1 /* $NetBSD: ses.c,v 1.7 2000/07/08 17:12:08 sommerfeld Exp $ */ 2 /* 3 * Copyright (C) 2000 National Aeronautics & Space Administration 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. The name of the author may not be used to endorse or promote products 12 * derived from this software without specific prior written permission 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 17 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 20 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 21 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 24 * 25 * Author: mjacob@nas.nasa.gov 26 */ 27 28 29 #include "opt_scsi.h" 30 31 #include <sys/types.h> 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/kernel.h> 35 #include <sys/file.h> 36 #include <sys/stat.h> 37 #include <sys/ioctl.h> 38 #include <sys/scsiio.h> 39 #include <sys/buf.h> 40 #include <sys/uio.h> 41 #include <sys/malloc.h> 42 #include <sys/errno.h> 43 #include <sys/device.h> 44 #include <sys/disklabel.h> 45 #include <sys/disk.h> 46 #include <sys/proc.h> 47 #include <sys/conf.h> 48 #include <sys/vnode.h> 49 #include <machine/stdarg.h> 50 51 #include <dev/scsipi/scsipi_all.h> 52 #include <dev/scsipi/scsi_all.h> 53 #include <dev/scsipi/scsipi_disk.h> 54 #include <dev/scsipi/scsi_disk.h> 55 #include <dev/scsipi/scsiconf.h> 56 #include <dev/scsipi/ses.h> 57 58 /* 59 * Platform Independent Driver Internal Definitions for SES devices. 60 */ 61 typedef enum { 62 SES_NONE, 63 SES_SES_SCSI2, 64 SES_SES, 65 SES_SES_PASSTHROUGH, 66 SES_SEN, 67 SES_SAFT 68 } enctyp; 69 70 struct ses_softc; 71 typedef struct ses_softc ses_softc_t; 72 typedef struct { 73 int (*softc_init) __P((ses_softc_t *, int)); 74 int (*init_enc) __P((ses_softc_t *)); 75 int (*get_encstat) __P((ses_softc_t *, int)); 76 int (*set_encstat) __P((ses_softc_t *, ses_encstat, int)); 77 int (*get_objstat) __P((ses_softc_t *, ses_objstat *, int)); 78 int (*set_objstat) __P((ses_softc_t *, ses_objstat *, int)); 79 } encvec; 80 81 #define ENCI_SVALID 0x80 82 83 typedef struct { 84 uint32_t 85 enctype : 8, /* enclosure type */ 86 subenclosure : 8, /* subenclosure id */ 87 svalid : 1, /* enclosure information valid */ 88 priv : 15; /* private data, per object */ 89 uint8_t encstat[4]; /* state && stats */ 90 } encobj; 91 92 #define SEN_ID "UNISYS SUN_SEN" 93 #define SEN_ID_LEN 24 94 95 static enctyp ses_type __P((struct scsipi_inquiry_data *)); 96 97 98 /* Forward reference to Enclosure Functions */ 99 static int ses_softc_init __P((ses_softc_t *, int)); 100 static int ses_init_enc __P((ses_softc_t *)); 101 static int ses_get_encstat __P((ses_softc_t *, int)); 102 static int ses_set_encstat __P((ses_softc_t *, uint8_t, int)); 103 static int ses_get_objstat __P((ses_softc_t *, ses_objstat *, int)); 104 static int ses_set_objstat __P((ses_softc_t *, ses_objstat *, int)); 105 106 static int safte_softc_init __P((ses_softc_t *, int)); 107 static int safte_init_enc __P((ses_softc_t *)); 108 static int safte_get_encstat __P((ses_softc_t *, int)); 109 static int safte_set_encstat __P((ses_softc_t *, uint8_t, int)); 110 static int safte_get_objstat __P((ses_softc_t *, ses_objstat *, int)); 111 static int safte_set_objstat __P((ses_softc_t *, ses_objstat *, int)); 112 113 /* 114 * Platform implementation defines/functions for SES internal kernel stuff 115 */ 116 117 #define STRNCMP strncmp 118 #define PRINTF printf 119 #define SES_LOG ses_log 120 #if defined(DEBUG) || defined(SCSIDEBUG) 121 #define SES_VLOG ses_log 122 #else 123 #define SES_VLOG if (0) ses_log 124 #endif 125 #define SES_MALLOC(amt) malloc(amt, M_DEVBUF, M_NOWAIT) 126 #define SES_FREE(ptr, amt) free(ptr, M_DEVBUF) 127 #define MEMZERO bzero 128 #define MEMCPY(dest, src, amt) bcopy(src, dest, amt) 129 #define RECEIVE_DIAGNOSTIC 0x1c 130 #define SEND_DIAGNOSTIC 0x1d 131 #define WRITE_BUFFER 0x3b 132 #define READ_BUFFER 0x3c 133 134 int sesopen __P((dev_t, int, int, struct proc *)); 135 int sesclose __P((dev_t, int, int, struct proc *)); 136 int sesioctl __P((dev_t, u_long, caddr_t, int, struct proc *)); 137 138 static int ses_runcmd __P((struct ses_softc *, char *, int, char *, int *)); 139 static void ses_log __P((struct ses_softc *, const char *, ...)) 140 __attribute__((__format__(__printf__, 2, 3))); 141 142 /* 143 * General NetBSD kernel stuff. 144 */ 145 146 struct ses_softc { 147 struct device sc_device; 148 struct scsipi_link *sc_link; 149 enctyp ses_type; /* type of enclosure */ 150 encvec ses_vec; /* vector to handlers */ 151 void * ses_private; /* per-type private data */ 152 encobj * ses_objmap; /* objects */ 153 u_int32_t ses_nobjects; /* number of objects */ 154 ses_encstat ses_encstat; /* overall status */ 155 u_int8_t ses_flags; 156 }; 157 #define SES_FLAG_INVALID 0x01 158 #define SES_FLAG_OPEN 0x02 159 #define SES_FLAG_INITIALIZED 0x04 160 161 #define SESUNIT(x) (minor((x))) 162 163 static int ses_match __P((struct device *, struct cfdata *, void *)); 164 static void ses_attach __P((struct device *, struct device *, void *)); 165 static enctyp ses_device_type __P((struct scsipibus_attach_args *)); 166 167 struct cfattach ses_ca = { 168 sizeof (struct ses_softc), ses_match, ses_attach 169 }; 170 extern struct cfdriver ses_cd; 171 172 struct scsipi_device ses_switch = { 173 NULL, 174 NULL, 175 NULL, 176 NULL 177 }; 178 179 180 int 181 ses_match(parent, match, aux) 182 struct device *parent; 183 struct cfdata *match; 184 void *aux; 185 { 186 struct scsipibus_attach_args *sa = aux; 187 188 switch (ses_device_type(sa)) { 189 case SES_SES: 190 case SES_SES_SCSI2: 191 case SES_SEN: 192 case SES_SAFT: 193 case SES_SES_PASSTHROUGH: 194 /* 195 * For these devices, it's a perfect match. 196 */ 197 return (24); 198 default: 199 return (0); 200 } 201 } 202 203 204 /* 205 * Complete the attachment. 206 * 207 * We have to repeat the rerun of INQUIRY data as above because 208 * it's not until the return from the match routine that we have 209 * the softc available to set stuff in. 210 */ 211 void 212 ses_attach(parent, self, aux) 213 struct device *parent; 214 struct device *self; 215 void *aux; 216 { 217 char *tname; 218 struct ses_softc *softc = (void *)self; 219 struct scsipibus_attach_args *sa = aux; 220 struct scsipi_link *sc_link = sa->sa_sc_link; 221 222 SC_DEBUG(sc_link, SDEV_DB2, ("ssattach: ")); 223 softc->sc_link = sa->sa_sc_link; 224 sc_link->device = &ses_switch; 225 sc_link->device_softc = softc; 226 sc_link->openings = 1; 227 228 softc->ses_type = ses_device_type(sa); 229 switch (softc->ses_type) { 230 case SES_SES: 231 case SES_SES_SCSI2: 232 case SES_SES_PASSTHROUGH: 233 softc->ses_vec.softc_init = ses_softc_init; 234 softc->ses_vec.init_enc = ses_init_enc; 235 softc->ses_vec.get_encstat = ses_get_encstat; 236 softc->ses_vec.set_encstat = ses_set_encstat; 237 softc->ses_vec.get_objstat = ses_get_objstat; 238 softc->ses_vec.set_objstat = ses_set_objstat; 239 break; 240 case SES_SAFT: 241 softc->ses_vec.softc_init = safte_softc_init; 242 softc->ses_vec.init_enc = safte_init_enc; 243 softc->ses_vec.get_encstat = safte_get_encstat; 244 softc->ses_vec.set_encstat = safte_set_encstat; 245 softc->ses_vec.get_objstat = safte_get_objstat; 246 softc->ses_vec.set_objstat = safte_set_objstat; 247 break; 248 case SES_SEN: 249 break; 250 case SES_NONE: 251 default: 252 break; 253 } 254 255 switch (softc->ses_type) { 256 default: 257 case SES_NONE: 258 tname = "No SES device"; 259 break; 260 case SES_SES_SCSI2: 261 tname = "SCSI-2 SES Device"; 262 break; 263 case SES_SES: 264 tname = "SCSI-3 SES Device"; 265 break; 266 case SES_SES_PASSTHROUGH: 267 tname = "SES Passthrough Device"; 268 break; 269 case SES_SEN: 270 tname = "UNISYS SEN Device (NOT HANDLED YET)"; 271 break; 272 case SES_SAFT: 273 tname = "SAF-TE Compliant Device"; 274 break; 275 } 276 printf("\n%s: %s\n", softc->sc_device.dv_xname, tname); 277 } 278 279 280 static enctyp 281 ses_device_type(sa) 282 struct scsipibus_attach_args *sa; 283 { 284 struct scsipi_inquiry_data *inqp = sa->sa_inqptr; 285 286 if (inqp == NULL) 287 return (SES_NONE); 288 289 return (ses_type(inqp)); 290 } 291 292 int 293 sesopen(dev, flags, fmt, p) 294 dev_t dev; 295 int