xref: /netbsd-src/sys/dev/scsipi/ses.c (revision 481fca6e59249d8ffcf24fef7cfbe7b131bfb080)
1 /*	$NetBSD: ses.c,v 1.7 2000/07/08 17:12:08 sommerfeld Exp $ */
2 /*
3  * Copyright (C) 2000 National Aeronautics & Space Administration
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. The name of the author may not be used to endorse or promote products
12  *    derived from this software without specific prior written permission
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24  *
25  * Author:	mjacob@nas.nasa.gov
26  */
27 
28 
29 #include "opt_scsi.h"
30 
31 #include <sys/types.h>
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/kernel.h>
35 #include <sys/file.h>
36 #include <sys/stat.h>
37 #include <sys/ioctl.h>
38 #include <sys/scsiio.h>
39 #include <sys/buf.h>
40 #include <sys/uio.h>
41 #include <sys/malloc.h>
42 #include <sys/errno.h>
43 #include <sys/device.h>
44 #include <sys/disklabel.h>
45 #include <sys/disk.h>
46 #include <sys/proc.h>
47 #include <sys/conf.h>
48 #include <sys/vnode.h>
49 #include <machine/stdarg.h>
50 
51 #include <dev/scsipi/scsipi_all.h>
52 #include <dev/scsipi/scsi_all.h>
53 #include <dev/scsipi/scsipi_disk.h>
54 #include <dev/scsipi/scsi_disk.h>
55 #include <dev/scsipi/scsiconf.h>
56 #include <dev/scsipi/ses.h>
57 
58 /*
59  * Platform Independent Driver Internal Definitions for SES devices.
60  */
61 typedef enum {
62 	SES_NONE,
63 	SES_SES_SCSI2,
64 	SES_SES,
65 	SES_SES_PASSTHROUGH,
66 	SES_SEN,
67 	SES_SAFT
68 } enctyp;
69 
70 struct ses_softc;
71 typedef struct ses_softc ses_softc_t;
72 typedef struct {
73 	int (*softc_init) 	__P((ses_softc_t *, int));
74 	int (*init_enc)		__P((ses_softc_t *));
75 	int (*get_encstat)	__P((ses_softc_t *, int));
76 	int (*set_encstat)	__P((ses_softc_t *, ses_encstat, int));
77 	int (*get_objstat)	__P((ses_softc_t *, ses_objstat *, int));
78 	int (*set_objstat)	__P((ses_softc_t *, ses_objstat *, int));
79 } encvec;
80 
81 #define	ENCI_SVALID	0x80
82 
83 typedef struct {
84 	uint32_t
85 		enctype	: 8,		/* enclosure type */
86 		subenclosure : 8,	/* subenclosure id */
87 		svalid	: 1,		/* enclosure information valid */
88 		priv	: 15;		/* private data, per object */
89 	uint8_t	encstat[4];	/* state && stats */
90 } encobj;
91 
92 #define	SEN_ID		"UNISYS           SUN_SEN"
93 #define	SEN_ID_LEN	24
94 
95 static enctyp ses_type __P((struct scsipi_inquiry_data *));
96 
97 
98 /* Forward reference to Enclosure Functions */
99 static int ses_softc_init __P((ses_softc_t *, int));
100 static int ses_init_enc __P((ses_softc_t *));
101 static int ses_get_encstat __P((ses_softc_t *, int));
102 static int ses_set_encstat __P((ses_softc_t *, uint8_t, int));
103 static int ses_get_objstat __P((ses_softc_t *, ses_objstat *, int));
104 static int ses_set_objstat __P((ses_softc_t *, ses_objstat *, int));
105 
106 static int safte_softc_init __P((ses_softc_t *, int));
107 static int safte_init_enc __P((ses_softc_t *));
108 static int safte_get_encstat __P((ses_softc_t *, int));
109 static int safte_set_encstat __P((ses_softc_t *, uint8_t, int));
110 static int safte_get_objstat __P((ses_softc_t *, ses_objstat *, int));
111 static int safte_set_objstat __P((ses_softc_t *, ses_objstat *, int));
112 
113 /*
114  * Platform implementation defines/functions for SES internal kernel stuff
115  */
116 
117 #define	STRNCMP			strncmp
118 #define	PRINTF			printf
119 #define	SES_LOG			ses_log
120 #if	defined(DEBUG) || defined(SCSIDEBUG)
121 #define	SES_VLOG		ses_log
122 #else
123 #define	SES_VLOG		if (0) ses_log
124 #endif
125 #define	SES_MALLOC(amt)		malloc(amt, M_DEVBUF, M_NOWAIT)
126 #define	SES_FREE(ptr, amt)	free(ptr, M_DEVBUF)
127 #define	MEMZERO			bzero
128 #define	MEMCPY(dest, src, amt)	bcopy(src, dest, amt)
129 #define	RECEIVE_DIAGNOSTIC	0x1c
130 #define	SEND_DIAGNOSTIC		0x1d
131 #define	WRITE_BUFFER		0x3b
132 #define	READ_BUFFER		0x3c
133 
134 int sesopen __P((dev_t, int, int, struct proc *));
135 int sesclose __P((dev_t, int, int, struct proc *));
136 int sesioctl __P((dev_t, u_long, caddr_t, int, struct proc *));
137 
138 static int ses_runcmd	__P((struct ses_softc *, char *, int, char *, int *));
139 static void ses_log	__P((struct ses_softc *, const char *, ...))
140      __attribute__((__format__(__printf__, 2, 3)));
141 
142 /*
143  * General NetBSD kernel stuff.
144  */
145 
146 struct ses_softc {
147 	struct device	sc_device;
148 	struct scsipi_link *sc_link;
149 	enctyp		ses_type;	/* type of enclosure */
150 	encvec		ses_vec;	/* vector to handlers */
151 	void *		ses_private;	/* per-type private data */
152 	encobj *	ses_objmap;	/* objects */
153 	u_int32_t	ses_nobjects;	/* number of objects */
154 	ses_encstat	ses_encstat;	/* overall status */
155 	u_int8_t	ses_flags;
156 };
157 #define	SES_FLAG_INVALID	0x01
158 #define	SES_FLAG_OPEN		0x02
159 #define	SES_FLAG_INITIALIZED	0x04
160 
161 #define SESUNIT(x)       (minor((x)))
162 
163 static int ses_match __P((struct device *, struct cfdata *, void *));
164 static void ses_attach __P((struct device *, struct device *, void *));
165 static enctyp ses_device_type __P((struct scsipibus_attach_args *));
166 
167 struct cfattach ses_ca = {
168 	sizeof (struct ses_softc), ses_match, ses_attach
169 };
170 extern struct cfdriver ses_cd;
171 
172 struct scsipi_device ses_switch = {
173 	NULL,
174 	NULL,
175 	NULL,
176 	NULL
177 };
178 
179 
180 int
181 ses_match(parent, match, aux)
182 	struct device *parent;
183 	struct cfdata *match;
184 	void *aux;
185 {
186 	struct scsipibus_attach_args *sa = aux;
187 
188 	switch (ses_device_type(sa)) {
189 	case SES_SES:
190 	case SES_SES_SCSI2:
191 	case SES_SEN:
192 	case SES_SAFT:
193 	case SES_SES_PASSTHROUGH:
194 		/*
195 		 * For these devices, it's a perfect match.
196 		 */
197 		return (24);
198 	default:
199 		return (0);
200 	}
201 }
202 
203 
204 /*
205  * Complete the attachment.
206  *
207  * We have to repeat the rerun of INQUIRY data as above because
208  * it's not until the return from the match routine that we have
209  * the softc available to set stuff in.
210  */
211 void
212 ses_attach(parent, self, aux)
213 	struct device *parent;
214 	struct device *self;
215 	void *aux;
216 {
217 	char *tname;
218 	struct ses_softc *softc = (void *)self;
219 	struct scsipibus_attach_args *sa = aux;
220 	struct scsipi_link *sc_link = sa->sa_sc_link;
221 
222 	SC_DEBUG(sc_link, SDEV_DB2, ("ssattach: "));
223 	softc->sc_link = sa->sa_sc_link;
224 	sc_link->device = &ses_switch;
225 	sc_link->device_softc = softc;
226 	sc_link->openings = 1;
227 
228 	softc->ses_type = ses_device_type(sa);
229 	switch (softc->ses_type) {
230 	case SES_SES:
231 	case SES_SES_SCSI2:
232         case SES_SES_PASSTHROUGH:
233 		softc->ses_vec.softc_init = ses_softc_init;
234 		softc->ses_vec.init_enc = ses_init_enc;
235 		softc->ses_vec.get_encstat = ses_get_encstat;
236 		softc->ses_vec.set_encstat = ses_set_encstat;
237 		softc->ses_vec.get_objstat = ses_get_objstat;
238 		softc->ses_vec.set_objstat = ses_set_objstat;
239 		break;
240         case SES_SAFT:
241 		softc->ses_vec.softc_init = safte_softc_init;
242 		softc->ses_vec.init_enc = safte_init_enc;
243 		softc->ses_vec.get_encstat = safte_get_encstat;
244 		softc->ses_vec.set_encstat = safte_set_encstat;
245 		softc->ses_vec.get_objstat = safte_get_objstat;
246 		softc->ses_vec.set_objstat = safte_set_objstat;
247 		break;
248         case SES_SEN:
249 		break;
250 	case SES_NONE:
251 	default:
252 		break;
253 	}
254 
255 	switch (softc->ses_type) {
256 	default:
257 	case SES_NONE:
258 		tname = "No SES device";
259 		break;
260 	case SES_SES_SCSI2:
261 		tname = "SCSI-2 SES Device";
262 		break;
263 	case SES_SES:
264 		tname = "SCSI-3 SES Device";
265 		break;
266         case SES_SES_PASSTHROUGH:
267 		tname = "SES Passthrough Device";
268 		break;
269         case SES_SEN:
270 		tname = "UNISYS SEN Device (NOT HANDLED YET)";
271 		break;
272         case SES_SAFT:
273 		tname = "SAF-TE Compliant Device";
274 		break;
275 	}
276 	printf("\n%s: %s\n", softc->sc_device.dv_xname, tname);
277 }
278 
279 
280 static enctyp
281 ses_device_type(sa)
282 	struct scsipibus_attach_args *sa;
283 {
284 	struct scsipi_inquiry_data *inqp = sa->sa_inqptr;
285 
286 	if (inqp == NULL)
287 		return (SES_NONE);
288 
289 	return (ses_type(inqp));
290 }
291 
292 int
293 sesopen(dev, flags, fmt, p)
294 	dev_t dev;
295 	int flags;
296 	int fmt;
297 	struct proc *p;
298 {
299 	struct ses_softc *softc;
300 	int error, unit;
301 
302 	unit = SESUNIT(dev);
303 	if (unit >= ses_cd.cd_ndevs)
304 		return (ENXIO);
305 	softc = ses_cd.cd_devs[unit];
306 	if (softc == NULL)
307 		return (ENXIO);
308 
309 	if (softc->ses_flags & SES_FLAG_INVALID) {
310 		error = ENXIO;
311 		goto out;
312 	}
313 	if (softc->ses_flags & SES_FLAG_OPEN) {
314 		error = EBUSY;
315 		goto out;
316 	}
317 	if (softc->ses_vec.softc_init == NULL) {
318 		error = ENXIO;
319 		goto out;
320 	}
321 	error = scsipi_adapter_addref(softc->sc_link);
322 	if (error != 0)
323                 goto out;
324 
325 
326 	softc->ses_flags |= SES_FLAG_OPEN;
327 	if ((softc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
328 		error = (*softc->ses_vec.softc_init)(softc, 1);
329 		if (error)
330 			softc->ses_flags &= ~SES_FLAG_OPEN;
331 		else
332 			softc->ses_flags |= SES_FLAG_INITIALIZED;
333 	}
334 
335 out:
336 	return (error);
337 }
338 
339 int
340 sesclose(dev, flags, fmt, p)
341 	dev_t dev;
342 	int flags;
343 	int fmt;
344 	struct proc *p;
345 {
346 	struct ses_softc *softc;
347 	int unit;
348 
349 	unit = SESUNIT(dev);
350 	if (unit >= ses_cd.cd_ndevs)
351 		return (ENXIO);
352 	softc = ses_cd.cd_devs[unit];
353 	if (softc == NULL)
354 		return (ENXIO);
355 
356 	scsipi_wait_drain(softc->sc_link);
357 	scsipi_adapter_delref(softc->sc_link);
358 	softc->ses_flags &= ~SES_FLAG_OPEN;
359 	return (0);
360 }
361 
362 int
363 sesioctl(dev, cmd, arg_addr, flag, p)
364 	dev_t dev;
365 	u_long cmd;
366 	caddr_t arg_addr;
367 	int flag;
368 	struct proc *p;
369 {
370 	ses_encstat tmp;
371 	ses_objstat objs;
372 	ses_object obj, *uobj;
373 	struct ses_softc *ssc = ses_cd.cd_devs[SESUNIT(dev)];
374 	void *addr;
375 	int error, i;
376 
377 
378 	if (arg_addr)
379 		addr = *((caddr_t *) arg_addr);
380 	else
381 		addr = NULL;
382 
383 	SC_DEBUG(ssc->sc_link, SDEV_DB2, ("sesioctl 0x%lx ", cmd));
384 
385 	/*
386 	 * Now check to see whether we're initialized or not.
