1 /* $NetBSD: ses.c,v 1.6 2000/05/22 16:52:03 thorpej Exp $ */ 2 /* 3 * Copyright (C) 2000 National Aeronautics & Space Administration 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. The name of the author may not be used to endorse or promote products 12 * derived from this software without specific prior written permission 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 17 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 20 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 21 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 24 * 25 * Author: mjacob@nas.nasa.gov 26 */ 27 28 29 #include "opt_scsi.h" 30 31 #include <sys/types.h> 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/kernel.h> 35 #include <sys/file.h> 36 #include <sys/stat.h> 37 #include <sys/ioctl.h> 38 #include <sys/scsiio.h> 39 #include <sys/buf.h> 40 #include <sys/uio.h> 41 #include <sys/malloc.h> 42 #include <sys/errno.h> 43 #include <sys/device.h> 44 #include <sys/disklabel.h> 45 #include <sys/disk.h> 46 #include <sys/proc.h> 47 #include <sys/conf.h> 48 #include <sys/vnode.h> 49 #include <machine/stdarg.h> 50 51 #include <dev/scsipi/scsipi_all.h> 52 #include <dev/scsipi/scsi_all.h> 53 #include <dev/scsipi/scsipi_disk.h> 54 #include <dev/scsipi/scsi_disk.h> 55 #include <dev/scsipi/scsiconf.h> 56 #include <dev/scsipi/ses.h> 57 58 /* 59 * Platform Independent Driver Internal Definitions for SES devices. 60 */ 61 typedef enum { 62 SES_NONE, 63 SES_SES_SCSI2, 64 SES_SES, 65 SES_SES_PASSTHROUGH, 66 SES_SEN, 67 SES_SAFT 68 } enctyp; 69 70 struct ses_softc; 71 typedef struct ses_softc ses_softc_t; 72 typedef struct { 73 int (*softc_init) __P((ses_softc_t *, int)); 74 int (*init_enc) __P((ses_softc_t *)); 75 int (*get_encstat) __P((ses_softc_t *, int)); 76 int (*set_encstat) __P((ses_softc_t *, ses_encstat, int)); 77 int (*get_objstat) __P((ses_softc_t *, ses_objstat *, int)); 78 int (*set_objstat) __P((ses_softc_t *, ses_objstat *, int)); 79 } encvec; 80 81 #define ENCI_SVALID 0x80 82 83 typedef struct { 84 uint32_t 85 enctype : 8, /* enclosure type */ 86 subenclosure : 8, /* subenclosure id */ 87 svalid : 1, /* enclosure information valid */ 88 priv : 15; /* private data, per object */ 89 uint8_t encstat[4]; /* state && stats */ 90 } encobj; 91 92 #define SEN_ID "UNISYS SUN_SEN" 93 #define SEN_ID_LEN 24 94 95 static enctyp ses_type __P((struct scsipi_inquiry_data *)); 96 97 98 /* Forward reference to Enclosure Functions */ 99 static int ses_softc_init __P((ses_softc_t *, int)); 100 static int ses_init_enc __P((ses_softc_t *)); 101 static int ses_get_encstat __P((ses_softc_t *, int)); 102 static int ses_set_encstat __P((ses_softc_t *, uint8_t, int)); 103 static int ses_get_objstat __P((ses_softc_t *, ses_objstat *, int)); 104 static int ses_set_objstat __P((ses_softc_t *, ses_objstat *, int)); 105 106 static int safte_softc_init __P((ses_softc_t *, int)); 107 static int safte_init_enc __P((ses_softc_t *)); 108 static int safte_get_encstat __P((ses_softc_t *, int)); 109 static int safte_set_encstat __P((ses_softc_t *, uint8_t, int)); 110 static int safte_get_objstat __P((ses_softc_t *, ses_objstat *, int)); 111 static int safte_set_objstat __P((ses_softc_t *, ses_objstat *, int)); 112 113 /* 114 * Platform implementation defines/functions for SES internal kernel stuff 115 */ 116 117 #define STRNCMP strncmp 118 #define PRINTF printf 119 #define SES_LOG ses_log 120 #if defined(DEBUG) || defined(SCSIDEBUG) 121 #define SES_VLOG ses_log 122 #else 123 #define SES_VLOG if (0) ses_log 124 #endif 125 #define SES_MALLOC(amt) malloc(amt, M_DEVBUF, M_NOWAIT) 126 #define SES_FREE(ptr, amt) free(ptr, M_DEVBUF) 127 #define MEMZERO bzero 128 #define MEMCPY(dest, src, amt) bcopy(src, dest, amt) 129 #define RECEIVE_DIAGNOSTIC 0x1c 130 #define SEND_DIAGNOSTIC 0x1d 131 #define WRITE_BUFFER 0x3b 132 #define READ_BUFFER 0x3c 133 134 int sesopen __P((dev_t, int, int, struct proc *)); 135 int sesclose __P((dev_t, int, int, struct proc *)); 136 int sesioctl __P((dev_t, u_long, caddr_t, int, struct proc *)); 137 138 static int ses_runcmd __P((struct ses_softc *, char *, int, char *, int *)); 139 static void ses_log __P((struct ses_softc *, const char *, ...)); 140 141 /* 142 * General NetBSD kernel stuff. 143 */ 144 145 struct ses_softc { 146 struct device sc_device; 147 struct scsipi_link *sc_link; 148 enctyp ses_type; /* type of enclosure */ 149 encvec ses_vec; /* vector to handlers */ 150 void * ses_private; /* per-type private data */ 151 encobj * ses_objmap; /* objects */ 152 u_int32_t ses_nobjects; /* number of objects */ 153 ses_encstat ses_encstat; /* overall status */ 154 u_int8_t ses_flags; 155 }; 156 #define SES_FLAG_INVALID 0x01 157 #define SES_FLAG_OPEN 0x02 158 #define SES_FLAG_INITIALIZED 0x04 159 160 #define SESUNIT(x) (minor((x))) 161 162 static int ses_match __P((struct device *, struct cfdata *, void *)); 163 static void ses_attach __P((struct device *, struct device *, void *)); 164 static enctyp ses_device_type __P((struct scsipibus_attach_args *)); 165 166 struct cfattach ses_ca = { 167 sizeof (struct ses_softc), ses_match, ses_attach 168 }; 169 extern struct cfdriver ses_cd; 170 171 struct scsipi_device ses_switch = { 172 NULL, 173 NULL, 174 NULL, 175 NULL 176 }; 177 178 179 int 180 ses_match(parent, match, aux) 181 struct device *parent; 182 struct cfdata *match; 183 void *aux; 184 { 185 struct scsipibus_attach_args *sa = aux; 186 187 switch (ses_device_type(sa)) { 188 case SES_SES: 189 case SES_SES_SCSI2: 190 case SES_SEN: 191 case SES_SAFT: 192 case SES_SES_PASSTHROUGH: 193 /* 194 * For these devices, it's a perfect match. 195 */ 196 return (24); 197 default: 198 return (0); 199 } 200 } 201 202 203 /* 204 * Complete the attachment. 205 * 206 * We have to repeat the rerun of INQUIRY data as above because 207 * it's not until the return from the match routine that we have 208 * the softc available to set stuff in. 209 */ 210 void 211 ses_attach(parent, self, aux) 212 struct device *parent; 213 struct device *self; 214 void *aux; 215 { 216 char *tname; 217 struct ses_softc *softc = (void *)self; 218 struct scsipibus_attach_args *sa = aux; 219 struct scsipi_link *sc_link = sa->sa_sc_link; 220 221 SC_DEBUG(sc_link, SDEV_DB2, ("ssattach: ")); 222 softc->sc_link = sa->sa_sc_link; 223 sc_link->device = &ses_switch; 224 sc_link->device_softc = softc; 225 sc_link->openings = 1; 226 227 softc->ses_type = ses_device_type(sa); 228 switch (softc->ses_type) { 229 case SES_SES: 230 case SES_SES_SCSI2: 231 case SES_SES_PASSTHROUGH: 232 softc->ses_vec.softc_init = ses_softc_init; 233 softc->ses_vec.init_enc = ses_init_enc; 234 softc->ses_vec.get_encstat = ses_get_encstat; 235 softc->ses_vec.set_encstat = ses_set_encstat; 236 softc->ses_vec.get_objstat = ses_get_objstat; 237 softc->ses_vec.set_objstat = ses_set_objstat; 238 break; 239 case SES_SAFT: 240 softc->ses_vec.softc_init = safte_softc_init; 241 softc->ses_vec.init_enc = safte_init_enc; 242 softc->ses_vec.get_encstat = safte_get_encstat; 243 softc->ses_vec.set_encstat = safte_set_encstat; 244 softc->ses_vec.get_objstat = safte_get_objstat; 245 softc->ses_vec.set_objstat = safte_set_objstat; 246 break; 247 case SES_SEN: 248 break; 249 case SES_NONE: 250 default: 251 break; 252 } 253 254 switch (softc->ses_type) { 255 default: 256 case SES_NONE: 257 tname = "No SES device"; 258 break; 259 case SES_SES_SCSI2: 260 tname = "SCSI-2 SES Device"; 261 break; 262 case SES_SES: 263 tname = "SCSI-3 SES Device"; 264 break; 265 case SES_SES_PASSTHROUGH: 266 tname = "SES Passthrough Device"; 267 break; 268 case SES_SEN: 269 tname = "UNISYS SEN Device (NOT HANDLED YET)"; 270 break; 271 case SES_SAFT: 272 tname = "SAF-TE Compliant Device"; 273 break; 274 } 275 printf("\n%s: %s\n", softc->sc_device.dv_xname, tname); 276 } 277 278 279 static enctyp 280 ses_device_type(sa) 281 struct scsipibus_attach_args *sa; 282 { 283 struct scsipi_inquiry_data *inqp = sa->sa_inqptr; 284 285 if (inqp == NULL) 286 return (SES_NONE); 287 288 return (ses_type(inqp)); 289 } 290 291 int 292 sesopen(dev, flags, fmt, p) 293 dev_t dev; 294 int flags; 295 int fmt; 296 struct proc *p; 297 { 298 struct ses_softc *softc; 299 int error, unit; 300 301 unit = SESUNIT(dev); 302 if (unit >= ses_cd.cd_ndevs) 303 return (ENXIO); 304 softc = ses_cd.cd_devs[unit]; 305 if (softc == NULL) 306 return (ENXIO); 307 308 if (softc->ses_flags & SES_FLAG_INVALID) { 309 error = ENXIO; 310 goto out; 311 } 312 if (softc->ses_flags & SES_FLAG_OPEN) { 313 error = EBUSY; 314 goto out; 315 } 316 if (softc->ses_vec.softc_init == NULL) { 317 error = ENXIO; 318 goto out; 319 } 320 error = scsipi_adapter_addref(softc->sc_link); 321 if (error != 0) 322 goto out; 323 324 325 softc->ses_flags |= SES_FLAG_OPEN; 326 if ((softc->ses_flags & SES_FLAG_INITIALIZED) == 0) { 327 error = (*softc->ses_vec.softc_init)(softc, 1); 328 if (error) 329 softc->ses_flags &= ~SES_FLAG_OPEN; 330 else 331 softc->ses_flags |= SES_FLAG_INITIALIZED; 332 } 333 334 out: 335 return (error); 336 } 337 338 int 339 sesclose(dev, flags, fmt, p) 340 dev_t dev; 341 int flags; 342 int fmt; 343 struct proc *p; 344 { 345 struct ses_softc *softc; 346 int unit; 347 348 unit = SESUNIT(dev); 349 if (unit >= ses_cd.cd_ndevs) 350 return (ENXIO); 351 softc = ses_cd.cd_devs[unit]; 352 if (softc == NULL) 353 return (ENXIO); 354 355 scsipi_wait_drain(softc->sc_link); 356 scsipi_adapter_delref(softc->sc_link); 357 softc->ses_flags &= ~SES_FLAG_OPEN; 358 return (0); 359 } 360 361 int 362 sesioctl(dev, cmd, arg_addr, flag, p) 363 dev_t dev; 364 u_long cmd; 365 caddr_t arg_addr; 366 int flag; 367 struct proc *p; 368 { 369 ses_encstat tmp; 370 ses_objstat objs; 371 ses_object obj, *uobj; 372 struct ses_softc *ssc = ses_cd.cd_devs[SESUNIT(dev)]; 373 void *addr; 374 int error, i; 375 376 377 if (arg_addr) 378 addr = *((caddr_t *) arg_addr); 379 else 380 addr = NULL; 381 382 SC_DEBUG(ssc->sc_link, SDEV_DB2, ("sesioctl 0x%lx ", cmd)); 383 384 /* 385 * Now check to see whether we're initialized or not. 386 */ 387 if ((ssc->ses_flags & SES_FLAG_INITIALIZED) == 0) { 388 return (ENODEV); 389 } 390 391 error = 0; 392 393 /* 394 * If this command can change the device's state, 395 * we must have the device open for writing. 396 */ 397 switch (cmd) { 398 case SESIOC_GETNOBJ: 399 case SESIOC_GETOBJMAP: 400 case SESIOC_GETENCSTAT: 401 case SESIOC_GETOBJSTAT: 402 break; 403 default: 404 if ((flag & FWRITE) == 0) { 405 return (EBADF); 406 } 407 } 408 409 switch (cmd) { 410 case SESIOC_GETNOBJ: 411 error = copyout(&ssc->ses_nobjects, addr, 412 sizeof (ssc->ses_nobjects)); 413 break; 414 415 case SESIOC_GETOBJMAP: 416 for (uobj = addr, i = 0; i != ssc->ses_nobjects; i++, uobj++) { 417 obj.obj_id = i; 418 obj.subencid = ssc->ses_objmap[i].subenclosure; 419 obj.object_type = ssc->ses_objmap[i].enctype; 420 error = copyout(&obj, uobj, sizeof (ses_object)); 421 if (error) { 422 break; 423 } 424 } 425 break; 426 427 case SESIOC_GETENCSTAT: 428 error = (*ssc->ses_vec.get_encstat)(ssc, 1); 429 if (error) 430 break; 431 tmp = ssc->ses_encstat & ~ENCI_SVALID; 432 error = copyout(&tmp, addr, sizeof (ses_encstat)); 433 ssc->ses_encstat = tmp; 434 break; 435 436 case SESIOC_SETENCSTAT: 437 error = copyin(addr, &tmp, sizeof (ses_encstat)); 438 if (error) 439 break; 440 error = (*ssc->ses_vec.set_encstat)(ssc, tmp, 1); 441 break; 442 443 case SESIOC_GETOBJSTAT: 444 error = copyin(addr, &objs, sizeof (ses_objstat)); 445 if (error) 446 break; 447 if (objs.obj_id >= ssc->ses_nobjects) { 448 error = EINVAL; 449 break; 450 } 451 error = (*ssc->ses_vec.get_objstat)(ssc, &objs, 1); 452 if (error) 453 break; 454 error = copyout(&objs, addr, sizeof (ses_objstat)); 455 /* 456 * Always (for now) invalidate entry. 457 */ 458 ssc->ses_objmap[objs.obj_id].svalid = 0; 459 break; 460 461 case SESIOC_SETOBJSTAT: 462 error = copyin(addr, &objs, sizeof (ses_objstat)); 463 if (error) 464 break; 465 466 if (objs.obj_id >= ssc->ses_nobjects) { 467 error = EINVAL; 468 break; 469 } 470 error = (*ssc->ses_vec.set_objstat)(ssc, &objs, 1); 471 472 /* 473 * Always (for now) invalidate entry. 474 */ 475 ssc->ses_objmap[objs.obj_id].svalid = 0; 476 break; 477 478 case SESIOC_INIT: 479 480 error = (*ssc->ses_vec.init_enc)(ssc); 481 break; 482 483 default: 484 error = scsipi_do_ioctl(ssc->sc_link, dev, cmd, addr, flag, p); 485 break; 486 } 487 return (error); 488 } 489 490 static int 491 ses_runcmd(struct ses_softc *ssc, char *cdb, int cdbl, char *dptr, int *dlenp) 492 { 493 struct scsipi_generic sgen; 494 int dl, flg, error; 495 496 if (dptr) { 497 if ((dl = *dlenp) < 0) { 498 dl = -dl; 499 flg = XS_CTL_DATA_OUT; 500 } else { 501 flg = XS_CTL_DATA_IN; 502 } 503 } else { 504 dl = 0; 505 flg = 0; 506 } 507 508 if (cdbl > sizeof (struct scsipi_generic)) { 509 cdbl = sizeof (struct scsipi_generic); 510 } 511 bcopy(cdb, &sgen, cdbl); 512 #ifndef SCSIDEBUG 513 flg |= XS_CTL_SILENT; 514 #endif 515 error = scsipi_command(ssc->sc_link, &sgen, cdbl, 516 (u_char *) dptr, dl, SCSIPIRETRIES, 30000, NULL, flg); 517 518 if (error == 0 && dptr) 519 *dlenp = 0; 520 521 return (error); 522 } 523 524 #ifdef __STDC__ 525 static void 526 ses_log(struct ses_softc *ssc, const char *fmt, ...) 527 { 528 va_list ap; 529 530 printf("%s: ", ssc->sc_device.dv_xname); 531 va_start(ap, fmt); 532 vprintf(fmt, ap); 533 va_end(ap); 534 } 535 #else 536 static void 537 ses_log(ssc, fmt, va_alist) 538 struct ses_softc *ssc; 539 char *fmt; 540 va_dcl 541 { 542 va_list ap; 543 544 printf("%s: ", ssc->sc_device.dv_xname); 545 va_start(ap, fmt); 546 vprintf(fmt, ap); 547 va_end(ap); 548 } 549 #endif 550 551 /* 552 * The code after this point runs on many platforms, 553 * so forgive the slightly awkward and nonconforming 554 * appearance. 555 */ 556 557 /* 558 * Is this a device that supports enclosure services? 559 * 560 * It's a a pretty simple ruleset- if it is device type 0x0D (13), it's 561 * an SES device. If it happens to be an old UNISYS SEN device, we can 562 * handle that too. 563 */ 564 565 #define SAFTE_START 44 566 #define SAFTE_END 50 567 #define SAFTE_LEN SAFTE_END-SAFTE_START 568 569 static enctyp 570 ses_type(inqp) 571 struct scsipi_inquiry_data *inqp; 572 { 573 size_t given_len = inqp->additional_length + 4; 574 575 if (given_len < 8+SEN_ID_LEN) 576 return (SES_NONE); 577 578 if ((inqp->device & SID_TYPE) == T_ENCLOSURE) { 579 if (STRNCMP(inqp->vendor, SEN_ID, SEN_ID_LEN) == 0) { 580 return (SES_SEN); 581 } else if ((inqp->version & SID_ANSII) > 2) { 582 return (SES_SES); 583 } else { 584 return (SES_SES_SCSI2); 585 } 586 return (SES_NONE); 587 } 588 589 #ifdef SES_ENABLE_PASSTHROUGH 590 if ((inqp->flags2 & SID_EncServ) && (inqp->version & SID_ANSII) >= 2) { 591 /* 592 * PassThrough Device. 593 */ 594 return (SES_SES_PASSTHROUGH); 595 } 596 #endif 597 598 /* 599 * The comparison is short for a reason- 600 * some vendors were chopping it short. 601 */ 602 603 if (given_len < SAFTE_END - 2) { 604 return (SES_NONE); 605 } 606 607 if (STRNCMP((char *)&inqp->vendor_specific[8], "SAF-TE", 608 SAFTE_LEN - 2) == 0) { 609 return (SES_SAFT); 610 } 611 612 return (SES_NONE); 613 } 614 615 /* 616 * SES Native Type Device Support 617 */ 618 619 /* 620 * SES Diagnostic Page Codes 621 */ 622 623 typedef enum { 624 SesConfigPage = 0x1, 625 SesControlPage, 626 #define SesStatusPage SesControlPage 627 SesHelpTxt, 628 SesStringOut, 629 #define SesStringIn SesStringOut 630 SesThresholdOut, 631 #define SesThresholdIn SesThresholdOut 632 SesArrayControl, 633 #define SesArrayStatus SesArrayControl 634 SesElementDescriptor, 635 SesShortStatus 636 } SesDiagPageCodes; 637 638 /* 639 * minimal amounts 640 */ 641 642 /* 643 * Minimum amount of data, starting from byte 0, to have 644 * the config header. 645 */ 646 #define SES_CFGHDR_MINLEN 12 647 648 /* 649 * Minimum amount of data, starting from byte 0, to have 650 * the config header and one enclosure header. 651 */ 652 #define SES_ENCHDR_MINLEN 48 653 654 /* 655 * Take this value, subtract it from VEnclen and you know 656 * the length of the vendor unique bytes. 