flags; 296 int fmt; 297 struct proc *p; 298 { 299 struct ses_softc *softc; 300 int error, unit; 301 302 unit = SESUNIT(dev); 303 if (unit >= ses_cd.cd_ndevs) 304 return (ENXIO); 305 softc = ses_cd.cd_devs[unit]; 306 if (softc == NULL) 307 return (ENXIO); 308 309 if (softc->ses_flags & SES_FLAG_INVALID) { 310 error = ENXIO; 311 goto out; 312 } 313 if (softc->ses_flags & SES_FLAG_OPEN) { 314 error = EBUSY; 315 goto out; 316 } 317 if (softc->ses_vec.softc_init == NULL) { 318 error = ENXIO; 319 goto out; 320 } 321 error = scsipi_adapter_addref(softc->sc_link); 322 if (error != 0) 323 goto out; 324 325 326 softc->ses_flags |= SES_FLAG_OPEN; 327 if ((softc->ses_flags & SES_FLAG_INITIALIZED) == 0) { 328 error = (*softc->ses_vec.softc_init)(softc, 1); 329 if (error) 330 softc->ses_flags &= ~SES_FLAG_OPEN; 331 else 332 softc->ses_flags |= SES_FLAG_INITIALIZED; 333 } 334 335 out: 336 return (error); 337 } 338 339 int 340 sesclose(dev, flags, fmt, p) 341 dev_t dev; 342 int flags; 343 int fmt; 344 struct proc *p; 345 { 346 struct ses_softc *softc; 347 int unit; 348 349 unit = SESUNIT(dev); 350 if (unit >= ses_cd.cd_ndevs) 351 return (ENXIO); 352 softc = ses_cd.cd_devs[unit]; 353 if (softc == NULL) 354 return (ENXIO); 355 356 scsipi_wait_drain(softc->sc_link); 357 scsipi_adapter_delref(softc->sc_link); 358 softc->ses_flags &= ~SES_FLAG_OPEN; 359 return (0); 360 } 361 362 int 363 sesioctl(dev, cmd, arg_addr, flag, p) 364 dev_t dev; 365 u_long cmd; 366 caddr_t arg_addr; 367 int flag; 368 struct proc *p; 369 { 370 ses_encstat tmp; 371 ses_objstat objs; 372 ses_object obj, *uobj; 373 struct ses_softc *ssc = ses_cd.cd_devs[SESUNIT(dev)]; 374 void *addr; 375 int error, i; 376 377 378 if (arg_addr) 379 addr = *((caddr_t *) arg_addr); 380 else 381 addr = NULL; 382 383 SC_DEBUG(ssc->sc_link, SDEV_DB2, ("sesioctl 0x%lx ", cmd)); 384 385 /* 386 * Now check to see whether we're initialized or not. 387 */ 388 if ((ssc->ses_flags & SES_FLAG_INITIALIZED) == 0) { 389 return (ENODEV); 390 } 391 392 error = 0; 393 394 /* 395 * If this command can change the device's state, 396 * we must have the device open for writing. 397 */ 398 switch (cmd) { 399 case SESIOC_GETNOBJ: 400 case SESIOC_GETOBJMAP: 401 case SESIOC_GETENCSTAT: 402 case SESIOC_GETOBJSTAT: 403 break; 404 default: 405 if ((flag & FWRITE) == 0) { 406 return (EBADF); 407 } 408 } 409 410 switch (cmd) { 411 case SESIOC_GETNOBJ: 412 error = copyout(&ssc->ses_nobjects, addr, 413 sizeof (ssc->ses_nobjects)); 414 break; 415 416 case SESIOC_GETOBJMAP: 417 for (uobj = addr, i = 0; i != ssc->ses_nobjects; i++, uobj++) { 418 obj.obj_id = i; 419 obj.subencid = ssc->ses_objmap[i].subenclosure; 420 obj.object_type = ssc->ses_objmap[i].enctype; 421 error = copyout(&obj, uobj, sizeof (ses_object)); 422 if (error) { 423 break; 424 } 425 } 426 break; 427 428 case SESIOC_GETENCSTAT: 429 error = (*ssc->ses_vec.get_encstat)(ssc, 1); 430 if (error) 431 break; 432 tmp = ssc->ses_encstat & ~ENCI_SVALID; 433 error = copyout(&tmp, addr, sizeof (ses_encstat)); 434 ssc->ses_encstat = tmp; 435 break; 436 437 case SESIOC_SETENCSTAT: 438 error = copyin(addr, &tmp, sizeof (ses_encstat)); 439 if (error) 440 break; 441 error = (*ssc->ses_vec.set_encstat)(ssc, tmp, 1); 442 break; 443 444 case SESIOC_GETOBJSTAT: 445 error = copyin(addr, &objs, sizeof (ses_objstat)); 446 if (error) 447 break; 448 if (objs.obj_id >= ssc->ses_nobjects) { 449 error = EINVAL; 450 break; 451 } 452 error = (*ssc->ses_vec.get_objstat)(ssc, &objs, 1); 453 if (error) 454 break; 455 error = copyout(&objs, addr, sizeof (ses_objstat)); 456 /* 457 * Always (for now) invalidate entry. 458 */ 459 ssc->ses_objmap[objs.obj_id].svalid = 0; 460 break; 461 462 case SESIOC_SETOBJSTAT: 463 error = copyin(addr, &objs, sizeof (ses_objstat)); 464 if (error) 465 break; 466 467 if (objs.obj_id >= ssc->ses_nobjects) { 468 error = EINVAL; 469 break; 470 } 471 error = (*ssc->ses_vec.set_objstat)(ssc, &objs, 1); 472 473 /* 474 * Always (for now) invalidate entry. 475 */ 476 ssc->ses_objmap[objs.obj_id].svalid = 0; 477 break; 478 479 case SESIOC_INIT: 480 481 error = (*ssc->ses_vec.init_enc)(ssc); 482 break; 483 484 default: 485 error = scsipi_do_ioctl(ssc->sc_link, dev, cmd, addr, flag, p); 486 break; 487 } 488 return (error); 489 } 490 491 static int 492 ses_runcmd(struct ses_softc *ssc, char *cdb, int cdbl, char *dptr, int *dlenp) 493 { 494 struct scsipi_generic sgen; 495 int dl, flg, error; 496 497 if (dptr) { 498 if ((dl = *dlenp) < 0) { 499 dl = -dl; 500 flg = XS_CTL_DATA_OUT; 501 } else { 502 flg = XS_CTL_DATA_IN; 503 } 504 } else { 505 dl = 0; 506 flg = 0; 507 } 508 509 if (cdbl > sizeof (struct scsipi_generic)) { 510 cdbl = sizeof (struct scsipi_generic); 511 } 512 bcopy(cdb, &sgen, cdbl); 513 #ifndef SCSIDEBUG 514 flg |= XS_CTL_SILENT; 515 #endif 516 error = scsipi_command(ssc->sc_link, &sgen, cdbl, 517 (u_char *) dptr, dl, SCSIPIRETRIES, 30000, NULL, flg); 518 519 if (error == 0 && dptr) 520 *dlenp = 0; 521 522 return (error); 523 } 524 525 #ifdef __STDC__ 526 static void 527 ses_log(struct ses_softc *ssc, const char *fmt, ...) 528 { 529 va_list ap; 530 531 printf("%s: ", ssc->sc_device.dv_xname); 532 va_start(ap, fmt); 533 vprintf(fmt, ap); 534 va_end(ap); 535 } 536 #else 537 static void 538 ses_log(ssc, fmt, va_alist) 539 struct ses_softc *ssc; 540 char *fmt; 541 va_dcl 542 { 543 va_list ap; 544 545 printf("%s: ", ssc->sc_device.dv_xname); 546 va_start(ap, fmt); 547 vprintf(fmt, ap); 548 va_end(ap); 549 } 550 #endif 551 552 /* 553 * The code after this point runs on many platforms, 554 * so forgive the slightly awkward and nonconforming 555 * appearance. 556 */ 557 558 /* 559 * Is this a device that supports enclosure services? 560 * 561 * It's a a pretty simple ruleset- if it is device type 0x0D (13), it's 562 * an SES device. If it happens to be an old UNISYS SEN device, we can 563 * handle that too. 564 */ 565 566 #define SAFTE_START 44 567 #define SAFTE_END 50 568 #define SAFTE_LEN SAFTE_END-SAFTE_START 569 570 static enctyp 571 ses_type(inqp) 572 struct scsipi_inquiry_data *inqp; 573 { 574 size_t given_len = inqp->additional_length + 4; 575 576 if (given_len < 8+SEN_ID_LEN) 577 return (SES_NONE); 578 579 if ((inqp->device & SID_TYPE) == T_ENCLOSURE) { 580 if (STRNCMP(inqp->vendor, SEN_ID, SEN_ID_LEN) == 0) { 581 return (SES_SEN); 582 } else if ((inqp->version & SID_ANSII) > 2) { 583 return (SES_SES); 584 } else { 585 return (SES_SES_SCSI2); 586 } 587 return (SES_NONE); 588 } 589 590 #ifdef SES_ENABLE_PASSTHROUGH 591 if ((inqp->flags2 & SID_EncServ) && (inqp->version & SID_ANSII) >= 2) { 592 /* 593 * PassThrough Device. 594 */ 595 return (SES_SES_PASSTHROUGH); 596 } 597 #endif 598 599 /* 600 * The comparison is short for a reason- 601 * some vendors were chopping it short. 602 */ 603 604 if (given_len < SAFTE_END - 2) { 605 return (SES_NONE); 606 } 607 608 if (STRNCMP((char *)&inqp->vendor_specific[8], "SAF-TE", 609 SAFTE_LEN - 2) == 0) { 610 return (SES_SAFT); 611 } 612 613 return (SES_NONE); 614 } 615 616 /* 617 * SES Native Type Device Support 618 */ 619 620 /* 621 * SES Diagnostic Page Codes 622 */ 623 624 typedef enum { 625 SesConfigPage = 0x1, 626 SesControlPage, 627 #define SesStatusPage SesControlPage 628 SesHelpTxt, 629 SesStringOut, 630 #define SesStringIn SesStringOut 631 SesThresholdOut, 632 #define SesThresholdIn SesThresholdOut 633 SesArrayControl, 634 #define SesArrayStatus SesArrayControl 635 SesElementDescriptor, 636 SesShortStatus 637 } SesDiagPageCodes; 638 639 /* 640 * minimal amounts 641 */ 642 643 /* 644 * Minimum amount of data, starting from byte 0, to have 645 * the config header. 646 */ 647 #define SES_CFGHDR_MINLEN 12 648 649 /* 650 * Minimum amount of data, starting from byte 0, to have 651 * the config header and one enclosure header. 652 */ 653 #define SES_ENCHDR_MINLEN 48 654 655 /* 656 * Take this value, subtract it from VEnclen and you know 657 * the length of the vendor unique bytes. 