xref: /netbsd-src/sys/dev/scsipi/ses.c (revision 4472dbe5e3bd91ef2540bada7a7ca7384627ff9b)
1 /*	$NetBSD: ses.c,v 1.6 2000/05/22 16:52:03 thorpej Exp $ */
2 /*
3  * Copyright (C) 2000 National Aeronautics & Space Administration
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. The name of the author may not be used to endorse or promote products
12  *    derived from this software without specific prior written permission
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24  *
25  * Author:	mjacob@nas.nasa.gov
26  */
27 
28 
29 #include "opt_scsi.h"
30 
31 #include <sys/types.h>
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/kernel.h>
35 #include <sys/file.h>
36 #include <sys/stat.h>
37 #include <sys/ioctl.h>
38 #include <sys/scsiio.h>
39 #include <sys/buf.h>
40 #include <sys/uio.h>
41 #include <sys/malloc.h>
42 #include <sys/errno.h>
43 #include <sys/device.h>
44 #include <sys/disklabel.h>
45 #include <sys/disk.h>
46 #include <sys/proc.h>
47 #include <sys/conf.h>
48 #include <sys/vnode.h>
49 #include <machine/stdarg.h>
50 
51 #include <dev/scsipi/scsipi_all.h>
52 #include <dev/scsipi/scsi_all.h>
53 #include <dev/scsipi/scsipi_disk.h>
54 #include <dev/scsipi/scsi_disk.h>
55 #include <dev/scsipi/scsiconf.h>
56 #include <dev/scsipi/ses.h>
57 
58 /*
59  * Platform Independent Driver Internal Definitions for SES devices.
60  */
61 typedef enum {
62 	SES_NONE,
63 	SES_SES_SCSI2,
64 	SES_SES,
65 	SES_SES_PASSTHROUGH,
66 	SES_SEN,
67 	SES_SAFT
68 } enctyp;
69 
70 struct ses_softc;
71 typedef struct ses_softc ses_softc_t;
72 typedef struct {
73 	int (*softc_init) 	__P((ses_softc_t *, int));
74 	int (*init_enc)		__P((ses_softc_t *));
75 	int (*get_encstat)	__P((ses_softc_t *, int));
76 	int (*set_encstat)	__P((ses_softc_t *, ses_encstat, int));
77 	int (*get_objstat)	__P((ses_softc_t *, ses_objstat *, int));
78 	int (*set_objstat)	__P((ses_softc_t *, ses_objstat *, int));
79 } encvec;
80 
81 #define	ENCI_SVALID	0x80
82 
83 typedef struct {
84 	uint32_t
85 		enctype	: 8,		/* enclosure type */
86 		subenclosure : 8,	/* subenclosure id */
87 		svalid	: 1,		/* enclosure information valid */
88 		priv	: 15;		/* private data, per object */
89 	uint8_t	encstat[4];	/* state && stats */
90 } encobj;
91 
92 #define	SEN_ID		"UNISYS           SUN_SEN"
93 #define	SEN_ID_LEN	24
94 
95 static enctyp ses_type __P((struct scsipi_inquiry_data *));
96 
97 
98 /* Forward reference to Enclosure Functions */
99 static int ses_softc_init __P((ses_softc_t *, int));
100 static int ses_init_enc __P((ses_softc_t *));
101 static int ses_get_encstat __P((ses_softc_t *, int));
102 static int ses_set_encstat __P((ses_softc_t *, uint8_t, int));
103 static int ses_get_objstat __P((ses_softc_t *, ses_objstat *, int));
104 static int ses_set_objstat __P((ses_softc_t *, ses_objstat *, int));
105 
106 static int safte_softc_init __P((ses_softc_t *, int));
107 static int safte_init_enc __P((ses_softc_t *));
108 static int safte_get_encstat __P((ses_softc_t *, int));
109 static int safte_set_encstat __P((ses_softc_t *, uint8_t, int));
110 static int safte_get_objstat __P((ses_softc_t *, ses_objstat *, int));
111 static int safte_set_objstat __P((ses_softc_t *, ses_objstat *, int));
112 
113 /*
114  * Platform implementation defines/functions for SES internal kernel stuff
115  */
116 
117 #define	STRNCMP			strncmp
118 #define	PRINTF			printf
119 #define	SES_LOG			ses_log
120 #if	defined(DEBUG) || defined(SCSIDEBUG)
121 #define	SES_VLOG		ses_log
122 #else
123 #define	SES_VLOG		if (0) ses_log
124 #endif
125 #define	SES_MALLOC(amt)		malloc(amt, M_DEVBUF, M_NOWAIT)
126 #define	SES_FREE(ptr, amt)	free(ptr, M_DEVBUF)
127 #define	MEMZERO			bzero
128 #define	MEMCPY(dest, src, amt)	bcopy(src, dest, amt)
129 #define	RECEIVE_DIAGNOSTIC	0x1c
130 #define	SEND_DIAGNOSTIC		0x1d
131 #define	WRITE_BUFFER		0x3b
132 #define	READ_BUFFER		0x3c
133 
134 int sesopen __P((dev_t, int, int, struct proc *));
135 int sesclose __P((dev_t, int, int, struct proc *));
136 int sesioctl __P((dev_t, u_long, caddr_t, int, struct proc *));
137 
138 static int ses_runcmd	__P((struct ses_softc *, char *, int, char *, int *));
139 static void ses_log	__P((struct ses_softc *, const char *, ...));
140 
141 /*
142  * General NetBSD kernel stuff.
143  */
144 
145 struct ses_softc {
146 	struct device	sc_device;
147 	struct scsipi_link *sc_link;
148 	enctyp		ses_type;	/* type of enclosure */
149 	encvec		ses_vec;	/* vector to handlers */
150 	void *		ses_private;	/* per-type private data */
151 	encobj *	ses_objmap;	/* objects */
152 	u_int32_t	ses_nobjects;	/* number of objects */
153 	ses_encstat	ses_encstat;	/* overall status */
154 	u_int8_t	ses_flags;
155 };
156 #define	SES_FLAG_INVALID	0x01
157 #define	SES_FLAG_OPEN		0x02
158 #define	SES_FLAG_INITIALIZED	0x04
159 
160 #define SESUNIT(x)       (minor((x)))
161 
162 static int ses_match __P((struct device *, struct cfdata *, void *));
163 static void ses_attach __P((struct device *, struct device *, void *));
164 static enctyp ses_device_type __P((struct scsipibus_attach_args *));
165 
166 struct cfattach ses_ca = {
167 	sizeof (struct ses_softc), ses_match, ses_attach
168 };
169 extern struct cfdriver ses_cd;
170 
171 struct scsipi_device ses_switch = {
172 	NULL,
173 	NULL,
174 	NULL,
175 	NULL
176 };
177 
178 
179 int
180 ses_match(parent, match, aux)
181 	struct device *parent;
182 	struct cfdata *match;
183 	void *aux;
184 {
185 	struct scsipibus_attach_args *sa = aux;
186 
187 	switch (ses_device_type(sa)) {
188 	case SES_SES:
189 	case SES_SES_SCSI2:
190 	case SES_SEN:
191 	case SES_SAFT:
192 	case SES_SES_PASSTHROUGH:
193 		/*
194 		 * For these devices, it's a perfect match.
195 		 */
196 		return (24);
197 	default:
198 		return (0);
199 	}
200 }
201 
202 
203 /*
204  * Complete the attachment.
205  *
206  * We have to repeat the rerun of INQUIRY data as above because
207  * it's not until the return from the match routine that we have
208  * the softc available to set stuff in.
209  */
210 void
211 ses_attach(parent, self, aux)
212 	struct device *parent;
213 	struct device *self;
214 	void *aux;
215 {
216 	char *tname;
217 	struct ses_softc *softc = (void *)self;
218 	struct scsipibus_attach_args *sa = aux;
219 	struct scsipi_link *sc_link = sa->sa_sc_link;
220 
221 	SC_DEBUG(sc_link, SDEV_DB2, ("ssattach: "));
222 	softc->sc_link = sa->sa_sc_link;
223 	sc_link->device = &ses_switch;
224 	sc_link->device_softc = softc;
225 	sc_link->openings = 1;
226 
227 	softc->ses_type = ses_device_type(sa);
228 	switch (softc->ses_type) {
229 	case SES_SES:
230 	case SES_SES_SCSI2:
231         case SES_SES_PASSTHROUGH:
232 		softc->ses_vec.softc_init = ses_softc_init;
233 		softc->ses_vec.init_enc = ses_init_enc;
234 		softc->ses_vec.get_encstat = ses_get_encstat;
235 		softc->ses_vec.set_encstat = ses_set_encstat;
236 		softc->ses_vec.get_objstat = ses_get_objstat;
237 		softc->ses_vec.set_objstat = ses_set_objstat;
238 		break;
239         case SES_SAFT:
240 		softc->ses_vec.softc_init = safte_softc_init;
241 		softc->ses_vec.init_enc = safte_init_enc;
242 		softc->ses_vec.get_encstat = safte_get_encstat;
243 		softc->ses_vec.set_encstat = safte_set_encstat;
244 		softc->ses_vec.get_objstat = safte_get_objstat;
245 		softc->ses_vec.set_objstat = safte_set_objstat;
246 		break;
247         case SES_SEN:
248 		break;
249 	case SES_NONE:
250 	default:
251 		break;
252 	}
253 
254 	switch (softc->ses_type) {
255 	default:
256 	case SES_NONE:
257 		tname = "No SES device";
258 		break;
259 	case SES_SES_SCSI2:
260 		tname = "SCSI-2 SES Device";
261 		break;
262 	case SES_SES:
263 		tname = "SCSI-3 SES Device";
264 		break;
265         case SES_SES_PASSTHROUGH:
266 		tname = "SES Passthrough Device";
267 		break;
268         case SES_SEN:
269 		tname = "UNISYS SEN Device (NOT HANDLED YET)";
270 		break;
271         case SES_SAFT:
272 		tname = "SAF-TE Compliant Device";
273 		break;
274 	}
275 	printf("\n%s: %s\n", softc->sc_device.dv_xname, tname);
276 }
277 
278 
279 static enctyp
280 ses_device_type(sa)
281 	struct scsipibus_attach_args *sa;
282 {
283 	struct scsipi_inquiry_data *inqp = sa->sa_inqptr;
284 
285 	if (inqp == NULL)
286 		return (SES_NONE);
287 
288 	return (ses_type(inqp));
289 }
290 
291 int
292 sesopen(dev, flags, fmt, p)
293 	dev_t dev;
294 	int flags;
295 	int fmt;
296 	struct proc *p;
297 {
298 	struct ses_softc *softc;
299 	int error, unit;
300 
301 	unit = SESUNIT(dev);
302 	if (unit >= ses_cd.cd_ndevs)
303 		return (ENXIO);
304 	softc = ses_cd.cd_devs[unit];
305 	if (softc == NULL)
306 		return (ENXIO);
307 
308 	if (softc->ses_flags & SES_FLAG_INVALID) {
309 		error = ENXIO;
310 		goto out;
311 	}
312 	if (softc->ses_flags & SES_FLAG_OPEN) {
313 		error = EBUSY;
314 		goto out;
315 	}
316 	if (softc->ses_vec.softc_init == NULL) {
317 		error = ENXIO;
318 		goto out;
319 	}
320 	error = scsipi_adapter_addref(softc->sc_link);
321 	if (error != 0)
322                 goto out;
323 
324 
325 	softc->ses_flags |= SES_FLAG_OPEN;
326 	if ((softc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
327 		error = (*softc->ses_vec.softc_init)(softc, 1);
328 		if (error)
329 			softc->ses_flags &= ~SES_FLAG_OPEN;
330 		else
331 			softc->ses_flags |= SES_FLAG_INITIALIZED;
332 	}
333 
334 out:
335 	return (error);
336 }
337 
338 int
339 sesclose(dev, flags, fmt, p)
340 	dev_t dev;
341 	int flags;
342 	int fmt;
343 	struct proc *p;
344 {
345 	struct ses_softc *softc;
346 	int unit;
347 
348 	unit = SESUNIT(dev);
349 	if (unit >= ses_cd.cd_ndevs)
350 		return (ENXIO);
351 	softc = ses_cd.cd_devs[unit];
352 	if (softc == NULL)
353 		return (ENXIO);
354 
355 	scsipi_wait_drain(softc->sc_link);
356 	scsipi_adapter_delref(softc->sc_link);
357 	softc->ses_flags &= ~SES_FLAG_OPEN;
358 	return (0);
359 }
360 
361 int
362 sesioctl(dev, cmd, arg_addr, flag, p)
363 	dev_t dev;
364 	u_long cmd;
365 	caddr_t arg_addr;
366 	int flag;
367 	struct proc *p;
368 {
369 	ses_encstat tmp;
370 	ses_objstat objs;
371 	ses_object obj, *uobj;
372 	struct ses_softc *ssc = ses_cd.cd_devs[SESUNIT(dev)];
373 	void *addr;
374 	int error, i;
375 
376 
377 	if (arg_addr)
378 		addr = *((caddr_t *) arg_addr);
379 	else
380 		addr = NULL;
381 
382 	SC_DEBUG(ssc->sc_link, SDEV_DB2, ("sesioctl 0x%lx ", cmd));
383 
384 	/*
385 	 * Now check to see whether we're initialized or not.
