xref: /netbsd-src/sys/dev/scsipi/ses.c (revision 23c8222edbfb0f0932d88a8351d3a0cf817dfb9e)
1 /*	$NetBSD: ses.c,v 1.26 2004/09/18 00:21:03 mycroft Exp $ */
2 /*
3  * Copyright (C) 2000 National Aeronautics & Space Administration
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. The name of the author may not be used to endorse or promote products
12  *    derived from this software without specific prior written permission
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24  *
25  * Author:	mjacob@nas.nasa.gov
26  */
27 
28 #include <sys/cdefs.h>
29 __KERNEL_RCSID(0, "$NetBSD: ses.c,v 1.26 2004/09/18 00:21:03 mycroft Exp $");
30 
31 #include "opt_scsi.h"
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/kernel.h>
36 #include <sys/file.h>
37 #include <sys/stat.h>
38 #include <sys/ioctl.h>
39 #include <sys/scsiio.h>
40 #include <sys/buf.h>
41 #include <sys/uio.h>
42 #include <sys/malloc.h>
43 #include <sys/errno.h>
44 #include <sys/device.h>
45 #include <sys/disklabel.h>
46 #include <sys/disk.h>
47 #include <sys/proc.h>
48 #include <sys/conf.h>
49 #include <sys/vnode.h>
50 #include <machine/stdarg.h>
51 
52 #include <dev/scsipi/scsipi_all.h>
53 #include <dev/scsipi/scsipi_disk.h>
54 #include <dev/scsipi/scsi_all.h>
55 #include <dev/scsipi/scsi_disk.h>
56 #include <dev/scsipi/scsipiconf.h>
57 #include <dev/scsipi/scsipi_base.h>
58 #include <dev/scsipi/ses.h>
59 
60 /*
61  * Platform Independent Driver Internal Definitions for SES devices.
62  */
63 typedef enum {
64 	SES_NONE,
65 	SES_SES_SCSI2,
66 	SES_SES,
67 	SES_SES_PASSTHROUGH,
68 	SES_SEN,
69 	SES_SAFT
70 } enctyp;
71 
72 struct ses_softc;
73 typedef struct ses_softc ses_softc_t;
74 typedef struct {
75 	int (*softc_init)(ses_softc_t *, int);
76 	int (*init_enc)(ses_softc_t *);
77 	int (*get_encstat)(ses_softc_t *, int);
78 	int (*set_encstat)(ses_softc_t *, ses_encstat, int);
79 	int (*get_objstat)(ses_softc_t *, ses_objstat *, int);
80 	int (*set_objstat)(ses_softc_t *, ses_objstat *, int);
81 } encvec;
82 
83 #define	ENCI_SVALID	0x80
84 
85 typedef struct {
86 	uint32_t
87 		enctype	: 8,		/* enclosure type */
88 		subenclosure : 8,	/* subenclosure id */
89 		svalid	: 1,		/* enclosure information valid */
90 		priv	: 15;		/* private data, per object */
91 	uint8_t	encstat[4];	/* state && stats */
92 } encobj;
93 
94 #define	SEN_ID		"UNISYS           SUN_SEN"
95 #define	SEN_ID_LEN	24
96 
97 static enctyp ses_type(struct scsipi_inquiry_data *);
98 
99 
100 /* Forward reference to Enclosure Functions */
101 static int ses_softc_init(ses_softc_t *, int);
102 static int ses_init_enc(ses_softc_t *);
103 static int ses_get_encstat(ses_softc_t *, int);
104 static int ses_set_encstat(ses_softc_t *, uint8_t, int);
105 static int ses_get_objstat(ses_softc_t *, ses_objstat *, int);
106 static int ses_set_objstat(ses_softc_t *, ses_objstat *, int);
107 
108 static int safte_softc_init(ses_softc_t *, int);
109 static int safte_init_enc(ses_softc_t *);
110 static int safte_get_encstat(ses_softc_t *, int);
111 static int safte_set_encstat(ses_softc_t *, uint8_t, int);
112 static int safte_get_objstat(ses_softc_t *, ses_objstat *, int);
113 static int safte_set_objstat(ses_softc_t *, ses_objstat *, int);
114 
115 /*
116  * Platform implementation defines/functions for SES internal kernel stuff
117  */
118 
119 #define	STRNCMP			strncmp
120 #define	PRINTF			printf
121 #define	SES_LOG			ses_log
122 #if	defined(DEBUG) || defined(SCSIDEBUG)
123 #define	SES_VLOG		ses_log
124 #else
125 #define	SES_VLOG		if (0) ses_log
126 #endif
127 #define	SES_MALLOC(amt)		malloc(amt, M_DEVBUF, M_NOWAIT)
128 #define	SES_FREE(ptr, amt)	free(ptr, M_DEVBUF)
129 #define	MEMZERO(dest, amt)	memset(dest, 0, amt)
130 #define	MEMCPY(dest, src, amt)	memcpy(dest, src, amt)
131 #define	RECEIVE_DIAGNOSTIC	0x1c
132 #define	SEND_DIAGNOSTIC		0x1d
133 #define	WRITE_BUFFER		0x3b
134 #define	READ_BUFFER		0x3c
135 
136 static dev_type_open(sesopen);
137 static dev_type_close(sesclose);
138 static dev_type_ioctl(sesioctl);
139 
140 const struct cdevsw ses_cdevsw = {
141 	sesopen, sesclose, noread, nowrite, sesioctl,
142 	nostop, notty, nopoll, nommap, nokqfilter,
143 };
144 
145 static int ses_runcmd(struct ses_softc *, char *, int, char *, int *);
146 static void ses_log(struct ses_softc *, const char *, ...)
147      __attribute__((__format__(__printf__, 2, 3)));
148 
149 /*
150  * General NetBSD kernel stuff.
151  */
152 
153 struct ses_softc {
154 	struct device	sc_device;
155 	struct scsipi_periph *sc_periph;
156 	enctyp		ses_type;	/* type of enclosure */
157 	encvec		ses_vec;	/* vector to handlers */
158 	void *		ses_private;	/* per-type private data */
159 	encobj *	ses_objmap;	/* objects */
160 	u_int32_t	ses_nobjects;	/* number of objects */
161 	ses_encstat	ses_encstat;	/* overall status */
162 	u_int8_t	ses_flags;
163 };
164 #define	SES_FLAG_INVALID	0x01
165 #define	SES_FLAG_OPEN		0x02
166 #define	SES_FLAG_INITIALIZED	0x04
167 
168 #define SESUNIT(x)       (minor((x)))
169 
170 static int ses_match(struct device *, struct cfdata *, void *);
171 static void ses_attach(struct device *, struct device *, void *);
172 static enctyp ses_device_type(struct scsipibus_attach_args *);
173 
174 CFATTACH_DECL(ses, sizeof (struct ses_softc),
175     ses_match, ses_attach, NULL, NULL);
176 
177 extern struct cfdriver ses_cd;
178 
179 static const struct scsipi_periphsw ses_switch = {
180 	NULL,
181 	NULL,
182 	NULL,
183 	NULL
184 };
185 
186 static int
187 ses_match(struct device *parent, struct cfdata *match, void *aux)
188 {
189 	struct scsipibus_attach_args *sa = aux;
190 
191 	switch (ses_device_type(sa)) {
192 	case SES_SES:
193 	case SES_SES_SCSI2:
194 	case SES_SEN:
195 	case SES_SAFT:
196 	case SES_SES_PASSTHROUGH:
197 		/*
198 		 * For these devices, it's a perfect match.
199 		 */
200 		return (24);
201 	default:
202 		return (0);
203 	}
204 }
205 
206 
207 /*
208  * Complete the attachment.
209  *
210  * We have to repeat the rerun of INQUIRY data as above because
211  * it's not until the return from the match routine that we have
212  * the softc available to set stuff in.
213  */
214 static void
215 ses_attach(struct device *parent, struct device *self, void *aux)
216 {
217 	char *tname;
218 	struct ses_softc *softc = (void *)self;
219 	struct scsipibus_attach_args *sa = aux;
220 	struct scsipi_periph *periph = sa->sa_periph;
221 
222 	SC_DEBUG(periph, SCSIPI_DB2, ("ssattach: "));
223 	softc->sc_periph = periph;
224 	periph->periph_dev = &softc->sc_device;
225 	periph->periph_switch = &ses_switch;
226 	periph->periph_openings = 1;
227 
228 	softc->ses_type = ses_device_type(sa);
229 	switch (softc->ses_type) {
230 	case SES_SES:
231 	case SES_SES_SCSI2:
232         case SES_SES_PASSTHROUGH:
233 		softc->ses_vec.softc_init = ses_softc_init;
234 		softc->ses_vec.init_enc = ses_init_enc;
235 		softc->ses_vec.get_encstat = ses_get_encstat;
236 		softc->ses_vec.set_encstat = ses_set_encstat;
237 		softc->ses_vec.get_objstat = ses_get_objstat;
238 		softc->ses_vec.set_objstat = ses_set_objstat;
239 		break;
240         case SES_SAFT:
241 		softc->ses_vec.softc_init = safte_softc_init;
242 		softc->ses_vec.init_enc = safte_init_enc;
243 		softc->ses_vec.get_encstat = safte_get_encstat;
244 		softc->ses_vec.set_encstat = safte_set_encstat;
245 		softc->ses_vec.get_objstat = safte_get_objstat;
246 		softc->ses_vec.set_objstat = safte_set_objstat;
247 		break;
248         case SES_SEN:
249 		break;
250 	case SES_NONE:
251 	default:
252 		break;
253 	}
254 
255 	switch (softc->ses_type) {
256 	default:
257 	case SES_NONE:
258 		tname = "No SES device";
259 		break;
260 	case SES_SES_SCSI2:
261 		tname = "SCSI-2 SES Device";
262 		break;
263 	case SES_SES:
264 		tname = "SCSI-3 SES Device";
265 		break;
266         case SES_SES_PASSTHROUGH:
267 		tname = "SES Passthrough Device";
268 		break;
269         case SES_SEN:
270 		tname = "UNISYS SEN Device (NOT HANDLED YET)";
271 		break;
272         case SES_SAFT:
273 		tname = "SAF-TE Compliant Device";
274 		break;
275 	}
276 	printf("\n%s: %s\n", softc->sc_device.dv_xname, tname);
277 }
278 
279 
280 static enctyp
281 ses_device_type(struct scsipibus_attach_args *sa)
282 {
283 	struct scsipi_inquiry_data *inqp = sa->sa_inqptr;
284 
285 	if (inqp == NULL)
286 		return (SES_NONE);
287 
288 	return (ses_type(inqp));
289 }
290 
291 static int
292 sesopen(dev_t dev, int flags, int fmt, struct proc *p)
293 {
294 	struct ses_softc *softc;
295 	int error, unit;
296 
297 	unit = SESUNIT(dev);
298 	if (unit >= ses_cd.cd_ndevs)
299 		return (ENXIO);
300 	softc = ses_cd.cd_devs[unit];
301 	if (softc == NULL)
302 		return (ENXIO);
303 
304 	if (softc->ses_flags & SES_FLAG_INVALID) {
305 		error = ENXIO;
306 		goto out;
307 	}
308 	if (softc->ses_flags & SES_FLAG_OPEN) {
309 		error = EBUSY;
310 		goto out;
311 	}
312 	if (softc->ses_vec.softc_init == NULL) {
313 		error = ENXIO;
314 		goto out;
315 	}
316 	error = scsipi_adapter_addref(
317 	    softc->sc_periph->periph_channel->chan_adapter);
318 	if (error != 0)
319                 goto out;
320 
321 
322 	softc->ses_flags |= SES_FLAG_OPEN;
323 	if ((softc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
324 		error = (*softc->ses_vec.softc_init)(softc, 1);
325 		if (error)
326 			softc->ses_flags &= ~SES_FLAG_OPEN;
327 		else
328 			softc->ses_flags |= SES_FLAG_INITIALIZED;
329 	}
330 
331 out:
332 	return (error);
333 }
334 
335 static int
336 sesclose(dev_t dev, int flags, int fmt, struct proc *p)
337 {
338 	struct ses_softc *softc;
339 	int unit;
340 
341 	unit = SESUNIT(dev);
342 	if (unit >= ses_cd.cd_ndevs)
343 		return (ENXIO);
344 	softc = ses_cd.cd_devs[unit];
345 	if (softc == NULL)
346 		return (ENXIO);
347 
348 	scsipi_wait_drain(softc->sc_periph);
349 	scsipi_adapter_delref(softc->sc_periph->periph_channel->chan_adapter);
350 	softc->ses_flags &= ~SES_FLAG_OPEN;
351 	return (0);
352 }
353 
354 static int
355 sesioctl(dev_t dev, u_long cmd, caddr_t arg_addr, int flag, struct proc *p)
356 {
357 	ses_encstat tmp;
358 	ses_objstat objs;
359 	ses_object obj, *uobj;
360 	struct ses_softc *ssc = ses_cd.cd_devs[SESUNIT(dev)];
361 	void *addr;
362 	int error, i;
363 
364 
365 	if (arg_addr)
366 		addr = *((caddr_t *) arg_addr);
367 	else
368 		addr = NULL;
369 
370 	SC_DEBUG(ssc->sc_periph, SCSIPI_DB2, ("sesioctl 0x%lx ", cmd));
371 
372 	/*
373 	 * Now check to see whether we're initialized or not.