658 */ 659 #define SES_ENCHDR_VMIN 36 660 661 /* 662 * SES Data Structures 663 */ 664 665 typedef struct { 666 uint32_t GenCode; /* Generation Code */ 667 uint8_t Nsubenc; /* Number of Subenclosures */ 668 } SesCfgHdr; 669 670 typedef struct { 671 uint8_t Subencid; /* SubEnclosure Identifier */ 672 uint8_t Ntypes; /* # of supported types */ 673 uint8_t VEnclen; /* Enclosure Descriptor Length */ 674 } SesEncHdr; 675 676 typedef struct { 677 uint8_t encWWN[8]; /* XXX- Not Right Yet */ 678 uint8_t encVid[8]; 679 uint8_t encPid[16]; 680 uint8_t encRev[4]; 681 uint8_t encVen[1]; 682 } SesEncDesc; 683 684 typedef struct { 685 uint8_t enc_type; /* type of element */ 686 uint8_t enc_maxelt; /* maximum supported */ 687 uint8_t enc_subenc; /* in SubEnc # N */ 688 uint8_t enc_tlen; /* Type Descriptor Text Length */ 689 } SesThdr; 690 691 typedef struct { 692 uint8_t comstatus; 693 uint8_t comstat[3]; 694 } SesComStat; 695 696 struct typidx { 697 int ses_tidx; 698 int ses_oidx; 699 }; 700 701 struct sscfg { 702 uint8_t ses_ntypes; /* total number of types supported */ 703 704 /* 705 * We need to keep a type index as well as an 706 * object index for each object in an enclosure. 707 */ 708 struct typidx *ses_typidx; 709 710 /* 711 * We also need to keep track of the number of elements 712 * per type of element. This is needed later so that we 713 * can find precisely in the returned status data the 714 * status for the Nth element of the Kth type. 715 */ 716 uint8_t * ses_eltmap; 717 }; 718 719 720 /* 721 * (de)canonicalization defines 722 */ 723 #define sbyte(x, byte) ((((uint32_t)(x)) >> (byte * 8)) & 0xff) 724 #define sbit(x, bit) (((uint32_t)(x)) << bit) 725 #define sset8(outp, idx, sval) (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0) 726 727 #define sset16(outp, idx, sval) \ 728 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \ 729 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0) 730 731 732 #define sset24(outp, idx, sval) \ 733 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \ 734 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \ 735 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0) 736 737 738 #define sset32(outp, idx, sval) \ 739 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 3), \ 740 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \ 741 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \ 742 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0) 743 744 #define gbyte(x, byte) ((((uint32_t)(x)) & 0xff) << (byte * 8)) 745 #define gbit(lv, in, idx, shft, mask) lv = ((in[idx] >> shft) & mask) 746 #define sget8(inp, idx, lval) lval = (((uint8_t *)(inp))[idx++]) 747 #define gget8(inp, idx, lval) lval = (((uint8_t *)(inp))[idx]) 748 749 #define sget16(inp, idx, lval) \ 750 lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \ 751 (((uint8_t *)(inp))[idx+1]), idx += 2 752 753 #define gget16(inp, idx, lval) \ 754 lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \ 755 (((uint8_t *)(inp))[idx+1]) 756 757 #define sget24(inp, idx, lval) \ 758 lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \ 759 gbyte((((uint8_t *)(inp))[idx+1]), 1) | \ 760 (((uint8_t *)(inp))[idx+2]), idx += 3 761 762 #define gget24(inp, idx, lval) \ 763 lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \ 764 gbyte((((uint8_t *)(inp))[idx+1]), 1) | \ 765 (((uint8_t *)(inp))[idx+2]) 766 767 #define sget32(inp, idx, lval) \ 768 lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \ 769 gbyte((((uint8_t *)(inp))[idx+1]), 2) | \ 770 gbyte((((uint8_t *)(inp))[idx+2]), 1) | \ 771 (((uint8_t *)(inp))[idx+3]), idx += 4 772 773 #define gget32(inp, idx, lval) \ 774 lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \ 775 gbyte((((uint8_t *)(inp))[idx+1]), 2) | \ 776 gbyte((((uint8_t *)(inp))[idx+2]), 1) | \ 777 (((uint8_t *)(inp))[idx+3]) 778 779 #define SCSZ 0x2000 780 #define CFLEN (256 + SES_ENCHDR_MINLEN) 781 782 /* 783 * Routines specific && private to SES only 784 */ 785 786 static int ses_getconfig(ses_softc_t *); 787 static int ses_getputstat(ses_softc_t *, int, SesComStat *, int, int); 788 static int ses_cfghdr(uint8_t *, int, SesCfgHdr *); 789 static int ses_enchdr(uint8_t *, int, uint8_t, SesEncHdr *); 790 static int ses_encdesc(uint8_t *, int, uint8_t, SesEncDesc *); 791 static int ses_getthdr(uint8_t *, int, int, SesThdr *); 792 static int ses_decode(char *, int, uint8_t *, int, int, SesComStat *); 793 static int ses_encode(char *, int, uint8_t *, int, int, SesComStat *); 794 795 static int 796 ses_softc_init(ses_softc_t *ssc, int doinit) 797 { 798 if (doinit == 0) { 799 struct sscfg *cc; 800 if (ssc->ses_nobjects) { 801 SES_FREE(ssc->ses_objmap, 802 ssc->ses_nobjects * sizeof (encobj)); 803 ssc->ses_objmap = NULL; 804 } 805 if ((cc = ssc->ses_private) != NULL) { 806 if (cc->ses_eltmap && cc->ses_ntypes) { 807 SES_FREE(cc->ses_eltmap, cc->ses_ntypes); 808 cc->ses_eltmap = NULL; 809 cc->ses_ntypes = 0; 810 } 811 if (cc->ses_typidx && ssc->ses_nobjects) { 812 SES_FREE(cc->ses_typidx, 813 ssc->ses_nobjects * sizeof (struct typidx)); 814 cc->ses_typidx = NULL; 815 } 816 SES_FREE(cc, sizeof (struct sscfg)); 817 ssc->ses_private = NULL; 818 } 819 ssc->ses_nobjects = 0; 820 return (0); 821 } 822 if (ssc->ses_private == NULL) { 823 ssc->ses_private = SES_MALLOC(sizeof (struct sscfg)); 824 } 825 if (ssc->ses_private == NULL) { 826 return (ENOMEM); 827 } 828 ssc->ses_nobjects = 0; 829 ssc->ses_encstat = 0; 830 return (ses_getconfig(ssc)); 831 } 832 833 static int 834 ses_init_enc(ses_softc_t *ssc) 835 { 836 return (0); 837 } 838 839 static int 840 ses_get_encstat(ses_softc_t *ssc, int slpflag) 841 { 842 SesComStat ComStat; 843 int status; 844 845 if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 1)) != 0) { 846 return (status); 847 } 848 ssc->ses_encstat = ComStat.comstatus | ENCI_SVALID; 849 return (0); 850 } 851 852 static int 853 ses_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflag) 854 { 855 SesComStat ComStat; 856 int status; 857 858 ComStat.comstatus = encstat & 0xf; 859 if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 0)) != 0) { 860 return (status); 861 } 862 ssc->ses_encstat = encstat & 0xf; /* note no SVALID set */ 863 return (0); 864 } 865 866 static int 867 ses_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag) 868 { 869 int i = (int)obp->obj_id; 870 871 if (ssc->ses_objmap[i].svalid == 0) { 872 SesComStat ComStat; 873 int err = ses_getputstat(ssc, i, &ComStat, slpflag, 1); 874 if (err) 875 return (err); 876 ssc->ses_objmap[i].encstat[0] = ComStat.comstatus; 877 ssc->ses_objmap[i].encstat[1] = ComStat.comstat[0]; 878 ssc->ses_objmap[i].encstat[2] = ComStat.comstat[1]; 879 ssc->ses_objmap[i].encstat[3] = ComStat.comstat[2]; 880 ssc->ses_objmap[i].svalid = 1; 881 } 882 obp->cstat[0] = ssc->ses_objmap[i].encstat[0]; 883 obp->cstat[1] = ssc->ses_objmap[i].encstat[1]; 884 obp->cstat[2] = ssc->ses_objmap[i].encstat[2]; 885 obp->cstat[3] = ssc->ses_objmap[i].encstat[3]; 886 return (0); 887 } 888 889 static int 890 ses_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag) 891 { 892 SesComStat ComStat; 893 int err; 894 /* 895 * If this is clear, we don't do diddly. 896 */ 897 if ((obp->cstat[0] & SESCTL_CSEL) == 0) { 898 return (0); 899 } 900 ComStat.comstatus = obp->cstat[0]; 901 ComStat.comstat[0] = obp->cstat[1]; 902 ComStat.comstat[1] = obp->cstat[2]; 903 ComStat.comstat[2] = obp->cstat[3]; 904 err = ses_getputstat(ssc, (int)obp->obj_id, &ComStat, slpflag, 0); 905 ssc->ses_objmap[(int)obp->obj_id].svalid = 0; 906 return (err); 907 } 908 909 static int 910 ses_getconfig(ses_softc_t *ssc) 911 { 912 struct sscfg *cc; 913 SesCfgHdr cf; 914 SesEncHdr hd; 915 SesEncDesc *cdp; 916 SesThdr thdr; 917 int err, amt, i, nobj, ntype, maxima; 918 char storage[CFLEN], *sdata; 919 static char cdb[6] = { 920 RECEIVE_DIAGNOSTIC, 0x1, SesConfigPage, SCSZ >> 8, SCSZ & 0xff, 0 921 }; 922 923 cc = ssc->ses_private; 924 if (cc == NULL) { 925 return (ENXIO); 926 } 927 928 sdata = SES_MALLOC(SCSZ); 929 if (sdata == NULL) 930 return (ENOMEM); 931 932 amt = SCSZ; 933 err = ses_runcmd(ssc, cdb, 6, sdata, &amt); 934 if (err) { 935 SES_FREE(sdata, SCSZ); 936 return (err); 937 } 938 amt = SCSZ - amt; 939 940 if (ses_cfghdr((uint8_t *) sdata, amt, &cf)) { 941 SES_LOG(ssc, "Unable to parse SES Config Header\n"); 942 SES_FREE(sdata, SCSZ); 943 return (EIO); 944 } 945 if (amt < SES_ENCHDR_MINLEN) { 946 SES_LOG(ssc, "runt enclosure length (%d)\n", amt); 947 SES_FREE(sdata, SCSZ); 948 return (EIO); 949 } 950 951 SES_VLOG(ssc, "GenCode %x %d Subenclosures\n", cf.GenCode, cf.Nsubenc); 952 953 /* 954 * Now waltz through all the subenclosures toting up the 955 * number of types available in each. For this, we only 956 * really need the enclosure header. However, we get the 957 * enclosure descriptor for debug purposes, as well 958 * as self-consistency checking purposes. 