENOMEM); 1545 } 1546 MEMZERO(ssc->ses_objmap, ssc->ses_nobjects * sizeof (encobj)); 1547 1548 r = 0; 1549 /* 1550 * Note that this is all arranged for the convenience 1551 * in later fetches of status. 1552 */ 1553 for (i = 0; i < cc->Nfans; i++) 1554 ssc->ses_objmap[r++].enctype = SESTYP_FAN; 1555 cc->pwroff = (uint8_t) r; 1556 for (i = 0; i < cc->Npwr; i++) 1557 ssc->ses_objmap[r++].enctype = SESTYP_POWER; 1558 for (i = 0; i < cc->DoorLock; i++) 1559 ssc->ses_objmap[r++].enctype = SESTYP_DOORLOCK; 1560 for (i = 0; i < cc->Nspkrs; i++) 1561 ssc->ses_objmap[r++].enctype = SESTYP_ALARM; 1562 for (i = 0; i < cc->Ntherm; i++) 1563 ssc->ses_objmap[r++].enctype = SESTYP_THERM; 1564 for (i = 0; i < NPSEUDO_THERM; i++) 1565 ssc->ses_objmap[r++].enctype = SESTYP_THERM; 1566 ssc->ses_objmap[r++].enctype = SESTYP_ALARM; 1567 cc->slotoff = (uint8_t) r; 1568 for (i = 0; i < cc->Nslots; i++) 1569 ssc->ses_objmap[r++].enctype = SESTYP_DEVICE; 1570 return (0); 1571 } 1572 1573 static int 1574 safte_init_enc(ses_softc_t *ssc) 1575 { 1576 int err, amt; 1577 char *sdata; 1578 static char cdb0[6] = { SEND_DIAGNOSTIC }; 1579 static char cdb[10] = 1580 { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 }; 1581 1582 sdata = SES_MALLOC(SAFT_SCRATCH); 1583 if (sdata == NULL) 1584 return (ENOMEM); 1585 1586 err = ses_runcmd(ssc, cdb0, 6, NULL, 0); 1587 if (err) { 1588 SES_FREE(sdata, SAFT_SCRATCH); 1589 return (err); 1590 } 1591 sdata[0] = SAFTE_WT_GLOBAL; 1592 MEMZERO(&sdata[1], 15); 1593 amt = -SAFT_SCRATCH; 1594 err = ses_runcmd(ssc, cdb, 10, sdata, &amt); 1595 SES_FREE(sdata, SAFT_SCRATCH); 1596 return (err); 1597 } 1598 1599 static int 1600 safte_get_encstat(ses_softc_t *ssc, int slpflg) 1601 { 1602 return (safte_rdstat(ssc, slpflg)); 1603 } 1604 1605 static int 1606 safte_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflg) 1607 { 1608 struct scfg *cc = ssc->ses_private; 1609 if (cc == NULL) 1610 return (0); 1611 /* 1612 * Since SAF-TE devices aren't necessarily sticky in terms 1613 * of state, make our soft copy of enclosure status 'sticky'- 1614 * that is, things set in enclosure status stay set (as implied 1615 * by conditions set in reading object status) until cleared. 1616 */ 1617 ssc->ses_encstat &= ~ALL_ENC_STAT; 1618 ssc->ses_encstat |= (encstat & ALL_ENC_STAT); 1619 ssc->ses_encstat |= ENCI_SVALID; 1620 cc->flag1 &= ~(SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL|SAFT_FLG1_GLOBWARN); 1621 if ((encstat & (SES_ENCSTAT_CRITICAL|SES_ENCSTAT_UNRECOV)) != 0) { 1622 cc->flag1 |= SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL; 1623 } else if ((encstat & SES_ENCSTAT_NONCRITICAL) != 0) { 1624 cc->flag1 |= SAFT_FLG1_GLOBWARN; 1625 } 1626 return (wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slpflg)); 1627 } 1628 1629 static int 1630 safte_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflg) 1631 { 1632 int i = (int)obp->obj_id; 1633 1634 if ((ssc->ses_encstat & ENCI_SVALID) == 0 || 1635 (ssc->ses_objmap[i].svalid) == 0) { 1636 int err = safte_rdstat(ssc, slpflg); 1637 if (err) 1638 return (err); 1639 } 1640 obp->cstat[0] = ssc->ses_objmap[i].encstat[0]; 1641 