xref: /netbsd-src/sys/dev/scsipi/ses.c (revision 6cf6fe02a981b55727c49c3d37b0d8191a98c0ee)
1 /*	$NetBSD: ses.c,v 1.47 2014/07/25 08:10:38 dholland Exp $ */
2 /*
3  * Copyright (C) 2000 National Aeronautics & Space Administration
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. The name of the author may not be used to endorse or promote products
12  *    derived from this software without specific prior written permission
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24  *
25  * Author:	mjacob@nas.nasa.gov
26  */
27 
28 #include <sys/cdefs.h>
29 __KERNEL_RCSID(0, "$NetBSD: ses.c,v 1.47 2014/07/25 08:10:38 dholland Exp $");
30 
31 #include "opt_scsi.h"
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/kernel.h>
36 #include <sys/file.h>
37 #include <sys/stat.h>
38 #include <sys/ioctl.h>
39 #include <sys/scsiio.h>
40 #include <sys/buf.h>
41 #include <sys/uio.h>
42 #include <sys/malloc.h>
43 #include <sys/errno.h>
44 #include <sys/device.h>
45 #include <sys/disklabel.h>
46 #include <sys/disk.h>
47 #include <sys/proc.h>
48 #include <sys/conf.h>
49 #include <sys/vnode.h>
50 
51 #include <dev/scsipi/scsipi_all.h>
52 #include <dev/scsipi/scsipi_disk.h>
53 #include <dev/scsipi/scsi_all.h>
54 #include <dev/scsipi/scsi_disk.h>
55 #include <dev/scsipi/scsipiconf.h>
56 #include <dev/scsipi/scsipi_base.h>
57 #include <dev/scsipi/ses.h>
58 
59 /*
60  * Platform Independent Driver Internal Definitions for SES devices.
61  */
62 typedef enum {
63 	SES_NONE,
64 	SES_SES_SCSI2,
65 	SES_SES,
66 	SES_SES_PASSTHROUGH,
67 	SES_SEN,
68 	SES_SAFT
69 } enctyp;
70 
71 struct ses_softc;
72 typedef struct ses_softc ses_softc_t;
73 typedef struct {
74 	int (*softc_init)(ses_softc_t *, int);
75 	int (*init_enc)(ses_softc_t *);
76 	int (*get_encstat)(ses_softc_t *, int);
77 	int (*set_encstat)(ses_softc_t *, ses_encstat, int);
78 	int (*get_objstat)(ses_softc_t *, ses_objstat *, int);
79 	int (*set_objstat)(ses_softc_t *, ses_objstat *, int);
80 } encvec;
81 
82 #define	ENCI_SVALID	0x80
83 
84 typedef struct {
85 	uint32_t
86 		enctype	: 8,		/* enclosure type */
87 		subenclosure : 8,	/* subenclosure id */
88 		svalid	: 1,		/* enclosure information valid */
89 		priv	: 15;		/* private data, per object */
90 	uint8_t	encstat[4];	/* state && stats */
91 } encobj;
92 
93 #define	SEN_ID		"UNISYS           SUN_SEN"
94 #define	SEN_ID_LEN	24
95 
96 static enctyp ses_type(struct scsipi_inquiry_data *);
97 
98 
99 /* Forward reference to Enclosure Functions */
100 static int ses_softc_init(ses_softc_t *, int);
101 static int ses_init_enc(ses_softc_t *);
102 static int ses_get_encstat(ses_softc_t *, int);
103 static int ses_set_encstat(ses_softc_t *, uint8_t, int);
104 static int ses_get_objstat(ses_softc_t *, ses_objstat *, int);
105 static int ses_set_objstat(ses_softc_t *, ses_objstat *, int);
106 
107 static int safte_softc_init(ses_softc_t *, int);
108 static int safte_init_enc(ses_softc_t *);
109 static int safte_get_encstat(ses_softc_t *, int);
110 static int safte_set_encstat(ses_softc_t *, uint8_t, int);
111 static int safte_get_objstat(ses_softc_t *, ses_objstat *, int);
112 static int safte_set_objstat(ses_softc_t *, ses_objstat *, int);
113 
114 /*
115  * Platform implementation defines/functions for SES internal kernel stuff
116  */
117 
118 #define	STRNCMP			strncmp
119 #define	PRINTF			printf
120 #define	SES_LOG			ses_log
121 #if	defined(DEBUG) || defined(SCSIDEBUG)
122 #define	SES_VLOG		ses_log
123 #else
124 #define	SES_VLOG		if (0) ses_log
125 #endif
126 #define	SES_MALLOC(amt)		malloc(amt, M_DEVBUF, M_NOWAIT)
127 #define	SES_FREE(ptr, amt)	free(ptr, M_DEVBUF)
128 #define	MEMZERO(dest, amt)	memset(dest, 0, amt)
129 #define	MEMCPY(dest, src, amt)	memcpy(dest, src, amt)
130 #define	RECEIVE_DIAGNOSTIC	0x1c
131 #define	SEND_DIAGNOSTIC		0x1d
132 #define	WRITE_BUFFER		0x3b
133 #define	READ_BUFFER		0x3c
134 
135 static dev_type_open(sesopen);
136 static dev_type_close(sesclose);
137 static dev_type_ioctl(sesioctl);
138 
139 const struct cdevsw ses_cdevsw = {
140 	.d_open = sesopen,
141 	.d_close = sesclose,
142 	.d_read = noread,
143 	.d_write = nowrite,
144 	.d_ioctl = sesioctl,
145 	.d_stop = nostop,
146 	.d_tty = notty,
147 	.d_poll = nopoll,
148 	.d_mmap = nommap,
149 	.d_kqfilter = nokqfilter,
150 	.d_discard = nodiscard,
151 	.d_flag = D_OTHER
152 };
153 
154 static int ses_runcmd(struct ses_softc *, char *, int, char *, int *);
155 static void ses_log(struct ses_softc *, const char *, ...)
156      __attribute__((__format__(__printf__, 2, 3)));
157 
158 /*
159  * General NetBSD kernel stuff.
160  */
161 
162 struct ses_softc {
163 	device_t	sc_dev;
164 	struct scsipi_periph *sc_periph;
165 	enctyp		ses_type;	/* type of enclosure */
166 	encvec		ses_vec;	/* vector to handlers */
167 	void *		ses_private;	/* per-type private data */
168 	encobj *	ses_objmap;	/* objects */
169 	u_int32_t	ses_nobjects;	/* number of objects */
170 	ses_encstat	ses_encstat;	/* overall status */
171 	u_int8_t	ses_flags;
172 };
173 #define	SES_FLAG_INVALID	0x01
174 #define	SES_FLAG_OPEN		0x02
175 #define	SES_FLAG_INITIALIZED	0x04
176 
177 #define SESUNIT(x)       (minor((x)))
178 
179 static int ses_match(device_t, cfdata_t, void *);
180 static void ses_attach(device_t, device_t, void *);
181 static int ses_detach(device_t, int);
182 static enctyp ses_device_type(struct scsipibus_attach_args *);
183 
184 CFATTACH_DECL_NEW(ses, sizeof (struct ses_softc),
185     ses_match, ses_attach, ses_detach, NULL);
186 
187 extern struct cfdriver ses_cd;
188 
189 static const struct scsipi_periphsw ses_switch = {
190 	NULL,
191 	NULL,
192 	NULL,
193 	NULL
194 };
195 
196 static int
197 ses_match(device_t parent, cfdata_t match, void *aux)
198 {
199 	struct scsipibus_attach_args *sa = aux;
200 
201 	switch (ses_device_type(sa)) {
202 	case SES_SES:
203 	case SES_SES_SCSI2:
204 	case SES_SEN:
205 	case SES_SAFT:
206 	case SES_SES_PASSTHROUGH:
207 		/*
208 		 * For these devices, it's a perfect match.
209 		 */
210 		return (24);
211 	default:
212 		return (0);
213 	}
214 }
215 
216 
217 /*
218  * Complete the attachment.
219  *
220  * We have to repeat the rerun of INQUIRY data as above because
221  * it's not until the return from the match routine that we have
222  * the softc available to set stuff in.
223  */
224 static void
225 ses_attach(device_t parent, device_t self, void *aux)
226 {
227 	const char *tname;
228 	struct ses_softc *softc = device_private(self);
229 	struct scsipibus_attach_args *sa = aux;
230 	struct scsipi_periph *periph = sa->sa_periph;
231 
232 	softc->sc_dev = self;
233 	SC_DEBUG(periph, SCSIPI_DB2, ("ssattach: "));
234 	softc->sc_periph = periph;
235 	periph->periph_dev = self;
236 	periph->periph_switch = &ses_switch;
237 	periph->periph_openings = 1;
238 
239 	softc->ses_type = ses_device_type(sa);
240 	switch (softc->ses_type) {
241 	case SES_SES:
242 	case SES_SES_SCSI2:
243         case SES_SES_PASSTHROUGH:
244 		softc->ses_vec.softc_init = ses_softc_init;
245 		softc->ses_vec.init_enc = ses_init_enc;
246 		softc->ses_vec.get_encstat = ses_get_encstat;
247 		softc->ses_vec.set_encstat = ses_set_encstat;
248 		softc->ses_vec.get_objstat = ses_get_objstat;
249 		softc->ses_vec.set_objstat = ses_set_objstat;
250 		break;
251         case SES_SAFT:
252 		softc->ses_vec.softc_init = safte_softc_init;
253 		softc->ses_vec.init_enc = safte_init_enc;
254 		softc->ses_vec.get_encstat = safte_get_encstat;
255 		softc->ses_vec.set_encstat = safte_set_encstat;
256 		softc->ses_vec.get_objstat = safte_get_objstat;
257 		softc->ses_vec.set_objstat = safte_set_objstat;
258 		break;
259         case SES_SEN:
260 		break;
261 	case SES_NONE:
262 	default:
263 		break;
264 	}
265 
266 	switch (softc->ses_type) {
267 	default:
268 	case SES_NONE:
269 		tname = "No SES device";
270 		break;
271 	case SES_SES_SCSI2:
272 		tname = "SCSI-2 SES Device";
273 		break;
274 	case SES_SES:
275 		tname = "SCSI-3 SES Device";
276 		break;
277         case SES_SES_PASSTHROUGH:
278 		tname = "SES Passthrough Device";
279 		break;
280         case SES_SEN:
281 		tname = "UNISYS SEN Device (NOT HANDLED YET)";
282 		break;
283         case SES_SAFT:
284 		tname = "SAF-TE Compliant Device";
285 		break;
286 	}
287 	printf("\n%s: %s\n", device_xname(softc->sc_dev), tname);
288 }
289 
290 static enctyp
291 ses_device_type(struct scsipibus_attach_args *sa)
292 {
293 	struct scsipi_inquiry_data *inqp = sa->sa_inqptr;
294 
295 	if (inqp == NULL)
296 		return (SES_NONE);
297 
298 	return (ses_type(inqp));
299 }
300 
301 static int
302 sesopen(dev_t dev, int flags, int fmt, struct lwp *l)
303 {
304 	struct ses_softc *softc;
305 	int error, unit;
306 
307 	unit = SESUNIT(dev);
308 	softc = device_lookup_private(&ses_cd, unit);
309 	if (softc == NULL)
310 		return (ENXIO);
311 
312 	if (softc->ses_flags & SES_FLAG_INVALID) {
313 		error = ENXIO;
314 		goto out;
315 	}
316 	if (softc->ses_flags & SES_FLAG_OPEN) {
317 		error = EBUSY;
318 		goto out;
319 	}
320 	if (softc->ses_vec.softc_init == NULL) {
321 		error = ENXIO;
322 		goto out;
323 	}
324 	error = scsipi_adapter_addref(
325 	    softc->sc_periph->periph_channel->chan_adapter);
326 	if (error != 0)
327                 goto out;
328 
329 
330 	softc->ses_flags |= SES_FLAG_OPEN;
331 	if ((softc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
332 		error = (*softc->ses_vec.softc_init)(softc, 1);
333 		if (error)
334 			softc->ses_flags &= ~SES_FLAG_OPEN;
335 		else
336 			softc->ses_flags |= SES_FLAG_INITIALIZED;
337 	}
338 
339 out:
340 	return (error);
341 }
342 
343 static int
344 sesclose(dev_t dev, int flags, int fmt,
345     struct lwp *l)
346 {
347 	struct ses_softc *softc;
348 	int unit;
349 
350 	unit = SESUNIT(dev);
351 	softc = device_lookup_private(&ses_cd, unit);
352 	if (softc == NULL)
353 		return (ENXIO);
354 
355 	scsipi_wait_drain(softc->sc_periph);
356 	scsipi_adapter_delref(softc->sc_periph->periph_channel->chan_adapter);
357 	softc->ses_flags &= ~SES_FLAG_OPEN;
358 	return (0);
359 }
360 
361 static int
362 sesioctl(dev_t dev, u_long cmd, void *arg_addr, int flag, struct lwp *l)
363 {
364 	ses_encstat tmp;
365 	ses_objstat objs;
366 	ses_object obj, *uobj;
367 	struct ses_softc *ssc = device_lookup_private(&ses_cd, SESUNIT(dev));
368 	void *addr;
369 	int error, i;
370 
371 
372 	if (arg_addr)
373 		addr = *((void **) arg_addr);
374 	else
375 		addr = NULL;
376 
377 	SC_DEBUG(ssc->sc_periph, SCSIPI_DB2, ("sesioctl 0x%lx ", cmd));
378 
379 	/*
380 	 * Now check to see whether we're initialized or not.