387 	 */
388 	if ((ssc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
389 		return (ENODEV);
390 	}
391 
392 	error = 0;
393 
394 	/*
395 	 * If this command can change the device's state,
396 	 * we must have the device open for writing.
397 	 */
398 	switch (cmd) {
399 	case SESIOC_GETNOBJ:
400 	case SESIOC_GETOBJMAP:
401 	case SESIOC_GETENCSTAT:
402 	case SESIOC_GETOBJSTAT:
403 		break;
404 	default:
405 		if ((flag & FWRITE) == 0) {
406 			return (EBADF);
407 		}
408 	}
409 
410 	switch (cmd) {
411 	case SESIOC_GETNOBJ:
412 		error = copyout(&ssc->ses_nobjects, addr,
413 		    sizeof (ssc->ses_nobjects));
414 		break;
415 
416 	case SESIOC_GETOBJMAP:
417 		for (uobj = addr, i = 0; i != ssc->ses_nobjects; i++, uobj++) {
418 			obj.obj_id = i;
419 			obj.subencid = ssc->ses_objmap[i].subenclosure;
420 			obj.object_type = ssc->ses_objmap[i].enctype;
421 			error = copyout(&obj, uobj, sizeof (ses_object));
422 			if (error) {
423 				break;
424 			}
425 		}
426 		break;
427 
428 	case SESIOC_GETENCSTAT:
429 		error = (*ssc->ses_vec.get_encstat)(ssc, 1);
430 		if (error)
431 			break;
432 		tmp = ssc->ses_encstat & ~ENCI_SVALID;
433 		error = copyout(&tmp, addr, sizeof (ses_encstat));
434 		ssc->ses_encstat = tmp;
435 		break;
436 
437 	case SESIOC_SETENCSTAT:
438 		error = copyin(addr, &tmp, sizeof (ses_encstat));
439 		if (error)
440 			break;
441 		error = (*ssc->ses_vec.set_encstat)(ssc, tmp, 1);
442 		break;
443 
444 	case SESIOC_GETOBJSTAT:
445 		error = copyin(addr, &objs, sizeof (ses_objstat));
446 		if (error)
447 			break;
448 		if (objs.obj_id >= ssc->ses_nobjects) {
449 			error = EINVAL;
450 			break;
451 		}
452 		error = (*ssc->ses_vec.get_objstat)(ssc, &objs, 1);
453 		if (error)
454 			break;
455 		error = copyout(&objs, addr, sizeof (ses_objstat));
456 		/*
457 		 * Always (for now) invalidate entry.
458 		 */
459 		ssc->ses_objmap[objs.obj_id].svalid = 0;
460 		break;
461 
462 	case SESIOC_SETOBJSTAT:
463 		error = copyin(addr, &objs, sizeof (ses_objstat));
464 		if (error)
465 			break;
466 
467 		if (objs.obj_id >= ssc->ses_nobjects) {
468 			error = EINVAL;
469 			break;
470 		}
471 		error = (*ssc->ses_vec.set_objstat)(ssc, &objs, 1);
472 
473 		/*
474 		 * Always (for now) invalidate entry.
475 		 */
476 		ssc->ses_objmap[objs.obj_id].svalid = 0;
477 		break;
478 
479 	case SESIOC_INIT:
480 
481 		error = (*ssc->ses_vec.init_enc)(ssc);
482 		break;
483 
484 	default:
485 		error = scsipi_do_ioctl(ssc->sc_link, dev, cmd, addr, flag, p);
486 		break;
487 	}
488 	return (error);
489 }
490 
491 static int
492 ses_runcmd(struct ses_softc *ssc, char *cdb, int cdbl, char *dptr, int *dlenp)
493 {
494 	struct scsipi_generic sgen;
495 	int dl, flg, error;
496 
497 	if (dptr) {
498 		if ((dl = *dlenp) < 0) {
499 			dl = -dl;
500 			flg = XS_CTL_DATA_OUT;
501 		} else {
502 			flg = XS_CTL_DATA_IN;
503 		}
504 	} else {
505 		dl = 0;
506 		flg = 0;
507 	}
508 
509 	if (cdbl > sizeof (struct scsipi_generic)) {
510 		cdbl = sizeof (struct scsipi_generic);
511 	}
512 	bcopy(cdb, &sgen, cdbl);
513 #ifndef	SCSIDEBUG
514 	flg |= XS_CTL_SILENT;
515 #endif
516 	error = scsipi_command(ssc->sc_link, &sgen, cdbl,
517 	    (u_char *) dptr, dl, SCSIPIRETRIES, 30000, NULL, flg);
518 
519 	if (error == 0 && dptr)
520 		*dlenp = 0;
521 
522 	return (error);
523 }
524 
525 #ifdef	__STDC__
526 static void
527 ses_log(struct ses_softc *ssc, const char *fmt, ...)
528 {
529 	va_list ap;
530 
531 	printf("%s: ", ssc->sc_device.dv_xname);
532 	va_start(ap, fmt);
533 	vprintf(fmt, ap);
534 	va_end(ap);
535 }
536 #else
537 static void
538 ses_log(ssc, fmt, va_alist)
539 	struct ses_softc *ssc;
540 	char *fmt;
541 	va_dcl
542 {
543 	va_list ap;
544 
545 	printf("%s: ", ssc->sc_device.dv_xname);
546 	va_start(ap, fmt);
547 	vprintf(fmt, ap);
548 	va_end(ap);
549 }
550 #endif
551 
552 /*
553  * The code after this point runs on many platforms,
554  * so forgive the slightly awkward and nonconforming
555  * appearance.
556  */
557 
558 /*
559  * Is this a device that supports enclosure services?
560  *
561  * It's a a pretty simple ruleset- if it is device type 0x0D (13), it's
562  * an SES device. If it happens to be an old UNISYS SEN device, we can
563  * handle that too.
564  */
565 
566 #define	SAFTE_START	44
567 #define	SAFTE_END	50
568 #define	SAFTE_LEN	SAFTE_END-SAFTE_START
569 
570 static enctyp
571 ses_type(inqp)
572 	struct scsipi_inquiry_data *inqp;
573 {
574 	size_t	given_len = inqp->additional_length + 4;
575 
576 	if (given_len < 8+SEN_ID_LEN)
577 		return (SES_NONE);
578 
579 	if ((inqp->device & SID_TYPE) == T_ENCLOSURE) {
580 		if (STRNCMP(inqp->vendor, SEN_ID, SEN_ID_LEN) == 0) {
581 			return (SES_SEN);
582 		} else if ((inqp->version & SID_ANSII) > 2) {
583 			return (SES_SES);
584 		} else {
585 			return (SES_SES_SCSI2);
586 		}
587 		return (SES_NONE);
588 	}
589 
590 #ifdef	SES_ENABLE_PASSTHROUGH
591 	if ((inqp->flags2 & SID_EncServ) && (inqp->version & SID_ANSII) >= 2) {
592 		/*
593 		 * PassThrough Device.
594 		 */
595 		return (SES_SES_PASSTHROUGH);
596 	}
597 #endif
598 
599 	/*
600 	 * The comparison is short for a reason-
601 	 * some vendors were chopping it short.
602 	 */
603 
604 	if (given_len < SAFTE_END - 2) {
605 		return (SES_NONE);
606 	}
607 
608 	if (STRNCMP((char *)&inqp->vendor_specific[8], "SAF-TE",
609 			SAFTE_LEN - 2) == 0) {
610 		return (SES_SAFT);
611 	}
612 
613 	return (SES_NONE);
614 }
615 
616 /*
617  * SES Native Type Device Support
618  */
619 
620 /*
621  * SES Diagnostic Page Codes
622  */
623 
624 typedef enum {
625 	SesConfigPage = 0x1,
626 	SesControlPage,
627 #define	SesStatusPage SesControlPage
628 	SesHelpTxt,
629 	SesStringOut,
630 #define	SesStringIn	SesStringOut
631 	SesThresholdOut,
632 #define	SesThresholdIn SesThresholdOut
633 	SesArrayControl,
634 #define	SesArrayStatus	SesArrayControl
635 	SesElementDescriptor,
636 	SesShortStatus
637 } SesDiagPageCodes;
638 
639 /*
640  * minimal amounts
641  */
642 
643 /*
644  * Minimum amount of data, starting from byte 0, to have
645  * the config header.
646  */
647 #define	SES_CFGHDR_MINLEN	12
648 
649 /*
650  * Minimum amount of data, starting from byte 0, to have
651  * the config header and one enclosure header.
652  */
653 #define	SES_ENCHDR_MINLEN	48
654 
655 /*
656  * Take this value, subtract it from VEnclen and you know
657  * the length of the vendor unique bytes.
