xref: /netbsd-src/sys/dev/scsipi/ses.c (revision 3b01aba77a7a698587faaae455bbfe740923c1f5)
1 /*	$NetBSD: ses.c,v 1.11 2001/07/18 18:25:41 thorpej Exp $ */
2 /*
3  * Copyright (C) 2000 National Aeronautics & Space Administration
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. The name of the author may not be used to endorse or promote products
12  *    derived from this software without specific prior written permission
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24  *
25  * Author:	mjacob@nas.nasa.gov
26  */
27 
28 
29 #include "opt_scsi.h"
30 
31 #include <sys/types.h>
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/kernel.h>
35 #include <sys/file.h>
36 #include <sys/stat.h>
37 #include <sys/ioctl.h>
38 #include <sys/scsiio.h>
39 #include <sys/buf.h>
40 #include <sys/uio.h>
41 #include <sys/malloc.h>
42 #include <sys/errno.h>
43 #include <sys/device.h>
44 #include <sys/disklabel.h>
45 #include <sys/disk.h>
46 #include <sys/proc.h>
47 #include <sys/conf.h>
48 #include <sys/vnode.h>
49 #include <machine/stdarg.h>
50 
51 #include <dev/scsipi/scsipi_all.h>
52 #include <dev/scsipi/scsi_all.h>
53 #include <dev/scsipi/scsipi_disk.h>
54 #include <dev/scsipi/scsi_disk.h>
55 #include <dev/scsipi/scsiconf.h>
56 #include <dev/scsipi/ses.h>
57 
58 /*
59  * Platform Independent Driver Internal Definitions for SES devices.
60  */
61 typedef enum {
62 	SES_NONE,
63 	SES_SES_SCSI2,
64 	SES_SES,
65 	SES_SES_PASSTHROUGH,
66 	SES_SEN,
67 	SES_SAFT
68 } enctyp;
69 
70 struct ses_softc;
71 typedef struct ses_softc ses_softc_t;
72 typedef struct {
73 	int (*softc_init) 	__P((ses_softc_t *, int));
74 	int (*init_enc)		__P((ses_softc_t *));
75 	int (*get_encstat)	__P((ses_softc_t *, int));
76 	int (*set_encstat)	__P((ses_softc_t *, ses_encstat, int));
77 	int (*get_objstat)	__P((ses_softc_t *, ses_objstat *, int));
78 	int (*set_objstat)	__P((ses_softc_t *, ses_objstat *, int));
79 } encvec;
80 
81 #define	ENCI_SVALID	0x80
82 
83 typedef struct {
84 	uint32_t
85 		enctype	: 8,		/* enclosure type */
86 		subenclosure : 8,	/* subenclosure id */
87 		svalid	: 1,		/* enclosure information valid */
88 		priv	: 15;		/* private data, per object */
89 	uint8_t	encstat[4];	/* state && stats */
90 } encobj;
91 
92 #define	SEN_ID		"UNISYS           SUN_SEN"
93 #define	SEN_ID_LEN	24
94 
95 static enctyp ses_type __P((struct scsipi_inquiry_data *));
96 
97 
98 /* Forward reference to Enclosure Functions */
99 static int ses_softc_init __P((ses_softc_t *, int));
100 static int ses_init_enc __P((ses_softc_t *));
101 static int ses_get_encstat __P((ses_softc_t *, int));
102 static int ses_set_encstat __P((ses_softc_t *, uint8_t, int));
103 static int ses_get_objstat __P((ses_softc_t *, ses_objstat *, int));
104 static int ses_set_objstat __P((ses_softc_t *, ses_objstat *, int));
105 
106 static int safte_softc_init __P((ses_softc_t *, int));
107 static int safte_init_enc __P((ses_softc_t *));
108 static int safte_get_encstat __P((ses_softc_t *, int));
109 static int safte_set_encstat __P((ses_softc_t *, uint8_t, int));
110 static int safte_get_objstat __P((ses_softc_t *, ses_objstat *, int));
111 static int safte_set_objstat __P((ses_softc_t *, ses_objstat *, int));
112 
113 /*
114  * Platform implementation defines/functions for SES internal kernel stuff
115  */
116 
117 #define	STRNCMP			strncmp
118 #define	PRINTF			printf
119 #define	SES_LOG			ses_log
120 #if	defined(DEBUG) || defined(SCSIDEBUG)
121 #define	SES_VLOG		ses_log
122 #else
123 #define	SES_VLOG		if (0) ses_log
124 #endif
125 #define	SES_MALLOC(amt)		malloc(amt, M_DEVBUF, M_NOWAIT)
126 #define	SES_FREE(ptr, amt)	free(ptr, M_DEVBUF)
127 #define	MEMZERO(dest, amt)	memset(dest, 0, amt)
128 #define	MEMCPY(dest, src, amt)	memcpy(dest, src, amt)
129 #define	RECEIVE_DIAGNOSTIC	0x1c
130 #define	SEND_DIAGNOSTIC		0x1d
131 #define	WRITE_BUFFER		0x3b
132 #define	READ_BUFFER		0x3c
133 
134 int sesopen __P((dev_t, int, int, struct proc *));
135 int sesclose __P((dev_t, int, int, struct proc *));
136 int sesioctl __P((dev_t, u_long, caddr_t, int, struct proc *));
137 
138 static int ses_runcmd	__P((struct ses_softc *, char *, int, char *, int *));
139 static void ses_log	__P((struct ses_softc *, const char *, ...))
140      __attribute__((__format__(__printf__, 2, 3)));
141 
142 /*
143  * General NetBSD kernel stuff.
144  */
145 
146 struct ses_softc {
147 	struct device	sc_device;
148 	struct scsipi_periph *sc_periph;
149 	enctyp		ses_type;	/* type of enclosure */
150 	encvec		ses_vec;	/* vector to handlers */
151 	void *		ses_private;	/* per-type private data */
152 	encobj *	ses_objmap;	/* objects */
153 	u_int32_t	ses_nobjects;	/* number of objects */
154 	ses_encstat	ses_encstat;	/* overall status */
155 	u_int8_t	ses_flags;
156 };
157 #define	SES_FLAG_INVALID	0x01
158 #define	SES_FLAG_OPEN		0x02
159 #define	SES_FLAG_INITIALIZED	0x04
160 
161 #define SESUNIT(x)       (minor((x)))
162 
163 static int ses_match __P((struct device *, struct cfdata *, void *));
164 static void ses_attach __P((struct device *, struct device *, void *));
165 static enctyp ses_device_type __P((struct scsipibus_attach_args *));
166 
167 struct cfattach ses_ca = {
168 	sizeof (struct ses_softc), ses_match, ses_attach
169 };
170 extern struct cfdriver ses_cd;
171 
172 const struct scsipi_periphsw ses_switch = {
173 	NULL,
174 	NULL,
175 	NULL,
176 	NULL
177 };
178 
179 
180 int
181 ses_match(parent, match, aux)
182 	struct device *parent;
183 	struct cfdata *match;
184 	void *aux;
185 {
186 	struct scsipibus_attach_args *sa = aux;
187 
188 	switch (ses_device_type(sa)) {
189 	case SES_SES:
190 	case SES_SES_SCSI2:
191 	case SES_SEN:
192 	case SES_SAFT:
193 	case SES_SES_PASSTHROUGH:
194 		/*
195 		 * For these devices, it's a perfect match.
196 		 */
197 		return (24);
198 	default:
199 		return (0);
200 	}
201 }
202 
203 
204 /*
205  * Complete the attachment.
206  *
207  * We have to repeat the rerun of INQUIRY data as above because
208  * it's not until the return from the match routine that we have
209  * the softc available to set stuff in.
210  */
211 void
212 ses_attach(parent, self, aux)
213 	struct device *parent;
214 	struct device *self;
215 	void *aux;
216 {
217 	char *tname;
218 	struct ses_softc *softc = (void *)self;
219 	struct scsipibus_attach_args *sa = aux;
220 	struct scsipi_periph *periph = sa->sa_periph;
221 
222 	SC_DEBUG(periph, SCSIPI_DB2, ("ssattach: "));
223 	softc->sc_periph = periph;
224 	periph->periph_dev = &softc->sc_device;
225 	periph->periph_switch = &ses_switch;
226 	periph->periph_openings = 1;
227 
228 	softc->ses_type = ses_device_type(sa);
229 	switch (softc->ses_type) {
230 	case SES_SES:
231 	case SES_SES_SCSI2:
232         case SES_SES_PASSTHROUGH:
233 		softc->ses_vec.softc_init = ses_softc_init;
234 		softc->ses_vec.init_enc = ses_init_enc;
235 		softc->ses_vec.get_encstat = ses_get_encstat;
236 		softc->ses_vec.set_encstat = ses_set_encstat;
237 		softc->ses_vec.get_objstat = ses_get_objstat;
238 		softc->ses_vec.set_objstat = ses_set_objstat;
239 		break;
240         case SES_SAFT:
241 		softc->ses_vec.softc_init = safte_softc_init;
242 		softc->ses_vec.init_enc = safte_init_enc;
243 		softc->ses_vec.get_encstat = safte_get_encstat;
244 		softc->ses_vec.set_encstat = safte_set_encstat;
245 		softc->ses_vec.get_objstat = safte_get_objstat;
246 		softc->ses_vec.set_objstat = safte_set_objstat;
247 		break;
248         case SES_SEN:
249 		break;
250 	case SES_NONE:
251 	default:
252 		break;
253 	}
254 
255 	switch (softc->ses_type) {
256 	default:
257 	case SES_NONE:
258 		tname = "No SES device";
259 		break;
260 	case SES_SES_SCSI2:
261 		tname = "SCSI-2 SES Device";
262 		break;
263 	case SES_SES:
264 		tname = "SCSI-3 SES Device";
265 		break;
266         case SES_SES_PASSTHROUGH:
267 		tname = "SES Passthrough Device";
268 		break;
269         case SES_SEN:
270 		tname = "UNISYS SEN Device (NOT HANDLED YET)";
271 		break;
272         case SES_SAFT:
273 		tname = "SAF-TE Compliant Device";
274 		break;
275 	}
276 	printf("\n%s: %s\n", softc->sc_device.dv_xname, tname);
277 }
278 
279 
280 static enctyp
281 ses_device_type(sa)
282 	struct scsipibus_attach_args *sa;
283 {
284 	struct scsipi_inquiry_data *inqp = sa->sa_inqptr;
285 
286 	if (inqp == NULL)
287 		return (SES_NONE);
288 
289 	return (ses_type(inqp));
290 }
291 
292 int
293 sesopen(dev, flags, fmt, p)
294 	dev_t dev;
295 	int flags;
296 	int fmt;
297 	struct proc *p;
298 {
299 	struct ses_softc *softc;
300 	int error, unit;
301 
302 	unit = SESUNIT(dev);
303 	if (unit >= ses_cd.cd_ndevs)
304 		return (ENXIO);
305 	softc = ses_cd.cd_devs[unit];
306 	if (softc == NULL)
307 		return (ENXIO);
308 
309 	if (softc->ses_flags & SES_FLAG_INVALID) {
310 		error = ENXIO;
311 		goto out;
312 	}
313 	if (softc->ses_flags & SES_FLAG_OPEN) {
314 		error = EBUSY;
315 		goto out;
316 	}
317 	if (softc->ses_vec.softc_init == NULL) {
318 		error = ENXIO;
319 		goto out;
320 	}
321 	error = scsipi_adapter_addref(
322 	    softc->sc_periph->periph_channel->chan_adapter);
323 	if (error != 0)
324                 goto out;
325 
326 
327 	softc->ses_flags |= SES_FLAG_OPEN;
328 	if ((softc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
329 		error = (*softc->ses_vec.softc_init)(softc, 1);
330 		if (error)
331 			softc->ses_flags &= ~SES_FLAG_OPEN;
332 		else
333 			softc->ses_flags |= SES_FLAG_INITIALIZED;
334 	}
335 
336 out:
337 	return (error);
338 }
339 
340 int
341 sesclose(dev, flags, fmt, p)
342 	dev_t dev;
343 	int flags;
344 	int fmt;
345 	struct proc *p;
346 {
347 	struct ses_softc *softc;
348 	int unit;
349 
350 	unit = SESUNIT(dev);
351 	if (unit >= ses_cd.cd_ndevs)
352 		return (ENXIO);
353 	softc = ses_cd.cd_devs[unit];
354 	if (softc == NULL)
355 		return (ENXIO);
356 
357 	scsipi_wait_drain(softc->sc_periph);
358 	scsipi_adapter_delref(softc->sc_periph->periph_channel->chan_adapter);
359 	softc->ses_flags &= ~SES_FLAG_OPEN;
360 	return (0);
361 }
362 
363 int
364 sesioctl(dev, cmd, arg_addr, flag, p)
365 	dev_t dev;
366 	u_long cmd;
367 	caddr_t arg_addr;
368 	int flag;
369 	struct proc *p;
370 {
371 	ses_encstat tmp;
372 	ses_objstat objs;
373 	ses_object obj, *uobj;
374 	struct ses_softc *ssc = ses_cd.cd_devs[SESUNIT(dev)];
375 	void *addr;
376 	int error, i;
377 
378 
379 	if (arg_addr)
380 		addr = *((caddr_t *) arg_addr);
381 	else
382 		addr = NULL;
383 
384 	SC_DEBUG(ssc->sc_periph, SCSIPI_DB2, ("sesioctl 0x%lx ", cmd));
385 
386 	/*
387 	 * Now check to see whether we're initialized or not.