374 	 */
375 	if ((ssc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
376 		return (ENODEV);
377 	}
378 
379 	error = 0;
380 
381 	/*
382 	 * If this command can change the device's state,
383 	 * we must have the device open for writing.
384 	 */
385 	switch (cmd) {
386 	case SESIOC_GETNOBJ:
387 	case SESIOC_GETOBJMAP:
388 	case SESIOC_GETENCSTAT:
389 	case SESIOC_GETOBJSTAT:
390 		break;
391 	default:
392 		if ((flag & FWRITE) == 0) {
393 			return (EBADF);
394 		}
395 	}
396 
397 	switch (cmd) {
398 	case SESIOC_GETNOBJ:
399 		error = copyout(&ssc->ses_nobjects, addr,
400 		    sizeof (ssc->ses_nobjects));
401 		break;
402 
403 	case SESIOC_GETOBJMAP:
404 		for (uobj = addr, i = 0; i != ssc->ses_nobjects; i++, uobj++) {
405 			obj.obj_id = i;
406 			obj.subencid = ssc->ses_objmap[i].subenclosure;
407 			obj.object_type = ssc->ses_objmap[i].enctype;
408 			error = copyout(&obj, uobj, sizeof (ses_object));
409 			if (error) {
410 				break;
411 			}
412 		}
413 		break;
414 
415 	case SESIOC_GETENCSTAT:
416 		error = (*ssc->ses_vec.get_encstat)(ssc, 1);
417 		if (error)
418 			break;
419 		tmp = ssc->ses_encstat & ~ENCI_SVALID;
420 		error = copyout(&tmp, addr, sizeof (ses_encstat));
421 		ssc->ses_encstat = tmp;
422 		break;
423 
424 	case SESIOC_SETENCSTAT:
425 		error = copyin(addr, &tmp, sizeof (ses_encstat));
426 		if (error)
427 			break;
428 		error = (*ssc->ses_vec.set_encstat)(ssc, tmp, 1);
429 		break;
430 
431 	case SESIOC_GETOBJSTAT:
432 		error = copyin(addr, &objs, sizeof (ses_objstat));
433 		if (error)
434 			break;
435 		if (objs.obj_id >= ssc->ses_nobjects) {
436 			error = EINVAL;
437 			break;
438 		}
439 		error = (*ssc->ses_vec.get_objstat)(ssc, &objs, 1);
440 		if (error)
441 			break;
442 		error = copyout(&objs, addr, sizeof (ses_objstat));
443 		/*
444 		 * Always (for now) invalidate entry.
445 		 */
446 		ssc->ses_objmap[objs.obj_id].svalid = 0;
447 		break;
448 
449 	case SESIOC_SETOBJSTAT:
450 		error = copyin(addr, &objs, sizeof (ses_objstat));
451 		if (error)
452 			break;
453 
454 		if (objs.obj_id >= ssc->ses_nobjects) {
455 			error = EINVAL;
456 			break;
457 		}
458 		error = (*ssc->ses_vec.set_objstat)(ssc, &objs, 1);
459 
460 		/*
461 		 * Always (for now) invalidate entry.
462 		 */
463 		ssc->ses_objmap[objs.obj_id].svalid = 0;
464 		break;
465 
466 	case SESIOC_INIT:
467 
468 		error = (*ssc->ses_vec.init_enc)(ssc);
469 		break;
470 
471 	default:
472 		error = scsipi_do_ioctl(ssc->sc_periph,
473 			    dev, cmd, arg_addr, flag, p);
474 		break;
475 	}
476 	return (error);
477 }
478 
479 static int
480 ses_runcmd(struct ses_softc *ssc, char *cdb, int cdbl, char *dptr, int *dlenp)
481 {
482 	struct scsipi_generic sgen;
483 	int dl, flg, error;
484 
485 	if (dptr) {
486 		if ((dl = *dlenp) < 0) {
487 			dl = -dl;
488 			flg = XS_CTL_DATA_OUT;
489 		} else {
490 			flg = XS_CTL_DATA_IN;
491 		}
492 	} else {
493 		dl = 0;
494 		flg = 0;
495 	}
496 
497 	if (cdbl > sizeof (struct scsipi_generic)) {
498 		cdbl = sizeof (struct scsipi_generic);
499 	}
500 	memcpy(&sgen, cdb, cdbl);
501 #ifndef	SCSIDEBUG
502 	flg |= XS_CTL_SILENT;
503 #endif
504 	error = scsipi_command(ssc->sc_periph, &sgen, cdbl,
505 	    (u_char *) dptr, dl, SCSIPIRETRIES, 30000, NULL, flg);
506 
507 	if (error == 0 && dptr)
508 		*dlenp = 0;
509 
510 	return (error);
511 }
512 
513 static void
514 ses_log(struct ses_softc *ssc, const char *fmt, ...)
515 {
516 	va_list ap;
517 
518 	printf("%s: ", ssc->sc_device.dv_xname);
519 	va_start(ap, fmt);
520 	vprintf(fmt, ap);
521 	va_end(ap);
522 }
523 
524 /*
525  * The code after this point runs on many platforms,
526  * so forgive the slightly awkward and nonconforming
527  * appearance.
528  */
529 
530 /*
531  * Is this a device that supports enclosure services?
532  *
533  * It's a a pretty simple ruleset- if it is device type 0x0D (13), it's
534  * an SES device. If it happens to be an old UNISYS SEN device, we can
535  * handle that too.
536  */
537 
538 #define	SAFTE_START	44
539 #define	SAFTE_END	50
540 #define	SAFTE_LEN	SAFTE_END-SAFTE_START
541 
542 static enctyp
543 ses_type(struct scsipi_inquiry_data *inqp)
544 {
545 	size_t	given_len = inqp->additional_length + 4;
546 
547 	if (given_len < 8+SEN_ID_LEN)
548 		return (SES_NONE);
549 
550 	if ((inqp->device & SID_TYPE) == T_ENCLOSURE) {
551 		if (STRNCMP(inqp->vendor, SEN_ID, SEN_ID_LEN) == 0) {
552 			return (SES_SEN);
553 		} else if ((inqp->version & SID_ANSII) > 2) {
554 			return (SES_SES);
555 		} else {
556 			return (SES_SES_SCSI2);
557 		}
558 		return (SES_NONE);
559 	}
560 
561 #ifdef	SES_ENABLE_PASSTHROUGH
562 	if ((inqp->flags2 & SID_EncServ) && (inqp->version & SID_ANSII) >= 2) {
563 		/*
564 		 * PassThrough Device.
565 		 */
566 		return (SES_SES_PASSTHROUGH);
567 	}
568 #endif
569 
570 	/*
571 	 * The comparison is short for a reason-
572 	 * some vendors were chopping it short.
573 	 */
574 
575 	if (given_len < SAFTE_END - 2) {
576 		return (SES_NONE);
577 	}
578 
579 	if (STRNCMP((char *)&inqp->vendor_specific[8], "SAF-TE",
580 			SAFTE_LEN - 2) == 0) {
581 		return (SES_SAFT);
582 	}
583 
584 	return (SES_NONE);
585 }
586 
587 /*
588  * SES Native Type Device Support
589  */
590 
591 /*
592  * SES Diagnostic Page Codes
593  */
594 
595 typedef enum {
596 	SesConfigPage = 0x1,
597 	SesControlPage,
598 #define	SesStatusPage SesControlPage
599 	SesHelpTxt,
600 	SesStringOut,
601 #define	SesStringIn	SesStringOut
602 	SesThresholdOut,
603 #define	SesThresholdIn SesThresholdOut
604 	SesArrayControl,
605 #define	SesArrayStatus	SesArrayControl
606 	SesElementDescriptor,
607 	SesShortStatus
608 } SesDiagPageCodes;
609 
610 /*
611  * minimal amounts
612  */
613 
614 /*
615  * Minimum amount of data, starting from byte 0, to have
616  * the config header.
617  */
618 #define	SES_CFGHDR_MINLEN	12
619 
620 /*
621  * Minimum amount of data, starting from byte 0, to have
622  * the config header and one enclosure header.
623  */
624 #define	SES_ENCHDR_MINLEN	48
625 
626 /*
627  * Take this value, subtract it from VEnclen and you know
628  * the length of the vendor unique bytes.