obp->cstat[1] = ssc->ses_objmap[i].encstat[1]; 1642 obp->cstat[2] = ssc->ses_objmap[i].encstat[2]; 1643 obp->cstat[3] = ssc->ses_objmap[i].encstat[3]; 1644 return (0); 1645 } 1646 1647 1648 static int 1649 safte_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slp) 1650 { 1651 int idx, err; 1652 encobj *ep; 1653 struct scfg *cc; 1654 1655 1656 SES_VLOG(ssc, "safte_set_objstat(%d): %x %x %x %x\n", 1657 (int)obp->obj_id, obp->cstat[0], obp->cstat[1], obp->cstat[2], 1658 obp->cstat[3]); 1659 1660 /* 1661 * If this is clear, we don't do diddly. 1662 */ 1663 if ((obp->cstat[0] & SESCTL_CSEL) == 0) { 1664 return (0); 1665 } 1666 1667 err = 0; 1668 /* 1669 * Check to see if the common bits are set and do them first. 1670 */ 1671 if (obp->cstat[0] & ~SESCTL_CSEL) { 1672 err = set_objstat_sel(ssc, obp, slp); 1673 if (err) 1674 return (err); 1675 } 1676 1677 cc = ssc->ses_private; 1678 if (cc == NULL) 1679 return (0); 1680 1681 idx = (int)obp->obj_id; 1682 ep = &ssc->ses_objmap[idx]; 1683 1684 switch (ep->enctype) { 1685 case SESTYP_DEVICE: 1686 { 1687 uint8_t slotop = 0; 1688 /* 1689 * XXX: I should probably cache the previous state 1690 * XXX: of SESCTL_DEVOFF so that when it goes from 1691 * XXX: true to false I can then set PREPARE FOR OPERATION 1692 * XXX: flag in PERFORM SLOT OPERATION write buffer command. 1693 */ 1694 if (obp->cstat[2] & (SESCTL_RQSINS|SESCTL_RQSRMV)) { 1695 slotop |= 0x2; 1696 } 1697 if (obp->cstat[2] & SESCTL_RQSID) { 1698 slotop |= 0x4; 1699 } 1700 err = perf_slotop(ssc, (uint8_t) idx - (uint8_t) cc->slotoff, 1701 slotop, slp); 1702 if (err) 1703 return (err); 1704 if (obp->cstat[3] & SESCTL_RQSFLT) { 1705 ep->priv |= 0x2; 1706 } else { 1707 ep->priv &= ~0x2; 1708 } 1709 if (ep->priv & 0xc6) { 1710 ep->priv &= ~0x1; 1711 } else { 1712 ep->priv |= 0x1; /* no errors */ 1713 } 1714 wrslot_stat(ssc, slp); 1715 break; 1716 } 1717 case SESTYP_POWER: 1718 if (obp->cstat[3] & SESCTL_RQSTFAIL) { 1719 cc->flag1 |= SAFT_FLG1_ENCPWRFAIL; 1720 } else { 1721 cc->flag1 &= ~SAFT_FLG1_ENCPWRFAIL; 1722 } 1723 err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, 1724 cc->flag2, 0, slp); 1725 if (err) 1726 return (err); 1727 if (obp->cstat[3] & SESCTL_RQSTON) { 1728 (void) wrbuf16(ssc, SAFTE_WT_ACTPWS, 1729 idx - cc->pwroff, 0, 0, slp); 1730 } else { 1731 (void) wrbuf16(ssc, SAFTE_WT_ACTPWS, 1732 idx - cc->pwroff, 0, 1, slp); 1733 } 1734 break; 1735 case SESTYP_FAN: 1736 if (obp->cstat[3] & SESCTL_RQSTFAIL) { 1737 cc->flag1 |= SAFT_FLG1_ENCFANFAIL; 1738 } else { 1739 cc->flag1 &= ~SAFT_FLG1_ENCFANFAIL; 1740 } 1741 err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, 1742 cc->flag2, 0, slp); 1743 if (err) 1744 return (err); 1745 if (obp->cstat[3] & SESCTL_RQSTON) { 1746 uint8_t fsp; 1747 if ((obp->cstat[3] & 0x7) == 7) { 1748 fsp = 4; 1749 } else if ((obp->cstat[3] & 0x7) == 6) { 1750 fsp = 3; 1751 } else if ((obp->cstat[3] & 0x7) == 4) { 1752 fsp = 2; 1753 } else { 1754 fsp = 1; 1755 } 1756 (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, fsp, 0, slp); 1757 } else { 1758 (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp); 1759 } 1760 break; 1761 case SESTYP_DOORLOCK: 