388 	 */
389 	if ((ssc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
390 		return (ENODEV);
391 	}
392 
393 	error = 0;
394 
395 	/*
396 	 * If this command can change the device's state,
397 	 * we must have the device open for writing.
398 	 */
399 	switch (cmd) {
400 	case SESIOC_GETNOBJ:
401 	case SESIOC_GETOBJMAP:
402 	case SESIOC_GETENCSTAT:
403 	case SESIOC_GETOBJSTAT:
404 		break;
405 	default:
406 		if ((flag & FWRITE) == 0) {
407 			return (EBADF);
408 		}
409 	}
410 
411 	switch (cmd) {
412 	case SESIOC_GETNOBJ:
413 		error = copyout(&ssc->ses_nobjects, addr,
414 		    sizeof (ssc->ses_nobjects));
415 		break;
416 
417 	case SESIOC_GETOBJMAP:
418 		for (uobj = addr, i = 0; i != ssc->ses_nobjects; i++, uobj++) {
419 			obj.obj_id = i;
420 			obj.subencid = ssc->ses_objmap[i].subenclosure;
421 			obj.object_type = ssc->ses_objmap[i].enctype;
422 			error = copyout(&obj, uobj, sizeof (ses_object));
423 			if (error) {
424 				break;
425 			}
426 		}
427 		break;
428 
429 	case SESIOC_GETENCSTAT:
430 		error = (*ssc->ses_vec.get_encstat)(ssc, 1);
431 		if (error)
432 			break;
433 		tmp = ssc->ses_encstat & ~ENCI_SVALID;
434 		error = copyout(&tmp, addr, sizeof (ses_encstat));
435 		ssc->ses_encstat = tmp;
436 		break;
437 
438 	case SESIOC_SETENCSTAT:
439 		error = copyin(addr, &tmp, sizeof (ses_encstat));
440 		if (error)
441 			break;
442 		error = (*ssc->ses_vec.set_encstat)(ssc, tmp, 1);
443 		break;
444 
445 	case SESIOC_GETOBJSTAT:
446 		error = copyin(addr, &objs, sizeof (ses_objstat));
447 		if (error)
448 			break;
449 		if (objs.obj_id >= ssc->ses_nobjects) {
450 			error = EINVAL;
451 			break;
452 		}
453 		error = (*ssc->ses_vec.get_objstat)(ssc, &objs, 1);
454 		if (error)
455 			break;
456 		error = copyout(&objs, addr, sizeof (ses_objstat));
457 		/*
458 		 * Always (for now) invalidate entry.
459 		 */
460 		ssc->ses_objmap[objs.obj_id].svalid = 0;
461 		break;
462 
463 	case SESIOC_SETOBJSTAT:
464 		error = copyin(addr, &objs, sizeof (ses_objstat));
465 		if (error)
466 			break;
467 
468 		if (objs.obj_id >= ssc->ses_nobjects) {
469 			error = EINVAL;
470 			break;
471 		}
472 		error = (*ssc->ses_vec.set_objstat)(ssc, &objs, 1);
473 
474 		/*
475 		 * Always (for now) invalidate entry.
476 		 */
477 		ssc->ses_objmap[objs.obj_id].svalid = 0;
478 		break;
479 
480 	case SESIOC_INIT:
481 
482 		error = (*ssc->ses_vec.init_enc)(ssc);
483 		break;
484 
485 	default:
486 		error = scsipi_do_ioctl(ssc->sc_periph,
487 			    dev, cmd, addr, flag, p);
488 		break;
489 	}
490 	return (error);
491 }
492 
493 static int
494 ses_runcmd(struct ses_softc *ssc, char *cdb, int cdbl, char *dptr, int *dlenp)
495 {
496 	struct scsipi_generic sgen;
497 	int dl, flg, error;
498 
499 	if (dptr) {
500 		if ((dl = *dlenp) < 0) {
501 			dl = -dl;
502 			flg = XS_CTL_DATA_OUT;
503 		} else {
504 			flg = XS_CTL_DATA_IN;
505 		}
506 	} else {
507 		dl = 0;
508 		flg = 0;
509 	}
510 
511 	if (cdbl > sizeof (struct scsipi_generic)) {
512 		cdbl = sizeof (struct scsipi_generic);
513 	}
514 	memcpy(&sgen, cdb, cdbl);
515 #ifndef	SCSIDEBUG
516 	flg |= XS_CTL_SILENT;
517 #endif
518 	error = scsipi_command(ssc->sc_periph, &sgen, cdbl,
519 	    (u_char *) dptr, dl, SCSIPIRETRIES, 30000, NULL, flg);
520 
521 	if (error == 0 && dptr)
522 		*dlenp = 0;
523 
524 	return (error);
525 }
526 
527 #ifdef	__STDC__
528 static void
529 ses_log(struct ses_softc *ssc, const char *fmt, ...)
530 {
531 	va_list ap;
532 
533 	printf("%s: ", ssc->sc_device.dv_xname);
534 	va_start(ap, fmt);
535 	vprintf(fmt, ap);
536 	va_end(ap);
537 }
538 #else
539 static void
540 ses_log(ssc, fmt, va_alist)
541 	struct ses_softc *ssc;
542 	char *fmt;
543 	va_dcl
544 {
545 	va_list ap;
546 
547 	printf("%s: ", ssc->sc_device.dv_xname);
548 	va_start(ap, fmt);
549 	vprintf(fmt, ap);
550 	va_end(ap);
551 }
552 #endif
553 
554 /*
555  * The code after this point runs on many platforms,
556  * so forgive the slightly awkward and nonconforming
557  * appearance.
558  */
559 
560 /*
561  * Is this a device that supports enclosure services?
562  *
563  * It's a a pretty simple ruleset- if it is device type 0x0D (13), it's
564  * an SES device. If it happens to be an old UNISYS SEN device, we can
565  * handle that too.
566  */
567 
568 #define	SAFTE_START	44
569 #define	SAFTE_END	50
570 #define	SAFTE_LEN	SAFTE_END-SAFTE_START
571 
572 static enctyp
573 ses_type(inqp)
574 	struct scsipi_inquiry_data *inqp;
575 {
576 	size_t	given_len = inqp->additional_length + 4;
577 
578 	if (given_len < 8+SEN_ID_LEN)
579 		return (SES_NONE);
580 
581 	if ((inqp->device & SID_TYPE) == T_ENCLOSURE) {
582 		if (STRNCMP(inqp->vendor, SEN_ID, SEN_ID_LEN) == 0) {
583 			return (SES_SEN);
584 		} else if ((inqp->version & SID_ANSII) > 2) {
585 			return (SES_SES);
586 		} else {
587 			return (SES_SES_SCSI2);
588 		}
589 		return (SES_NONE);
590 	}
591 
592 #ifdef	SES_ENABLE_PASSTHROUGH
593 	if ((inqp->flags2 & SID_EncServ) && (inqp->version & SID_ANSII) >= 2) {
594 		/*
595 		 * PassThrough Device.
596 		 */
597 		return (SES_SES_PASSTHROUGH);
598 	}
599 #endif
600 
601 	/*
602 	 * The comparison is short for a reason-
603 	 * some vendors were chopping it short.
604 	 */
605 
606 	if (given_len < SAFTE_END - 2) {
607 		return (SES_NONE);
608 	}
609 
610 	if (STRNCMP((char *)&inqp->vendor_specific[8], "SAF-TE",
611 			SAFTE_LEN - 2) == 0) {
612 		return (SES_SAFT);
613 	}
614 
615 	return (SES_NONE);
616 }
617 
618 /*
619  * SES Native Type Device Support
620  */
621 
622 /*
623  * SES Diagnostic Page Codes
624  */
625 
626 typedef enum {
627 	SesConfigPage = 0x1,
628 	SesControlPage,
629 #define	SesStatusPage SesControlPage
630 	SesHelpTxt,
631 	SesStringOut,
632 #define	SesStringIn	SesStringOut
633 	SesThresholdOut,
634 #define	SesThresholdIn SesThresholdOut
635 	SesArrayControl,
636 #define	SesArrayStatus	SesArrayControl
637 	SesElementDescriptor,
638 	SesShortStatus
639 } SesDiagPageCodes;
640 
641 /*
642  * minimal amounts
643  */
644 
645 /*
646  * Minimum amount of data, starting from byte 0, to have
647  * the config header.
648  */
649 #define	SES_CFGHDR_MINLEN	12
650 
651 /*
652  * Minimum amount of data, starting from byte 0, to have
653  * the config header and one enclosure header.
