xref: /netbsd-src/sys/dev/scsipi/ses.c (revision 212397c69a103ae7e5eafa8731ddfae671d2dee7)
1 /*	$NetBSD: ses.c,v 1.48 2015/08/24 23:13:15 pooka Exp $ */
2 /*
3  * Copyright (C) 2000 National Aeronautics & Space Administration
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. The name of the author may not be used to endorse or promote products
12  *    derived from this software without specific prior written permission
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24  *
25  * Author:	mjacob@nas.nasa.gov
26  */
27 
28 #include <sys/cdefs.h>
29 __KERNEL_RCSID(0, "$NetBSD: ses.c,v 1.48 2015/08/24 23:13:15 pooka Exp $");
30 
31 #ifdef _KERNEL_OPT
32 #include "opt_scsi.h"
33 #endif
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/file.h>
39 #include <sys/stat.h>
40 #include <sys/ioctl.h>
41 #include <sys/scsiio.h>
42 #include <sys/buf.h>
43 #include <sys/uio.h>
44 #include <sys/malloc.h>
45 #include <sys/errno.h>
46 #include <sys/device.h>
47 #include <sys/disklabel.h>
48 #include <sys/disk.h>
49 #include <sys/proc.h>
50 #include <sys/conf.h>
51 #include <sys/vnode.h>
52 
53 #include <dev/scsipi/scsipi_all.h>
54 #include <dev/scsipi/scsipi_disk.h>
55 #include <dev/scsipi/scsi_all.h>
56 #include <dev/scsipi/scsi_disk.h>
57 #include <dev/scsipi/scsipiconf.h>
58 #include <dev/scsipi/scsipi_base.h>
59 #include <dev/scsipi/ses.h>
60 
61 /*
62  * Platform Independent Driver Internal Definitions for SES devices.
63  */
64 typedef enum {
65 	SES_NONE,
66 	SES_SES_SCSI2,
67 	SES_SES,
68 	SES_SES_PASSTHROUGH,
69 	SES_SEN,
70 	SES_SAFT
71 } enctyp;
72 
73 struct ses_softc;
74 typedef struct ses_softc ses_softc_t;
75 typedef struct {
76 	int (*softc_init)(ses_softc_t *, int);
77 	int (*init_enc)(ses_softc_t *);
78 	int (*get_encstat)(ses_softc_t *, int);
79 	int (*set_encstat)(ses_softc_t *, ses_encstat, int);
80 	int (*get_objstat)(ses_softc_t *, ses_objstat *, int);
81 	int (*set_objstat)(ses_softc_t *, ses_objstat *, int);
82 } encvec;
83 
84 #define	ENCI_SVALID	0x80
85 
86 typedef struct {
87 	uint32_t
88 		enctype	: 8,		/* enclosure type */
89 		subenclosure : 8,	/* subenclosure id */
90 		svalid	: 1,		/* enclosure information valid */
91 		priv	: 15;		/* private data, per object */
92 	uint8_t	encstat[4];	/* state && stats */
93 } encobj;
94 
95 #define	SEN_ID		"UNISYS           SUN_SEN"
96 #define	SEN_ID_LEN	24
97 
98 static enctyp ses_type(struct scsipi_inquiry_data *);
99 
100 
101 /* Forward reference to Enclosure Functions */
102 static int ses_softc_init(ses_softc_t *, int);
103 static int ses_init_enc(ses_softc_t *);
104 static int ses_get_encstat(ses_softc_t *, int);
105 static int ses_set_encstat(ses_softc_t *, uint8_t, int);
106 static int ses_get_objstat(ses_softc_t *, ses_objstat *, int);
107 static int ses_set_objstat(ses_softc_t *, ses_objstat *, int);
108 
109 static int safte_softc_init(ses_softc_t *, int);
110 static int safte_init_enc(ses_softc_t *);
111 static int safte_get_encstat(ses_softc_t *, int);
112 static int safte_set_encstat(ses_softc_t *, uint8_t, int);
113 static int safte_get_objstat(ses_softc_t *, ses_objstat *, int);
114 static int safte_set_objstat(ses_softc_t *, ses_objstat *, int);
115 
116 /*
117  * Platform implementation defines/functions for SES internal kernel stuff
118  */
119 
120 #define	STRNCMP			strncmp
121 #define	PRINTF			printf
122 #define	SES_LOG			ses_log
123 #if	defined(DEBUG) || defined(SCSIDEBUG)
124 #define	SES_VLOG		ses_log
125 #else
126 #define	SES_VLOG		if (0) ses_log
127 #endif
128 #define	SES_MALLOC(amt)		malloc(amt, M_DEVBUF, M_NOWAIT)
129 #define	SES_FREE(ptr, amt)	free(ptr, M_DEVBUF)
130 #define	MEMZERO(dest, amt)	memset(dest, 0, amt)
131 #define	MEMCPY(dest, src, amt)	memcpy(dest, src, amt)
132 #define	RECEIVE_DIAGNOSTIC	0x1c
133 #define	SEND_DIAGNOSTIC		0x1d
134 #define	WRITE_BUFFER		0x3b
135 #define	READ_BUFFER		0x3c
136 
137 static dev_type_open(sesopen);
138 static dev_type_close(sesclose);
139 static dev_type_ioctl(sesioctl);
140 
141 const struct cdevsw ses_cdevsw = {
142 	.d_open = sesopen,
143 	.d_close = sesclose,
144 	.d_read = noread,
145 	.d_write = nowrite,
146 	.d_ioctl = sesioctl,
147 	.d_stop = nostop,
148 	.d_tty = notty,
149 	.d_poll = nopoll,
150 	.d_mmap = nommap,
151 	.d_kqfilter = nokqfilter,
152 	.d_discard = nodiscard,
153 	.d_flag = D_OTHER
154 };
155 
156 static int ses_runcmd(struct ses_softc *, char *, int, char *, int *);
157 static void ses_log(struct ses_softc *, const char *, ...)
158      __attribute__((__format__(__printf__, 2, 3)));
159 
160 /*
161  * General NetBSD kernel stuff.
162  */
163 
164 struct ses_softc {
165 	device_t	sc_dev;
166 	struct scsipi_periph *sc_periph;
167 	enctyp		ses_type;	/* type of enclosure */
168 	encvec		ses_vec;	/* vector to handlers */
169 	void *		ses_private;	/* per-type private data */
170 	encobj *	ses_objmap;	/* objects */
171 	u_int32_t	ses_nobjects;	/* number of objects */
172 	ses_encstat	ses_encstat;	/* overall status */
173 	u_int8_t	ses_flags;
174 };
175 #define	SES_FLAG_INVALID	0x01
176 #define	SES_FLAG_OPEN		0x02
177 #define	SES_FLAG_INITIALIZED	0x04
178 
179 #define SESUNIT(x)       (minor((x)))
180 
181 static int ses_match(device_t, cfdata_t, void *);
182 static void ses_attach(device_t, device_t, void *);
183 static int ses_detach(device_t, int);
184 static enctyp ses_device_type(struct scsipibus_attach_args *);
185 
186 CFATTACH_DECL_NEW(ses, sizeof (struct ses_softc),
187     ses_match, ses_attach, ses_detach, NULL);
188 
189 extern struct cfdriver ses_cd;
190 
191 static const struct scsipi_periphsw ses_switch = {
192 	NULL,
193 	NULL,
194 	NULL,
195 	NULL
196 };
197 
198 static int
199 ses_match(device_t parent, cfdata_t match, void *aux)
200 {
201 	struct scsipibus_attach_args *sa = aux;
202 
203 	switch (ses_device_type(sa)) {
204 	case SES_SES:
205 	case SES_SES_SCSI2:
206 	case SES_SEN:
207 	case SES_SAFT:
208 	case SES_SES_PASSTHROUGH:
209 		/*
210 		 * For these devices, it's a perfect match.
211 		 */
212 		return (24);
213 	default:
214 		return (0);
215 	}
216 }
217 
218 
219 /*
220  * Complete the attachment.
221  *
222  * We have to repeat the rerun of INQUIRY data as above because
223  * it's not until the return from the match routine that we have
224  * the softc available to set stuff in.