386 	 */
387 	if ((ssc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
388 		return (ENODEV);
389 	}
390 
391 	error = 0;
392 
393 	/*
394 	 * If this command can change the device's state,
395 	 * we must have the device open for writing.
396 	 */
397 	switch (cmd) {
398 	case SESIOC_GETNOBJ:
399 	case SESIOC_GETOBJMAP:
400 	case SESIOC_GETENCSTAT:
401 	case SESIOC_GETOBJSTAT:
402 		break;
403 	default:
404 		if ((flag & FWRITE) == 0) {
405 			return (EBADF);
406 		}
407 	}
408 
409 	switch (cmd) {
410 	case SESIOC_GETNOBJ:
411 		error = copyout(&ssc->ses_nobjects, addr,
412 		    sizeof (ssc->ses_nobjects));
413 		break;
414 
415 	case SESIOC_GETOBJMAP:
416 		for (uobj = addr, i = 0; i != ssc->ses_nobjects; i++, uobj++) {
417 			obj.obj_id = i;
418 			obj.subencid = ssc->ses_objmap[i].subenclosure;
419 			obj.object_type = ssc->ses_objmap[i].enctype;
420 			error = copyout(&obj, uobj, sizeof (ses_object));
421 			if (error) {
422 				break;
423 			}
424 		}
425 		break;
426 
427 	case SESIOC_GETENCSTAT:
428 		error = (*ssc->ses_vec.get_encstat)(ssc, 1);
429 		if (error)
430 			break;
431 		tmp = ssc->ses_encstat & ~ENCI_SVALID;
432 		error = copyout(&tmp, addr, sizeof (ses_encstat));
433 		ssc->ses_encstat = tmp;
434 		break;
435 
436 	case SESIOC_SETENCSTAT:
437 		error = copyin(addr, &tmp, sizeof (ses_encstat));
438 		if (error)
439 			break;
440 		error = (*ssc->ses_vec.set_encstat)(ssc, tmp, 1);
441 		break;
442 
443 	case SESIOC_GETOBJSTAT:
444 		error = copyin(addr, &objs, sizeof (ses_objstat));
445 		if (error)
446 			break;
447 		if (objs.obj_id >= ssc->ses_nobjects) {
448 			error = EINVAL;
449 			break;
450 		}
451 		error = (*ssc->ses_vec.get_objstat)(ssc, &objs, 1);
452 		if (error)
453 			break;
454 		error = copyout(&objs, addr, sizeof (ses_objstat));
455 		/*
456 		 * Always (for now) invalidate entry.
457 		 */
458 		ssc->ses_objmap[objs.obj_id].svalid = 0;
459 		break;
460 
461 	case SESIOC_SETOBJSTAT:
462 		error = copyin(addr, &objs, sizeof (ses_objstat));
463 		if (error)
464 			break;
465 
466 		if (objs.obj_id >= ssc->ses_nobjects) {
467 			error = EINVAL;
468 			break;
469 		}
470 		error = (*ssc->ses_vec.set_objstat)(ssc, &objs, 1);
471 
472 		/*
473 		 * Always (for now) invalidate entry.
474 		 */
475 		ssc->ses_objmap[objs.obj_id].svalid = 0;
476 		break;
477 
478 	case SESIOC_INIT:
479 
480 		error = (*ssc->ses_vec.init_enc)(ssc);
481 		break;
482 
483 	default:
484 		error = scsipi_do_ioctl(ssc->sc_link, dev, cmd, addr, flag, p);
485 		break;
486 	}
487 	return (error);
488 }
489 
490 static int
491 ses_runcmd(struct ses_softc *ssc, char *cdb, int cdbl, char *dptr, int *dlenp)
492 {
493 	struct scsipi_generic sgen;
494 	int dl, flg, error;
495 
496 	if (dptr) {
497 		if ((dl = *dlenp) < 0) {
498 			dl = -dl;
499 			flg = XS_CTL_DATA_OUT;
500 		} else {
501 			flg = XS_CTL_DATA_IN;
502 		}
503 	} else {
504 		dl = 0;
505 		flg = 0;
506 	}
507 
508 	if (cdbl > sizeof (struct scsipi_generic)) {
509 		cdbl = sizeof (struct scsipi_generic);
510 	}
511 	bcopy(cdb, &sgen, cdbl);
512 #ifndef	SCSIDEBUG
513 	flg |= XS_CTL_SILENT;
514 #endif
515 	error = scsipi_command(ssc->sc_link, &sgen, cdbl,
516 	    (u_char *) dptr, dl, SCSIPIRETRIES, 30000, NULL, flg);
517 
518 	if (error == 0 && dptr)
519 		*dlenp = 0;
520 
521 	return (error);
522 }
523 
524 #ifdef	__STDC__
525 static void
526 ses_log(struct ses_softc *ssc, const char *fmt, ...)
527 {
528 	va_list ap;
529 
530 	printf("%s: ", ssc->sc_device.dv_xname);
531 	va_start(ap, fmt);
532 	vprintf(fmt, ap);
533 	va_end(ap);
534 }
535 #else
536 static void
537 ses_log(ssc, fmt, va_alist)
538 	struct ses_softc *ssc;
539 	char *fmt;
540 	va_dcl
541 {
542 	va_list ap;
543 
544 	printf("%s: ", ssc->sc_device.dv_xname);
545 	va_start(ap, fmt);
546 	vprintf(fmt, ap);
547 	va_end(ap);
548 }
549 #endif
550 
551 /*
552  * The code after this point runs on many platforms,
553  * so forgive the slightly awkward and nonconforming
554  * appearance.
555  */
556 
557 /*
558  * Is this a device that supports enclosure services?
559  *
560  * It's a a pretty simple ruleset- if it is device type 0x0D (13), it's
561  * an SES device. If it happens to be an old UNISYS SEN device, we can
562  * handle that too.
563  */
564 
565 #define	SAFTE_START	44
566 #define	SAFTE_END	50
567 #define	SAFTE_LEN	SAFTE_END-SAFTE_START
568 
569 static enctyp
570 ses_type(inqp)
571 	struct scsipi_inquiry_data *inqp;
572 {
573 	size_t	given_len = inqp->additional_length + 4;
574 
575 	if (given_len < 8+SEN_ID_LEN)
576 		return (SES_NONE);
577 
578 	if ((inqp->device & SID_TYPE) == T_ENCLOSURE) {
579 		if (STRNCMP(inqp->vendor, SEN_ID, SEN_ID_LEN) == 0) {
580 			return (SES_SEN);
581 		} else if ((inqp->version & SID_ANSII) > 2) {
582 			return (SES_SES);
583 		} else {
584 			return (SES_SES_SCSI2);
585 		}
586 		return (SES_NONE);
587 	}
588 
589 #ifdef	SES_ENABLE_PASSTHROUGH
590 	if ((inqp->flags2 & SID_EncServ) && (inqp->version & SID_ANSII) >= 2) {
591 		/*
592 		 * PassThrough Device.
593 		 */
594 		return (SES_SES_PASSTHROUGH);
595 	}
596 #endif
597 
598 	/*
599 	 * The comparison is short for a reason-
600 	 * some vendors were chopping it short.
601 	 */
602 
603 	if (given_len < SAFTE_END - 2) {
604 		return (SES_NONE);
605 	}
606 
607 	if (STRNCMP((char *)&inqp->vendor_specific[8], "SAF-TE",
608 			SAFTE_LEN - 2) == 0) {
609 		return (SES_SAFT);
610 	}
611 
612 	return (SES_NONE);
613 }
614 
615 /*
616  * SES Native Type Device Support
617  */
618 
619 /*
620  * SES Diagnostic Page Codes
621  */
622 
623 typedef enum {
624 	SesConfigPage = 0x1,
625 	SesControlPage,
626 #define	SesStatusPage SesControlPage
627 	SesHelpTxt,
628 	SesStringOut,
629 #define	SesStringIn	SesStringOut
630 	SesThresholdOut,
631 #define	SesThresholdIn SesThresholdOut
632 	SesArrayControl,
633 #define	SesArrayStatus	SesArrayControl
634 	SesElementDescriptor,
635 	SesShortStatus
636 } SesDiagPageCodes;
637 
638 /*
639  * minimal amounts
640  */
641 
642 /*
643  * Minimum amount of data, starting from byte 0, to have
644  * the config header.
645  */
646 #define	SES_CFGHDR_MINLEN	12
647 
648 /*
649  * Minimum amount of data, starting from byte 0, to have
650  * the config header and one enclosure header.
651  */
652 #define	SES_ENCHDR_MINLEN	48
653 
654 /*
655  * Take this value, subtract it from VEnclen and you know
656  * the length of the vendor unique bytes.