1762 if (obp->cstat[3] & 0x1) { 1763 cc->flag2 &= ~SAFT_FLG2_LOCKDOOR; 1764 } else { 1765 cc->flag2 |= SAFT_FLG2_LOCKDOOR; 1766 } 1767 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, 1768 cc->flag2, 0, slp); 1769 break; 1770 case SESTYP_ALARM: 1771 /* 1772 * On all nonzero but the 'muted' bit, we turn on the alarm, 1773 */ 1774 obp->cstat[3] &= ~0xa; 1775 if (obp->cstat[3] & 0x40) { 1776 cc->flag2 &= ~SAFT_FLG1_ALARM; 1777 } else if (obp->cstat[3] != 0) { 1778 cc->flag2 |= SAFT_FLG1_ALARM; 1779 } else { 1780 cc->flag2 &= ~SAFT_FLG1_ALARM; 1781 } 1782 ep->priv = obp->cstat[3]; 1783 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, 1784 cc->flag2, 0, slp); 1785 break; 1786 default: 1787 break; 1788 } 1789 ep->svalid = 0; 1790 return (0); 1791 } 1792 1793 static int 1794 safte_getconfig(ses_softc_t *ssc) 1795 { 1796 struct scfg *cfg; 1797 int err, amt; 1798 char *sdata; 1799 static char cdb[10] = 1800 { READ_BUFFER, 1, SAFTE_RD_RDCFG, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 }; 1801 1802 cfg = ssc->ses_private; 1803 if (cfg == NULL) 1804 return (ENXIO); 1805 1806 sdata = SES_MALLOC(SAFT_SCRATCH); 1807 if (sdata == NULL) 1808 return (ENOMEM); 1809 1810 amt = SAFT_SCRATCH; 1811 err = ses_runcmd(ssc, cdb, 10, sdata, &amt); 1812 if (err) { 1813 SES_FREE(sdata, SAFT_SCRATCH); 1814 return (err); 1815 } 1816 amt = SAFT_SCRATCH - amt; 1817 if (amt < 6) { 1818 SES_LOG(ssc, "too little data (%d) for configuration\n", amt); 1819 SES_FREE(sdata, SAFT_SCRATCH); 1820 return (EIO); 1821 } 1822 SES_VLOG(ssc, "Nfans %d Npwr %d Nslots %d Lck %d Ntherm %d Nspkrs %d\n", 1823 sdata[0], sdata[1], sdata[2], sdata[3], sdata[4], sdata[5]); 1824 cfg->Nfans = sdata[0]; 1825 cfg->Npwr = sdata[1]; 1826 cfg->Nslots = sdata[2]; 1827 cfg->DoorLock = sdata[3]; 1828 cfg->Ntherm = sdata[4]; 1829 cfg->Nspkrs = sdata[5]; 1830 cfg->Nalarm = NPSEUDO_ALARM; 1831 SES_FREE(sdata, SAFT_SCRATCH); 1832 return (0); 1833 } 1834 1835 static int 1836 safte_rdstat(ses_softc_t *ssc, int slpflg) 1837 { 1838 int err, oid, r, i, hiwater, nitems, amt; 1839 uint16_t tempflags; 1840 size_t buflen; 1841 uint8_t status, oencstat; 1842 char *sdata, cdb[10]; 1843 struct scfg *cc = ssc->ses_private; 1844 1845 1846 /* 1847 * The number of objects overstates things a bit, 1848 * both for the bogus 'thermometer' entries and 1849 * the drive status (which isn't read at the same 1850 * time as the enclosure status), but that's okay. 1851 */ 1852 buflen = 4 * cc->Nslots; 1853 if (ssc->ses_nobjects > buflen) 1854 buflen = ssc->ses_nobjects; 1855 sdata = SES_MALLOC(buflen); 1856 if (sdata == NULL) 1857 return (ENOMEM); 1858 1859 cdb[0] = READ_BUFFER; 1860 cdb[1] = 1; 1861 cdb[2] = SAFTE_RD_RDESTS; 1862 cdb[3] = 0; 1863 cdb[4] = 0; 1864 cdb[5] = 0; 1865 cdb[6] = 0; 1866 cdb[7] = (buflen >> 8) & 0xff; 1867 cdb[8] = buflen & 0xff; 1868 cdb[9] = 0; 1869 amt = buflen; 1870 err = ses_runcmd(ssc, cdb, 10, sdata, &amt); 1871 if (err) { 1872 SES_FREE(sdata, buflen); 1873 return (err); 1874 } 1875 hiwater = buflen - amt; 1876 1877 1878 /* 1879 * invalidate all status bits. 1880 */ 1881 for (i = 0; i < ssc->ses_nobjects; i++) 1882 ssc->ses_objmap[i].svalid = 0; 1883 oencstat = ssc->ses_encstat & ALL_ENC_STAT; 1884 ssc->ses_encstat = 0; 1885 1886 1887 /* 1888 * Now parse returned buffer. 