225  */
226 static void
227 ses_attach(device_t parent, device_t self, void *aux)
228 {
229 	const char *tname;
230 	struct ses_softc *softc = device_private(self);
231 	struct scsipibus_attach_args *sa = aux;
232 	struct scsipi_periph *periph = sa->sa_periph;
233 
234 	softc->sc_dev = self;
235 	SC_DEBUG(periph, SCSIPI_DB2, ("ssattach: "));
236 	softc->sc_periph = periph;
237 	periph->periph_dev = self;
238 	periph->periph_switch = &ses_switch;
239 	periph->periph_openings = 1;
240 
241 	softc->ses_type = ses_device_type(sa);
242 	switch (softc->ses_type) {
243 	case SES_SES:
244 	case SES_SES_SCSI2:
245         case SES_SES_PASSTHROUGH:
246 		softc->ses_vec.softc_init = ses_softc_init;
247 		softc->ses_vec.init_enc = ses_init_enc;
248 		softc->ses_vec.get_encstat = ses_get_encstat;
249 		softc->ses_vec.set_encstat = ses_set_encstat;
250 		softc->ses_vec.get_objstat = ses_get_objstat;
251 		softc->ses_vec.set_objstat = ses_set_objstat;
252 		break;
253         case SES_SAFT:
254 		softc->ses_vec.softc_init = safte_softc_init;
255 		softc->ses_vec.init_enc = safte_init_enc;
256 		softc->ses_vec.get_encstat = safte_get_encstat;
257 		softc->ses_vec.set_encstat = safte_set_encstat;
258 		softc->ses_vec.get_objstat = safte_get_objstat;
259 		softc->ses_vec.set_objstat = safte_set_objstat;
260 		break;
261         case SES_SEN:
262 		break;
263 	case SES_NONE:
264 	default:
265 		break;
266 	}
267 
268 	switch (softc->ses_type) {
269 	default:
270 	case SES_NONE:
271 		tname = "No SES device";
272 		break;
273 	case SES_SES_SCSI2:
274 		tname = "SCSI-2 SES Device";
275 		break;
276 	case SES_SES:
277 		tname = "SCSI-3 SES Device";
278 		break;
279         case SES_SES_PASSTHROUGH:
280 		tname = "SES Passthrough Device";
281 		break;
282         case SES_SEN:
283 		tname = "UNISYS SEN Device (NOT HANDLED YET)";
284 		break;
285         case SES_SAFT:
286 		tname = "SAF-TE Compliant Device";
287 		break;
288 	}
289 	printf("\n%s: %s\n", device_xname(softc->sc_dev), tname);
290 }
291 
292 static enctyp
293 ses_device_type(struct scsipibus_attach_args *sa)
294 {
295 	struct scsipi_inquiry_data *inqp = sa->sa_inqptr;
296 
297 	if (inqp == NULL)
298 		return (SES_NONE);
299 
300 	return (ses_type(inqp));
301 }
302 
303 static int
304 sesopen(dev_t dev, int flags, int fmt, struct lwp *l)
305 {
306 	struct ses_softc *softc;
307 	int error, unit;
308 
309 	unit = SESUNIT(dev);
310 	softc = device_lookup_private(&ses_cd, unit);
311 	if (softc == NULL)
312 		return (ENXIO);
313 
314 	if (softc->ses_flags & SES_FLAG_INVALID) {
315 		error = ENXIO;
316 		goto out;
317 	}
318 	if (softc->ses_flags & SES_FLAG_OPEN) {
319 		error = EBUSY;
320 		goto out;
321 	}
322 	if (softc->ses_vec.softc_init == NULL) {
323 		error = ENXIO;
324 		goto out;
325 	}
326 	error = scsipi_adapter_addref(
327 	    softc->sc_periph->periph_channel->chan_adapter);
328 	if (error != 0)
329                 goto out;
330 
331 
332 	softc->ses_flags |= SES_FLAG_OPEN;
333 	if ((softc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
334 		error = (*softc->ses_vec.softc_init)(softc, 1);
335 		if (error)
336 			softc->ses_flags &= ~SES_FLAG_OPEN;
337 		else
338 			softc->ses_flags |= SES_FLAG_INITIALIZED;
339 	}
340 
341 out:
342 	return (error);
343 }
344 
345 static int
346 sesclose(dev_t dev, int flags, int fmt,
347     struct lwp *l)
348 {
349 	struct ses_softc *softc;
350 	int unit;
351 
352 	unit = SESUNIT(dev);
353 	softc = device_lookup_private(&ses_cd, unit);
354 	if (softc == NULL)
355 		return (ENXIO);
356 
357 	scsipi_wait_drain(softc->sc_periph);
358 	scsipi_adapter_delref(softc->sc_periph->periph_channel->chan_adapter);
359 	softc->ses_flags &= ~SES_FLAG_OPEN;
360 	return (0);
361 }
362 
363 static int
364 sesioctl(dev_t dev, u_long cmd, void *arg_addr, int flag, struct lwp *l)
365 {
366 	ses_encstat tmp;
367 	ses_objstat objs;
368 	ses_object obj, *uobj;
369 	struct ses_softc *ssc = device_lookup_private(&ses_cd, SESUNIT(dev));
370 	void *addr;
371 	int error, i;
372 
373 
374 	if (arg_addr)
375 		addr = *((void **) arg_addr);
376 	else
377 		addr = NULL;
378 
379 	SC_DEBUG(ssc->sc_periph, SCSIPI_DB2, ("sesioctl 0x%lx ", cmd));
380 
381 	/*
382 	 * Now check to see whether we're initialized or not.
383 	 */
384 	if ((ssc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
385 		return (ENODEV);
386 	}
387 
388 	error = 0;
389 
390 	/*
391 	 * If this command can change the device's state,
392 	 * we must have the device open for writing.
393 	 */
394 	switch (cmd) {
395 	case SESIOC_GETNOBJ:
396 	case SESIOC_GETOBJMAP:
397 	case SESIOC_GETENCSTAT:
398 	case SESIOC_GETOBJSTAT:
399 		break;
400 	default:
401 		if ((flag & FWRITE) == 0) {
402 			return (EBADF);
403 		}
404 	}
405 
406 	switch (cmd) {
407 	case SESIOC_GETNOBJ:
408 		if (addr == NULL)
409 			return EINVAL;
410 		error = copyout(&ssc->ses_nobjects, addr,
411 		    sizeof (ssc->ses_nobjects));
412 		break;
413 
414 	case SESIOC_GETOBJMAP:
415 		if (addr == NULL)
416 			return EINVAL;
417 		for (uobj = addr, i = 0; i != ssc->ses_nobjects; i++, uobj++) {
418 			obj.obj_id = i;
419 			obj.subencid = ssc->ses_objmap[i].subenclosure;
420 			obj.object_type = ssc->ses_objmap[i].enctype;
421 			error = copyout(&obj, uobj, sizeof (ses_object));
422 			if (error) {
423 				break;
424 			}
425 		}
426 		break;
427 
428 	case SESIOC_GETENCSTAT:
429 		if (addr == NULL)
430 			return EINVAL;
431 		error = (*ssc->ses_vec.get_encstat)(ssc, 1);
432 		if (error)
433 			break;
434 		tmp = ssc->ses_encstat & ~ENCI_SVALID;
435 		error = copyout(&tmp, addr, sizeof (ses_encstat));
436 		ssc->ses_encstat = tmp;
437 		break;
438 
439 	case SESIOC_SETENCSTAT:
440 		if (addr == NULL)
441 			return EINVAL;
442 		error = copyin(addr, &tmp, sizeof (ses_encstat));
443 		if (error)
444 			break;
445 		error = (*ssc->ses_vec.set_encstat)(ssc, tmp, 1);
446 		break;
447 
448 	case SESIOC_GETOBJSTAT:
449 		if (addr == NULL)
450 			return EINVAL;
451 		error = copyin(addr, &objs, sizeof (ses_objstat));
452 		if (error)
453 			break;
454 		if (objs.obj_id >= ssc->ses_nobjects) {
455 			error = EINVAL;
456 			break;
457 		}
458 		error = (*ssc->ses_vec.get_objstat)(ssc, &objs, 1);
459 		if (error)
460 			break;
461 		error = copyout(&objs, addr, sizeof (ses_objstat));
462 		/*
463 		 * Always (for now) invalidate entry.
464 		 */
465 		ssc->ses_objmap[objs.obj_id].svalid = 0;
466 		break;
467 
468 	case SESIOC_SETOBJSTAT:
469 		if (addr == NULL)
470 			return EINVAL;
471 		error = copyin(addr, &objs, sizeof (ses_objstat));
472 		if (error)
473 			break;
474 
475 		if (objs.obj_id >= ssc->ses_nobjects) {
476 			error = EINVAL;
477 			break;
478 		}
479 		error = (*ssc->ses_vec.set_objstat)(ssc, &objs, 1);
480 
481 		/*
482 		 * Always (for now) invalidate entry.
483 		 */
484 		ssc->ses_objmap[objs.obj_id].svalid = 0;
485 		break;
486 
487 	case SESIOC_INIT:
488 
489 		error = (*ssc->ses_vec.init_enc)(ssc);
490 		break;
491 
492 	default:
493 		error = scsipi_do_ioctl(ssc->sc_periph,
494 			    dev, cmd, arg_addr, flag, l);
495 		break;
496 	}
497 	return (error);
498 }
499 
500 static int
501 ses_runcmd(struct ses_softc *ssc, char *cdb, int cdbl, char *dptr, int *dlenp)
502 {
503 	struct scsipi_generic sgen;
504 	int dl, flg, error;
505 
506 	if (dptr) {
507 		if ((dl = *dlenp) < 0) {
508 			dl = -dl;
509 			flg = XS_CTL_DATA_OUT;
510 		} else {
511 			flg = XS_CTL_DATA_IN;
512 		}
513 	} else {
514 		dl = 0;
515 		flg = 0;
516 	}
517 
518 	if (cdbl > sizeof (struct scsipi_generic)) {
519 		cdbl = sizeof (struct scsipi_generic);
520 	}
521 	memcpy(&sgen, cdb, cdbl);
522 #ifndef	SCSIDEBUG
523 	flg |= XS_CTL_SILENT;
524 #endif
525 	error = scsipi_command(ssc->sc_periph, &sgen, cdbl,
526 	    (u_char *) dptr, dl, SCSIPIRETRIES, 30000, NULL, flg);
527 
528 	if (error == 0 && dptr)
529 		*dlenp = 0;
530 
531 	return (error);
532 }
533 
534 static void
535 ses_log(struct ses_softc *ssc, const char *fmt, ...)