959 */ 960 961 maxima = cf.Nsubenc + 1; 962 cdp = (SesEncDesc *) storage; 963 for (ntype = i = 0; i < maxima; i++) { 964 MEMZERO((caddr_t)cdp, sizeof (*cdp)); 965 if (ses_enchdr((uint8_t *) sdata, amt, i, &hd)) { 966 SES_LOG(ssc, "Cannot Extract Enclosure Header %d\n", i); 967 SES_FREE(sdata, SCSZ); 968 return (EIO); 969 } 970 SES_VLOG(ssc, " SubEnclosure ID %d, %d Types With this ID, En" 971 "closure Length %d\n", hd.Subencid, hd.Ntypes, hd.VEnclen); 972 973 if (ses_encdesc((uint8_t *)sdata, amt, i, cdp)) { 974 SES_LOG(ssc, "Can't get Enclosure Descriptor %d\n", i); 975 SES_FREE(sdata, SCSZ); 976 return (EIO); 977 } 978 SES_VLOG(ssc, " WWN: %02x%02x%02x%02x%02x%02x%02x%02x\n", 979 cdp->encWWN[0], cdp->encWWN[1], cdp->encWWN[2], 980 cdp->encWWN[3], cdp->encWWN[4], cdp->encWWN[5], 981 cdp->encWWN[6], cdp->encWWN[7]); 982 ntype += hd.Ntypes; 983 } 984 985 /* 986 * Now waltz through all the types that are available, getting 987 * the type header so we can start adding up the number of 988 * objects available. 989 */ 990 for (nobj = i = 0; i < ntype; i++) { 991 if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) { 992 SES_LOG(ssc, "Can't get Enclosure Type Header %d\n", i); 993 SES_FREE(sdata, SCSZ); 994 return (EIO); 995 } 996 SES_LOG(ssc, " Type Desc[%d]: Type 0x%x, MaxElt %d, In Subenc " 997 "%d, Text Length %d\n", i, thdr.enc_type, thdr.enc_maxelt, 998 thdr.enc_subenc, thdr.enc_tlen); 999 nobj += thdr.enc_maxelt; 1000 } 1001 1002 1003 /* 1004 * Now allocate the object array and type map. 1005 */ 1006 1007 ssc->ses_objmap = SES_MALLOC(nobj * sizeof (encobj)); 1008 cc->ses_typidx = SES_MALLOC(nobj * sizeof (struct typidx)); 1009 cc->ses_eltmap = SES_MALLOC(ntype); 1010 1011 if (ssc->ses_objmap == NULL || cc->ses_typidx == NULL || 1012 cc->ses_eltmap == NULL) { 1013 if (ssc->ses_objmap) { 1014 SES_FREE(ssc->ses_objmap, (nobj * sizeof (encobj))); 1015 ssc->ses_objmap = NULL; 1016 } 1017 if (cc->ses_typidx) { 1018 SES_FREE(cc->ses_typidx, 1019 (nobj * sizeof (struct typidx))); 1020 cc->ses_typidx = NULL; 1021 } 1022 if (cc->ses_eltmap) { 1023 SES_FREE(cc->ses_eltmap, ntype); 1024 cc->ses_eltmap = NULL; 1025 } 1026 SES_FREE(sdata, SCSZ); 1027 return (ENOMEM); 1028 } 1029 MEMZERO(ssc->ses_objmap, nobj * sizeof (encobj)); 1030 MEMZERO(cc->ses_typidx, nobj * sizeof (struct typidx)); 1031 MEMZERO(cc->ses_eltmap, ntype); 1032 cc->ses_ntypes = (uint8_t) ntype; 1033 ssc->ses_nobjects = nobj; 1034 1035 /* 1036 * Now waltz through the # of types again to fill in the types 1037 * (and subenclosure ids) of the allocated objects. 1038 */ 1039 nobj = 0; 1040 for (i = 0; i < ntype; i++) { 1041 int j; 1042 if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) { 1043 continue; 1044 } 1045 cc->ses_eltmap[i] = thdr.enc_maxelt; 1046 for (j = 0; j < thdr.enc_maxelt; j++) { 1047 cc->ses_typidx[nobj].ses_tidx = i; 1048 cc->ses_typidx[nobj].ses_oidx = j; 1049 ssc->ses_objmap[nobj].subenclosure = thdr.enc_subenc; 1050 ssc->ses_objmap[nobj++].enctype = thdr.enc_type; 1051 } 1052 } 1053 SES_FREE(sdata, SCSZ); 1054 return (0); 1055 } 1056 1057 static int 1058 ses_getputstat(ses_softc_t *ssc, int objid, SesComStat *sp, int slp, int in) 1059 { 1060 struct sscfg *cc; 1061 int err, amt, bufsiz, tidx, oidx; 1062 char cdb[6], *sdata; 1063 1064 cc = ssc->ses_private; 1065 if (cc == NULL) { 1066 return (ENXIO); 1067 } 1068 1069 /* 1070 * If we're just getting overall enclosure status, 1071 * we only need 2 bytes of data storage. 1072 * 1073 * If we're getting anything else, we know how much 1074 * storage we need by noting that starting at offset 1075 * 8 in returned data, all object status bytes are 4 1076 * bytes long, and are stored in chunks of types(M) 1077 * and nth+1 instances of type M. 1078 */ 1079 if (objid == -1) { 1080 bufsiz = 2; 1081 } else { 1082 bufsiz = (ssc->ses_nobjects * 4) + (cc->ses_ntypes * 4) + 8; 1083 } 1084 sdata = SES_MALLOC(bufsiz); 1085 if (sdata == NULL) 1086 return (ENOMEM); 1087 1088 cdb[0] = RECEIVE_DIAGNOSTIC; 1089 cdb[1] = 1; 1090 cdb[2] = SesStatusPage; 1091 cdb[3] = bufsiz >> 8; 1092 cdb[4] = bufsiz & 0xff; 1093 cdb[5] = 0; 1094 amt = bufsiz; 1095 err = ses_runcmd(ssc, cdb, 6, sdata, &amt); 1096 if (err) { 1097 SES_FREE(sdata, bufsiz); 1098 return (err); 1099 } 1100 amt = bufsiz - amt; 1101 1102 if (objid == -1) { 1103 tidx = -1; 1104 oidx = -1; 1105 } else { 1106 tidx = cc->ses_typidx[objid].ses_tidx; 1107 oidx = cc->ses_typidx[objid].ses_oidx; 1108 } 1109 if (in) { 1110 if (ses_decode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) { 1111 err = ENODEV; 1112 } 1113 } else { 1114 if (ses_encode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) { 1115 err = ENODEV; 1116 } else { 1117 cdb[0] = SEND_DIAGNOSTIC; 1118 cdb[1] = 0x10; 1119 cdb[2] = 0; 1120 cdb[3] = bufsiz >> 8; 1121 cdb[4] = bufsiz & 0xff; 1122 cdb[5] = 0; 1123 amt = -bufsiz; 1124 err = ses_runcmd(ssc, cdb, 6, sdata, &amt); 1125 } 1126 } 1127 SES_FREE(sdata, bufsiz); 1128 return (0); 1129 } 1130 1131 1132 /* 1133 * Routines to parse returned SES data structures. 1134 * Architecture and compiler independent. 1135 */ 1136 1137 static int 1138 ses_cfghdr(uint8_t *buffer, int buflen, SesCfgHdr *cfp) 1139 { 1140 if (buflen < SES_CFGHDR_MINLEN) { 1141 return (-1); 1142 } 1143 gget8(buffer, 1, cfp->Nsubenc); 1144 gget32(buffer, 4, cfp->GenCode); 1145 return (0); 1146 } 1147 1148 static int 1149 ses_enchdr(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncHdr *chp) 1150 { 1151 int s, off = 8; 1152 for (s = 0; s < SubEncId; s++) { 1153 if (off + 3 > amt) 1154 return (-1); 1155 off += buffer[off+3] + 4; 1156 } 1157 if (off + 3 > amt) { 1158 return (-1); 1159 } 1160 gget8(buffer, off+1, chp->Subencid); 1161 gget8(buffer, off+2, chp->Ntypes); 1162 gget8(buffer, off+3, chp->VEnclen); 1163 return (0); 1164 } 1165 1166 static int 1167 ses_encdesc(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncDesc *cdp) 1168 { 1169 int s, e, enclen, off = 8; 1170 for (s = 0; s < SubEncId; s++) { 1171 if (off + 3 > amt) 1172 return (-1); 1173 off += buffer[off+3] + 4; 1174 } 1175 if (off + 3 > amt) { 1176 return (-1); 1177 } 1178 gget8(buffer, off+3, enclen); 1179 off += 4; 1180 if (off >= amt) 1181 return (-1); 1182 1183 e = off + enclen; 1184 if (e > amt) { 1185 e = amt; 1186 } 1187 MEMCPY(cdp, &buffer[off], e - off); 1188 return (0); 1189 } 1190 1191 static int 1192 ses_getthdr(uint8_t *buffer, int amt, int nth, SesThdr *thp) 1193 { 1194 int s, off = 8; 1195 1196 if (amt < SES_CFGHDR_MINLEN) { 1197 return (-1); 1198 } 1199 for (s = 0; s < buffer[1]; s++) { 1200 if (off + 3 > amt) 1201 return (-1); 1202 off += buffer[off+3] + 4; 1203 } 1204 if (off + 3 > amt) { 1205 return (-1); 1206 } 1207 off += buffer[off+3] + 4 + (nth * 4); 1208 if (amt < (off + 4)) 1209 return (-1); 1210 1211 gget8(buffer, off++, thp->enc_type); 1212 gget8(buffer, off++, thp->enc_maxelt); 1213 gget8(buffer, off++, thp->enc_subenc); 1214 gget8(buffer, off, thp->enc_tlen); 1215 return (0); 1216 } 1217 1218 /* 1219 * This function needs a little explanation. 1220 * 1221 * The arguments are: 1222 * 1223 * 1224 * char *b, int amt 1225 * 1226 * These describes the raw input SES status data and length. 1227 * 1228 * uint8_t *ep 1229 * 1230 * This is a map of the number of types for each element type 1231 * in the enclosure. 1232 * 1233 * int elt 1234 * 1235 * This is the element type being sought. If elt is -1, 1236 * then overall enclosure status is being sought. 1237 * 1238 * int elm 1239 * 1240 * This is the ordinal Mth element of type elt being sought. 