654  */
655 #define	SES_ENCHDR_MINLEN	48
656 
657 /*
658  * Take this value, subtract it from VEnclen and you know
659  * the length of the vendor unique bytes.
660  */
661 #define	SES_ENCHDR_VMIN		36
662 
663 /*
664  * SES Data Structures
665  */
666 
667 typedef struct {
668 	uint32_t GenCode;	/* Generation Code */
669 	uint8_t	Nsubenc;	/* Number of Subenclosures */
670 } SesCfgHdr;
671 
672 typedef struct {
673 	uint8_t	Subencid;	/* SubEnclosure Identifier */
674 	uint8_t	Ntypes;		/* # of supported types */
675 	uint8_t	VEnclen;	/* Enclosure Descriptor Length */
676 } SesEncHdr;
677 
678 typedef struct {
679 	uint8_t	encWWN[8];	/* XXX- Not Right Yet */
680 	uint8_t	encVid[8];
681 	uint8_t	encPid[16];
682 	uint8_t	encRev[4];
683 	uint8_t	encVen[1];
684 } SesEncDesc;
685 
686 typedef struct {
687 	uint8_t	enc_type;		/* type of element */
688 	uint8_t	enc_maxelt;		/* maximum supported */
689 	uint8_t	enc_subenc;		/* in SubEnc # N */
690 	uint8_t	enc_tlen;		/* Type Descriptor Text Length */
691 } SesThdr;
692 
693 typedef struct {
694 	uint8_t	comstatus;
695 	uint8_t	comstat[3];
696 } SesComStat;
697 
698 struct typidx {
699 	int ses_tidx;
700 	int ses_oidx;
701 };
702 
703 struct sscfg {
704 	uint8_t ses_ntypes;	/* total number of types supported */
705 
706 	/*
707 	 * We need to keep a type index as well as an
708 	 * object index for each object in an enclosure.
709 	 */
710 	struct typidx *ses_typidx;
711 
712 	/*
713 	 * We also need to keep track of the number of elements
714 	 * per type of element. This is needed later so that we
715 	 * can find precisely in the returned status data the
716 	 * status for the Nth element of the Kth type.
717 	 */
718 	uint8_t *	ses_eltmap;
719 };
720 
721 
722 /*
723  * (de)canonicalization defines
724  */
725 #define	sbyte(x, byte)		((((uint32_t)(x)) >> (byte * 8)) & 0xff)
726 #define	sbit(x, bit)		(((uint32_t)(x)) << bit)
727 #define	sset8(outp, idx, sval)	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
728 
729 #define	sset16(outp, idx, sval)	\
730 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
731 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
732 
733 
734 #define	sset24(outp, idx, sval)	\
735 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
736 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
737 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
738 
739 
740 #define	sset32(outp, idx, sval)	\
741 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 3), \
742 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
743 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
744 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
745 
746 #define	gbyte(x, byte)	((((uint32_t)(x)) & 0xff) << (byte * 8))
747 #define	gbit(lv, in, idx, shft, mask)	lv = ((in[idx] >> shft) & mask)
748 #define	sget8(inp, idx, lval)	lval = (((uint8_t *)(inp))[idx++])
749 #define	gget8(inp, idx, lval)	lval = (((uint8_t *)(inp))[idx])
750 
751 #define	sget16(inp, idx, lval)	\
752 	lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
753 		(((uint8_t *)(inp))[idx+1]), idx += 2
754 
755 #define	gget16(inp, idx, lval)	\
756 	lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
757 		(((uint8_t *)(inp))[idx+1])
758 
759 #define	sget24(inp, idx, lval)	\
760 	lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
761 		gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
762 			(((uint8_t *)(inp))[idx+2]), idx += 3
763 
764 #define	gget24(inp, idx, lval)	\
765 	lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
766 		gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
767 			(((uint8_t *)(inp))[idx+2])
768 
769 #define	sget32(inp, idx, lval)	\
770 	lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
771 		gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
772 		gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
773 			(((uint8_t *)(inp))[idx+3]), idx += 4
774 
775 #define	gget32(inp, idx, lval)	\
776 	lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
777 		gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
778 		gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
779 			(((uint8_t *)(inp))[idx+3])
780 
781 #define	SCSZ	0x2000
782 #define	CFLEN	(256 + SES_ENCHDR_MINLEN)
783 
784 /*
785  * Routines specific && private to SES only
786  */
787 
788 static int ses_getconfig(ses_softc_t *);
789 static int ses_getputstat(ses_softc_t *, int, SesComStat *, int, int);
790 static int ses_cfghdr(uint8_t *, int, SesCfgHdr *);
791 static int ses_enchdr(uint8_t *, int, uint8_t, SesEncHdr *);
792 static int ses_encdesc(uint8_t *, int, uint8_t, SesEncDesc *);
793 static int ses_getthdr(uint8_t *, int,  int, SesThdr *);
794 static int ses_decode(char *, int, uint8_t *, int, int, SesComStat *);
795 static int ses_encode(char *, int, uint8_t *, int, int, SesComStat *);
796 
797 static int
798 ses_softc_init(ses_softc_t *ssc, int doinit)
799 {
800 	if (doinit == 0) {
801 		struct sscfg *cc;
802 		if (ssc->ses_nobjects) {
803 			SES_FREE(ssc->ses_objmap,
804 			    ssc->ses_nobjects * sizeof (encobj));
805 			ssc->ses_objmap = NULL;
806 		}
807 		if ((cc = ssc->ses_private) != NULL) {
808 			if (cc->ses_eltmap && cc->ses_ntypes) {
809 				SES_FREE(cc->ses_eltmap, cc->ses_ntypes);
810 				cc->ses_eltmap = NULL;
811 				cc->ses_ntypes = 0;
812 			}
813 			if (cc->ses_typidx && ssc->ses_nobjects) {
814 				SES_FREE(cc->ses_typidx,
815 				    ssc->ses_nobjects * sizeof (struct typidx));
816 				cc->ses_typidx = NULL;
817 			}
818 			SES_FREE(cc, sizeof (struct sscfg));
819 			ssc->ses_private = NULL;
820 		}
821 		ssc->ses_nobjects = 0;
822 		return (0);
823 	}
824 	if (ssc->ses_private == NULL) {
825 		ssc->ses_private = SES_MALLOC(sizeof (struct sscfg));
826 	}
827 	if (ssc->ses_private == NULL) {
828 		return (ENOMEM);
829 	}
830 	ssc->ses_nobjects = 0;
831 	ssc->ses_encstat = 0;
832 	return (ses_getconfig(ssc));
833 }
834 
835 static int
836 ses_init_enc(ses_softc_t *ssc)
837 {
838 	return (0);
839 }
840 
841 static int
842 ses_get_encstat(ses_softc_t *ssc, int slpflag)
843 {
844 	SesComStat ComStat;
845 	int status;
846 
847 	if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 1)) != 0) {
848 		return (status);
849 	}
850 	ssc->ses_encstat = ComStat.comstatus | ENCI_SVALID;
851 	return (0);
852 }
853 
854 static int
855 ses_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflag)
856 {
857 	SesComStat ComStat;
858 	int status;
859 
860 	ComStat.comstatus = encstat & 0xf;
861 	if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 0)) != 0) {
862 		return (status);
863 	}
864 	ssc->ses_encstat = encstat & 0xf;	/* note no SVALID set */
865 	return (0);
866 }
867 
868 static int
869 ses_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
870 {
871 	int i = (int)obp->obj_id;
872 
873 	if (ssc->ses_objmap[i].svalid == 0) {
874 		SesComStat ComStat;
875 		int err = ses_getputstat(ssc, i, &ComStat, slpflag, 1);
876 		if (err)
877 			return (err);
878 		ssc->ses_objmap[i].encstat[0] = ComStat.comstatus;
879 		ssc->ses_objmap[i].encstat[1] = ComStat.comstat[0];
880 		ssc->ses_objmap[i].encstat[2] = ComStat.comstat[1];
881 		ssc->ses_objmap[i].encstat[3] = ComStat.comstat[2];
882 		ssc->ses_objmap[i].svalid = 1;
883 	}
884 	obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
885 	obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
886 	obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
887 	obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
888 	return (0);
889 }
890 
891 static int
892 ses_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
893 {
894 	SesComStat ComStat;
895 	int err;
896 	/*
897 	 * If this is clear, we don't do diddly.
898 	 */
899 	if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
900 		return (0);
901 	}
902 	ComStat.comstatus = obp->cstat[0];
903 	ComStat.comstat[0] = obp->cstat[1];
904 	ComStat.comstat[1] = obp->cstat[2];
905 	ComStat.comstat[2] = obp->cstat[3];
906 	err = ses_getputstat(ssc, (int)obp->obj_id, &ComStat, slpflag, 0);
907 	ssc->ses_objmap[(int)obp->obj_id].svalid = 0;
908 	return (err);
909 }
910 
911 static int
912 ses_getconfig(ses_softc_t *ssc)
913 {
914 	struct sscfg *cc;
915 	SesCfgHdr cf;
916 	SesEncHdr hd;
917 	SesEncDesc *cdp;
918 	SesThdr thdr;
919 	int err, amt, i, nobj, ntype, maxima;
920 	char storage[CFLEN], *sdata;
921 	static char cdb[6] = {
922 	    RECEIVE_DIAGNOSTIC, 0x1, SesConfigPage, SCSZ >> 8, SCSZ & 0xff, 0
923 	};
924 
925 	cc = ssc->ses_private;
926 	if (cc == NULL) {
927 		return (ENXIO);
928 	}
929 
930 	sdata = SES_MALLOC(SCSZ);
931 	if (sdata == NULL)
932 		return (ENOMEM);
933 
934 	amt = SCSZ;
935 	err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
936 	if (err) {
937 		SES_FREE(sdata, SCSZ);
938 		return (err);
939 	}
940 	amt = SCSZ - amt;
941 
942 	if (ses_cfghdr((uint8_t *) sdata, amt, &cf)) {
943 		SES_LOG(ssc, "Unable to parse SES Config Header\n");
944 		SES_FREE(sdata, SCSZ);
945 		return (EIO);
946 	}
947 	if (amt < SES_ENCHDR_MINLEN) {
948 		SES_LOG(ssc, "runt enclosure length (%d)\n", amt);
949 		SES_FREE(sdata, SCSZ);
950 		return (EIO);
951 	}
952 
953 	SES_VLOG(ssc, "GenCode %x %d Subenclosures\n", cf.GenCode, cf.Nsubenc);
954 
955 	/*
956 	 * Now waltz through all the subenclosures toting up the
957 	 * number of types available in each. For this, we only
958 	 * really need the enclosure header. However, we get the
959 	 * enclosure descriptor for debug purposes, as well
960 	 * as self-consistency checking purposes.