536 {
537 	va_list ap;
538 
539 	printf("%s: ", device_xname(ssc->sc_dev));
540 	va_start(ap, fmt);
541 	vprintf(fmt, ap);
542 	va_end(ap);
543 }
544 
545 /*
546  * The code after this point runs on many platforms,
547  * so forgive the slightly awkward and nonconforming
548  * appearance.
549  */
550 
551 /*
552  * Is this a device that supports enclosure services?
553  *
554  * It's a a pretty simple ruleset- if it is device type 0x0D (13), it's
555  * an SES device. If it happens to be an old UNISYS SEN device, we can
556  * handle that too.
557  */
558 
559 #define	SAFTE_START	44
560 #define	SAFTE_END	50
561 #define	SAFTE_LEN	SAFTE_END-SAFTE_START
562 
563 static enctyp
564 ses_type(struct scsipi_inquiry_data *inqp)
565 {
566 	size_t	given_len = inqp->additional_length + 4;
567 
568 	if (given_len < 8+SEN_ID_LEN)
569 		return (SES_NONE);
570 
571 	if ((inqp->device & SID_TYPE) == T_ENCLOSURE) {
572 		if (STRNCMP(inqp->vendor, SEN_ID, SEN_ID_LEN) == 0) {
573 			return (SES_SEN);
574 		} else if ((inqp->version & SID_ANSII) > 2) {
575 			return (SES_SES);
576 		} else {
577 			return (SES_SES_SCSI2);
578 		}
579 		return (SES_NONE);
580 	}
581 
582 #ifdef	SES_ENABLE_PASSTHROUGH
583 	if ((inqp->flags2 & SID_EncServ) && (inqp->version & SID_ANSII) >= 2) {
584 		/*
585 		 * PassThrough Device.
586 		 */
587 		return (SES_SES_PASSTHROUGH);
588 	}
589 #endif
590 
591 	/*
592 	 * The comparison is short for a reason-
593 	 * some vendors were chopping it short.
594 	 */
595 
596 	if (given_len < SAFTE_END - 2) {
597 		return (SES_NONE);
598 	}
599 
600 	if (STRNCMP((char *)&inqp->vendor_specific[8], "SAF-TE",
601 			SAFTE_LEN - 2) == 0) {
602 		return (SES_SAFT);
603 	}
604 
605 	return (SES_NONE);
606 }
607 
608 /*
609  * SES Native Type Device Support
610  */
611 
612 /*
613  * SES Diagnostic Page Codes
614  */
615 
616 typedef enum {
617 	SesConfigPage = 0x1,
618 	SesControlPage,
619 #define	SesStatusPage SesControlPage
620 	SesHelpTxt,
621 	SesStringOut,
622 #define	SesStringIn	SesStringOut
623 	SesThresholdOut,
624 #define	SesThresholdIn SesThresholdOut
625 	SesArrayControl,
626 #define	SesArrayStatus	SesArrayControl
627 	SesElementDescriptor,
628 	SesShortStatus
629 } SesDiagPageCodes;
630 
631 /*
632  * minimal amounts
633  */
634 
635 /*
636  * Minimum amount of data, starting from byte 0, to have
637  * the config header.
638  */
639 #define	SES_CFGHDR_MINLEN	12
640 
641 /*
642  * Minimum amount of data, starting from byte 0, to have
643  * the config header and one enclosure header.
644  */
645 #define	SES_ENCHDR_MINLEN	48
646 
647 /*
648  * Take this value, subtract it from VEnclen and you know
649  * the length of the vendor unique bytes.
650  */
651 #define	SES_ENCHDR_VMIN		36
652 
653 /*
654  * SES Data Structures
655  */
656 
657 typedef struct {
658 	uint32_t GenCode;	/* Generation Code */
659 	uint8_t	Nsubenc;	/* Number of Subenclosures */
660 } SesCfgHdr;
661 
662 typedef struct {
663 	uint8_t	Subencid;	/* SubEnclosure Identifier */
664 	uint8_t	Ntypes;		/* # of supported types */
665 	uint8_t	VEnclen;	/* Enclosure Descriptor Length */
666 } SesEncHdr;
667 
668 typedef struct {
669 	uint8_t	encWWN[8];	/* XXX- Not Right Yet */
670 	uint8_t	encVid[8];
671 	uint8_t	encPid[16];
672 	uint8_t	encRev[4];
673 	uint8_t	encVen[1];
674 } SesEncDesc;
675 
676 typedef struct {
677 	uint8_t	enc_type;		/* type of element */
678 	uint8_t	enc_maxelt;		/* maximum supported */
679 	uint8_t	enc_subenc;		/* in SubEnc # N */
680 	uint8_t	enc_tlen;		/* Type Descriptor Text Length */
681 } SesThdr;
682 
683 typedef struct {
684 	uint8_t	comstatus;
685 	uint8_t	comstat[3];
686 } SesComStat;
687 
688 struct typidx {
689 	int ses_tidx;
690 	int ses_oidx;
691 };
692 
693 struct sscfg {
694 	uint8_t ses_ntypes;	/* total number of types supported */
695 
696 	/*
697 	 * We need to keep a type index as well as an
698 	 * object index for each object in an enclosure.
699 	 */
700 	struct typidx *ses_typidx;
701 
702 	/*
703 	 * We also need to keep track of the number of elements
704 	 * per type of element. This is needed later so that we
705 	 * can find precisely in the returned status data the
706 	 * status for the Nth element of the Kth type.
707 	 */
708 	uint8_t *	ses_eltmap;
709 };
710 
711 
712 /*
713  * (de)canonicalization defines
714  */
715 #define	sbyte(x, byte)		((((uint32_t)(x)) >> (byte * 8)) & 0xff)
716 #define	sbit(x, bit)		(((uint32_t)(x)) << bit)
717 #define	sset8(outp, idx, sval)	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
718 
719 #define	sset16(outp, idx, sval)	\
720 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
721 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
722 
723 
724 #define	sset24(outp, idx, sval)	\
725 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
726 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
727 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
728 
729 
730 #define	sset32(outp, idx, sval)	\
731 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 3), \
732 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
733 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
734 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
735 
736 #define	gbyte(x, byte)	((((uint32_t)(x)) & 0xff) << (byte * 8))
737 #define	gbit(lv, in, idx, shft, mask)	lv = ((in[idx] >> shft) & mask)
738 #define	sget8(inp, idx, lval)	lval = (((uint8_t *)(inp))[idx++])
739 #define	gget8(inp, idx, lval)	lval = (((uint8_t *)(inp))[idx])
740 
741 #define	sget16(inp, idx, lval)	\
742 	lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
743 		(((uint8_t *)(inp))[idx+1]), idx += 2
744 
745 #define	gget16(inp, idx, lval)	\
746 	lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
747 		(((uint8_t *)(inp))[idx+1])
748 
749 #define	sget24(inp, idx, lval)	\
750 	lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
751 		gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
752 			(((uint8_t *)(inp))[idx+2]), idx += 3
753 
754 #define	gget24(inp, idx, lval)	\
755 	lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
756 		gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
757 			(((uint8_t *)(inp))[idx+2])
758 
759 #define	sget32(inp, idx, lval)	\
760 	lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
761 		gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
762 		gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
763 			(((uint8_t *)(inp))[idx+3]), idx += 4
764 
765 #define	gget32(inp, idx, lval)	\
766 	lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
767 		gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
768 		gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
769 			(((uint8_t *)(inp))[idx+3])
770 
771 #define	SCSZ	0x2000
772 #define	CFLEN	(256 + SES_ENCHDR_MINLEN)
773 
774 /*
775  * Routines specific && private to SES only
776  */
777 
778 static int ses_getconfig(ses_softc_t *);
779 static int ses_getputstat(ses_softc_t *, int, SesComStat *, int, int);
780 static int ses_cfghdr(uint8_t *, int, SesCfgHdr *);
781 static int ses_enchdr(uint8_t *, int, uint8_t, SesEncHdr *);
782 static int ses_encdesc(uint8_t *, int, uint8_t, SesEncDesc *);
783 static int ses_getthdr(uint8_t *, int,  int, SesThdr *);
784 static int ses_decode(char *, int, uint8_t *, int, int, SesComStat *);
785 static int ses_encode(char *, int, uint8_t *, int, int, SesComStat *);
786 
787 static int
788 ses_softc_init(ses_softc_t *ssc, int doinit)
789 {
790 	if (doinit == 0) {
791 		struct sscfg *cc;
792 		if (ssc->ses_nobjects) {
793 			SES_FREE(ssc->ses_objmap,
794 			    ssc->ses_nobjects * sizeof (encobj));
795 			ssc->ses_objmap = NULL;
796 		}
797 		if ((cc = ssc->ses_private) != NULL) {
798 			if (cc->ses_eltmap && cc->ses_ntypes) {
799 				SES_FREE(cc->ses_eltmap, cc->ses_ntypes);
800 				cc->ses_eltmap = NULL;
801 				cc->ses_ntypes = 0;
802 			}
803 			if (cc->ses_typidx && ssc->ses_nobjects) {
804 				SES_FREE(cc->ses_typidx,
805 				    ssc->ses_nobjects * sizeof (struct typidx));
806 				cc->ses_typidx = NULL;
807 			}
808 			SES_FREE(cc, sizeof (struct sscfg));
809 			ssc->ses_private = NULL;
810 		}
811 		ssc->ses_nobjects = 0;
812 		return (0);
813 	}
814 	if (ssc->ses_private == NULL) {
815 		ssc->ses_private = SES_MALLOC(sizeof (struct sscfg));
816 	}
817 	if (ssc->ses_private == NULL) {
818 		return (ENOMEM);
819 	}
820 	ssc->ses_nobjects = 0;
821 	ssc->ses_encstat = 0;
822 	return (ses_getconfig(ssc));
823 }
824 
825 static int
826 ses_detach(device_t self, int flags)
827 {
828 	struct ses_softc *ssc = device_private(self);
829 	struct sscfg *cc = ssc->ses_private;
830 
831 	if (ssc->ses_objmap) {
832 		SES_FREE(ssc->ses_objmap, (nobj * sizeof (encobj)));
833 	}
834 	if (cc != NULL) {
835 		if (cc->ses_typidx) {
836 			SES_FREE(cc->ses_typidx,
837 			    (nobj * sizeof (struct typidx)));
838 		}
839 		if (cc->ses_eltmap) {
840 			SES_FREE(cc->ses_eltmap, ntype);
841 		}
842 		SES_FREE(cc, sizeof (struct sscfg));
843 	}
844 
845 	return 0;
846 }
847 
848 static int
849 ses_init_enc(ses_softc_t *ssc)
850 {
851 	return (0);
852 }
853 
854 static int
855 ses_get_encstat(ses_softc_t *ssc, int slpflag)
856 {
857 	SesComStat ComStat;
858 	int status;
859 
860 	if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 1)) != 0) {
861 		return (status);
862 	}
863 	ssc->ses_encstat = ComStat.comstatus | ENCI_SVALID;
864 	return (0);
865 }
866 
867 static int
868 ses_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflag)
869 {
870 	SesComStat ComStat;
871 	int status;
872 
873 	ComStat.comstatus = encstat & 0xf;
874 	if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 0)) != 0) {
875 		return (status);
876 	}
877 	ssc->ses_encstat = encstat & 0xf;	/* note no SVALID set */
878 	return (0);
879 }
880 
881 static int
882 ses_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
883 {
884 	int i = (int)obp->obj_id;
885 
886 	if (ssc->ses_objmap[i].svalid == 0) {
887 		SesComStat ComStat;
888 		int err = ses_getputstat(ssc, i, &ComStat, slpflag, 1);
889 		if (err)
890 			return (err);
891 		ssc->ses_objmap[i].encstat[0] = ComStat.comstatus;
892 		ssc->ses_objmap[i].encstat[1] = ComStat.comstat[0];
893 		ssc->ses_objmap[i].encstat[2] = ComStat.comstat[1];
894 		ssc->ses_objmap[i].encstat[3] = ComStat.comstat[2];
895 		ssc->ses_objmap[i].svalid = 1;
896 	}
897 	obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
898 	obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
899 	obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
900 	obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
901 	return (0);
902 }
903 
904 static int
905 ses_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
906 {
907 	SesComStat ComStat;
908 	int err;
909 	/*
910 	 * If this is clear, we don't do diddly.