381 	 */
382 	if ((ssc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
383 		return (ENODEV);
384 	}
385 
386 	error = 0;
387 
388 	/*
389 	 * If this command can change the device's state,
390 	 * we must have the device open for writing.
391 	 */
392 	switch (cmd) {
393 	case SESIOC_GETNOBJ:
394 	case SESIOC_GETOBJMAP:
395 	case SESIOC_GETENCSTAT:
396 	case SESIOC_GETOBJSTAT:
397 		break;
398 	default:
399 		if ((flag & FWRITE) == 0) {
400 			return (EBADF);
401 		}
402 	}
403 
404 	switch (cmd) {
405 	case SESIOC_GETNOBJ:
406 		if (addr == NULL)
407 			return EINVAL;
408 		error = copyout(&ssc->ses_nobjects, addr,
409 		    sizeof (ssc->ses_nobjects));
410 		break;
411 
412 	case SESIOC_GETOBJMAP:
413 		if (addr == NULL)
414 			return EINVAL;
415 		for (uobj = addr, i = 0; i != ssc->ses_nobjects; i++, uobj++) {
416 			obj.obj_id = i;
417 			obj.subencid = ssc->ses_objmap[i].subenclosure;
418 			obj.object_type = ssc->ses_objmap[i].enctype;
419 			error = copyout(&obj, uobj, sizeof (ses_object));
420 			if (error) {
421 				break;
422 			}
423 		}
424 		break;
425 
426 	case SESIOC_GETENCSTAT:
427 		if (addr == NULL)
428 			return EINVAL;
429 		error = (*ssc->ses_vec.get_encstat)(ssc, 1);
430 		if (error)
431 			break;
432 		tmp = ssc->ses_encstat & ~ENCI_SVALID;
433 		error = copyout(&tmp, addr, sizeof (ses_encstat));
434 		ssc->ses_encstat = tmp;
435 		break;
436 
437 	case SESIOC_SETENCSTAT:
438 		if (addr == NULL)
439 			return EINVAL;
440 		error = copyin(addr, &tmp, sizeof (ses_encstat));
441 		if (error)
442 			break;
443 		error = (*ssc->ses_vec.set_encstat)(ssc, tmp, 1);
444 		break;
445 
446 	case SESIOC_GETOBJSTAT:
447 		if (addr == NULL)
448 			return EINVAL;
449 		error = copyin(addr, &objs, sizeof (ses_objstat));
450 		if (error)
451 			break;
452 		if (objs.obj_id >= ssc->ses_nobjects) {
453 			error = EINVAL;
454 			break;
455 		}
456 		error = (*ssc->ses_vec.get_objstat)(ssc, &objs, 1);
457 		if (error)
458 			break;
459 		error = copyout(&objs, addr, sizeof (ses_objstat));
460 		/*
461 		 * Always (for now) invalidate entry.
462 		 */
463 		ssc->ses_objmap[objs.obj_id].svalid = 0;
464 		break;
465 
466 	case SESIOC_SETOBJSTAT:
467 		if (addr == NULL)
468 			return EINVAL;
469 		error = copyin(addr, &objs, sizeof (ses_objstat));
470 		if (error)
471 			break;
472 
473 		if (objs.obj_id >= ssc->ses_nobjects) {
474 			error = EINVAL;
475 			break;
476 		}
477 		error = (*ssc->ses_vec.set_objstat)(ssc, &objs, 1);
478 
479 		/*
480 		 * Always (for now) invalidate entry.
481 		 */
482 		ssc->ses_objmap[objs.obj_id].svalid = 0;
483 		break;
484 
485 	case SESIOC_INIT:
486 
487 		error = (*ssc->ses_vec.init_enc)(ssc);
488 		break;
489 
490 	default:
491 		error = scsipi_do_ioctl(ssc->sc_periph,
492 			    dev, cmd, arg_addr, flag, l);
493 		break;
494 	}
495 	return (error);
496 }
497 
498 static int
499 ses_runcmd(struct ses_softc *ssc, char *cdb, int cdbl, char *dptr, int *dlenp)
500 {
501 	struct scsipi_generic sgen;
502 	int dl, flg, error;
503 
504 	if (dptr) {
505 		if ((dl = *dlenp) < 0) {
506 			dl = -dl;
507 			flg = XS_CTL_DATA_OUT;
508 		} else {
509 			flg = XS_CTL_DATA_IN;
510 		}
511 	} else {
512 		dl = 0;
513 		flg = 0;
514 	}
515 
516 	if (cdbl > sizeof (struct scsipi_generic)) {
517 		cdbl = sizeof (struct scsipi_generic);
518 	}
519 	memcpy(&sgen, cdb, cdbl);
520 #ifndef	SCSIDEBUG
521 	flg |= XS_CTL_SILENT;
522 #endif
523 	error = scsipi_command(ssc->sc_periph, &sgen, cdbl,
524 	    (u_char *) dptr, dl, SCSIPIRETRIES, 30000, NULL, flg);
525 
526 	if (error == 0 && dptr)
527 		*dlenp = 0;
528 
529 	return (error);
530 }
531 
532 static void
533 ses_log(struct ses_softc *ssc, const char *fmt, ...)
534 {
535 	va_list ap;
536 
537 	printf("%s: ", device_xname(ssc->sc_dev));
538 	va_start(ap, fmt);
539 	vprintf(fmt, ap);
540 	va_end(ap);
541 }
542 
543 /*
544  * The code after this point runs on many platforms,
545  * so forgive the slightly awkward and nonconforming
546  * appearance.
547  */
548 
549 /*
550  * Is this a device that supports enclosure services?
551  *
552  * It's a a pretty simple ruleset- if it is device type 0x0D (13), it's
553  * an SES device. If it happens to be an old UNISYS SEN device, we can
554  * handle that too.
555  */
556 
557 #define	SAFTE_START	44
558 #define	SAFTE_END	50
559 #define	SAFTE_LEN	SAFTE_END-SAFTE_START
560 
561 static enctyp
562 ses_type(struct scsipi_inquiry_data *inqp)
563 {
564 	size_t	given_len = inqp->additional_length + 4;
565 
566 	if (given_len < 8+SEN_ID_LEN)
567 		return (SES_NONE);
568 
569 	if ((inqp->device & SID_TYPE) == T_ENCLOSURE) {
570 		if (STRNCMP(inqp->vendor, SEN_ID, SEN_ID_LEN) == 0) {
571 			return (SES_SEN);
572 		} else if ((inqp->version & SID_ANSII) > 2) {
573 			return (SES_SES);
574 		} else {
575 			return (SES_SES_SCSI2);
576 		}
577 		return (SES_NONE);
578 	}
579 
580 #ifdef	SES_ENABLE_PASSTHROUGH
581 	if ((inqp->flags2 & SID_EncServ) && (inqp->version & SID_ANSII) >= 2) {
582 		/*
583 		 * PassThrough Device.
584 		 */
585 		return (SES_SES_PASSTHROUGH);
586 	}
587 #endif
588 
589 	/*
590 	 * The comparison is short for a reason-
591 	 * some vendors were chopping it short.
592 	 */
593 
594 	if (given_len < SAFTE_END - 2) {
595 		return (SES_NONE);
596 	}
597 
598 	if (STRNCMP((char *)&inqp->vendor_specific[8], "SAF-TE",
599 			SAFTE_LEN - 2) == 0) {
600 		return (SES_SAFT);
601 	}
602 
603 	return (SES_NONE);
604 }
605 
606 /*
607  * SES Native Type Device Support
608  */
609 
610 /*
611  * SES Diagnostic Page Codes
612  */
613 
614 typedef enum {
615 	SesConfigPage = 0x1,
616 	SesControlPage,
617 #define	SesStatusPage SesControlPage
618 	SesHelpTxt,
619 	SesStringOut,
620 #define	SesStringIn	SesStringOut
621 	SesThresholdOut,
622 #define	SesThresholdIn SesThresholdOut
623 	SesArrayControl,
624 #define	SesArrayStatus	SesArrayControl
625 	SesElementDescriptor,
626 	SesShortStatus
627 } SesDiagPageCodes;
628 
629 /*
630  * minimal amounts
631  */
632 
633 /*
634  * Minimum amount of data, starting from byte 0, to have
635  * the config header.
636  */
637 #define	SES_CFGHDR_MINLEN	12
638 
639 /*
640  * Minimum amount of data, starting from byte 0, to have
641  * the config header and one enclosure header.
642  */
643 #define	SES_ENCHDR_MINLEN	48
644 
645 /*
646  * Take this value, subtract it from VEnclen and you know
647  * the length of the vendor unique bytes.