961 	 */
962 
963 	maxima = cf.Nsubenc + 1;
964 	cdp = (SesEncDesc *) storage;
965 	for (ntype = i = 0; i < maxima; i++) {
966 		MEMZERO((caddr_t)cdp, sizeof (*cdp));
967 		if (ses_enchdr((uint8_t *) sdata, amt, i, &hd)) {
968 			SES_LOG(ssc, "Cannot Extract Enclosure Header %d\n", i);
969 			SES_FREE(sdata, SCSZ);
970 			return (EIO);
971 		}
972 		SES_VLOG(ssc, " SubEnclosure ID %d, %d Types With this ID, En"
973 		    "closure Length %d\n", hd.Subencid, hd.Ntypes, hd.VEnclen);
974 
975 		if (ses_encdesc((uint8_t *)sdata, amt, i, cdp)) {
976 			SES_LOG(ssc, "Can't get Enclosure Descriptor %d\n", i);
977 			SES_FREE(sdata, SCSZ);
978 			return (EIO);
979 		}
980 		SES_VLOG(ssc, " WWN: %02x%02x%02x%02x%02x%02x%02x%02x\n",
981 		    cdp->encWWN[0], cdp->encWWN[1], cdp->encWWN[2],
982 		    cdp->encWWN[3], cdp->encWWN[4], cdp->encWWN[5],
983 		    cdp->encWWN[6], cdp->encWWN[7]);
984 		ntype += hd.Ntypes;
985 	}
986 
987 	/*
988 	 * Now waltz through all the types that are available, getting
989 	 * the type header so we can start adding up the number of
990 	 * objects available.
991 	 */
992 	for (nobj = i = 0; i < ntype; i++) {
993 		if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
994 			SES_LOG(ssc, "Can't get Enclosure Type Header %d\n", i);
995 			SES_FREE(sdata, SCSZ);
996 			return (EIO);
997 		}
998 		SES_LOG(ssc, " Type Desc[%d]: Type 0x%x, MaxElt %d, In Subenc "
999 		    "%d, Text Length %d\n", i, thdr.enc_type, thdr.enc_maxelt,
1000 		    thdr.enc_subenc, thdr.enc_tlen);
1001 		nobj += thdr.enc_maxelt;
1002 	}
1003 
1004 
1005 	/*
1006 	 * Now allocate the object array and type map.
1007 	 */
1008 
1009 	ssc->ses_objmap = SES_MALLOC(nobj * sizeof (encobj));
1010 	cc->ses_typidx = SES_MALLOC(nobj * sizeof (struct typidx));
1011 	cc->ses_eltmap = SES_MALLOC(ntype);
1012 
1013 	if (ssc->ses_objmap == NULL || cc->ses_typidx == NULL ||
1014 	    cc->ses_eltmap == NULL) {
1015 		if (ssc->ses_objmap) {
1016 			SES_FREE(ssc->ses_objmap, (nobj * sizeof (encobj)));
1017 			ssc->ses_objmap = NULL;
1018 		}
1019 		if (cc->ses_typidx) {
1020 			SES_FREE(cc->ses_typidx,
1021 			    (nobj * sizeof (struct typidx)));
1022 			cc->ses_typidx = NULL;
1023 		}
1024 		if (cc->ses_eltmap) {
1025 			SES_FREE(cc->ses_eltmap, ntype);
1026 			cc->ses_eltmap = NULL;
1027 		}
1028 		SES_FREE(sdata, SCSZ);
1029 		return (ENOMEM);
1030 	}
1031 	MEMZERO(ssc->ses_objmap, nobj * sizeof (encobj));
1032 	MEMZERO(cc->ses_typidx, nobj * sizeof (struct typidx));
1033 	MEMZERO(cc->ses_eltmap, ntype);
1034 	cc->ses_ntypes = (uint8_t) ntype;
1035 	ssc->ses_nobjects = nobj;
1036 
1037 	/*
1038 	 * Now waltz through the # of types again to fill in the types
1039 	 * (and subenclosure ids) of the allocated objects.
1040 	 */
1041 	nobj = 0;
1042 	for (i = 0; i < ntype; i++) {
1043 		int j;
1044 		if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
1045 			continue;
1046 		}
1047 		cc->ses_eltmap[i] = thdr.enc_maxelt;
1048 		for (j = 0; j < thdr.enc_maxelt; j++) {
1049 			cc->ses_typidx[nobj].ses_tidx = i;
1050 			cc->ses_typidx[nobj].ses_oidx = j;
1051 			ssc->ses_objmap[nobj].subenclosure = thdr.enc_subenc;
1052 			ssc->ses_objmap[nobj++].enctype = thdr.enc_type;
1053 		}
1054 	}
1055 	SES_FREE(sdata, SCSZ);
1056 	return (0);
1057 }
1058 
1059 static int
1060 ses_getputstat(ses_softc_t *ssc, int objid, SesComStat *sp, int slp, int in)
1061 {
1062 	struct sscfg *cc;
1063 	int err, amt, bufsiz, tidx, oidx;
1064 	char cdb[6], *sdata;
1065 
1066 	cc = ssc->ses_private;
1067 	if (cc == NULL) {
1068 		return (ENXIO);
1069 	}
1070 
1071 	/*
1072 	 * If we're just getting overall enclosure status,
1073 	 * we only need 2 bytes of data storage.
1074 	 *
1075 	 * If we're getting anything else, we know how much
1076 	 * storage we need by noting that starting at offset
1077 	 * 8 in returned data, all object status bytes are 4
1078 	 * bytes long, and are stored in chunks of types(M)
1079 	 * and nth+1 instances of type M.
1080 	 */
1081 	if (objid == -1) {
1082 		bufsiz = 2;
1083 	} else {
1084 		bufsiz = (ssc->ses_nobjects * 4) + (cc->ses_ntypes * 4) + 8;
1085 	}
1086 	sdata = SES_MALLOC(bufsiz);
1087 	if (sdata == NULL)
1088 		return (ENOMEM);
1089 
1090 	cdb[0] = RECEIVE_DIAGNOSTIC;
1091 	cdb[1] = 1;
1092 	cdb[2] = SesStatusPage;
1093 	cdb[3] = bufsiz >> 8;
1094 	cdb[4] = bufsiz & 0xff;
1095 	cdb[5] = 0;
1096 	amt = bufsiz;
1097 	err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1098 	if (err) {
1099 		SES_FREE(sdata, bufsiz);
1100 		return (err);
1101 	}
1102 	amt = bufsiz - amt;
1103 
1104 	if (objid == -1) {
1105 		tidx = -1;
1106 		oidx = -1;
1107 	} else {
1108 		tidx = cc->ses_typidx[objid].ses_tidx;
1109 		oidx = cc->ses_typidx[objid].ses_oidx;
1110 	}
1111 	if (in) {
1112 		if (ses_decode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1113 			err = ENODEV;
1114 		}
1115 	} else {
1116 		if (ses_encode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1117 			err = ENODEV;
1118 		} else {
1119 			cdb[0] = SEND_DIAGNOSTIC;
1120 			cdb[1] = 0x10;
1121 			cdb[2] = 0;
1122 			cdb[3] = bufsiz >> 8;
1123 			cdb[4] = bufsiz & 0xff;
1124 			cdb[5] = 0;
1125 			amt = -bufsiz;
1126 			err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1127 		}
1128 	}
1129 	SES_FREE(sdata, bufsiz);
1130 	return (0);
1131 }
1132 
1133 
1134 /*
1135  * Routines to parse returned SES data structures.
1136  * Architecture and compiler independent.
1137  */
1138 
1139 static int
1140 ses_cfghdr(uint8_t *buffer, int buflen, SesCfgHdr *cfp)
1141 {
1142 	if (buflen < SES_CFGHDR_MINLEN) {
1143 		return (-1);
1144 	}
1145 	gget8(buffer, 1, cfp->Nsubenc);
1146 	gget32(buffer, 4, cfp->GenCode);
1147 	return (0);
1148 }
1149 
1150 static int
1151 ses_enchdr(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncHdr *chp)
1152 {
1153 	int s, off = 8;
1154 	for (s = 0; s < SubEncId; s++) {
1155 		if (off + 3 > amt)
1156 			return (-1);
1157 		off += buffer[off+3] + 4;
1158 	}
1159 	if (off + 3 > amt) {
1160 		return (-1);
1161 	}
1162 	gget8(buffer, off+1, chp->Subencid);
1163 	gget8(buffer, off+2, chp->Ntypes);
1164 	gget8(buffer, off+3, chp->VEnclen);
1165 	return (0);
1166 }
1167 
1168 static int
1169 ses_encdesc(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncDesc *cdp)
1170 {
1171 	int s, e, enclen, off = 8;
1172 	for (s = 0; s < SubEncId; s++) {
1173 		if (off + 3 > amt)
1174 			return (-1);
1175 		off += buffer[off+3] + 4;
1176 	}
1177 	if (off + 3 > amt) {
1178 		return (-1);
1179 	}
1180 	gget8(buffer, off+3, enclen);
1181 	off += 4;
1182 	if (off  >= amt)
1183 		return (-1);
1184 
1185 	e = off + enclen;
1186 	if (e > amt) {
1187 		e = amt;
1188 	}
1189 	MEMCPY(cdp, &buffer[off], e - off);
1190 	return (0);
1191 }
1192 
1193 static int
1194 ses_getthdr(uint8_t *buffer, int amt, int nth, SesThdr *thp)
1195 {
1196 	int s, off = 8;
1197 
1198 	if (amt < SES_CFGHDR_MINLEN) {
1199 		return (-1);
1200 	}
1201 	for (s = 0; s < buffer[1]; s++) {
1202 		if (off + 3 > amt)
1203 			return (-1);
1204 		off += buffer[off+3] + 4;
1205 	}
1206 	if (off + 3 > amt) {
1207 		return (-1);
1208 	}
1209 	off += buffer[off+3] + 4 + (nth * 4);
1210 	if (amt < (off + 4))
1211 		return (-1);
1212 
1213 	gget8(buffer, off++, thp->enc_type);
1214 	gget8(buffer, off++, thp->enc_maxelt);
1215 	gget8(buffer, off++, thp->enc_subenc);
1216 	gget8(buffer, off, thp->enc_tlen);
1217 	return (0);
1218 }
1219 
1220 /*
1221  * This function needs a little explanation.
1222  *
1223  * The arguments are:
1224  *
1225  *
1226  *	char *b, int amt
1227  *
1228  *		These describes the raw input SES status data and length.
1229  *
1230  *	uint8_t *ep
1231  *
1232  *		This is a map of the number of types for each element type
1233  *		in the enclosure.
1234  *
1235  *	int elt
1236  *
1237  *		This is the element type being sought. If elt is -1,
1238  *		then overall enclosure status is being sought.
1239  *
1240  *	int elm
1241  *
1242  *		This is the ordinal Mth element of type elt being sought.
1243  *
1244  *	SesComStat *sp
1245  *
1246  *		This is the output area to store the status for
1247  *		the Mth element of type Elt.
1248  */
1249 
1250 static int
1251 ses_decode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1252 {
1253 	int idx, i;
1254 
1255 	/*
1256 	 * If it's overall enclosure status being sought, get that.
1257 	 * We need at least 2 bytes of status data to get that.