657  */
658 #define	SES_ENCHDR_VMIN		36
659 
660 /*
661  * SES Data Structures
662  */
663 
664 typedef struct {
665 	uint32_t GenCode;	/* Generation Code */
666 	uint8_t	Nsubenc;	/* Number of Subenclosures */
667 } SesCfgHdr;
668 
669 typedef struct {
670 	uint8_t	Subencid;	/* SubEnclosure Identifier */
671 	uint8_t	Ntypes;		/* # of supported types */
672 	uint8_t	VEnclen;	/* Enclosure Descriptor Length */
673 } SesEncHdr;
674 
675 typedef struct {
676 	uint8_t	encWWN[8];	/* XXX- Not Right Yet */
677 	uint8_t	encVid[8];
678 	uint8_t	encPid[16];
679 	uint8_t	encRev[4];
680 	uint8_t	encVen[1];
681 } SesEncDesc;
682 
683 typedef struct {
684 	uint8_t	enc_type;		/* type of element */
685 	uint8_t	enc_maxelt;		/* maximum supported */
686 	uint8_t	enc_subenc;		/* in SubEnc # N */
687 	uint8_t	enc_tlen;		/* Type Descriptor Text Length */
688 } SesThdr;
689 
690 typedef struct {
691 	uint8_t	comstatus;
692 	uint8_t	comstat[3];
693 } SesComStat;
694 
695 struct typidx {
696 	int ses_tidx;
697 	int ses_oidx;
698 };
699 
700 struct sscfg {
701 	uint8_t ses_ntypes;	/* total number of types supported */
702 
703 	/*
704 	 * We need to keep a type index as well as an
705 	 * object index for each object in an enclosure.
706 	 */
707 	struct typidx *ses_typidx;
708 
709 	/*
710 	 * We also need to keep track of the number of elements
711 	 * per type of element. This is needed later so that we
712 	 * can find precisely in the returned status data the
713 	 * status for the Nth element of the Kth type.
714 	 */
715 	uint8_t *	ses_eltmap;
716 };
717 
718 
719 /*
720  * (de)canonicalization defines
721  */
722 #define	sbyte(x, byte)		((((uint32_t)(x)) >> (byte * 8)) & 0xff)
723 #define	sbit(x, bit)		(((uint32_t)(x)) << bit)
724 #define	sset8(outp, idx, sval)	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
725 
726 #define	sset16(outp, idx, sval)	\
727 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
728 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
729 
730 
731 #define	sset24(outp, idx, sval)	\
732 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
733 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
734 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
735 
736 
737 #define	sset32(outp, idx, sval)	\
738 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 3), \
739 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
740 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
741 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
742 
743 #define	gbyte(x, byte)	((((uint32_t)(x)) & 0xff) << (byte * 8))
744 #define	gbit(lv, in, idx, shft, mask)	lv = ((in[idx] >> shft) & mask)
745 #define	sget8(inp, idx, lval)	lval = (((uint8_t *)(inp))[idx++])
746 #define	gget8(inp, idx, lval)	lval = (((uint8_t *)(inp))[idx])
747 
748 #define	sget16(inp, idx, lval)	\
749 	lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
750 		(((uint8_t *)(inp))[idx+1]), idx += 2
751 
752 #define	gget16(inp, idx, lval)	\
753 	lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
754 		(((uint8_t *)(inp))[idx+1])
755 
756 #define	sget24(inp, idx, lval)	\
757 	lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
758 		gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
759 			(((uint8_t *)(inp))[idx+2]), idx += 3
760 
761 #define	gget24(inp, idx, lval)	\
762 	lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
763 		gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
764 			(((uint8_t *)(inp))[idx+2])
765 
766 #define	sget32(inp, idx, lval)	\
767 	lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
768 		gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
769 		gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
770 			(((uint8_t *)(inp))[idx+3]), idx += 4
771 
772 #define	gget32(inp, idx, lval)	\
773 	lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
774 		gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
775 		gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
776 			(((uint8_t *)(inp))[idx+3])
777 
778 #define	SCSZ	0x2000
779 #define	CFLEN	(256 + SES_ENCHDR_MINLEN)
780 
781 /*
782  * Routines specific && private to SES only
783  */
784 
785 static int ses_getconfig(ses_softc_t *);
786 static int ses_getputstat(ses_softc_t *, int, SesComStat *, int, int);
787 static int ses_cfghdr(uint8_t *, int, SesCfgHdr *);
788 static int ses_enchdr(uint8_t *, int, uint8_t, SesEncHdr *);
789 static int ses_encdesc(uint8_t *, int, uint8_t, SesEncDesc *);
790 static int ses_getthdr(uint8_t *, int,  int, SesThdr *);
791 static int ses_decode(char *, int, uint8_t *, int, int, SesComStat *);
792 static int ses_encode(char *, int, uint8_t *, int, int, SesComStat *);
793 
794 static int
795 ses_softc_init(ses_softc_t *ssc, int doinit)
796 {
797 	if (doinit == 0) {
798 		struct sscfg *cc;
799 		if (ssc->ses_nobjects) {
800 			SES_FREE(ssc->ses_objmap,
801 			    ssc->ses_nobjects * sizeof (encobj));
802 			ssc->ses_objmap = NULL;
803 		}
804 		if ((cc = ssc->ses_private) != NULL) {
805 			if (cc->ses_eltmap && cc->ses_ntypes) {
806 				SES_FREE(cc->ses_eltmap, cc->ses_ntypes);
807 				cc->ses_eltmap = NULL;
808 				cc->ses_ntypes = 0;
809 			}
810 			if (cc->ses_typidx && ssc->ses_nobjects) {
811 				SES_FREE(cc->ses_typidx,
812 				    ssc->ses_nobjects * sizeof (struct typidx));
813 				cc->ses_typidx = NULL;
814 			}
815 			SES_FREE(cc, sizeof (struct sscfg));
816 			ssc->ses_private = NULL;
817 		}
818 		ssc->ses_nobjects = 0;
819 		return (0);
820 	}
821 	if (ssc->ses_private == NULL) {
822 		ssc->ses_private = SES_MALLOC(sizeof (struct sscfg));
823 	}
824 	if (ssc->ses_private == NULL) {
825 		return (ENOMEM);
826 	}
827 	ssc->ses_nobjects = 0;
828 	ssc->ses_encstat = 0;
829 	return (ses_getconfig(ssc));
830 }
831 
832 static int
833 ses_init_enc(ses_softc_t *ssc)
834 {
835 	return (0);
836 }
837 
838 static int
839 ses_get_encstat(ses_softc_t *ssc, int slpflag)
840 {
841 	SesComStat ComStat;
842 	int status;
843 
844 	if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 1)) != 0) {
845 		return (status);
846 	}
847 	ssc->ses_encstat = ComStat.comstatus | ENCI_SVALID;
848 	return (0);
849 }
850 
851 static int
852 ses_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflag)
853 {
854 	SesComStat ComStat;
855 	int status;
856 
857 	ComStat.comstatus = encstat & 0xf;
858 	if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 0)) != 0) {
859 		return (status);
860 	}
861 	ssc->ses_encstat = encstat & 0xf;	/* note no SVALID set */
862 	return (0);
863 }
864 
865 static int
866 ses_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
867 {
868 	int i = (int)obp->obj_id;
869 
870 	if (ssc->ses_objmap[i].svalid == 0) {
871 		SesComStat ComStat;
872 		int err = ses_getputstat(ssc, i, &ComStat, slpflag, 1);
873 		if (err)
874 			return (err);
875 		ssc->ses_objmap[i].encstat[0] = ComStat.comstatus;
876 		ssc->ses_objmap[i].encstat[1] = ComStat.comstat[0];
877 		ssc->ses_objmap[i].encstat[2] = ComStat.comstat[1];
878 		ssc->ses_objmap[i].encstat[3] = ComStat.comstat[2];
879 		ssc->ses_objmap[i].svalid = 1;
880 	}
881 	obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
882 	obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
883 	obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
884 	obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
885 	return (0);
886 }
887 
888 static int
889 ses_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
890 {
891 	SesComStat ComStat;
892 	int err;
893 	/*
894 	 * If this is clear, we don't do diddly.
895 	 */
896 	if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
897 		return (0);
898 	}
899 	ComStat.comstatus = obp->cstat[0];
900 	ComStat.comstat[0] = obp->cstat[1];
901 	ComStat.comstat[1] = obp->cstat[2];
902 	ComStat.comstat[2] = obp->cstat[3];
903 	err = ses_getputstat(ssc, (int)obp->obj_id, &ComStat, slpflag, 0);
904 	ssc->ses_objmap[(int)obp->obj_id].svalid = 0;
905 	return (err);
906 }
907 
908 static int
909 ses_getconfig(ses_softc_t *ssc)
910 {
911 	struct sscfg *cc;
912 	SesCfgHdr cf;
913 	SesEncHdr hd;
914 	SesEncDesc *cdp;
915 	SesThdr thdr;
916 	int err, amt, i, nobj, ntype, maxima;
917 	char storage[CFLEN], *sdata;
918 	static char cdb[6] = {
919 	    RECEIVE_DIAGNOSTIC, 0x1, SesConfigPage, SCSZ >> 8, SCSZ & 0xff, 0
920 	};
921 
922 	cc = ssc->ses_private;
923 	if (cc == NULL) {
924 		return (ENXIO);
925 	}
926 
927 	sdata = SES_MALLOC(SCSZ);
928 	if (sdata == NULL)
929 		return (ENOMEM);
930 
931 	amt = SCSZ;
932 	err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
933 	if (err) {
934 		SES_FREE(sdata, SCSZ);
935 		return (err);
936 	}
937 	amt = SCSZ - amt;
938 
939 	if (ses_cfghdr((uint8_t *) sdata, amt, &cf)) {
940 		SES_LOG(ssc, "Unable to parse SES Config Header\n");
941 		SES_FREE(sdata, SCSZ);
942 		return (EIO);
943 	}
944 	if (amt < SES_ENCHDR_MINLEN) {
945 		SES_LOG(ssc, "runt enclosure length (%d)\n", amt);
946 		SES_FREE(sdata, SCSZ);
947 		return (EIO);
948 	}
949 
950 	SES_VLOG(ssc, "GenCode %x %d Subenclosures\n", cf.GenCode, cf.Nsubenc);
951 
952 	/*
953 	 * Now waltz through all the subenclosures toting up the
954 	 * number of types available in each. For this, we only
955 	 * really need the enclosure header. However, we get the
956 	 * enclosure descriptor for debug purposes, as well
957 	 * as self-consistency checking purposes.