629  */
630 #define	SES_ENCHDR_VMIN		36
631 
632 /*
633  * SES Data Structures
634  */
635 
636 typedef struct {
637 	uint32_t GenCode;	/* Generation Code */
638 	uint8_t	Nsubenc;	/* Number of Subenclosures */
639 } SesCfgHdr;
640 
641 typedef struct {
642 	uint8_t	Subencid;	/* SubEnclosure Identifier */
643 	uint8_t	Ntypes;		/* # of supported types */
644 	uint8_t	VEnclen;	/* Enclosure Descriptor Length */
645 } SesEncHdr;
646 
647 typedef struct {
648 	uint8_t	encWWN[8];	/* XXX- Not Right Yet */
649 	uint8_t	encVid[8];
650 	uint8_t	encPid[16];
651 	uint8_t	encRev[4];
652 	uint8_t	encVen[1];
653 } SesEncDesc;
654 
655 typedef struct {
656 	uint8_t	enc_type;		/* type of element */
657 	uint8_t	enc_maxelt;		/* maximum supported */
658 	uint8_t	enc_subenc;		/* in SubEnc # N */
659 	uint8_t	enc_tlen;		/* Type Descriptor Text Length */
660 } SesThdr;
661 
662 typedef struct {
663 	uint8_t	comstatus;
664 	uint8_t	comstat[3];
665 } SesComStat;
666 
667 struct typidx {
668 	int ses_tidx;
669 	int ses_oidx;
670 };
671 
672 struct sscfg {
673 	uint8_t ses_ntypes;	/* total number of types supported */
674 
675 	/*
676 	 * We need to keep a type index as well as an
677 	 * object index for each object in an enclosure.
678 	 */
679 	struct typidx *ses_typidx;
680 
681 	/*
682 	 * We also need to keep track of the number of elements
683 	 * per type of element. This is needed later so that we
684 	 * can find precisely in the returned status data the
685 	 * status for the Nth element of the Kth type.
686 	 */
687 	uint8_t *	ses_eltmap;
688 };
689 
690 
691 /*
692  * (de)canonicalization defines
693  */
694 #define	sbyte(x, byte)		((((uint32_t)(x)) >> (byte * 8)) & 0xff)
695 #define	sbit(x, bit)		(((uint32_t)(x)) << bit)
696 #define	sset8(outp, idx, sval)	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
697 
698 #define	sset16(outp, idx, sval)	\
699 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
700 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
701 
702 
703 #define	sset24(outp, idx, sval)	\
704 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
705 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
706 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
707 
708 
709 #define	sset32(outp, idx, sval)	\
710 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 3), \
711 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
712 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
713 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
714 
715 #define	gbyte(x, byte)	((((uint32_t)(x)) & 0xff) << (byte * 8))
716 #define	gbit(lv, in, idx, shft, mask)	lv = ((in[idx] >> shft) & mask)
717 #define	sget8(inp, idx, lval)	lval = (((uint8_t *)(inp))[idx++])
718 #define	gget8(inp, idx, lval)	lval = (((uint8_t *)(inp))[idx])
719 
720 #define	sget16(inp, idx, lval)	\
721 	lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
722 		(((uint8_t *)(inp))[idx+1]), idx += 2
723 
724 #define	gget16(inp, idx, lval)	\
725 	lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
726 		(((uint8_t *)(inp))[idx+1])
727 
728 #define	sget24(inp, idx, lval)	\
729 	lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
730 		gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
731 			(((uint8_t *)(inp))[idx+2]), idx += 3
732 
733 #define	gget24(inp, idx, lval)	\
734 	lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
735 		gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
736 			(((uint8_t *)(inp))[idx+2])
737 
738 #define	sget32(inp, idx, lval)	\
739 	lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
740 		gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
741 		gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
742 			(((uint8_t *)(inp))[idx+3]), idx += 4
743 
744 #define	gget32(inp, idx, lval)	\
745 	lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
746 		gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
747 		gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
748 			(((uint8_t *)(inp))[idx+3])
749 
750 #define	SCSZ	0x2000
751 #define	CFLEN	(256 + SES_ENCHDR_MINLEN)
752 
753 /*
754  * Routines specific && private to SES only
755  */
756 
757 static int ses_getconfig(ses_softc_t *);
758 static int ses_getputstat(ses_softc_t *, int, SesComStat *, int, int);
759 static int ses_cfghdr(uint8_t *, int, SesCfgHdr *);
760 static int ses_enchdr(uint8_t *, int, uint8_t, SesEncHdr *);
761 static int ses_encdesc(uint8_t *, int, uint8_t, SesEncDesc *);
762 static int ses_getthdr(uint8_t *, int,  int, SesThdr *);
763 static int ses_decode(char *, int, uint8_t *, int, int, SesComStat *);
764 static int ses_encode(char *, int, uint8_t *, int, int, SesComStat *);
765 
766 static int
767 ses_softc_init(ses_softc_t *ssc, int doinit)
768 {
769 	if (doinit == 0) {
770 		struct sscfg *cc;
771 		if (ssc->ses_nobjects) {
772 			SES_FREE(ssc->ses_objmap,
773 			    ssc->ses_nobjects * sizeof (encobj));
774 			ssc->ses_objmap = NULL;
775 		}
776 		if ((cc = ssc->ses_private) != NULL) {
777 			if (cc->ses_eltmap && cc->ses_ntypes) {
778 				SES_FREE(cc->ses_eltmap, cc->ses_ntypes);
779 				cc->ses_eltmap = NULL;
780 				cc->ses_ntypes = 0;
781 			}
782 			if (cc->ses_typidx && ssc->ses_nobjects) {
783 				SES_FREE(cc->ses_typidx,
784 				    ssc->ses_nobjects * sizeof (struct typidx));
785 				cc->ses_typidx = NULL;
786 			}
787 			SES_FREE(cc, sizeof (struct sscfg));
788 			ssc->ses_private = NULL;
789 		}
790 		ssc->ses_nobjects = 0;
791 		return (0);
792 	}
793 	if (ssc->ses_private == NULL) {
794 		ssc->ses_private = SES_MALLOC(sizeof (struct sscfg));
795 	}
796 	if (ssc->ses_private == NULL) {
797 		return (ENOMEM);
798 	}
799 	ssc->ses_nobjects = 0;
800 	ssc->ses_encstat = 0;
801 	return (ses_getconfig(ssc));
802 }
803 
804 static int
805 ses_init_enc(ses_softc_t *ssc)
806 {
807 	return (0);
808 }
809 
810 static int
811 ses_get_encstat(ses_softc_t *ssc, int slpflag)
812 {
813 	SesComStat ComStat;
814 	int status;
815 
816 	if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 1)) != 0) {
817 		return (status);
818 	}
819 	ssc->ses_encstat = ComStat.comstatus | ENCI_SVALID;
820 	return (0);
821 }
822 
823 static int
824 ses_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflag)
825 {
826 	SesComStat ComStat;
827 	int status;
828 
829 	ComStat.comstatus = encstat & 0xf;
830 	if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 0)) != 0) {
831 		return (status);
832 	}
833 	ssc->ses_encstat = encstat & 0xf;	/* note no SVALID set */
834 	return (0);
835 }
836 
837 static int
838 ses_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
839 {
840 	int i = (int)obp->obj_id;
841 
842 	if (ssc->ses_objmap[i].svalid == 0) {
843 		SesComStat ComStat;
844 		int err = ses_getputstat(ssc, i, &ComStat, slpflag, 1);
845 		if (err)
846 			return (err);
847 		ssc->ses_objmap[i].encstat[0] = ComStat.comstatus;
848 		ssc->ses_objmap[i].encstat[1] = ComStat.comstat[0];
849 		ssc->ses_objmap[i].encstat[2] = ComStat.comstat[1];
850 		ssc->ses_objmap[i].encstat[3] = ComStat.comstat[2];
851 		ssc->ses_objmap[i].svalid = 1;
852 	}
853 	obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
854 	obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
855 	obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
856 	obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
857 	return (0);
858 }
859 
860 static int
861 ses_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
862 {
863 	SesComStat ComStat;
864 	int err;
865 	/*
866 	 * If this is clear, we don't do diddly.
867 	 */
868 	if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
869 		return (0);
870 	}
871 	ComStat.comstatus = obp->cstat[0];
872 	ComStat.comstat[0] = obp->cstat[1];
873 	ComStat.comstat[1] = obp->cstat[2];
874 	ComStat.comstat[2] = obp->cstat[3];
875 	err = ses_getputstat(ssc, (int)obp->obj_id, &ComStat, slpflag, 0);
876 	ssc->ses_objmap[(int)obp->obj_id].svalid = 0;
877 	return (err);
878 }
879 
880 static int
881 ses_getconfig(ses_softc_t *ssc)
882 {
883 	struct sscfg *cc;
884 	SesCfgHdr cf;
885 	SesEncHdr hd;
886 	SesEncDesc *cdp;
887 	SesThdr thdr;
888 	int err, amt, i, nobj, ntype, maxima;
889 	char storage[CFLEN], *sdata;
890 	static char cdb[6] = {
891 	    RECEIVE_DIAGNOSTIC, 0x1, SesConfigPage, SCSZ >> 8, SCSZ & 0xff, 0
892 	};
893 
894 	cc = ssc->ses_private;
895 	if (cc == NULL) {
896 		return (ENXIO);
897 	}
898 
899 	sdata = SES_MALLOC(SCSZ);
900 	if (sdata == NULL)
901 		return (ENOMEM);
902 
903 	amt = SCSZ;
904 	err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
905 	if (err) {
906 		SES_FREE(sdata, SCSZ);
907 		return (err);
908 	}
909 	amt = SCSZ - amt;
910 
911 	if (ses_cfghdr((uint8_t *) sdata, amt, &cf)) {
912 		SES_LOG(ssc, "Unable to parse SES Config Header\n");
913 		SES_FREE(sdata, SCSZ);
914 		return (EIO);
915 	}
916 	if (amt < SES_ENCHDR_MINLEN) {
917 		SES_LOG(ssc, "runt enclosure length (%d)\n", amt);
918 		SES_FREE(sdata, SCSZ);
919 		return (EIO);
920 	}
921 
922 	SES_VLOG(ssc, "GenCode %x %d Subenclosures\n", cf.GenCode, cf.Nsubenc);
923 
924 	/*
925 	 * Now waltz through all the subenclosures toting up the
926 	 * number of types available in each. For this, we only
927 	 * really need the enclosure header. However, we get the
928 	 * enclosure descriptor for debug purposes, as well
929 	 * as self-consistency checking purposes.