658  */
659 #define	SES_ENCHDR_VMIN		36
660 
661 /*
662  * SES Data Structures
663  */
664 
665 typedef struct {
666 	uint32_t GenCode;	/* Generation Code */
667 	uint8_t	Nsubenc;	/* Number of Subenclosures */
668 } SesCfgHdr;
669 
670 typedef struct {
671 	uint8_t	Subencid;	/* SubEnclosure Identifier */
672 	uint8_t	Ntypes;		/* # of supported types */
673 	uint8_t	VEnclen;	/* Enclosure Descriptor Length */
674 } SesEncHdr;
675 
676 typedef struct {
677 	uint8_t	encWWN[8];	/* XXX- Not Right Yet */
678 	uint8_t	encVid[8];
679 	uint8_t	encPid[16];
680 	uint8_t	encRev[4];
681 	uint8_t	encVen[1];
682 } SesEncDesc;
683 
684 typedef struct {
685 	uint8_t	enc_type;		/* type of element */
686 	uint8_t	enc_maxelt;		/* maximum supported */
687 	uint8_t	enc_subenc;		/* in SubEnc # N */
688 	uint8_t	enc_tlen;		/* Type Descriptor Text Length */
689 } SesThdr;
690 
691 typedef struct {
692 	uint8_t	comstatus;
693 	uint8_t	comstat[3];
694 } SesComStat;
695 
696 struct typidx {
697 	int ses_tidx;
698 	int ses_oidx;
699 };
700 
701 struct sscfg {
702 	uint8_t ses_ntypes;	/* total number of types supported */
703 
704 	/*
705 	 * We need to keep a type index as well as an
706 	 * object index for each object in an enclosure.
707 	 */
708 	struct typidx *ses_typidx;
709 
710 	/*
711 	 * We also need to keep track of the number of elements
712 	 * per type of element. This is needed later so that we
713 	 * can find precisely in the returned status data the
714 	 * status for the Nth element of the Kth type.
715 	 */
716 	uint8_t *	ses_eltmap;
717 };
718 
719 
720 /*
721  * (de)canonicalization defines
722  */
723 #define	sbyte(x, byte)		((((uint32_t)(x)) >> (byte * 8)) & 0xff)
724 #define	sbit(x, bit)		(((uint32_t)(x)) << bit)
725 #define	sset8(outp, idx, sval)	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
726 
727 #define	sset16(outp, idx, sval)	\
728 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
729 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
730 
731 
732 #define	sset24(outp, idx, sval)	\
733 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
734 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
735 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
736 
737 
738 #define	sset32(outp, idx, sval)	\
739 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 3), \
740 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
741 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
742 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
743 
744 #define	gbyte(x, byte)	((((uint32_t)(x)) & 0xff) << (byte * 8))
745 #define	gbit(lv, in, idx, shft, mask)	lv = ((in[idx] >> shft) & mask)
746 #define	sget8(inp, idx, lval)	lval = (((uint8_t *)(inp))[idx++])
747 #define	gget8(inp, idx, lval)	lval = (((uint8_t *)(inp))[idx])
748 
749 #define	sget16(inp, idx, lval)	\
750 	lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
751 		(((uint8_t *)(inp))[idx+1]), idx += 2
752 
753 #define	gget16(inp, idx, lval)	\
754 	lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
755 		(((uint8_t *)(inp))[idx+1])
756 
757 #define	sget24(inp, idx, lval)	\
758 	lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
759 		gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
760 			(((uint8_t *)(inp))[idx+2]), idx += 3
761 
762 #define	gget24(inp, idx, lval)	\
763 	lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
764 		gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
765 			(((uint8_t *)(inp))[idx+2])
766 
767 #define	sget32(inp, idx, lval)	\
768 	lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
769 		gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
770 		gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
771 			(((uint8_t *)(inp))[idx+3]), idx += 4
772 
773 #define	gget32(inp, idx, lval)	\
774 	lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
775 		gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
776 		gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
777 			(((uint8_t *)(inp))[idx+3])
778 
779 #define	SCSZ	0x2000
780 #define	CFLEN	(256 + SES_ENCHDR_MINLEN)
781 
782 /*
783  * Routines specific && private to SES only
784  */
785 
786 static int ses_getconfig(ses_softc_t *);
787 static int ses_getputstat(ses_softc_t *, int, SesComStat *, int, int);
788 static int ses_cfghdr(uint8_t *, int, SesCfgHdr *);
789 static int ses_enchdr(uint8_t *, int, uint8_t, SesEncHdr *);
790 static int ses_encdesc(uint8_t *, int, uint8_t, SesEncDesc *);
791 static int ses_getthdr(uint8_t *, int,  int, SesThdr *);
792 static int ses_decode(char *, int, uint8_t *, int, int, SesComStat *);
793 static int ses_encode(char *, int, uint8_t *, int, int, SesComStat *);
794 
795 static int
796 ses_softc_init(ses_softc_t *ssc, int doinit)
797 {
798 	if (doinit == 0) {
799 		struct sscfg *cc;
800 		if (ssc->ses_nobjects) {
801 			SES_FREE(ssc->ses_objmap,
802 			    ssc->ses_nobjects * sizeof (encobj));
803 			ssc->ses_objmap = NULL;
804 		}
805 		if ((cc = ssc->ses_private) != NULL) {
806 			if (cc->ses_eltmap && cc->ses_ntypes) {
807 				SES_FREE(cc->ses_eltmap, cc->ses_ntypes);
808 				cc->ses_eltmap = NULL;
809 				cc->ses_ntypes = 0;
810 			}
811 			if (cc->ses_typidx && ssc->ses_nobjects) {
812 				SES_FREE(cc->ses_typidx,
813 				    ssc->ses_nobjects * sizeof (struct typidx));
814 				cc->ses_typidx = NULL;
815 			}
816 			SES_FREE(cc, sizeof (struct sscfg));
817 			ssc->ses_private = NULL;
818 		}
819 		ssc->ses_nobjects = 0;
820 		return (0);
821 	}
822 	if (ssc->ses_private == NULL) {
823 		ssc->ses_private = SES_MALLOC(sizeof (struct sscfg));
824 	}
825 	if (ssc->ses_private == NULL) {
826 		return (ENOMEM);
827 	}
828 	ssc->ses_nobjects = 0;
829 	ssc->ses_encstat = 0;
830 	return (ses_getconfig(ssc));
831 }
832 
833 static int
834 ses_init_enc(ses_softc_t *ssc)
835 {
836 	return (0);
837 }
838 
839 static int
840 ses_get_encstat(ses_softc_t *ssc, int slpflag)
841 {
842 	SesComStat ComStat;
843 	int status;
844 
845 	if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 1)) != 0) {
846 		return (status);
847 	}
848 	ssc->ses_encstat = ComStat.comstatus | ENCI_SVALID;
849 	return (0);
850 }
851 
852 static int
853 ses_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflag)
854 {
855 	SesComStat ComStat;
856 	int status;
857 
858 	ComStat.comstatus = encstat & 0xf;
859 	if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 0)) != 0) {
860 		return (status);
861 	}
862 	ssc->ses_encstat = encstat & 0xf;	/* note no SVALID set */
863 	return (0);
864 }
865 
866 static int
867 ses_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
868 {
869 	int i = (int)obp->obj_id;
870 
871 	if (ssc->ses_objmap[i].svalid == 0) {
872 		SesComStat ComStat;
873 		int err = ses_getputstat(ssc, i, &ComStat, slpflag, 1);
874 		if (err)
875 			return (err);
876 		ssc->ses_objmap[i].encstat[0] = ComStat.comstatus;
877 		ssc->ses_objmap[i].encstat[1] = ComStat.comstat[0];
878 		ssc->ses_objmap[i].encstat[2] = ComStat.comstat[1];
879 		ssc->ses_objmap[i].encstat[3] = ComStat.comstat[2];
880 		ssc->ses_objmap[i].svalid = 1;
881 	}
882 	obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
883 	obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
884 	obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
885 	obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
886 	return (0);
887 }
888 
889 static int
890 ses_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
891 {
892 	SesComStat ComStat;
893 	int err;
894 	/*
895 	 * If this is clear, we don't do diddly.
896 	 */
897 	if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
898 		return (0);
899 	}
900 	ComStat.comstatus = obp->cstat[0];
901 	ComStat.comstat[0] = obp->cstat[1];
902 	ComStat.comstat[1] = obp->cstat[2];
903 	ComStat.comstat[2] = obp->cstat[3];
904 	err = ses_getputstat(ssc, (int)obp->obj_id, &ComStat, slpflag, 0);
905 	ssc->ses_objmap[(int)obp->obj_id].svalid = 0;
906 	return (err);
907 }
908 
909 static int
910 ses_getconfig(ses_softc_t *ssc)
911 {
912 	struct sscfg *cc;
913 	SesCfgHdr cf;
914 	SesEncHdr hd;
915 	SesEncDesc *cdp;
916 	SesThdr thdr;
917 	int err, amt, i, nobj, ntype, maxima;
918 	char storage[CFLEN], *sdata;
919 	static char cdb[6] = {
920 	    RECEIVE_DIAGNOSTIC, 0x1, SesConfigPage, SCSZ >> 8, SCSZ & 0xff, 0
921 	};
922 
923 	cc = ssc->ses_private;
924 	if (cc == NULL) {
925 		return (ENXIO);
926 	}
927 
928 	sdata = SES_MALLOC(SCSZ);
929 	if (sdata == NULL)
930 		return (ENOMEM);
931 
932 	amt = SCSZ;
933 	err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
934 	if (err) {
935 		SES_FREE(sdata, SCSZ);
936 		return (err);
937 	}
938 	amt = SCSZ - amt;
939 
940 	if (ses_cfghdr((uint8_t *) sdata, amt, &cf)) {
941 		SES_LOG(ssc, "Unable to parse SES Config Header\n");
942 		SES_FREE(sdata, SCSZ);
943 		return (EIO);
944 	}
945 	if (amt < SES_ENCHDR_MINLEN) {
946 		SES_LOG(ssc, "runt enclosure length (%d)\n", amt);
947 		SES_FREE(sdata, SCSZ);
948 		return (EIO);
949 	}
950 
951 	SES_VLOG(ssc, "GenCode %x %d Subenclosures\n", cf.GenCode, cf.Nsubenc);
952 
953 	/*
954 	 * Now waltz through all the subenclosures toting up the
955 	 * number of types available in each. For this, we only
956 	 * really need the enclosure header. However, we get the
957 	 * enclosure descriptor for debug purposes, as well
958 	 * as self-consistency checking purposes.