911 	 */
912 	if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
913 		return (0);
914 	}
915 	ComStat.comstatus = obp->cstat[0];
916 	ComStat.comstat[0] = obp->cstat[1];
917 	ComStat.comstat[1] = obp->cstat[2];
918 	ComStat.comstat[2] = obp->cstat[3];
919 	err = ses_getputstat(ssc, (int)obp->obj_id, &ComStat, slpflag, 0);
920 	ssc->ses_objmap[(int)obp->obj_id].svalid = 0;
921 	return (err);
922 }
923 
924 static int
925 ses_getconfig(ses_softc_t *ssc)
926 {
927 	struct sscfg *cc;
928 	SesCfgHdr cf;
929 	SesEncHdr hd;
930 	SesEncDesc *cdp;
931 	SesThdr thdr;
932 	int err, amt, i, nobj, ntype, maxima;
933 	char storage[CFLEN], *sdata;
934 	static char cdb[6] = {
935 	    RECEIVE_DIAGNOSTIC, 0x1, SesConfigPage, SCSZ >> 8, SCSZ & 0xff, 0
936 	};
937 
938 	cc = ssc->ses_private;
939 	if (cc == NULL) {
940 		return (ENXIO);
941 	}
942 
943 	sdata = SES_MALLOC(SCSZ);
944 	if (sdata == NULL)
945 		return (ENOMEM);
946 
947 	amt = SCSZ;
948 	err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
949 	if (err) {
950 		SES_FREE(sdata, SCSZ);
951 		return (err);
952 	}
953 	amt = SCSZ - amt;
954 
955 	if (ses_cfghdr((uint8_t *) sdata, amt, &cf)) {
956 		SES_LOG(ssc, "Unable to parse SES Config Header\n");
957 		SES_FREE(sdata, SCSZ);
958 		return (EIO);
959 	}
960 	if (amt < SES_ENCHDR_MINLEN) {
961 		SES_LOG(ssc, "runt enclosure length (%d)\n", amt);
962 		SES_FREE(sdata, SCSZ);
963 		return (EIO);
964 	}
965 
966 	SES_VLOG(ssc, "GenCode %x %d Subenclosures\n", cf.GenCode, cf.Nsubenc);
967 
968 	/*
969 	 * Now waltz through all the subenclosures toting up the
970 	 * number of types available in each. For this, we only
971 	 * really need the enclosure header. However, we get the
972 	 * enclosure descriptor for debug purposes, as well
973 	 * as self-consistency checking purposes.
974 	 */
975 
976 	maxima = cf.Nsubenc + 1;
977 	cdp = (SesEncDesc *) storage;
978 	for (ntype = i = 0; i < maxima; i++) {
979 		MEMZERO((void *)cdp, sizeof (*cdp));
980 		if (ses_enchdr((uint8_t *) sdata, amt, i, &hd)) {
981 			SES_LOG(ssc, "Cannot Extract Enclosure Header %d\n", i);
982 			SES_FREE(sdata, SCSZ);
983 			return (EIO);
984 		}
985 		SES_VLOG(ssc, " SubEnclosure ID %d, %d Types With this ID, En"
986 		    "closure Length %d\n", hd.Subencid, hd.Ntypes, hd.VEnclen);
987 
988 		if (ses_encdesc((uint8_t *)sdata, amt, i, cdp)) {
989 			SES_LOG(ssc, "Can't get Enclosure Descriptor %d\n", i);
990 			SES_FREE(sdata, SCSZ);
991 			return (EIO);
992 		}
993 		SES_VLOG(ssc, " WWN: %02x%02x%02x%02x%02x%02x%02x%02x\n",
994 		    cdp->encWWN[0], cdp->encWWN[1], cdp->encWWN[2],
995 		    cdp->encWWN[3], cdp->encWWN[4], cdp->encWWN[5],
996 		    cdp->encWWN[6], cdp->encWWN[7]);
997 		ntype += hd.Ntypes;
998 	}
999 
1000 	/*
1001 	 * Now waltz through all the types that are available, getting
1002 	 * the type header so we can start adding up the number of
1003 	 * objects available.
1004 	 */
1005 	for (nobj = i = 0; i < ntype; i++) {
1006 		if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
1007 			SES_LOG(ssc, "Can't get Enclosure Type Header %d\n", i);
1008 			SES_FREE(sdata, SCSZ);
1009 			return (EIO);
1010 		}
1011 		SES_LOG(ssc, " Type Desc[%d]: Type 0x%x, MaxElt %d, In Subenc "
1012 		    "%d, Text Length %d\n", i, thdr.enc_type, thdr.enc_maxelt,
1013 		    thdr.enc_subenc, thdr.enc_tlen);
1014 		nobj += thdr.enc_maxelt;
1015 	}
1016 
1017 
1018 	/*
1019 	 * Now allocate the object array and type map.
1020 	 */
1021 
1022 	ssc->ses_objmap = SES_MALLOC(nobj * sizeof (encobj));
1023 	cc->ses_typidx = SES_MALLOC(nobj * sizeof (struct typidx));
1024 	cc->ses_eltmap = SES_MALLOC(ntype);
1025 
1026 	if (ssc->ses_objmap == NULL || cc->ses_typidx == NULL ||
1027 	    cc->ses_eltmap == NULL) {
1028 		if (ssc->ses_objmap) {
1029 			SES_FREE(ssc->ses_objmap, (nobj * sizeof (encobj)));
1030 			ssc->ses_objmap = NULL;
1031 		}
1032 		if (cc->ses_typidx) {
1033 			SES_FREE(cc->ses_typidx,
1034 			    (nobj * sizeof (struct typidx)));
1035 			cc->ses_typidx = NULL;
1036 		}
1037 		if (cc->ses_eltmap) {
1038 			SES_FREE(cc->ses_eltmap, ntype);
1039 			cc->ses_eltmap = NULL;
1040 		}
1041 		SES_FREE(sdata, SCSZ);
1042 		return (ENOMEM);
1043 	}
1044 	MEMZERO(ssc->ses_objmap, nobj * sizeof (encobj));
1045 	MEMZERO(cc->ses_typidx, nobj * sizeof (struct typidx));
1046 	MEMZERO(cc->ses_eltmap, ntype);
1047 	cc->ses_ntypes = (uint8_t) ntype;
1048 	ssc->ses_nobjects = nobj;
1049 
1050 	/*
1051 	 * Now waltz through the # of types again to fill in the types
1052 	 * (and subenclosure ids) of the allocated objects.