1889 * If we didn't get enough data back, 1890 * that's considered a fatal error. 1891 */ 1892 oid = r = 0; 1893 1894 for (nitems = i = 0; i < cc->Nfans; i++) { 1895 SAFT_BAIL(r, hiwater, sdata, buflen); 1896 /* 1897 * 0 = Fan Operational 1898 * 1 = Fan is malfunctioning 1899 * 2 = Fan is not present 1900 * 0x80 = Unknown or Not Reportable Status 1901 */ 1902 ssc->ses_objmap[oid].encstat[1] = 0; /* resvd */ 1903 ssc->ses_objmap[oid].encstat[2] = 0; /* resvd */ 1904 switch ((int)(uint8_t)sdata[r]) { 1905 case 0: 1906 nitems++; 1907 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK; 1908 /* 1909 * We could get fancier and cache 1910 * fan speeds that we have set, but 1911 * that isn't done now. 1912 */ 1913 ssc->ses_objmap[oid].encstat[3] = 7; 1914 break; 1915 1916 case 1: 1917 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT; 1918 /* 1919 * FAIL and FAN STOPPED synthesized 1920 */ 1921 ssc->ses_objmap[oid].encstat[3] = 0x40; 1922 /* 1923 * Enclosure marked with CRITICAL error 1924 * if only one fan or no thermometers, 1925 * else the NONCRITICAL error is set. 1926 */ 1927 if (cc->Nfans == 1 || cc->Ntherm == 0) 1928 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL; 1929 else 1930 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL; 1931 break; 1932 case 2: 1933 ssc->ses_objmap[oid].encstat[0] = 1934 SES_OBJSTAT_NOTINSTALLED; 1935 ssc->ses_objmap[oid].encstat[3] = 0; 1936 /* 1937 * Enclosure marked with CRITICAL error 1938 * if only one fan or no thermometers, 1939 * else the NONCRITICAL error is set. 1940 */ 1941 if (cc->Nfans == 1) 1942 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL; 1943 else 1944 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL; 1945 break; 1946 case 0x80: 1947 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN; 1948 ssc->ses_objmap[oid].encstat[3] = 0; 1949 ssc->ses_encstat |= SES_ENCSTAT_INFO; 1950 break; 1951 default: 1952 ssc->ses_objmap[oid].encstat[0] = 1953 SES_OBJSTAT_UNSUPPORTED; 1954 SES_LOG(ssc, "Unknown fan%d status 0x%x\n", i, 1955 sdata[r] & 0xff); 1956 break; 1957 } 1958 ssc->ses_objmap[oid++].svalid = 1; 1959 r++; 1960 } 1961 1962 /* 1963 * No matter how you cut it, no cooling elements when there 1964 * should be some there is critical. 1965 */ 1966 if (cc->Nfans && nitems == 0) { 1967 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL; 1968 } 1969 1970 1971 for (i = 0; i < cc->Npwr; i++) { 1972 SAFT_BAIL(r, hiwater, sdata, buflen); 1973 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN; 1974 ssc->ses_objmap[oid].encstat[1] = 0; /* resvd */ 1975 ssc->ses_objmap[oid].encstat[2] = 0; /* resvd */ 1976 ssc->ses_objmap[oid].encstat[3] = 0x20; /* requested on */ 1977 switch ((uint8_t)sdata[r]) { 1978 case 0x00: /* pws operational and on */ 1979 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK; 1980 break; 1981 case 0x01: /* pws operational and off */ 1982 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK; 1983 ssc->ses_objmap[oid].encstat[3] = 0x10; 1984 