648  */
649 #define	SES_ENCHDR_VMIN		36
650 
651 /*
652  * SES Data Structures
653  */
654 
655 typedef struct {
656 	uint32_t GenCode;	/* Generation Code */
657 	uint8_t	Nsubenc;	/* Number of Subenclosures */
658 } SesCfgHdr;
659 
660 typedef struct {
661 	uint8_t	Subencid;	/* SubEnclosure Identifier */
662 	uint8_t	Ntypes;		/* # of supported types */
663 	uint8_t	VEnclen;	/* Enclosure Descriptor Length */
664 } SesEncHdr;
665 
666 typedef struct {
667 	uint8_t	encWWN[8];	/* XXX- Not Right Yet */
668 	uint8_t	encVid[8];
669 	uint8_t	encPid[16];
670 	uint8_t	encRev[4];
671 	uint8_t	encVen[1];
672 } SesEncDesc;
673 
674 typedef struct {
675 	uint8_t	enc_type;		/* type of element */
676 	uint8_t	enc_maxelt;		/* maximum supported */
677 	uint8_t	enc_subenc;		/* in SubEnc # N */
678 	uint8_t	enc_tlen;		/* Type Descriptor Text Length */
679 } SesThdr;
680 
681 typedef struct {
682 	uint8_t	comstatus;
683 	uint8_t	comstat[3];
684 } SesComStat;
685 
686 struct typidx {
687 	int ses_tidx;
688 	int ses_oidx;
689 };
690 
691 struct sscfg {
692 	uint8_t ses_ntypes;	/* total number of types supported */
693 
694 	/*
695 	 * We need to keep a type index as well as an
696 	 * object index for each object in an enclosure.
697 	 */
698 	struct typidx *ses_typidx;
699 
700 	/*
701 	 * We also need to keep track of the number of elements
702 	 * per type of element. This is needed later so that we
703 	 * can find precisely in the returned status data the
704 	 * status for the Nth element of the Kth type.
705 	 */
706 	uint8_t *	ses_eltmap;
707 };
708 
709 
710 /*
711  * (de)canonicalization defines
712  */
713 #define	sbyte(x, byte)		((((uint32_t)(x)) >> (byte * 8)) & 0xff)
714 #define	sbit(x, bit)		(((uint32_t)(x)) << bit)
715 #define	sset8(outp, idx, sval)	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
716 
717 #define	sset16(outp, idx, sval)	\
718 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
719 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
720 
721 
722 #define	sset24(outp, idx, sval)	\
723 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
724 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
725 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
726 
727 
728 #define	sset32(outp, idx, sval)	\
729 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 3), \
730 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
731 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
732 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
733 
734 #define	gbyte(x, byte)	((((uint32_t)(x)) & 0xff) << (byte * 8))
735 #define	gbit(lv, in, idx, shft, mask)	lv = ((in[idx] >> shft) & mask)
736 #define	sget8(inp, idx, lval)	lval = (((uint8_t *)(inp))[idx++])
737 #define	gget8(inp, idx, lval)	lval = (((uint8_t *)(inp))[idx])
738 
739 #define	sget16(inp, idx, lval)	\
740 	lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
741 		(((uint8_t *)(inp))[idx+1]), idx += 2
742 
743 #define	gget16(inp, idx, lval)	\
744 	lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
745 		(((uint8_t *)(inp))[idx+1])
746 
747 #define	sget24(inp, idx, lval)	\
748 	lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
749 		gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
750 			(((uint8_t *)(inp))[idx+2]), idx += 3
751 
752 #define	gget24(inp, idx, lval)	\
753 	lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
754 		gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
755 			(((uint8_t *)(inp))[idx+2])
756 
757 #define	sget32(inp, idx, lval)	\
758 	lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
759 		gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
760 		gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
761 			(((uint8_t *)(inp))[idx+3]), idx += 4
762 
763 #define	gget32(inp, idx, lval)	\
764 	lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
765 		gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
766 		gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
767 			(((uint8_t *)(inp))[idx+3])
768 
769 #define	SCSZ	0x2000
770 #define	CFLEN	(256 + SES_ENCHDR_MINLEN)
771 
772 /*
773  * Routines specific && private to SES only
774  */
775 
776 static int ses_getconfig(ses_softc_t *);
777 static int ses_getputstat(ses_softc_t *, int, SesComStat *, int, int);
778 static int ses_cfghdr(uint8_t *, int, SesCfgHdr *);
779 static int ses_enchdr(uint8_t *, int, uint8_t, SesEncHdr *);
780 static int ses_encdesc(uint8_t *, int, uint8_t, SesEncDesc *);
781 static int ses_getthdr(uint8_t *, int,  int, SesThdr *);
782 static int ses_decode(char *, int, uint8_t *, int, int, SesComStat *);
783 static int ses_encode(char *, int, uint8_t *, int, int, SesComStat *);
784 
785 static int
786 ses_softc_init(ses_softc_t *ssc, int doinit)
787 {
788 	if (doinit == 0) {
789 		struct sscfg *cc;
790 		if (ssc->ses_nobjects) {
791 			SES_FREE(ssc->ses_objmap,
792 			    ssc->ses_nobjects * sizeof (encobj));
793 			ssc->ses_objmap = NULL;
794 		}
795 		if ((cc = ssc->ses_private) != NULL) {
796 			if (cc->ses_eltmap && cc->ses_ntypes) {
797 				SES_FREE(cc->ses_eltmap, cc->ses_ntypes);
798 				cc->ses_eltmap = NULL;
799 				cc->ses_ntypes = 0;
800 			}
801 			if (cc->ses_typidx && ssc->ses_nobjects) {
802 				SES_FREE(cc->ses_typidx,
803 				    ssc->ses_nobjects * sizeof (struct typidx));
804 				cc->ses_typidx = NULL;
805 			}
806 			SES_FREE(cc, sizeof (struct sscfg));
807 			ssc->ses_private = NULL;
808 		}
809 		ssc->ses_nobjects = 0;
810 		return (0);
811 	}
812 	if (ssc->ses_private == NULL) {
813 		ssc->ses_private = SES_MALLOC(sizeof (struct sscfg));
814 	}
815 	if (ssc->ses_private == NULL) {
816 		return (ENOMEM);
817 	}
818 	ssc->ses_nobjects = 0;
819 	ssc->ses_encstat = 0;
820 	return (ses_getconfig(ssc));
821 }
822 
823 static int
824 ses_detach(device_t self, int flags)
825 {
826 	struct ses_softc *ssc = device_private(self);
827 	struct sscfg *cc = ssc->ses_private;
828 
829 	if (ssc->ses_objmap) {
830 		SES_FREE(ssc->ses_objmap, (nobj * sizeof (encobj)));
831 	}
832 	if (cc != NULL) {
833 		if (cc->ses_typidx) {
834 			SES_FREE(cc->ses_typidx,
835 			    (nobj * sizeof (struct typidx)));
836 		}
837 		if (cc->ses_eltmap) {
838 			SES_FREE(cc->ses_eltmap, ntype);
839 		}
840 		SES_FREE(cc, sizeof (struct sscfg));
841 	}
842 
843 	return 0;
844 }
845 
846 static int
847 ses_init_enc(ses_softc_t *ssc)
848 {
849 	return (0);
850 }
851 
852 static int
853 ses_get_encstat(ses_softc_t *ssc, int slpflag)
854 {
855 	SesComStat ComStat;
856 	int status;
857 
858 	if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 1)) != 0) {
859 		return (status);
860 	}
861 	ssc->ses_encstat = ComStat.comstatus | ENCI_SVALID;
862 	return (0);
863 }
864 
865 static int
866 ses_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflag)
867 {
868 	SesComStat ComStat;
869 	int status;
870 
871 	ComStat.comstatus = encstat & 0xf;
872 	if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 0)) != 0) {
873 		return (status);
874 	}
875 	ssc->ses_encstat = encstat & 0xf;	/* note no SVALID set */
876 	return (0);
877 }
878 
879 static int
880 ses_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
881 {
882 	int i = (int)obp->obj_id;
883 
884 	if (ssc->ses_objmap[i].svalid == 0) {
885 		SesComStat ComStat;
886 		int err = ses_getputstat(ssc, i, &ComStat, slpflag, 1);
887 		if (err)
888 			return (err);
889 		ssc->ses_objmap[i].encstat[0] = ComStat.comstatus;
890 		ssc->ses_objmap[i].encstat[1] = ComStat.comstat[0];
891 		ssc->ses_objmap[i].encstat[2] = ComStat.comstat[1];
892 		ssc->ses_objmap[i].encstat[3] = ComStat.comstat[2];
893 		ssc->ses_objmap[i].svalid = 1;
894 	}
895 	obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
896 	obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
897 	obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
898 	obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
899 	return (0);
900 }
901 
902 static int
903 ses_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
904 {
905 	SesComStat ComStat;
906 	int err;
907 	/*
908 	 * If this is clear, we don't do diddly.
909 	 */
910 	if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
911 		return (0);
912 	}
913 	ComStat.comstatus = obp->cstat[0];
914 	ComStat.comstat[0] = obp->cstat[1];
915 	ComStat.comstat[1] = obp->cstat[2];
916 	ComStat.comstat[2] = obp->cstat[3];
917 	err = ses_getputstat(ssc, (int)obp->obj_id, &ComStat, slpflag, 0);
918 	ssc->ses_objmap[(int)obp->obj_id].svalid = 0;
919 	return (err);
920 }
921 
922 static int
923 ses_getconfig(ses_softc_t *ssc)
924 {
925 	struct sscfg *cc;
926 	SesCfgHdr cf;
927 	SesEncHdr hd;
928 	SesEncDesc *cdp;
929 	SesThdr thdr;
930 	int err, amt, i, nobj, ntype, maxima;
931 	char storage[CFLEN], *sdata;
932 	static char cdb[6] = {
933 	    RECEIVE_DIAGNOSTIC, 0x1, SesConfigPage, SCSZ >> 8, SCSZ & 0xff, 0
934 	};
935 
936 	cc = ssc->ses_private;
937 	if (cc == NULL) {
938 		return (ENXIO);
939 	}
940 
941 	sdata = SES_MALLOC(SCSZ);
942 	if (sdata == NULL)
943 		return (ENOMEM);
944 
945 	amt = SCSZ;
946 	err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
947 	if (err) {
948 		SES_FREE(sdata, SCSZ);
949 		return (err);
950 	}
951 	amt = SCSZ - amt;
952 
953 	if (ses_cfghdr((uint8_t *) sdata, amt, &cf)) {
954 		SES_LOG(ssc, "Unable to parse SES Config Header\n");
955 		SES_FREE(sdata, SCSZ);
956 		return (EIO);
957 	}
958 	if (amt < SES_ENCHDR_MINLEN) {
959 		SES_LOG(ssc, "runt enclosure length (%d)\n", amt);
960 		SES_FREE(sdata, SCSZ);
961 		return (EIO);
962 	}
963 
964 	SES_VLOG(ssc, "GenCode %x %d Subenclosures\n", cf.GenCode, cf.Nsubenc);
965 
966 	/*
967 	 * Now waltz through all the subenclosures toting up the
968 	 * number of types available in each. For this, we only
969 	 * really need the enclosure header. However, we get the
970 	 * enclosure descriptor for debug purposes, as well
971 	 * as self-consistency checking purposes.