1053 	 */
1054 	nobj = 0;
1055 	for (i = 0; i < ntype; i++) {
1056 		int j;
1057 		if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
1058 			continue;
1059 		}
1060 		cc->ses_eltmap[i] = thdr.enc_maxelt;
1061 		for (j = 0; j < thdr.enc_maxelt; j++) {
1062 			cc->ses_typidx[nobj].ses_tidx = i;
1063 			cc->ses_typidx[nobj].ses_oidx = j;
1064 			ssc->ses_objmap[nobj].subenclosure = thdr.enc_subenc;
1065 			ssc->ses_objmap[nobj++].enctype = thdr.enc_type;
1066 		}
1067 	}
1068 	SES_FREE(sdata, SCSZ);
1069 	return (0);
1070 }
1071 
1072 static int
1073 ses_getputstat(ses_softc_t *ssc, int objid, SesComStat *sp, int slp,
1074     int in)
1075 {
1076 	struct sscfg *cc;
1077 	int err, amt, bufsiz, tidx, oidx;
1078 	char cdb[6], *sdata;
1079 
1080 	cc = ssc->ses_private;
1081 	if (cc == NULL) {
1082 		return (ENXIO);
1083 	}
1084 
1085 	/*
1086 	 * If we're just getting overall enclosure status,
1087 	 * we only need 2 bytes of data storage.
1088 	 *
1089 	 * If we're getting anything else, we know how much
1090 	 * storage we need by noting that starting at offset
1091 	 * 8 in returned data, all object status bytes are 4
1092 	 * bytes long, and are stored in chunks of types(M)
1093 	 * and nth+1 instances of type M.
1094 	 */
1095 	if (objid == -1) {
1096 		bufsiz = 2;
1097 	} else {
1098 		bufsiz = (ssc->ses_nobjects * 4) + (cc->ses_ntypes * 4) + 8;
1099 	}
1100 	sdata = SES_MALLOC(bufsiz);
1101 	if (sdata == NULL)
1102 		return (ENOMEM);
1103 
1104 	cdb[0] = RECEIVE_DIAGNOSTIC;
1105 	cdb[1] = 1;
1106 	cdb[2] = SesStatusPage;
1107 	cdb[3] = bufsiz >> 8;
1108 	cdb[4] = bufsiz & 0xff;
1109 	cdb[5] = 0;
1110 	amt = bufsiz;
1111 	err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1112 	if (err) {
1113 		SES_FREE(sdata, bufsiz);
1114 		return (err);
1115 	}
1116 	amt = bufsiz - amt;
1117 
1118 	if (objid == -1) {
1119 		tidx = -1;
1120 		oidx = -1;
1121 	} else {
1122 		tidx = cc->ses_typidx[objid].ses_tidx;
1123 		oidx = cc->ses_typidx[objid].ses_oidx;
1124 	}
1125 	if (in) {
1126 		if (ses_decode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1127 			err = ENODEV;
1128 		}
1129 	} else {
1130 		if (ses_encode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1131 			err = ENODEV;
1132 		} else {
1133 			cdb[0] = SEND_DIAGNOSTIC;
1134 			cdb[1] = 0x10;
1135 			cdb[2] = 0;
1136 			cdb[3] = bufsiz >> 8;
1137 			cdb[4] = bufsiz & 0xff;
1138 			cdb[5] = 0;
1139 			amt = -bufsiz;
1140 			err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1141 		}
1142 	}
1143 	SES_FREE(sdata, bufsiz);
1144 	return (0);
1145 }
1146 
1147 
1148 /*
1149  * Routines to parse returned SES data structures.
1150  * Architecture and compiler independent.
1151  */
1152 
1153 static int
1154 ses_cfghdr(uint8_t *buffer, int buflen, SesCfgHdr *cfp)
1155 {
1156 	if (buflen < SES_CFGHDR_MINLEN) {
1157 		return (-1);
1158 	}
1159 	gget8(buffer, 1, cfp->Nsubenc);
1160 	gget32(buffer, 4, cfp->GenCode);
1161 	return (0);
1162 }
1163 
1164 static int
1165 ses_enchdr(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncHdr *chp)
1166 {
1167 	int s, off = 8;
1168 	for (s = 0; s < SubEncId; s++) {
1169 		if (off + 3 > amt)
1170 			return (-1);
1171 		off += buffer[off+3] + 4;
1172 	}
1173 	if (off + 3 > amt) {
1174 		return (-1);
1175 	}
1176 	gget8(buffer, off+1, chp->Subencid);
1177 	gget8(buffer, off+2, chp->Ntypes);
1178 	gget8(buffer, off+3, chp->VEnclen);
1179 	return (0);
1180 }
1181 
1182 static int
1183 ses_encdesc(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncDesc *cdp)
1184 {
1185 	int s, e, enclen, off = 8;
1186 	for (s = 0; s < SubEncId; s++) {
1187 		if (off + 3 > amt)
1188 			return (-1);
1189 		off += buffer[off+3] + 4;
1190 	}
1191 	if (off + 3 > amt) {
1192 		return (-1);
1193 	}
1194 	gget8(buffer, off+3, enclen);
1195 	off += 4;
1196 	if (off  >= amt)
1197 		return (-1);
1198 
1199 	e = off + enclen;
1200 	if (e > amt) {
1201 		e = amt;
1202 	}
1203 	MEMCPY(cdp, &buffer[off], e - off);
1204 	return (0);
1205 }
1206 
1207 static int
1208 ses_getthdr(uint8_t *buffer, int amt, int nth, SesThdr *thp)
1209 {
1210 	int s, off = 8;
1211 
1212 	if (amt < SES_CFGHDR_MINLEN) {
1213 		return (-1);
1214 	}
1215 	for (s = 0; s < buffer[1]; s++) {
1216 		if (off + 3 > amt)
1217 			return (-1);
1218 		off += buffer[off+3] + 4;
1219 	}
1220 	if (off + 3 > amt) {
1221 		return (-1);
1222 	}
1223 	off += buffer[off+3] + 4 + (nth * 4);
1224 	if (amt < (off + 4))
1225 		return (-1);
1226 
1227 	gget8(buffer, off++, thp->enc_type);
1228 	gget8(buffer, off++, thp->enc_maxelt);
1229 	gget8(buffer, off++, thp->enc_subenc);
1230 	gget8(buffer, off, thp->enc_tlen);
1231 	return (0);
1232 }
1233 
1234 /*
1235  * This function needs a little explanation.
1236  *
1237  * The arguments are:
1238  *
1239  *
1240  *	char *b, int amt
1241  *
1242  *		These describes the raw input SES status data and length.
1243  *
1244  *	uint8_t *ep
1245  *
1246  *		This is a map of the number of types for each element type
1247  *		in the enclosure.
1248  *
1249  *	int elt
1250  *
1251  *		This is the element type being sought. If elt is -1,
1252  *		then overall enclosure status is being sought.
1253  *
1254  *	int elm
1255  *
1256  *		This is the ordinal Mth element of type elt being sought.
1257  *
1258  *	SesComStat *sp
1259  *
1260  *		This is the output area to store the status for
1261  *		the Mth element of type Elt.
1262  */
1263 
1264 static int
1265 ses_decode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1266 {
1267 	int idx, i;
1268 
1269 	/*
1270 	 * If it's overall enclosure status being sought, get that.
1271 	 * We need at least 2 bytes of status data to get that.
1272 	 */
1273 	if (elt == -1) {
1274 		if (amt < 2)
1275 			return (-1);
1276 		gget8(b, 1, sp->comstatus);
1277 		sp->comstat[0] = 0;
1278 		sp->comstat[1] = 0;
1279 		sp->comstat[2] = 0;
1280 		return (0);
1281 	}
1282 
1283 	/*
1284 	 * Check to make sure that the Mth element is legal for type Elt.
1285 	 */
1286 
1287 	if (elm >= ep[elt])
1288 		return (-1);
1289 
1290 	/*
1291 	 * Starting at offset 8, start skipping over the storage
1292 	 * for the element types we're not interested in.
1293 	 */
1294 	for (idx = 8, i = 0; i < elt; i++) {
1295 		idx += ((ep[i] + 1) * 4);
1296 	}
1297 
1298 	/*
1299 	 * Skip over Overall status for this element type.
1300 	 */
1301 	idx += 4;
1302 
1303 	/*
1304 	 * And skip to the index for the Mth element that we're going for.
1305 	 */
1306 	idx += (4 * elm);
1307 
1308 	/*
1309 	 * Make sure we haven't overflowed the buffer.
1310 	 */
1311 	if (idx+4 > amt)
1312 		return (-1);
1313 
1314 	/*
1315 	 * Retrieve the status.
1316 	 */
1317 	gget8(b, idx++, sp->comstatus);
1318 	gget8(b, idx++, sp->comstat[0]);
1319 	gget8(b, idx++, sp->comstat[1]);
1320 	gget8(b, idx++, sp->comstat[2]);
1321 #if	0
1322 	PRINTF("Get Elt 0x%x Elm 0x%x (idx %d)\n", elt, elm, idx-4);
1323 #endif
1324 	return (0);
1325 }
1326 
1327 /*
1328  * This is the mirror function to ses_decode, but we set the 'select'
1329  * bit for the object which we're interested in. All other objects,
1330  * after a status fetch, should have that bit off. Hmm. It'd be easy
1331  * enough to ensure this, so we will.
1332  */
1333 
1334 static int
1335 ses_encode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1336 {
1337 	int idx, i;
1338 
1339 	/*
1340 	 * If it's overall enclosure status being sought, get that.
1341 	 * We need at least 2 bytes of status data to get that.