657 */ 658 #define SES_ENCHDR_VMIN 36 659 660 /* 661 * SES Data Structures 662 */ 663 664 typedef struct { 665 uint32_t GenCode; /* Generation Code */ 666 uint8_t Nsubenc; /* Number of Subenclosures */ 667 } SesCfgHdr; 668 669 typedef struct { 670 uint8_t Subencid; /* SubEnclosure Identifier */ 671 uint8_t Ntypes; /* # of supported types */ 672 uint8_t VEnclen; /* Enclosure Descriptor Length */ 673 } SesEncHdr; 674 675 typedef struct { 676 uint8_t encWWN[8]; /* XXX- Not Right Yet */ 677 uint8_t encVid[8]; 678 uint8_t encPid[16]; 679 uint8_t encRev[4]; 680 uint8_t encVen[1]; 681 } SesEncDesc; 682 683 typedef struct { 684 uint8_t enc_type; /* type of element */ 685 uint8_t enc_maxelt; /* maximum supported */ 686 uint8_t enc_subenc; /* in SubEnc # N */ 687 uint8_t enc_tlen; /* Type Descriptor Text Length */ 688 } SesThdr; 689 690 typedef struct { 691 uint8_t comstatus; 692 uint8_t comstat[3]; 693 } SesComStat; 694 695 struct typidx { 696 int ses_tidx; 697 int ses_oidx; 698 }; 699 700 struct sscfg { 701 uint8_t ses_ntypes; /* total number of types supported */ 702 703 /* 704 * We need to keep a type index as well as an 705 * object index for each object in an enclosure. 706 */ 707 struct typidx *ses_typidx; 708 709 /* 710 * We also need to keep track of the number of elements 711 * per type of element. This is needed later so that we 712 * can find precisely in the returned status data the 713 * status for the Nth element of the Kth type. 714 */ 715 uint8_t * ses_eltmap; 716 }; 717 718 719 /* 720 * (de)canonicalization defines 721 */ 722 #define sbyte(x, byte) ((((uint32_t)(x)) >> (byte * 8)) & 0xff) 723 #define sbit(x, bit) (((uint32_t)(x)) << bit) 724 #define sset8(outp, idx, sval) (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0) 725 726 #define sset16(outp, idx, sval) \ 727 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \ 728 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0) 729 730 731 #define sset24(outp, idx, sval) \ 732 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \ 733 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \ 734 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0) 735 736 737 #define sset32(outp, idx, sval) \ 738 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 3), \ 739 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \ 740 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \ 741 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0) 742 743 #define gbyte(x, byte) ((((uint32_t)(x)) & 0xff) << (byte * 8)) 744 #define gbit(lv, in, idx, shft, mask) lv = ((in[idx] >> shft) & mask) 745 #define sget8(inp, idx, lval) lval = (((uint8_t *)(inp))[idx++]) 746 #define gget8(inp, idx, lval) lval = (((uint8_t *)(inp))[idx]) 747 748 #define sget16(inp, idx, lval) \ 749 lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \ 750 (((uint8_t *)(inp))[idx+1]), idx += 2 751 752 #define gget16(inp, idx, lval) \ 753 lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \ 754 (((uint8_t *)(inp))[idx+1]) 755 756 #define sget24(inp, idx, lval) \ 757 lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \ 758 gbyte((((uint8_t *)(inp))[idx+1]), 1) | \ 759 (((uint8_t *)(inp))[idx+2]), idx += 3 760 761 #define gget24(inp, idx, lval) \ 762 lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \ 763 gbyte((((uint8_t *)(inp))[idx+1]), 1) | \ 764 (((uint8_t *)(inp))[idx+2]) 765 766 #define sget32(inp, idx, lval) \ 767 lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \ 768 gbyte((((uint8_t *)(inp))[idx+1]), 2) | \ 769 gbyte((((uint8_t *)(inp))[idx+2]), 1) | \ 770 (((uint8_t *)(inp))[idx+3]), idx += 4 771 772 #define gget32(inp, idx, lval) \ 773 lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \ 774 gbyte((((uint8_t *)(inp))[idx+1]), 2) | \ 775 gbyte((((uint8_t *)(inp))[idx+2]), 1) | \ 776 (((uint8_t *)(inp))[idx+3]) 777 778 #define SCSZ 0x2000 779 #define CFLEN (256 + SES_ENCHDR_MINLEN) 780 781 /* 782 * Routines specific && private to SES only 783 */ 784 785 static int ses_getconfig(ses_softc_t *); 786 static int ses_getputstat(ses_softc_t *, int, SesComStat *, int, int); 787 static int ses_cfghdr(uint8_t *, int, SesCfgHdr *); 788 static int ses_enchdr(uint8_t *, int, uint8_t, SesEncHdr *); 789 static int ses_encdesc(uint8_t *, int, uint8_t, SesEncDesc *); 790 static int ses_getthdr(uint8_t *, int, int, SesThdr *); 791 static int ses_decode(char *, int, uint8_t *, int, int, SesComStat *); 792 static int ses_encode(char *, int, uint8_t *, int, int, SesComStat *); 793 794 static int 795 ses_softc_init(ses_softc_t *ssc, int doinit) 796 { 797 if (doinit == 0) { 798 struct sscfg *cc; 799 if (ssc->ses_nobjects) { 800 SES_FREE(ssc->ses_objmap, 801 ssc->ses_nobjects * sizeof (encobj)); 802 ssc->ses_objmap = NULL; 803 } 804 if ((cc = ssc->ses_private) != NULL) { 805 if (cc->ses_eltmap && cc->ses_ntypes) { 806 SES_FREE(cc->ses_eltmap, cc->ses_ntypes); 807 cc->ses_eltmap = NULL; 808 cc->ses_ntypes = 0; 809 } 810 if (cc->ses_typidx && ssc->ses_nobjects) { 811 SES_FREE(cc->ses_typidx, 812 ssc->ses_nobjects * sizeof (struct typidx)); 813 cc->ses_typidx = NULL; 814 } 815 SES_FREE(cc, sizeof (struct sscfg)); 816 ssc->ses_private = NULL; 817 } 818 ssc->ses_nobjects = 0; 819 return (0); 820 } 821 if (ssc->ses_private == NULL) { 822 ssc->ses_private = SES_MALLOC(sizeof (struct sscfg)); 823 } 824 if (ssc->ses_private == NULL) { 825 return (ENOMEM); 826 } 827 ssc->ses_nobjects = 0; 828 ssc->ses_encstat = 0; 829 return (ses_getconfig(ssc)); 830 } 831 832 static int 833 ses_init_enc(ses_softc_t *ssc) 834 { 835 return (0); 836 } 837 838 static int 839 ses_get_encstat(ses_softc_t *ssc, int slpflag) 840 { 841 SesComStat ComStat; 842 int status; 843 844 if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 1)) != 0) { 845 return (status); 846 } 847 ssc->ses_encstat = ComStat.comstatus | ENCI_SVALID; 848 return (0); 849 } 850 851 static int 852 ses_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflag) 853 { 854 SesComStat ComStat; 855 int status; 856 857 ComStat.comstatus = encstat & 0xf; 858 if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 0)) != 0) { 859 return (status); 860 } 861 ssc->ses_encstat = encstat & 0xf; /* note no SVALID set */ 862 return (0); 863 } 864 865 static int 866 ses_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag) 867 { 868 int i = (int)obp->obj_id; 869 870 if (ssc->ses_objmap[i].svalid == 0) { 871 SesComStat ComStat; 872 int err = ses_getputstat(ssc, i, &ComStat, slpflag, 1); 873 if (err) 874 return (err); 875 ssc->ses_objmap[i].encstat[0] = ComStat.comstatus; 876 ssc->ses_objmap[i].encstat[1] = ComStat.comstat[0]; 877 ssc->ses_objmap[i].encstat[2] = ComStat.comstat[1]; 878 ssc->ses_objmap[i].encstat[3] = ComStat.comstat[2]; 879 ssc->ses_objmap[i].svalid = 1; 880 } 881 obp->cstat[0] = ssc->ses_objmap[i].encstat[0]; 882 obp->cstat[1] = ssc->ses_objmap[i].encstat[1]; 883 obp->cstat[2] = ssc->ses_objmap[i].encstat[2]; 884 obp->cstat[3] = ssc->ses_objmap[i].encstat[3]; 885 return (0); 886 } 887 888 static int 889 ses_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag) 890 { 891 SesComStat ComStat; 892 int err; 893 /* 894 * If this is clear, we don't do diddly. 895 */ 896 if ((obp->cstat[0] & SESCTL_CSEL) == 0) { 897 return (0); 898 } 899 ComStat.comstatus = obp->cstat[0]; 900 ComStat.comstat[0] = obp->cstat[1]; 901 ComStat.comstat[1] = obp->cstat[2]; 902 ComStat.comstat[2] = obp->cstat[3]; 903 err = ses_getputstat(ssc, (int)obp->obj_id, &ComStat, slpflag, 0); 904 ssc->ses_objmap[(int)obp->obj_id].svalid = 0; 905 return (err); 906 } 907 908 static int 909 ses_getconfig(ses_softc_t *ssc) 910 { 911 struct sscfg *cc; 912 SesCfgHdr cf; 913 SesEncHdr hd; 914 SesEncDesc *cdp; 915 SesThdr thdr; 916 int err, amt, i, nobj, ntype, maxima; 917 char storage[CFLEN], *sdata; 918 static char cdb[6] = { 919 RECEIVE_DIAGNOSTIC, 0x1, SesConfigPage, SCSZ >> 8, SCSZ & 0xff, 0 920 }; 921 922 cc = ssc->ses_private; 923 if (cc == NULL) { 924 return (ENXIO); 925 } 926 927 sdata = SES_MALLOC(SCSZ); 928 if (sdata == NULL) 929 return (ENOMEM); 930 931 amt = SCSZ; 932 err = ses_runcmd(ssc, cdb, 6, sdata, &amt); 933 if (err) { 934 SES_FREE(sdata, SCSZ); 935 return (err); 936 } 937 amt = SCSZ - amt; 938 939 if (ses_cfghdr((uint8_t *) sdata, amt, &cf)) { 940 SES_LOG(ssc, "Unable to parse SES Config Header\n"); 941 SES_FREE(sdata, SCSZ); 942 return (EIO); 943 } 944 if (amt < SES_ENCHDR_MINLEN) { 945 SES_LOG(ssc, "runt enclosure length (%d)\n", amt); 946 SES_FREE(sdata, SCSZ); 947 return (EIO); 948 } 949 950 SES_VLOG(ssc, "GenCode %x %d Subenclosures\n", cf.GenCode, cf.Nsubenc); 951 952 /* 953 * Now waltz through all the subenclosures toting up the 954 * number of types available in each. For this, we only 955 * really need the enclosure header. However, we get the 956 * enclosure descriptor for debug purposes, as well 957 * as self-consistency checking purposes. 