959 	 */
960 
961 	maxima = cf.Nsubenc + 1;
962 	cdp = (SesEncDesc *) storage;
963 	for (ntype = i = 0; i < maxima; i++) {
964 		MEMZERO((caddr_t)cdp, sizeof (*cdp));
965 		if (ses_enchdr((uint8_t *) sdata, amt, i, &hd)) {
966 			SES_LOG(ssc, "Cannot Extract Enclosure Header %d\n", i);
967 			SES_FREE(sdata, SCSZ);
968 			return (EIO);
969 		}
970 		SES_VLOG(ssc, " SubEnclosure ID %d, %d Types With this ID, En"
971 		    "closure Length %d\n", hd.Subencid, hd.Ntypes, hd.VEnclen);
972 
973 		if (ses_encdesc((uint8_t *)sdata, amt, i, cdp)) {
974 			SES_LOG(ssc, "Can't get Enclosure Descriptor %d\n", i);
975 			SES_FREE(sdata, SCSZ);
976 			return (EIO);
977 		}
978 		SES_VLOG(ssc, " WWN: %02x%02x%02x%02x%02x%02x%02x%02x\n",
979 		    cdp->encWWN[0], cdp->encWWN[1], cdp->encWWN[2],
980 		    cdp->encWWN[3], cdp->encWWN[4], cdp->encWWN[5],
981 		    cdp->encWWN[6], cdp->encWWN[7]);
982 		ntype += hd.Ntypes;
983 	}
984 
985 	/*
986 	 * Now waltz through all the types that are available, getting
987 	 * the type header so we can start adding up the number of
988 	 * objects available.
989 	 */
990 	for (nobj = i = 0; i < ntype; i++) {
991 		if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
992 			SES_LOG(ssc, "Can't get Enclosure Type Header %d\n", i);
993 			SES_FREE(sdata, SCSZ);
994 			return (EIO);
995 		}
996 		SES_LOG(ssc, " Type Desc[%d]: Type 0x%x, MaxElt %d, In Subenc "
997 		    "%d, Text Length %d\n", i, thdr.enc_type, thdr.enc_maxelt,
998 		    thdr.enc_subenc, thdr.enc_tlen);
999 		nobj += thdr.enc_maxelt;
1000 	}
1001 
1002 
1003 	/*
1004 	 * Now allocate the object array and type map.
1005 	 */
1006 
1007 	ssc->ses_objmap = SES_MALLOC(nobj * sizeof (encobj));
1008 	cc->ses_typidx = SES_MALLOC(nobj * sizeof (struct typidx));
1009 	cc->ses_eltmap = SES_MALLOC(ntype);
1010 
1011 	if (ssc->ses_objmap == NULL || cc->ses_typidx == NULL ||
1012 	    cc->ses_eltmap == NULL) {
1013 		if (ssc->ses_objmap) {
1014 			SES_FREE(ssc->ses_objmap, (nobj * sizeof (encobj)));
1015 			ssc->ses_objmap = NULL;
1016 		}
1017 		if (cc->ses_typidx) {
1018 			SES_FREE(cc->ses_typidx,
1019 			    (nobj * sizeof (struct typidx)));
1020 			cc->ses_typidx = NULL;
1021 		}
1022 		if (cc->ses_eltmap) {
1023 			SES_FREE(cc->ses_eltmap, ntype);
1024 			cc->ses_eltmap = NULL;
1025 		}
1026 		SES_FREE(sdata, SCSZ);
1027 		return (ENOMEM);
1028 	}
1029 	MEMZERO(ssc->ses_objmap, nobj * sizeof (encobj));
1030 	MEMZERO(cc->ses_typidx, nobj * sizeof (struct typidx));
1031 	MEMZERO(cc->ses_eltmap, ntype);
1032 	cc->ses_ntypes = (uint8_t) ntype;
1033 	ssc->ses_nobjects = nobj;
1034 
1035 	/*
1036 	 * Now waltz through the # of types again to fill in the types
1037 	 * (and subenclosure ids) of the allocated objects.
1038 	 */
1039 	nobj = 0;
1040 	for (i = 0; i < ntype; i++) {
1041 		int j;
1042 		if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
1043 			continue;
1044 		}
1045 		cc->ses_eltmap[i] = thdr.enc_maxelt;
1046 		for (j = 0; j < thdr.enc_maxelt; j++) {
1047 			cc->ses_typidx[nobj].ses_tidx = i;
1048 			cc->ses_typidx[nobj].ses_oidx = j;
1049 			ssc->ses_objmap[nobj].subenclosure = thdr.enc_subenc;
1050 			ssc->ses_objmap[nobj++].enctype = thdr.enc_type;
1051 		}
1052 	}
1053 	SES_FREE(sdata, SCSZ);
1054 	return (0);
1055 }
1056 
1057 static int
1058 ses_getputstat(ses_softc_t *ssc, int objid, SesComStat *sp, int slp, int in)
1059 {
1060 	struct sscfg *cc;
1061 	int err, amt, bufsiz, tidx, oidx;
1062 	char cdb[6], *sdata;
1063 
1064 	cc = ssc->ses_private;
1065 	if (cc == NULL) {
1066 		return (ENXIO);
1067 	}
1068 
1069 	/*
1070 	 * If we're just getting overall enclosure status,
1071 	 * we only need 2 bytes of data storage.
1072 	 *
1073 	 * If we're getting anything else, we know how much
1074 	 * storage we need by noting that starting at offset
1075 	 * 8 in returned data, all object status bytes are 4
1076 	 * bytes long, and are stored in chunks of types(M)
1077 	 * and nth+1 instances of type M.
1078 	 */
1079 	if (objid == -1) {
1080 		bufsiz = 2;
1081 	} else {
1082 		bufsiz = (ssc->ses_nobjects * 4) + (cc->ses_ntypes * 4) + 8;
1083 	}
1084 	sdata = SES_MALLOC(bufsiz);
1085 	if (sdata == NULL)
1086 		return (ENOMEM);
1087 
1088 	cdb[0] = RECEIVE_DIAGNOSTIC;
1089 	cdb[1] = 1;
1090 	cdb[2] = SesStatusPage;
1091 	cdb[3] = bufsiz >> 8;
1092 	cdb[4] = bufsiz & 0xff;
1093 	cdb[5] = 0;
1094 	amt = bufsiz;
1095 	err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1096 	if (err) {
1097 		SES_FREE(sdata, bufsiz);
1098 		return (err);
1099 	}
1100 	amt = bufsiz - amt;
1101 
1102 	if (objid == -1) {
1103 		tidx = -1;
1104 		oidx = -1;
1105 	} else {
1106 		tidx = cc->ses_typidx[objid].ses_tidx;
1107 		oidx = cc->ses_typidx[objid].ses_oidx;
1108 	}
1109 	if (in) {
1110 		if (ses_decode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1111 			err = ENODEV;
1112 		}
1113 	} else {
1114 		if (ses_encode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1115 			err = ENODEV;
1116 		} else {
1117 			cdb[0] = SEND_DIAGNOSTIC;
1118 			cdb[1] = 0x10;
1119 			cdb[2] = 0;
1120 			cdb[3] = bufsiz >> 8;
1121 			cdb[4] = bufsiz & 0xff;
1122 			cdb[5] = 0;
1123 			amt = -bufsiz;
1124 			err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1125 		}
1126 	}
1127 	SES_FREE(sdata, bufsiz);
1128 	return (0);
1129 }
1130 
1131 
1132 /*
1133  * Routines to parse returned SES data structures.
1134  * Architecture and compiler independent.
1135  */
1136 
1137 static int
1138 ses_cfghdr(uint8_t *buffer, int buflen, SesCfgHdr *cfp)
1139 {
1140 	if (buflen < SES_CFGHDR_MINLEN) {
1141 		return (-1);
1142 	}
1143 	gget8(buffer, 1, cfp->Nsubenc);
1144 	gget32(buffer, 4, cfp->GenCode);
1145 	return (0);
1146 }
1147 
1148 static int
1149 ses_enchdr(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncHdr *chp)
1150 {
1151 	int s, off = 8;
1152 	for (s = 0; s < SubEncId; s++) {
1153 		if (off + 3 > amt)
1154 			return (-1);
1155 		off += buffer[off+3] + 4;
1156 	}
1157 	if (off + 3 > amt) {
1158 		return (-1);
1159 	}
1160 	gget8(buffer, off+1, chp->Subencid);
1161 	gget8(buffer, off+2, chp->Ntypes);
1162 	gget8(buffer, off+3, chp->VEnclen);
1163 	return (0);
1164 }
1165 
1166 static int
1167 ses_encdesc(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncDesc *cdp)
1168 {
1169 	int s, e, enclen, off = 8;
1170 	for (s = 0; s < SubEncId; s++) {
1171 		if (off + 3 > amt)
1172 			return (-1);
1173 		off += buffer[off+3] + 4;
1174 	}
1175 	if (off + 3 > amt) {
1176 		return (-1);
1177 	}
1178 	gget8(buffer, off+3, enclen);
1179 	off += 4;
1180 	if (off  >= amt)
1181 		return (-1);
1182 
1183 	e = off + enclen;
1184 	if (e > amt) {
1185 		e = amt;
1186 	}
1187 	MEMCPY(cdp, &buffer[off], e - off);
1188 	return (0);
1189 }
1190 
1191 static int
1192 ses_getthdr(uint8_t *buffer, int amt, int nth, SesThdr *thp)
1193 {
1194 	int s, off = 8;
1195 
1196 	if (amt < SES_CFGHDR_MINLEN) {
1197 		return (-1);
1198 	}
1199 	for (s = 0; s < buffer[1]; s++) {
1200 		if (off + 3 > amt)
1201 			return (-1);
1202 		off += buffer[off+3] + 4;
1203 	}
1204 	if (off + 3 > amt) {
1205 		return (-1);
1206 	}
1207 	off += buffer[off+3] + 4 + (nth * 4);
1208 	if (amt < (off + 4))
1209 		return (-1);
1210 
1211 	gget8(buffer, off++, thp->enc_type);
1212 	gget8(buffer, off++, thp->enc_maxelt);
1213 	gget8(buffer, off++, thp->enc_subenc);
1214 	gget8(buffer, off, thp->enc_tlen);
1215 	return (0);
1216 }
1217 
1218 /*
1219  * This function needs a little explanation.
1220  *
1221  * The arguments are:
1222  *
1223  *
1224  *	char *b, int amt
1225  *
1226  *		These describes the raw input SES status data and length.
1227  *
1228  *	uint8_t *ep
1229  *
1230  *		This is a map of the number of types for each element type
1231  *		in the enclosure.
1232  *
1233  *	int elt
1234  *
1235  *		This is the element type being sought. If elt is -1,
1236  *		then overall enclosure status is being sought.
1237  *
1238  *	int elm
1239  *
1240  *		This is the ordinal Mth element of type elt being sought.
1241  *
1242  *	SesComStat *sp
1243  *
1244  *		This is the output area to store the status for
1245  *		the Mth element of type Elt.
1246  */
1247 
1248 static int
1249 ses_decode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1250 {
1251 	int idx, i;
1252 
1253 	/*
1254 	 * If it's overall enclosure status being sought, get that.
1255 	 * We need at least 2 bytes of status data to get that.