ssc->ses_encstat |= SES_ENCSTAT_INFO; 1985 break; 1986 case 0x10: /* pws is malfunctioning and commanded on */ 1987 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT; 1988 ssc->ses_objmap[oid].encstat[3] = 0x61; 1989 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL; 1990 break; 1991 1992 case 0x11: /* pws is malfunctioning and commanded off */ 1993 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT; 1994 ssc->ses_objmap[oid].encstat[3] = 0x51; 1995 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL; 1996 break; 1997 case 0x20: /* pws is not present */ 1998 ssc->ses_objmap[oid].encstat[0] = 1999 SES_OBJSTAT_NOTINSTALLED; 2000 ssc->ses_objmap[oid].encstat[3] = 0; 2001 ssc->ses_encstat |= SES_ENCSTAT_INFO; 2002 break; 2003 case 0x21: /* pws is present */ 2004 /* 2005 * This is for enclosures that cannot tell whether the 2006 * device is on or malfunctioning, but know that it is 2007 * present. Just fall through. 2008 */ 2009 /* FALLTHROUGH */ 2010 case 0x80: /* Unknown or Not Reportable Status */ 2011 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN; 2012 ssc->ses_objmap[oid].encstat[3] = 0; 2013 ssc->ses_encstat |= SES_ENCSTAT_INFO; 2014 break; 2015 default: 2016 SES_LOG(ssc, "unknown power supply %d status (0x%x)\n", 2017 i, sdata[r] & 0xff); 2018 break; 2019 } 2020 ssc->ses_objmap[oid++].svalid = 1; 2021 r++; 2022 } 2023 2024 /* 2025 * Skip over Slot SCSI IDs 2026 */ 2027 r += cc->Nslots; 2028 2029 /* 2030 * We always have doorlock status, no matter what, 2031 * but we only save the status if we have one. 2032 */ 2033 SAFT_BAIL(r, hiwater, sdata, buflen); 2034 if (cc->DoorLock) { 2035 /* 2036 * 0 = Door Locked 2037 * 1 = Door Unlocked, or no Lock Installed 2038 * 0x80 = Unknown or Not Reportable Status 2039 */ 2040 ssc->ses_objmap[oid].encstat[1] = 0; 2041 ssc->ses_objmap[oid].encstat[2] = 0; 2042 switch ((uint8_t)sdata[r]) { 2043 case 0: 2044 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK; 2045 ssc->ses_objmap[oid].encstat[3] = 0; 2046 break; 2047 case 1: 2048 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK; 2049 ssc->ses_objmap[oid].encstat[3] = 1; 2050 break; 2051 case 0x80: 2052 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN; 2053 ssc->ses_objmap[oid].encstat[3] = 0; 2054 ssc->ses_encstat |= SES_ENCSTAT_INFO; 2055 break; 2056 default: 2057 ssc->ses_objmap[oid].encstat[0] = 2058 SES_OBJSTAT_UNSUPPORTED; 2059 SES_LOG(ssc, "unknown lock status 0x%x\n", 2060 sdata[r] & 0xff); 2061 break; 2062 } 2063 ssc->ses_objmap[oid++].svalid = 1; 2064 } 2065 r++; 2066 2067 /* 2068 * We always have speaker status, no matter what, 2069 * but we only save the status if we have one. 2070 */ 2071 SAFT_BAIL(r, hiwater, sdata, buflen); 2072 if (cc->Nspkrs) { 2073 ssc->ses_objmap[oid].encstat[1] = 0; 2074 ssc->ses_objmap[oid].encstat[2] = 0; 2075 if (sdata[r] == 1) { 2076 /* 2077 * We need to cache tone urgency indicators. 2078 * Someday. 