972 	 */
973 
974 	maxima = cf.Nsubenc + 1;
975 	cdp = (SesEncDesc *) storage;
976 	for (ntype = i = 0; i < maxima; i++) {
977 		MEMZERO((void *)cdp, sizeof (*cdp));
978 		if (ses_enchdr((uint8_t *) sdata, amt, i, &hd)) {
979 			SES_LOG(ssc, "Cannot Extract Enclosure Header %d\n", i);
980 			SES_FREE(sdata, SCSZ);
981 			return (EIO);
982 		}
983 		SES_VLOG(ssc, " SubEnclosure ID %d, %d Types With this ID, En"
984 		    "closure Length %d\n", hd.Subencid, hd.Ntypes, hd.VEnclen);
985 
986 		if (ses_encdesc((uint8_t *)sdata, amt, i, cdp)) {
987 			SES_LOG(ssc, "Can't get Enclosure Descriptor %d\n", i);
988 			SES_FREE(sdata, SCSZ);
989 			return (EIO);
990 		}
991 		SES_VLOG(ssc, " WWN: %02x%02x%02x%02x%02x%02x%02x%02x\n",
992 		    cdp->encWWN[0], cdp->encWWN[1], cdp->encWWN[2],
993 		    cdp->encWWN[3], cdp->encWWN[4], cdp->encWWN[5],
994 		    cdp->encWWN[6], cdp->encWWN[7]);
995 		ntype += hd.Ntypes;
996 	}
997 
998 	/*
999 	 * Now waltz through all the types that are available, getting
1000 	 * the type header so we can start adding up the number of
1001 	 * objects available.
1002 	 */
1003 	for (nobj = i = 0; i < ntype; i++) {
1004 		if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
1005 			SES_LOG(ssc, "Can't get Enclosure Type Header %d\n", i);
1006 			SES_FREE(sdata, SCSZ);
1007 			return (EIO);
1008 		}
1009 		SES_LOG(ssc, " Type Desc[%d]: Type 0x%x, MaxElt %d, In Subenc "
1010 		    "%d, Text Length %d\n", i, thdr.enc_type, thdr.enc_maxelt,
1011 		    thdr.enc_subenc, thdr.enc_tlen);
1012 		nobj += thdr.enc_maxelt;
1013 	}
1014 
1015 
1016 	/*
1017 	 * Now allocate the object array and type map.
1018 	 */
1019 
1020 	ssc->ses_objmap = SES_MALLOC(nobj * sizeof (encobj));
1021 	cc->ses_typidx = SES_MALLOC(nobj * sizeof (struct typidx));
1022 	cc->ses_eltmap = SES_MALLOC(ntype);
1023 
1024 	if (ssc->ses_objmap == NULL || cc->ses_typidx == NULL ||
1025 	    cc->ses_eltmap == NULL) {
1026 		if (ssc->ses_objmap) {
1027 			SES_FREE(ssc->ses_objmap, (nobj * sizeof (encobj)));
1028 			ssc->ses_objmap = NULL;
1029 		}
1030 		if (cc->ses_typidx) {
1031 			SES_FREE(cc->ses_typidx,
1032 			    (nobj * sizeof (struct typidx)));
1033 			cc->ses_typidx = NULL;
1034 		}
1035 		if (cc->ses_eltmap) {
1036 			SES_FREE(cc->ses_eltmap, ntype);
1037 			cc->ses_eltmap = NULL;
1038 		}
1039 		SES_FREE(sdata, SCSZ);
1040 		return (ENOMEM);
1041 	}
1042 	MEMZERO(ssc->ses_objmap, nobj * sizeof (encobj));
1043 	MEMZERO(cc->ses_typidx, nobj * sizeof (struct typidx));
1044 	MEMZERO(cc->ses_eltmap, ntype);
1045 	cc->ses_ntypes = (uint8_t) ntype;
1046 	ssc->ses_nobjects = nobj;
1047 
1048 	/*
1049 	 * Now waltz through the # of types again to fill in the types
1050 	 * (and subenclosure ids) of the allocated objects.
1051 	 */
1052 	nobj = 0;
1053 	for (i = 0; i < ntype; i++) {
1054 		int j;
1055 		if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
1056 			continue;
1057 		}
1058 		cc->ses_eltmap[i] = thdr.enc_maxelt;
1059 		for (j = 0; j < thdr.enc_maxelt; j++) {
1060 			cc->ses_typidx[nobj].ses_tidx = i;
1061 			cc->ses_typidx[nobj].ses_oidx = j;
1062 			ssc->ses_objmap[nobj].subenclosure = thdr.enc_subenc;
1063 			ssc->ses_objmap[nobj++].enctype = thdr.enc_type;
1064 		}
1065 	}
1066 	SES_FREE(sdata, SCSZ);
1067 	return (0);
1068 }
1069 
1070 static int
1071 ses_getputstat(ses_softc_t *ssc, int objid, SesComStat *sp, int slp,
1072     int in)
1073 {
1074 	struct sscfg *cc;
1075 	int err, amt, bufsiz, tidx, oidx;
1076 	char cdb[6], *sdata;
1077 
1078 	cc = ssc->ses_private;
1079 	if (cc == NULL) {
1080 		return (ENXIO);
1081 	}
1082 
1083 	/*
1084 	 * If we're just getting overall enclosure status,
1085 	 * we only need 2 bytes of data storage.
1086 	 *
1087 	 * If we're getting anything else, we know how much
1088 	 * storage we need by noting that starting at offset
1089 	 * 8 in returned data, all object status bytes are 4
1090 	 * bytes long, and are stored in chunks of types(M)
1091 	 * and nth+1 instances of type M.
1092 	 */
1093 	if (objid == -1) {
1094 		bufsiz = 2;
1095 	} else {
1096 		bufsiz = (ssc->ses_nobjects * 4) + (cc->ses_ntypes * 4) + 8;
1097 	}
1098 	sdata = SES_MALLOC(bufsiz);
1099 	if (sdata == NULL)
1100 		return (ENOMEM);
1101 
1102 	cdb[0] = RECEIVE_DIAGNOSTIC;
1103 	cdb[1] = 1;
1104 	cdb[2] = SesStatusPage;
1105 	cdb[3] = bufsiz >> 8;
1106 	cdb[4] = bufsiz & 0xff;
1107 	cdb[5] = 0;
1108 	amt = bufsiz;
1109 	err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1110 	if (err) {
1111 		SES_FREE(sdata, bufsiz);
1112 		return (err);
1113 	}
1114 	amt = bufsiz - amt;
1115 
1116 	if (objid == -1) {
1117 		tidx = -1;
1118 		oidx = -1;
1119 	} else {
1120 		tidx = cc->ses_typidx[objid].ses_tidx;
1121 		oidx = cc->ses_typidx[objid].ses_oidx;
1122 	}
1123 	if (in) {
1124 		if (ses_decode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1125 			err = ENODEV;
1126 		}
1127 	} else {
1128 		if (ses_encode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1129 			err = ENODEV;
1130 		} else {
1131 			cdb[0] = SEND_DIAGNOSTIC;
1132 			cdb[1] = 0x10;
1133 			cdb[2] = 0;
1134 			cdb[3] = bufsiz >> 8;
1135 			cdb[4] = bufsiz & 0xff;
1136 			cdb[5] = 0;
1137 			amt = -bufsiz;
1138 			err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1139 		}
1140 	}
1141 	SES_FREE(sdata, bufsiz);
1142 	return (0);
1143 }
1144 
1145 
1146 /*
1147  * Routines to parse returned SES data structures.
1148  * Architecture and compiler independent.
1149  */
1150 
1151 static int
1152 ses_cfghdr(uint8_t *buffer, int buflen, SesCfgHdr *cfp)
1153 {
1154 	if (buflen < SES_CFGHDR_MINLEN) {
1155 		return (-1);
1156 	}
1157 	gget8(buffer, 1, cfp->Nsubenc);
1158 	gget32(buffer, 4, cfp->GenCode);
1159 	return (0);
1160 }
1161 
1162 static int
1163 ses_enchdr(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncHdr *chp)
1164 {
1165 	int s, off = 8;
1166 	for (s = 0; s < SubEncId; s++) {
1167 		if (off + 3 > amt)
1168 			return (-1);
1169 		off += buffer[off+3] + 4;
1170 	}
1171 	if (off + 3 > amt) {
1172 		return (-1);
1173 	}
1174 	gget8(buffer, off+1, chp->Subencid);
1175 	gget8(buffer, off+2, chp->Ntypes);
1176 	gget8(buffer, off+3, chp->VEnclen);
1177 	return (0);
1178 }
1179 
1180 static int
1181 ses_encdesc(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncDesc *cdp)
1182 {
1183 	int s, e, enclen, off = 8;
1184 	for (s = 0; s < SubEncId; s++) {
1185 		if (off + 3 > amt)
1186 			return (-1);
1187 		off += buffer[off+3] + 4;
1188 	}
1189 	if (off + 3 > amt) {
1190 		return (-1);
1191 	}
1192 	gget8(buffer, off+3, enclen);
1193 	off += 4;
1194 	if (off  >= amt)
1195 		return (-1);
1196 
1197 	e = off + enclen;
1198 	if (e > amt) {
1199 		e = amt;
1200 	}
1201 	MEMCPY(cdp, &buffer[off], e - off);
1202 	return (0);
1203 }
1204 
1205 static int
1206 ses_getthdr(uint8_t *buffer, int amt, int nth, SesThdr *thp)
1207 {
1208 	int s, off = 8;
1209 
1210 	if (amt < SES_CFGHDR_MINLEN) {
1211 		return (-1);
1212 	}
1213 	for (s = 0; s < buffer[1]; s++) {
1214 		if (off + 3 > amt)
1215 			return (-1);
1216 		off += buffer[off+3] + 4;
1217 	}
1218 	if (off + 3 > amt) {
1219 		return (-1);
1220 	}
1221 	off += buffer[off+3] + 4 + (nth * 4);
1222 	if (amt < (off + 4))
1223 		return (-1);
1224 
1225 	gget8(buffer, off++, thp->enc_type);
1226 	gget8(buffer, off++, thp->enc_maxelt);
1227 	gget8(buffer, off++, thp->enc_subenc);
1228 	gget8(buffer, off, thp->enc_tlen);
1229 	return (0);
1230 }
1231 
1232 /*
1233  * This function needs a little explanation.
1234  *
1235  * The arguments are:
1236  *
1237  *
1238  *	char *b, int amt
1239  *
1240  *		These describes the raw input SES status data and length.
1241  *
1242  *	uint8_t *ep
1243  *
1244  *		This is a map of the number of types for each element type
1245  *		in the enclosure.
1246  *
1247  *	int elt
1248  *
1249  *		This is the element type being sought. If elt is -1,
1250  *		then overall enclosure status is being sought.
1251  *
1252  *	int elm
1253  *
1254  *		This is the ordinal Mth element of type elt being sought.
1255  *
1256  *	SesComStat *sp
1257  *
1258  *		This is the output area to store the status for
1259  *		the Mth element of type Elt.