1241 * 1242 * SesComStat *sp 1243 * 1244 * This is the output area to store the status for 1245 * the Mth element of type Elt. 1246 */ 1247 1248 static int 1249 ses_decode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp) 1250 { 1251 int idx, i; 1252 1253 /* 1254 * If it's overall enclosure status being sought, get that. 1255 * We need at least 2 bytes of status data to get that. 1256 */ 1257 if (elt == -1) { 1258 if (amt < 2) 1259 return (-1); 1260 gget8(b, 1, sp->comstatus); 1261 sp->comstat[0] = 0; 1262 sp->comstat[1] = 0; 1263 sp->comstat[2] = 0; 1264 return (0); 1265 } 1266 1267 /* 1268 * Check to make sure that the Mth element is legal for type Elt. 1269 */ 1270 1271 if (elm >= ep[elt]) 1272 return (-1); 1273 1274 /* 1275 * Starting at offset 8, start skipping over the storage 1276 * for the element types we're not interested in. 1277 */ 1278 for (idx = 8, i = 0; i < elt; i++) { 1279 idx += ((ep[i] + 1) * 4); 1280 } 1281 1282 /* 1283 * Skip over Overall status for this element type. 1284 */ 1285 idx += 4; 1286 1287 /* 1288 * And skip to the index for the Mth element that we're going for. 1289 */ 1290 idx += (4 * elm); 1291 1292 /* 1293 * Make sure we haven't overflowed the buffer. 1294 */ 1295 if (idx+4 > amt) 1296 return (-1); 1297 1298 /* 1299 * Retrieve the status. 1300 */ 1301 gget8(b, idx++, sp->comstatus); 1302 gget8(b, idx++, sp->comstat[0]); 1303 gget8(b, idx++, sp->comstat[1]); 1304 gget8(b, idx++, sp->comstat[2]); 1305 #if 0 1306 PRINTF("Get Elt 0x%x Elm 0x%x (idx %d)\n", elt, elm, idx-4); 1307 #endif 1308 return (0); 1309 } 1310 1311 /* 1312 * This is the mirror function to ses_decode, but we set the 'select' 1313 * bit for the object which we're interested in. All other objects, 1314 * after a status fetch, should have that bit off. Hmm. It'd be easy 1315 * enough to ensure this, so we will. 1316 */ 1317 1318 static int 1319 ses_encode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp) 1320 { 1321 int idx, i; 1322 1323 /* 1324 * If it's overall enclosure status being sought, get that. 1325 * We need at least 2 bytes of status data to get that. 1326 */ 1327 if (elt == -1) { 1328 if (amt < 2) 1329 return (-1); 1330 i = 0; 1331 sset8(b, i, 0); 1332 sset8(b, i, sp->comstatus & 0xf); 1333 #if 0 1334 PRINTF("set EncStat %x\n", sp->comstatus); 1335 #endif 1336 return (0); 1337 } 1338 1339 /* 1340 * Check to make sure that the Mth element is legal for type Elt. 1341 */ 1342 1343 if (elm >= ep[elt]) 1344 return (-1); 1345 1346 /* 1347 * Starting at offset 8, start skipping over the storage 1348 * for the element types we're not interested in. 1349 */ 1350 for (idx = 8, i = 0; i < elt; i++) { 1351 idx += ((ep[i] + 1) * 4); 1352 } 1353 1354 /* 1355 * Skip over Overall status for this element type. 1356 */ 1357 idx += 4; 1358 1359 /* 1360 * And skip to the index for the Mth element that we're going for. 1361 */ 1362 idx += (4 * elm); 1363 1364 /* 1365 * Make sure we haven't overflowed the buffer. 1366 */ 1367 if (idx+4 > amt) 1368 return (-1); 1369 1370 /* 1371 * Set the status. 1372 */ 1373 sset8(b, idx, sp->comstatus); 1374 sset8(b, idx, sp->comstat[0]); 1375 sset8(b, idx, sp->comstat[1]); 1376 sset8(b, idx, sp->comstat[2]); 1377 idx -= 4; 1378 1379 #if 0 1380 PRINTF("Set Elt 0x%x Elm 0x%x (idx %d) with %x %x %x %x\n", 1381 elt, elm, idx, sp->comstatus, sp->comstat[0], 1382 sp->comstat[1], sp->comstat[2]); 1383 #endif 1384 1385 /* 1386 * Now make sure all other 'Select' bits are off. 1387 */ 1388 for (i = 8; i < amt; i += 4) { 1389 if (i != idx) 1390 b[i] &= ~0x80; 1391 } 1392 /* 1393 * And make sure the INVOP bit is clear. 1394 */ 1395 b[2] &= ~0x10; 1396 1397 return (0); 1398 } 1399 1400 /* 1401 * SAF-TE Type Device Emulation 1402 */ 1403 1404 static int safte_getconfig(ses_softc_t *); 1405 static int safte_rdstat(ses_softc_t *, int);; 1406 static int set_objstat_sel(ses_softc_t *, ses_objstat *, int); 1407 static int wrbuf16(ses_softc_t *, uint8_t, uint8_t, uint8_t, uint8_t, int); 1408 static void wrslot_stat(ses_softc_t *, int); 1409 static int perf_slotop(ses_softc_t *, uint8_t, uint8_t, int); 1410 1411 #define ALL_ENC_STAT (SES_ENCSTAT_CRITICAL | SES_ENCSTAT_UNRECOV | \ 1412 SES_ENCSTAT_NONCRITICAL | SES_ENCSTAT_INFO) 1413 /* 1414 * SAF-TE specific defines- Mandatory ones only... 1415 */ 1416 1417 /* 1418 * READ BUFFER ('get' commands) IDs- placed in offset 2 of cdb 1419 */ 1420 #define SAFTE_RD_RDCFG 0x00 /* read enclosure configuration */ 1421 #define SAFTE_RD_RDESTS 0x01 /* read enclosure status */ 1422 #define SAFTE_RD_RDDSTS 0x04 /* read drive slot status */ 1423 1424 /* 1425 * WRITE BUFFER ('set' commands) IDs- placed in offset 0 of databuf 1426 */ 1427 #define SAFTE_WT_DSTAT 0x10 /* write device slot status */ 1428 #define SAFTE_WT_SLTOP 0x12 /* perform slot operation */ 1429 #define SAFTE_WT_FANSPD 0x13 /* set fan speed */ 1430 #define SAFTE_WT_ACTPWS 0x14 /* turn on/off power supply */ 1431 #define SAFTE_WT_GLOBAL 0x15 /* send global command */ 1432 1433 1434 #define SAFT_SCRATCH 64 1435 #define NPSEUDO_THERM 16 1436 #define NPSEUDO_ALARM 1 1437 struct scfg { 1438 /* 1439 * Cached Configuration 1440 */ 1441 uint8_t Nfans; /* Number of Fans */ 1442 uint8_t Npwr; /* Number of Power Supplies */ 1443 uint8_t Nslots; /* Number of Device Slots */ 1444 uint8_t DoorLock; /* Door Lock Installed */ 1445 uint8_t Ntherm; /* Number of Temperature Sensors */ 1446 uint8_t Nspkrs; /* Number of Speakers */ 1447 uint8_t Nalarm; /* Number of Alarms (at least one) */ 1448 /* 1449 * Cached Flag Bytes for Global Status 1450 */ 1451 uint8_t flag1; 1452 uint8_t flag2; 1453 /* 1454 * What object index ID is where various slots start. 1455 */ 1456 uint8_t pwroff; 1457 uint8_t slotoff; 1458 #define SAFT_ALARM_OFFSET(cc) (cc)->slotoff - 1 1459 }; 1460 1461 #define SAFT_FLG1_ALARM 0x1 1462 #define SAFT_FLG1_GLOBFAIL 0x2 1463 #define SAFT_FLG1_GLOBWARN 0x4 1464 #define SAFT_FLG1_ENCPWROFF 0x8 1465 #define SAFT_FLG1_ENCFANFAIL 0x10 1466 #define SAFT_FLG1_ENCPWRFAIL 0x20 1467 #define SAFT_FLG1_ENCDRVFAIL 0x40 1468 #define SAFT_FLG1_ENCDRVWARN 0x80 1469 1470 #define SAFT_FLG2_LOCKDOOR 0x4 1471 #define SAFT_PRIVATE sizeof (struct scfg) 1472 1473 static const char safte_2little[] = "Too Little Data Returned (%d) at line %d\n"; 1474 #define SAFT_BAIL(r, x, k, l) \ 1475 if (r >= x) { \ 1476 SES_LOG(ssc, safte_2little, x, __LINE__);\ 1477 SES_FREE(k, l); \ 1478 return (EIO); \ 1479 } 1480 1481 1482 int 1483 safte_softc_init(ses_softc_t *ssc, int doinit) 1484 { 1485 int err, i, r; 1486 struct scfg *cc; 1487 1488 if (doinit == 0) { 1489 if (ssc->ses_nobjects) { 1490 if (ssc->ses_objmap) { 1491 SES_FREE(ssc->ses_objmap, 1492 ssc->ses_nobjects * sizeof (encobj)); 1493 ssc->ses_objmap = NULL; 1494 } 1495 ssc->ses_nobjects = 0; 1496 } 1497 if (ssc->ses_private) { 1498 SES_FREE(ssc->ses_private, SAFT_PRIVATE); 1499 ssc->ses_private = NULL; 1500 } 1501 return (0); 1502 } 1503 1504 if (ssc->ses_private == NULL) { 1505 ssc->ses_private = SES_MALLOC(SAFT_PRIVATE); 1506 if (ssc->ses_private == NULL) { 1507 return (ENOMEM); 1508 } 1509 MEMZERO(ssc->ses_private, SAFT_PRIVATE); 1510 } 1511 1512 ssc->ses_nobjects = 0; 1513 ssc->ses_encstat = 0; 1514 1515 if ((err = safte_getconfig(ssc)) != 0) { 1516 return (err); 1517 } 1518 1519 /* 1520 * The number of objects here, as well as that reported by the 1521 * READ_BUFFER/GET_CONFIG call, are the over-temperature flags (15) 1522 * that get reported during READ_BUFFER/READ_ENC_STATUS. 1523 */ 1524 cc = ssc->ses_private; 1525 ssc->ses_nobjects = cc->Nfans + cc->Npwr + cc->Nslots + cc->DoorLock + 1526 cc->Ntherm + cc->Nspkrs + NPSEUDO_THERM + NPSEUDO_ALARM; 1527 ssc->ses_objmap = (encobj *) 1528 SES_MALLOC(ssc->ses_nobjects * sizeof (encobj)); 1529 if (ssc->ses_objmap == NULL) { 1530 return (ENOMEM); 1531 } 1532 MEMZERO(ssc->ses_objmap, ssc->ses_nobjects * sizeof (encobj)); 1533 1534 r = 0; 1535 /* 1536 * Note that this is all arranged for the convenience 1537 * in later fetches of status. 