930 	 */
931 
932 	maxima = cf.Nsubenc + 1;
933 	cdp = (SesEncDesc *) storage;
934 	for (ntype = i = 0; i < maxima; i++) {
935 		MEMZERO((caddr_t)cdp, sizeof (*cdp));
936 		if (ses_enchdr((uint8_t *) sdata, amt, i, &hd)) {
937 			SES_LOG(ssc, "Cannot Extract Enclosure Header %d\n", i);
938 			SES_FREE(sdata, SCSZ);
939 			return (EIO);
940 		}
941 		SES_VLOG(ssc, " SubEnclosure ID %d, %d Types With this ID, En"
942 		    "closure Length %d\n", hd.Subencid, hd.Ntypes, hd.VEnclen);
943 
944 		if (ses_encdesc((uint8_t *)sdata, amt, i, cdp)) {
945 			SES_LOG(ssc, "Can't get Enclosure Descriptor %d\n", i);
946 			SES_FREE(sdata, SCSZ);
947 			return (EIO);
948 		}
949 		SES_VLOG(ssc, " WWN: %02x%02x%02x%02x%02x%02x%02x%02x\n",
950 		    cdp->encWWN[0], cdp->encWWN[1], cdp->encWWN[2],
951 		    cdp->encWWN[3], cdp->encWWN[4], cdp->encWWN[5],
952 		    cdp->encWWN[6], cdp->encWWN[7]);
953 		ntype += hd.Ntypes;
954 	}
955 
956 	/*
957 	 * Now waltz through all the types that are available, getting
958 	 * the type header so we can start adding up the number of
959 	 * objects available.
960 	 */
961 	for (nobj = i = 0; i < ntype; i++) {
962 		if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
963 			SES_LOG(ssc, "Can't get Enclosure Type Header %d\n", i);
964 			SES_FREE(sdata, SCSZ);
965 			return (EIO);
966 		}
967 		SES_LOG(ssc, " Type Desc[%d]: Type 0x%x, MaxElt %d, In Subenc "
968 		    "%d, Text Length %d\n", i, thdr.enc_type, thdr.enc_maxelt,
969 		    thdr.enc_subenc, thdr.enc_tlen);
970 		nobj += thdr.enc_maxelt;
971 	}
972 
973 
974 	/*
975 	 * Now allocate the object array and type map.
976 	 */
977 
978 	ssc->ses_objmap = SES_MALLOC(nobj * sizeof (encobj));
979 	cc->ses_typidx = SES_MALLOC(nobj * sizeof (struct typidx));
980 	cc->ses_eltmap = SES_MALLOC(ntype);
981 
982 	if (ssc->ses_objmap == NULL || cc->ses_typidx == NULL ||
983 	    cc->ses_eltmap == NULL) {
984 		if (ssc->ses_objmap) {
985 			SES_FREE(ssc->ses_objmap, (nobj * sizeof (encobj)));
986 			ssc->ses_objmap = NULL;
987 		}
988 		if (cc->ses_typidx) {
989 			SES_FREE(cc->ses_typidx,
990 			    (nobj * sizeof (struct typidx)));
991 			cc->ses_typidx = NULL;
992 		}
993 		if (cc->ses_eltmap) {
994 			SES_FREE(cc->ses_eltmap, ntype);
995 			cc->ses_eltmap = NULL;
996 		}
997 		SES_FREE(sdata, SCSZ);
998 		return (ENOMEM);
999 	}
1000 	MEMZERO(ssc->ses_objmap, nobj * sizeof (encobj));
1001 	MEMZERO(cc->ses_typidx, nobj * sizeof (struct typidx));
1002 	MEMZERO(cc->ses_eltmap, ntype);
1003 	cc->ses_ntypes = (uint8_t) ntype;
1004 	ssc->ses_nobjects = nobj;
1005 
1006 	/*
1007 	 * Now waltz through the # of types again to fill in the types
1008 	 * (and subenclosure ids) of the allocated objects.
1009 	 */
1010 	nobj = 0;
1011 	for (i = 0; i < ntype; i++) {
1012 		int j;
1013 		if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
1014 			continue;
1015 		}
1016 		cc->ses_eltmap[i] = thdr.enc_maxelt;
1017 		for (j = 0; j < thdr.enc_maxelt; j++) {
1018 			cc->ses_typidx[nobj].ses_tidx = i;
1019 			cc->ses_typidx[nobj].ses_oidx = j;
1020 			ssc->ses_objmap[nobj].subenclosure = thdr.enc_subenc;
1021 			ssc->ses_objmap[nobj++].enctype = thdr.enc_type;
1022 		}
1023 	}
1024 	SES_FREE(sdata, SCSZ);
1025 	return (0);
1026 }
1027 
1028 static int
1029 ses_getputstat(ses_softc_t *ssc, int objid, SesComStat *sp, int slp, int in)
1030 {
1031 	struct sscfg *cc;
1032 	int err, amt, bufsiz, tidx, oidx;
1033 	char cdb[6], *sdata;
1034 
1035 	cc = ssc->ses_private;
1036 	if (cc == NULL) {
1037 		return (ENXIO);
1038 	}
1039 
1040 	/*
1041 	 * If we're just getting overall enclosure status,
1042 	 * we only need 2 bytes of data storage.
1043 	 *
1044 	 * If we're getting anything else, we know how much
1045 	 * storage we need by noting that starting at offset
1046 	 * 8 in returned data, all object status bytes are 4
1047 	 * bytes long, and are stored in chunks of types(M)
1048 	 * and nth+1 instances of type M.
1049 	 */
1050 	if (objid == -1) {
1051 		bufsiz = 2;
1052 	} else {
1053 		bufsiz = (ssc->ses_nobjects * 4) + (cc->ses_ntypes * 4) + 8;
1054 	}
1055 	sdata = SES_MALLOC(bufsiz);
1056 	if (sdata == NULL)
1057 		return (ENOMEM);
1058 
1059 	cdb[0] = RECEIVE_DIAGNOSTIC;
1060 	cdb[1] = 1;
1061 	cdb[2] = SesStatusPage;
1062 	cdb[3] = bufsiz >> 8;
1063 	cdb[4] = bufsiz & 0xff;
1064 	cdb[5] = 0;
1065 	amt = bufsiz;
1066 	err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1067 	if (err) {
1068 		SES_FREE(sdata, bufsiz);
1069 		return (err);
1070 	}
1071 	amt = bufsiz - amt;
1072 
1073 	if (objid == -1) {
1074 		tidx = -1;
1075 		oidx = -1;
1076 	} else {
1077 		tidx = cc->ses_typidx[objid].ses_tidx;
1078 		oidx = cc->ses_typidx[objid].ses_oidx;
1079 	}
1080 	if (in) {
1081 		if (ses_decode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1082 			err = ENODEV;
1083 		}
1084 	} else {
1085 		if (ses_encode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1086 			err = ENODEV;
1087 		} else {
1088 			cdb[0] = SEND_DIAGNOSTIC;
1089 			cdb[1] = 0x10;
1090 			cdb[2] = 0;
1091 			cdb[3] = bufsiz >> 8;
1092 			cdb[4] = bufsiz & 0xff;
1093 			cdb[5] = 0;
1094 			amt = -bufsiz;
1095 			err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1096 		}
1097 	}
1098 	SES_FREE(sdata, bufsiz);
1099 	return (0);
1100 }
1101 
1102 
1103 /*
1104  * Routines to parse returned SES data structures.
1105  * Architecture and compiler independent.
1106  */
1107 
1108 static int
1109 ses_cfghdr(uint8_t *buffer, int buflen, SesCfgHdr *cfp)
1110 {
1111 	if (buflen < SES_CFGHDR_MINLEN) {
1112 		return (-1);
1113 	}
1114 	gget8(buffer, 1, cfp->Nsubenc);
1115 	gget32(buffer, 4, cfp->GenCode);
1116 	return (0);
1117 }
1118 
1119 static int
1120 ses_enchdr(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncHdr *chp)
1121 {
1122 	int s, off = 8;
1123 	for (s = 0; s < SubEncId; s++) {
1124 		if (off + 3 > amt)
1125 			return (-1);
1126 		off += buffer[off+3] + 4;
1127 	}
1128 	if (off + 3 > amt) {
1129 		return (-1);
1130 	}
1131 	gget8(buffer, off+1, chp->Subencid);
1132 	gget8(buffer, off+2, chp->Ntypes);
1133 	gget8(buffer, off+3, chp->VEnclen);
1134 	return (0);
1135 }
1136 
1137 static int
1138 ses_encdesc(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncDesc *cdp)
1139 {
1140 	int s, e, enclen, off = 8;
1141 	for (s = 0; s < SubEncId; s++) {
1142 		if (off + 3 > amt)
1143 			return (-1);
1144 		off += buffer[off+3] + 4;
1145 	}
1146 	if (off + 3 > amt) {
1147 		return (-1);
1148 	}
1149 	gget8(buffer, off+3, enclen);
1150 	off += 4;
1151 	if (off  >= amt)
1152 		return (-1);
1153 
1154 	e = off + enclen;
1155 	if (e > amt) {
1156 		e = amt;
1157 	}
1158 	MEMCPY(cdp, &buffer[off], e - off);
1159 	return (0);
1160 }
1161 
1162 static int
1163 ses_getthdr(uint8_t *buffer, int amt, int nth, SesThdr *thp)
1164 {
1165 	int s, off = 8;
1166 
1167 	if (amt < SES_CFGHDR_MINLEN) {
1168 		return (-1);
1169 	}
1170 	for (s = 0; s < buffer[1]; s++) {
1171 		if (off + 3 > amt)
1172 			return (-1);
1173 		off += buffer[off+3] + 4;
1174 	}
1175 	if (off + 3 > amt) {
1176 		return (-1);
1177 	}
1178 	off += buffer[off+3] + 4 + (nth * 4);
1179 	if (amt < (off + 4))
1180 		return (-1);
1181 
1182 	gget8(buffer, off++, thp->enc_type);
1183 	gget8(buffer, off++, thp->enc_maxelt);
1184 	gget8(buffer, off++, thp->enc_subenc);
1185 	gget8(buffer, off, thp->enc_tlen);
1186 	return (0);
1187 }
1188 
1189 /*
1190  * This function needs a little explanation.
1191  *
1192  * The arguments are:
1193  *
1194  *
1195  *	char *b, int amt
1196  *
1197  *		These describes the raw input SES status data and length.
1198  *
1199  *	uint8_t *ep
1200  *
1201  *		This is a map of the number of types for each element type
1202  *		in the enclosure.
1203  *
1204  *	int elt
1205  *
1206  *		This is the element type being sought. If elt is -1,
1207  *		then overall enclosure status is being sought.
1208  *
1209  *	int elm
1210  *
1211  *		This is the ordinal Mth element of type elt being sought.
1212  *
1213  *	SesComStat *sp
1214  *
1215  *		This is the output area to store the status for
1216  *		the Mth element of type Elt.
1217  */
1218 
1219 static int
1220 ses_decode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1221 {
1222 	int idx, i;
1223 
1224 	/*
1225 	 * If it's overall enclosure status being sought, get that.
1226 	 * We need at least 2 bytes of status data to get that.
1227 	 */
1228 	if (elt == -1) {
1229 		if (amt < 2)
1230 			return (-1);
1231 		gget8(b, 1, sp->comstatus);
1232 		sp->comstat[0] = 0;
1233 		sp->comstat[1] = 0;
1234 		sp->comstat[2] = 0;
1235 		return (0);
1236 	}
1237 
1238 	/*
1239 	 * Check to make sure that the Mth element is legal for type Elt.