1256 	 */
1257 	if (elt == -1) {
1258 		if (amt < 2)
1259 			return (-1);
1260 		gget8(b, 1, sp->comstatus);
1261 		sp->comstat[0] = 0;
1262 		sp->comstat[1] = 0;
1263 		sp->comstat[2] = 0;
1264 		return (0);
1265 	}
1266 
1267 	/*
1268 	 * Check to make sure that the Mth element is legal for type Elt.
1269 	 */
1270 
1271 	if (elm >= ep[elt])
1272 		return (-1);
1273 
1274 	/*
1275 	 * Starting at offset 8, start skipping over the storage
1276 	 * for the element types we're not interested in.
1277 	 */
1278 	for (idx = 8, i = 0; i < elt; i++) {
1279 		idx += ((ep[i] + 1) * 4);
1280 	}
1281 
1282 	/*
1283 	 * Skip over Overall status for this element type.
1284 	 */
1285 	idx += 4;
1286 
1287 	/*
1288 	 * And skip to the index for the Mth element that we're going for.
1289 	 */
1290 	idx += (4 * elm);
1291 
1292 	/*
1293 	 * Make sure we haven't overflowed the buffer.
1294 	 */
1295 	if (idx+4 > amt)
1296 		return (-1);
1297 
1298 	/*
1299 	 * Retrieve the status.
1300 	 */
1301 	gget8(b, idx++, sp->comstatus);
1302 	gget8(b, idx++, sp->comstat[0]);
1303 	gget8(b, idx++, sp->comstat[1]);
1304 	gget8(b, idx++, sp->comstat[2]);
1305 #if	0
1306 	PRINTF("Get Elt 0x%x Elm 0x%x (idx %d)\n", elt, elm, idx-4);
1307 #endif
1308 	return (0);
1309 }
1310 
1311 /*
1312  * This is the mirror function to ses_decode, but we set the 'select'
1313  * bit for the object which we're interested in. All other objects,
1314  * after a status fetch, should have that bit off. Hmm. It'd be easy
1315  * enough to ensure this, so we will.
1316  */
1317 
1318 static int
1319 ses_encode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1320 {
1321 	int idx, i;
1322 
1323 	/*
1324 	 * If it's overall enclosure status being sought, get that.
1325 	 * We need at least 2 bytes of status data to get that.
1326 	 */
1327 	if (elt == -1) {
1328 		if (amt < 2)
1329 			return (-1);
1330 		i = 0;
1331 		sset8(b, i, 0);
1332 		sset8(b, i, sp->comstatus & 0xf);
1333 #if	0
1334 		PRINTF("set EncStat %x\n", sp->comstatus);
1335 #endif
1336 		return (0);
1337 	}
1338 
1339 	/*
1340 	 * Check to make sure that the Mth element is legal for type Elt.
1341 	 */
1342 
1343 	if (elm >= ep[elt])
1344 		return (-1);
1345 
1346 	/*
1347 	 * Starting at offset 8, start skipping over the storage
1348 	 * for the element types we're not interested in.
1349 	 */
1350 	for (idx = 8, i = 0; i < elt; i++) {
1351 		idx += ((ep[i] + 1) * 4);
1352 	}
1353 
1354 	/*
1355 	 * Skip over Overall status for this element type.
1356 	 */
1357 	idx += 4;
1358 
1359 	/*
1360 	 * And skip to the index for the Mth element that we're going for.
1361 	 */
1362 	idx += (4 * elm);
1363 
1364 	/*
1365 	 * Make sure we haven't overflowed the buffer.
1366 	 */
1367 	if (idx+4 > amt)
1368 		return (-1);
1369 
1370 	/*
1371 	 * Set the status.
1372 	 */
1373 	sset8(b, idx, sp->comstatus);
1374 	sset8(b, idx, sp->comstat[0]);
1375 	sset8(b, idx, sp->comstat[1]);
1376 	sset8(b, idx, sp->comstat[2]);
1377 	idx -= 4;
1378 
1379 #if	0
1380 	PRINTF("Set Elt 0x%x Elm 0x%x (idx %d) with %x %x %x %x\n",
1381 	    elt, elm, idx, sp->comstatus, sp->comstat[0],
1382 	    sp->comstat[1], sp->comstat[2]);
1383 #endif
1384 
1385 	/*
1386 	 * Now make sure all other 'Select' bits are off.
1387 	 */
1388 	for (i = 8; i < amt; i += 4) {
1389 		if (i != idx)
1390 			b[i] &= ~0x80;
1391 	}
1392 	/*
1393 	 * And make sure the INVOP bit is clear.
1394 	 */
1395 	b[2] &= ~0x10;
1396 
1397 	return (0);
1398 }
1399 
1400 /*
1401  * SAF-TE Type Device Emulation
1402  */
1403 
1404 static int safte_getconfig(ses_softc_t *);
1405 static int safte_rdstat(ses_softc_t *, int);;
1406 static int set_objstat_sel(ses_softc_t *, ses_objstat *, int);
1407 static int wrbuf16(ses_softc_t *, uint8_t, uint8_t, uint8_t, uint8_t, int);
1408 static void wrslot_stat(ses_softc_t *, int);
1409 static int perf_slotop(ses_softc_t *, uint8_t, uint8_t, int);
1410 
1411 #define	ALL_ENC_STAT (SES_ENCSTAT_CRITICAL | SES_ENCSTAT_UNRECOV | \
1412 	SES_ENCSTAT_NONCRITICAL | SES_ENCSTAT_INFO)
1413 /*
1414  * SAF-TE specific defines- Mandatory ones only...
1415  */
1416 
1417 /*
1418  * READ BUFFER ('get' commands) IDs- placed in offset 2 of cdb
1419  */
1420 #define	SAFTE_RD_RDCFG	0x00	/* read enclosure configuration */
1421 #define	SAFTE_RD_RDESTS	0x01	/* read enclosure status */
1422 #define	SAFTE_RD_RDDSTS	0x04	/* read drive slot status */
1423 
1424 /*
1425  * WRITE BUFFER ('set' commands) IDs- placed in offset 0 of databuf
1426  */
1427 #define	SAFTE_WT_DSTAT	0x10	/* write device slot status */
1428 #define	SAFTE_WT_SLTOP	0x12	/* perform slot operation */
1429 #define	SAFTE_WT_FANSPD	0x13	/* set fan speed */
1430 #define	SAFTE_WT_ACTPWS	0x14	/* turn on/off power supply */
1431 #define	SAFTE_WT_GLOBAL	0x15	/* send global command */
1432 
1433 
1434 #define	SAFT_SCRATCH	64
1435 #define	NPSEUDO_THERM	16
1436 #define	NPSEUDO_ALARM	1
1437 struct scfg {
1438 	/*
1439 	 * Cached Configuration
1440 	 */
1441 	uint8_t	Nfans;		/* Number of Fans */
1442 	uint8_t	Npwr;		/* Number of Power Supplies */
1443 	uint8_t	Nslots;		/* Number of Device Slots */
1444 	uint8_t	DoorLock;	/* Door Lock Installed */
1445 	uint8_t	Ntherm;		/* Number of Temperature Sensors */
1446 	uint8_t	Nspkrs;		/* Number of Speakers */
1447 	uint8_t Nalarm;		/* Number of Alarms (at least one) */
1448 	/*
1449 	 * Cached Flag Bytes for Global Status
1450 	 */
1451 	uint8_t	flag1;
1452 	uint8_t	flag2;
1453 	/*
1454 	 * What object index ID is where various slots start.
1455 	 */
1456 	uint8_t	pwroff;
1457 	uint8_t	slotoff;
1458 #define	SAFT_ALARM_OFFSET(cc)	(cc)->slotoff - 1
1459 };
1460 
1461 #define	SAFT_FLG1_ALARM		0x1
1462 #define	SAFT_FLG1_GLOBFAIL	0x2
1463 #define	SAFT_FLG1_GLOBWARN	0x4
1464 #define	SAFT_FLG1_ENCPWROFF	0x8
1465 #define	SAFT_FLG1_ENCFANFAIL	0x10
1466 #define	SAFT_FLG1_ENCPWRFAIL	0x20
1467 #define	SAFT_FLG1_ENCDRVFAIL	0x40
1468 #define	SAFT_FLG1_ENCDRVWARN	0x80
1469 
1470 #define	SAFT_FLG2_LOCKDOOR	0x4
1471 #define	SAFT_PRIVATE		sizeof (struct scfg)
1472 
1473 static const char safte_2little[] = "Too Little Data Returned (%d) at line %d\n";
1474 #define	SAFT_BAIL(r, x, k, l)	\
1475 	if (r >= x) { \
1476 		SES_LOG(ssc, safte_2little, x, __LINE__);\
1477 		SES_FREE(k, l); \
1478 		return (EIO); \
1479 	}
1480 
1481 
1482 int
1483 safte_softc_init(ses_softc_t *ssc, int doinit)
1484 {
1485 	int err, i, r;
1486 	struct scfg *cc;
1487 
1488 	if (doinit == 0) {
1489 		if (ssc->ses_nobjects) {
1490 			if (ssc->ses_objmap) {
1491 				SES_FREE(ssc->ses_objmap,
1492 				    ssc->ses_nobjects * sizeof (encobj));
1493 				ssc->ses_objmap = NULL;
1494 			}
1495 			ssc->ses_nobjects = 0;
1496 		}
1497 		if (ssc->ses_private) {
1498 			SES_FREE(ssc->ses_private, SAFT_PRIVATE);
1499 			ssc->ses_private = NULL;
1500 		}
1501 		return (0);
1502 	}
1503 
1504 	if (ssc->ses_private == NULL) {
1505 		ssc->ses_private = SES_MALLOC(SAFT_PRIVATE);
1506 		if (ssc->ses_private == NULL) {
1507 			return (ENOMEM);
1508 		}
1509 		MEMZERO(ssc->ses_private, SAFT_PRIVATE);
1510 	}
1511 
1512 	ssc->ses_nobjects = 0;
1513 	ssc->ses_encstat = 0;
1514 
1515 	if ((err = safte_getconfig(ssc)) != 0) {
1516 		return (err);
1517 	}
1518 
1519 	/*
1520 	 * The number of objects here, as well as that reported by the
1521 	 * READ_BUFFER/GET_CONFIG call, are the over-temperature flags (15)
1522 	 * that get reported during READ_BUFFER/READ_ENC_STATUS.
1523 	 */
1524 	cc = ssc->ses_private;
1525 	ssc->ses_nobjects = cc->Nfans + cc->Npwr + cc->Nslots + cc->DoorLock +
1526 	    cc->Ntherm + cc->Nspkrs + NPSEUDO_THERM + NPSEUDO_ALARM;
1527 	ssc->ses_objmap = (encobj *)
1528 	    SES_MALLOC(ssc->ses_nobjects * sizeof (encobj));
1529 	if (ssc->ses_objmap == NULL) {
1530 		return (ENOMEM);
1531 	}
1532 	MEMZERO(ssc->ses_objmap, ssc->ses_nobjects * sizeof (encobj));
1533 
1534 	r = 0;
1535 	/*
1536 	 * Note that this is all arranged for the convenience
1537 	 * in later fetches of status.