1260  */
1261 
1262 static int
1263 ses_decode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1264 {
1265 	int idx, i;
1266 
1267 	/*
1268 	 * If it's overall enclosure status being sought, get that.
1269 	 * We need at least 2 bytes of status data to get that.
1270 	 */
1271 	if (elt == -1) {
1272 		if (amt < 2)
1273 			return (-1);
1274 		gget8(b, 1, sp->comstatus);
1275 		sp->comstat[0] = 0;
1276 		sp->comstat[1] = 0;
1277 		sp->comstat[2] = 0;
1278 		return (0);
1279 	}
1280 
1281 	/*
1282 	 * Check to make sure that the Mth element is legal for type Elt.
1283 	 */
1284 
1285 	if (elm >= ep[elt])
1286 		return (-1);
1287 
1288 	/*
1289 	 * Starting at offset 8, start skipping over the storage
1290 	 * for the element types we're not interested in.
1291 	 */
1292 	for (idx = 8, i = 0; i < elt; i++) {
1293 		idx += ((ep[i] + 1) * 4);
1294 	}
1295 
1296 	/*
1297 	 * Skip over Overall status for this element type.
1298 	 */
1299 	idx += 4;
1300 
1301 	/*
1302 	 * And skip to the index for the Mth element that we're going for.
1303 	 */
1304 	idx += (4 * elm);
1305 
1306 	/*
1307 	 * Make sure we haven't overflowed the buffer.
1308 	 */
1309 	if (idx+4 > amt)
1310 		return (-1);
1311 
1312 	/*
1313 	 * Retrieve the status.
1314 	 */
1315 	gget8(b, idx++, sp->comstatus);
1316 	gget8(b, idx++, sp->comstat[0]);
1317 	gget8(b, idx++, sp->comstat[1]);
1318 	gget8(b, idx++, sp->comstat[2]);
1319 #if	0
1320 	PRINTF("Get Elt 0x%x Elm 0x%x (idx %d)\n", elt, elm, idx-4);
1321 #endif
1322 	return (0);
1323 }
1324 
1325 /*
1326  * This is the mirror function to ses_decode, but we set the 'select'
1327  * bit for the object which we're interested in. All other objects,
1328  * after a status fetch, should have that bit off. Hmm. It'd be easy
1329  * enough to ensure this, so we will.
1330  */
1331 
1332 static int
1333 ses_encode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1334 {
1335 	int idx, i;
1336 
1337 	/*
1338 	 * If it's overall enclosure status being sought, get that.
1339 	 * We need at least 2 bytes of status data to get that.
1340 	 */
1341 	if (elt == -1) {
1342 		if (amt < 2)
1343 			return (-1);
1344 		i = 0;
1345 		sset8(b, i, 0);
1346 		sset8(b, i, sp->comstatus & 0xf);
1347 #if	0
1348 		PRINTF("set EncStat %x\n", sp->comstatus);
1349 #endif
1350 		return (0);
1351 	}
1352 
1353 	/*
1354 	 * Check to make sure that the Mth element is legal for type Elt.
1355 	 */
1356 
1357 	if (elm >= ep[elt])
1358 		return (-1);
1359 
1360 	/*
1361 	 * Starting at offset 8, start skipping over the storage
1362 	 * for the element types we're not interested in.
1363 	 */
1364 	for (idx = 8, i = 0; i < elt; i++) {
1365 		idx += ((ep[i] + 1) * 4);
1366 	}
1367 
1368 	/*
1369 	 * Skip over Overall status for this element type.
1370 	 */
1371 	idx += 4;
1372 
1373 	/*
1374 	 * And skip to the index for the Mth element that we're going for.
1375 	 */
1376 	idx += (4 * elm);
1377 
1378 	/*
1379 	 * Make sure we haven't overflowed the buffer.
1380 	 */
1381 	if (idx+4 > amt)
1382 		return (-1);
1383 
1384 	/*
1385 	 * Set the status.
1386 	 */
1387 	sset8(b, idx, sp->comstatus);
1388 	sset8(b, idx, sp->comstat[0]);
1389 	sset8(b, idx, sp->comstat[1]);
1390 	sset8(b, idx, sp->comstat[2]);
1391 	idx -= 4;
1392 
1393 #if	0
1394 	PRINTF("Set Elt 0x%x Elm 0x%x (idx %d) with %x %x %x %x\n",
1395 	    elt, elm, idx, sp->comstatus, sp->comstat[0],
1396 	    sp->comstat[1], sp->comstat[2]);
1397 #endif
1398 
1399 	/*
1400 	 * Now make sure all other 'Select' bits are off.
1401 	 */
1402 	for (i = 8; i < amt; i += 4) {
1403 		if (i != idx)
1404 			b[i] &= ~0x80;
1405 	}
1406 	/*
1407 	 * And make sure the INVOP bit is clear.
1408 	 */
1409 	b[2] &= ~0x10;
1410 
1411 	return (0);
1412 }
1413 
1414 /*
1415  * SAF-TE Type Device Emulation
1416  */
1417 
1418 static int safte_getconfig(ses_softc_t *);
1419 static int safte_rdstat(ses_softc_t *, int);
1420 static int set_objstat_sel(ses_softc_t *, ses_objstat *, int);
1421 static int wrbuf16(ses_softc_t *, uint8_t, uint8_t, uint8_t, uint8_t, int);
1422 static void wrslot_stat(ses_softc_t *, int);
1423 static int perf_slotop(ses_softc_t *, uint8_t, uint8_t, int);
1424 
1425 #define	ALL_ENC_STAT (SES_ENCSTAT_CRITICAL | SES_ENCSTAT_UNRECOV | \
1426 	SES_ENCSTAT_NONCRITICAL | SES_ENCSTAT_INFO)
1427 /*
1428  * SAF-TE specific defines- Mandatory ones only...
1429  */
1430 
1431 /*
1432  * READ BUFFER ('get' commands) IDs- placed in offset 2 of cdb
1433  */
1434 #define	SAFTE_RD_RDCFG	0x00	/* read enclosure configuration */
1435 #define	SAFTE_RD_RDESTS	0x01	/* read enclosure status */
1436 #define	SAFTE_RD_RDDSTS	0x04	/* read drive slot status */
1437 
1438 /*
1439  * WRITE BUFFER ('set' commands) IDs- placed in offset 0 of databuf
1440  */
1441 #define	SAFTE_WT_DSTAT	0x10	/* write device slot status */
1442 #define	SAFTE_WT_SLTOP	0x12	/* perform slot operation */
1443 #define	SAFTE_WT_FANSPD	0x13	/* set fan speed */
1444 #define	SAFTE_WT_ACTPWS	0x14	/* turn on/off power supply */
1445 #define	SAFTE_WT_GLOBAL	0x15	/* send global command */
1446 
1447 
1448 #define	SAFT_SCRATCH	64
1449 #define	NPSEUDO_THERM	16
1450 #define	NPSEUDO_ALARM	1
1451 struct scfg {
1452 	/*
1453 	 * Cached Configuration
1454 	 */
1455 	uint8_t	Nfans;		/* Number of Fans */
1456 	uint8_t	Npwr;		/* Number of Power Supplies */
1457 	uint8_t	Nslots;		/* Number of Device Slots */
1458 	uint8_t	DoorLock;	/* Door Lock Installed */
1459 	uint8_t	Ntherm;		/* Number of Temperature Sensors */
1460 	uint8_t	Nspkrs;		/* Number of Speakers */
1461 	uint8_t Nalarm;		/* Number of Alarms (at least one) */
1462 	/*
1463 	 * Cached Flag Bytes for Global Status
1464 	 */
1465 	uint8_t	flag1;
1466 	uint8_t	flag2;
1467 	/*
1468 	 * What object index ID is where various slots start.
1469 	 */
1470 	uint8_t	pwroff;
1471 	uint8_t	slotoff;
1472 #define	SAFT_ALARM_OFFSET(cc)	(cc)->slotoff - 1
1473 };
1474 
1475 #define	SAFT_FLG1_ALARM		0x1
1476 #define	SAFT_FLG1_GLOBFAIL	0x2
1477 #define	SAFT_FLG1_GLOBWARN	0x4
1478 #define	SAFT_FLG1_ENCPWROFF	0x8
1479 #define	SAFT_FLG1_ENCFANFAIL	0x10
1480 #define	SAFT_FLG1_ENCPWRFAIL	0x20
1481 #define	SAFT_FLG1_ENCDRVFAIL	0x40
1482 #define	SAFT_FLG1_ENCDRVWARN	0x80
1483 
1484 #define	SAFT_FLG2_LOCKDOOR	0x4
1485 #define	SAFT_PRIVATE		sizeof (struct scfg)
1486 
1487 static const char safte_2little[] = "Too Little Data Returned (%d) at line %d\n";
1488 #define	SAFT_BAIL(r, x, k, l)	\
1489 	if (r >= x) { \
1490 		SES_LOG(ssc, safte_2little, x, __LINE__);\
1491 		SES_FREE(k, l); \
1492 		return (EIO); \
1493 	}
1494 
1495 
1496 static int
1497 safte_softc_init(ses_softc_t *ssc, int doinit)
1498 {
1499 	int err, i, r;
1500 	struct scfg *cc;
1501 
1502 	if (doinit == 0) {
1503 		if (ssc->ses_nobjects) {
1504 			if (ssc->ses_objmap) {
1505 				SES_FREE(ssc->ses_objmap,
1506 				    ssc->ses_nobjects * sizeof (encobj));
1507 				ssc->ses_objmap = NULL;
1508 			}
1509 			ssc->ses_nobjects = 0;
1510 		}
1511 		if (ssc->ses_private) {
1512 			SES_FREE(ssc->ses_private, SAFT_PRIVATE);
1513 			ssc->ses_private = NULL;
1514 		}
1515 		return (0);
1516 	}
1517 
1518 	if (ssc->ses_private == NULL) {
1519 		ssc->ses_private = SES_MALLOC(SAFT_PRIVATE);
1520 		if (ssc->ses_private == NULL) {
1521 			return (ENOMEM);
1522 		}
1523 		MEMZERO(ssc->ses_private, SAFT_PRIVATE);
1524 	}
1525 
1526 	ssc->ses_nobjects = 0;
1527 	ssc->ses_encstat = 0;
1528 
1529 	if ((err = safte_getconfig(ssc)) != 0) {
1530 		return (err);
1531 	}
1532 
1533 	/*
1534 	 * The number of objects here, as well as that reported by the
1535 	 * READ_BUFFER/GET_CONFIG call, are the over-temperature flags (15)
1536 	 * that get reported during READ_BUFFER/READ_ENC_STATUS.
1537 	 */
1538 	cc = ssc->ses_private;
1539 	ssc->ses_nobjects = cc->Nfans + cc->Npwr + cc->Nslots + cc->DoorLock +
1540 	    cc->Ntherm + cc->Nspkrs + NPSEUDO_THERM + NPSEUDO_ALARM;
1541 	ssc->ses_objmap = (encobj *)
1542 	    SES_MALLOC(ssc->ses_nobjects * sizeof (encobj));
1543 	if (ssc->ses_objmap == NULL) {
1544 		return (ENOMEM);
1545 	}
1546 	MEMZERO(ssc->ses_objmap, ssc->ses_nobjects * sizeof (encobj));
1547 
1548 	r = 0;
1549 	/*
1550 	 * Note that this is all arranged for the convenience
1551 	 * in later fetches of status.