1240 	 */
1241 
1242 	if (elm >= ep[elt])
1243 		return (-1);
1244 
1245 	/*
1246 	 * Starting at offset 8, start skipping over the storage
1247 	 * for the element types we're not interested in.
1248 	 */
1249 	for (idx = 8, i = 0; i < elt; i++) {
1250 		idx += ((ep[i] + 1) * 4);
1251 	}
1252 
1253 	/*
1254 	 * Skip over Overall status for this element type.
1255 	 */
1256 	idx += 4;
1257 
1258 	/*
1259 	 * And skip to the index for the Mth element that we're going for.
1260 	 */
1261 	idx += (4 * elm);
1262 
1263 	/*
1264 	 * Make sure we haven't overflowed the buffer.
1265 	 */
1266 	if (idx+4 > amt)
1267 		return (-1);
1268 
1269 	/*
1270 	 * Retrieve the status.
1271 	 */
1272 	gget8(b, idx++, sp->comstatus);
1273 	gget8(b, idx++, sp->comstat[0]);
1274 	gget8(b, idx++, sp->comstat[1]);
1275 	gget8(b, idx++, sp->comstat[2]);
1276 #if	0
1277 	PRINTF("Get Elt 0x%x Elm 0x%x (idx %d)\n", elt, elm, idx-4);
1278 #endif
1279 	return (0);
1280 }
1281 
1282 /*
1283  * This is the mirror function to ses_decode, but we set the 'select'
1284  * bit for the object which we're interested in. All other objects,
1285  * after a status fetch, should have that bit off. Hmm. It'd be easy
1286  * enough to ensure this, so we will.
1287  */
1288 
1289 static int
1290 ses_encode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1291 {
1292 	int idx, i;
1293 
1294 	/*
1295 	 * If it's overall enclosure status being sought, get that.
1296 	 * We need at least 2 bytes of status data to get that.
1297 	 */
1298 	if (elt == -1) {
1299 		if (amt < 2)
1300 			return (-1);
1301 		i = 0;
1302 		sset8(b, i, 0);
1303 		sset8(b, i, sp->comstatus & 0xf);
1304 #if	0
1305 		PRINTF("set EncStat %x\n", sp->comstatus);
1306 #endif
1307 		return (0);
1308 	}
1309 
1310 	/*
1311 	 * Check to make sure that the Mth element is legal for type Elt.
1312 	 */
1313 
1314 	if (elm >= ep[elt])
1315 		return (-1);
1316 
1317 	/*
1318 	 * Starting at offset 8, start skipping over the storage
1319 	 * for the element types we're not interested in.
1320 	 */
1321 	for (idx = 8, i = 0; i < elt; i++) {
1322 		idx += ((ep[i] + 1) * 4);
1323 	}
1324 
1325 	/*
1326 	 * Skip over Overall status for this element type.
1327 	 */
1328 	idx += 4;
1329 
1330 	/*
1331 	 * And skip to the index for the Mth element that we're going for.
1332 	 */
1333 	idx += (4 * elm);
1334 
1335 	/*
1336 	 * Make sure we haven't overflowed the buffer.
1337 	 */
1338 	if (idx+4 > amt)
1339 		return (-1);
1340 
1341 	/*
1342 	 * Set the status.
1343 	 */
1344 	sset8(b, idx, sp->comstatus);
1345 	sset8(b, idx, sp->comstat[0]);
1346 	sset8(b, idx, sp->comstat[1]);
1347 	sset8(b, idx, sp->comstat[2]);
1348 	idx -= 4;
1349 
1350 #if	0
1351 	PRINTF("Set Elt 0x%x Elm 0x%x (idx %d) with %x %x %x %x\n",
1352 	    elt, elm, idx, sp->comstatus, sp->comstat[0],
1353 	    sp->comstat[1], sp->comstat[2]);
1354 #endif
1355 
1356 	/*
1357 	 * Now make sure all other 'Select' bits are off.
1358 	 */
1359 	for (i = 8; i < amt; i += 4) {
1360 		if (i != idx)
1361 			b[i] &= ~0x80;
1362 	}
1363 	/*
1364 	 * And make sure the INVOP bit is clear.
1365 	 */
1366 	b[2] &= ~0x10;
1367 
1368 	return (0);
1369 }
1370 
1371 /*
1372  * SAF-TE Type Device Emulation
1373  */
1374 
1375 static int safte_getconfig(ses_softc_t *);
1376 static int safte_rdstat(ses_softc_t *, int);
1377 static int set_objstat_sel(ses_softc_t *, ses_objstat *, int);
1378 static int wrbuf16(ses_softc_t *, uint8_t, uint8_t, uint8_t, uint8_t, int);
1379 static void wrslot_stat(ses_softc_t *, int);
1380 static int perf_slotop(ses_softc_t *, uint8_t, uint8_t, int);
1381 
1382 #define	ALL_ENC_STAT (SES_ENCSTAT_CRITICAL | SES_ENCSTAT_UNRECOV | \
1383 	SES_ENCSTAT_NONCRITICAL | SES_ENCSTAT_INFO)
1384 /*
1385  * SAF-TE specific defines- Mandatory ones only...
1386  */
1387 
1388 /*
1389  * READ BUFFER ('get' commands) IDs- placed in offset 2 of cdb
1390  */
1391 #define	SAFTE_RD_RDCFG	0x00	/* read enclosure configuration */
1392 #define	SAFTE_RD_RDESTS	0x01	/* read enclosure status */
1393 #define	SAFTE_RD_RDDSTS	0x04	/* read drive slot status */
1394 
1395 /*
1396  * WRITE BUFFER ('set' commands) IDs- placed in offset 0 of databuf
1397  */
1398 #define	SAFTE_WT_DSTAT	0x10	/* write device slot status */
1399 #define	SAFTE_WT_SLTOP	0x12	/* perform slot operation */
1400 #define	SAFTE_WT_FANSPD	0x13	/* set fan speed */
1401 #define	SAFTE_WT_ACTPWS	0x14	/* turn on/off power supply */
1402 #define	SAFTE_WT_GLOBAL	0x15	/* send global command */
1403 
1404 
1405 #define	SAFT_SCRATCH	64
1406 #define	NPSEUDO_THERM	16
1407 #define	NPSEUDO_ALARM	1
1408 struct scfg {
1409 	/*
1410 	 * Cached Configuration
1411 	 */
1412 	uint8_t	Nfans;		/* Number of Fans */
1413 	uint8_t	Npwr;		/* Number of Power Supplies */
1414 	uint8_t	Nslots;		/* Number of Device Slots */
1415 	uint8_t	DoorLock;	/* Door Lock Installed */
1416 	uint8_t	Ntherm;		/* Number of Temperature Sensors */
1417 	uint8_t	Nspkrs;		/* Number of Speakers */
1418 	uint8_t Nalarm;		/* Number of Alarms (at least one) */
1419 	/*
1420 	 * Cached Flag Bytes for Global Status
1421 	 */
1422 	uint8_t	flag1;
1423 	uint8_t	flag2;
1424 	/*
1425 	 * What object index ID is where various slots start.
1426 	 */
1427 	uint8_t	pwroff;
1428 	uint8_t	slotoff;
1429 #define	SAFT_ALARM_OFFSET(cc)	(cc)->slotoff - 1
1430 };
1431 
1432 #define	SAFT_FLG1_ALARM		0x1
1433 #define	SAFT_FLG1_GLOBFAIL	0x2
1434 #define	SAFT_FLG1_GLOBWARN	0x4
1435 #define	SAFT_FLG1_ENCPWROFF	0x8
1436 #define	SAFT_FLG1_ENCFANFAIL	0x10
1437 #define	SAFT_FLG1_ENCPWRFAIL	0x20
1438 #define	SAFT_FLG1_ENCDRVFAIL	0x40
1439 #define	SAFT_FLG1_ENCDRVWARN	0x80
1440 
1441 #define	SAFT_FLG2_LOCKDOOR	0x4
1442 #define	SAFT_PRIVATE		sizeof (struct scfg)
1443 
1444 static const char safte_2little[] = "Too Little Data Returned (%d) at line %d\n";
1445 #define	SAFT_BAIL(r, x, k, l)	\
1446 	if (r >= x) { \
1447 		SES_LOG(ssc, safte_2little, x, __LINE__);\
1448 		SES_FREE(k, l); \
1449 		return (EIO); \
1450 	}
1451 
1452 
1453 static int
1454 safte_softc_init(ses_softc_t *ssc, int doinit)
1455 {
1456 	int err, i, r;
1457 	struct scfg *cc;
1458 
1459 	if (doinit == 0) {
1460 		if (ssc->ses_nobjects) {
1461 			if (ssc->ses_objmap) {
1462 				SES_FREE(ssc->ses_objmap,
1463 				    ssc->ses_nobjects * sizeof (encobj));
1464 				ssc->ses_objmap = NULL;
1465 			}
1466 			ssc->ses_nobjects = 0;
1467 		}
1468 		if (ssc->ses_private) {
1469 			SES_FREE(ssc->ses_private, SAFT_PRIVATE);
1470 			ssc->ses_private = NULL;
1471 		}
1472 		return (0);
1473 	}
1474 
1475 	if (ssc->ses_private == NULL) {
1476 		ssc->ses_private = SES_MALLOC(SAFT_PRIVATE);
1477 		if (ssc->ses_private == NULL) {
1478 			return (ENOMEM);
1479 		}
1480 		MEMZERO(ssc->ses_private, SAFT_PRIVATE);
1481 	}
1482 
1483 	ssc->ses_nobjects = 0;
1484 	ssc->ses_encstat = 0;
1485 
1486 	if ((err = safte_getconfig(ssc)) != 0) {
1487 		return (err);
1488 	}
1489 
1490 	/*
1491 	 * The number of objects here, as well as that reported by the
1492 	 * READ_BUFFER/GET_CONFIG call, are the over-temperature flags (15)
1493 	 * that get reported during READ_BUFFER/READ_ENC_STATUS.
1494 	 */
1495 	cc = ssc->ses_private;
1496 	ssc->ses_nobjects = cc->Nfans + cc->Npwr + cc->Nslots + cc->DoorLock +
1497 	    cc->Ntherm + cc->Nspkrs + NPSEUDO_THERM + NPSEUDO_ALARM;
1498 	ssc->ses_objmap = (encobj *)
1499 	    SES_MALLOC(ssc->ses_nobjects * sizeof (encobj));
1500 	if (ssc->ses_objmap == NULL) {
1501 		return (ENOMEM);
1502 	}
1503 	MEMZERO(ssc->ses_objmap, ssc->ses_nobjects * sizeof (encobj));
1504 
1505 	r = 0;
1506 	/*
1507 	 * Note that this is all arranged for the convenience
1508 	 * in later fetches of status.