1538 	 */
1539 	for (i = 0; i < cc->Nfans; i++)
1540 		ssc->ses_objmap[r++].enctype = SESTYP_FAN;
1541 	cc->pwroff = (uint8_t) r;
1542 	for (i = 0; i < cc->Npwr; i++)
1543 		ssc->ses_objmap[r++].enctype = SESTYP_POWER;
1544 	for (i = 0; i < cc->DoorLock; i++)
1545 		ssc->ses_objmap[r++].enctype = SESTYP_DOORLOCK;
1546 	for (i = 0; i < cc->Nspkrs; i++)
1547 		ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1548 	for (i = 0; i < cc->Ntherm; i++)
1549 		ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1550 	for (i = 0; i < NPSEUDO_THERM; i++)
1551 		ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1552 	ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1553 	cc->slotoff = (uint8_t) r;
1554 	for (i = 0; i < cc->Nslots; i++)
1555 		ssc->ses_objmap[r++].enctype = SESTYP_DEVICE;
1556 	return (0);
1557 }
1558 
1559 int
1560 safte_init_enc(ses_softc_t *ssc)
1561 {
1562 	int err, amt;
1563 	char *sdata;
1564 	static char cdb0[6] = { SEND_DIAGNOSTIC };
1565 	static char cdb[10] =
1566 	    { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
1567 
1568 	sdata = SES_MALLOC(SAFT_SCRATCH);
1569 	if (sdata == NULL)
1570 		return (ENOMEM);
1571 
1572 	err = ses_runcmd(ssc, cdb0, 6, NULL, 0);
1573 	if (err) {
1574 		SES_FREE(sdata, SAFT_SCRATCH);
1575 		return (err);
1576 	}
1577 	sdata[0] = SAFTE_WT_GLOBAL;
1578 	MEMZERO(&sdata[1], 15);
1579 	amt = -SAFT_SCRATCH;
1580 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1581 	SES_FREE(sdata, SAFT_SCRATCH);
1582 	return (err);
1583 }
1584 
1585 int
1586 safte_get_encstat(ses_softc_t *ssc, int slpflg)
1587 {
1588 	return (safte_rdstat(ssc, slpflg));
1589 }
1590 
1591 int
1592 safte_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflg)
1593 {
1594 	struct scfg *cc = ssc->ses_private;
1595 	if (cc == NULL)
1596 		return (0);
1597 	/*
1598 	 * Since SAF-TE devices aren't necessarily sticky in terms
1599 	 * of state, make our soft copy of enclosure status 'sticky'-
1600 	 * that is, things set in enclosure status stay set (as implied
1601 	 * by conditions set in reading object status) until cleared.
1602 	 */
1603 	ssc->ses_encstat &= ~ALL_ENC_STAT;
1604 	ssc->ses_encstat |= (encstat & ALL_ENC_STAT);
1605 	ssc->ses_encstat |= ENCI_SVALID;
1606 	cc->flag1 &= ~(SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL|SAFT_FLG1_GLOBWARN);
1607 	if ((encstat & (SES_ENCSTAT_CRITICAL|SES_ENCSTAT_UNRECOV)) != 0) {
1608 		cc->flag1 |= SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL;
1609 	} else if ((encstat & SES_ENCSTAT_NONCRITICAL) != 0) {
1610 		cc->flag1 |= SAFT_FLG1_GLOBWARN;
1611 	}
1612 	return (wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slpflg));
1613 }
1614 
1615 int
1616 safte_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflg)
1617 {
1618 	int i = (int)obp->obj_id;
1619 
1620 	if ((ssc->ses_encstat & ENCI_SVALID) == 0 ||
1621 	    (ssc->ses_objmap[i].svalid) == 0) {
1622 		int err = safte_rdstat(ssc, slpflg);
1623 		if (err)
1624 			return (err);
1625 	}
1626 	obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
1627 	obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
1628 	obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
1629 	obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
1630 	return (0);
1631 }
1632 
1633 
1634 int
1635 safte_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slp)
1636 {
1637 	int idx, err;
1638 	encobj *ep;
1639 	struct scfg *cc;
1640 
1641 
1642 	SES_VLOG(ssc, "safte_set_objstat(%d): %x %x %x %x\n",
1643 	    (int)obp->obj_id, obp->cstat[0], obp->cstat[1], obp->cstat[2],
1644 	    obp->cstat[3]);
1645 
1646 	/*
1647 	 * If this is clear, we don't do diddly.
1648 	 */
1649 	if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
1650 		return (0);
1651 	}
1652 
1653 	err = 0;
1654 	/*
1655 	 * Check to see if the common bits are set and do them first.
1656 	 */
1657 	if (obp->cstat[0] & ~SESCTL_CSEL) {
1658 		err = set_objstat_sel(ssc, obp, slp);
1659 		if (err)
1660 			return (err);
1661 	}
1662 
1663 	cc = ssc->ses_private;
1664 	if (cc == NULL)
1665 		return (0);
1666 
1667 	idx = (int)obp->obj_id;
1668 	ep = &ssc->ses_objmap[idx];
1669 
1670 	switch (ep->enctype) {
1671 	case SESTYP_DEVICE:
1672 	{
1673 		uint8_t slotop = 0;
1674 		/*
1675 		 * XXX: I should probably cache the previous state
1676 		 * XXX: of SESCTL_DEVOFF so that when it goes from
1677 		 * XXX: true to false I can then set PREPARE FOR OPERATION
1678 		 * XXX: flag in PERFORM SLOT OPERATION write buffer command.
1679 		 */
1680 		if (obp->cstat[2] & (SESCTL_RQSINS|SESCTL_RQSRMV)) {
1681 			slotop |= 0x2;
1682 		}
1683 		if (obp->cstat[2] & SESCTL_RQSID) {
1684 			slotop |= 0x4;
1685 		}
1686 		err = perf_slotop(ssc, (uint8_t) idx - (uint8_t) cc->slotoff,
1687 		    slotop, slp);
1688 		if (err)
1689 			return (err);
1690 		if (obp->cstat[3] & SESCTL_RQSFLT) {
1691 			ep->priv |= 0x2;
1692 		} else {
1693 			ep->priv &= ~0x2;
1694 		}
1695 		if (ep->priv & 0xc6) {
1696 			ep->priv &= ~0x1;
1697 		} else {
1698 			ep->priv |= 0x1;	/* no errors */
1699 		}
1700 		wrslot_stat(ssc, slp);
1701 		break;
1702 	}
1703 	case SESTYP_POWER:
1704 		if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1705 			cc->flag1 |= SAFT_FLG1_ENCPWRFAIL;
1706 		} else {
1707 			cc->flag1 &= ~SAFT_FLG1_ENCPWRFAIL;
1708 		}
1709 		err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1710 		    cc->flag2, 0, slp);
1711 		if (err)
1712 			return (err);
1713 		if (obp->cstat[3] & SESCTL_RQSTON) {
1714 			(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1715 				idx - cc->pwroff, 0, 0, slp);
1716 		} else {
1717 			(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1718 				idx - cc->pwroff, 0, 1, slp);
1719 		}
1720 		break;
1721 	case SESTYP_FAN:
1722 		if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1723 			cc->flag1 |= SAFT_FLG1_ENCFANFAIL;
1724 		} else {
1725 			cc->flag1 &= ~SAFT_FLG1_ENCFANFAIL;
1726 		}
1727 		err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1728 		    cc->flag2, 0, slp);
1729 		if (err)
1730 			return (err);
1731 		if (obp->cstat[3] & SESCTL_RQSTON) {
1732 			uint8_t fsp;
1733 			if ((obp->cstat[3] & 0x7) == 7) {
1734 				fsp = 4;
1735 			} else if ((obp->cstat[3] & 0x7) == 6) {
1736 				fsp = 3;
1737 			} else if ((obp->cstat[3] & 0x7) == 4) {
1738 				fsp = 2;
1739 			} else {
1740 				fsp = 1;
1741 			}
1742 			(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, fsp, 0, slp);
1743 		} else {
1744 			(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
1745 		}
1746 		break;
1747 	case SESTYP_DOORLOCK:
1748 		if (obp->cstat[3] & 0x1) {
1749 			cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
1750 		} else {
1751 			cc->flag2 |= SAFT_FLG2_LOCKDOOR;
1752 		}
1753 		(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1754 		    cc->flag2, 0, slp);
1755 		break;
1756 	case SESTYP_ALARM:
1757 		/*
1758 		 * On all nonzero but the 'muted' bit, we turn on the alarm,
1759 		 */
1760 		obp->cstat[3] &= ~0xa;
1761 		if (obp->cstat[3] & 0x40) {
1762 			cc->flag2 &= ~SAFT_FLG1_ALARM;
1763 		} else if (obp->cstat[3] != 0) {
1764 			cc->flag2 |= SAFT_FLG1_ALARM;
1765 		} else {
1766 			cc->flag2 &= ~SAFT_FLG1_ALARM;
1767 		}
1768 		ep->priv = obp->cstat[3];
1769 		(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1770 			cc->flag2, 0, slp);
1771 		break;
1772 	default:
1773 		break;
1774 	}
1775 	ep->svalid = 0;
1776 	return (0);
1777 }
1778 
1779 static int
1780 safte_getconfig(ses_softc_t *ssc)
1781 {
1782 	struct scfg *cfg;
1783 	int err, amt;
1784 	char *sdata;
1785 	static char cdb[10] =
1786 	    { READ_BUFFER, 1, SAFTE_RD_RDCFG, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
1787 
1788 	cfg = ssc->ses_private;
1789 	if (cfg == NULL)
1790 		return (ENXIO);
1791 
1792 	sdata = SES_MALLOC(SAFT_SCRATCH);
1793 	if (sdata == NULL)
1794 		return (ENOMEM);
1795 
1796 	amt = SAFT_SCRATCH;
1797 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1798 	if (err) {
1799 		SES_FREE(sdata, SAFT_SCRATCH);
1800 		return (err);
1801 	}
1802 	amt = SAFT_SCRATCH - amt;
1803 	if (amt < 6) {
1804 		SES_LOG(ssc, "too little data (%d) for configuration\n", amt);
1805 		SES_FREE(sdata, SAFT_SCRATCH);
1806 		return (EIO);
1807 	}
1808 	SES_VLOG(ssc, "Nfans %d Npwr %d Nslots %d Lck %d Ntherm %d Nspkrs %d\n",
1809 	    sdata[0], sdata[1], sdata[2], sdata[3], sdata[4], sdata[5]);
1810 	cfg->Nfans = sdata[0];
1811 	cfg->Npwr = sdata[1];
1812 	cfg->Nslots = sdata[2];
1813 	cfg->DoorLock = sdata[3];
1814 	cfg->Ntherm = sdata[4];
1815 	cfg->Nspkrs = sdata[5];
1816 	cfg->Nalarm = NPSEUDO_ALARM;
1817 	SES_FREE(sdata, SAFT_SCRATCH);
1818 	return (0);
1819 }
1820 
1821 static int
1822 safte_rdstat(ses_softc_t *ssc, int slpflg)
1823 {
1824 	int err, oid, r, i, hiwater, nitems, amt;
1825 	uint16_t tempflags;
1826 	size_t buflen;
1827 	uint8_t status, oencstat;
1828 	char *sdata, cdb[10];
1829 	struct scfg *cc = ssc->ses_private;
1830 
1831 
1832 	/*
1833 	 * The number of objects overstates things a bit,
1834 	 * both for the bogus 'thermometer' entries and
1835 	 * the drive status (which isn't read at the same
1836 	 * time as the enclosure status), but that's okay.