1552 	 */
1553 	for (i = 0; i < cc->Nfans; i++)
1554 		ssc->ses_objmap[r++].enctype = SESTYP_FAN;
1555 	cc->pwroff = (uint8_t) r;
1556 	for (i = 0; i < cc->Npwr; i++)
1557 		ssc->ses_objmap[r++].enctype = SESTYP_POWER;
1558 	for (i = 0; i < cc->DoorLock; i++)
1559 		ssc->ses_objmap[r++].enctype = SESTYP_DOORLOCK;
1560 	for (i = 0; i < cc->Nspkrs; i++)
1561 		ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1562 	for (i = 0; i < cc->Ntherm; i++)
1563 		ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1564 	for (i = 0; i < NPSEUDO_THERM; i++)
1565 		ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1566 	ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1567 	cc->slotoff = (uint8_t) r;
1568 	for (i = 0; i < cc->Nslots; i++)
1569 		ssc->ses_objmap[r++].enctype = SESTYP_DEVICE;
1570 	return (0);
1571 }
1572 
1573 static int
1574 safte_init_enc(ses_softc_t *ssc)
1575 {
1576 	int err, amt;
1577 	char *sdata;
1578 	static char cdb0[6] = { SEND_DIAGNOSTIC };
1579 	static char cdb[10] =
1580 	    { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
1581 
1582 	sdata = SES_MALLOC(SAFT_SCRATCH);
1583 	if (sdata == NULL)
1584 		return (ENOMEM);
1585 
1586 	err = ses_runcmd(ssc, cdb0, 6, NULL, 0);
1587 	if (err) {
1588 		SES_FREE(sdata, SAFT_SCRATCH);
1589 		return (err);
1590 	}
1591 	sdata[0] = SAFTE_WT_GLOBAL;
1592 	MEMZERO(&sdata[1], 15);
1593 	amt = -SAFT_SCRATCH;
1594 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1595 	SES_FREE(sdata, SAFT_SCRATCH);
1596 	return (err);
1597 }
1598 
1599 static int
1600 safte_get_encstat(ses_softc_t *ssc, int slpflg)
1601 {
1602 	return (safte_rdstat(ssc, slpflg));
1603 }
1604 
1605 static int
1606 safte_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflg)
1607 {
1608 	struct scfg *cc = ssc->ses_private;
1609 	if (cc == NULL)
1610 		return (0);
1611 	/*
1612 	 * Since SAF-TE devices aren't necessarily sticky in terms
1613 	 * of state, make our soft copy of enclosure status 'sticky'-
1614 	 * that is, things set in enclosure status stay set (as implied
1615 	 * by conditions set in reading object status) until cleared.
1616 	 */
1617 	ssc->ses_encstat &= ~ALL_ENC_STAT;
1618 	ssc->ses_encstat |= (encstat & ALL_ENC_STAT);
1619 	ssc->ses_encstat |= ENCI_SVALID;
1620 	cc->flag1 &= ~(SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL|SAFT_FLG1_GLOBWARN);
1621 	if ((encstat & (SES_ENCSTAT_CRITICAL|SES_ENCSTAT_UNRECOV)) != 0) {
1622 		cc->flag1 |= SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL;
1623 	} else if ((encstat & SES_ENCSTAT_NONCRITICAL) != 0) {
1624 		cc->flag1 |= SAFT_FLG1_GLOBWARN;
1625 	}
1626 	return (wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slpflg));
1627 }
1628 
1629 static int
1630 safte_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflg)
1631 {
1632 	int i = (int)obp->obj_id;
1633 
1634 	if ((ssc->ses_encstat & ENCI_SVALID) == 0 ||
1635 	    (ssc->ses_objmap[i].svalid) == 0) {
1636 		int err = safte_rdstat(ssc, slpflg);
1637 		if (err)
1638 			return (err);
1639 	}
1640 	obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
1641 	obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
1642 	obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
1643 	obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
1644 	return (0);
1645 }
1646 
1647 
1648 static int
1649 safte_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slp)
1650 {
1651 	int idx, err;
1652 	encobj *ep;
1653 	struct scfg *cc;
1654 
1655 
1656 	SES_VLOG(ssc, "safte_set_objstat(%d): %x %x %x %x\n",
1657 	    (int)obp->obj_id, obp->cstat[0], obp->cstat[1], obp->cstat[2],
1658 	    obp->cstat[3]);
1659 
1660 	/*
1661 	 * If this is clear, we don't do diddly.
1662 	 */
1663 	if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
1664 		return (0);
1665 	}
1666 
1667 	err = 0;
1668 	/*
1669 	 * Check to see if the common bits are set and do them first.
1670 	 */
1671 	if (obp->cstat[0] & ~SESCTL_CSEL) {
1672 		err = set_objstat_sel(ssc, obp, slp);
1673 		if (err)
1674 			return (err);
1675 	}
1676 
1677 	cc = ssc->ses_private;
1678 	if (cc == NULL)
1679 		return (0);
1680 
1681 	idx = (int)obp->obj_id;
1682 	ep = &ssc->ses_objmap[idx];
1683 
1684 	switch (ep->enctype) {
1685 	case SESTYP_DEVICE:
1686 	{
1687 		uint8_t slotop = 0;
1688 		/*
1689 		 * XXX: I should probably cache the previous state
1690 		 * XXX: of SESCTL_DEVOFF so that when it goes from
1691 		 * XXX: true to false I can then set PREPARE FOR OPERATION
1692 		 * XXX: flag in PERFORM SLOT OPERATION write buffer command.
1693 		 */
1694 		if (obp->cstat[2] & (SESCTL_RQSINS|SESCTL_RQSRMV)) {
1695 			slotop |= 0x2;
1696 		}
1697 		if (obp->cstat[2] & SESCTL_RQSID) {
1698 			slotop |= 0x4;
1699 		}
1700 		err = perf_slotop(ssc, (uint8_t) idx - (uint8_t) cc->slotoff,
1701 		    slotop, slp);
1702 		if (err)
1703 			return (err);
1704 		if (obp->cstat[3] & SESCTL_RQSFLT) {
1705 			ep->priv |= 0x2;
1706 		} else {
1707 			ep->priv &= ~0x2;
1708 		}
1709 		if (ep->priv & 0xc6) {
1710 			ep->priv &= ~0x1;
1711 		} else {
1712 			ep->priv |= 0x1;	/* no errors */
1713 		}
1714 		wrslot_stat(ssc, slp);
1715 		break;
1716 	}
1717 	case SESTYP_POWER:
1718 		if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1719 			cc->flag1 |= SAFT_FLG1_ENCPWRFAIL;
1720 		} else {
1721 			cc->flag1 &= ~SAFT_FLG1_ENCPWRFAIL;
1722 		}
1723 		err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1724 		    cc->flag2, 0, slp);
1725 		if (err)
1726 			return (err);
1727 		if (obp->cstat[3] & SESCTL_RQSTON) {
1728 			(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1729 				idx - cc->pwroff, 0, 0, slp);
1730 		} else {
1731 			(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1732 				idx - cc->pwroff, 0, 1, slp);
1733 		}
1734 		break;
1735 	case SESTYP_FAN:
1736 		if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1737 			cc->flag1 |= SAFT_FLG1_ENCFANFAIL;
1738 		} else {
1739 			cc->flag1 &= ~SAFT_FLG1_ENCFANFAIL;
1740 		}
1741 		err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1742 		    cc->flag2, 0, slp);
1743 		if (err)
1744 			return (err);
1745 		if (obp->cstat[3] & SESCTL_RQSTON) {
1746 			uint8_t fsp;
1747 			if ((obp->cstat[3] & 0x7) == 7) {
1748 				fsp = 4;
1749 			} else if ((obp->cstat[3] & 0x7) == 6) {
1750 				fsp = 3;
1751 			} else if ((obp->cstat[3] & 0x7) == 4) {
1752 				fsp = 2;
1753 			} else {
1754 				fsp = 1;
1755 			}
1756 			(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, fsp, 0, slp);
1757 		} else {
1758 			(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
1759 		}
1760 		break;
1761 	case SESTYP_DOORLOCK:
1762 		if (obp->cstat[3] & 0x1) {
1763 			cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
1764 		} else {
1765 			cc->flag2 |= SAFT_FLG2_LOCKDOOR;
1766 		}
1767 		(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1768 		    cc->flag2, 0, slp);
1769 		break;
1770 	case SESTYP_ALARM:
1771 		/*
1772 		 * On all nonzero but the 'muted' bit, we turn on the alarm,
1773 		 */
1774 		obp->cstat[3] &= ~0xa;
1775 		if (obp->cstat[3] & 0x40) {
1776 			cc->flag2 &= ~SAFT_FLG1_ALARM;
1777 		} else if (obp->cstat[3] != 0) {
1778 			cc->flag2 |= SAFT_FLG1_ALARM;
1779 		} else {
1780 			cc->flag2 &= ~SAFT_FLG1_ALARM;
1781 		}
1782 		ep->priv = obp->cstat[3];
1783 		(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1784 			cc->flag2, 0, slp);
1785 		break;
1786 	default:
1787 		break;
1788 	}
1789 	ep->svalid = 0;
1790 	return (0);
1791 }
1792 
1793 static int
1794 safte_getconfig(ses_softc_t *ssc)
1795 {
1796 	struct scfg *cfg;
1797 	int err, amt;
1798 	char *sdata;
1799 	static char cdb[10] =
1800 	    { READ_BUFFER, 1, SAFTE_RD_RDCFG, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
1801 
1802 	cfg = ssc->ses_private;
1803 	if (cfg == NULL)
1804 		return (ENXIO);
1805 
1806 	sdata = SES_MALLOC(SAFT_SCRATCH);
1807 	if (sdata == NULL)
1808 		return (ENOMEM);
1809 
1810 	amt = SAFT_SCRATCH;
1811 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1812 	if (err) {
1813 		SES_FREE(sdata, SAFT_SCRATCH);
1814 		return (err);
1815 	}
1816 	amt = SAFT_SCRATCH - amt;
1817 	if (amt < 6) {
1818 		SES_LOG(ssc, "too little data (%d) for configuration\n", amt);
1819 		SES_FREE(sdata, SAFT_SCRATCH);
1820 		return (EIO);
1821 	}
1822 	SES_VLOG(ssc, "Nfans %d Npwr %d Nslots %d Lck %d Ntherm %d Nspkrs %d\n",
1823 	    sdata[0], sdata[1], sdata[2], sdata[3], sdata[4], sdata[5]);
1824 	cfg->Nfans = sdata[0];
1825 	cfg->Npwr = sdata[1];
1826 	cfg->Nslots = sdata[2];
1827 	cfg->DoorLock = sdata[3];
1828 	cfg->Ntherm = sdata[4];
1829 	cfg->Nspkrs = sdata[5];
1830 	cfg->Nalarm = NPSEUDO_ALARM;
1831 	SES_FREE(sdata, SAFT_SCRATCH);
1832 	return (0);
1833 }
1834 
1835 static int
1836 safte_rdstat(ses_softc_t *ssc, int slpflg)
1837 {
1838 	int err, oid, r, i, hiwater, nitems, amt;
1839 	uint16_t tempflags;
1840 	size_t buflen;
1841 	uint8_t status, oencstat;
1842 	char *sdata, cdb[10];
1843 	struct scfg *cc = ssc->ses_private;
1844 
1845 
1846 	/*
1847 	 * The number of objects overstates things a bit,
1848 	 * both for the bogus 'thermometer' entries and
1849 	 * the drive status (which isn't read at the same
1850 	 * time as the enclosure status), but that's okay.