958 	 */
959 
960 	maxima = cf.Nsubenc + 1;
961 	cdp = (SesEncDesc *) storage;
962 	for (ntype = i = 0; i < maxima; i++) {
963 		MEMZERO((caddr_t)cdp, sizeof (*cdp));
964 		if (ses_enchdr((uint8_t *) sdata, amt, i, &hd)) {
965 			SES_LOG(ssc, "Cannot Extract Enclosure Header %d\n", i);
966 			SES_FREE(sdata, SCSZ);
967 			return (EIO);
968 		}
969 		SES_VLOG(ssc, " SubEnclosure ID %d, %d Types With this ID, En"
970 		    "closure Length %d\n", hd.Subencid, hd.Ntypes, hd.VEnclen);
971 
972 		if (ses_encdesc((uint8_t *)sdata, amt, i, cdp)) {
973 			SES_LOG(ssc, "Can't get Enclosure Descriptor %d\n", i);
974 			SES_FREE(sdata, SCSZ);
975 			return (EIO);
976 		}
977 		SES_VLOG(ssc, " WWN: %02x%02x%02x%02x%02x%02x%02x%02x\n",
978 		    cdp->encWWN[0], cdp->encWWN[1], cdp->encWWN[2],
979 		    cdp->encWWN[3], cdp->encWWN[4], cdp->encWWN[5],
980 		    cdp->encWWN[6], cdp->encWWN[7]);
981 		ntype += hd.Ntypes;
982 	}
983 
984 	/*
985 	 * Now waltz through all the types that are available, getting
986 	 * the type header so we can start adding up the number of
987 	 * objects available.
988 	 */
989 	for (nobj = i = 0; i < ntype; i++) {
990 		if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
991 			SES_LOG(ssc, "Can't get Enclosure Type Header %d\n", i);
992 			SES_FREE(sdata, SCSZ);
993 			return (EIO);
994 		}
995 		SES_LOG(ssc, " Type Desc[%d]: Type 0x%x, MaxElt %d, In Subenc "
996 		    "%d, Text Length %d\n", i, thdr.enc_type, thdr.enc_maxelt,
997 		    thdr.enc_subenc, thdr.enc_tlen);
998 		nobj += thdr.enc_maxelt;
999 	}
1000 
1001 
1002 	/*
1003 	 * Now allocate the object array and type map.
1004 	 */
1005 
1006 	ssc->ses_objmap = SES_MALLOC(nobj * sizeof (encobj));
1007 	cc->ses_typidx = SES_MALLOC(nobj * sizeof (struct typidx));
1008 	cc->ses_eltmap = SES_MALLOC(ntype);
1009 
1010 	if (ssc->ses_objmap == NULL || cc->ses_typidx == NULL ||
1011 	    cc->ses_eltmap == NULL) {
1012 		if (ssc->ses_objmap) {
1013 			SES_FREE(ssc->ses_objmap, (nobj * sizeof (encobj)));
1014 			ssc->ses_objmap = NULL;
1015 		}
1016 		if (cc->ses_typidx) {
1017 			SES_FREE(cc->ses_typidx,
1018 			    (nobj * sizeof (struct typidx)));
1019 			cc->ses_typidx = NULL;
1020 		}
1021 		if (cc->ses_eltmap) {
1022 			SES_FREE(cc->ses_eltmap, ntype);
1023 			cc->ses_eltmap = NULL;
1024 		}
1025 		SES_FREE(sdata, SCSZ);
1026 		return (ENOMEM);
1027 	}
1028 	MEMZERO(ssc->ses_objmap, nobj * sizeof (encobj));
1029 	MEMZERO(cc->ses_typidx, nobj * sizeof (struct typidx));
1030 	MEMZERO(cc->ses_eltmap, ntype);
1031 	cc->ses_ntypes = (uint8_t) ntype;
1032 	ssc->ses_nobjects = nobj;
1033 
1034 	/*
1035 	 * Now waltz through the # of types again to fill in the types
1036 	 * (and subenclosure ids) of the allocated objects.
1037 	 */
1038 	nobj = 0;
1039 	for (i = 0; i < ntype; i++) {
1040 		int j;
1041 		if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
1042 			continue;
1043 		}
1044 		cc->ses_eltmap[i] = thdr.enc_maxelt;
1045 		for (j = 0; j < thdr.enc_maxelt; j++) {
1046 			cc->ses_typidx[nobj].ses_tidx = i;
1047 			cc->ses_typidx[nobj].ses_oidx = j;
1048 			ssc->ses_objmap[nobj].subenclosure = thdr.enc_subenc;
1049 			ssc->ses_objmap[nobj++].enctype = thdr.enc_type;
1050 		}
1051 	}
1052 	SES_FREE(sdata, SCSZ);
1053 	return (0);
1054 }
1055 
1056 static int
1057 ses_getputstat(ses_softc_t *ssc, int objid, SesComStat *sp, int slp, int in)
1058 {
1059 	struct sscfg *cc;
1060 	int err, amt, bufsiz, tidx, oidx;
1061 	char cdb[6], *sdata;
1062 
1063 	cc = ssc->ses_private;
1064 	if (cc == NULL) {
1065 		return (ENXIO);
1066 	}
1067 
1068 	/*
1069 	 * If we're just getting overall enclosure status,
1070 	 * we only need 2 bytes of data storage.
1071 	 *
1072 	 * If we're getting anything else, we know how much
1073 	 * storage we need by noting that starting at offset
1074 	 * 8 in returned data, all object status bytes are 4
1075 	 * bytes long, and are stored in chunks of types(M)
1076 	 * and nth+1 instances of type M.
1077 	 */
1078 	if (objid == -1) {
1079 		bufsiz = 2;
1080 	} else {
1081 		bufsiz = (ssc->ses_nobjects * 4) + (cc->ses_ntypes * 4) + 8;
1082 	}
1083 	sdata = SES_MALLOC(bufsiz);
1084 	if (sdata == NULL)
1085 		return (ENOMEM);
1086 
1087 	cdb[0] = RECEIVE_DIAGNOSTIC;
1088 	cdb[1] = 1;
1089 	cdb[2] = SesStatusPage;
1090 	cdb[3] = bufsiz >> 8;
1091 	cdb[4] = bufsiz & 0xff;
1092 	cdb[5] = 0;
1093 	amt = bufsiz;
1094 	err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1095 	if (err) {
1096 		SES_FREE(sdata, bufsiz);
1097 		return (err);
1098 	}
1099 	amt = bufsiz - amt;
1100 
1101 	if (objid == -1) {
1102 		tidx = -1;
1103 		oidx = -1;
1104 	} else {
1105 		tidx = cc->ses_typidx[objid].ses_tidx;
1106 		oidx = cc->ses_typidx[objid].ses_oidx;
1107 	}
1108 	if (in) {
1109 		if (ses_decode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1110 			err = ENODEV;
1111 		}
1112 	} else {
1113 		if (ses_encode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1114 			err = ENODEV;
1115 		} else {
1116 			cdb[0] = SEND_DIAGNOSTIC;
1117 			cdb[1] = 0x10;
1118 			cdb[2] = 0;
1119 			cdb[3] = bufsiz >> 8;
1120 			cdb[4] = bufsiz & 0xff;
1121 			cdb[5] = 0;
1122 			amt = -bufsiz;
1123 			err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1124 		}
1125 	}
1126 	SES_FREE(sdata, bufsiz);
1127 	return (0);
1128 }
1129 
1130 
1131 /*
1132  * Routines to parse returned SES data structures.
1133  * Architecture and compiler independent.
1134  */
1135 
1136 static int
1137 ses_cfghdr(uint8_t *buffer, int buflen, SesCfgHdr *cfp)
1138 {
1139 	if (buflen < SES_CFGHDR_MINLEN) {
1140 		return (-1);
1141 	}
1142 	gget8(buffer, 1, cfp->Nsubenc);
1143 	gget32(buffer, 4, cfp->GenCode);
1144 	return (0);
1145 }
1146 
1147 static int
1148 ses_enchdr(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncHdr *chp)
1149 {
1150 	int s, off = 8;
1151 	for (s = 0; s < SubEncId; s++) {
1152 		if (off + 3 > amt)
1153 			return (-1);
1154 		off += buffer[off+3] + 4;
1155 	}
1156 	if (off + 3 > amt) {
1157 		return (-1);
1158 	}
1159 	gget8(buffer, off+1, chp->Subencid);
1160 	gget8(buffer, off+2, chp->Ntypes);
1161 	gget8(buffer, off+3, chp->VEnclen);
1162 	return (0);
1163 }
1164 
1165 static int
1166 ses_encdesc(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncDesc *cdp)
1167 {
1168 	int s, e, enclen, off = 8;
1169 	for (s = 0; s < SubEncId; s++) {
1170 		if (off + 3 > amt)
1171 			return (-1);
1172 		off += buffer[off+3] + 4;
1173 	}
1174 	if (off + 3 > amt) {
1175 		return (-1);
1176 	}
1177 	gget8(buffer, off+3, enclen);
1178 	off += 4;
1179 	if (off  >= amt)
1180 		return (-1);
1181 
1182 	e = off + enclen;
1183 	if (e > amt) {
1184 		e = amt;
1185 	}
1186 	MEMCPY(cdp, &buffer[off], e - off);
1187 	return (0);
1188 }
1189 
1190 static int
1191 ses_getthdr(uint8_t *buffer, int amt, int nth, SesThdr *thp)
1192 {
1193 	int s, off = 8;
1194 
1195 	if (amt < SES_CFGHDR_MINLEN) {
1196 		return (-1);
1197 	}
1198 	for (s = 0; s < buffer[1]; s++) {
1199 		if (off + 3 > amt)
1200 			return (-1);
1201 		off += buffer[off+3] + 4;
1202 	}
1203 	if (off + 3 > amt) {
1204 		return (-1);
1205 	}
1206 	off += buffer[off+3] + 4 + (nth * 4);
1207 	if (amt < (off + 4))
1208 		return (-1);
1209 
1210 	gget8(buffer, off++, thp->enc_type);
1211 	gget8(buffer, off++, thp->enc_maxelt);
1212 	gget8(buffer, off++, thp->enc_subenc);
1213 	gget8(buffer, off, thp->enc_tlen);
1214 	return (0);
1215 }
1216 
1217 /*
1218  * This function needs a little explanation.
1219  *
1220  * The arguments are:
1221  *
1222  *
1223  *	char *b, int amt
1224  *
1225  *		These describes the raw input SES status data and length.
1226  *
1227  *	uint8_t *ep
1228  *
1229  *		This is a map of the number of types for each element type
1230  *		in the enclosure.
1231  *
1232  *	int elt
1233  *
1234  *		This is the element type being sought. If elt is -1,
1235  *		then overall enclosure status is being sought.
1236  *
1237  *	int elm
1238  *
1239  *		This is the ordinal Mth element of type elt being sought.
1240  *
1241  *	SesComStat *sp
1242  *
1243  *		This is the output area to store the status for
1244  *		the Mth element of type Elt.
1245  */
1246 
1247 static int
1248 ses_decode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1249 {
1250 	int idx, i;
1251 
1252 	/*
1253 	 * If it's overall enclosure status being sought, get that.
1254 	 * We need at least 2 bytes of status data to get that.