958 */ 959 960 maxima = cf.Nsubenc + 1; 961 cdp = (SesEncDesc *) storage; 962 for (ntype = i = 0; i < maxima; i++) { 963 MEMZERO((caddr_t)cdp, sizeof (*cdp)); 964 if (ses_enchdr((uint8_t *) sdata, amt, i, &hd)) { 965 SES_LOG(ssc, "Cannot Extract Enclosure Header %d\n", i); 966 SES_FREE(sdata, SCSZ); 967 return (EIO); 968 } 969 SES_VLOG(ssc, " SubEnclosure ID %d, %d Types With this ID, En" 970 "closure Length %d\n", hd.Subencid, hd.Ntypes, hd.VEnclen); 971 972 if (ses_encdesc((uint8_t *)sdata, amt, i, cdp)) { 973 SES_LOG(ssc, "Can't get Enclosure Descriptor %d\n", i); 974 SES_FREE(sdata, SCSZ); 975 return (EIO); 976 } 977 SES_VLOG(ssc, " WWN: %02x%02x%02x%02x%02x%02x%02x%02x\n", 978 cdp->encWWN[0], cdp->encWWN[1], cdp->encWWN[2], 979 cdp->encWWN[3], cdp->encWWN[4], cdp->encWWN[5], 980 cdp->encWWN[6], cdp->encWWN[7]); 981 ntype += hd.Ntypes; 982 } 983 984 /* 985 * Now waltz through all the types that are available, getting 986 * the type header so we can start adding up the number of 987 * objects available. 988 */ 989 for (nobj = i = 0; i < ntype; i++) { 990 if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) { 991 SES_LOG(ssc, "Can't get Enclosure Type Header %d\n", i); 992 SES_FREE(sdata, SCSZ); 993 return (EIO); 994 } 995 SES_LOG(ssc, " Type Desc[%d]: Type 0x%x, MaxElt %d, In Subenc " 996 "%d, Text Length %d\n", i, thdr.enc_type, thdr.enc_maxelt, 997 thdr.enc_subenc, thdr.enc_tlen); 998 nobj += thdr.enc_maxelt; 999 } 1000 1001 1002 /* 1003 * Now allocate the object array and type map. 1004 */ 1005 1006 ssc->ses_objmap = SES_MALLOC(nobj * sizeof (encobj)); 1007 cc->ses_typidx = SES_MALLOC(nobj * sizeof (struct typidx)); 1008 cc->ses_eltmap = SES_MALLOC(ntype); 1009 1010 if (ssc->ses_objmap == NULL || cc->ses_typidx == NULL || 1011 cc->ses_eltmap == NULL) { 1012 if (ssc->ses_objmap) { 1013 SES_FREE(ssc->ses_objmap, (nobj * sizeof (encobj))); 1014 ssc->ses_objmap = NULL; 1015 } 1016 if (cc->ses_typidx) { 1017 SES_FREE(cc->ses_typidx, 1018 (nobj * sizeof (struct typidx))); 1019 cc->ses_typidx = NULL; 1020 } 1021 if (cc->ses_eltmap) { 1022 SES_FREE(cc->ses_eltmap, ntype); 1023 cc->ses_eltmap = NULL; 1024 } 1025 SES_FREE(sdata, SCSZ); 1026 return (ENOMEM); 1027 } 1028 MEMZERO(ssc->ses_objmap, nobj * sizeof (encobj)); 1029 MEMZERO(cc->ses_typidx, nobj * sizeof (struct typidx)); 1030 MEMZERO(cc->ses_eltmap, ntype); 1031 cc->ses_ntypes = (uint8_t) ntype; 1032 ssc->ses_nobjects = nobj; 1033 1034 /* 1035 * Now waltz through the # of types again to fill in the types 1036 * (and subenclosure ids) of the allocated objects. 1037 */ 1038 nobj = 0; 1039 for (i = 0; i < ntype; i++) { 1040 int j; 1041 if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) { 1042 continue; 1043 } 1044 cc->ses_eltmap[i] = thdr.enc_maxelt; 1045 for (j = 0; j < thdr.enc_maxelt; j++) { 1046 cc->ses_typidx[nobj].ses_tidx = i; 1047 cc->ses_typidx[nobj].ses_oidx = j; 1048 ssc->ses_objmap[nobj].subenclosure = thdr.enc_subenc; 1049 ssc->ses_objmap[nobj++].enctype = thdr.enc_type; 1050 } 1051 } 1052 SES_FREE(sdata, SCSZ); 1053 return (0); 1054 } 1055 1056 static int 1057 ses_getputstat(ses_softc_t *ssc, int objid, SesComStat *sp, int slp, int in) 1058 { 1059 struct sscfg *cc; 1060 int err, amt, bufsiz, tidx, oidx; 1061 char cdb[6], *sdata; 1062 1063 cc = ssc->ses_private; 1064 if (cc == NULL) { 1065 return (ENXIO); 1066 } 1067 1068 /* 1069 * If we're just getting overall enclosure status, 1070 * we only need 2 bytes of data storage. 1071 * 1072 * If we're getting anything else, we know how much 1073 * storage we need by noting that starting at offset 1074 * 8 in returned data, all object status bytes are 4 1075 * bytes long, and are stored in chunks of types(M) 1076 * and nth+1 instances of type M. 1077 */ 1078 if (objid == -1) { 1079 bufsiz = 2; 1080 } else { 1081 bufsiz = (ssc->ses_nobjects * 4) + (cc->ses_ntypes * 4) + 8; 1082 } 1083 sdata = SES_MALLOC(bufsiz); 1084 if (sdata == NULL) 1085 return (ENOMEM); 1086 1087 cdb[0] = RECEIVE_DIAGNOSTIC; 1088 cdb[1] = 1; 1089 cdb[2] = SesStatusPage; 1090 cdb[3] = bufsiz >> 8; 1091 cdb[4] = bufsiz & 0xff; 1092 cdb[5] = 0; 1093 amt = bufsiz; 1094 err = ses_runcmd(ssc, cdb, 6, sdata, &amt); 1095 if (err) { 1096 SES_FREE(sdata, bufsiz); 1097 return (err); 1098 } 1099 amt = bufsiz - amt; 1100 1101 if (objid == -1) { 1102 tidx = -1; 1103 oidx = -1; 1104 } else { 1105 tidx = cc->ses_typidx[objid].ses_tidx; 1106 oidx = cc->ses_typidx[objid].ses_oidx; 1107 } 1108 if (in) { 1109 if (ses_decode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) { 1110 err = ENODEV; 1111 } 1112 } else { 1113 if (ses_encode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) { 1114 err = ENODEV; 1115 } else { 1116 cdb[0] = SEND_DIAGNOSTIC; 1117 cdb[1] = 0x10; 1118 cdb[2] = 0; 1119 cdb[3] = bufsiz >> 8; 1120 cdb[4] = bufsiz & 0xff; 1121 cdb[5] = 0; 1122 amt = -bufsiz; 1123 err = ses_runcmd(ssc, cdb, 6, sdata, &amt); 1124 } 1125 } 1126 SES_FREE(sdata, bufsiz); 1127 return (0); 1128 } 1129 1130 1131 /* 1132 * Routines to parse returned SES data structures. 1133 * Architecture and compiler independent. 1134 */ 1135 1136 static int 1137 ses_cfghdr(uint8_t *buffer, int buflen, SesCfgHdr *cfp) 1138 { 1139 if (buflen < SES_CFGHDR_MINLEN) { 1140 return (-1); 1141 } 1142 gget8(buffer, 1, cfp->Nsubenc); 1143 gget32(buffer, 4, cfp->GenCode); 1144 return (0); 1145 } 1146 1147 static int 1148 ses_enchdr(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncHdr *chp) 1149 { 1150 int s, off = 8; 1151 for (s = 0; s < SubEncId; s++) { 1152 if (off + 3 > amt) 1153 return (-1); 1154 off += buffer[off+3] + 4; 1155 } 1156 if (off + 3 > amt) { 1157 return (-1); 1158 } 1159 gget8(buffer, off+1, chp->Subencid); 1160 gget8(buffer, off+2, chp->Ntypes); 1161 gget8(buffer, off+3, chp->VEnclen); 1162 return (0); 1163 } 1164 1165 static int 1166 ses_encdesc(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncDesc *cdp) 1167 { 1168 int s, e, enclen, off = 8; 1169 for (s = 0; s < SubEncId; s++) { 1170 if (off + 3 > amt) 1171 return (-1); 1172 off += buffer[off+3] + 4; 1173 } 1174 if (off + 3 > amt) { 1175 return (-1); 1176 } 1177 gget8(buffer, off+3, enclen); 1178 off += 4; 1179 if (off >= amt) 1180 return (-1); 1181 1182 e = off + enclen; 1183 if (e > amt) { 1184 e = amt; 1185 } 1186 MEMCPY(cdp, &buffer[off], e - off); 1187 return (0); 1188 } 1189 1190 static int 1191 ses_getthdr(uint8_t *buffer, int amt, int nth, SesThdr *thp) 1192 { 1193 int s, off = 8; 1194 1195 if (amt < SES_CFGHDR_MINLEN) { 1196 return (-1); 1197 } 1198 for (s = 0; s < buffer[1]; s++) { 1199 if (off + 3 > amt) 1200 return (-1); 1201 off += buffer[off+3] + 4; 1202 } 1203 if (off + 3 > amt) { 1204 return (-1); 1205 } 1206 off += buffer[off+3] + 4 + (nth * 4); 1207 if (amt < (off + 4)) 1208 return (-1); 1209 1210 gget8(buffer, off++, thp->enc_type); 1211 gget8(buffer, off++, thp->enc_maxelt); 1212 gget8(buffer, off++, thp->enc_subenc); 1213 gget8(buffer, off, thp->enc_tlen); 1214 return (0); 1215 } 1216 1217 /* 1218 * This function needs a little explanation. 1219 * 1220 * The arguments are: 1221 * 1222 * 1223 * char *b, int amt 1224 * 1225 * These describes the raw input SES status data and length. 1226 * 1227 * uint8_t *ep 1228 * 1229 * This is a map of the number of types for each element type 1230 * in the enclosure. 1231 * 1232 * int elt 1233 * 1234 * This is the element type being sought. If elt is -1, 1235 * then overall enclosure status is being sought. 1236 * 1237 * int elm 1238 * 1239 * This is the ordinal Mth element of type elt being sought. 