2079 */ 2080 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT; 2081 ssc->ses_objmap[oid].encstat[3] = 0x8; 2082 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL; 2083 } else if (sdata[r] == 0) { 2084 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK; 2085 ssc->ses_objmap[oid].encstat[3] = 0; 2086 } else { 2087 ssc->ses_objmap[oid].encstat[0] = 2088 SES_OBJSTAT_UNSUPPORTED; 2089 ssc->ses_objmap[oid].encstat[3] = 0; 2090 SES_LOG(ssc, "unknown spkr status 0x%x\n", 2091 sdata[r] & 0xff); 2092 } 2093 ssc->ses_objmap[oid++].svalid = 1; 2094 } 2095 r++; 2096 2097 for (i = 0; i < cc->Ntherm; i++) { 2098 SAFT_BAIL(r, hiwater, sdata, buflen); 2099 /* 2100 * Status is a range from -10 to 245 deg Celsius, 2101 * which we need to normalize to -20 to -245 according 2102 * to the latest SCSI spec, which makes little 2103 * sense since this would overflow an 8bit value. 2104 * Well, still, the base normalization is -20, 2105 * not -10, so we have to adjust. 2106 * 2107 * So what's over and under temperature? 2108 * Hmm- we'll state that 'normal' operating 2109 * is 10 to 40 deg Celsius. 2110 */ 2111 2112 /* 2113 * Actually.... All of the units that people out in the world 2114 * seem to have do not come even close to setting a value that 2115 * complies with this spec. 2116 * 2117 * The closest explanation I could find was in an 2118 * LSI-Logic manual, which seemed to indicate that 2119 * this value would be set by whatever the I2C code 2120 * would interpolate from the output of an LM75 2121 * temperature sensor. 2122 * 2123 * This means that it is impossible to use the actual 2124 * numeric value to predict anything. But we don't want 2125 * to lose the value. So, we'll propagate the *uncorrected* 2126 * value and set SES_OBJSTAT_NOTAVAIL. We'll depend on the 2127 * temperature flags for warnings. 2128 */ 2129 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NOTAVAIL; 2130 ssc->ses_objmap[oid].encstat[1] = 0; 2131 ssc->ses_objmap[oid].encstat[2] = sdata[r]; 2132 ssc->ses_objmap[oid].encstat[3] = 0; 2133 ssc->ses_objmap[oid++].svalid = 1; 2134 r++; 2135 } 2136 2137 /* 2138 * Now, for "pseudo" thermometers, we have two bytes 2139 * of information in enclosure status- 16 bits. Actually, 2140 * the MSB is a single TEMP ALERT flag indicating whether 2141 * any other bits are set, but, thanks to fuzzy thinking, 2142 * in the SAF-TE spec, this can also be set even if no 2143 * other bits are set, thus making this really another 2144 * binary temperature sensor. 2145 */ 2146 2147 SAFT_BAIL(r, hiwater, sdata, buflen); 2148 tempflags = sdata[r++]; 2149 SAFT_BAIL(r, hiwater, sdata, buflen); 2150 tempflags |= (tempflags << 8) | sdata[r++]; 2151 2152 for (i = 0; i < NPSEUDO_THERM; i++) { 2153 ssc->ses_objmap[oid].encstat[1] = 0; 2154 if (tempflags & (1 << (NPSEUDO_THERM - i - 1))) { 2155 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT; 2156 ssc->ses_objmap[4].encstat[2] = 0xff; 2157 /* 2158 * Set 'over temperature' failure. 2159 */ 2160 ssc->ses_objmap[oid].encstat[3] = 8; 2161 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL; 2162 } else { 2163 /* 2164 * We used to say 'not available' and synthesize a 2165 * nominal 30 deg (C)- that was wrong. Actually, 2166 * Just say 'OK', and use the reserved value of 2167 * zero. 2168 */ 2169 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK; 2170 ssc->ses_objmap[oid].encstat[2] = 0; 2171 ssc->ses_objmap[oid].encstat[3] = 0; 2172 } 2173 ssc->ses_objmap[oid++].svalid = 1; 2174 } 2175 2176 /* 2177 * Get alarm status. 