1258 	 */
1259 	if (elt == -1) {
1260 		if (amt < 2)
1261 			return (-1);
1262 		gget8(b, 1, sp->comstatus);
1263 		sp->comstat[0] = 0;
1264 		sp->comstat[1] = 0;
1265 		sp->comstat[2] = 0;
1266 		return (0);
1267 	}
1268 
1269 	/*
1270 	 * Check to make sure that the Mth element is legal for type Elt.
1271 	 */
1272 
1273 	if (elm >= ep[elt])
1274 		return (-1);
1275 
1276 	/*
1277 	 * Starting at offset 8, start skipping over the storage
1278 	 * for the element types we're not interested in.
1279 	 */
1280 	for (idx = 8, i = 0; i < elt; i++) {
1281 		idx += ((ep[i] + 1) * 4);
1282 	}
1283 
1284 	/*
1285 	 * Skip over Overall status for this element type.
1286 	 */
1287 	idx += 4;
1288 
1289 	/*
1290 	 * And skip to the index for the Mth element that we're going for.
1291 	 */
1292 	idx += (4 * elm);
1293 
1294 	/*
1295 	 * Make sure we haven't overflowed the buffer.
1296 	 */
1297 	if (idx+4 > amt)
1298 		return (-1);
1299 
1300 	/*
1301 	 * Retrieve the status.
1302 	 */
1303 	gget8(b, idx++, sp->comstatus);
1304 	gget8(b, idx++, sp->comstat[0]);
1305 	gget8(b, idx++, sp->comstat[1]);
1306 	gget8(b, idx++, sp->comstat[2]);
1307 #if	0
1308 	PRINTF("Get Elt 0x%x Elm 0x%x (idx %d)\n", elt, elm, idx-4);
1309 #endif
1310 	return (0);
1311 }
1312 
1313 /*
1314  * This is the mirror function to ses_decode, but we set the 'select'
1315  * bit for the object which we're interested in. All other objects,
1316  * after a status fetch, should have that bit off. Hmm. It'd be easy
1317  * enough to ensure this, so we will.
1318  */
1319 
1320 static int
1321 ses_encode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1322 {
1323 	int idx, i;
1324 
1325 	/*
1326 	 * If it's overall enclosure status being sought, get that.
1327 	 * We need at least 2 bytes of status data to get that.
1328 	 */
1329 	if (elt == -1) {
1330 		if (amt < 2)
1331 			return (-1);
1332 		i = 0;
1333 		sset8(b, i, 0);
1334 		sset8(b, i, sp->comstatus & 0xf);
1335 #if	0
1336 		PRINTF("set EncStat %x\n", sp->comstatus);
1337 #endif
1338 		return (0);
1339 	}
1340 
1341 	/*
1342 	 * Check to make sure that the Mth element is legal for type Elt.
1343 	 */
1344 
1345 	if (elm >= ep[elt])
1346 		return (-1);
1347 
1348 	/*
1349 	 * Starting at offset 8, start skipping over the storage
1350 	 * for the element types we're not interested in.
1351 	 */
1352 	for (idx = 8, i = 0; i < elt; i++) {
1353 		idx += ((ep[i] + 1) * 4);
1354 	}
1355 
1356 	/*
1357 	 * Skip over Overall status for this element type.
1358 	 */
1359 	idx += 4;
1360 
1361 	/*
1362 	 * And skip to the index for the Mth element that we're going for.
1363 	 */
1364 	idx += (4 * elm);
1365 
1366 	/*
1367 	 * Make sure we haven't overflowed the buffer.
1368 	 */
1369 	if (idx+4 > amt)
1370 		return (-1);
1371 
1372 	/*
1373 	 * Set the status.
1374 	 */
1375 	sset8(b, idx, sp->comstatus);
1376 	sset8(b, idx, sp->comstat[0]);
1377 	sset8(b, idx, sp->comstat[1]);
1378 	sset8(b, idx, sp->comstat[2]);
1379 	idx -= 4;
1380 
1381 #if	0
1382 	PRINTF("Set Elt 0x%x Elm 0x%x (idx %d) with %x %x %x %x\n",
1383 	    elt, elm, idx, sp->comstatus, sp->comstat[0],
1384 	    sp->comstat[1], sp->comstat[2]);
1385 #endif
1386 
1387 	/*
1388 	 * Now make sure all other 'Select' bits are off.
1389 	 */
1390 	for (i = 8; i < amt; i += 4) {
1391 		if (i != idx)
1392 			b[i] &= ~0x80;
1393 	}
1394 	/*
1395 	 * And make sure the INVOP bit is clear.
1396 	 */
1397 	b[2] &= ~0x10;
1398 
1399 	return (0);
1400 }
1401 
1402 /*
1403  * SAF-TE Type Device Emulation
1404  */
1405 
1406 static int safte_getconfig(ses_softc_t *);
1407 static int safte_rdstat(ses_softc_t *, int);;
1408 static int set_objstat_sel(ses_softc_t *, ses_objstat *, int);
1409 static int wrbuf16(ses_softc_t *, uint8_t, uint8_t, uint8_t, uint8_t, int);
1410 static void wrslot_stat(ses_softc_t *, int);
1411 static int perf_slotop(ses_softc_t *, uint8_t, uint8_t, int);
1412 
1413 #define	ALL_ENC_STAT (SES_ENCSTAT_CRITICAL | SES_ENCSTAT_UNRECOV | \
1414 	SES_ENCSTAT_NONCRITICAL | SES_ENCSTAT_INFO)
1415 /*
1416  * SAF-TE specific defines- Mandatory ones only...
1417  */
1418 
1419 /*
1420  * READ BUFFER ('get' commands) IDs- placed in offset 2 of cdb
1421  */
1422 #define	SAFTE_RD_RDCFG	0x00	/* read enclosure configuration */
1423 #define	SAFTE_RD_RDESTS	0x01	/* read enclosure status */
1424 #define	SAFTE_RD_RDDSTS	0x04	/* read drive slot status */
1425 
1426 /*
1427  * WRITE BUFFER ('set' commands) IDs- placed in offset 0 of databuf
1428  */
1429 #define	SAFTE_WT_DSTAT	0x10	/* write device slot status */
1430 #define	SAFTE_WT_SLTOP	0x12	/* perform slot operation */
1431 #define	SAFTE_WT_FANSPD	0x13	/* set fan speed */
1432 #define	SAFTE_WT_ACTPWS	0x14	/* turn on/off power supply */
1433 #define	SAFTE_WT_GLOBAL	0x15	/* send global command */
1434 
1435 
1436 #define	SAFT_SCRATCH	64
1437 #define	NPSEUDO_THERM	16
1438 #define	NPSEUDO_ALARM	1
1439 struct scfg {
1440 	/*
1441 	 * Cached Configuration
1442 	 */
1443 	uint8_t	Nfans;		/* Number of Fans */
1444 	uint8_t	Npwr;		/* Number of Power Supplies */
1445 	uint8_t	Nslots;		/* Number of Device Slots */
1446 	uint8_t	DoorLock;	/* Door Lock Installed */
1447 	uint8_t	Ntherm;		/* Number of Temperature Sensors */
1448 	uint8_t	Nspkrs;		/* Number of Speakers */
1449 	uint8_t Nalarm;		/* Number of Alarms (at least one) */
1450 	/*
1451 	 * Cached Flag Bytes for Global Status
1452 	 */
1453 	uint8_t	flag1;
1454 	uint8_t	flag2;
1455 	/*
1456 	 * What object index ID is where various slots start.
1457 	 */
1458 	uint8_t	pwroff;
1459 	uint8_t	slotoff;
1460 #define	SAFT_ALARM_OFFSET(cc)	(cc)->slotoff - 1
1461 };
1462 
1463 #define	SAFT_FLG1_ALARM		0x1
1464 #define	SAFT_FLG1_GLOBFAIL	0x2
1465 #define	SAFT_FLG1_GLOBWARN	0x4
1466 #define	SAFT_FLG1_ENCPWROFF	0x8
1467 #define	SAFT_FLG1_ENCFANFAIL	0x10
1468 #define	SAFT_FLG1_ENCPWRFAIL	0x20
1469 #define	SAFT_FLG1_ENCDRVFAIL	0x40
1470 #define	SAFT_FLG1_ENCDRVWARN	0x80
1471 
1472 #define	SAFT_FLG2_LOCKDOOR	0x4
1473 #define	SAFT_PRIVATE		sizeof (struct scfg)
1474 
1475 static const char safte_2little[] = "Too Little Data Returned (%d) at line %d\n";
1476 #define	SAFT_BAIL(r, x, k, l)	\
1477 	if (r >= x) { \
1478 		SES_LOG(ssc, safte_2little, x, __LINE__);\
1479 		SES_FREE(k, l); \
1480 		return (EIO); \
1481 	}
1482 
1483 
1484 int
1485 safte_softc_init(ses_softc_t *ssc, int doinit)
1486 {
1487 	int err, i, r;
1488 	struct scfg *cc;
1489 
1490 	if (doinit == 0) {
1491 		if (ssc->ses_nobjects) {
1492 			if (ssc->ses_objmap) {
1493 				SES_FREE(ssc->ses_objmap,
1494 				    ssc->ses_nobjects * sizeof (encobj));
1495 				ssc->ses_objmap = NULL;
1496 			}
1497 			ssc->ses_nobjects = 0;
1498 		}
1499 		if (ssc->ses_private) {
1500 			SES_FREE(ssc->ses_private, SAFT_PRIVATE);
1501 			ssc->ses_private = NULL;
1502 		}
1503 		return (0);
1504 	}
1505 
1506 	if (ssc->ses_private == NULL) {
1507 		ssc->ses_private = SES_MALLOC(SAFT_PRIVATE);
1508 		if (ssc->ses_private == NULL) {
1509 			return (ENOMEM);
1510 		}
1511 		MEMZERO(ssc->ses_private, SAFT_PRIVATE);
1512 	}
1513 
1514 	ssc->ses_nobjects = 0;
1515 	ssc->ses_encstat = 0;
1516 
1517 	if ((err = safte_getconfig(ssc)) != 0) {
1518 		return (err);
1519 	}
1520 
1521 	/*
1522 	 * The number of objects here, as well as that reported by the
1523 	 * READ_BUFFER/GET_CONFIG call, are the over-temperature flags (15)
1524 	 * that get reported during READ_BUFFER/READ_ENC_STATUS.
1525 	 */
1526 	cc = ssc->ses_private;
1527 	ssc->ses_nobjects = cc->Nfans + cc->Npwr + cc->Nslots + cc->DoorLock +
1528 	    cc->Ntherm + cc->Nspkrs + NPSEUDO_THERM + NPSEUDO_ALARM;
1529 	ssc->ses_objmap = (encobj *)
1530 	    SES_MALLOC(ssc->ses_nobjects * sizeof (encobj));
1531 	if (ssc->ses_objmap == NULL) {
1532 		return (ENOMEM);
1533 	}
1534 	MEMZERO(ssc->ses_objmap, ssc->ses_nobjects * sizeof (encobj));
1535 
1536 	r = 0;
1537 	/*
1538 	 * Note that this is all arranged for the convenience
1539 	 * in later fetches of status.