1509 	 */
1510 	for (i = 0; i < cc->Nfans; i++)
1511 		ssc->ses_objmap[r++].enctype = SESTYP_FAN;
1512 	cc->pwroff = (uint8_t) r;
1513 	for (i = 0; i < cc->Npwr; i++)
1514 		ssc->ses_objmap[r++].enctype = SESTYP_POWER;
1515 	for (i = 0; i < cc->DoorLock; i++)
1516 		ssc->ses_objmap[r++].enctype = SESTYP_DOORLOCK;
1517 	for (i = 0; i < cc->Nspkrs; i++)
1518 		ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1519 	for (i = 0; i < cc->Ntherm; i++)
1520 		ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1521 	for (i = 0; i < NPSEUDO_THERM; i++)
1522 		ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1523 	ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1524 	cc->slotoff = (uint8_t) r;
1525 	for (i = 0; i < cc->Nslots; i++)
1526 		ssc->ses_objmap[r++].enctype = SESTYP_DEVICE;
1527 	return (0);
1528 }
1529 
1530 static int
1531 safte_init_enc(ses_softc_t *ssc)
1532 {
1533 	int err, amt;
1534 	char *sdata;
1535 	static char cdb0[6] = { SEND_DIAGNOSTIC };
1536 	static char cdb[10] =
1537 	    { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
1538 
1539 	sdata = SES_MALLOC(SAFT_SCRATCH);
1540 	if (sdata == NULL)
1541 		return (ENOMEM);
1542 
1543 	err = ses_runcmd(ssc, cdb0, 6, NULL, 0);
1544 	if (err) {
1545 		SES_FREE(sdata, SAFT_SCRATCH);
1546 		return (err);
1547 	}
1548 	sdata[0] = SAFTE_WT_GLOBAL;
1549 	MEMZERO(&sdata[1], 15);
1550 	amt = -SAFT_SCRATCH;
1551 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1552 	SES_FREE(sdata, SAFT_SCRATCH);
1553 	return (err);
1554 }
1555 
1556 static int
1557 safte_get_encstat(ses_softc_t *ssc, int slpflg)
1558 {
1559 	return (safte_rdstat(ssc, slpflg));
1560 }
1561 
1562 static int
1563 safte_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflg)
1564 {
1565 	struct scfg *cc = ssc->ses_private;
1566 	if (cc == NULL)
1567 		return (0);
1568 	/*
1569 	 * Since SAF-TE devices aren't necessarily sticky in terms
1570 	 * of state, make our soft copy of enclosure status 'sticky'-
1571 	 * that is, things set in enclosure status stay set (as implied
1572 	 * by conditions set in reading object status) until cleared.
1573 	 */
1574 	ssc->ses_encstat &= ~ALL_ENC_STAT;
1575 	ssc->ses_encstat |= (encstat & ALL_ENC_STAT);
1576 	ssc->ses_encstat |= ENCI_SVALID;
1577 	cc->flag1 &= ~(SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL|SAFT_FLG1_GLOBWARN);
1578 	if ((encstat & (SES_ENCSTAT_CRITICAL|SES_ENCSTAT_UNRECOV)) != 0) {
1579 		cc->flag1 |= SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL;
1580 	} else if ((encstat & SES_ENCSTAT_NONCRITICAL) != 0) {
1581 		cc->flag1 |= SAFT_FLG1_GLOBWARN;
1582 	}
1583 	return (wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slpflg));
1584 }
1585 
1586 static int
1587 safte_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflg)
1588 {
1589 	int i = (int)obp->obj_id;
1590 
1591 	if ((ssc->ses_encstat & ENCI_SVALID) == 0 ||
1592 	    (ssc->ses_objmap[i].svalid) == 0) {
1593 		int err = safte_rdstat(ssc, slpflg);
1594 		if (err)
1595 			return (err);
1596 	}
1597 	obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
1598 	obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
1599 	obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
1600 	obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
1601 	return (0);
1602 }
1603 
1604 
1605 static int
1606 safte_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slp)
1607 {
1608 	int idx, err;
1609 	encobj *ep;
1610 	struct scfg *cc;
1611 
1612 
1613 	SES_VLOG(ssc, "safte_set_objstat(%d): %x %x %x %x\n",
1614 	    (int)obp->obj_id, obp->cstat[0], obp->cstat[1], obp->cstat[2],
1615 	    obp->cstat[3]);
1616 
1617 	/*
1618 	 * If this is clear, we don't do diddly.
1619 	 */
1620 	if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
1621 		return (0);
1622 	}
1623 
1624 	err = 0;
1625 	/*
1626 	 * Check to see if the common bits are set and do them first.
1627 	 */
1628 	if (obp->cstat[0] & ~SESCTL_CSEL) {
1629 		err = set_objstat_sel(ssc, obp, slp);
1630 		if (err)
1631 			return (err);
1632 	}
1633 
1634 	cc = ssc->ses_private;
1635 	if (cc == NULL)
1636 		return (0);
1637 
1638 	idx = (int)obp->obj_id;
1639 	ep = &ssc->ses_objmap[idx];
1640 
1641 	switch (ep->enctype) {
1642 	case SESTYP_DEVICE:
1643 	{
1644 		uint8_t slotop = 0;
1645 		/*
1646 		 * XXX: I should probably cache the previous state
1647 		 * XXX: of SESCTL_DEVOFF so that when it goes from
1648 		 * XXX: true to false I can then set PREPARE FOR OPERATION
1649 		 * XXX: flag in PERFORM SLOT OPERATION write buffer command.
1650 		 */
1651 		if (obp->cstat[2] & (SESCTL_RQSINS|SESCTL_RQSRMV)) {
1652 			slotop |= 0x2;
1653 		}
1654 		if (obp->cstat[2] & SESCTL_RQSID) {
1655 			slotop |= 0x4;
1656 		}
1657 		err = perf_slotop(ssc, (uint8_t) idx - (uint8_t) cc->slotoff,
1658 		    slotop, slp);
1659 		if (err)
1660 			return (err);
1661 		if (obp->cstat[3] & SESCTL_RQSFLT) {
1662 			ep->priv |= 0x2;
1663 		} else {
1664 			ep->priv &= ~0x2;
1665 		}
1666 		if (ep->priv & 0xc6) {
1667 			ep->priv &= ~0x1;
1668 		} else {
1669 			ep->priv |= 0x1;	/* no errors */
1670 		}
1671 		wrslot_stat(ssc, slp);
1672 		break;
1673 	}
1674 	case SESTYP_POWER:
1675 		if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1676 			cc->flag1 |= SAFT_FLG1_ENCPWRFAIL;
1677 		} else {
1678 			cc->flag1 &= ~SAFT_FLG1_ENCPWRFAIL;
1679 		}
1680 		err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1681 		    cc->flag2, 0, slp);
1682 		if (err)
1683 			return (err);
1684 		if (obp->cstat[3] & SESCTL_RQSTON) {
1685 			(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1686 				idx - cc->pwroff, 0, 0, slp);
1687 		} else {
1688 			(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1689 				idx - cc->pwroff, 0, 1, slp);
1690 		}
1691 		break;
1692 	case SESTYP_FAN:
1693 		if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1694 			cc->flag1 |= SAFT_FLG1_ENCFANFAIL;
1695 		} else {
1696 			cc->flag1 &= ~SAFT_FLG1_ENCFANFAIL;
1697 		}
1698 		err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1699 		    cc->flag2, 0, slp);
1700 		if (err)
1701 			return (err);
1702 		if (obp->cstat[3] & SESCTL_RQSTON) {
1703 			uint8_t fsp;
1704 			if ((obp->cstat[3] & 0x7) == 7) {
1705 				fsp = 4;
1706 			} else if ((obp->cstat[3] & 0x7) == 6) {
1707 				fsp = 3;
1708 			} else if ((obp->cstat[3] & 0x7) == 4) {
1709 				fsp = 2;
1710 			} else {
1711 				fsp = 1;
1712 			}
1713 			(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, fsp, 0, slp);
1714 		} else {
1715 			(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
1716 		}
1717 		break;
1718 	case SESTYP_DOORLOCK:
1719 		if (obp->cstat[3] & 0x1) {
1720 			cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
1721 		} else {
1722 			cc->flag2 |= SAFT_FLG2_LOCKDOOR;
1723 		}
1724 		(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1725 		    cc->flag2, 0, slp);
1726 		break;
1727 	case SESTYP_ALARM:
1728 		/*
1729 		 * On all nonzero but the 'muted' bit, we turn on the alarm,
1730 		 */
1731 		obp->cstat[3] &= ~0xa;
1732 		if (obp->cstat[3] & 0x40) {
1733 			cc->flag2 &= ~SAFT_FLG1_ALARM;
1734 		} else if (obp->cstat[3] != 0) {
1735 			cc->flag2 |= SAFT_FLG1_ALARM;
1736 		} else {
1737 			cc->flag2 &= ~SAFT_FLG1_ALARM;
1738 		}
1739 		ep->priv = obp->cstat[3];
1740 		(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1741 			cc->flag2, 0, slp);
1742 		break;
1743 	default:
1744 		break;
1745 	}
1746 	ep->svalid = 0;
1747 	return (0);
1748 }
1749 
1750 static int
1751 safte_getconfig(ses_softc_t *ssc)
1752 {
1753 	struct scfg *cfg;
1754 	int err, amt;
1755 	char *sdata;
1756 	static char cdb[10] =
1757 	    { READ_BUFFER, 1, SAFTE_RD_RDCFG, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
1758 
1759 	cfg = ssc->ses_private;
1760 	if (cfg == NULL)
1761 		return (ENXIO);
1762 
1763 	sdata = SES_MALLOC(SAFT_SCRATCH);
1764 	if (sdata == NULL)
1765 		return (ENOMEM);
1766 
1767 	amt = SAFT_SCRATCH;
1768 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1769 	if (err) {
1770 		SES_FREE(sdata, SAFT_SCRATCH);
1771 		return (err);
1772 	}
1773 	amt = SAFT_SCRATCH - amt;
1774 	if (amt < 6) {
1775 		SES_LOG(ssc, "too little data (%d) for configuration\n", amt);
1776 		SES_FREE(sdata, SAFT_SCRATCH);
1777 		return (EIO);
1778 	}
1779 	SES_VLOG(ssc, "Nfans %d Npwr %d Nslots %d Lck %d Ntherm %d Nspkrs %d\n",
1780 	    sdata[0], sdata[1], sdata[2], sdata[3], sdata[4], sdata[5]);
1781 	cfg->Nfans = sdata[0];
1782 	cfg->Npwr = sdata[1];
1783 	cfg->Nslots = sdata[2];
1784 	cfg->DoorLock = sdata[3];
1785 	cfg->Ntherm = sdata[4];
1786 	cfg->Nspkrs = sdata[5];
1787 	cfg->Nalarm = NPSEUDO_ALARM;
1788 	SES_FREE(sdata, SAFT_SCRATCH);
1789 	return (0);
1790 }
1791 
1792 static int
1793 safte_rdstat(ses_softc_t *ssc, int slpflg)
1794 {
1795 	int err, oid, r, i, hiwater, nitems, amt;
1796 	uint16_t tempflags;
1797 	size_t buflen;
1798 	uint8_t status, oencstat;
1799 	char *sdata, cdb[10];
1800 	struct scfg *cc = ssc->ses_private;
1801 
1802 
1803 	/*
1804 	 * The number of objects overstates things a bit,
1805 	 * both for the bogus 'thermometer' entries and
1806 	 * the drive status (which isn't read at the same
1807 	 * time as the enclosure status), but that's okay.