1837 	 */
1838 	buflen = 4 * cc->Nslots;
1839 	if (ssc->ses_nobjects > buflen)
1840 		buflen = ssc->ses_nobjects;
1841 	sdata = SES_MALLOC(buflen);
1842 	if (sdata == NULL)
1843 		return (ENOMEM);
1844 
1845 	cdb[0] = READ_BUFFER;
1846 	cdb[1] = 1;
1847 	cdb[2] = SAFTE_RD_RDESTS;
1848 	cdb[3] = 0;
1849 	cdb[4] = 0;
1850 	cdb[5] = 0;
1851 	cdb[6] = 0;
1852 	cdb[7] = (buflen >> 8) & 0xff;
1853 	cdb[8] = buflen & 0xff;
1854 	cdb[9] = 0;
1855 	amt = buflen;
1856 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1857 	if (err) {
1858 		SES_FREE(sdata, buflen);
1859 		return (err);
1860 	}
1861 	hiwater = buflen - amt;
1862 
1863 
1864 	/*
1865 	 * invalidate all status bits.
1866 	 */
1867 	for (i = 0; i < ssc->ses_nobjects; i++)
1868 		ssc->ses_objmap[i].svalid = 0;
1869 	oencstat = ssc->ses_encstat & ALL_ENC_STAT;
1870 	ssc->ses_encstat = 0;
1871 
1872 
1873 	/*
1874 	 * Now parse returned buffer.
1875 	 * If we didn't get enough data back,
1876 	 * that's considered a fatal error.
1877 	 */
1878 	oid = r = 0;
1879 
1880 	for (nitems = i = 0; i < cc->Nfans; i++) {
1881 		SAFT_BAIL(r, hiwater, sdata, buflen);
1882 		/*
1883 		 * 0 = Fan Operational
1884 		 * 1 = Fan is malfunctioning
1885 		 * 2 = Fan is not present
1886 		 * 0x80 = Unknown or Not Reportable Status
1887 		 */
1888 		ssc->ses_objmap[oid].encstat[1] = 0;	/* resvd */
1889 		ssc->ses_objmap[oid].encstat[2] = 0;	/* resvd */
1890 		switch ((int)(uint8_t)sdata[r]) {
1891 		case 0:
1892 			nitems++;
1893 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1894 			/*
1895 			 * We could get fancier and cache
1896 			 * fan speeds that we have set, but
1897 			 * that isn't done now.
1898 			 */
1899 			ssc->ses_objmap[oid].encstat[3] = 7;
1900 			break;
1901 
1902 		case 1:
1903 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1904 			/*
1905 			 * FAIL and FAN STOPPED synthesized
1906 			 */
1907 			ssc->ses_objmap[oid].encstat[3] = 0x40;
1908 			/*
1909 			 * Enclosure marked with CRITICAL error
1910 			 * if only one fan or no thermometers,
1911 			 * else the NONCRITICAL error is set.
1912 			 */
1913 			if (cc->Nfans == 1 || cc->Ntherm == 0)
1914 				ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1915 			else
1916 				ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1917 			break;
1918 		case 2:
1919 			ssc->ses_objmap[oid].encstat[0] =
1920 			    SES_OBJSTAT_NOTINSTALLED;
1921 			ssc->ses_objmap[oid].encstat[3] = 0;
1922 			/*
1923 			 * Enclosure marked with CRITICAL error
1924 			 * if only one fan or no thermometers,
1925 			 * else the NONCRITICAL error is set.
1926 			 */
1927 			if (cc->Nfans == 1)
1928 				ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1929 			else
1930 				ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1931 			break;
1932 		case 0x80:
1933 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1934 			ssc->ses_objmap[oid].encstat[3] = 0;
1935 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
1936 			break;
1937 		default:
1938 			ssc->ses_objmap[oid].encstat[0] =
1939 			    SES_OBJSTAT_UNSUPPORTED;
1940 			SES_LOG(ssc, "Unknown fan%d status 0x%x\n", i,
1941 			    sdata[r] & 0xff);
1942 			break;
1943 		}
1944 		ssc->ses_objmap[oid++].svalid = 1;
1945 		r++;
1946 	}
1947 
1948 	/*
1949 	 * No matter how you cut it, no cooling elements when there
1950 	 * should be some there is critical.
1951 	 */
1952 	if (cc->Nfans && nitems == 0) {
1953 		ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1954 	}
1955 
1956 
1957 	for (i = 0; i < cc->Npwr; i++) {
1958 		SAFT_BAIL(r, hiwater, sdata, buflen);
1959 		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1960 		ssc->ses_objmap[oid].encstat[1] = 0;	/* resvd */
1961 		ssc->ses_objmap[oid].encstat[2] = 0;	/* resvd */
1962 		ssc->ses_objmap[oid].encstat[3] = 0x20;	/* requested on */
1963 		switch ((uint8_t)sdata[r]) {
1964 		case 0x00:	/* pws operational and on */
1965 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1966 			break;
1967 		case 0x01:	/* pws operational and off */
1968 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1969 			ssc->ses_objmap[oid].encstat[3] = 0x10;
1970 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
1971 			break;
1972 		case 0x10:	/* pws is malfunctioning and commanded on */
1973 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1974 			ssc->ses_objmap[oid].encstat[3] = 0x61;
1975 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1976 			break;
1977 
1978 		case 0x11:	/* pws is malfunctioning and commanded off */
1979 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
1980 			ssc->ses_objmap[oid].encstat[3] = 0x51;
1981 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1982 			break;
1983 		case 0x20:	/* pws is not present */
1984 			ssc->ses_objmap[oid].encstat[0] =
1985 			    SES_OBJSTAT_NOTINSTALLED;
1986 			ssc->ses_objmap[oid].encstat[3] = 0;
1987 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
1988 			break;
1989 		case 0x21:	/* pws is present */
1990 			/*
1991 			 * This is for enclosures that cannot tell whether the
1992 			 * device is on or malfunctioning, but know that it is
1993 			 * present. Just fall through.
1994 			 */
1995 			/* FALLTHROUGH */
1996 		case 0x80:	/* Unknown or Not Reportable Status */
1997 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1998 			ssc->ses_objmap[oid].encstat[3] = 0;
1999 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
2000 			break;
2001 		default:
2002 			SES_LOG(ssc, "unknown power supply %d status (0x%x)\n",
2003 			    i, sdata[r] & 0xff);
2004 			break;
2005 		}
2006 		ssc->ses_objmap[oid++].svalid = 1;
2007 		r++;
2008 	}
2009 
2010 	/*
2011 	 * Skip over Slot SCSI IDs
2012 	 */
2013 	r += cc->Nslots;
2014 
2015 	/*
2016 	 * We always have doorlock status, no matter what,
2017 	 * but we only save the status if we have one.
2018 	 */
2019 	SAFT_BAIL(r, hiwater, sdata, buflen);
2020 	if (cc->DoorLock) {
2021 		/*
2022 		 * 0 = Door Locked
2023 		 * 1 = Door Unlocked, or no Lock Installed
2024 		 * 0x80 = Unknown or Not Reportable Status
2025 		 */
2026 		ssc->ses_objmap[oid].encstat[1] = 0;
2027 		ssc->ses_objmap[oid].encstat[2] = 0;
2028 		switch ((uint8_t)sdata[r]) {
2029 		case 0:
2030 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2031 			ssc->ses_objmap[oid].encstat[3] = 0;
2032 			break;
2033 		case 1:
2034 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2035 			ssc->ses_objmap[oid].encstat[3] = 1;
2036 			break;
2037 		case 0x80:
2038 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2039 			ssc->ses_objmap[oid].encstat[3] = 0;
2040 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
2041 			break;
2042 		default:
2043 			ssc->ses_objmap[oid].encstat[0] =
2044 			    SES_OBJSTAT_UNSUPPORTED;
2045 			SES_LOG(ssc, "unknown lock status 0x%x\n",
2046 			    sdata[r] & 0xff);
2047 			break;
2048 		}
2049 		ssc->ses_objmap[oid++].svalid = 1;
2050 	}
2051 	r++;
2052 
2053 	/*
2054 	 * We always have speaker status, no matter what,
2055 	 * but we only save the status if we have one.
2056 	 */
2057 	SAFT_BAIL(r, hiwater, sdata, buflen);
2058 	if (cc->Nspkrs) {
2059 		ssc->ses_objmap[oid].encstat[1] = 0;
2060 		ssc->ses_objmap[oid].encstat[2] = 0;
2061 		if (sdata[r] == 1) {
2062 			/*
2063 			 * We need to cache tone urgency indicators.
2064 			 * Someday.
2065 			 */
2066 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
2067 			ssc->ses_objmap[oid].encstat[3] = 0x8;
2068 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2069 		} else if (sdata[r] == 0) {
2070 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2071 			ssc->ses_objmap[oid].encstat[3] = 0;
2072 		} else {
2073 			ssc->ses_objmap[oid].encstat[0] =
2074 			    SES_OBJSTAT_UNSUPPORTED;
2075 			ssc->ses_objmap[oid].encstat[3] = 0;
2076 			SES_LOG(ssc, "unknown spkr status 0x%x\n",
2077 			    sdata[r] & 0xff);
2078 		}
2079 		ssc->ses_objmap[oid++].svalid = 1;
2080 	}
2081 	r++;
2082 
2083 	for (i = 0; i < cc->Ntherm; i++) {
2084 		SAFT_BAIL(r, hiwater, sdata, buflen);
2085 		/*
2086 		 * Status is a range from -10 to 245 deg Celsius,
2087 		 * which we need to normalize to -20 to -245 according
2088 		 * to the latest SCSI spec, which makes little
2089 		 * sense since this would overflow an 8bit value.
2090 		 * Well, still, the base normalization is -20,
2091 		 * not -10, so we have to adjust.
2092 		 *
2093 		 * So what's over and under temperature?
2094 		 * Hmm- we'll state that 'normal' operating
2095 		 * is 10 to 40 deg Celsius.
2096 		 */
2097 		ssc->ses_objmap[oid].encstat[1] = 0;
2098 		ssc->ses_objmap[oid].encstat[2] =
2099 		    ((unsigned int) sdata[r]) - 10;
2100 		if (sdata[r] < 20) {
2101 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2102 			/*
2103 			 * Set 'under temperature' failure.