1851 	 */
1852 	buflen = 4 * cc->Nslots;
1853 	if (ssc->ses_nobjects > buflen)
1854 		buflen = ssc->ses_nobjects;
1855 	sdata = SES_MALLOC(buflen);
1856 	if (sdata == NULL)
1857 		return (ENOMEM);
1858 
1859 	cdb[0] = READ_BUFFER;
1860 	cdb[1] = 1;
1861 	cdb[2] = SAFTE_RD_RDESTS;
1862 	cdb[3] = 0;
1863 	cdb[4] = 0;
1864 	cdb[5] = 0;
1865 	cdb[6] = 0;
1866 	cdb[7] = (buflen >> 8) & 0xff;
1867 	cdb[8] = buflen & 0xff;
1868 	cdb[9] = 0;
1869 	amt = buflen;
1870 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1871 	if (err) {
1872 		SES_FREE(sdata, buflen);
1873 		return (err);
1874 	}
1875 	hiwater = buflen - amt;
1876 
1877 
1878 	/*
1879 	 * invalidate all status bits.
1880 	 */
1881 	for (i = 0; i < ssc->ses_nobjects; i++)
1882 		ssc->ses_objmap[i].svalid = 0;
1883 	oencstat = ssc->ses_encstat & ALL_ENC_STAT;
1884 	ssc->ses_encstat = 0;
1885 
1886 
1887 	/*
1888 	 * Now parse returned buffer.
1889 	 * If we didn't get enough data back,
1890 	 * that's considered a fatal error.
1891 	 */
1892 	oid = r = 0;
1893 
1894 	for (nitems = i = 0; i < cc->Nfans; i++) {
1895 		SAFT_BAIL(r, hiwater, sdata, buflen);
1896 		/*
1897 		 * 0 = Fan Operational
1898 		 * 1 = Fan is malfunctioning
1899 		 * 2 = Fan is not present
1900 		 * 0x80 = Unknown or Not Reportable Status
1901 		 */
1902 		ssc->ses_objmap[oid].encstat[1] = 0;	/* resvd */
1903 		ssc->ses_objmap[oid].encstat[2] = 0;	/* resvd */
1904 		switch ((int)(uint8_t)sdata[r]) {
1905 		case 0:
1906 			nitems++;
1907 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1908 			/*
1909 			 * We could get fancier and cache
1910 			 * fan speeds that we have set, but
1911 			 * that isn't done now.
1912 			 */
1913 			ssc->ses_objmap[oid].encstat[3] = 7;
1914 			break;
1915 
1916 		case 1:
1917 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1918 			/*
1919 			 * FAIL and FAN STOPPED synthesized
1920 			 */
1921 			ssc->ses_objmap[oid].encstat[3] = 0x40;
1922 			/*
1923 			 * Enclosure marked with CRITICAL error
1924 			 * if only one fan or no thermometers,
1925 			 * else the NONCRITICAL error is set.
1926 			 */
1927 			if (cc->Nfans == 1 || cc->Ntherm == 0)
1928 				ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1929 			else
1930 				ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1931 			break;
1932 		case 2:
1933 			ssc->ses_objmap[oid].encstat[0] =
1934 			    SES_OBJSTAT_NOTINSTALLED;
1935 			ssc->ses_objmap[oid].encstat[3] = 0;
1936 			/*
1937 			 * Enclosure marked with CRITICAL error
1938 			 * if only one fan or no thermometers,
1939 			 * else the NONCRITICAL error is set.
1940 			 */
1941 			if (cc->Nfans == 1)
1942 				ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1943 			else
1944 				ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1945 			break;
1946 		case 0x80:
1947 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1948 			ssc->ses_objmap[oid].encstat[3] = 0;
1949 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
1950 			break;
1951 		default:
1952 			ssc->ses_objmap[oid].encstat[0] =
1953 			    SES_OBJSTAT_UNSUPPORTED;
1954 			SES_LOG(ssc, "Unknown fan%d status 0x%x\n", i,
1955 			    sdata[r] & 0xff);
1956 			break;
1957 		}
1958 		ssc->ses_objmap[oid++].svalid = 1;
1959 		r++;
1960 	}
1961 
1962 	/*
1963 	 * No matter how you cut it, no cooling elements when there
1964 	 * should be some there is critical.
1965 	 */
1966 	if (cc->Nfans && nitems == 0) {
1967 		ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1968 	}
1969 
1970 
1971 	for (i = 0; i < cc->Npwr; i++) {
1972 		SAFT_BAIL(r, hiwater, sdata, buflen);
1973 		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1974 		ssc->ses_objmap[oid].encstat[1] = 0;	/* resvd */
1975 		ssc->ses_objmap[oid].encstat[2] = 0;	/* resvd */
1976 		ssc->ses_objmap[oid].encstat[3] = 0x20;	/* requested on */
1977 		switch ((uint8_t)sdata[r]) {
1978 		case 0x00:	/* pws operational and on */
1979 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1980 			break;
1981 		case 0x01:	/* pws operational and off */
1982 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1983 			ssc->ses_objmap[oid].encstat[3] = 0x10;
1984 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
1985 			break;
1986 		case 0x10:	/* pws is malfunctioning and commanded on */
1987 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1988 			ssc->ses_objmap[oid].encstat[3] = 0x61;
1989 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1990 			break;
1991 
1992 		case 0x11:	/* pws is malfunctioning and commanded off */
1993 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
1994 			ssc->ses_objmap[oid].encstat[3] = 0x51;
1995 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1996 			break;
1997 		case 0x20:	/* pws is not present */
1998 			ssc->ses_objmap[oid].encstat[0] =
1999 			    SES_OBJSTAT_NOTINSTALLED;
2000 			ssc->ses_objmap[oid].encstat[3] = 0;
2001 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
2002 			break;
2003 		case 0x21:	/* pws is present */
2004 			/*
2005 			 * This is for enclosures that cannot tell whether the
2006 			 * device is on or malfunctioning, but know that it is
2007 			 * present. Just fall through.
2008 			 */
2009 			/* FALLTHROUGH */
2010 		case 0x80:	/* Unknown or Not Reportable Status */
2011 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2012 			ssc->ses_objmap[oid].encstat[3] = 0;
2013 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
2014 			break;
2015 		default:
2016 			SES_LOG(ssc, "unknown power supply %d status (0x%x)\n",
2017 			    i, sdata[r] & 0xff);
2018 			break;
2019 		}
2020 		ssc->ses_objmap[oid++].svalid = 1;
2021 		r++;
2022 	}
2023 
2024 	/*
2025 	 * Skip over Slot SCSI IDs
2026 	 */
2027 	r += cc->Nslots;
2028 
2029 	/*
2030 	 * We always have doorlock status, no matter what,
2031 	 * but we only save the status if we have one.
2032 	 */
2033 	SAFT_BAIL(r, hiwater, sdata, buflen);
2034 	if (cc->DoorLock) {
2035 		/*
2036 		 * 0 = Door Locked
2037 		 * 1 = Door Unlocked, or no Lock Installed
2038 		 * 0x80 = Unknown or Not Reportable Status
2039 		 */
2040 		ssc->ses_objmap[oid].encstat[1] = 0;
2041 		ssc->ses_objmap[oid].encstat[2] = 0;
2042 		switch ((uint8_t)sdata[r]) {
2043 		case 0:
2044 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2045 			ssc->ses_objmap[oid].encstat[3] = 0;
2046 			break;
2047 		case 1:
2048 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2049 			ssc->ses_objmap[oid].encstat[3] = 1;
2050 			break;
2051 		case 0x80:
2052 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2053 			ssc->ses_objmap[oid].encstat[3] = 0;
2054 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
2055 			break;
2056 		default:
2057 			ssc->ses_objmap[oid].encstat[0] =
2058 			    SES_OBJSTAT_UNSUPPORTED;
2059 			SES_LOG(ssc, "unknown lock status 0x%x\n",
2060 			    sdata[r] & 0xff);
2061 			break;
2062 		}
2063 		ssc->ses_objmap[oid++].svalid = 1;
2064 	}
2065 	r++;
2066 
2067 	/*
2068 	 * We always have speaker status, no matter what,
2069 	 * but we only save the status if we have one.
2070 	 */
2071 	SAFT_BAIL(r, hiwater, sdata, buflen);
2072 	if (cc->Nspkrs) {
2073 		ssc->ses_objmap[oid].encstat[1] = 0;
2074 		ssc->ses_objmap[oid].encstat[2] = 0;
2075 		if (sdata[r] == 1) {
2076 			/*
2077 			 * We need to cache tone urgency indicators.
2078 			 * Someday.
2079 			 */
2080 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
2081 			ssc->ses_objmap[oid].encstat[3] = 0x8;
2082 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2083 		} else if (sdata[r] == 0) {
2084 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2085 			ssc->ses_objmap[oid].encstat[3] = 0;
2086 		} else {
2087 			ssc->ses_objmap[oid].encstat[0] =
2088 			    SES_OBJSTAT_UNSUPPORTED;
2089 			ssc->ses_objmap[oid].encstat[3] = 0;
2090 			SES_LOG(ssc, "unknown spkr status 0x%x\n",
2091 			    sdata[r] & 0xff);
2092 		}
2093 		ssc->ses_objmap[oid++].svalid = 1;
2094 	}
2095 	r++;
2096 
2097 	for (i = 0; i < cc->Ntherm; i++) {
2098 		SAFT_BAIL(r, hiwater, sdata, buflen);
2099 		/*
2100 		 * Status is a range from -10 to 245 deg Celsius,
2101 		 * which we need to normalize to -20 to -245 according
2102 		 * to the latest SCSI spec, which makes little
2103 		 * sense since this would overflow an 8bit value.
2104 		 * Well, still, the base normalization is -20,
2105 		 * not -10, so we have to adjust.
2106 		 *
2107 		 * So what's over and under temperature?
2108 		 * Hmm- we'll state that 'normal' operating
2109 		 * is 10 to 40 deg Celsius.
2110 		 */
2111 
2112 		/*
2113 		 * Actually.... All of the units that people out in the world
2114 		 * seem to have do not come even close to setting a value that
2115 		 * complies with this spec.
2116 		 *
2117 		 * The closest explanation I could find was in an
2118 		 * LSI-Logic manual, which seemed to indicate that
2119 		 * this value would be set by whatever the I2C code
2120 		 * would interpolate from the output of an LM75
2121 		 * temperature sensor.