2178 */ 2179 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK; 2180 ssc->ses_objmap[oid].encstat[3] = ssc->ses_objmap[oid].priv; 2181 ssc->ses_objmap[oid++].svalid = 1; 2182 2183 /* 2184 * Now get drive slot status 2185 */ 2186 cdb[2] = SAFTE_RD_RDDSTS; 2187 amt = buflen; 2188 err = ses_runcmd(ssc, cdb, 10, sdata, &amt); 2189 if (err) { 2190 SES_FREE(sdata, buflen); 2191 return (err); 2192 } 2193 hiwater = buflen - amt; 2194 for (r = i = 0; i < cc->Nslots; i++, r += 4) { 2195 SAFT_BAIL(r+3, hiwater, sdata, buflen); 2196 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNSUPPORTED; 2197 ssc->ses_objmap[oid].encstat[1] = (uint8_t) i; 2198 ssc->ses_objmap[oid].encstat[2] = 0; 2199 ssc->ses_objmap[oid].encstat[3] = 0; 2200 status = sdata[r+3]; 2201 if ((status & 0x1) == 0) { /* no device */ 2202 ssc->ses_objmap[oid].encstat[0] = 2203 SES_OBJSTAT_NOTINSTALLED; 2204 } else { 2205 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK; 2206 } 2207 if (status & 0x2) { 2208 ssc->ses_objmap[oid].encstat[2] = 0x8; 2209 } 2210 if ((status & 0x4) == 0) { 2211 ssc->ses_objmap[oid].encstat[3] = 0x10; 2212 } 2213 ssc->ses_objmap[oid++].svalid = 1; 2214 } 2215 /* see comment below about sticky enclosure status */ 2216 ssc->ses_encstat |= ENCI_SVALID | oencstat; 2217 SES_FREE(sdata, buflen); 2218 return (0); 2219 } 2220 2221 static int 2222 set_objstat_sel(ses_softc_t *ssc, ses_objstat *obp, int slp) 2223 { 2224 int idx; 2225 encobj *ep; 2226 struct scfg *cc = ssc->ses_private; 2227 2228 if (cc == NULL) 2229 return (0); 2230 2231 idx = (int)obp->obj_id; 2232 ep = &ssc->ses_objmap[idx]; 2233 2234 switch (ep->enctype) { 2235 case SESTYP_DEVICE: 2236 if (obp->cstat[0] & SESCTL_PRDFAIL) { 2237 ep->priv |= 0x40; 2238 } 2239 /* SESCTL_RSTSWAP has no correspondence in SAF-TE */ 2240 if (obp->cstat[0] & SESCTL_DISABLE) { 2241 ep->priv |= 0x80; 2242 /* 2243 * Hmm. Try to set the 'No Drive' flag. 2244 * Maybe that will count as a 'disable'. 2245 */ 2246 } 2247 if (ep->priv & 0xc6) { 2248 ep->priv &= ~0x1; 2249 } else { 2250 ep->priv |= 0x1; /* no errors */ 2251 } 2252 wrslot_stat(ssc, slp); 2253 break; 2254 case SESTYP_POWER: 2255 /* 2256 * Okay- the only one that makes sense here is to 2257 * do the 'disable' for a power supply. 2258 */ 2259 if (obp->cstat[0] & SESCTL_DISABLE) { 2260 (void) wrbuf16(ssc, SAFTE_WT_ACTPWS, 2261 idx - cc->pwroff, 0, 0, slp); 2262 } 2263 break; 2264 case SESTYP_FAN: 2265 /* 2266 * Okay- the only one that makes sense here is to 2267 * set fan speed to zero on disable. 2268 */ 2269 if (obp->cstat[0] & SESCTL_DISABLE) { 2270 /* remember- fans are the first items, so idx works */ 2271 (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp); 2272 } 2273 break; 2274 case SESTYP_DOORLOCK: 2275 /* 2276 * Well, we can 'disable' the lock. 2277 */ 2278 if (obp->cstat[0] & SESCTL_DISABLE) { 2279 cc->flag2 &= ~SAFT_FLG2_LOCKDOOR; 2280 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, 2281 cc->flag2, 0, slp); 2282 } 2283 break; 2284 case SESTYP_ALARM: 2285 /* 2286 * Well, we can 'disable' the alarm. 