1240 * 1241 * SesComStat *sp 1242 * 1243 * This is the output area to store the status for 1244 * the Mth element of type Elt. 1245 */ 1246 1247 static int 1248 ses_decode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp) 1249 { 1250 int idx, i; 1251 1252 /* 1253 * If it's overall enclosure status being sought, get that. 1254 * We need at least 2 bytes of status data to get that. 1255 */ 1256 if (elt == -1) { 1257 if (amt < 2) 1258 return (-1); 1259 gget8(b, 1, sp->comstatus); 1260 sp->comstat[0] = 0; 1261 sp->comstat[1] = 0; 1262 sp->comstat[2] = 0; 1263 return (0); 1264 } 1265 1266 /* 1267 * Check to make sure that the Mth element is legal for type Elt. 1268 */ 1269 1270 if (elm >= ep[elt]) 1271 return (-1); 1272 1273 /* 1274 * Starting at offset 8, start skipping over the storage 1275 * for the element types we're not interested in. 1276 */ 1277 for (idx = 8, i = 0; i < elt; i++) { 1278 idx += ((ep[i] + 1) * 4); 1279 } 1280 1281 /* 1282 * Skip over Overall status for this element type. 1283 */ 1284 idx += 4; 1285 1286 /* 1287 * And skip to the index for the Mth element that we're going for. 1288 */ 1289 idx += (4 * elm); 1290 1291 /* 1292 * Make sure we haven't overflowed the buffer. 1293 */ 1294 if (idx+4 > amt) 1295 return (-1); 1296 1297 /* 1298 * Retrieve the status. 1299 */ 1300 gget8(b, idx++, sp->comstatus); 1301 gget8(b, idx++, sp->comstat[0]); 1302 gget8(b, idx++, sp->comstat[1]); 1303 gget8(b, idx++, sp->comstat[2]); 1304 #if 0 1305 PRINTF("Get Elt 0x%x Elm 0x%x (idx %d)\n", elt, elm, idx-4); 1306 #endif 1307 return (0); 1308 } 1309 1310 /* 1311 * This is the mirror function to ses_decode, but we set the 'select' 1312 * bit for the object which we're interested in. All other objects, 1313 * after a status fetch, should have that bit off. Hmm. It'd be easy 1314 * enough to ensure this, so we will. 1315 */ 1316 1317 static int 1318 ses_encode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp) 1319 { 1320 int idx, i; 1321 1322 /* 1323 * If it's overall enclosure status being sought, get that. 1324 * We need at least 2 bytes of status data to get that. 1325 */ 1326 if (elt == -1) { 1327 if (amt < 2) 1328 return (-1); 1329 i = 0; 1330 sset8(b, i, 0); 1331 sset8(b, i, sp->comstatus & 0xf); 1332 #if 0 1333 PRINTF("set EncStat %x\n", sp->comstatus); 1334 #endif 1335 return (0); 1336 } 1337 1338 /* 1339 * Check to make sure that the Mth element is legal for type Elt. 1340 */ 1341 1342 if (elm >= ep[elt]) 1343 return (-1); 1344 1345 /* 1346 * Starting at offset 8, start skipping over the storage 1347 * for the element types we're not interested in. 1348 */ 1349 for (idx = 8, i = 0; i < elt; i++) { 1350 idx += ((ep[i] + 1) * 4); 1351 } 1352 1353 /* 1354 * Skip over Overall status for this element type. 1355 */ 1356 idx += 4; 1357 1358 /* 1359 * And skip to the index for the Mth element that we're going for. 1360 */ 1361 idx += (4 * elm); 1362 1363 /* 1364 * Make sure we haven't overflowed the buffer. 1365 */ 1366 if (idx+4 > amt) 1367 return (-1); 1368 1369 /* 1370 * Set the status. 1371 */ 1372 sset8(b, idx, sp->comstatus); 1373 sset8(b, idx, sp->comstat[0]); 1374 sset8(b, idx, sp->comstat[1]); 1375 sset8(b, idx, sp->comstat[2]); 1376 idx -= 4; 1377 1378 #if 0 1379 PRINTF("Set Elt 0x%x Elm 0x%x (idx %d) with %x %x %x %x\n", 1380 elt, elm, idx, sp->comstatus, sp->comstat[0], 1381 sp->comstat[1], sp->comstat[2]); 1382 #endif 1383 1384 /* 1385 * Now make sure all other 'Select' bits are off. 1386 */ 1387 for (i = 8; i < amt; i += 4) { 1388 if (i != idx) 1389 b[i] &= ~0x80; 1390 } 1391 /* 1392 * And make sure the INVOP bit is clear. 1393 */ 1394 b[2] &= ~0x10; 1395 1396 return (0); 1397 } 1398 1399 /* 1400 * SAF-TE Type Device Emulation 1401 */ 1402 1403 static int safte_getconfig(ses_softc_t *); 1404 static int safte_rdstat(ses_softc_t *, int);; 1405 static int set_objstat_sel(ses_softc_t *, ses_objstat *, int); 1406 static int wrbuf16(ses_softc_t *, uint8_t, uint8_t, uint8_t, uint8_t, int); 1407 static void wrslot_stat(ses_softc_t *, int); 1408 static int perf_slotop(ses_softc_t *, uint8_t, uint8_t, int); 1409 1410 #define ALL_ENC_STAT (SES_ENCSTAT_CRITICAL | SES_ENCSTAT_UNRECOV | \ 1411 SES_ENCSTAT_NONCRITICAL | SES_ENCSTAT_INFO) 1412 /* 1413 * SAF-TE specific defines- Mandatory ones only... 1414 */ 1415 1416 /* 1417 * READ BUFFER ('get' commands) IDs- placed in offset 2 of cdb 1418 */ 1419 #define SAFTE_RD_RDCFG 0x00 /* read enclosure configuration */ 1420 #define SAFTE_RD_RDESTS 0x01 /* read enclosure status */ 1421 #define SAFTE_RD_RDDSTS 0x04 /* read drive slot status */ 1422 1423 /* 1424 * WRITE BUFFER ('set' commands) IDs- placed in offset 0 of databuf 1425 */ 1426 #define SAFTE_WT_DSTAT 0x10 /* write device slot status */ 1427 #define SAFTE_WT_SLTOP 0x12 /* perform slot operation */ 1428 #define SAFTE_WT_FANSPD 0x13 /* set fan speed */ 1429 #define SAFTE_WT_ACTPWS 0x14 /* turn on/off power supply */ 1430 #define SAFTE_WT_GLOBAL 0x15 /* send global command */ 1431 1432 1433 #define SAFT_SCRATCH 64 1434 #define NPSEUDO_THERM 16 1435 #define NPSEUDO_ALARM 1 1436 struct scfg { 1437 /* 1438 * Cached Configuration 1439 */ 1440 uint8_t Nfans; /* Number of Fans */ 1441 uint8_t Npwr; /* Number of Power Supplies */ 1442 uint8_t Nslots; /* Number of Device Slots */ 1443 uint8_t DoorLock; /* Door Lock Installed */ 1444 uint8_t Ntherm; /* Number of Temperature Sensors */ 1445 uint8_t Nspkrs; /* Number of Speakers */ 1446 uint8_t Nalarm; /* Number of Alarms (at least one) */ 1447 /* 1448 * Cached Flag Bytes for Global Status 1449 */ 1450 uint8_t flag1; 1451 uint8_t flag2; 1452 /* 1453 * What object index ID is where various slots start. 1454 */ 1455 uint8_t pwroff; 1456 uint8_t slotoff; 1457 #define SAFT_ALARM_OFFSET(cc) (cc)->slotoff - 1 1458 }; 1459 1460 #define SAFT_FLG1_ALARM 0x1 1461 #define SAFT_FLG1_GLOBFAIL 0x2 1462 #define SAFT_FLG1_GLOBWARN 0x4 1463 #define SAFT_FLG1_ENCPWROFF 0x8 1464 #define SAFT_FLG1_ENCFANFAIL 0x10 1465 #define SAFT_FLG1_ENCPWRFAIL 0x20 1466 #define SAFT_FLG1_ENCDRVFAIL 0x40 1467 #define SAFT_FLG1_ENCDRVWARN 0x80 1468 1469 #define SAFT_FLG2_LOCKDOOR 0x4 1470 #define SAFT_PRIVATE sizeof (struct scfg) 1471 1472 static char *safte_2little = "Too Little Data Returned (%d) at line %d\n"; 1473 #define SAFT_BAIL(r, x, k, l) \ 1474 if (r >= x) { \ 1475 SES_LOG(ssc, safte_2little, x, __LINE__);\ 1476 SES_FREE(k, l); \ 1477 return (EIO); \ 1478 } 1479 1480 1481 int 1482 safte_softc_init(ses_softc_t *ssc, int doinit) 1483 { 1484 int err, i, r; 1485 struct scfg *cc; 1486 1487 if (doinit == 0) { 1488 if (ssc->ses_nobjects) { 1489 if (ssc->ses_objmap) { 1490 SES_FREE(ssc->ses_objmap, 1491 ssc->ses_nobjects * sizeof (encobj)); 1492 ssc->ses_objmap = NULL; 1493 } 1494 ssc->ses_nobjects = 0; 1495 } 1496 if (ssc->ses_private) { 1497 SES_FREE(ssc->ses_private, SAFT_PRIVATE); 1498 ssc->ses_private = NULL; 1499 } 1500 return (0); 1501 } 1502 1503 if (ssc->ses_private == NULL) { 1504 ssc->ses_private = SES_MALLOC(SAFT_PRIVATE); 1505 if (ssc->ses_private == NULL) { 1506 return (ENOMEM); 1507 } 1508 MEMZERO(ssc->ses_private, SAFT_PRIVATE); 1509 } 1510 1511 ssc->ses_nobjects = 0; 1512 ssc->ses_encstat = 0; 1513 1514 if ((err = safte_getconfig(ssc)) != 0) { 1515 return (err); 1516 } 1517 1518 /* 1519 * The number of objects here, as well as that reported by the 1520 * READ_BUFFER/GET_CONFIG call, are the over-temperature flags (15) 1521 * that get reported during READ_BUFFER/READ_ENC_STATUS. 1522 */ 1523 cc = ssc->ses_private; 1524 ssc->ses_nobjects = cc->Nfans + cc->Npwr + cc->Nslots + cc->DoorLock + 1525 cc->Ntherm + cc->Nspkrs + NPSEUDO_THERM + NPSEUDO_ALARM; 1526 ssc->ses_objmap = (encobj *) 1527 SES_MALLOC(ssc->ses_nobjects * sizeof (encobj)); 1528 if (ssc->ses_objmap == NULL) { 1529 return (ENOMEM); 1530 } 1531 MEMZERO(ssc->ses_objmap, ssc->ses_nobjects * sizeof (encobj)); 1532 1533 r = 0; 1534 /* 1535 * Note that this is all arranged for the convenience 1536 * in later fetches of status. 