1342 	 */
1343 	if (elt == -1) {
1344 		if (amt < 2)
1345 			return (-1);
1346 		i = 0;
1347 		sset8(b, i, 0);
1348 		sset8(b, i, sp->comstatus & 0xf);
1349 #if	0
1350 		PRINTF("set EncStat %x\n", sp->comstatus);
1351 #endif
1352 		return (0);
1353 	}
1354 
1355 	/*
1356 	 * Check to make sure that the Mth element is legal for type Elt.
1357 	 */
1358 
1359 	if (elm >= ep[elt])
1360 		return (-1);
1361 
1362 	/*
1363 	 * Starting at offset 8, start skipping over the storage
1364 	 * for the element types we're not interested in.
1365 	 */
1366 	for (idx = 8, i = 0; i < elt; i++) {
1367 		idx += ((ep[i] + 1) * 4);
1368 	}
1369 
1370 	/*
1371 	 * Skip over Overall status for this element type.
1372 	 */
1373 	idx += 4;
1374 
1375 	/*
1376 	 * And skip to the index for the Mth element that we're going for.
1377 	 */
1378 	idx += (4 * elm);
1379 
1380 	/*
1381 	 * Make sure we haven't overflowed the buffer.
1382 	 */
1383 	if (idx+4 > amt)
1384 		return (-1);
1385 
1386 	/*
1387 	 * Set the status.
1388 	 */
1389 	sset8(b, idx, sp->comstatus);
1390 	sset8(b, idx, sp->comstat[0]);
1391 	sset8(b, idx, sp->comstat[1]);
1392 	sset8(b, idx, sp->comstat[2]);
1393 	idx -= 4;
1394 
1395 #if	0
1396 	PRINTF("Set Elt 0x%x Elm 0x%x (idx %d) with %x %x %x %x\n",
1397 	    elt, elm, idx, sp->comstatus, sp->comstat[0],
1398 	    sp->comstat[1], sp->comstat[2]);
1399 #endif
1400 
1401 	/*
1402 	 * Now make sure all other 'Select' bits are off.
1403 	 */
1404 	for (i = 8; i < amt; i += 4) {
1405 		if (i != idx)
1406 			b[i] &= ~0x80;
1407 	}
1408 	/*
1409 	 * And make sure the INVOP bit is clear.
1410 	 */
1411 	b[2] &= ~0x10;
1412 
1413 	return (0);
1414 }
1415 
1416 /*
1417  * SAF-TE Type Device Emulation
1418  */
1419 
1420 static int safte_getconfig(ses_softc_t *);
1421 static int safte_rdstat(ses_softc_t *, int);
1422 static int set_objstat_sel(ses_softc_t *, ses_objstat *, int);
1423 static int wrbuf16(ses_softc_t *, uint8_t, uint8_t, uint8_t, uint8_t, int);
1424 static void wrslot_stat(ses_softc_t *, int);
1425 static int perf_slotop(ses_softc_t *, uint8_t, uint8_t, int);
1426 
1427 #define	ALL_ENC_STAT (SES_ENCSTAT_CRITICAL | SES_ENCSTAT_UNRECOV | \
1428 	SES_ENCSTAT_NONCRITICAL | SES_ENCSTAT_INFO)
1429 /*
1430  * SAF-TE specific defines- Mandatory ones only...
1431  */
1432 
1433 /*
1434  * READ BUFFER ('get' commands) IDs- placed in offset 2 of cdb
1435  */
1436 #define	SAFTE_RD_RDCFG	0x00	/* read enclosure configuration */
1437 #define	SAFTE_RD_RDESTS	0x01	/* read enclosure status */
1438 #define	SAFTE_RD_RDDSTS	0x04	/* read drive slot status */
1439 
1440 /*
1441  * WRITE BUFFER ('set' commands) IDs- placed in offset 0 of databuf
1442  */
1443 #define	SAFTE_WT_DSTAT	0x10	/* write device slot status */
1444 #define	SAFTE_WT_SLTOP	0x12	/* perform slot operation */
1445 #define	SAFTE_WT_FANSPD	0x13	/* set fan speed */
1446 #define	SAFTE_WT_ACTPWS	0x14	/* turn on/off power supply */
1447 #define	SAFTE_WT_GLOBAL	0x15	/* send global command */
1448 
1449 
1450 #define	SAFT_SCRATCH	64
1451 #define	NPSEUDO_THERM	16
1452 #define	NPSEUDO_ALARM	1
1453 struct scfg {
1454 	/*
1455 	 * Cached Configuration
1456 	 */
1457 	uint8_t	Nfans;		/* Number of Fans */
1458 	uint8_t	Npwr;		/* Number of Power Supplies */
1459 	uint8_t	Nslots;		/* Number of Device Slots */
1460 	uint8_t	DoorLock;	/* Door Lock Installed */
1461 	uint8_t	Ntherm;		/* Number of Temperature Sensors */
1462 	uint8_t	Nspkrs;		/* Number of Speakers */
1463 	uint8_t Nalarm;		/* Number of Alarms (at least one) */
1464 	/*
1465 	 * Cached Flag Bytes for Global Status
1466 	 */
1467 	uint8_t	flag1;
1468 	uint8_t	flag2;
1469 	/*
1470 	 * What object index ID is where various slots start.
1471 	 */
1472 	uint8_t	pwroff;
1473 	uint8_t	slotoff;
1474 #define	SAFT_ALARM_OFFSET(cc)	(cc)->slotoff - 1
1475 };
1476 
1477 #define	SAFT_FLG1_ALARM		0x1
1478 #define	SAFT_FLG1_GLOBFAIL	0x2
1479 #define	SAFT_FLG1_GLOBWARN	0x4
1480 #define	SAFT_FLG1_ENCPWROFF	0x8
1481 #define	SAFT_FLG1_ENCFANFAIL	0x10
1482 #define	SAFT_FLG1_ENCPWRFAIL	0x20
1483 #define	SAFT_FLG1_ENCDRVFAIL	0x40
1484 #define	SAFT_FLG1_ENCDRVWARN	0x80
1485 
1486 #define	SAFT_FLG2_LOCKDOOR	0x4
1487 #define	SAFT_PRIVATE		sizeof (struct scfg)
1488 
1489 static const char safte_2little[] = "Too Little Data Returned (%d) at line %d\n";
1490 #define	SAFT_BAIL(r, x, k, l)	\
1491 	if (r >= x) { \
1492 		SES_LOG(ssc, safte_2little, x, __LINE__);\
1493 		SES_FREE(k, l); \
1494 		return (EIO); \
1495 	}
1496 
1497 
1498 static int
1499 safte_softc_init(ses_softc_t *ssc, int doinit)
1500 {
1501 	int err, i, r;
1502 	struct scfg *cc;
1503 
1504 	if (doinit == 0) {
1505 		if (ssc->ses_nobjects) {
1506 			if (ssc->ses_objmap) {
1507 				SES_FREE(ssc->ses_objmap,
1508 				    ssc->ses_nobjects * sizeof (encobj));
1509 				ssc->ses_objmap = NULL;
1510 			}
1511 			ssc->ses_nobjects = 0;
1512 		}
1513 		if (ssc->ses_private) {
1514 			SES_FREE(ssc->ses_private, SAFT_PRIVATE);
1515 			ssc->ses_private = NULL;
1516 		}
1517 		return (0);
1518 	}
1519 
1520 	if (ssc->ses_private == NULL) {
1521 		ssc->ses_private = SES_MALLOC(SAFT_PRIVATE);
1522 		if (ssc->ses_private == NULL) {
1523 			return (ENOMEM);
1524 		}
1525 		MEMZERO(ssc->ses_private, SAFT_PRIVATE);
1526 	}
1527 
1528 	ssc->ses_nobjects = 0;
1529 	ssc->ses_encstat = 0;
1530 
1531 	if ((err = safte_getconfig(ssc)) != 0) {
1532 		return (err);
1533 	}
1534 
1535 	/*
1536 	 * The number of objects here, as well as that reported by the
1537 	 * READ_BUFFER/GET_CONFIG call, are the over-temperature flags (15)
1538 	 * that get reported during READ_BUFFER/READ_ENC_STATUS.
1539 	 */
1540 	cc = ssc->ses_private;
1541 	ssc->ses_nobjects = cc->Nfans + cc->Npwr + cc->Nslots + cc->DoorLock +
1542 	    cc->Ntherm + cc->Nspkrs + NPSEUDO_THERM + NPSEUDO_ALARM;
1543 	ssc->ses_objmap = (encobj *)
1544 	    SES_MALLOC(ssc->ses_nobjects * sizeof (encobj));
1545 	if (ssc->ses_objmap == NULL) {
1546 		return (ENOMEM);
1547 	}
1548 	MEMZERO(ssc->ses_objmap, ssc->ses_nobjects * sizeof (encobj));
1549 
1550 	r = 0;
1551 	/*
1552 	 * Note that this is all arranged for the convenience
1553 	 * in later fetches of status.