1255 	 */
1256 	if (elt == -1) {
1257 		if (amt < 2)
1258 			return (-1);
1259 		gget8(b, 1, sp->comstatus);
1260 		sp->comstat[0] = 0;
1261 		sp->comstat[1] = 0;
1262 		sp->comstat[2] = 0;
1263 		return (0);
1264 	}
1265 
1266 	/*
1267 	 * Check to make sure that the Mth element is legal for type Elt.
1268 	 */
1269 
1270 	if (elm >= ep[elt])
1271 		return (-1);
1272 
1273 	/*
1274 	 * Starting at offset 8, start skipping over the storage
1275 	 * for the element types we're not interested in.
1276 	 */
1277 	for (idx = 8, i = 0; i < elt; i++) {
1278 		idx += ((ep[i] + 1) * 4);
1279 	}
1280 
1281 	/*
1282 	 * Skip over Overall status for this element type.
1283 	 */
1284 	idx += 4;
1285 
1286 	/*
1287 	 * And skip to the index for the Mth element that we're going for.
1288 	 */
1289 	idx += (4 * elm);
1290 
1291 	/*
1292 	 * Make sure we haven't overflowed the buffer.
1293 	 */
1294 	if (idx+4 > amt)
1295 		return (-1);
1296 
1297 	/*
1298 	 * Retrieve the status.
1299 	 */
1300 	gget8(b, idx++, sp->comstatus);
1301 	gget8(b, idx++, sp->comstat[0]);
1302 	gget8(b, idx++, sp->comstat[1]);
1303 	gget8(b, idx++, sp->comstat[2]);
1304 #if	0
1305 	PRINTF("Get Elt 0x%x Elm 0x%x (idx %d)\n", elt, elm, idx-4);
1306 #endif
1307 	return (0);
1308 }
1309 
1310 /*
1311  * This is the mirror function to ses_decode, but we set the 'select'
1312  * bit for the object which we're interested in. All other objects,
1313  * after a status fetch, should have that bit off. Hmm. It'd be easy
1314  * enough to ensure this, so we will.
1315  */
1316 
1317 static int
1318 ses_encode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1319 {
1320 	int idx, i;
1321 
1322 	/*
1323 	 * If it's overall enclosure status being sought, get that.
1324 	 * We need at least 2 bytes of status data to get that.
1325 	 */
1326 	if (elt == -1) {
1327 		if (amt < 2)
1328 			return (-1);
1329 		i = 0;
1330 		sset8(b, i, 0);
1331 		sset8(b, i, sp->comstatus & 0xf);
1332 #if	0
1333 		PRINTF("set EncStat %x\n", sp->comstatus);
1334 #endif
1335 		return (0);
1336 	}
1337 
1338 	/*
1339 	 * Check to make sure that the Mth element is legal for type Elt.
1340 	 */
1341 
1342 	if (elm >= ep[elt])
1343 		return (-1);
1344 
1345 	/*
1346 	 * Starting at offset 8, start skipping over the storage
1347 	 * for the element types we're not interested in.
1348 	 */
1349 	for (idx = 8, i = 0; i < elt; i++) {
1350 		idx += ((ep[i] + 1) * 4);
1351 	}
1352 
1353 	/*
1354 	 * Skip over Overall status for this element type.
1355 	 */
1356 	idx += 4;
1357 
1358 	/*
1359 	 * And skip to the index for the Mth element that we're going for.
1360 	 */
1361 	idx += (4 * elm);
1362 
1363 	/*
1364 	 * Make sure we haven't overflowed the buffer.
1365 	 */
1366 	if (idx+4 > amt)
1367 		return (-1);
1368 
1369 	/*
1370 	 * Set the status.
1371 	 */
1372 	sset8(b, idx, sp->comstatus);
1373 	sset8(b, idx, sp->comstat[0]);
1374 	sset8(b, idx, sp->comstat[1]);
1375 	sset8(b, idx, sp->comstat[2]);
1376 	idx -= 4;
1377 
1378 #if	0
1379 	PRINTF("Set Elt 0x%x Elm 0x%x (idx %d) with %x %x %x %x\n",
1380 	    elt, elm, idx, sp->comstatus, sp->comstat[0],
1381 	    sp->comstat[1], sp->comstat[2]);
1382 #endif
1383 
1384 	/*
1385 	 * Now make sure all other 'Select' bits are off.
1386 	 */
1387 	for (i = 8; i < amt; i += 4) {
1388 		if (i != idx)
1389 			b[i] &= ~0x80;
1390 	}
1391 	/*
1392 	 * And make sure the INVOP bit is clear.
1393 	 */
1394 	b[2] &= ~0x10;
1395 
1396 	return (0);
1397 }
1398 
1399 /*
1400  * SAF-TE Type Device Emulation
1401  */
1402 
1403 static int safte_getconfig(ses_softc_t *);
1404 static int safte_rdstat(ses_softc_t *, int);;
1405 static int set_objstat_sel(ses_softc_t *, ses_objstat *, int);
1406 static int wrbuf16(ses_softc_t *, uint8_t, uint8_t, uint8_t, uint8_t, int);
1407 static void wrslot_stat(ses_softc_t *, int);
1408 static int perf_slotop(ses_softc_t *, uint8_t, uint8_t, int);
1409 
1410 #define	ALL_ENC_STAT (SES_ENCSTAT_CRITICAL | SES_ENCSTAT_UNRECOV | \
1411 	SES_ENCSTAT_NONCRITICAL | SES_ENCSTAT_INFO)
1412 /*
1413  * SAF-TE specific defines- Mandatory ones only...
1414  */
1415 
1416 /*
1417  * READ BUFFER ('get' commands) IDs- placed in offset 2 of cdb
1418  */
1419 #define	SAFTE_RD_RDCFG	0x00	/* read enclosure configuration */
1420 #define	SAFTE_RD_RDESTS	0x01	/* read enclosure status */
1421 #define	SAFTE_RD_RDDSTS	0x04	/* read drive slot status */
1422 
1423 /*
1424  * WRITE BUFFER ('set' commands) IDs- placed in offset 0 of databuf
1425  */
1426 #define	SAFTE_WT_DSTAT	0x10	/* write device slot status */
1427 #define	SAFTE_WT_SLTOP	0x12	/* perform slot operation */
1428 #define	SAFTE_WT_FANSPD	0x13	/* set fan speed */
1429 #define	SAFTE_WT_ACTPWS	0x14	/* turn on/off power supply */
1430 #define	SAFTE_WT_GLOBAL	0x15	/* send global command */
1431 
1432 
1433 #define	SAFT_SCRATCH	64
1434 #define	NPSEUDO_THERM	16
1435 #define	NPSEUDO_ALARM	1
1436 struct scfg {
1437 	/*
1438 	 * Cached Configuration
1439 	 */
1440 	uint8_t	Nfans;		/* Number of Fans */
1441 	uint8_t	Npwr;		/* Number of Power Supplies */
1442 	uint8_t	Nslots;		/* Number of Device Slots */
1443 	uint8_t	DoorLock;	/* Door Lock Installed */
1444 	uint8_t	Ntherm;		/* Number of Temperature Sensors */
1445 	uint8_t	Nspkrs;		/* Number of Speakers */
1446 	uint8_t Nalarm;		/* Number of Alarms (at least one) */
1447 	/*
1448 	 * Cached Flag Bytes for Global Status
1449 	 */
1450 	uint8_t	flag1;
1451 	uint8_t	flag2;
1452 	/*
1453 	 * What object index ID is where various slots start.
1454 	 */
1455 	uint8_t	pwroff;
1456 	uint8_t	slotoff;
1457 #define	SAFT_ALARM_OFFSET(cc)	(cc)->slotoff - 1
1458 };
1459 
1460 #define	SAFT_FLG1_ALARM		0x1
1461 #define	SAFT_FLG1_GLOBFAIL	0x2
1462 #define	SAFT_FLG1_GLOBWARN	0x4
1463 #define	SAFT_FLG1_ENCPWROFF	0x8
1464 #define	SAFT_FLG1_ENCFANFAIL	0x10
1465 #define	SAFT_FLG1_ENCPWRFAIL	0x20
1466 #define	SAFT_FLG1_ENCDRVFAIL	0x40
1467 #define	SAFT_FLG1_ENCDRVWARN	0x80
1468 
1469 #define	SAFT_FLG2_LOCKDOOR	0x4
1470 #define	SAFT_PRIVATE		sizeof (struct scfg)
1471 
1472 static char *safte_2little = "Too Little Data Returned (%d) at line %d\n";
1473 #define	SAFT_BAIL(r, x, k, l)	\
1474 	if (r >= x) { \
1475 		SES_LOG(ssc, safte_2little, x, __LINE__);\
1476 		SES_FREE(k, l); \
1477 		return (EIO); \
1478 	}
1479 
1480 
1481 int
1482 safte_softc_init(ses_softc_t *ssc, int doinit)
1483 {
1484 	int err, i, r;
1485 	struct scfg *cc;
1486 
1487 	if (doinit == 0) {
1488 		if (ssc->ses_nobjects) {
1489 			if (ssc->ses_objmap) {
1490 				SES_FREE(ssc->ses_objmap,
1491 				    ssc->ses_nobjects * sizeof (encobj));
1492 				ssc->ses_objmap = NULL;
1493 			}
1494 			ssc->ses_nobjects = 0;
1495 		}
1496 		if (ssc->ses_private) {
1497 			SES_FREE(ssc->ses_private, SAFT_PRIVATE);
1498 			ssc->ses_private = NULL;
1499 		}
1500 		return (0);
1501 	}
1502 
1503 	if (ssc->ses_private == NULL) {
1504 		ssc->ses_private = SES_MALLOC(SAFT_PRIVATE);
1505 		if (ssc->ses_private == NULL) {
1506 			return (ENOMEM);
1507 		}
1508 		MEMZERO(ssc->ses_private, SAFT_PRIVATE);
1509 	}
1510 
1511 	ssc->ses_nobjects = 0;
1512 	ssc->ses_encstat = 0;
1513 
1514 	if ((err = safte_getconfig(ssc)) != 0) {
1515 		return (err);
1516 	}
1517 
1518 	/*
1519 	 * The number of objects here, as well as that reported by the
1520 	 * READ_BUFFER/GET_CONFIG call, are the over-temperature flags (15)
1521 	 * that get reported during READ_BUFFER/READ_ENC_STATUS.
1522 	 */
1523 	cc = ssc->ses_private;
1524 	ssc->ses_nobjects = cc->Nfans + cc->Npwr + cc->Nslots + cc->DoorLock +
1525 	    cc->Ntherm + cc->Nspkrs + NPSEUDO_THERM + NPSEUDO_ALARM;
1526 	ssc->ses_objmap = (encobj *)
1527 	    SES_MALLOC(ssc->ses_nobjects * sizeof (encobj));
1528 	if (ssc->ses_objmap == NULL) {
1529 		return (ENOMEM);
1530 	}
1531 	MEMZERO(ssc->ses_objmap, ssc->ses_nobjects * sizeof (encobj));
1532 
1533 	r = 0;
1534 	/*
1535 	 * Note that this is all arranged for the convenience
1536 	 * in later fetches of status.