1540 	 */
1541 	for (i = 0; i < cc->Nfans; i++)
1542 		ssc->ses_objmap[r++].enctype = SESTYP_FAN;
1543 	cc->pwroff = (uint8_t) r;
1544 	for (i = 0; i < cc->Npwr; i++)
1545 		ssc->ses_objmap[r++].enctype = SESTYP_POWER;
1546 	for (i = 0; i < cc->DoorLock; i++)
1547 		ssc->ses_objmap[r++].enctype = SESTYP_DOORLOCK;
1548 	for (i = 0; i < cc->Nspkrs; i++)
1549 		ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1550 	for (i = 0; i < cc->Ntherm; i++)
1551 		ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1552 	for (i = 0; i < NPSEUDO_THERM; i++)
1553 		ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1554 	ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1555 	cc->slotoff = (uint8_t) r;
1556 	for (i = 0; i < cc->Nslots; i++)
1557 		ssc->ses_objmap[r++].enctype = SESTYP_DEVICE;
1558 	return (0);
1559 }
1560 
1561 int
1562 safte_init_enc(ses_softc_t *ssc)
1563 {
1564 	int err, amt;
1565 	char *sdata;
1566 	static char cdb0[6] = { SEND_DIAGNOSTIC };
1567 	static char cdb[10] =
1568 	    { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
1569 
1570 	sdata = SES_MALLOC(SAFT_SCRATCH);
1571 	if (sdata == NULL)
1572 		return (ENOMEM);
1573 
1574 	err = ses_runcmd(ssc, cdb0, 6, NULL, 0);
1575 	if (err) {
1576 		SES_FREE(sdata, SAFT_SCRATCH);
1577 		return (err);
1578 	}
1579 	sdata[0] = SAFTE_WT_GLOBAL;
1580 	MEMZERO(&sdata[1], 15);
1581 	amt = -SAFT_SCRATCH;
1582 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1583 	SES_FREE(sdata, SAFT_SCRATCH);
1584 	return (err);
1585 }
1586 
1587 int
1588 safte_get_encstat(ses_softc_t *ssc, int slpflg)
1589 {
1590 	return (safte_rdstat(ssc, slpflg));
1591 }
1592 
1593 int
1594 safte_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflg)
1595 {
1596 	struct scfg *cc = ssc->ses_private;
1597 	if (cc == NULL)
1598 		return (0);
1599 	/*
1600 	 * Since SAF-TE devices aren't necessarily sticky in terms
1601 	 * of state, make our soft copy of enclosure status 'sticky'-
1602 	 * that is, things set in enclosure status stay set (as implied
1603 	 * by conditions set in reading object status) until cleared.
1604 	 */
1605 	ssc->ses_encstat &= ~ALL_ENC_STAT;
1606 	ssc->ses_encstat |= (encstat & ALL_ENC_STAT);
1607 	ssc->ses_encstat |= ENCI_SVALID;
1608 	cc->flag1 &= ~(SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL|SAFT_FLG1_GLOBWARN);
1609 	if ((encstat & (SES_ENCSTAT_CRITICAL|SES_ENCSTAT_UNRECOV)) != 0) {
1610 		cc->flag1 |= SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL;
1611 	} else if ((encstat & SES_ENCSTAT_NONCRITICAL) != 0) {
1612 		cc->flag1 |= SAFT_FLG1_GLOBWARN;
1613 	}
1614 	return (wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slpflg));
1615 }
1616 
1617 int
1618 safte_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflg)
1619 {
1620 	int i = (int)obp->obj_id;
1621 
1622 	if ((ssc->ses_encstat & ENCI_SVALID) == 0 ||
1623 	    (ssc->ses_objmap[i].svalid) == 0) {
1624 		int err = safte_rdstat(ssc, slpflg);
1625 		if (err)
1626 			return (err);
1627 	}
1628 	obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
1629 	obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
1630 	obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
1631 	obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
1632 	return (0);
1633 }
1634 
1635 
1636 int
1637 safte_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slp)
1638 {
1639 	int idx, err;
1640 	encobj *ep;
1641 	struct scfg *cc;
1642 
1643 
1644 	SES_VLOG(ssc, "safte_set_objstat(%d): %x %x %x %x\n",
1645 	    (int)obp->obj_id, obp->cstat[0], obp->cstat[1], obp->cstat[2],
1646 	    obp->cstat[3]);
1647 
1648 	/*
1649 	 * If this is clear, we don't do diddly.
1650 	 */
1651 	if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
1652 		return (0);
1653 	}
1654 
1655 	err = 0;
1656 	/*
1657 	 * Check to see if the common bits are set and do them first.
1658 	 */
1659 	if (obp->cstat[0] & ~SESCTL_CSEL) {
1660 		err = set_objstat_sel(ssc, obp, slp);
1661 		if (err)
1662 			return (err);
1663 	}
1664 
1665 	cc = ssc->ses_private;
1666 	if (cc == NULL)
1667 		return (0);
1668 
1669 	idx = (int)obp->obj_id;
1670 	ep = &ssc->ses_objmap[idx];
1671 
1672 	switch (ep->enctype) {
1673 	case SESTYP_DEVICE:
1674 	{
1675 		uint8_t slotop = 0;
1676 		/*
1677 		 * XXX: I should probably cache the previous state
1678 		 * XXX: of SESCTL_DEVOFF so that when it goes from
1679 		 * XXX: true to false I can then set PREPARE FOR OPERATION
1680 		 * XXX: flag in PERFORM SLOT OPERATION write buffer command.
1681 		 */
1682 		if (obp->cstat[2] & (SESCTL_RQSINS|SESCTL_RQSRMV)) {
1683 			slotop |= 0x2;
1684 		}
1685 		if (obp->cstat[2] & SESCTL_RQSID) {
1686 			slotop |= 0x4;
1687 		}
1688 		err = perf_slotop(ssc, (uint8_t) idx - (uint8_t) cc->slotoff,
1689 		    slotop, slp);
1690 		if (err)
1691 			return (err);
1692 		if (obp->cstat[3] & SESCTL_RQSFLT) {
1693 			ep->priv |= 0x2;
1694 		} else {
1695 			ep->priv &= ~0x2;
1696 		}
1697 		if (ep->priv & 0xc6) {
1698 			ep->priv &= ~0x1;
1699 		} else {
1700 			ep->priv |= 0x1;	/* no errors */
1701 		}
1702 		wrslot_stat(ssc, slp);
1703 		break;
1704 	}
1705 	case SESTYP_POWER:
1706 		if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1707 			cc->flag1 |= SAFT_FLG1_ENCPWRFAIL;
1708 		} else {
1709 			cc->flag1 &= ~SAFT_FLG1_ENCPWRFAIL;
1710 		}
1711 		err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1712 		    cc->flag2, 0, slp);
1713 		if (err)
1714 			return (err);
1715 		if (obp->cstat[3] & SESCTL_RQSTON) {
1716 			(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1717 				idx - cc->pwroff, 0, 0, slp);
1718 		} else {
1719 			(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1720 				idx - cc->pwroff, 0, 1, slp);
1721 		}
1722 		break;
1723 	case SESTYP_FAN:
1724 		if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1725 			cc->flag1 |= SAFT_FLG1_ENCFANFAIL;
1726 		} else {
1727 			cc->flag1 &= ~SAFT_FLG1_ENCFANFAIL;
1728 		}
1729 		err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1730 		    cc->flag2, 0, slp);
1731 		if (err)
1732 			return (err);
1733 		if (obp->cstat[3] & SESCTL_RQSTON) {
1734 			uint8_t fsp;
1735 			if ((obp->cstat[3] & 0x7) == 7) {
1736 				fsp = 4;
1737 			} else if ((obp->cstat[3] & 0x7) == 6) {
1738 				fsp = 3;
1739 			} else if ((obp->cstat[3] & 0x7) == 4) {
1740 				fsp = 2;
1741 			} else {
1742 				fsp = 1;
1743 			}
1744 			(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, fsp, 0, slp);
1745 		} else {
1746 			(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
1747 		}
1748 		break;
1749 	case SESTYP_DOORLOCK:
1750 		if (obp->cstat[3] & 0x1) {
1751 			cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
1752 		} else {
1753 			cc->flag2 |= SAFT_FLG2_LOCKDOOR;
1754 		}
1755 		(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1756 		    cc->flag2, 0, slp);
1757 		break;
1758 	case SESTYP_ALARM:
1759 		/*
1760 		 * On all nonzero but the 'muted' bit, we turn on the alarm,
1761 		 */
1762 		obp->cstat[3] &= ~0xa;
1763 		if (obp->cstat[3] & 0x40) {
1764 			cc->flag2 &= ~SAFT_FLG1_ALARM;
1765 		} else if (obp->cstat[3] != 0) {
1766 			cc->flag2 |= SAFT_FLG1_ALARM;
1767 		} else {
1768 			cc->flag2 &= ~SAFT_FLG1_ALARM;
1769 		}
1770 		ep->priv = obp->cstat[3];
1771 		(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1772 			cc->flag2, 0, slp);
1773 		break;
1774 	default:
1775 		break;
1776 	}
1777 	ep->svalid = 0;
1778 	return (0);
1779 }
1780 
1781 static int
1782 safte_getconfig(ses_softc_t *ssc)
1783 {
1784 	struct scfg *cfg;
1785 	int err, amt;
1786 	char *sdata;
1787 	static char cdb[10] =
1788 	    { READ_BUFFER, 1, SAFTE_RD_RDCFG, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
1789 
1790 	cfg = ssc->ses_private;
1791 	if (cfg == NULL)
1792 		return (ENXIO);
1793 
1794 	sdata = SES_MALLOC(SAFT_SCRATCH);
1795 	if (sdata == NULL)
1796 		return (ENOMEM);
1797 
1798 	amt = SAFT_SCRATCH;
1799 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1800 	if (err) {
1801 		SES_FREE(sdata, SAFT_SCRATCH);
1802 		return (err);
1803 	}
1804 	amt = SAFT_SCRATCH - amt;
1805 	if (amt < 6) {
1806 		SES_LOG(ssc, "too little data (%d) for configuration\n", amt);
1807 		SES_FREE(sdata, SAFT_SCRATCH);
1808 		return (EIO);
1809 	}
1810 	SES_VLOG(ssc, "Nfans %d Npwr %d Nslots %d Lck %d Ntherm %d Nspkrs %d\n",
1811 	    sdata[0], sdata[1], sdata[2], sdata[3], sdata[4], sdata[5]);
1812 	cfg->Nfans = sdata[0];
1813 	cfg->Npwr = sdata[1];
1814 	cfg->Nslots = sdata[2];
1815 	cfg->DoorLock = sdata[3];
1816 	cfg->Ntherm = sdata[4];
1817 	cfg->Nspkrs = sdata[5];
1818 	cfg->Nalarm = NPSEUDO_ALARM;
1819 	SES_FREE(sdata, SAFT_SCRATCH);
1820 	return (0);
1821 }
1822 
1823 static int
1824 safte_rdstat(ses_softc_t *ssc, int slpflg)
1825 {
1826 	int err, oid, r, i, hiwater, nitems, amt;
1827 	uint16_t tempflags;
1828 	size_t buflen;
1829 	uint8_t status, oencstat;
1830 	char *sdata, cdb[10];
1831 	struct scfg *cc = ssc->ses_private;
1832 
1833 
1834 	/*
1835 	 * The number of objects overstates things a bit,
1836 	 * both for the bogus 'thermometer' entries and
1837 	 * the drive status (which isn't read at the same
1838 	 * time as the enclosure status), but that's okay.