1808 	 */
1809 	buflen = 4 * cc->Nslots;
1810 	if (ssc->ses_nobjects > buflen)
1811 		buflen = ssc->ses_nobjects;
1812 	sdata = SES_MALLOC(buflen);
1813 	if (sdata == NULL)
1814 		return (ENOMEM);
1815 
1816 	cdb[0] = READ_BUFFER;
1817 	cdb[1] = 1;
1818 	cdb[2] = SAFTE_RD_RDESTS;
1819 	cdb[3] = 0;
1820 	cdb[4] = 0;
1821 	cdb[5] = 0;
1822 	cdb[6] = 0;
1823 	cdb[7] = (buflen >> 8) & 0xff;
1824 	cdb[8] = buflen & 0xff;
1825 	cdb[9] = 0;
1826 	amt = buflen;
1827 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1828 	if (err) {
1829 		SES_FREE(sdata, buflen);
1830 		return (err);
1831 	}
1832 	hiwater = buflen - amt;
1833 
1834 
1835 	/*
1836 	 * invalidate all status bits.
1837 	 */
1838 	for (i = 0; i < ssc->ses_nobjects; i++)
1839 		ssc->ses_objmap[i].svalid = 0;
1840 	oencstat = ssc->ses_encstat & ALL_ENC_STAT;
1841 	ssc->ses_encstat = 0;
1842 
1843 
1844 	/*
1845 	 * Now parse returned buffer.
1846 	 * If we didn't get enough data back,
1847 	 * that's considered a fatal error.
1848 	 */
1849 	oid = r = 0;
1850 
1851 	for (nitems = i = 0; i < cc->Nfans; i++) {
1852 		SAFT_BAIL(r, hiwater, sdata, buflen);
1853 		/*
1854 		 * 0 = Fan Operational
1855 		 * 1 = Fan is malfunctioning
1856 		 * 2 = Fan is not present
1857 		 * 0x80 = Unknown or Not Reportable Status
1858 		 */
1859 		ssc->ses_objmap[oid].encstat[1] = 0;	/* resvd */
1860 		ssc->ses_objmap[oid].encstat[2] = 0;	/* resvd */
1861 		switch ((int)(uint8_t)sdata[r]) {
1862 		case 0:
1863 			nitems++;
1864 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1865 			/*
1866 			 * We could get fancier and cache
1867 			 * fan speeds that we have set, but
1868 			 * that isn't done now.
1869 			 */
1870 			ssc->ses_objmap[oid].encstat[3] = 7;
1871 			break;
1872 
1873 		case 1:
1874 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1875 			/*
1876 			 * FAIL and FAN STOPPED synthesized
1877 			 */
1878 			ssc->ses_objmap[oid].encstat[3] = 0x40;
1879 			/*
1880 			 * Enclosure marked with CRITICAL error
1881 			 * if only one fan or no thermometers,
1882 			 * else the NONCRITICAL error is set.
1883 			 */
1884 			if (cc->Nfans == 1 || cc->Ntherm == 0)
1885 				ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1886 			else
1887 				ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1888 			break;
1889 		case 2:
1890 			ssc->ses_objmap[oid].encstat[0] =
1891 			    SES_OBJSTAT_NOTINSTALLED;
1892 			ssc->ses_objmap[oid].encstat[3] = 0;
1893 			/*
1894 			 * Enclosure marked with CRITICAL error
1895 			 * if only one fan or no thermometers,
1896 			 * else the NONCRITICAL error is set.
1897 			 */
1898 			if (cc->Nfans == 1)
1899 				ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1900 			else
1901 				ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1902 			break;
1903 		case 0x80:
1904 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1905 			ssc->ses_objmap[oid].encstat[3] = 0;
1906 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
1907 			break;
1908 		default:
1909 			ssc->ses_objmap[oid].encstat[0] =
1910 			    SES_OBJSTAT_UNSUPPORTED;
1911 			SES_LOG(ssc, "Unknown fan%d status 0x%x\n", i,
1912 			    sdata[r] & 0xff);
1913 			break;
1914 		}
1915 		ssc->ses_objmap[oid++].svalid = 1;
1916 		r++;
1917 	}
1918 
1919 	/*
1920 	 * No matter how you cut it, no cooling elements when there
1921 	 * should be some there is critical.
1922 	 */
1923 	if (cc->Nfans && nitems == 0) {
1924 		ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1925 	}
1926 
1927 
1928 	for (i = 0; i < cc->Npwr; i++) {
1929 		SAFT_BAIL(r, hiwater, sdata, buflen);
1930 		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1931 		ssc->ses_objmap[oid].encstat[1] = 0;	/* resvd */
1932 		ssc->ses_objmap[oid].encstat[2] = 0;	/* resvd */
1933 		ssc->ses_objmap[oid].encstat[3] = 0x20;	/* requested on */
1934 		switch ((uint8_t)sdata[r]) {
1935 		case 0x00:	/* pws operational and on */
1936 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1937 			break;
1938 		case 0x01:	/* pws operational and off */
1939 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1940 			ssc->ses_objmap[oid].encstat[3] = 0x10;
1941 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
1942 			break;
1943 		case 0x10:	/* pws is malfunctioning and commanded on */
1944 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1945 			ssc->ses_objmap[oid].encstat[3] = 0x61;
1946 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1947 			break;
1948 
1949 		case 0x11:	/* pws is malfunctioning and commanded off */
1950 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
1951 			ssc->ses_objmap[oid].encstat[3] = 0x51;
1952 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1953 			break;
1954 		case 0x20:	/* pws is not present */
1955 			ssc->ses_objmap[oid].encstat[0] =
1956 			    SES_OBJSTAT_NOTINSTALLED;
1957 			ssc->ses_objmap[oid].encstat[3] = 0;
1958 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
1959 			break;
1960 		case 0x21:	/* pws is present */
1961 			/*
1962 			 * This is for enclosures that cannot tell whether the
1963 			 * device is on or malfunctioning, but know that it is
1964 			 * present. Just fall through.
1965 			 */
1966 			/* FALLTHROUGH */
1967 		case 0x80:	/* Unknown or Not Reportable Status */
1968 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1969 			ssc->ses_objmap[oid].encstat[3] = 0;
1970 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
1971 			break;
1972 		default:
1973 			SES_LOG(ssc, "unknown power supply %d status (0x%x)\n",
1974 			    i, sdata[r] & 0xff);
1975 			break;
1976 		}
1977 		ssc->ses_objmap[oid++].svalid = 1;
1978 		r++;
1979 	}
1980 
1981 	/*
1982 	 * Skip over Slot SCSI IDs
1983 	 */
1984 	r += cc->Nslots;
1985 
1986 	/*
1987 	 * We always have doorlock status, no matter what,
1988 	 * but we only save the status if we have one.
1989 	 */
1990 	SAFT_BAIL(r, hiwater, sdata, buflen);
1991 	if (cc->DoorLock) {
1992 		/*
1993 		 * 0 = Door Locked
1994 		 * 1 = Door Unlocked, or no Lock Installed
1995 		 * 0x80 = Unknown or Not Reportable Status
1996 		 */
1997 		ssc->ses_objmap[oid].encstat[1] = 0;
1998 		ssc->ses_objmap[oid].encstat[2] = 0;
1999 		switch ((uint8_t)sdata[r]) {
2000 		case 0:
2001 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2002 			ssc->ses_objmap[oid].encstat[3] = 0;
2003 			break;
2004 		case 1:
2005 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2006 			ssc->ses_objmap[oid].encstat[3] = 1;
2007 			break;
2008 		case 0x80:
2009 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2010 			ssc->ses_objmap[oid].encstat[3] = 0;
2011 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
2012 			break;
2013 		default:
2014 			ssc->ses_objmap[oid].encstat[0] =
2015 			    SES_OBJSTAT_UNSUPPORTED;
2016 			SES_LOG(ssc, "unknown lock status 0x%x\n",
2017 			    sdata[r] & 0xff);
2018 			break;
2019 		}
2020 		ssc->ses_objmap[oid++].svalid = 1;
2021 	}
2022 	r++;
2023 
2024 	/*
2025 	 * We always have speaker status, no matter what,
2026 	 * but we only save the status if we have one.
2027 	 */
2028 	SAFT_BAIL(r, hiwater, sdata, buflen);
2029 	if (cc->Nspkrs) {
2030 		ssc->ses_objmap[oid].encstat[1] = 0;
2031 		ssc->ses_objmap[oid].encstat[2] = 0;
2032 		if (sdata[r] == 1) {
2033 			/*
2034 			 * We need to cache tone urgency indicators.
2035 			 * Someday.
2036 			 */
2037 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
2038 			ssc->ses_objmap[oid].encstat[3] = 0x8;
2039 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2040 		} else if (sdata[r] == 0) {
2041 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2042 			ssc->ses_objmap[oid].encstat[3] = 0;
2043 		} else {
2044 			ssc->ses_objmap[oid].encstat[0] =
2045 			    SES_OBJSTAT_UNSUPPORTED;
2046 			ssc->ses_objmap[oid].encstat[3] = 0;
2047 			SES_LOG(ssc, "unknown spkr status 0x%x\n",
2048 			    sdata[r] & 0xff);
2049 		}
2050 		ssc->ses_objmap[oid++].svalid = 1;
2051 	}
2052 	r++;
2053 
2054 	for (i = 0; i < cc->Ntherm; i++) {
2055 		SAFT_BAIL(r, hiwater, sdata, buflen);
2056 		/*
2057 		 * Status is a range from -10 to 245 deg Celsius,
2058 		 * which we need to normalize to -20 to -245 according
2059 		 * to the latest SCSI spec, which makes little
2060 		 * sense since this would overflow an 8bit value.
2061 		 * Well, still, the base normalization is -20,
2062 		 * not -10, so we have to adjust.
2063 		 *
2064 		 * So what's over and under temperature?
2065 		 * Hmm- we'll state that 'normal' operating
2066 		 * is 10 to 40 deg Celsius.
2067 		 */
2068 
2069 		/*
2070 		 * Actually.... All of the units that people out in the world
2071 		 * seem to have do not come even close to setting a value that
2072 		 * complies with this spec.
2073 		 *
2074 		 * The closest explanation I could find was in an
2075 		 * LSI-Logic manual, which seemed to indicate that
2076 		 * this value would be set by whatever the I2C code
2077 		 * would interpolate from the output of an LM75
2078 		 * temperature sensor.
2079 		 *
2080 		 * This means that it is impossible to use the actual
2081 		 * numeric value to predict anything. But we don't want
2082 		 * to lose the value. So, we'll propagate the *uncorrected*
2083 		 * value and set SES_OBJSTAT_NOTAVAIL. We'll depend on the
2084 		 * temperature flags for warnings.