2104 			 */
2105 			ssc->ses_objmap[oid].encstat[3] = 2;
2106 			ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2107 		} else if (sdata[r] > 30) {
2108 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2109 			/*
2110 			 * Set 'over temperature' failure.
2111 			 */
2112 			ssc->ses_objmap[oid].encstat[3] = 8;
2113 			ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2114 		} else {
2115 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2116 		}
2117 		ssc->ses_objmap[oid++].svalid = 1;
2118 		r++;
2119 	}
2120 
2121 	/*
2122 	 * Now, for "pseudo" thermometers, we have two bytes
2123 	 * of information in enclosure status- 16 bits. Actually,
2124 	 * the MSB is a single TEMP ALERT flag indicating whether
2125 	 * any other bits are set, but, thanks to fuzzy thinking,
2126 	 * in the SAF-TE spec, this can also be set even if no
2127 	 * other bits are set, thus making this really another
2128 	 * binary temperature sensor.
2129 	 */
2130 
2131 	SAFT_BAIL(r, hiwater, sdata, buflen);
2132 	tempflags = sdata[r++];
2133 	SAFT_BAIL(r, hiwater, sdata, buflen);
2134 	tempflags |= (tempflags << 8) | sdata[r++];
2135 
2136 	for (i = 0; i < NPSEUDO_THERM; i++) {
2137 		ssc->ses_objmap[oid].encstat[1] = 0;
2138 		if (tempflags & (1 << (NPSEUDO_THERM - i - 1))) {
2139 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2140 			ssc->ses_objmap[4].encstat[2] = 0xff;
2141 			/*
2142 			 * Set 'over temperature' failure.
2143 			 */
2144 			ssc->ses_objmap[oid].encstat[3] = 8;
2145 			ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2146 		} else {
2147 			/*
2148 			 * We used to say 'not available' and synthesize a
2149 			 * nominal 30 deg (C)- that was wrong. Actually,
2150 			 * Just say 'OK', and use the reserved value of
2151 			 * zero.
2152 			 */
2153 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2154 			ssc->ses_objmap[oid].encstat[2] = 0;
2155 			ssc->ses_objmap[oid].encstat[3] = 0;
2156 		}
2157 		ssc->ses_objmap[oid++].svalid = 1;
2158 	}
2159 
2160 	/*
2161 	 * Get alarm status.
2162 	 */
2163 	ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2164 	ssc->ses_objmap[oid].encstat[3] = ssc->ses_objmap[oid].priv;
2165 	ssc->ses_objmap[oid++].svalid = 1;
2166 
2167 	/*
2168 	 * Now get drive slot status
2169 	 */
2170 	cdb[2] = SAFTE_RD_RDDSTS;
2171 	amt = buflen;
2172 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2173 	if (err) {
2174 		SES_FREE(sdata, buflen);
2175 		return (err);
2176 	}
2177 	hiwater = buflen - amt;
2178 	for (r = i = 0; i < cc->Nslots; i++, r += 4) {
2179 		SAFT_BAIL(r+3, hiwater, sdata, buflen);
2180 		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNSUPPORTED;
2181 		ssc->ses_objmap[oid].encstat[1] = (uint8_t) i;
2182 		ssc->ses_objmap[oid].encstat[2] = 0;
2183 		ssc->ses_objmap[oid].encstat[3] = 0;
2184 		status = sdata[r+3];
2185 		if ((status & 0x1) == 0) {	/* no device */
2186 			ssc->ses_objmap[oid].encstat[0] =
2187 			    SES_OBJSTAT_NOTINSTALLED;
2188 		} else {
2189 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2190 		}
2191 		if (status & 0x2) {
2192 			ssc->ses_objmap[oid].encstat[2] = 0x8;
2193 		}
2194 		if ((status & 0x4) == 0) {
2195 			ssc->ses_objmap[oid].encstat[3] = 0x10;
2196 		}
2197 		ssc->ses_objmap[oid++].svalid = 1;
2198 	}
2199 	/* see comment below about sticky enclosure status */
2200 	ssc->ses_encstat |= ENCI_SVALID | oencstat;
2201 	SES_FREE(sdata, buflen);
2202 	return (0);
2203 }
2204 
2205 static int
2206 set_objstat_sel(ses_softc_t *ssc, ses_objstat *obp, int slp)
2207 {
2208 	int idx;
2209 	encobj *ep;
2210 	struct scfg *cc = ssc->ses_private;
2211 
2212 	if (cc == NULL)
2213 		return (0);
2214 
2215 	idx = (int)obp->obj_id;
2216 	ep = &ssc->ses_objmap[idx];
2217 
2218 	switch (ep->enctype) {
2219 	case SESTYP_DEVICE:
2220 		if (obp->cstat[0] & SESCTL_PRDFAIL) {
2221 			ep->priv |= 0x40;
2222 		}
2223 		/* SESCTL_RSTSWAP has no correspondence in SAF-TE */
2224 		if (obp->cstat[0] & SESCTL_DISABLE) {
2225 			ep->priv |= 0x80;
2226 			/*
2227 			 * Hmm. Try to set the 'No Drive' flag.
2228 			 * Maybe that will count as a 'disable'.
2229 			 */
2230 		}
2231 		if (ep->priv & 0xc6) {
2232 			ep->priv &= ~0x1;
2233 		} else {
2234 			ep->priv |= 0x1;	/* no errors */
2235 		}
2236 		wrslot_stat(ssc, slp);
2237 		break;
2238 	case SESTYP_POWER:
2239 		/*
2240 		 * Okay- the only one that makes sense here is to
2241 		 * do the 'disable' for a power supply.
2242 		 */
2243 		if (obp->cstat[0] & SESCTL_DISABLE) {
2244 			(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
2245 				idx - cc->pwroff, 0, 0, slp);
2246 		}
2247 		break;
2248 	case SESTYP_FAN:
2249 		/*
2250 		 * Okay- the only one that makes sense here is to
2251 		 * set fan speed to zero on disable.
2252 		 */
2253 		if (obp->cstat[0] & SESCTL_DISABLE) {
2254 			/* remember- fans are the first items, so idx works */
2255 			(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
2256 		}
2257 		break;
2258 	case SESTYP_DOORLOCK:
2259 		/*
2260 		 * Well, we can 'disable' the lock.
2261 		 */
2262 		if (obp->cstat[0] & SESCTL_DISABLE) {
2263 			cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
2264 			(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2265 				cc->flag2, 0, slp);
2266 		}
2267 		break;
2268 	case SESTYP_ALARM:
2269 		/*
2270 		 * Well, we can 'disable' the alarm.
2271 		 */
2272 		if (obp->cstat[0] & SESCTL_DISABLE) {
2273 			cc->flag2 &= ~SAFT_FLG1_ALARM;
2274 			ep->priv |= 0x40;	/* Muted */
2275 			(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2276 				cc->flag2, 0, slp);
2277 		}
2278 		break;
2279 	default:
2280 		break;
2281 	}
2282 	ep->svalid = 0;
2283 	return (0);
2284 }
2285 
2286 /*
2287  * This function handles all of the 16 byte WRITE BUFFER commands.
2288  */
2289 static int
2290 wrbuf16(ses_softc_t *ssc, uint8_t op, uint8_t b1, uint8_t b2,
2291     uint8_t b3, int slp)
2292 {
2293 	int err, amt;
2294 	char *sdata;
2295 	struct scfg *cc = ssc->ses_private;
2296 	static char cdb[10] = { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
2297 
2298 	if (cc == NULL)
2299 		return (0);
2300 
2301 	sdata = SES_MALLOC(16);
2302 	if (sdata == NULL)
2303 		return (ENOMEM);
2304 
2305 	SES_VLOG(ssc, "saf_wrbuf16 %x %x %x %x\n", op, b1, b2, b3);
2306 
2307 	sdata[0] = op;
2308 	sdata[1] = b1;
2309 	sdata[2] = b2;
2310 	sdata[3] = b3;
2311 	MEMZERO(&sdata[4], 12);
2312 	amt = -16;
2313 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2314 	SES_FREE(sdata, 16);
2315 	return (err);
2316 }
2317 
2318 /*
2319  * This function updates the status byte for the device slot described.
2320  *
2321  * Since this is an optional SAF-TE command, there's no point in
2322  * returning an error.
2323  */
2324 static void
2325 wrslot_stat(ses_softc_t *ssc, int slp)
2326 {
2327 	int i, amt;
2328 	encobj *ep;
2329 	char cdb[10], *sdata;
2330 	struct scfg *cc = ssc->ses_private;
2331 
2332 	if (cc == NULL)
2333 		return;
2334 
2335 	SES_VLOG(ssc, "saf_wrslot\n");
2336 	cdb[0] = WRITE_BUFFER;
2337 	cdb[1] = 1;
2338 	cdb[2] = 0;
2339 	cdb[3] = 0;
2340 	cdb[4] = 0;
2341 	cdb[5] = 0;
2342 	cdb[6] = 0;
2343 	cdb[7] = 0;
2344 	cdb[8] = cc->Nslots * 3 + 1;
2345 	cdb[9] = 0;
2346 
2347 	sdata = SES_MALLOC(cc->Nslots * 3 + 1);
2348 	if (sdata == NULL)
2349 		return;
2350 	MEMZERO(sdata, cc->Nslots * 3 + 1);
2351 
2352 	sdata[0] = SAFTE_WT_DSTAT;
2353 	for (i = 0; i < cc->Nslots; i++) {
2354 		ep = &ssc->ses_objmap[cc->slotoff + i];
2355 		SES_VLOG(ssc, "saf_wrslot %d <- %x\n", i, ep->priv & 0xff);
2356 		sdata[1 + (3 * i)] = ep->priv & 0xff;
2357 	}
2358 	amt = -(cc->Nslots * 3 + 1);
2359 	(void) ses_runcmd(ssc, cdb, 10, sdata, &amt);
2360 	SES_FREE(sdata, cc->Nslots * 3 + 1);
2361 }
2362 
2363 /*
2364  * This function issues the "PERFORM SLOT OPERATION" command.
2365  */
2366 static int
2367 perf_slotop(ses_softc_t *ssc, uint8_t slot, uint8_t opflag, int slp)
2368 {
2369 	int err, amt;
2370 	char *sdata;
2371 	struct scfg *cc = ssc->ses_private;
2372 	static char cdb[10] =
2373 	    { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
2374 
2375 	if (cc == NULL)
2376 		return (0);
2377 
2378 	sdata = SES_MALLOC(SAFT_SCRATCH);
2379 	if (sdata == NULL)
2380 		return (ENOMEM);
2381 	MEMZERO(sdata, SAFT_SCRATCH);
2382 
2383 	sdata[0] = SAFTE_WT_SLTOP;
2384 	sdata[1] = slot;
2385 	sdata[2] = opflag;
2386 	SES_VLOG(ssc, "saf_slotop slot %d op %x\n", slot, opflag);
2387 	amt = -SAFT_SCRATCH;
2388 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2389 	SES_FREE(sdata, SAFT_SCRATCH);
2390 	return (err);
2391 }
2392