2122 		 *
2123 		 * This means that it is impossible to use the actual
2124 		 * numeric value to predict anything. But we don't want
2125 		 * to lose the value. So, we'll propagate the *uncorrected*
2126 		 * value and set SES_OBJSTAT_NOTAVAIL. We'll depend on the
2127 		 * temperature flags for warnings.
2128 		 */
2129 		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NOTAVAIL;
2130 		ssc->ses_objmap[oid].encstat[1] = 0;
2131 		ssc->ses_objmap[oid].encstat[2] = sdata[r];
2132 		ssc->ses_objmap[oid].encstat[3] = 0;
2133 		ssc->ses_objmap[oid++].svalid = 1;
2134 		r++;
2135 	}
2136 
2137 	/*
2138 	 * Now, for "pseudo" thermometers, we have two bytes
2139 	 * of information in enclosure status- 16 bits. Actually,
2140 	 * the MSB is a single TEMP ALERT flag indicating whether
2141 	 * any other bits are set, but, thanks to fuzzy thinking,
2142 	 * in the SAF-TE spec, this can also be set even if no
2143 	 * other bits are set, thus making this really another
2144 	 * binary temperature sensor.
2145 	 */
2146 
2147 	SAFT_BAIL(r, hiwater, sdata, buflen);
2148 	tempflags = sdata[r++];
2149 	SAFT_BAIL(r, hiwater, sdata, buflen);
2150 	tempflags |= (tempflags << 8) | sdata[r++];
2151 
2152 	for (i = 0; i < NPSEUDO_THERM; i++) {
2153 		ssc->ses_objmap[oid].encstat[1] = 0;
2154 		if (tempflags & (1 << (NPSEUDO_THERM - i - 1))) {
2155 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2156 			ssc->ses_objmap[4].encstat[2] = 0xff;
2157 			/*
2158 			 * Set 'over temperature' failure.
2159 			 */
2160 			ssc->ses_objmap[oid].encstat[3] = 8;
2161 			ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2162 		} else {
2163 			/*
2164 			 * We used to say 'not available' and synthesize a
2165 			 * nominal 30 deg (C)- that was wrong. Actually,
2166 			 * Just say 'OK', and use the reserved value of
2167 			 * zero.
2168 			 */
2169 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2170 			ssc->ses_objmap[oid].encstat[2] = 0;
2171 			ssc->ses_objmap[oid].encstat[3] = 0;
2172 		}
2173 		ssc->ses_objmap[oid++].svalid = 1;
2174 	}
2175 
2176 	/*
2177 	 * Get alarm status.
2178 	 */
2179 	ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2180 	ssc->ses_objmap[oid].encstat[3] = ssc->ses_objmap[oid].priv;
2181 	ssc->ses_objmap[oid++].svalid = 1;
2182 
2183 	/*
2184 	 * Now get drive slot status
2185 	 */
2186 	cdb[2] = SAFTE_RD_RDDSTS;
2187 	amt = buflen;
2188 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2189 	if (err) {
2190 		SES_FREE(sdata, buflen);
2191 		return (err);
2192 	}
2193 	hiwater = buflen - amt;
2194 	for (r = i = 0; i < cc->Nslots; i++, r += 4) {
2195 		SAFT_BAIL(r+3, hiwater, sdata, buflen);
2196 		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNSUPPORTED;
2197 		ssc->ses_objmap[oid].encstat[1] = (uint8_t) i;
2198 		ssc->ses_objmap[oid].encstat[2] = 0;
2199 		ssc->ses_objmap[oid].encstat[3] = 0;
2200 		status = sdata[r+3];
2201 		if ((status & 0x1) == 0) {	/* no device */
2202 			ssc->ses_objmap[oid].encstat[0] =
2203 			    SES_OBJSTAT_NOTINSTALLED;
2204 		} else {
2205 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2206 		}
2207 		if (status & 0x2) {
2208 			ssc->ses_objmap[oid].encstat[2] = 0x8;
2209 		}
2210 		if ((status & 0x4) == 0) {
2211 			ssc->ses_objmap[oid].encstat[3] = 0x10;
2212 		}
2213 		ssc->ses_objmap[oid++].svalid = 1;
2214 	}
2215 	/* see comment below about sticky enclosure status */
2216 	ssc->ses_encstat |= ENCI_SVALID | oencstat;
2217 	SES_FREE(sdata, buflen);
2218 	return (0);
2219 }
2220 
2221 static int
2222 set_objstat_sel(ses_softc_t *ssc, ses_objstat *obp, int slp)
2223 {
2224 	int idx;
2225 	encobj *ep;
2226 	struct scfg *cc = ssc->ses_private;
2227 
2228 	if (cc == NULL)
2229 		return (0);
2230 
2231 	idx = (int)obp->obj_id;
2232 	ep = &ssc->ses_objmap[idx];
2233 
2234 	switch (ep->enctype) {
2235 	case SESTYP_DEVICE:
2236 		if (obp->cstat[0] & SESCTL_PRDFAIL) {
2237 			ep->priv |= 0x40;
2238 		}
2239 		/* SESCTL_RSTSWAP has no correspondence in SAF-TE */
2240 		if (obp->cstat[0] & SESCTL_DISABLE) {
2241 			ep->priv |= 0x80;
2242 			/*
2243 			 * Hmm. Try to set the 'No Drive' flag.
2244 			 * Maybe that will count as a 'disable'.
2245 			 */
2246 		}
2247 		if (ep->priv & 0xc6) {
2248 			ep->priv &= ~0x1;
2249 		} else {
2250 			ep->priv |= 0x1;	/* no errors */
2251 		}
2252 		wrslot_stat(ssc, slp);
2253 		break;
2254 	case SESTYP_POWER:
2255 		/*
2256 		 * Okay- the only one that makes sense here is to
2257 		 * do the 'disable' for a power supply.
2258 		 */
2259 		if (obp->cstat[0] & SESCTL_DISABLE) {
2260 			(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
2261 				idx - cc->pwroff, 0, 0, slp);
2262 		}
2263 		break;
2264 	case SESTYP_FAN:
2265 		/*
2266 		 * Okay- the only one that makes sense here is to
2267 		 * set fan speed to zero on disable.
2268 		 */
2269 		if (obp->cstat[0] & SESCTL_DISABLE) {
2270 			/* remember- fans are the first items, so idx works */
2271 			(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
2272 		}
2273 		break;
2274 	case SESTYP_DOORLOCK:
2275 		/*
2276 		 * Well, we can 'disable' the lock.
2277 		 */
2278 		if (obp->cstat[0] & SESCTL_DISABLE) {
2279 			cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
2280 			(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2281 				cc->flag2, 0, slp);
2282 		}
2283 		break;
2284 	case SESTYP_ALARM:
2285 		/*
2286 		 * Well, we can 'disable' the alarm.
2287 		 */
2288 		if (obp->cstat[0] & SESCTL_DISABLE) {
2289 			cc->flag2 &= ~SAFT_FLG1_ALARM;
2290 			ep->priv |= 0x40;	/* Muted */
2291 			(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2292 				cc->flag2, 0, slp);
2293 		}
2294 		break;
2295 	default:
2296 		break;
2297 	}
2298 	ep->svalid = 0;
2299 	return (0);
2300 }
2301 
2302 /*
2303  * This function handles all of the 16 byte WRITE BUFFER commands.
2304  */
2305 static int
2306 wrbuf16(ses_softc_t *ssc, uint8_t op, uint8_t b1, uint8_t b2,
2307     uint8_t b3, int slp)
2308 {
2309 	int err, amt;
2310 	char *sdata;
2311 	struct scfg *cc = ssc->ses_private;
2312 	static char cdb[10] = { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
2313 
2314 	if (cc == NULL)
2315 		return (0);
2316 
2317 	sdata = SES_MALLOC(16);
2318 	if (sdata == NULL)
2319 		return (ENOMEM);
2320 
2321 	SES_VLOG(ssc, "saf_wrbuf16 %x %x %x %x\n", op, b1, b2, b3);
2322 
2323 	sdata[0] = op;
2324 	sdata[1] = b1;
2325 	sdata[2] = b2;
2326 	sdata[3] = b3;
2327 	MEMZERO(&sdata[4], 12);
2328 	amt = -16;
2329 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2330 	SES_FREE(sdata, 16);
2331 	return (err);
2332 }
2333 
2334 /*
2335  * This function updates the status byte for the device slot described.
2336  *
2337  * Since this is an optional SAF-TE command, there's no point in
2338  * returning an error.
2339  */
2340 static void
2341 wrslot_stat(ses_softc_t *ssc, int slp)
2342 {
2343 	int i, amt;
2344 	encobj *ep;
2345 	char cdb[10], *sdata;
2346 	struct scfg *cc = ssc->ses_private;
2347 
2348 	if (cc == NULL)
2349 		return;
2350 
2351 	SES_VLOG(ssc, "saf_wrslot\n");
2352 	cdb[0] = WRITE_BUFFER;
2353 	cdb[1] = 1;
2354 	cdb[2] = 0;
2355 	cdb[3] = 0;
2356 	cdb[4] = 0;
2357 	cdb[5] = 0;
2358 	cdb[6] = 0;
2359 	cdb[7] = 0;
2360 	cdb[8] = cc->Nslots * 3 + 1;
2361 	cdb[9] = 0;
2362 
2363 	sdata = SES_MALLOC(cc->Nslots * 3 + 1);
2364 	if (sdata == NULL)
2365 		return;
2366 	MEMZERO(sdata, cc->Nslots * 3 + 1);
2367 
2368 	sdata[0] = SAFTE_WT_DSTAT;
2369 	for (i = 0; i < cc->Nslots; i++) {
2370 		ep = &ssc->ses_objmap[cc->slotoff + i];
2371 		SES_VLOG(ssc, "saf_wrslot %d <- %x\n", i, ep->priv & 0xff);
2372 		sdata[1 + (3 * i)] = ep->priv & 0xff;
2373 	}
2374 	amt = -(cc->Nslots * 3 + 1);
2375 	(void) ses_runcmd(ssc, cdb, 10, sdata, &amt);
2376 	SES_FREE(sdata, cc->Nslots * 3 + 1);
2377 }
2378 
2379 /*
2380  * This function issues the "PERFORM SLOT OPERATION" command.
2381  */
2382 static int
2383 perf_slotop(ses_softc_t *ssc, uint8_t slot, uint8_t opflag, int slp)
2384 {
2385 	int err, amt;
2386 	char *sdata;
2387 	struct scfg *cc = ssc->ses_private;
2388 	static char cdb[10] =
2389 	    { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
2390 
2391 	if (cc == NULL)
2392 		return (0);
2393 
2394 	sdata = SES_MALLOC(SAFT_SCRATCH);
2395 	if (sdata == NULL)
2396 		return (ENOMEM);
2397 	MEMZERO(sdata, SAFT_SCRATCH);
2398 
2399 	sdata[0] = SAFTE_WT_SLTOP;
2400 	sdata[1] = slot;
2401 	sdata[2] = opflag;
2402 	SES_VLOG(ssc, "saf_slotop slot %d op %x\n", slot, opflag);
2403 	amt = -SAFT_SCRATCH;
2404 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2405 	SES_FREE(sdata, SAFT_SCRATCH);
2406 	return (err);
2407 }
2408