1537 	 */
1538 	for (i = 0; i < cc->Nfans; i++)
1539 		ssc->ses_objmap[r++].enctype = SESTYP_FAN;
1540 	cc->pwroff = (uint8_t) r;
1541 	for (i = 0; i < cc->Npwr; i++)
1542 		ssc->ses_objmap[r++].enctype = SESTYP_POWER;
1543 	for (i = 0; i < cc->DoorLock; i++)
1544 		ssc->ses_objmap[r++].enctype = SESTYP_DOORLOCK;
1545 	for (i = 0; i < cc->Nspkrs; i++)
1546 		ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1547 	for (i = 0; i < cc->Ntherm; i++)
1548 		ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1549 	for (i = 0; i < NPSEUDO_THERM; i++)
1550 		ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1551 	ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1552 	cc->slotoff = (uint8_t) r;
1553 	for (i = 0; i < cc->Nslots; i++)
1554 		ssc->ses_objmap[r++].enctype = SESTYP_DEVICE;
1555 	return (0);
1556 }
1557 
1558 int
1559 safte_init_enc(ses_softc_t *ssc)
1560 {
1561 	int err, amt;
1562 	char *sdata;
1563 	static char cdb0[6] = { SEND_DIAGNOSTIC };
1564 	static char cdb[10] =
1565 	    { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
1566 
1567 	sdata = SES_MALLOC(SAFT_SCRATCH);
1568 	if (sdata == NULL)
1569 		return (ENOMEM);
1570 
1571 	err = ses_runcmd(ssc, cdb0, 6, NULL, 0);
1572 	if (err) {
1573 		SES_FREE(sdata, SAFT_SCRATCH);
1574 		return (err);
1575 	}
1576 	sdata[0] = SAFTE_WT_GLOBAL;
1577 	MEMZERO(&sdata[1], 15);
1578 	amt = -SAFT_SCRATCH;
1579 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1580 	SES_FREE(sdata, SAFT_SCRATCH);
1581 	return (err);
1582 }
1583 
1584 int
1585 safte_get_encstat(ses_softc_t *ssc, int slpflg)
1586 {
1587 	return (safte_rdstat(ssc, slpflg));
1588 }
1589 
1590 int
1591 safte_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflg)
1592 {
1593 	struct scfg *cc = ssc->ses_private;
1594 	if (cc == NULL)
1595 		return (0);
1596 	/*
1597 	 * Since SAF-TE devices aren't necessarily sticky in terms
1598 	 * of state, make our soft copy of enclosure status 'sticky'-
1599 	 * that is, things set in enclosure status stay set (as implied
1600 	 * by conditions set in reading object status) until cleared.
1601 	 */
1602 	ssc->ses_encstat &= ~ALL_ENC_STAT;
1603 	ssc->ses_encstat |= (encstat & ALL_ENC_STAT);
1604 	ssc->ses_encstat |= ENCI_SVALID;
1605 	cc->flag1 &= ~(SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL|SAFT_FLG1_GLOBWARN);
1606 	if ((encstat & (SES_ENCSTAT_CRITICAL|SES_ENCSTAT_UNRECOV)) != 0) {
1607 		cc->flag1 |= SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL;
1608 	} else if ((encstat & SES_ENCSTAT_NONCRITICAL) != 0) {
1609 		cc->flag1 |= SAFT_FLG1_GLOBWARN;
1610 	}
1611 	return (wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slpflg));
1612 }
1613 
1614 int
1615 safte_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflg)
1616 {
1617 	int i = (int)obp->obj_id;
1618 
1619 	if ((ssc->ses_encstat & ENCI_SVALID) == 0 ||
1620 	    (ssc->ses_objmap[i].svalid) == 0) {
1621 		int err = safte_rdstat(ssc, slpflg);
1622 		if (err)
1623 			return (err);
1624 	}
1625 	obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
1626 	obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
1627 	obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
1628 	obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
1629 	return (0);
1630 }
1631 
1632 
1633 int
1634 safte_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slp)
1635 {
1636 	int idx, err;
1637 	encobj *ep;
1638 	struct scfg *cc;
1639 
1640 
1641 	SES_VLOG(ssc, "safte_set_objstat(%d): %x %x %x %x\n",
1642 	    (int)obp->obj_id, obp->cstat[0], obp->cstat[1], obp->cstat[2],
1643 	    obp->cstat[3]);
1644 
1645 	/*
1646 	 * If this is clear, we don't do diddly.
1647 	 */
1648 	if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
1649 		return (0);
1650 	}
1651 
1652 	err = 0;
1653 	/*
1654 	 * Check to see if the common bits are set and do them first.
1655 	 */
1656 	if (obp->cstat[0] & ~SESCTL_CSEL) {
1657 		err = set_objstat_sel(ssc, obp, slp);
1658 		if (err)
1659 			return (err);
1660 	}
1661 
1662 	cc = ssc->ses_private;
1663 	if (cc == NULL)
1664 		return (0);
1665 
1666 	idx = (int)obp->obj_id;
1667 	ep = &ssc->ses_objmap[idx];
1668 
1669 	switch (ep->enctype) {
1670 	case SESTYP_DEVICE:
1671 	{
1672 		uint8_t slotop = 0;
1673 		/*
1674 		 * XXX: I should probably cache the previous state
1675 		 * XXX: of SESCTL_DEVOFF so that when it goes from
1676 		 * XXX: true to false I can then set PREPARE FOR OPERATION
1677 		 * XXX: flag in PERFORM SLOT OPERATION write buffer command.
1678 		 */
1679 		if (obp->cstat[2] & (SESCTL_RQSINS|SESCTL_RQSRMV)) {
1680 			slotop |= 0x2;
1681 		}
1682 		if (obp->cstat[2] & SESCTL_RQSID) {
1683 			slotop |= 0x4;
1684 		}
1685 		err = perf_slotop(ssc, (uint8_t) idx - (uint8_t) cc->slotoff,
1686 		    slotop, slp);
1687 		if (err)
1688 			return (err);
1689 		if (obp->cstat[3] & SESCTL_RQSFLT) {
1690 			ep->priv |= 0x2;
1691 		} else {
1692 			ep->priv &= ~0x2;
1693 		}
1694 		if (ep->priv & 0xc6) {
1695 			ep->priv &= ~0x1;
1696 		} else {
1697 			ep->priv |= 0x1;	/* no errors */
1698 		}
1699 		wrslot_stat(ssc, slp);
1700 		break;
1701 	}
1702 	case SESTYP_POWER:
1703 		if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1704 			cc->flag1 |= SAFT_FLG1_ENCPWRFAIL;
1705 		} else {
1706 			cc->flag1 &= ~SAFT_FLG1_ENCPWRFAIL;
1707 		}
1708 		err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1709 		    cc->flag2, 0, slp);
1710 		if (err)
1711 			return (err);
1712 		if (obp->cstat[3] & SESCTL_RQSTON) {
1713 			(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1714 				idx - cc->pwroff, 0, 0, slp);
1715 		} else {
1716 			(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1717 				idx - cc->pwroff, 0, 1, slp);
1718 		}
1719 		break;
1720 	case SESTYP_FAN:
1721 		if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1722 			cc->flag1 |= SAFT_FLG1_ENCFANFAIL;
1723 		} else {
1724 			cc->flag1 &= ~SAFT_FLG1_ENCFANFAIL;
1725 		}
1726 		err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1727 		    cc->flag2, 0, slp);
1728 		if (err)
1729 			return (err);
1730 		if (obp->cstat[3] & SESCTL_RQSTON) {
1731 			uint8_t fsp;
1732 			if ((obp->cstat[3] & 0x7) == 7) {
1733 				fsp = 4;
1734 			} else if ((obp->cstat[3] & 0x7) == 6) {
1735 				fsp = 3;
1736 			} else if ((obp->cstat[3] & 0x7) == 4) {
1737 				fsp = 2;
1738 			} else {
1739 				fsp = 1;
1740 			}
1741 			(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, fsp, 0, slp);
1742 		} else {
1743 			(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
1744 		}
1745 		break;
1746 	case SESTYP_DOORLOCK:
1747 		if (obp->cstat[3] & 0x1) {
1748 			cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
1749 		} else {
1750 			cc->flag2 |= SAFT_FLG2_LOCKDOOR;
1751 		}
1752 		(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1753 		    cc->flag2, 0, slp);
1754 		break;
1755 	case SESTYP_ALARM:
1756 		/*
1757 		 * On all nonzero but the 'muted' bit, we turn on the alarm,
1758 		 */
1759 		obp->cstat[3] &= ~0xa;
1760 		if (obp->cstat[3] & 0x40) {
1761 			cc->flag2 &= ~SAFT_FLG1_ALARM;
1762 		} else if (obp->cstat[3] != 0) {
1763 			cc->flag2 |= SAFT_FLG1_ALARM;
1764 		} else {
1765 			cc->flag2 &= ~SAFT_FLG1_ALARM;
1766 		}
1767 		ep->priv = obp->cstat[3];
1768 		(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1769 			cc->flag2, 0, slp);
1770 		break;
1771 	default:
1772 		break;
1773 	}
1774 	ep->svalid = 0;
1775 	return (0);
1776 }
1777 
1778 static int
1779 safte_getconfig(ses_softc_t *ssc)
1780 {
1781 	struct scfg *cfg;
1782 	int err, amt;
1783 	char *sdata;
1784 	static char cdb[10] =
1785 	    { READ_BUFFER, 1, SAFTE_RD_RDCFG, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
1786 
1787 	cfg = ssc->ses_private;
1788 	if (cfg == NULL)
1789 		return (ENXIO);
1790 
1791 	sdata = SES_MALLOC(SAFT_SCRATCH);
1792 	if (sdata == NULL)
1793 		return (ENOMEM);
1794 
1795 	amt = SAFT_SCRATCH;
1796 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1797 	if (err) {
1798 		SES_FREE(sdata, SAFT_SCRATCH);
1799 		return (err);
1800 	}
1801 	amt = SAFT_SCRATCH - amt;
1802 	if (amt < 6) {
1803 		SES_LOG(ssc, "too little data (%d) for configuration\n", amt);
1804 		SES_FREE(sdata, SAFT_SCRATCH);
1805 		return (EIO);
1806 	}
1807 	SES_VLOG(ssc, "Nfans %d Npwr %d Nslots %d Lck %d Ntherm %d Nspkrs %d\n",
1808 	    sdata[0], sdata[1], sdata[2], sdata[3], sdata[4], sdata[5]);
1809 	cfg->Nfans = sdata[0];
1810 	cfg->Npwr = sdata[1];
1811 	cfg->Nslots = sdata[2];
1812 	cfg->DoorLock = sdata[3];
1813 	cfg->Ntherm = sdata[4];
1814 	cfg->Nspkrs = sdata[5];
1815 	cfg->Nalarm = NPSEUDO_ALARM;
1816 	SES_FREE(sdata, SAFT_SCRATCH);
1817 	return (0);
1818 }
1819 
1820 static int
1821 safte_rdstat(ses_softc_t *ssc, int slpflg)
1822 {
1823 	int err, oid, r, i, hiwater, nitems, amt;
1824 	uint16_t tempflags;
1825 	size_t buflen;
1826 	uint8_t status, oencstat;
1827 	char *sdata, cdb[10];
1828 	struct scfg *cc = ssc->ses_private;
1829 
1830 
1831 	/*
1832 	 * The number of objects overstates things a bit,
1833 	 * both for the bogus 'thermometer' entries and
1834 	 * the drive status (which isn't read at the same
1835 	 * time as the enclosure status), but that's okay.