1537 */ 1538 for (i = 0; i < cc->Nfans; i++) 1539 ssc->ses_objmap[r++].enctype = SESTYP_FAN; 1540 cc->pwroff = (uint8_t) r; 1541 for (i = 0; i < cc->Npwr; i++) 1542 ssc->ses_objmap[r++].enctype = SESTYP_POWER; 1543 for (i = 0; i < cc->DoorLock; i++) 1544 ssc->ses_objmap[r++].enctype = SESTYP_DOORLOCK; 1545 for (i = 0; i < cc->Nspkrs; i++) 1546 ssc->ses_objmap[r++].enctype = SESTYP_ALARM; 1547 for (i = 0; i < cc->Ntherm; i++) 1548 ssc->ses_objmap[r++].enctype = SESTYP_THERM; 1549 for (i = 0; i < NPSEUDO_THERM; i++) 1550 ssc->ses_objmap[r++].enctype = SESTYP_THERM; 1551 ssc->ses_objmap[r++].enctype = SESTYP_ALARM; 1552 cc->slotoff = (uint8_t) r; 1553 for (i = 0; i < cc->Nslots; i++) 1554 ssc->ses_objmap[r++].enctype = SESTYP_DEVICE; 1555 return (0); 1556 } 1557 1558 int 1559 safte_init_enc(ses_softc_t *ssc) 1560 { 1561 int err, amt; 1562 char *sdata; 1563 static char cdb0[6] = { SEND_DIAGNOSTIC }; 1564 static char cdb[10] = 1565 { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 }; 1566 1567 sdata = SES_MALLOC(SAFT_SCRATCH); 1568 if (sdata == NULL) 1569 return (ENOMEM); 1570 1571 err = ses_runcmd(ssc, cdb0, 6, NULL, 0); 1572 if (err) { 1573 SES_FREE(sdata, SAFT_SCRATCH); 1574 return (err); 1575 } 1576 sdata[0] = SAFTE_WT_GLOBAL; 1577 MEMZERO(&sdata[1], 15); 1578 amt = -SAFT_SCRATCH; 1579 err = ses_runcmd(ssc, cdb, 10, sdata, &amt); 1580 SES_FREE(sdata, SAFT_SCRATCH); 1581 return (err); 1582 } 1583 1584 int 1585 safte_get_encstat(ses_softc_t *ssc, int slpflg) 1586 { 1587 return (safte_rdstat(ssc, slpflg)); 1588 } 1589 1590 int 1591 safte_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflg) 1592 { 1593 struct scfg *cc = ssc->ses_private; 1594 if (cc == NULL) 1595 return (0); 1596 /* 1597 * Since SAF-TE devices aren't necessarily sticky in terms 1598 * of state, make our soft copy of enclosure status 'sticky'- 1599 * that is, things set in enclosure status stay set (as implied 1600 * by conditions set in reading object status) until cleared. 1601 */ 1602 ssc->ses_encstat &= ~ALL_ENC_STAT; 1603 ssc->ses_encstat |= (encstat & ALL_ENC_STAT); 1604 ssc->ses_encstat |= ENCI_SVALID; 1605 cc->flag1 &= ~(SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL|SAFT_FLG1_GLOBWARN); 1606 if ((encstat & (SES_ENCSTAT_CRITICAL|SES_ENCSTAT_UNRECOV)) != 0) { 1607 cc->flag1 |= SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL; 1608 } else if ((encstat & SES_ENCSTAT_NONCRITICAL) != 0) { 1609 cc->flag1 |= SAFT_FLG1_GLOBWARN; 1610 } 1611 return (wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slpflg)); 1612 } 1613 1614 int 1615 safte_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflg) 1616 { 1617 int i = (int)obp->obj_id; 1618 1619 if ((ssc->ses_encstat & ENCI_SVALID) == 0 || 1620 (ssc->ses_objmap[i].svalid) == 0) { 1621 int err = safte_rdstat(ssc, slpflg); 1622 if (err) 1623 return (err); 1624 } 1625 obp->cstat[0] = ssc->ses_objmap[i].encstat[0]; 1626 obp->cstat[1] = ssc->ses_objmap[i].encstat[1]; 1627 obp->cstat[2] = ssc->ses_objmap[i].encstat[2]; 1628 obp->cstat[3] = ssc->ses_objmap[i].encstat[3]; 1629 return (0); 1630 } 1631 1632 1633 int 1634 safte_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slp) 1635 { 1636 int idx, err; 1637 encobj *ep; 1638 struct scfg *cc; 1639 1640 1641 SES_VLOG(ssc, "safte_set_objstat(%d): %x %x %x %x\n", 1642 (int)obp->obj_id, obp->cstat[0], obp->cstat[1], obp->cstat[2], 1643 obp->cstat[3]); 1644 1645 /* 1646 * If this is clear, we don't do diddly. 1647 */ 1648 if ((obp->cstat[0] & SESCTL_CSEL) == 0) { 1649 return (0); 1650 } 1651 1652 err = 0; 1653 /* 1654 * Check to see if the common bits are set and do them first. 1655 */ 1656 if (obp->cstat[0] & ~SESCTL_CSEL) { 1657 err = set_objstat_sel(ssc, obp, slp); 1658 if (err) 1659 return (err); 1660 } 1661 1662 cc = ssc->ses_private; 1663 if (cc == NULL) 1664 return (0); 1665 1666 idx = (int)obp->obj_id; 1667 ep = &ssc->ses_objmap[idx]; 1668 1669 switch (ep->enctype) { 1670 case SESTYP_DEVICE: 1671 { 1672 uint8_t slotop = 0; 1673 /* 1674 * XXX: I should probably cache the previous state 1675 * XXX: of SESCTL_DEVOFF so that when it goes from 1676 * XXX: true to false I can then set PREPARE FOR OPERATION 1677 * XXX: flag in PERFORM SLOT OPERATION write buffer command. 1678 */ 1679 if (obp->cstat[2] & (SESCTL_RQSINS|SESCTL_RQSRMV)) { 1680 slotop |= 0x2; 1681 } 1682 if (obp->cstat[2] & SESCTL_RQSID) { 1683 slotop |= 0x4; 1684 } 1685 err = perf_slotop(ssc, (uint8_t) idx - (uint8_t) cc->slotoff, 1686 slotop, slp); 1687 if (err) 1688 return (err); 1689 if (obp->cstat[3] & SESCTL_RQSFLT) { 1690 ep->priv |= 0x2; 1691 } else { 1692 ep->priv &= ~0x2; 1693 } 1694 if (ep->priv & 0xc6) { 1695 ep->priv &= ~0x1; 1696 } else { 1697 ep->priv |= 0x1; /* no errors */ 1698 } 1699 wrslot_stat(ssc, slp); 1700 break; 1701 } 1702 case SESTYP_POWER: 1703 if (obp->cstat[3] & SESCTL_RQSTFAIL) { 1704 cc->flag1 |= SAFT_FLG1_ENCPWRFAIL; 1705 } else { 1706 cc->flag1 &= ~SAFT_FLG1_ENCPWRFAIL; 1707 } 1708 err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, 1709 cc->flag2, 0, slp); 1710 if (err) 1711 return (err); 1712 if (obp->cstat[3] & SESCTL_RQSTON) { 1713 (void) wrbuf16(ssc, SAFTE_WT_ACTPWS, 1714 idx - cc->pwroff, 0, 0, slp); 1715 } else { 1716 (void) wrbuf16(ssc, SAFTE_WT_ACTPWS, 1717 idx - cc->pwroff, 0, 1, slp); 1718 } 1719 break; 1720 case SESTYP_FAN: 1721 if (obp->cstat[3] & SESCTL_RQSTFAIL) { 1722 cc->flag1 |= SAFT_FLG1_ENCFANFAIL; 1723 } else { 1724 cc->flag1 &= ~SAFT_FLG1_ENCFANFAIL; 1725 } 1726 err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, 1727 cc->flag2, 0, slp); 1728 if (err) 1729 return (err); 1730 if (obp->cstat[3] & SESCTL_RQSTON) { 1731 uint8_t fsp; 1732 if ((obp->cstat[3] & 0x7) == 7) { 1733 fsp = 4; 1734 } else if ((obp->cstat[3] & 0x7) == 6) { 1735 fsp = 3; 1736 } else if ((obp->cstat[3] & 0x7) == 4) { 1737 fsp = 2; 1738 } else { 1739 fsp = 1; 1740 } 1741 (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, fsp, 0, slp); 1742 } else { 1743 (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp); 1744 } 1745 break; 1746 case SESTYP_DOORLOCK: 1747 if (obp->cstat[3] & 0x1) { 1748 cc->flag2 &= ~SAFT_FLG2_LOCKDOOR; 1749 } else { 1750 cc->flag2 |= SAFT_FLG2_LOCKDOOR; 1751 } 1752 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, 1753 cc->flag2, 0, slp); 1754 break; 1755 case SESTYP_ALARM: 1756 /* 1757 * On all nonzero but the 'muted' bit, we turn on the alarm, 1758 */ 1759 obp->cstat[3] &= ~0xa; 1760 if (obp->cstat[3] & 0x40) { 1761 cc->flag2 &= ~SAFT_FLG1_ALARM; 1762 } else if (obp->cstat[3] != 0) { 1763 cc->flag2 |= SAFT_FLG1_ALARM; 1764 } else { 1765 cc->flag2 &= ~SAFT_FLG1_ALARM; 1766 } 1767 ep->priv = obp->cstat[3]; 1768 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, 1769 cc->flag2, 0, slp); 1770 break; 1771 default: 1772 break; 1773 } 1774 ep->svalid = 0; 1775 return (0); 1776 } 1777 1778 static int 1779 safte_getconfig(ses_softc_t *ssc) 1780 { 1781 struct scfg *cfg; 1782 int err, amt; 1783 char *sdata; 1784 static char cdb[10] = 1785 { READ_BUFFER, 1, SAFTE_RD_RDCFG, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 }; 1786 1787 cfg = ssc->ses_private; 1788 if (cfg == NULL) 1789 return (ENXIO); 1790 1791 sdata = SES_MALLOC(SAFT_SCRATCH); 1792 if (sdata == NULL) 1793 return (ENOMEM); 1794 1795 amt = SAFT_SCRATCH; 1796 err = ses_runcmd(ssc, cdb, 10, sdata, &amt); 1797 if (err) { 1798 SES_FREE(sdata, SAFT_SCRATCH); 1799 return (err); 1800 } 1801 amt = SAFT_SCRATCH - amt; 1802 if (amt < 6) { 1803 SES_LOG(ssc, "too little data (%d) for configuration\n", amt); 1804 SES_FREE(sdata, SAFT_SCRATCH); 1805 return (EIO); 1806 } 1807 SES_VLOG(ssc, "Nfans %d Npwr %d Nslots %d Lck %d Ntherm %d Nspkrs %d\n", 1808 sdata[0], sdata[1], sdata[2], sdata[3], sdata[4], sdata[5]); 1809 cfg->Nfans = sdata[0]; 1810 cfg->Npwr = sdata[1]; 1811 cfg->Nslots = sdata[2]; 1812 cfg->DoorLock = sdata[3]; 1813 cfg->Ntherm = sdata[4]; 1814 cfg->Nspkrs = sdata[5]; 1815 cfg->Nalarm = NPSEUDO_ALARM; 1816 SES_FREE(sdata, SAFT_SCRATCH); 1817 return (0); 1818 } 1819 1820 static int 1821 safte_rdstat(ses_softc_t *ssc, int slpflg) 1822 { 1823 int err, oid, r, i, hiwater, nitems, amt; 1824 uint16_t tempflags; 1825 size_t buflen; 1826 uint8_t status, oencstat; 1827 char *sdata, cdb[10]; 1828 struct scfg *cc = ssc->ses_private; 1829 1830 1831 /* 1832 * The number of objects overstates things a bit, 1833 * both for the bogus 'thermometer' entries and 1834 * the drive status (which isn't read at the same 1835 * time as the enclosure status), but that's okay. 1836 */ 1837 buflen = 4 * cc->Nslots; 1838 if (ssc->ses_nobjects > buflen) 1839 buflen = ssc->ses_nobjects; 1840 sdata = SES_MALLOC(buflen); 1841 if (sdata == NULL) 1842 return (ENOMEM); 1843 1844 cdb[0] = READ_BUFFER; 1845 cdb[1] = 1; 1846 cdb[2] = SAFTE_RD_RDESTS; 1847 cdb[3] = 0; 1848 cdb[4] = 0; 1849 cdb[5] = 0; 1850 cdb[6] = 0; 1851 cdb[7] = (buflen >> 8) & 0xff; 1852 cdb[8] = buflen & 0xff; 1853 cdb[9] = 0; 1854 amt = buflen; 1855 err = ses_runcmd(ssc, cdb, 10, sdata, &amt); 1856 if (err) { 1857 SES_FREE(sdata, buflen); 1858 return (err); 1859 } 1860 hiwater = buflen - amt; 1861 1862 1863 /* 1864 * invalidate all status bits. 1865 */ 1866 for (i = 0; i < ssc->ses_nobjects; i++) 1867 ssc->ses_objmap[i].svalid = 0; 1868 oencstat = ssc->ses_encstat & ALL_ENC_STAT; 1869 ssc->ses_encstat = 0; 1870 1871 1872 /* 1873 * Now parse returned buffer. 