1538 */ 1539 for (i = 0; i < cc->Nfans; i++) 1540 ssc->ses_objmap[r++].enctype = SESTYP_FAN; 1541 cc->pwroff = (uint8_t) r; 1542 for (i = 0; i < cc->Npwr; i++) 1543 ssc->ses_objmap[r++].enctype = SESTYP_POWER; 1544 for (i = 0; i < cc->DoorLock; i++) 1545 ssc->ses_objmap[r++].enctype = SESTYP_DOORLOCK; 1546 for (i = 0; i < cc->Nspkrs; i++) 1547 ssc->ses_objmap[r++].enctype = SESTYP_ALARM; 1548 for (i = 0; i < cc->Ntherm; i++) 1549 ssc->ses_objmap[r++].enctype = SESTYP_THERM; 1550 for (i = 0; i < NPSEUDO_THERM; i++) 1551 ssc->ses_objmap[r++].enctype = SESTYP_THERM; 1552 ssc->ses_objmap[r++].enctype = SESTYP_ALARM; 1553 cc->slotoff = (uint8_t) r; 1554 for (i = 0; i < cc->Nslots; i++) 1555 ssc->ses_objmap[r++].enctype = SESTYP_DEVICE; 1556 return (0); 1557 } 1558 1559 int 1560 safte_init_enc(ses_softc_t *ssc) 1561 { 1562 int err, amt; 1563 char *sdata; 1564 static char cdb0[6] = { SEND_DIAGNOSTIC }; 1565 static char cdb[10] = 1566 { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 }; 1567 1568 sdata = SES_MALLOC(SAFT_SCRATCH); 1569 if (sdata == NULL) 1570 return (ENOMEM); 1571 1572 err = ses_runcmd(ssc, cdb0, 6, NULL, 0); 1573 if (err) { 1574 SES_FREE(sdata, SAFT_SCRATCH); 1575 return (err); 1576 } 1577 sdata[0] = SAFTE_WT_GLOBAL; 1578 MEMZERO(&sdata[1], 15); 1579 amt = -SAFT_SCRATCH; 1580 err = ses_runcmd(ssc, cdb, 10, sdata, &amt); 1581 SES_FREE(sdata, SAFT_SCRATCH); 1582 return (err); 1583 } 1584 1585 int 1586 safte_get_encstat(ses_softc_t *ssc, int slpflg) 1587 { 1588 return (safte_rdstat(ssc, slpflg)); 1589 } 1590 1591 int 1592 safte_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflg) 1593 { 1594 struct scfg *cc = ssc->ses_private; 1595 if (cc == NULL) 1596 return (0); 1597 /* 1598 * Since SAF-TE devices aren't necessarily sticky in terms 1599 * of state, make our soft copy of enclosure status 'sticky'- 1600 * that is, things set in enclosure status stay set (as implied 1601 * by conditions set in reading object status) until cleared. 1602 */ 1603 ssc->ses_encstat &= ~ALL_ENC_STAT; 1604 ssc->ses_encstat |= (encstat & ALL_ENC_STAT); 1605 ssc->ses_encstat |= ENCI_SVALID; 1606 cc->flag1 &= ~(SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL|SAFT_FLG1_GLOBWARN); 1607 if ((encstat & (SES_ENCSTAT_CRITICAL|SES_ENCSTAT_UNRECOV)) != 0) { 1608 cc->flag1 |= SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL; 1609 } else if ((encstat & SES_ENCSTAT_NONCRITICAL) != 0) { 1610 cc->flag1 |= SAFT_FLG1_GLOBWARN; 1611 } 1612 return (wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slpflg)); 1613 } 1614 1615 int 1616 safte_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflg) 1617 { 1618 int i = (int)obp->obj_id; 1619 1620 if ((ssc->ses_encstat & ENCI_SVALID) == 0 || 1621 (ssc->ses_objmap[i].svalid) == 0) { 1622 int err = safte_rdstat(ssc, slpflg); 1623 if (err) 1624 return (err); 1625 } 1626 obp->cstat[0] = ssc->ses_objmap[i].encstat[0]; 1627 obp->cstat[1] = ssc->ses_objmap[i].encstat[1]; 1628 obp->cstat[2] = ssc->ses_objmap[i].encstat[2]; 1629 obp->cstat[3] = ssc->ses_objmap[i].encstat[3]; 1630 return (0); 1631 } 1632 1633 1634 int 1635 safte_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slp) 1636 { 1637 int idx, err; 1638 encobj *ep; 1639 struct scfg *cc; 1640 1641 1642 SES_VLOG(ssc, "safte_set_objstat(%d): %x %x %x %x\n", 1643 (int)obp->obj_id, obp->cstat[0], obp->cstat[1], obp->cstat[2], 1644 obp->cstat[3]); 1645 1646 /* 1647 * If this is clear, we don't do diddly. 1648 */ 1649 if ((obp->cstat[0] & SESCTL_CSEL) == 0) { 1650 return (0); 1651 } 1652 1653 err = 0; 1654 /* 1655 * Check to see if the common bits are set and do them first. 1656 */ 1657 if (obp->cstat[0] & ~SESCTL_CSEL) { 1658 err = set_objstat_sel(ssc, obp, slp); 1659 if (err) 1660 return (err); 1661 } 1662 1663 cc = ssc->ses_private; 1664 if (cc == NULL) 1665 return (0); 1666 1667 idx = (int)obp->obj_id; 1668 ep = &ssc->ses_objmap[idx]; 1669 1670 switch (ep->enctype) { 1671 case SESTYP_DEVICE: 1672 { 1673 uint8_t slotop = 0; 1674 /* 1675 * XXX: I should probably cache the previous state 1676 * XXX: of SESCTL_DEVOFF so that when it goes from 1677 * XXX: true to false I can then set PREPARE FOR OPERATION 1678 * XXX: flag in PERFORM SLOT OPERATION write buffer command. 1679 */ 1680 if (obp->cstat[2] & (SESCTL_RQSINS|SESCTL_RQSRMV)) { 1681 slotop |= 0x2; 1682 } 1683 if (obp->cstat[2] & SESCTL_RQSID) { 1684 slotop |= 0x4; 1685 } 1686 err = perf_slotop(ssc, (uint8_t) idx - (uint8_t) cc->slotoff, 1687 slotop, slp); 1688 if (err) 1689 return (err); 1690 if (obp->cstat[3] & SESCTL_RQSFLT) { 1691 ep->priv |= 0x2; 1692 } else { 1693 ep->priv &= ~0x2; 1694 } 1695 if (ep->priv & 0xc6) { 1696 ep->priv &= ~0x1; 1697 } else { 1698 ep->priv |= 0x1; /* no errors */ 1699 } 1700 wrslot_stat(ssc, slp); 1701 break; 1702 } 1703 case SESTYP_POWER: 1704 if (obp->cstat[3] & SESCTL_RQSTFAIL) { 1705 cc->flag1 |= SAFT_FLG1_ENCPWRFAIL; 1706 } else { 1707 cc->flag1 &= ~SAFT_FLG1_ENCPWRFAIL; 1708 } 1709 err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, 1710 cc->flag2, 0, slp); 1711 if (err) 1712 return (err); 1713 if (obp->cstat[3] & SESCTL_RQSTON) { 1714 (void) wrbuf16(ssc, SAFTE_WT_ACTPWS, 1715 idx - cc->pwroff, 0, 0, slp); 1716 } else { 1717 (void) wrbuf16(ssc, SAFTE_WT_ACTPWS, 1718 idx - cc->pwroff, 0, 1, slp); 1719 } 1720 break; 1721 case SESTYP_FAN: 1722 if (obp->cstat[3] & SESCTL_RQSTFAIL) { 1723 cc->flag1 |= SAFT_FLG1_ENCFANFAIL; 1724 } else { 1725 cc->flag1 &= ~SAFT_FLG1_ENCFANFAIL; 1726 } 1727 err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, 1728 cc->flag2, 0, slp); 1729 if (err) 1730 return (err); 1731 if (obp->cstat[3] & SESCTL_RQSTON) { 1732 uint8_t fsp; 1733 if ((obp->cstat[3] & 0x7) == 7) { 1734 fsp = 4; 1735 } else if ((obp->cstat[3] & 0x7) == 6) { 1736 fsp = 3; 1737 } else if ((obp->cstat[3] & 0x7) == 4) { 1738 fsp = 2; 1739 } else { 1740 fsp = 1; 1741 } 1742 (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, fsp, 0, slp); 1743 } else { 1744 (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp); 1745 } 1746 break; 1747 case SESTYP_DOORLOCK: 1748 if (obp->cstat[3] & 0x1) { 1749 cc->flag2 &= ~SAFT_FLG2_LOCKDOOR; 1750 } else { 1751 cc->flag2 |= SAFT_FLG2_LOCKDOOR; 1752 } 1753 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, 1754 cc->flag2, 0, slp); 1755 break; 1756 case SESTYP_ALARM: 1757 /* 1758 * On all nonzero but the 'muted' bit, we turn on the alarm, 1759 */ 1760 obp->cstat[3] &= ~0xa; 1761 if (obp->cstat[3] & 0x40) { 1762 cc->flag2 &= ~SAFT_FLG1_ALARM; 1763 } else if (obp->cstat[3] != 0) { 1764 cc->flag2 |= SAFT_FLG1_ALARM; 1765 } else { 1766 cc->flag2 &= ~SAFT_FLG1_ALARM; 1767 } 1768 ep->priv = obp->cstat[3]; 1769 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, 1770 cc->flag2, 0, slp); 1771 break; 1772 default: 1773 break; 1774 } 1775 ep->svalid = 0; 1776 return (0); 1777 } 1778 1779 static int 1780 safte_getconfig(ses_softc_t *ssc) 1781 { 1782 struct scfg *cfg; 1783 int err, amt; 1784 char *sdata; 1785 static char cdb[10] = 1786 { READ_BUFFER, 1, SAFTE_RD_RDCFG, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 }; 1787 1788 cfg = ssc->ses_private; 1789 if (cfg == NULL) 1790 return (ENXIO); 1791 1792 sdata = SES_MALLOC(SAFT_SCRATCH); 1793 if (sdata == NULL) 1794 return (ENOMEM); 1795 1796 amt = SAFT_SCRATCH; 1797 err = ses_runcmd(ssc, cdb, 10, sdata, &amt); 1798 if (err) { 1799 SES_FREE(sdata, SAFT_SCRATCH); 1800 return (err); 1801 } 1802 amt = SAFT_SCRATCH - amt; 1803 if (amt < 6) { 1804 SES_LOG(ssc, "too little data (%d) for configuration\n", amt); 1805 SES_FREE(sdata, SAFT_SCRATCH); 1806 return (EIO); 1807 } 1808 SES_VLOG(ssc, "Nfans %d Npwr %d Nslots %d Lck %d Ntherm %d Nspkrs %d\n", 1809 sdata[0], sdata[1], sdata[2], sdata[3], sdata[4], sdata[5]); 1810 cfg->Nfans = sdata[0]; 1811 cfg->Npwr = sdata[1]; 1812 cfg->Nslots = sdata[2]; 1813 cfg->DoorLock = sdata[3]; 1814 cfg->Ntherm = sdata[4]; 1815 cfg->Nspkrs = sdata[5]; 1816 cfg->Nalarm = NPSEUDO_ALARM; 1817 SES_FREE(sdata, SAFT_SCRATCH); 1818 return (0); 1819 } 1820 1821 static int 1822 safte_rdstat(ses_softc_t *ssc, int slpflg) 1823 { 1824 int err, oid, r, i, hiwater, nitems, amt; 1825 uint16_t tempflags; 1826 size_t buflen; 1827 uint8_t status, oencstat; 1828 char *sdata, cdb[10]; 1829 struct scfg *cc = ssc->ses_private; 1830 1831 1832 /* 1833 * The number of objects overstates things a bit, 1834 * both for the bogus 'thermometer' entries and 1835 * the drive status (which isn't read at the same 1836 * time as the enclosure status), but that's okay. 1837 */ 1838 buflen = 4 * cc->Nslots; 1839 if (ssc->ses_nobjects > buflen) 1840 buflen = ssc->ses_nobjects; 1841 sdata = SES_MALLOC(buflen); 1842 if (sdata == NULL) 1843 return (ENOMEM); 1844 1845 cdb[0] = READ_BUFFER; 1846 cdb[1] = 1; 1847 cdb[2] = SAFTE_RD_RDESTS; 1848 cdb[3] = 0; 1849 cdb[4] = 0; 1850 cdb[5] = 0; 1851 cdb[6] = 0; 1852 cdb[7] = (buflen >> 8) & 0xff; 1853 cdb[8] = buflen & 0xff; 1854 cdb[9] = 0; 1855 amt = buflen; 1856 err = ses_runcmd(ssc, cdb, 10, sdata, &amt); 1857 if (err) { 1858 SES_FREE(sdata, buflen); 1859 return (err); 1860 } 1861 hiwater = buflen - amt; 1862 1863 1864 /* 1865 * invalidate all status bits. 1866 */ 1867 for (i = 0; i < ssc->ses_nobjects; i++) 1868 ssc->ses_objmap[i].svalid = 0; 1869 oencstat = ssc->ses_encstat & ALL_ENC_STAT; 1870 ssc->ses_encstat = 0; 1871 1872 1873 /* 1874 * Now parse returned buffer. 