1839 	 */
1840 	buflen = 4 * cc->Nslots;
1841 	if (ssc->ses_nobjects > buflen)
1842 		buflen = ssc->ses_nobjects;
1843 	sdata = SES_MALLOC(buflen);
1844 	if (sdata == NULL)
1845 		return (ENOMEM);
1846 
1847 	cdb[0] = READ_BUFFER;
1848 	cdb[1] = 1;
1849 	cdb[2] = SAFTE_RD_RDESTS;
1850 	cdb[3] = 0;
1851 	cdb[4] = 0;
1852 	cdb[5] = 0;
1853 	cdb[6] = 0;
1854 	cdb[7] = (buflen >> 8) & 0xff;
1855 	cdb[8] = buflen & 0xff;
1856 	cdb[9] = 0;
1857 	amt = buflen;
1858 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1859 	if (err) {
1860 		SES_FREE(sdata, buflen);
1861 		return (err);
1862 	}
1863 	hiwater = buflen - amt;
1864 
1865 
1866 	/*
1867 	 * invalidate all status bits.
1868 	 */
1869 	for (i = 0; i < ssc->ses_nobjects; i++)
1870 		ssc->ses_objmap[i].svalid = 0;
1871 	oencstat = ssc->ses_encstat & ALL_ENC_STAT;
1872 	ssc->ses_encstat = 0;
1873 
1874 
1875 	/*
1876 	 * Now parse returned buffer.
1877 	 * If we didn't get enough data back,
1878 	 * that's considered a fatal error.
1879 	 */
1880 	oid = r = 0;
1881 
1882 	for (nitems = i = 0; i < cc->Nfans; i++) {
1883 		SAFT_BAIL(r, hiwater, sdata, buflen);
1884 		/*
1885 		 * 0 = Fan Operational
1886 		 * 1 = Fan is malfunctioning
1887 		 * 2 = Fan is not present
1888 		 * 0x80 = Unknown or Not Reportable Status
1889 		 */
1890 		ssc->ses_objmap[oid].encstat[1] = 0;	/* resvd */
1891 		ssc->ses_objmap[oid].encstat[2] = 0;	/* resvd */
1892 		switch ((int)(uint8_t)sdata[r]) {
1893 		case 0:
1894 			nitems++;
1895 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1896 			/*
1897 			 * We could get fancier and cache
1898 			 * fan speeds that we have set, but
1899 			 * that isn't done now.
1900 			 */
1901 			ssc->ses_objmap[oid].encstat[3] = 7;
1902 			break;
1903 
1904 		case 1:
1905 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1906 			/*
1907 			 * FAIL and FAN STOPPED synthesized
1908 			 */
1909 			ssc->ses_objmap[oid].encstat[3] = 0x40;
1910 			/*
1911 			 * Enclosure marked with CRITICAL error
1912 			 * if only one fan or no thermometers,
1913 			 * else the NONCRITICAL error is set.
1914 			 */
1915 			if (cc->Nfans == 1 || cc->Ntherm == 0)
1916 				ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1917 			else
1918 				ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1919 			break;
1920 		case 2:
1921 			ssc->ses_objmap[oid].encstat[0] =
1922 			    SES_OBJSTAT_NOTINSTALLED;
1923 			ssc->ses_objmap[oid].encstat[3] = 0;
1924 			/*
1925 			 * Enclosure marked with CRITICAL error
1926 			 * if only one fan or no thermometers,
1927 			 * else the NONCRITICAL error is set.
1928 			 */
1929 			if (cc->Nfans == 1)
1930 				ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1931 			else
1932 				ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1933 			break;
1934 		case 0x80:
1935 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1936 			ssc->ses_objmap[oid].encstat[3] = 0;
1937 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
1938 			break;
1939 		default:
1940 			ssc->ses_objmap[oid].encstat[0] =
1941 			    SES_OBJSTAT_UNSUPPORTED;
1942 			SES_LOG(ssc, "Unknown fan%d status 0x%x\n", i,
1943 			    sdata[r] & 0xff);
1944 			break;
1945 		}
1946 		ssc->ses_objmap[oid++].svalid = 1;
1947 		r++;
1948 	}
1949 
1950 	/*
1951 	 * No matter how you cut it, no cooling elements when there
1952 	 * should be some there is critical.
1953 	 */
1954 	if (cc->Nfans && nitems == 0) {
1955 		ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1956 	}
1957 
1958 
1959 	for (i = 0; i < cc->Npwr; i++) {
1960 		SAFT_BAIL(r, hiwater, sdata, buflen);
1961 		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1962 		ssc->ses_objmap[oid].encstat[1] = 0;	/* resvd */
1963 		ssc->ses_objmap[oid].encstat[2] = 0;	/* resvd */
1964 		ssc->ses_objmap[oid].encstat[3] = 0x20;	/* requested on */
1965 		switch ((uint8_t)sdata[r]) {
1966 		case 0x00:	/* pws operational and on */
1967 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1968 			break;
1969 		case 0x01:	/* pws operational and off */
1970 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1971 			ssc->ses_objmap[oid].encstat[3] = 0x10;
1972 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
1973 			break;
1974 		case 0x10:	/* pws is malfunctioning and commanded on */
1975 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1976 			ssc->ses_objmap[oid].encstat[3] = 0x61;
1977 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1978 			break;
1979 
1980 		case 0x11:	/* pws is malfunctioning and commanded off */
1981 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
1982 			ssc->ses_objmap[oid].encstat[3] = 0x51;
1983 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1984 			break;
1985 		case 0x20:	/* pws is not present */
1986 			ssc->ses_objmap[oid].encstat[0] =
1987 			    SES_OBJSTAT_NOTINSTALLED;
1988 			ssc->ses_objmap[oid].encstat[3] = 0;
1989 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
1990 			break;
1991 		case 0x21:	/* pws is present */
1992 			/*
1993 			 * This is for enclosures that cannot tell whether the
1994 			 * device is on or malfunctioning, but know that it is
1995 			 * present. Just fall through.
1996 			 */
1997 			/* FALLTHROUGH */
1998 		case 0x80:	/* Unknown or Not Reportable Status */
1999 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2000 			ssc->ses_objmap[oid].encstat[3] = 0;
2001 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
2002 			break;
2003 		default:
2004 			SES_LOG(ssc, "unknown power supply %d status (0x%x)\n",
2005 			    i, sdata[r] & 0xff);
2006 			break;
2007 		}
2008 		ssc->ses_objmap[oid++].svalid = 1;
2009 		r++;
2010 	}
2011 
2012 	/*
2013 	 * Skip over Slot SCSI IDs
2014 	 */
2015 	r += cc->Nslots;
2016 
2017 	/*
2018 	 * We always have doorlock status, no matter what,
2019 	 * but we only save the status if we have one.
2020 	 */
2021 	SAFT_BAIL(r, hiwater, sdata, buflen);
2022 	if (cc->DoorLock) {
2023 		/*
2024 		 * 0 = Door Locked
2025 		 * 1 = Door Unlocked, or no Lock Installed
2026 		 * 0x80 = Unknown or Not Reportable Status
2027 		 */
2028 		ssc->ses_objmap[oid].encstat[1] = 0;
2029 		ssc->ses_objmap[oid].encstat[2] = 0;
2030 		switch ((uint8_t)sdata[r]) {
2031 		case 0:
2032 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2033 			ssc->ses_objmap[oid].encstat[3] = 0;
2034 			break;
2035 		case 1:
2036 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2037 			ssc->ses_objmap[oid].encstat[3] = 1;
2038 			break;
2039 		case 0x80:
2040 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2041 			ssc->ses_objmap[oid].encstat[3] = 0;
2042 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
2043 			break;
2044 		default:
2045 			ssc->ses_objmap[oid].encstat[0] =
2046 			    SES_OBJSTAT_UNSUPPORTED;
2047 			SES_LOG(ssc, "unknown lock status 0x%x\n",
2048 			    sdata[r] & 0xff);
2049 			break;
2050 		}
2051 		ssc->ses_objmap[oid++].svalid = 1;
2052 	}
2053 	r++;
2054 
2055 	/*
2056 	 * We always have speaker status, no matter what,
2057 	 * but we only save the status if we have one.
2058 	 */
2059 	SAFT_BAIL(r, hiwater, sdata, buflen);
2060 	if (cc->Nspkrs) {
2061 		ssc->ses_objmap[oid].encstat[1] = 0;
2062 		ssc->ses_objmap[oid].encstat[2] = 0;
2063 		if (sdata[r] == 1) {
2064 			/*
2065 			 * We need to cache tone urgency indicators.
2066 			 * Someday.
2067 			 */
2068 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
2069 			ssc->ses_objmap[oid].encstat[3] = 0x8;
2070 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2071 		} else if (sdata[r] == 0) {
2072 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2073 			ssc->ses_objmap[oid].encstat[3] = 0;
2074 		} else {
2075 			ssc->ses_objmap[oid].encstat[0] =
2076 			    SES_OBJSTAT_UNSUPPORTED;
2077 			ssc->ses_objmap[oid].encstat[3] = 0;
2078 			SES_LOG(ssc, "unknown spkr status 0x%x\n",
2079 			    sdata[r] & 0xff);
2080 		}
2081 		ssc->ses_objmap[oid++].svalid = 1;
2082 	}
2083 	r++;
2084 
2085 	for (i = 0; i < cc->Ntherm; i++) {
2086 		SAFT_BAIL(r, hiwater, sdata, buflen);
2087 		/*
2088 		 * Status is a range from -10 to 245 deg Celsius,
2089 		 * which we need to normalize to -20 to -245 according
2090 		 * to the latest SCSI spec, which makes little
2091 		 * sense since this would overflow an 8bit value.
2092 		 * Well, still, the base normalization is -20,
2093 		 * not -10, so we have to adjust.
2094 		 *
2095 		 * So what's over and under temperature?
2096 		 * Hmm- we'll state that 'normal' operating
2097 		 * is 10 to 40 deg Celsius.
2098 		 */
2099 
2100 		/*
2101 		 * Actually.... All of the units that people out in the world
2102 		 * seem to have do not come even close to setting a value that
2103 		 * complies with this spec.
2104 		 *
2105 		 * The closest explanation I could find was in an
2106 		 * LSI-Logic manual, which seemed to indicate that
2107 		 * this value would be set by whatever the I2C code
2108 		 * would interpolate from the output of an LM75
2109 		 * temperature sensor.
2110 		 *
2111 		 * This means that it is impossible to use the actual
2112 		 * numeric value to predict anything. But we don't want
2113 		 * to lose the value. So, we'll propagate the *uncorrected*
2114 		 * value and set SES_OBJSTAT_NOTAVAIL. We'll depend on the
2115 		 * temperature flags for warnings.