1874 * If we didn't get enough data back, 1875 * that's considered a fatal error. 1876 */ 1877 oid = r = 0; 1878 1879 for (nitems = i = 0; i < cc->Nfans; i++) { 1880 SAFT_BAIL(r, hiwater, sdata, buflen); 1881 /* 1882 * 0 = Fan Operational 1883 * 1 = Fan is malfunctioning 1884 * 2 = Fan is not present 1885 * 0x80 = Unknown or Not Reportable Status 1886 */ 1887 ssc->ses_objmap[oid].encstat[1] = 0; /* resvd */ 1888 ssc->ses_objmap[oid].encstat[2] = 0; /* resvd */ 1889 switch ((int)(uint8_t)sdata[r]) { 1890 case 0: 1891 nitems++; 1892 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK; 1893 /* 1894 * We could get fancier and cache 1895 * fan speeds that we have set, but 1896 * that isn't done now. 1897 */ 1898 ssc->ses_objmap[oid].encstat[3] = 7; 1899 break; 1900 1901 case 1: 1902 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT; 1903 /* 1904 * FAIL and FAN STOPPED synthesized 1905 */ 1906 ssc->ses_objmap[oid].encstat[3] = 0x40; 1907 /* 1908 * Enclosure marked with CRITICAL error 1909 * if only one fan or no thermometers, 1910 * else the NONCRITICAL error is set. 1911 */ 1912 if (cc->Nfans == 1 || cc->Ntherm == 0) 1913 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL; 1914 else 1915 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL; 1916 break; 1917 case 2: 1918 ssc->ses_objmap[oid].encstat[0] = 1919 SES_OBJSTAT_NOTINSTALLED; 1920 ssc->ses_objmap[oid].encstat[3] = 0; 1921 /* 1922 * Enclosure marked with CRITICAL error 1923 * if only one fan or no thermometers, 1924 * else the NONCRITICAL error is set. 1925 */ 1926 if (cc->Nfans == 1) 1927 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL; 1928 else 1929 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL; 1930 break; 1931 case 0x80: 1932 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN; 1933 ssc->ses_objmap[oid].encstat[3] = 0; 1934 ssc->ses_encstat |= SES_ENCSTAT_INFO; 1935 break; 1936 default: 1937 ssc->ses_objmap[oid].encstat[0] = 1938 SES_OBJSTAT_UNSUPPORTED; 1939 SES_LOG(ssc, "Unknown fan%d status 0x%x\n", i, 1940 sdata[r] & 0xff); 1941 break; 1942 } 1943 ssc->ses_objmap[oid++].svalid = 1; 1944 r++; 1945 } 1946 1947 /* 1948 * No matter how you cut it, no cooling elements when there 1949 * should be some there is critical. 1950 */ 1951 if (cc->Nfans && nitems == 0) { 1952 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL; 1953 } 1954 1955 1956 for (i = 0; i < cc->Npwr; i++) { 1957 SAFT_BAIL(r, hiwater, sdata, buflen); 1958 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN; 1959 ssc->ses_objmap[oid].encstat[1] = 0; /* resvd */ 1960 ssc->ses_objmap[oid].encstat[2] = 0; /* resvd */ 1961 ssc->ses_objmap[oid].encstat[3] = 0x20; /* requested on */ 1962 switch ((uint8_t)sdata[r]) { 1963 case 0x00: /* pws operational and on */ 1964 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK; 1965 break; 1966 case 0x01: /* pws operational and off */ 1967 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK; 1968 ssc->ses_objmap[oid].encstat[3] = 0x10; 1969 ssc->ses_encstat |= SES_ENCSTAT_INFO; 1970 break; 1971 case 0x10: /* pws is malfunctioning and commanded on */ 1972 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT; 1973 ssc->ses_objmap[oid].encstat[3] = 0x61; 1974 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL; 1975 break; 1976 1977 case 0x11: /* pws is malfunctioning and commanded off */ 1978 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT; 1979 ssc->ses_objmap[oid].encstat[3] = 0x51; 1980 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL; 1981 break; 1982 case 0x20: /* pws is not present */ 1983 ssc->ses_objmap[oid].encstat[0] = 1984 SES_OBJSTAT_NOTINSTALLED; 1985 ssc->ses_objmap[oid].encstat[3] = 0; 1986 ssc->ses_encstat |= SES_ENCSTAT_INFO; 1987 break; 1988 case 0x21: /* pws is present */ 1989 /* 1990 * This is for enclosures that cannot tell whether the 1991 * device is on or malfunctioning, but know that it is 1992 * present. Just fall through. 1993 */ 1994 /* FALLTHROUGH */ 1995 case 0x80: /* Unknown or Not Reportable Status */ 1996 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN; 1997 ssc->ses_objmap[oid].encstat[3] = 0; 1998 ssc->ses_encstat |= SES_ENCSTAT_INFO; 1999 break; 2000 default: 2001 SES_LOG(ssc, "unknown power supply %d status (0x%x)\n", 2002 i, sdata[r] & 0xff); 2003 break; 2004 } 2005 ssc->ses_objmap[oid++].svalid = 1; 2006 r++; 2007 } 2008 2009 /* 2010 * Skip over Slot SCSI IDs 2011 */ 2012 r += cc->Nslots; 2013 2014 /* 2015 * We always have doorlock status, no matter what, 2016 * but we only save the status if we have one. 2017 */ 2018 SAFT_BAIL(r, hiwater, sdata, buflen); 2019 if (cc->DoorLock) { 2020 /* 2021 * 0 = Door Locked 2022 * 1 = Door Unlocked, or no Lock Installed 2023 * 0x80 = Unknown or Not Reportable Status 2024 */ 2025 ssc->ses_objmap[oid].encstat[1] = 0; 2026 ssc->ses_objmap[oid].encstat[2] = 0; 2027 switch ((uint8_t)sdata[r]) { 2028 case 0: 2029 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK; 2030 ssc->ses_objmap[oid].encstat[3] = 0; 2031 break; 2032 case 1: 2033 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK; 2034 ssc->ses_objmap[oid].encstat[3] = 1; 2035 break; 2036 case 0x80: 2037 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN; 2038 ssc->ses_objmap[oid].encstat[3] = 0; 2039 ssc->ses_encstat |= SES_ENCSTAT_INFO; 2040 break; 2041 default: 2042 ssc->ses_objmap[oid].encstat[0] = 2043 SES_OBJSTAT_UNSUPPORTED; 2044 SES_LOG(ssc, "unknown lock status 0x%x\n", 2045 sdata[r] & 0xff); 2046 break; 2047 } 2048 ssc->ses_objmap[oid++].svalid = 1; 2049 } 2050 r++; 2051 2052 /* 2053 * We always have speaker status, no matter what, 2054 * but we only save the status if we have one. 2055 */ 2056 SAFT_BAIL(r, hiwater, sdata, buflen); 2057 if (cc->Nspkrs) { 2058 ssc->ses_objmap[oid].encstat[1] = 0; 2059 ssc->ses_objmap[oid].encstat[2] = 0; 2060 if (sdata[r] == 1) { 2061 /* 2062 * We need to cache tone urgency indicators. 2063 * Someday. 2064 */ 2065 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT; 2066 ssc->ses_objmap[oid].encstat[3] = 0x8; 2067 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL; 2068 } else if (sdata[r] == 0) { 2069 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK; 2070 ssc->ses_objmap[oid].encstat[3] = 0; 2071 } else { 2072 ssc->ses_objmap[oid].encstat[0] = 2073 SES_OBJSTAT_UNSUPPORTED; 2074 ssc->ses_objmap[oid].encstat[3] = 0; 2075 SES_LOG(ssc, "unknown spkr status 0x%x\n", 2076 sdata[r] & 0xff); 2077 } 2078 ssc->ses_objmap[oid++].svalid = 1; 2079 } 2080 r++; 2081 2082 for (i = 0; i < cc->Ntherm; i++) { 2083 SAFT_BAIL(r, hiwater, sdata, buflen); 2084 /* 2085 * Status is a range from -10 to 245 deg Celsius, 2086 * which we need to normalize to -20 to -245 according 2087 * to the latest SCSI spec, which makes little 2088 * sense since this would overflow an 8bit value. 2089 * Well, still, the base normalization is -20, 2090 * not -10, so we have to adjust. 2091 * 2092 * So what's over and under temperature? 2093 * Hmm- we'll state that 'normal' operating 2094 * is 10 to 40 deg Celsius. 2095 */ 2096 ssc->ses_objmap[oid].encstat[1] = 0; 2097 ssc->ses_objmap[oid].encstat[2] = 2098 ((unsigned int) sdata[r]) - 10; 2099 if (sdata[r] < 20) { 2100 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT; 2101 /* 2102 * Set 'under temperature' failure. 