1554 	 */
1555 	for (i = 0; i < cc->Nfans; i++)
1556 		ssc->ses_objmap[r++].enctype = SESTYP_FAN;
1557 	cc->pwroff = (uint8_t) r;
1558 	for (i = 0; i < cc->Npwr; i++)
1559 		ssc->ses_objmap[r++].enctype = SESTYP_POWER;
1560 	for (i = 0; i < cc->DoorLock; i++)
1561 		ssc->ses_objmap[r++].enctype = SESTYP_DOORLOCK;
1562 	for (i = 0; i < cc->Nspkrs; i++)
1563 		ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1564 	for (i = 0; i < cc->Ntherm; i++)
1565 		ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1566 	for (i = 0; i < NPSEUDO_THERM; i++)
1567 		ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1568 	ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1569 	cc->slotoff = (uint8_t) r;
1570 	for (i = 0; i < cc->Nslots; i++)
1571 		ssc->ses_objmap[r++].enctype = SESTYP_DEVICE;
1572 	return (0);
1573 }
1574 
1575 static int
1576 safte_init_enc(ses_softc_t *ssc)
1577 {
1578 	int err, amt;
1579 	char *sdata;
1580 	static char cdb0[6] = { SEND_DIAGNOSTIC };
1581 	static char cdb[10] =
1582 	    { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
1583 
1584 	sdata = SES_MALLOC(SAFT_SCRATCH);
1585 	if (sdata == NULL)
1586 		return (ENOMEM);
1587 
1588 	err = ses_runcmd(ssc, cdb0, 6, NULL, 0);
1589 	if (err) {
1590 		SES_FREE(sdata, SAFT_SCRATCH);
1591 		return (err);
1592 	}
1593 	sdata[0] = SAFTE_WT_GLOBAL;
1594 	MEMZERO(&sdata[1], 15);
1595 	amt = -SAFT_SCRATCH;
1596 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1597 	SES_FREE(sdata, SAFT_SCRATCH);
1598 	return (err);
1599 }
1600 
1601 static int
1602 safte_get_encstat(ses_softc_t *ssc, int slpflg)
1603 {
1604 	return (safte_rdstat(ssc, slpflg));
1605 }
1606 
1607 static int
1608 safte_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflg)
1609 {
1610 	struct scfg *cc = ssc->ses_private;
1611 	if (cc == NULL)
1612 		return (0);
1613 	/*
1614 	 * Since SAF-TE devices aren't necessarily sticky in terms
1615 	 * of state, make our soft copy of enclosure status 'sticky'-
1616 	 * that is, things set in enclosure status stay set (as implied
1617 	 * by conditions set in reading object status) until cleared.
1618 	 */
1619 	ssc->ses_encstat &= ~ALL_ENC_STAT;
1620 	ssc->ses_encstat |= (encstat & ALL_ENC_STAT);
1621 	ssc->ses_encstat |= ENCI_SVALID;
1622 	cc->flag1 &= ~(SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL|SAFT_FLG1_GLOBWARN);
1623 	if ((encstat & (SES_ENCSTAT_CRITICAL|SES_ENCSTAT_UNRECOV)) != 0) {
1624 		cc->flag1 |= SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL;
1625 	} else if ((encstat & SES_ENCSTAT_NONCRITICAL) != 0) {
1626 		cc->flag1 |= SAFT_FLG1_GLOBWARN;
1627 	}
1628 	return (wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slpflg));
1629 }
1630 
1631 static int
1632 safte_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflg)
1633 {
1634 	int i = (int)obp->obj_id;
1635 
1636 	if ((ssc->ses_encstat & ENCI_SVALID) == 0 ||
1637 	    (ssc->ses_objmap[i].svalid) == 0) {
1638 		int err = safte_rdstat(ssc, slpflg);
1639 		if (err)
1640 			return (err);
1641 	}
1642 	obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
1643 	obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
1644 	obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
1645 	obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
1646 	return (0);
1647 }
1648 
1649 
1650 static int
1651 safte_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slp)
1652 {
1653 	int idx, err;
1654 	encobj *ep;
1655 	struct scfg *cc;
1656 
1657 
1658 	SES_VLOG(ssc, "safte_set_objstat(%d): %x %x %x %x\n",
1659 	    (int)obp->obj_id, obp->cstat[0], obp->cstat[1], obp->cstat[2],
1660 	    obp->cstat[3]);
1661 
1662 	/*
1663 	 * If this is clear, we don't do diddly.
1664 	 */
1665 	if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
1666 		return (0);
1667 	}
1668 
1669 	err = 0;
1670 	/*
1671 	 * Check to see if the common bits are set and do them first.
1672 	 */
1673 	if (obp->cstat[0] & ~SESCTL_CSEL) {
1674 		err = set_objstat_sel(ssc, obp, slp);
1675 		if (err)
1676 			return (err);
1677 	}
1678 
1679 	cc = ssc->ses_private;
1680 	if (cc == NULL)
1681 		return (0);
1682 
1683 	idx = (int)obp->obj_id;
1684 	ep = &ssc->ses_objmap[idx];
1685 
1686 	switch (ep->enctype) {
1687 	case SESTYP_DEVICE:
1688 	{
1689 		uint8_t slotop = 0;
1690 		/*
1691 		 * XXX: I should probably cache the previous state
1692 		 * XXX: of SESCTL_DEVOFF so that when it goes from
1693 		 * XXX: true to false I can then set PREPARE FOR OPERATION
1694 		 * XXX: flag in PERFORM SLOT OPERATION write buffer command.
1695 		 */
1696 		if (obp->cstat[2] & (SESCTL_RQSINS|SESCTL_RQSRMV)) {
1697 			slotop |= 0x2;
1698 		}
1699 		if (obp->cstat[2] & SESCTL_RQSID) {
1700 			slotop |= 0x4;
1701 		}
1702 		err = perf_slotop(ssc, (uint8_t) idx - (uint8_t) cc->slotoff,
1703 		    slotop, slp);
1704 		if (err)
1705 			return (err);
1706 		if (obp->cstat[3] & SESCTL_RQSFLT) {
1707 			ep->priv |= 0x2;
1708 		} else {
1709 			ep->priv &= ~0x2;
1710 		}
1711 		if (ep->priv & 0xc6) {
1712 			ep->priv &= ~0x1;
1713 		} else {
1714 			ep->priv |= 0x1;	/* no errors */
1715 		}
1716 		wrslot_stat(ssc, slp);
1717 		break;
1718 	}
1719 	case SESTYP_POWER:
1720 		if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1721 			cc->flag1 |= SAFT_FLG1_ENCPWRFAIL;
1722 		} else {
1723 			cc->flag1 &= ~SAFT_FLG1_ENCPWRFAIL;
1724 		}
1725 		err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1726 		    cc->flag2, 0, slp);
1727 		if (err)
1728 			return (err);
1729 		if (obp->cstat[3] & SESCTL_RQSTON) {
1730 			(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1731 				idx - cc->pwroff, 0, 0, slp);
1732 		} else {
1733 			(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1734 				idx - cc->pwroff, 0, 1, slp);
1735 		}
1736 		break;
1737 	case SESTYP_FAN:
1738 		if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1739 			cc->flag1 |= SAFT_FLG1_ENCFANFAIL;
1740 		} else {
1741 			cc->flag1 &= ~SAFT_FLG1_ENCFANFAIL;
1742 		}
1743 		err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1744 		    cc->flag2, 0, slp);
1745 		if (err)
1746 			return (err);
1747 		if (obp->cstat[3] & SESCTL_RQSTON) {
1748 			uint8_t fsp;
1749 			if ((obp->cstat[3] & 0x7) == 7) {
1750 				fsp = 4;
1751 			} else if ((obp->cstat[3] & 0x7) == 6) {
1752 				fsp = 3;
1753 			} else if ((obp->cstat[3] & 0x7) == 4) {
1754 				fsp = 2;
1755 			} else {
1756 				fsp = 1;
1757 			}
1758 			(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, fsp, 0, slp);
1759 		} else {
1760 			(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
1761 		}
1762 		break;
1763 	case SESTYP_DOORLOCK:
1764 		if (obp->cstat[3] & 0x1) {
1765 			cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
1766 		} else {
1767 			cc->flag2 |= SAFT_FLG2_LOCKDOOR;
1768 		}
1769 		(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1770 		    cc->flag2, 0, slp);
1771 		break;
1772 	case SESTYP_ALARM:
1773 		/*
1774 		 * On all nonzero but the 'muted' bit, we turn on the alarm,
1775 		 */
1776 		obp->cstat[3] &= ~0xa;
1777 		if (obp->cstat[3] & 0x40) {
1778 			cc->flag2 &= ~SAFT_FLG1_ALARM;
1779 		} else if (obp->cstat[3] != 0) {
1780 			cc->flag2 |= SAFT_FLG1_ALARM;
1781 		} else {
1782 			cc->flag2 &= ~SAFT_FLG1_ALARM;
1783 		}
1784 		ep->priv = obp->cstat[3];
1785 		(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1786 			cc->flag2, 0, slp);
1787 		break;
1788 	default:
1789 		break;
1790 	}
1791 	ep->svalid = 0;
1792 	return (0);
1793 }
1794 
1795 static int
1796 safte_getconfig(ses_softc_t *ssc)
1797 {
1798 	struct scfg *cfg;
1799 	int err, amt;
1800 	char *sdata;
1801 	static char cdb[10] =
1802 	    { READ_BUFFER, 1, SAFTE_RD_RDCFG, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
1803 
1804 	cfg = ssc->ses_private;
1805 	if (cfg == NULL)
1806 		return (ENXIO);
1807 
1808 	sdata = SES_MALLOC(SAFT_SCRATCH);
1809 	if (sdata == NULL)
1810 		return (ENOMEM);
1811 
1812 	amt = SAFT_SCRATCH;
1813 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1814 	if (err) {
1815 		SES_FREE(sdata, SAFT_SCRATCH);
1816 		return (err);
1817 	}
1818 	amt = SAFT_SCRATCH - amt;
1819 	if (amt < 6) {
1820 		SES_LOG(ssc, "too little data (%d) for configuration\n", amt);
1821 		SES_FREE(sdata, SAFT_SCRATCH);
1822 		return (EIO);
1823 	}
1824 	SES_VLOG(ssc, "Nfans %d Npwr %d Nslots %d Lck %d Ntherm %d Nspkrs %d\n",
1825 	    sdata[0], sdata[1], sdata[2], sdata[3], sdata[4], sdata[5]);
1826 	cfg->Nfans = sdata[0];
1827 	cfg->Npwr = sdata[1];
1828 	cfg->Nslots = sdata[2];
1829 	cfg->DoorLock = sdata[3];
1830 	cfg->Ntherm = sdata[4];
1831 	cfg->Nspkrs = sdata[5];
1832 	cfg->Nalarm = NPSEUDO_ALARM;
1833 	SES_FREE(sdata, SAFT_SCRATCH);
1834 	return (0);
1835 }
1836 
1837 static int
1838 safte_rdstat(ses_softc_t *ssc, int slpflg)
1839 {
1840 	int err, oid, r, i, hiwater, nitems, amt;
1841 	uint16_t tempflags;
1842 	size_t buflen;
1843 	uint8_t status, oencstat;
1844 	char *sdata, cdb[10];
1845 	struct scfg *cc = ssc->ses_private;
1846 
1847 
1848 	/*
1849 	 * The number of objects overstates things a bit,
1850 	 * both for the bogus 'thermometer' entries and
1851 	 * the drive status (which isn't read at the same
1852 	 * time as the enclosure status), but that's okay.