2287 */ 2288 if (obp->cstat[0] & SESCTL_DISABLE) { 2289 cc->flag2 &= ~SAFT_FLG1_ALARM; 2290 ep->priv |= 0x40; /* Muted */ 2291 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, 2292 cc->flag2, 0, slp); 2293 } 2294 break; 2295 default: 2296 break; 2297 } 2298 ep->svalid = 0; 2299 return (0); 2300 } 2301 2302 /* 2303 * This function handles all of the 16 byte WRITE BUFFER commands. 2304 */ 2305 static int 2306 wrbuf16(ses_softc_t *ssc, uint8_t op, uint8_t b1, uint8_t b2, 2307 uint8_t b3, int slp) 2308 { 2309 int err, amt; 2310 char *sdata; 2311 struct scfg *cc = ssc->ses_private; 2312 static char cdb[10] = { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 }; 2313 2314 if (cc == NULL) 2315 return (0); 2316 2317 sdata = SES_MALLOC(16); 2318 if (sdata == NULL) 2319 return (ENOMEM); 2320 2321 SES_VLOG(ssc, "saf_wrbuf16 %x %x %x %x\n", op, b1, b2, b3); 2322 2323 sdata[0] = op; 2324 sdata[1] = b1; 2325 sdata[2] = b2; 2326 sdata[3] = b3; 2327 MEMZERO(&sdata[4], 12); 2328 amt = -16; 2329 err = ses_runcmd(ssc, cdb, 10, sdata, &amt); 2330 SES_FREE(sdata, 16); 2331 return (err); 2332 } 2333 2334 /* 2335 * This function updates the status byte for the device slot described. 2336 * 2337 * Since this is an optional SAF-TE command, there's no point in 2338 * returning an error. 2339 */ 2340 static void 2341 wrslot_stat(ses_softc_t *ssc, int slp) 2342 { 2343 int i, amt; 2344 encobj *ep; 2345 char cdb[10], *sdata; 2346 struct scfg *cc = ssc->ses_private; 2347 2348 if (cc == NULL) 2349 return; 2350 2351 SES_VLOG(ssc, "saf_wrslot\n"); 2352 cdb[0] = WRITE_BUFFER; 2353 cdb[1] = 1; 2354 cdb[2] = 0; 2355 cdb[3] = 0; 2356 cdb[4] = 0; 2357 cdb[5] = 0; 2358 cdb[6] = 0; 2359 cdb[7] = 0; 2360 cdb[8] = cc->Nslots * 3 + 1; 2361 cdb[9] = 0; 2362 2363 sdata = SES_MALLOC(cc->Nslots * 3 + 1); 2364 if (sdata == NULL) 2365 return; 2366 MEMZERO(sdata, cc->Nslots * 3 + 1); 2367 2368 sdata[0] = SAFTE_WT_DSTAT; 2369 for (i = 0; i < cc->Nslots; i++) { 2370 ep = &ssc->ses_objmap[cc->slotoff + i]; 2371 SES_VLOG(ssc, "saf_wrslot %d <- %x\n", i, ep->priv & 0xff); 2372 sdata[1 + (3 * i)] = ep->priv & 0xff; 2373 } 2374 amt = -(cc->Nslots * 3 + 1); 2375 (void) ses_runcmd(ssc, cdb, 10, sdata, &amt); 2376 SES_FREE(sdata, cc->Nslots * 3 + 1); 2377 } 2378 2379 /* 2380 * This function issues the "PERFORM SLOT OPERATION" command. 2381 */ 2382 static int 2383 perf_slotop(ses_softc_t *ssc, uint8_t slot, uint8_t opflag, int slp) 2384 { 2385 int err, amt; 2386 char *sdata; 2387 struct scfg *cc = ssc->ses_private; 2388 static char cdb[10] = 2389 { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 }; 2390 2391 if (cc == NULL) 2392 return (0); 2393 2394 sdata = SES_MALLOC(SAFT_SCRATCH); 2395 if (sdata == NULL) 2396 return (ENOMEM); 2397 MEMZERO(sdata, SAFT_SCRATCH); 2398 2399 sdata[0] = SAFTE_WT_SLTOP; 2400 sdata[1] = slot; 2401 sdata[2] = opflag; 2402 SES_VLOG(ssc, "saf_slotop slot %d op %x\n", slot, opflag); 2403 amt = -SAFT_SCRATCH; 2404 err = ses_runcmd(ssc, cdb, 10, sdata, &amt); 2405 SES_FREE(sdata, SAFT_SCRATCH); 2406 return (err); 2407 } 2408