1875 * If we didn't get enough data back, 1876 * that's considered a fatal error. 1877 */ 1878 oid = r = 0; 1879 1880 for (nitems = i = 0; i < cc->Nfans; i++) { 1881 SAFT_BAIL(r, hiwater, sdata, buflen); 1882 /* 1883 * 0 = Fan Operational 1884 * 1 = Fan is malfunctioning 1885 * 2 = Fan is not present 1886 * 0x80 = Unknown or Not Reportable Status 1887 */ 1888 ssc->ses_objmap[oid].encstat[1] = 0; /* resvd */ 1889 ssc->ses_objmap[oid].encstat[2] = 0; /* resvd */ 1890 switch ((int)(uint8_t)sdata[r]) { 1891 case 0: 1892 nitems++; 1893 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK; 1894 /* 1895 * We could get fancier and cache 1896 * fan speeds that we have set, but 1897 * that isn't done now. 1898 */ 1899 ssc->ses_objmap[oid].encstat[3] = 7; 1900 break; 1901 1902 case 1: 1903 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT; 1904 /* 1905 * FAIL and FAN STOPPED synthesized 1906 */ 1907 ssc->ses_objmap[oid].encstat[3] = 0x40; 1908 /* 1909 * Enclosure marked with CRITICAL error 1910 * if only one fan or no thermometers, 1911 * else the NONCRITICAL error is set. 1912 */ 1913 if (cc->Nfans == 1 || cc->Ntherm == 0) 1914 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL; 1915 else 1916 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL; 1917 break; 1918 case 2: 1919 ssc->ses_objmap[oid].encstat[0] = 1920 SES_OBJSTAT_NOTINSTALLED; 1921 ssc->ses_objmap[oid].encstat[3] = 0; 1922 /* 1923 * Enclosure marked with CRITICAL error 1924 * if only one fan or no thermometers, 1925 * else the NONCRITICAL error is set. 1926 */ 1927 if (cc->Nfans == 1) 1928 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL; 1929 else 1930 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL; 1931 break; 1932 case 0x80: 1933 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN; 1934 ssc->ses_objmap[oid].encstat[3] = 0; 1935 ssc->ses_encstat |= SES_ENCSTAT_INFO; 1936 break; 1937 default: 1938 ssc->ses_objmap[oid].encstat[0] = 1939 SES_OBJSTAT_UNSUPPORTED; 1940 SES_LOG(ssc, "Unknown fan%d status 0x%x\n", i, 1941 sdata[r] & 0xff); 1942 break; 1943 } 1944 ssc->ses_objmap[oid++].svalid = 1; 1945 r++; 1946 } 1947 1948 /* 1949 * No matter how you cut it, no cooling elements when there 1950 * should be some there is critical. 1951 */ 1952 if (cc->Nfans && nitems == 0) { 1953 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL; 1954 } 1955 1956 1957 for (i = 0; i < cc->Npwr; i++) { 1958 SAFT_BAIL(r, hiwater, sdata, buflen); 1959 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN; 1960 ssc->ses_objmap[oid].encstat[1] = 0; /* resvd */ 1961 ssc->ses_objmap[oid].encstat[2] = 0; /* resvd */ 1962 ssc->ses_objmap[oid].encstat[3] = 0x20; /* requested on */ 1963 switch ((uint8_t)sdata[r]) { 1964 case 0x00: /* pws operational and on */ 1965 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK; 1966 break; 1967 case 0x01: /* pws operational and off */ 1968 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK; 1969 ssc->ses_objmap[oid].encstat[3] = 0x10; 1970 ssc->ses_encstat |= SES_ENCSTAT_INFO; 1971 break; 1972 case 0x10: /* pws is malfunctioning and commanded on */ 1973 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT; 1974 ssc->ses_objmap[oid].encstat[3] = 0x61; 1975 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL; 1976 break; 1977 1978 case 0x11: /* pws is malfunctioning and commanded off */ 1979 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT; 1980 ssc->ses_objmap[oid].encstat[3] = 0x51; 1981 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL; 1982 break; 1983 case 0x20: /* pws is not present */ 1984 ssc->ses_objmap[oid].encstat[0] = 1985 SES_OBJSTAT_NOTINSTALLED; 1986 ssc->ses_objmap[oid].encstat[3] = 0; 1987 ssc->ses_encstat |= SES_ENCSTAT_INFO; 1988 break; 1989 case 0x21: /* pws is present */ 1990 /* 1991 * This is for enclosures that cannot tell whether the 1992 * device is on or malfunctioning, but know that it is 1993 * present. Just fall through. 1994 */ 1995 /* FALLTHROUGH */ 1996 case 0x80: /* Unknown or Not Reportable Status */ 1997 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN; 1998 ssc->ses_objmap[oid].encstat[3] = 0; 1999 ssc->ses_encstat |= SES_ENCSTAT_INFO; 2000 break; 2001 default: 2002 SES_LOG(ssc, "unknown power supply %d status (0x%x)\n", 2003 i, sdata[r] & 0xff); 2004 break; 2005 } 2006 ssc->ses_objmap[oid++].svalid = 1; 2007 r++; 2008 } 2009 2010 /* 2011 * Skip over Slot SCSI IDs 2012 */ 2013 r += cc->Nslots; 2014 2015 /* 2016 * We always have doorlock status, no matter what, 2017 * but we only save the status if we have one. 2018 */ 2019 SAFT_BAIL(r, hiwater, sdata, buflen); 2020 if (cc->DoorLock) { 2021 /* 2022 * 0 = Door Locked 2023 * 1 = Door Unlocked, or no Lock Installed 2024 * 0x80 = Unknown or Not Reportable Status 2025 */ 2026 ssc->ses_objmap[oid].encstat[1] = 0; 2027 ssc->ses_objmap[oid].encstat[2] = 0; 2028 switch ((uint8_t)sdata[r]) { 2029 case 0: 2030 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK; 2031 ssc->ses_objmap[oid].encstat[3] = 0; 2032 break; 2033 case 1: 2034 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK; 2035 ssc->ses_objmap[oid].encstat[3] = 1; 2036 break; 2037 case 0x80: 2038 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN; 2039 ssc->ses_objmap[oid].encstat[3] = 0; 2040 ssc->ses_encstat |= SES_ENCSTAT_INFO; 2041 break; 2042 default: 2043 ssc->ses_objmap[oid].encstat[0] = 2044 SES_OBJSTAT_UNSUPPORTED; 2045 SES_LOG(ssc, "unknown lock status 0x%x\n", 2046 sdata[r] & 0xff); 2047 break; 2048 } 2049 ssc->ses_objmap[oid++].svalid = 1; 2050 } 2051 r++; 2052 2053 /* 2054 * We always have speaker status, no matter what, 2055 * but we only save the status if we have one. 2056 */ 2057 SAFT_BAIL(r, hiwater, sdata, buflen); 2058 if (cc->Nspkrs) { 2059 ssc->ses_objmap[oid].encstat[1] = 0; 2060 ssc->ses_objmap[oid].encstat[2] = 0; 2061 if (sdata[r] == 1) { 2062 /* 2063 * We need to cache tone urgency indicators. 2064 * Someday. 2065 */ 2066 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT; 2067 ssc->ses_objmap[oid].encstat[3] = 0x8; 2068 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL; 2069 } else if (sdata[r] == 0) { 2070 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK; 2071 ssc->ses_objmap[oid].encstat[3] = 0; 2072 } else { 2073 ssc->ses_objmap[oid].encstat[0] = 2074 SES_OBJSTAT_UNSUPPORTED; 2075 ssc->ses_objmap[oid].encstat[3] = 0; 2076 SES_LOG(ssc, "unknown spkr status 0x%x\n", 2077 sdata[r] & 0xff); 2078 } 2079 ssc->ses_objmap[oid++].svalid = 1; 2080 } 2081 r++; 2082 2083 for (i = 0; i < cc->Ntherm; i++) { 2084 SAFT_BAIL(r, hiwater, sdata, buflen); 2085 /* 2086 * Status is a range from -10 to 245 deg Celsius, 2087 * which we need to normalize to -20 to -245 according 2088 * to the latest SCSI spec, which makes little 2089 * sense since this would overflow an 8bit value. 2090 * Well, still, the base normalization is -20, 2091 * not -10, so we have to adjust. 2092 * 2093 * So what's over and under temperature? 2094 * Hmm- we'll state that 'normal' operating 2095 * is 10 to 40 deg Celsius. 2096 */ 2097 ssc->ses_objmap[oid].encstat[1] = 0; 2098 ssc->ses_objmap[oid].encstat[2] = 2099 ((unsigned int) sdata[r]) - 10; 2100 if (sdata[r] < 20) { 2101 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT; 2102 /* 2103 * Set 'under temperature' failure. 