2116 		 */
2117 		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NOTAVAIL;
2118 		ssc->ses_objmap[oid].encstat[1] = 0;
2119 		ssc->ses_objmap[oid].encstat[2] = sdata[r];
2120 		ssc->ses_objmap[oid].encstat[3] = 0;;
2121 		ssc->ses_objmap[oid++].svalid = 1;
2122 		r++;
2123 	}
2124 
2125 	/*
2126 	 * Now, for "pseudo" thermometers, we have two bytes
2127 	 * of information in enclosure status- 16 bits. Actually,
2128 	 * the MSB is a single TEMP ALERT flag indicating whether
2129 	 * any other bits are set, but, thanks to fuzzy thinking,
2130 	 * in the SAF-TE spec, this can also be set even if no
2131 	 * other bits are set, thus making this really another
2132 	 * binary temperature sensor.
2133 	 */
2134 
2135 	SAFT_BAIL(r, hiwater, sdata, buflen);
2136 	tempflags = sdata[r++];
2137 	SAFT_BAIL(r, hiwater, sdata, buflen);
2138 	tempflags |= (tempflags << 8) | sdata[r++];
2139 
2140 	for (i = 0; i < NPSEUDO_THERM; i++) {
2141 		ssc->ses_objmap[oid].encstat[1] = 0;
2142 		if (tempflags & (1 << (NPSEUDO_THERM - i - 1))) {
2143 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2144 			ssc->ses_objmap[4].encstat[2] = 0xff;
2145 			/*
2146 			 * Set 'over temperature' failure.
2147 			 */
2148 			ssc->ses_objmap[oid].encstat[3] = 8;
2149 			ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2150 		} else {
2151 			/*
2152 			 * We used to say 'not available' and synthesize a
2153 			 * nominal 30 deg (C)- that was wrong. Actually,
2154 			 * Just say 'OK', and use the reserved value of
2155 			 * zero.
2156 			 */
2157 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2158 			ssc->ses_objmap[oid].encstat[2] = 0;
2159 			ssc->ses_objmap[oid].encstat[3] = 0;
2160 		}
2161 		ssc->ses_objmap[oid++].svalid = 1;
2162 	}
2163 
2164 	/*
2165 	 * Get alarm status.
2166 	 */
2167 	ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2168 	ssc->ses_objmap[oid].encstat[3] = ssc->ses_objmap[oid].priv;
2169 	ssc->ses_objmap[oid++].svalid = 1;
2170 
2171 	/*
2172 	 * Now get drive slot status
2173 	 */
2174 	cdb[2] = SAFTE_RD_RDDSTS;
2175 	amt = buflen;
2176 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2177 	if (err) {
2178 		SES_FREE(sdata, buflen);
2179 		return (err);
2180 	}
2181 	hiwater = buflen - amt;
2182 	for (r = i = 0; i < cc->Nslots; i++, r += 4) {
2183 		SAFT_BAIL(r+3, hiwater, sdata, buflen);
2184 		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNSUPPORTED;
2185 		ssc->ses_objmap[oid].encstat[1] = (uint8_t) i;
2186 		ssc->ses_objmap[oid].encstat[2] = 0;
2187 		ssc->ses_objmap[oid].encstat[3] = 0;
2188 		status = sdata[r+3];
2189 		if ((status & 0x1) == 0) {	/* no device */
2190 			ssc->ses_objmap[oid].encstat[0] =
2191 			    SES_OBJSTAT_NOTINSTALLED;
2192 		} else {
2193 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2194 		}
2195 		if (status & 0x2) {
2196 			ssc->ses_objmap[oid].encstat[2] = 0x8;
2197 		}
2198 		if ((status & 0x4) == 0) {
2199 			ssc->ses_objmap[oid].encstat[3] = 0x10;
2200 		}
2201 		ssc->ses_objmap[oid++].svalid = 1;
2202 	}
2203 	/* see comment below about sticky enclosure status */
2204 	ssc->ses_encstat |= ENCI_SVALID | oencstat;
2205 	SES_FREE(sdata, buflen);
2206 	return (0);
2207 }
2208 
2209 static int
2210 set_objstat_sel(ses_softc_t *ssc, ses_objstat *obp, int slp)
2211 {
2212 	int idx;
2213 	encobj *ep;
2214 	struct scfg *cc = ssc->ses_private;
2215 
2216 	if (cc == NULL)
2217 		return (0);
2218 
2219 	idx = (int)obp->obj_id;
2220 	ep = &ssc->ses_objmap[idx];
2221 
2222 	switch (ep->enctype) {
2223 	case SESTYP_DEVICE:
2224 		if (obp->cstat[0] & SESCTL_PRDFAIL) {
2225 			ep->priv |= 0x40;
2226 		}
2227 		/* SESCTL_RSTSWAP has no correspondence in SAF-TE */
2228 		if (obp->cstat[0] & SESCTL_DISABLE) {
2229 			ep->priv |= 0x80;
2230 			/*
2231 			 * Hmm. Try to set the 'No Drive' flag.
2232 			 * Maybe that will count as a 'disable'.
2233 			 */
2234 		}
2235 		if (ep->priv & 0xc6) {
2236 			ep->priv &= ~0x1;
2237 		} else {
2238 			ep->priv |= 0x1;	/* no errors */
2239 		}
2240 		wrslot_stat(ssc, slp);
2241 		break;
2242 	case SESTYP_POWER:
2243 		/*
2244 		 * Okay- the only one that makes sense here is to
2245 		 * do the 'disable' for a power supply.
2246 		 */
2247 		if (obp->cstat[0] & SESCTL_DISABLE) {
2248 			(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
2249 				idx - cc->pwroff, 0, 0, slp);
2250 		}
2251 		break;
2252 	case SESTYP_FAN:
2253 		/*
2254 		 * Okay- the only one that makes sense here is to
2255 		 * set fan speed to zero on disable.
2256 		 */
2257 		if (obp->cstat[0] & SESCTL_DISABLE) {
2258 			/* remember- fans are the first items, so idx works */
2259 			(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
2260 		}
2261 		break;
2262 	case SESTYP_DOORLOCK:
2263 		/*
2264 		 * Well, we can 'disable' the lock.
2265 		 */
2266 		if (obp->cstat[0] & SESCTL_DISABLE) {
2267 			cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
2268 			(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2269 				cc->flag2, 0, slp);
2270 		}
2271 		break;
2272 	case SESTYP_ALARM:
2273 		/*
2274 		 * Well, we can 'disable' the alarm.
2275 		 */
2276 		if (obp->cstat[0] & SESCTL_DISABLE) {
2277 			cc->flag2 &= ~SAFT_FLG1_ALARM;
2278 			ep->priv |= 0x40;	/* Muted */
2279 			(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2280 				cc->flag2, 0, slp);
2281 		}
2282 		break;
2283 	default:
2284 		break;
2285 	}
2286 	ep->svalid = 0;
2287 	return (0);
2288 }
2289 
2290 /*
2291  * This function handles all of the 16 byte WRITE BUFFER commands.
2292  */
2293 static int
2294 wrbuf16(ses_softc_t *ssc, uint8_t op, uint8_t b1, uint8_t b2,
2295     uint8_t b3, int slp)
2296 {
2297 	int err, amt;
2298 	char *sdata;
2299 	struct scfg *cc = ssc->ses_private;
2300 	static char cdb[10] = { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
2301 
2302 	if (cc == NULL)
2303 		return (0);
2304 
2305 	sdata = SES_MALLOC(16);
2306 	if (sdata == NULL)
2307 		return (ENOMEM);
2308 
2309 	SES_VLOG(ssc, "saf_wrbuf16 %x %x %x %x\n", op, b1, b2, b3);
2310 
2311 	sdata[0] = op;
2312 	sdata[1] = b1;
2313 	sdata[2] = b2;
2314 	sdata[3] = b3;
2315 	MEMZERO(&sdata[4], 12);
2316 	amt = -16;
2317 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2318 	SES_FREE(sdata, 16);
2319 	return (err);
2320 }
2321 
2322 /*
2323  * This function updates the status byte for the device slot described.
2324  *
2325  * Since this is an optional SAF-TE command, there's no point in
2326  * returning an error.
2327  */
2328 static void
2329 wrslot_stat(ses_softc_t *ssc, int slp)
2330 {
2331 	int i, amt;
2332 	encobj *ep;
2333 	char cdb[10], *sdata;
2334 	struct scfg *cc = ssc->ses_private;
2335 
2336 	if (cc == NULL)
2337 		return;
2338 
2339 	SES_VLOG(ssc, "saf_wrslot\n");
2340 	cdb[0] = WRITE_BUFFER;
2341 	cdb[1] = 1;
2342 	cdb[2] = 0;
2343 	cdb[3] = 0;
2344 	cdb[4] = 0;
2345 	cdb[5] = 0;
2346 	cdb[6] = 0;
2347 	cdb[7] = 0;
2348 	cdb[8] = cc->Nslots * 3 + 1;
2349 	cdb[9] = 0;
2350 
2351 	sdata = SES_MALLOC(cc->Nslots * 3 + 1);
2352 	if (sdata == NULL)
2353 		return;
2354 	MEMZERO(sdata, cc->Nslots * 3 + 1);
2355 
2356 	sdata[0] = SAFTE_WT_DSTAT;
2357 	for (i = 0; i < cc->Nslots; i++) {
2358 		ep = &ssc->ses_objmap[cc->slotoff + i];
2359 		SES_VLOG(ssc, "saf_wrslot %d <- %x\n", i, ep->priv & 0xff);
2360 		sdata[1 + (3 * i)] = ep->priv & 0xff;
2361 	}
2362 	amt = -(cc->Nslots * 3 + 1);
2363 	(void) ses_runcmd(ssc, cdb, 10, sdata, &amt);
2364 	SES_FREE(sdata, cc->Nslots * 3 + 1);
2365 }
2366 
2367 /*
2368  * This function issues the "PERFORM SLOT OPERATION" command.
2369  */
2370 static int
2371 perf_slotop(ses_softc_t *ssc, uint8_t slot, uint8_t opflag, int slp)
2372 {
2373 	int err, amt;
2374 	char *sdata;
2375 	struct scfg *cc = ssc->ses_private;
2376 	static char cdb[10] =
2377 	    { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
2378 
2379 	if (cc == NULL)
2380 		return (0);
2381 
2382 	sdata = SES_MALLOC(SAFT_SCRATCH);
2383 	if (sdata == NULL)
2384 		return (ENOMEM);
2385 	MEMZERO(sdata, SAFT_SCRATCH);
2386 
2387 	sdata[0] = SAFTE_WT_SLTOP;
2388 	sdata[1] = slot;
2389 	sdata[2] = opflag;
2390 	SES_VLOG(ssc, "saf_slotop slot %d op %x\n", slot, opflag);
2391 	amt = -SAFT_SCRATCH;
2392 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2393 	SES_FREE(sdata, SAFT_SCRATCH);
2394 	return (err);
2395 }
2396