1836 	 */
1837 	buflen = 4 * cc->Nslots;
1838 	if (ssc->ses_nobjects > buflen)
1839 		buflen = ssc->ses_nobjects;
1840 	sdata = SES_MALLOC(buflen);
1841 	if (sdata == NULL)
1842 		return (ENOMEM);
1843 
1844 	cdb[0] = READ_BUFFER;
1845 	cdb[1] = 1;
1846 	cdb[2] = SAFTE_RD_RDESTS;
1847 	cdb[3] = 0;
1848 	cdb[4] = 0;
1849 	cdb[5] = 0;
1850 	cdb[6] = 0;
1851 	cdb[7] = (buflen >> 8) & 0xff;
1852 	cdb[8] = buflen & 0xff;
1853 	cdb[9] = 0;
1854 	amt = buflen;
1855 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1856 	if (err) {
1857 		SES_FREE(sdata, buflen);
1858 		return (err);
1859 	}
1860 	hiwater = buflen - amt;
1861 
1862 
1863 	/*
1864 	 * invalidate all status bits.
1865 	 */
1866 	for (i = 0; i < ssc->ses_nobjects; i++)
1867 		ssc->ses_objmap[i].svalid = 0;
1868 	oencstat = ssc->ses_encstat & ALL_ENC_STAT;
1869 	ssc->ses_encstat = 0;
1870 
1871 
1872 	/*
1873 	 * Now parse returned buffer.
1874 	 * If we didn't get enough data back,
1875 	 * that's considered a fatal error.
1876 	 */
1877 	oid = r = 0;
1878 
1879 	for (nitems = i = 0; i < cc->Nfans; i++) {
1880 		SAFT_BAIL(r, hiwater, sdata, buflen);
1881 		/*
1882 		 * 0 = Fan Operational
1883 		 * 1 = Fan is malfunctioning
1884 		 * 2 = Fan is not present
1885 		 * 0x80 = Unknown or Not Reportable Status
1886 		 */
1887 		ssc->ses_objmap[oid].encstat[1] = 0;	/* resvd */
1888 		ssc->ses_objmap[oid].encstat[2] = 0;	/* resvd */
1889 		switch ((int)(uint8_t)sdata[r]) {
1890 		case 0:
1891 			nitems++;
1892 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1893 			/*
1894 			 * We could get fancier and cache
1895 			 * fan speeds that we have set, but
1896 			 * that isn't done now.
1897 			 */
1898 			ssc->ses_objmap[oid].encstat[3] = 7;
1899 			break;
1900 
1901 		case 1:
1902 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1903 			/*
1904 			 * FAIL and FAN STOPPED synthesized
1905 			 */
1906 			ssc->ses_objmap[oid].encstat[3] = 0x40;
1907 			/*
1908 			 * Enclosure marked with CRITICAL error
1909 			 * if only one fan or no thermometers,
1910 			 * else the NONCRITICAL error is set.
1911 			 */
1912 			if (cc->Nfans == 1 || cc->Ntherm == 0)
1913 				ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1914 			else
1915 				ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1916 			break;
1917 		case 2:
1918 			ssc->ses_objmap[oid].encstat[0] =
1919 			    SES_OBJSTAT_NOTINSTALLED;
1920 			ssc->ses_objmap[oid].encstat[3] = 0;
1921 			/*
1922 			 * Enclosure marked with CRITICAL error
1923 			 * if only one fan or no thermometers,
1924 			 * else the NONCRITICAL error is set.
1925 			 */
1926 			if (cc->Nfans == 1)
1927 				ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1928 			else
1929 				ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1930 			break;
1931 		case 0x80:
1932 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1933 			ssc->ses_objmap[oid].encstat[3] = 0;
1934 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
1935 			break;
1936 		default:
1937 			ssc->ses_objmap[oid].encstat[0] =
1938 			    SES_OBJSTAT_UNSUPPORTED;
1939 			SES_LOG(ssc, "Unknown fan%d status 0x%x\n", i,
1940 			    sdata[r] & 0xff);
1941 			break;
1942 		}
1943 		ssc->ses_objmap[oid++].svalid = 1;
1944 		r++;
1945 	}
1946 
1947 	/*
1948 	 * No matter how you cut it, no cooling elements when there
1949 	 * should be some there is critical.
1950 	 */
1951 	if (cc->Nfans && nitems == 0) {
1952 		ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1953 	}
1954 
1955 
1956 	for (i = 0; i < cc->Npwr; i++) {
1957 		SAFT_BAIL(r, hiwater, sdata, buflen);
1958 		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1959 		ssc->ses_objmap[oid].encstat[1] = 0;	/* resvd */
1960 		ssc->ses_objmap[oid].encstat[2] = 0;	/* resvd */
1961 		ssc->ses_objmap[oid].encstat[3] = 0x20;	/* requested on */
1962 		switch ((uint8_t)sdata[r]) {
1963 		case 0x00:	/* pws operational and on */
1964 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1965 			break;
1966 		case 0x01:	/* pws operational and off */
1967 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1968 			ssc->ses_objmap[oid].encstat[3] = 0x10;
1969 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
1970 			break;
1971 		case 0x10:	/* pws is malfunctioning and commanded on */
1972 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1973 			ssc->ses_objmap[oid].encstat[3] = 0x61;
1974 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1975 			break;
1976 
1977 		case 0x11:	/* pws is malfunctioning and commanded off */
1978 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
1979 			ssc->ses_objmap[oid].encstat[3] = 0x51;
1980 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1981 			break;
1982 		case 0x20:	/* pws is not present */
1983 			ssc->ses_objmap[oid].encstat[0] =
1984 			    SES_OBJSTAT_NOTINSTALLED;
1985 			ssc->ses_objmap[oid].encstat[3] = 0;
1986 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
1987 			break;
1988 		case 0x21:	/* pws is present */
1989 			/*
1990 			 * This is for enclosures that cannot tell whether the
1991 			 * device is on or malfunctioning, but know that it is
1992 			 * present. Just fall through.
1993 			 */
1994 			/* FALLTHROUGH */
1995 		case 0x80:	/* Unknown or Not Reportable Status */
1996 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1997 			ssc->ses_objmap[oid].encstat[3] = 0;
1998 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
1999 			break;
2000 		default:
2001 			SES_LOG(ssc, "unknown power supply %d status (0x%x)\n",
2002 			    i, sdata[r] & 0xff);
2003 			break;
2004 		}
2005 		ssc->ses_objmap[oid++].svalid = 1;
2006 		r++;
2007 	}
2008 
2009 	/*
2010 	 * Skip over Slot SCSI IDs
2011 	 */
2012 	r += cc->Nslots;
2013 
2014 	/*
2015 	 * We always have doorlock status, no matter what,
2016 	 * but we only save the status if we have one.
2017 	 */
2018 	SAFT_BAIL(r, hiwater, sdata, buflen);
2019 	if (cc->DoorLock) {
2020 		/*
2021 		 * 0 = Door Locked
2022 		 * 1 = Door Unlocked, or no Lock Installed
2023 		 * 0x80 = Unknown or Not Reportable Status
2024 		 */
2025 		ssc->ses_objmap[oid].encstat[1] = 0;
2026 		ssc->ses_objmap[oid].encstat[2] = 0;
2027 		switch ((uint8_t)sdata[r]) {
2028 		case 0:
2029 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2030 			ssc->ses_objmap[oid].encstat[3] = 0;
2031 			break;
2032 		case 1:
2033 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2034 			ssc->ses_objmap[oid].encstat[3] = 1;
2035 			break;
2036 		case 0x80:
2037 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2038 			ssc->ses_objmap[oid].encstat[3] = 0;
2039 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
2040 			break;
2041 		default:
2042 			ssc->ses_objmap[oid].encstat[0] =
2043 			    SES_OBJSTAT_UNSUPPORTED;
2044 			SES_LOG(ssc, "unknown lock status 0x%x\n",
2045 			    sdata[r] & 0xff);
2046 			break;
2047 		}
2048 		ssc->ses_objmap[oid++].svalid = 1;
2049 	}
2050 	r++;
2051 
2052 	/*
2053 	 * We always have speaker status, no matter what,
2054 	 * but we only save the status if we have one.
2055 	 */
2056 	SAFT_BAIL(r, hiwater, sdata, buflen);
2057 	if (cc->Nspkrs) {
2058 		ssc->ses_objmap[oid].encstat[1] = 0;
2059 		ssc->ses_objmap[oid].encstat[2] = 0;
2060 		if (sdata[r] == 1) {
2061 			/*
2062 			 * We need to cache tone urgency indicators.
2063 			 * Someday.
2064 			 */
2065 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
2066 			ssc->ses_objmap[oid].encstat[3] = 0x8;
2067 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2068 		} else if (sdata[r] == 0) {
2069 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2070 			ssc->ses_objmap[oid].encstat[3] = 0;
2071 		} else {
2072 			ssc->ses_objmap[oid].encstat[0] =
2073 			    SES_OBJSTAT_UNSUPPORTED;
2074 			ssc->ses_objmap[oid].encstat[3] = 0;
2075 			SES_LOG(ssc, "unknown spkr status 0x%x\n",
2076 			    sdata[r] & 0xff);
2077 		}
2078 		ssc->ses_objmap[oid++].svalid = 1;
2079 	}
2080 	r++;
2081 
2082 	for (i = 0; i < cc->Ntherm; i++) {
2083 		SAFT_BAIL(r, hiwater, sdata, buflen);
2084 		/*
2085 		 * Status is a range from -10 to 245 deg Celsius,
2086 		 * which we need to normalize to -20 to -245 according
2087 		 * to the latest SCSI spec, which makes little
2088 		 * sense since this would overflow an 8bit value.
2089 		 * Well, still, the base normalization is -20,
2090 		 * not -10, so we have to adjust.
2091 		 *
2092 		 * So what's over and under temperature?
2093 		 * Hmm- we'll state that 'normal' operating
2094 		 * is 10 to 40 deg Celsius.
2095 		 */
2096 		ssc->ses_objmap[oid].encstat[1] = 0;
2097 		ssc->ses_objmap[oid].encstat[2] =
2098 		    ((unsigned int) sdata[r]) - 10;
2099 		if (sdata[r] < 20) {
2100 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2101 			/*
2102 			 * Set 'under temperature' failure.