2104 */ 2105 ssc->ses_objmap[oid].encstat[3] = 2; 2106 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL; 2107 } else if (sdata[r] > 30) { 2108 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT; 2109 /* 2110 * Set 'over temperature' failure. 2111 */ 2112 ssc->ses_objmap[oid].encstat[3] = 8; 2113 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL; 2114 } else { 2115 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK; 2116 } 2117 ssc->ses_objmap[oid++].svalid = 1; 2118 r++; 2119 } 2120 2121 /* 2122 * Now, for "pseudo" thermometers, we have two bytes 2123 * of information in enclosure status- 16 bits. Actually, 2124 * the MSB is a single TEMP ALERT flag indicating whether 2125 * any other bits are set, but, thanks to fuzzy thinking, 2126 * in the SAF-TE spec, this can also be set even if no 2127 * other bits are set, thus making this really another 2128 * binary temperature sensor. 2129 */ 2130 2131 SAFT_BAIL(r, hiwater, sdata, buflen); 2132 tempflags = sdata[r++]; 2133 SAFT_BAIL(r, hiwater, sdata, buflen); 2134 tempflags |= (tempflags << 8) | sdata[r++]; 2135 2136 for (i = 0; i < NPSEUDO_THERM; i++) { 2137 ssc->ses_objmap[oid].encstat[1] = 0; 2138 if (tempflags & (1 << (NPSEUDO_THERM - i - 1))) { 2139 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT; 2140 ssc->ses_objmap[4].encstat[2] = 0xff; 2141 /* 2142 * Set 'over temperature' failure. 2143 */ 2144 ssc->ses_objmap[oid].encstat[3] = 8; 2145 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL; 2146 } else { 2147 /* 2148 * We used to say 'not available' and synthesize a 2149 * nominal 30 deg (C)- that was wrong. Actually, 2150 * Just say 'OK', and use the reserved value of 2151 * zero. 2152 */ 2153 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK; 2154 ssc->ses_objmap[oid].encstat[2] = 0; 2155 ssc->ses_objmap[oid].encstat[3] = 0; 2156 } 2157 ssc->ses_objmap[oid++].svalid = 1; 2158 } 2159 2160 /* 2161 * Get alarm status. 2162 */ 2163 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK; 2164 ssc->ses_objmap[oid].encstat[3] = ssc->ses_objmap[oid].priv; 2165 ssc->ses_objmap[oid++].svalid = 1; 2166 2167 /* 2168 * Now get drive slot status 2169 */ 2170 cdb[2] = SAFTE_RD_RDDSTS; 2171 amt = buflen; 2172 err = ses_runcmd(ssc, cdb, 10, sdata, &amt); 2173 if (err) { 2174 SES_FREE(sdata, buflen); 2175 return (err); 2176 } 2177 hiwater = buflen - amt; 2178 for (r = i = 0; i < cc->Nslots; i++, r += 4) { 2179 SAFT_BAIL(r+3, hiwater, sdata, buflen); 2180 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNSUPPORTED; 2181 ssc->ses_objmap[oid].encstat[1] = (uint8_t) i; 2182 ssc->ses_objmap[oid].encstat[2] = 0; 2183 ssc->ses_objmap[oid].encstat[3] = 0; 2184 status = sdata[r+3]; 2185 if ((status & 0x1) == 0) { /* no device */ 2186 ssc->ses_objmap[oid].encstat[0] = 2187 SES_OBJSTAT_NOTINSTALLED; 2188 } else { 2189 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK; 2190 } 2191 if (status & 0x2) { 2192 ssc->ses_objmap[oid].encstat[2] = 0x8; 2193 } 2194 if ((status & 0x4) == 0) { 2195 ssc->ses_objmap[oid].encstat[3] = 0x10; 2196 } 2197 ssc->ses_objmap[oid++].svalid = 1; 2198 } 2199 /* see comment below about sticky enclosure status */ 2200 ssc->ses_encstat |= ENCI_SVALID | oencstat; 2201 SES_FREE(sdata, buflen); 2202 return (0); 2203 } 2204 2205 static int 2206 set_objstat_sel(ses_softc_t *ssc, ses_objstat *obp, int slp) 2207 { 2208 int idx; 2209 encobj *ep; 2210 struct scfg *cc = ssc->ses_private; 2211 2212 if (cc == NULL) 2213 return (0); 2214 2215 idx = (int)obp->obj_id; 2216 ep = &ssc->ses_objmap[idx]; 2217 2218 switch (ep->enctype) { 2219 case SESTYP_DEVICE: 2220 if (obp->cstat[0] & SESCTL_PRDFAIL) { 2221 ep->priv |= 0x40; 2222 } 2223 /* SESCTL_RSTSWAP has no correspondence in SAF-TE */ 2224 if (obp->cstat[0] & SESCTL_DISABLE) { 2225 ep->priv |= 0x80; 2226 /* 2227 * Hmm. Try to set the 'No Drive' flag. 2228 * Maybe that will count as a 'disable'. 2229 */ 2230 } 2231 if (ep->priv & 0xc6) { 2232 ep->priv &= ~0x1; 2233 } else { 2234 ep->priv |= 0x1; /* no errors */ 2235 } 2236 wrslot_stat(ssc, slp); 2237 break; 2238 case SESTYP_POWER: 2239 /* 2240 * Okay- the only one that makes sense here is to 2241 * do the 'disable' for a power supply. 2242 */ 2243 if (obp->cstat[0] & SESCTL_DISABLE) { 2244 (void) wrbuf16(ssc, SAFTE_WT_ACTPWS, 2245 idx - cc->pwroff, 0, 0, slp); 2246 } 2247 break; 2248 case SESTYP_FAN: 2249 /* 2250 * Okay- the only one that makes sense here is to 2251 * set fan speed to zero on disable. 2252 */ 2253 if (obp->cstat[0] & SESCTL_DISABLE) { 2254 /* remember- fans are the first items, so idx works */ 2255 (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp); 2256 } 2257 break; 2258 case SESTYP_DOORLOCK: 2259 /* 2260 * Well, we can 'disable' the lock. 2261 */ 2262 if (obp->cstat[0] & SESCTL_DISABLE) { 2263 cc->flag2 &= ~SAFT_FLG2_LOCKDOOR; 2264 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, 2265 cc->flag2, 0, slp); 2266 } 2267 break; 2268 case SESTYP_ALARM: 2269 /* 2270 * Well, we can 'disable' the alarm. 2271 */ 2272 if (obp->cstat[0] & SESCTL_DISABLE) { 2273 cc->flag2 &= ~SAFT_FLG1_ALARM; 2274 ep->priv |= 0x40; /* Muted */ 2275 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, 2276 cc->flag2, 0, slp); 2277 } 2278 break; 2279 default: 2280 break; 2281 } 2282 ep->svalid = 0; 2283 return (0); 2284 } 2285 2286 /* 2287 * This function handles all of the 16 byte WRITE BUFFER commands. 2288 */ 2289 static int 2290 wrbuf16(ses_softc_t *ssc, uint8_t op, uint8_t b1, uint8_t b2, 2291 uint8_t b3, int slp) 2292 { 2293 int err, amt; 2294 char *sdata; 2295 struct scfg *cc = ssc->ses_private; 2296 static char cdb[10] = { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 }; 2297 2298 if (cc == NULL) 2299 return (0); 2300 2301 sdata = SES_MALLOC(16); 2302 if (sdata == NULL) 2303 return (ENOMEM); 2304 2305 SES_VLOG(ssc, "saf_wrbuf16 %x %x %x %x\n", op, b1, b2, b3); 2306 2307 sdata[0] = op; 2308 sdata[1] = b1; 2309 sdata[2] = b2; 2310 sdata[3] = b3; 2311 MEMZERO(&sdata[4], 12); 2312 amt = -16; 2313 err = ses_runcmd(ssc, cdb, 10, sdata, &amt); 2314 SES_FREE(sdata, 16); 2315 return (err); 2316 } 2317 2318 /* 2319 * This function updates the status byte for the device slot described. 2320 * 2321 * Since this is an optional SAF-TE command, there's no point in 2322 * returning an error. 2323 */ 2324 static void 2325 wrslot_stat(ses_softc_t *ssc, int slp) 2326 { 2327 int i, amt; 2328 encobj *ep; 2329 char cdb[10], *sdata; 2330 struct scfg *cc = ssc->ses_private; 2331 2332 if (cc == NULL) 2333 return; 2334 2335 SES_VLOG(ssc, "saf_wrslot\n"); 2336 cdb[0] = WRITE_BUFFER; 2337 cdb[1] = 1; 2338 cdb[2] = 0; 2339 cdb[3] = 0; 2340 cdb[4] = 0; 2341 cdb[5] = 0; 2342 cdb[6] = 0; 2343 cdb[7] = 0; 2344 cdb[8] = cc->Nslots * 3 + 1; 2345 cdb[9] = 0; 2346 2347 sdata = SES_MALLOC(cc->Nslots * 3 + 1); 2348 if (sdata == NULL) 2349 return; 2350 MEMZERO(sdata, cc->Nslots * 3 + 1); 2351 2352 sdata[0] = SAFTE_WT_DSTAT; 2353 for (i = 0; i < cc->Nslots; i++) { 2354 ep = &ssc->ses_objmap[cc->slotoff + i]; 2355 SES_VLOG(ssc, "saf_wrslot %d <- %x\n", i, ep->priv & 0xff); 2356 sdata[1 + (3 * i)] = ep->priv & 0xff; 2357 } 2358 amt = -(cc->Nslots * 3 + 1); 2359 (void) ses_runcmd(ssc, cdb, 10, sdata, &amt); 2360 SES_FREE(sdata, cc->Nslots * 3 + 1); 2361 } 2362 2363 /* 2364 * This function issues the "PERFORM SLOT OPERATION" command. 2365 */ 2366 static int 2367 perf_slotop(ses_softc_t *ssc, uint8_t slot, uint8_t opflag, int slp) 2368 { 2369 int err, amt; 2370 char *sdata; 2371 struct scfg *cc = ssc->ses_private; 2372 static char cdb[10] = 2373 { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 }; 2374 2375 if (cc == NULL) 2376 return (0); 2377 2378 sdata = SES_MALLOC(SAFT_SCRATCH); 2379 if (sdata == NULL) 2380 return (ENOMEM); 2381 MEMZERO(sdata, SAFT_SCRATCH); 2382 2383 sdata[0] = SAFTE_WT_SLTOP; 2384 sdata[1] = slot; 2385 sdata[2] = opflag; 2386 SES_VLOG(ssc, "saf_slotop slot %d op %x\n", slot, opflag); 2387 amt = -SAFT_SCRATCH; 2388 err = ses_runcmd(ssc, cdb, 10, sdata, &amt); 2389 SES_FREE(sdata, SAFT_SCRATCH); 2390 return (err); 2391 } 2392