2085 		 */
2086 		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NOTAVAIL;
2087 		ssc->ses_objmap[oid].encstat[1] = 0;
2088 		ssc->ses_objmap[oid].encstat[2] = sdata[r];
2089 		ssc->ses_objmap[oid].encstat[3] = 0;
2090 		ssc->ses_objmap[oid++].svalid = 1;
2091 		r++;
2092 	}
2093 
2094 	/*
2095 	 * Now, for "pseudo" thermometers, we have two bytes
2096 	 * of information in enclosure status- 16 bits. Actually,
2097 	 * the MSB is a single TEMP ALERT flag indicating whether
2098 	 * any other bits are set, but, thanks to fuzzy thinking,
2099 	 * in the SAF-TE spec, this can also be set even if no
2100 	 * other bits are set, thus making this really another
2101 	 * binary temperature sensor.
2102 	 */
2103 
2104 	SAFT_BAIL(r, hiwater, sdata, buflen);
2105 	tempflags = sdata[r++];
2106 	SAFT_BAIL(r, hiwater, sdata, buflen);
2107 	tempflags |= (tempflags << 8) | sdata[r++];
2108 
2109 	for (i = 0; i < NPSEUDO_THERM; i++) {
2110 		ssc->ses_objmap[oid].encstat[1] = 0;
2111 		if (tempflags & (1 << (NPSEUDO_THERM - i - 1))) {
2112 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2113 			ssc->ses_objmap[4].encstat[2] = 0xff;
2114 			/*
2115 			 * Set 'over temperature' failure.
2116 			 */
2117 			ssc->ses_objmap[oid].encstat[3] = 8;
2118 			ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2119 		} else {
2120 			/*
2121 			 * We used to say 'not available' and synthesize a
2122 			 * nominal 30 deg (C)- that was wrong. Actually,
2123 			 * Just say 'OK', and use the reserved value of
2124 			 * zero.
2125 			 */
2126 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2127 			ssc->ses_objmap[oid].encstat[2] = 0;
2128 			ssc->ses_objmap[oid].encstat[3] = 0;
2129 		}
2130 		ssc->ses_objmap[oid++].svalid = 1;
2131 	}
2132 
2133 	/*
2134 	 * Get alarm status.
2135 	 */
2136 	ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2137 	ssc->ses_objmap[oid].encstat[3] = ssc->ses_objmap[oid].priv;
2138 	ssc->ses_objmap[oid++].svalid = 1;
2139 
2140 	/*
2141 	 * Now get drive slot status
2142 	 */
2143 	cdb[2] = SAFTE_RD_RDDSTS;
2144 	amt = buflen;
2145 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2146 	if (err) {
2147 		SES_FREE(sdata, buflen);
2148 		return (err);
2149 	}
2150 	hiwater = buflen - amt;
2151 	for (r = i = 0; i < cc->Nslots; i++, r += 4) {
2152 		SAFT_BAIL(r+3, hiwater, sdata, buflen);
2153 		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNSUPPORTED;
2154 		ssc->ses_objmap[oid].encstat[1] = (uint8_t) i;
2155 		ssc->ses_objmap[oid].encstat[2] = 0;
2156 		ssc->ses_objmap[oid].encstat[3] = 0;
2157 		status = sdata[r+3];
2158 		if ((status & 0x1) == 0) {	/* no device */
2159 			ssc->ses_objmap[oid].encstat[0] =
2160 			    SES_OBJSTAT_NOTINSTALLED;
2161 		} else {
2162 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2163 		}
2164 		if (status & 0x2) {
2165 			ssc->ses_objmap[oid].encstat[2] = 0x8;
2166 		}
2167 		if ((status & 0x4) == 0) {
2168 			ssc->ses_objmap[oid].encstat[3] = 0x10;
2169 		}
2170 		ssc->ses_objmap[oid++].svalid = 1;
2171 	}
2172 	/* see comment below about sticky enclosure status */
2173 	ssc->ses_encstat |= ENCI_SVALID | oencstat;
2174 	SES_FREE(sdata, buflen);
2175 	return (0);
2176 }
2177 
2178 static int
2179 set_objstat_sel(ses_softc_t *ssc, ses_objstat *obp, int slp)
2180 {
2181 	int idx;
2182 	encobj *ep;
2183 	struct scfg *cc = ssc->ses_private;
2184 
2185 	if (cc == NULL)
2186 		return (0);
2187 
2188 	idx = (int)obp->obj_id;
2189 	ep = &ssc->ses_objmap[idx];
2190 
2191 	switch (ep->enctype) {
2192 	case SESTYP_DEVICE:
2193 		if (obp->cstat[0] & SESCTL_PRDFAIL) {
2194 			ep->priv |= 0x40;
2195 		}
2196 		/* SESCTL_RSTSWAP has no correspondence in SAF-TE */
2197 		if (obp->cstat[0] & SESCTL_DISABLE) {
2198 			ep->priv |= 0x80;
2199 			/*
2200 			 * Hmm. Try to set the 'No Drive' flag.
2201 			 * Maybe that will count as a 'disable'.
2202 			 */
2203 		}
2204 		if (ep->priv & 0xc6) {
2205 			ep->priv &= ~0x1;
2206 		} else {
2207 			ep->priv |= 0x1;	/* no errors */
2208 		}
2209 		wrslot_stat(ssc, slp);
2210 		break;
2211 	case SESTYP_POWER:
2212 		/*
2213 		 * Okay- the only one that makes sense here is to
2214 		 * do the 'disable' for a power supply.
2215 		 */
2216 		if (obp->cstat[0] & SESCTL_DISABLE) {
2217 			(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
2218 				idx - cc->pwroff, 0, 0, slp);
2219 		}
2220 		break;
2221 	case SESTYP_FAN:
2222 		/*
2223 		 * Okay- the only one that makes sense here is to
2224 		 * set fan speed to zero on disable.
2225 		 */
2226 		if (obp->cstat[0] & SESCTL_DISABLE) {
2227 			/* remember- fans are the first items, so idx works */
2228 			(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
2229 		}
2230 		break;
2231 	case SESTYP_DOORLOCK:
2232 		/*
2233 		 * Well, we can 'disable' the lock.
2234 		 */
2235 		if (obp->cstat[0] & SESCTL_DISABLE) {
2236 			cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
2237 			(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2238 				cc->flag2, 0, slp);
2239 		}
2240 		break;
2241 	case SESTYP_ALARM:
2242 		/*
2243 		 * Well, we can 'disable' the alarm.
2244 		 */
2245 		if (obp->cstat[0] & SESCTL_DISABLE) {
2246 			cc->flag2 &= ~SAFT_FLG1_ALARM;
2247 			ep->priv |= 0x40;	/* Muted */
2248 			(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2249 				cc->flag2, 0, slp);
2250 		}
2251 		break;
2252 	default:
2253 		break;
2254 	}
2255 	ep->svalid = 0;
2256 	return (0);
2257 }
2258 
2259 /*
2260  * This function handles all of the 16 byte WRITE BUFFER commands.
2261  */
2262 static int
2263 wrbuf16(ses_softc_t *ssc, uint8_t op, uint8_t b1, uint8_t b2,
2264     uint8_t b3, int slp)
2265 {
2266 	int err, amt;
2267 	char *sdata;
2268 	struct scfg *cc = ssc->ses_private;
2269 	static char cdb[10] = { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
2270 
2271 	if (cc == NULL)
2272 		return (0);
2273 
2274 	sdata = SES_MALLOC(16);
2275 	if (sdata == NULL)
2276 		return (ENOMEM);
2277 
2278 	SES_VLOG(ssc, "saf_wrbuf16 %x %x %x %x\n", op, b1, b2, b3);
2279 
2280 	sdata[0] = op;
2281 	sdata[1] = b1;
2282 	sdata[2] = b2;
2283 	sdata[3] = b3;
2284 	MEMZERO(&sdata[4], 12);
2285 	amt = -16;
2286 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2287 	SES_FREE(sdata, 16);
2288 	return (err);
2289 }
2290 
2291 /*
2292  * This function updates the status byte for the device slot described.
2293  *
2294  * Since this is an optional SAF-TE command, there's no point in
2295  * returning an error.
2296  */
2297 static void
2298 wrslot_stat(ses_softc_t *ssc, int slp)
2299 {
2300 	int i, amt;
2301 	encobj *ep;
2302 	char cdb[10], *sdata;
2303 	struct scfg *cc = ssc->ses_private;
2304 
2305 	if (cc == NULL)
2306 		return;
2307 
2308 	SES_VLOG(ssc, "saf_wrslot\n");
2309 	cdb[0] = WRITE_BUFFER;
2310 	cdb[1] = 1;
2311 	cdb[2] = 0;
2312 	cdb[3] = 0;
2313 	cdb[4] = 0;
2314 	cdb[5] = 0;
2315 	cdb[6] = 0;
2316 	cdb[7] = 0;
2317 	cdb[8] = cc->Nslots * 3 + 1;
2318 	cdb[9] = 0;
2319 
2320 	sdata = SES_MALLOC(cc->Nslots * 3 + 1);
2321 	if (sdata == NULL)
2322 		return;
2323 	MEMZERO(sdata, cc->Nslots * 3 + 1);
2324 
2325 	sdata[0] = SAFTE_WT_DSTAT;
2326 	for (i = 0; i < cc->Nslots; i++) {
2327 		ep = &ssc->ses_objmap[cc->slotoff + i];
2328 		SES_VLOG(ssc, "saf_wrslot %d <- %x\n", i, ep->priv & 0xff);
2329 		sdata[1 + (3 * i)] = ep->priv & 0xff;
2330 	}
2331 	amt = -(cc->Nslots * 3 + 1);
2332 	(void) ses_runcmd(ssc, cdb, 10, sdata, &amt);
2333 	SES_FREE(sdata, cc->Nslots * 3 + 1);
2334 }
2335 
2336 /*
2337  * This function issues the "PERFORM SLOT OPERATION" command.
2338  */
2339 static int
2340 perf_slotop(ses_softc_t *ssc, uint8_t slot, uint8_t opflag, int slp)
2341 {
2342 	int err, amt;
2343 	char *sdata;
2344 	struct scfg *cc = ssc->ses_private;
2345 	static char cdb[10] =
2346 	    { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
2347 
2348 	if (cc == NULL)
2349 		return (0);
2350 
2351 	sdata = SES_MALLOC(SAFT_SCRATCH);
2352 	if (sdata == NULL)
2353 		return (ENOMEM);
2354 	MEMZERO(sdata, SAFT_SCRATCH);
2355 
2356 	sdata[0] = SAFTE_WT_SLTOP;
2357 	sdata[1] = slot;
2358 	sdata[2] = opflag;
2359 	SES_VLOG(ssc, "saf_slotop slot %d op %x\n", slot, opflag);
2360 	amt = -SAFT_SCRATCH;
2361 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2362 	SES_FREE(sdata, SAFT_SCRATCH);
2363 	return (err);
2364 }
2365