2103 			 */
2104 			ssc->ses_objmap[oid].encstat[3] = 2;
2105 			ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2106 		} else if (sdata[r] > 30) {
2107 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2108 			/*
2109 			 * Set 'over temperature' failure.
2110 			 */
2111 			ssc->ses_objmap[oid].encstat[3] = 8;
2112 			ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2113 		} else {
2114 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2115 		}
2116 		ssc->ses_objmap[oid++].svalid = 1;
2117 		r++;
2118 	}
2119 
2120 	/*
2121 	 * Now, for "pseudo" thermometers, we have two bytes
2122 	 * of information in enclosure status- 16 bits. Actually,
2123 	 * the MSB is a single TEMP ALERT flag indicating whether
2124 	 * any other bits are set, but, thanks to fuzzy thinking,
2125 	 * in the SAF-TE spec, this can also be set even if no
2126 	 * other bits are set, thus making this really another
2127 	 * binary temperature sensor.
2128 	 */
2129 
2130 	SAFT_BAIL(r, hiwater, sdata, buflen);
2131 	tempflags = sdata[r++];
2132 	SAFT_BAIL(r, hiwater, sdata, buflen);
2133 	tempflags |= (tempflags << 8) | sdata[r++];
2134 
2135 	for (i = 0; i < NPSEUDO_THERM; i++) {
2136 		ssc->ses_objmap[oid].encstat[1] = 0;
2137 		if (tempflags & (1 << (NPSEUDO_THERM - i - 1))) {
2138 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2139 			ssc->ses_objmap[4].encstat[2] = 0xff;
2140 			/*
2141 			 * Set 'over temperature' failure.
2142 			 */
2143 			ssc->ses_objmap[oid].encstat[3] = 8;
2144 			ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2145 		} else {
2146 			/*
2147 			 * We used to say 'not available' and synthesize a
2148 			 * nominal 30 deg (C)- that was wrong. Actually,
2149 			 * Just say 'OK', and use the reserved value of
2150 			 * zero.
2151 			 */
2152 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2153 			ssc->ses_objmap[oid].encstat[2] = 0;
2154 			ssc->ses_objmap[oid].encstat[3] = 0;
2155 		}
2156 		ssc->ses_objmap[oid++].svalid = 1;
2157 	}
2158 
2159 	/*
2160 	 * Get alarm status.
2161 	 */
2162 	ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2163 	ssc->ses_objmap[oid].encstat[3] = ssc->ses_objmap[oid].priv;
2164 	ssc->ses_objmap[oid++].svalid = 1;
2165 
2166 	/*
2167 	 * Now get drive slot status
2168 	 */
2169 	cdb[2] = SAFTE_RD_RDDSTS;
2170 	amt = buflen;
2171 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2172 	if (err) {
2173 		SES_FREE(sdata, buflen);
2174 		return (err);
2175 	}
2176 	hiwater = buflen - amt;
2177 	for (r = i = 0; i < cc->Nslots; i++, r += 4) {
2178 		SAFT_BAIL(r+3, hiwater, sdata, buflen);
2179 		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNSUPPORTED;
2180 		ssc->ses_objmap[oid].encstat[1] = (uint8_t) i;
2181 		ssc->ses_objmap[oid].encstat[2] = 0;
2182 		ssc->ses_objmap[oid].encstat[3] = 0;
2183 		status = sdata[r+3];
2184 		if ((status & 0x1) == 0) {	/* no device */
2185 			ssc->ses_objmap[oid].encstat[0] =
2186 			    SES_OBJSTAT_NOTINSTALLED;
2187 		} else {
2188 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2189 		}
2190 		if (status & 0x2) {
2191 			ssc->ses_objmap[oid].encstat[2] = 0x8;
2192 		}
2193 		if ((status & 0x4) == 0) {
2194 			ssc->ses_objmap[oid].encstat[3] = 0x10;
2195 		}
2196 		ssc->ses_objmap[oid++].svalid = 1;
2197 	}
2198 	/* see comment below about sticky enclosure status */
2199 	ssc->ses_encstat |= ENCI_SVALID | oencstat;
2200 	SES_FREE(sdata, buflen);
2201 	return (0);
2202 }
2203 
2204 static int
2205 set_objstat_sel(ses_softc_t *ssc, ses_objstat *obp, int slp)
2206 {
2207 	int idx;
2208 	encobj *ep;
2209 	struct scfg *cc = ssc->ses_private;
2210 
2211 	if (cc == NULL)
2212 		return (0);
2213 
2214 	idx = (int)obp->obj_id;
2215 	ep = &ssc->ses_objmap[idx];
2216 
2217 	switch (ep->enctype) {
2218 	case SESTYP_DEVICE:
2219 		if (obp->cstat[0] & SESCTL_PRDFAIL) {
2220 			ep->priv |= 0x40;
2221 		}
2222 		/* SESCTL_RSTSWAP has no correspondence in SAF-TE */
2223 		if (obp->cstat[0] & SESCTL_DISABLE) {
2224 			ep->priv |= 0x80;
2225 			/*
2226 			 * Hmm. Try to set the 'No Drive' flag.
2227 			 * Maybe that will count as a 'disable'.
2228 			 */
2229 		}
2230 		if (ep->priv & 0xc6) {
2231 			ep->priv &= ~0x1;
2232 		} else {
2233 			ep->priv |= 0x1;	/* no errors */
2234 		}
2235 		wrslot_stat(ssc, slp);
2236 		break;
2237 	case SESTYP_POWER:
2238 		/*
2239 		 * Okay- the only one that makes sense here is to
2240 		 * do the 'disable' for a power supply.
2241 		 */
2242 		if (obp->cstat[0] & SESCTL_DISABLE) {
2243 			(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
2244 				idx - cc->pwroff, 0, 0, slp);
2245 		}
2246 		break;
2247 	case SESTYP_FAN:
2248 		/*
2249 		 * Okay- the only one that makes sense here is to
2250 		 * set fan speed to zero on disable.
2251 		 */
2252 		if (obp->cstat[0] & SESCTL_DISABLE) {
2253 			/* remember- fans are the first items, so idx works */
2254 			(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
2255 		}
2256 		break;
2257 	case SESTYP_DOORLOCK:
2258 		/*
2259 		 * Well, we can 'disable' the lock.
2260 		 */
2261 		if (obp->cstat[0] & SESCTL_DISABLE) {
2262 			cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
2263 			(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2264 				cc->flag2, 0, slp);
2265 		}
2266 		break;
2267 	case SESTYP_ALARM:
2268 		/*
2269 		 * Well, we can 'disable' the alarm.
2270 		 */
2271 		if (obp->cstat[0] & SESCTL_DISABLE) {
2272 			cc->flag2 &= ~SAFT_FLG1_ALARM;
2273 			ep->priv |= 0x40;	/* Muted */
2274 			(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2275 				cc->flag2, 0, slp);
2276 		}
2277 		break;
2278 	default:
2279 		break;
2280 	}
2281 	ep->svalid = 0;
2282 	return (0);
2283 }
2284 
2285 /*
2286  * This function handles all of the 16 byte WRITE BUFFER commands.
2287  */
2288 static int
2289 wrbuf16(ses_softc_t *ssc, uint8_t op, uint8_t b1, uint8_t b2,
2290     uint8_t b3, int slp)
2291 {
2292 	int err, amt;
2293 	char *sdata;
2294 	struct scfg *cc = ssc->ses_private;
2295 	static char cdb[10] = { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
2296 
2297 	if (cc == NULL)
2298 		return (0);
2299 
2300 	sdata = SES_MALLOC(16);
2301 	if (sdata == NULL)
2302 		return (ENOMEM);
2303 
2304 	SES_VLOG(ssc, "saf_wrbuf16 %x %x %x %x\n", op, b1, b2, b3);
2305 
2306 	sdata[0] = op;
2307 	sdata[1] = b1;
2308 	sdata[2] = b2;
2309 	sdata[3] = b3;
2310 	MEMZERO(&sdata[4], 12);
2311 	amt = -16;
2312 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2313 	SES_FREE(sdata, 16);
2314 	return (err);
2315 }
2316 
2317 /*
2318  * This function updates the status byte for the device slot described.
2319  *
2320  * Since this is an optional SAF-TE command, there's no point in
2321  * returning an error.
2322  */
2323 static void
2324 wrslot_stat(ses_softc_t *ssc, int slp)
2325 {
2326 	int i, amt;
2327 	encobj *ep;
2328 	char cdb[10], *sdata;
2329 	struct scfg *cc = ssc->ses_private;
2330 
2331 	if (cc == NULL)
2332 		return;
2333 
2334 	SES_VLOG(ssc, "saf_wrslot\n");
2335 	cdb[0] = WRITE_BUFFER;
2336 	cdb[1] = 1;
2337 	cdb[2] = 0;
2338 	cdb[3] = 0;
2339 	cdb[4] = 0;
2340 	cdb[5] = 0;
2341 	cdb[6] = 0;
2342 	cdb[7] = 0;
2343 	cdb[8] = cc->Nslots * 3 + 1;
2344 	cdb[9] = 0;
2345 
2346 	sdata = SES_MALLOC(cc->Nslots * 3 + 1);
2347 	if (sdata == NULL)
2348 		return;
2349 	MEMZERO(sdata, cc->Nslots * 3 + 1);
2350 
2351 	sdata[0] = SAFTE_WT_DSTAT;
2352 	for (i = 0; i < cc->Nslots; i++) {
2353 		ep = &ssc->ses_objmap[cc->slotoff + i];
2354 		SES_VLOG(ssc, "saf_wrslot %d <- %x\n", i, ep->priv & 0xff);
2355 		sdata[1 + (3 * i)] = ep->priv & 0xff;
2356 	}
2357 	amt = -(cc->Nslots * 3 + 1);
2358 	(void) ses_runcmd(ssc, cdb, 10, sdata, &amt);
2359 	SES_FREE(sdata, cc->Nslots * 3 + 1);
2360 }
2361 
2362 /*
2363  * This function issues the "PERFORM SLOT OPERATION" command.
2364  */
2365 static int
2366 perf_slotop(ses_softc_t *ssc, uint8_t slot, uint8_t opflag, int slp)
2367 {
2368 	int err, amt;
2369 	char *sdata;
2370 	struct scfg *cc = ssc->ses_private;
2371 	static char cdb[10] =
2372 	    { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
2373 
2374 	if (cc == NULL)
2375 		return (0);
2376 
2377 	sdata = SES_MALLOC(SAFT_SCRATCH);
2378 	if (sdata == NULL)
2379 		return (ENOMEM);
2380 	MEMZERO(sdata, SAFT_SCRATCH);
2381 
2382 	sdata[0] = SAFTE_WT_SLTOP;
2383 	sdata[1] = slot;
2384 	sdata[2] = opflag;
2385 	SES_VLOG(ssc, "saf_slotop slot %d op %x\n", slot, opflag);
2386 	amt = -SAFT_SCRATCH;
2387 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2388 	SES_FREE(sdata, SAFT_SCRATCH);
2389 	return (err);
2390 }
2391