2103 */ 2104 ssc->ses_objmap[oid].encstat[3] = 2; 2105 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL; 2106 } else if (sdata[r] > 30) { 2107 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT; 2108 /* 2109 * Set 'over temperature' failure. 2110 */ 2111 ssc->ses_objmap[oid].encstat[3] = 8; 2112 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL; 2113 } else { 2114 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK; 2115 } 2116 ssc->ses_objmap[oid++].svalid = 1; 2117 r++; 2118 } 2119 2120 /* 2121 * Now, for "pseudo" thermometers, we have two bytes 2122 * of information in enclosure status- 16 bits. Actually, 2123 * the MSB is a single TEMP ALERT flag indicating whether 2124 * any other bits are set, but, thanks to fuzzy thinking, 2125 * in the SAF-TE spec, this can also be set even if no 2126 * other bits are set, thus making this really another 2127 * binary temperature sensor. 2128 */ 2129 2130 SAFT_BAIL(r, hiwater, sdata, buflen); 2131 tempflags = sdata[r++]; 2132 SAFT_BAIL(r, hiwater, sdata, buflen); 2133 tempflags |= (tempflags << 8) | sdata[r++]; 2134 2135 for (i = 0; i < NPSEUDO_THERM; i++) { 2136 ssc->ses_objmap[oid].encstat[1] = 0; 2137 if (tempflags & (1 << (NPSEUDO_THERM - i - 1))) { 2138 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT; 2139 ssc->ses_objmap[4].encstat[2] = 0xff; 2140 /* 2141 * Set 'over temperature' failure. 2142 */ 2143 ssc->ses_objmap[oid].encstat[3] = 8; 2144 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL; 2145 } else { 2146 /* 2147 * We used to say 'not available' and synthesize a 2148 * nominal 30 deg (C)- that was wrong. Actually, 2149 * Just say 'OK', and use the reserved value of 2150 * zero. 2151 */ 2152 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK; 2153 ssc->ses_objmap[oid].encstat[2] = 0; 2154 ssc->ses_objmap[oid].encstat[3] = 0; 2155 } 2156 ssc->ses_objmap[oid++].svalid = 1; 2157 } 2158 2159 /* 2160 * Get alarm status. 2161 */ 2162 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK; 2163 ssc->ses_objmap[oid].encstat[3] = ssc->ses_objmap[oid].priv; 2164 ssc->ses_objmap[oid++].svalid = 1; 2165 2166 /* 2167 * Now get drive slot status 2168 */ 2169 cdb[2] = SAFTE_RD_RDDSTS; 2170 amt = buflen; 2171 err = ses_runcmd(ssc, cdb, 10, sdata, &amt); 2172 if (err) { 2173 SES_FREE(sdata, buflen); 2174 return (err); 2175 } 2176 hiwater = buflen - amt; 2177 for (r = i = 0; i < cc->Nslots; i++, r += 4) { 2178 SAFT_BAIL(r+3, hiwater, sdata, buflen); 2179 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNSUPPORTED; 2180 ssc->ses_objmap[oid].encstat[1] = (uint8_t) i; 2181 ssc->ses_objmap[oid].encstat[2] = 0; 2182 ssc->ses_objmap[oid].encstat[3] = 0; 2183 status = sdata[r+3]; 2184 if ((status & 0x1) == 0) { /* no device */ 2185 ssc->ses_objmap[oid].encstat[0] = 2186 SES_OBJSTAT_NOTINSTALLED; 2187 } else { 2188 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK; 2189 } 2190 if (status & 0x2) { 2191 ssc->ses_objmap[oid].encstat[2] = 0x8; 2192 } 2193 if ((status & 0x4) == 0) { 2194 ssc->ses_objmap[oid].encstat[3] = 0x10; 2195 } 2196 ssc->ses_objmap[oid++].svalid = 1; 2197 } 2198 /* see comment below about sticky enclosure status */ 2199 ssc->ses_encstat |= ENCI_SVALID | oencstat; 2200 SES_FREE(sdata, buflen); 2201 return (0); 2202 } 2203 2204 static int 2205 set_objstat_sel(ses_softc_t *ssc, ses_objstat *obp, int slp) 2206 { 2207 int idx; 2208 encobj *ep; 2209 struct scfg *cc = ssc->ses_private; 2210 2211 if (cc == NULL) 2212 return (0); 2213 2214 idx = (int)obp->obj_id; 2215 ep = &ssc->ses_objmap[idx]; 2216 2217 switch (ep->enctype) { 2218 case SESTYP_DEVICE: 2219 if (obp->cstat[0] & SESCTL_PRDFAIL) { 2220 ep->priv |= 0x40; 2221 } 2222 /* SESCTL_RSTSWAP has no correspondence in SAF-TE */ 2223 if (obp->cstat[0] & SESCTL_DISABLE) { 2224 ep->priv |= 0x80; 2225 /* 2226 * Hmm. Try to set the 'No Drive' flag. 2227 * Maybe that will count as a 'disable'. 2228 */ 2229 } 2230 if (ep->priv & 0xc6) { 2231 ep->priv &= ~0x1; 2232 } else { 2233 ep->priv |= 0x1; /* no errors */ 2234 } 2235 wrslot_stat(ssc, slp); 2236 break; 2237 case SESTYP_POWER: 2238 /* 2239 * Okay- the only one that makes sense here is to 2240 * do the 'disable' for a power supply. 2241 */ 2242 if (obp->cstat[0] & SESCTL_DISABLE) { 2243 (void) wrbuf16(ssc, SAFTE_WT_ACTPWS, 2244 idx - cc->pwroff, 0, 0, slp); 2245 } 2246 break; 2247 case SESTYP_FAN: 2248 /* 2249 * Okay- the only one that makes sense here is to 2250 * set fan speed to zero on disable. 2251 */ 2252 if (obp->cstat[0] & SESCTL_DISABLE) { 2253 /* remember- fans are the first items, so idx works */ 2254 (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp); 2255 } 2256 break; 2257 case SESTYP_DOORLOCK: 2258 /* 2259 * Well, we can 'disable' the lock. 2260 */ 2261 if (obp->cstat[0] & SESCTL_DISABLE) { 2262 cc->flag2 &= ~SAFT_FLG2_LOCKDOOR; 2263 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, 2264 cc->flag2, 0, slp); 2265 } 2266 break; 2267 case SESTYP_ALARM: 2268 /* 2269 * Well, we can 'disable' the alarm. 2270 */ 2271 if (obp->cstat[0] & SESCTL_DISABLE) { 2272 cc->flag2 &= ~SAFT_FLG1_ALARM; 2273 ep->priv |= 0x40; /* Muted */ 2274 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, 2275 cc->flag2, 0, slp); 2276 } 2277 break; 2278 default: 2279 break; 2280 } 2281 ep->svalid = 0; 2282 return (0); 2283 } 2284 2285 /* 2286 * This function handles all of the 16 byte WRITE BUFFER commands. 2287 */ 2288 static int 2289 wrbuf16(ses_softc_t *ssc, uint8_t op, uint8_t b1, uint8_t b2, 2290 uint8_t b3, int slp) 2291 { 2292 int err, amt; 2293 char *sdata; 2294 struct scfg *cc = ssc->ses_private; 2295 static char cdb[10] = { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 }; 2296 2297 if (cc == NULL) 2298 return (0); 2299 2300 sdata = SES_MALLOC(16); 2301 if (sdata == NULL) 2302 return (ENOMEM); 2303 2304 SES_VLOG(ssc, "saf_wrbuf16 %x %x %x %x\n", op, b1, b2, b3); 2305 2306 sdata[0] = op; 2307 sdata[1] = b1; 2308 sdata[2] = b2; 2309 sdata[3] = b3; 2310 MEMZERO(&sdata[4], 12); 2311 amt = -16; 2312 err = ses_runcmd(ssc, cdb, 10, sdata, &amt); 2313 SES_FREE(sdata, 16); 2314 return (err); 2315 } 2316 2317 /* 2318 * This function updates the status byte for the device slot described. 2319 * 2320 * Since this is an optional SAF-TE command, there's no point in 2321 * returning an error. 2322 */ 2323 static void 2324 wrslot_stat(ses_softc_t *ssc, int slp) 2325 { 2326 int i, amt; 2327 encobj *ep; 2328 char cdb[10], *sdata; 2329 struct scfg *cc = ssc->ses_private; 2330 2331 if (cc == NULL) 2332 return; 2333 2334 SES_VLOG(ssc, "saf_wrslot\n"); 2335 cdb[0] = WRITE_BUFFER; 2336 cdb[1] = 1; 2337 cdb[2] = 0; 2338 cdb[3] = 0; 2339 cdb[4] = 0; 2340 cdb[5] = 0; 2341 cdb[6] = 0; 2342 cdb[7] = 0; 2343 cdb[8] = cc->Nslots * 3 + 1; 2344 cdb[9] = 0; 2345 2346 sdata = SES_MALLOC(cc->Nslots * 3 + 1); 2347 if (sdata == NULL) 2348 return; 2349 MEMZERO(sdata, cc->Nslots * 3 + 1); 2350 2351 sdata[0] = SAFTE_WT_DSTAT; 2352 for (i = 0; i < cc->Nslots; i++) { 2353 ep = &ssc->ses_objmap[cc->slotoff + i]; 2354 SES_VLOG(ssc, "saf_wrslot %d <- %x\n", i, ep->priv & 0xff); 2355 sdata[1 + (3 * i)] = ep->priv & 0xff; 2356 } 2357 amt = -(cc->Nslots * 3 + 1); 2358 (void) ses_runcmd(ssc, cdb, 10, sdata, &amt); 2359 SES_FREE(sdata, cc->Nslots * 3 + 1); 2360 } 2361 2362 /* 2363 * This function issues the "PERFORM SLOT OPERATION" command. 2364 */ 2365 static int 2366 perf_slotop(ses_softc_t *ssc, uint8_t slot, uint8_t opflag, int slp) 2367 { 2368 int err, amt; 2369 char *sdata; 2370 struct scfg *cc = ssc->ses_private; 2371 static char cdb[10] = 2372 { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 }; 2373 2374 if (cc == NULL) 2375 return (0); 2376 2377 sdata = SES_MALLOC(SAFT_SCRATCH); 2378 if (sdata == NULL) 2379 return (ENOMEM); 2380 MEMZERO(sdata, SAFT_SCRATCH); 2381 2382 sdata[0] = SAFTE_WT_SLTOP; 2383 sdata[1] = slot; 2384 sdata[2] = opflag; 2385 SES_VLOG(ssc, "saf_slotop slot %d op %x\n", slot, opflag); 2386 amt = -SAFT_SCRATCH; 2387 err = ses_runcmd(ssc, cdb, 10, sdata, &amt); 2388 SES_FREE(sdata, SAFT_SCRATCH); 2389 return (err); 2390 } 2391