1853 	 */
1854 	buflen = 4 * cc->Nslots;
1855 	if (ssc->ses_nobjects > buflen)
1856 		buflen = ssc->ses_nobjects;
1857 	sdata = SES_MALLOC(buflen);
1858 	if (sdata == NULL)
1859 		return (ENOMEM);
1860 
1861 	cdb[0] = READ_BUFFER;
1862 	cdb[1] = 1;
1863 	cdb[2] = SAFTE_RD_RDESTS;
1864 	cdb[3] = 0;
1865 	cdb[4] = 0;
1866 	cdb[5] = 0;
1867 	cdb[6] = 0;
1868 	cdb[7] = (buflen >> 8) & 0xff;
1869 	cdb[8] = buflen & 0xff;
1870 	cdb[9] = 0;
1871 	amt = buflen;
1872 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1873 	if (err) {
1874 		SES_FREE(sdata, buflen);
1875 		return (err);
1876 	}
1877 	hiwater = buflen - amt;
1878 
1879 
1880 	/*
1881 	 * invalidate all status bits.
1882 	 */
1883 	for (i = 0; i < ssc->ses_nobjects; i++)
1884 		ssc->ses_objmap[i].svalid = 0;
1885 	oencstat = ssc->ses_encstat & ALL_ENC_STAT;
1886 	ssc->ses_encstat = 0;
1887 
1888 
1889 	/*
1890 	 * Now parse returned buffer.
1891 	 * If we didn't get enough data back,
1892 	 * that's considered a fatal error.
1893 	 */
1894 	oid = r = 0;
1895 
1896 	for (nitems = i = 0; i < cc->Nfans; i++) {
1897 		SAFT_BAIL(r, hiwater, sdata, buflen);
1898 		/*
1899 		 * 0 = Fan Operational
1900 		 * 1 = Fan is malfunctioning
1901 		 * 2 = Fan is not present
1902 		 * 0x80 = Unknown or Not Reportable Status
1903 		 */
1904 		ssc->ses_objmap[oid].encstat[1] = 0;	/* resvd */
1905 		ssc->ses_objmap[oid].encstat[2] = 0;	/* resvd */
1906 		switch ((int)(uint8_t)sdata[r]) {
1907 		case 0:
1908 			nitems++;
1909 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1910 			/*
1911 			 * We could get fancier and cache
1912 			 * fan speeds that we have set, but
1913 			 * that isn't done now.
1914 			 */
1915 			ssc->ses_objmap[oid].encstat[3] = 7;
1916 			break;
1917 
1918 		case 1:
1919 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1920 			/*
1921 			 * FAIL and FAN STOPPED synthesized
1922 			 */
1923 			ssc->ses_objmap[oid].encstat[3] = 0x40;
1924 			/*
1925 			 * Enclosure marked with CRITICAL error
1926 			 * if only one fan or no thermometers,
1927 			 * else the NONCRITICAL error is set.
1928 			 */
1929 			if (cc->Nfans == 1 || cc->Ntherm == 0)
1930 				ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1931 			else
1932 				ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1933 			break;
1934 		case 2:
1935 			ssc->ses_objmap[oid].encstat[0] =
1936 			    SES_OBJSTAT_NOTINSTALLED;
1937 			ssc->ses_objmap[oid].encstat[3] = 0;
1938 			/*
1939 			 * Enclosure marked with CRITICAL error
1940 			 * if only one fan or no thermometers,
1941 			 * else the NONCRITICAL error is set.
1942 			 */
1943 			if (cc->Nfans == 1)
1944 				ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1945 			else
1946 				ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1947 			break;
1948 		case 0x80:
1949 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1950 			ssc->ses_objmap[oid].encstat[3] = 0;
1951 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
1952 			break;
1953 		default:
1954 			ssc->ses_objmap[oid].encstat[0] =
1955 			    SES_OBJSTAT_UNSUPPORTED;
1956 			SES_LOG(ssc, "Unknown fan%d status 0x%x\n", i,
1957 			    sdata[r] & 0xff);
1958 			break;
1959 		}
1960 		ssc->ses_objmap[oid++].svalid = 1;
1961 		r++;
1962 	}
1963 
1964 	/*
1965 	 * No matter how you cut it, no cooling elements when there
1966 	 * should be some there is critical.
1967 	 */
1968 	if (cc->Nfans && nitems == 0) {
1969 		ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1970 	}
1971 
1972 
1973 	for (i = 0; i < cc->Npwr; i++) {
1974 		SAFT_BAIL(r, hiwater, sdata, buflen);
1975 		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1976 		ssc->ses_objmap[oid].encstat[1] = 0;	/* resvd */
1977 		ssc->ses_objmap[oid].encstat[2] = 0;	/* resvd */
1978 		ssc->ses_objmap[oid].encstat[3] = 0x20;	/* requested on */
1979 		switch ((uint8_t)sdata[r]) {
1980 		case 0x00:	/* pws operational and on */
1981 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1982 			break;
1983 		case 0x01:	/* pws operational and off */
1984 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1985 			ssc->ses_objmap[oid].encstat[3] = 0x10;
1986 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
1987 			break;
1988 		case 0x10:	/* pws is malfunctioning and commanded on */
1989 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1990 			ssc->ses_objmap[oid].encstat[3] = 0x61;
1991 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1992 			break;
1993 
1994 		case 0x11:	/* pws is malfunctioning and commanded off */
1995 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
1996 			ssc->ses_objmap[oid].encstat[3] = 0x51;
1997 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1998 			break;
1999 		case 0x20:	/* pws is not present */
2000 			ssc->ses_objmap[oid].encstat[0] =
2001 			    SES_OBJSTAT_NOTINSTALLED;
2002 			ssc->ses_objmap[oid].encstat[3] = 0;
2003 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
2004 			break;
2005 		case 0x21:	/* pws is present */
2006 			/*
2007 			 * This is for enclosures that cannot tell whether the
2008 			 * device is on or malfunctioning, but know that it is
2009 			 * present. Just fall through.
2010 			 */
2011 			/* FALLTHROUGH */
2012 		case 0x80:	/* Unknown or Not Reportable Status */
2013 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2014 			ssc->ses_objmap[oid].encstat[3] = 0;
2015 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
2016 			break;
2017 		default:
2018 			SES_LOG(ssc, "unknown power supply %d status (0x%x)\n",
2019 			    i, sdata[r] & 0xff);
2020 			break;
2021 		}
2022 		ssc->ses_objmap[oid++].svalid = 1;
2023 		r++;
2024 	}
2025 
2026 	/*
2027 	 * Skip over Slot SCSI IDs
2028 	 */
2029 	r += cc->Nslots;
2030 
2031 	/*
2032 	 * We always have doorlock status, no matter what,
2033 	 * but we only save the status if we have one.
2034 	 */
2035 	SAFT_BAIL(r, hiwater, sdata, buflen);
2036 	if (cc->DoorLock) {
2037 		/*
2038 		 * 0 = Door Locked
2039 		 * 1 = Door Unlocked, or no Lock Installed
2040 		 * 0x80 = Unknown or Not Reportable Status
2041 		 */
2042 		ssc->ses_objmap[oid].encstat[1] = 0;
2043 		ssc->ses_objmap[oid].encstat[2] = 0;
2044 		switch ((uint8_t)sdata[r]) {
2045 		case 0:
2046 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2047 			ssc->ses_objmap[oid].encstat[3] = 0;
2048 			break;
2049 		case 1:
2050 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2051 			ssc->ses_objmap[oid].encstat[3] = 1;
2052 			break;
2053 		case 0x80:
2054 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2055 			ssc->ses_objmap[oid].encstat[3] = 0;
2056 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
2057 			break;
2058 		default:
2059 			ssc->ses_objmap[oid].encstat[0] =
2060 			    SES_OBJSTAT_UNSUPPORTED;
2061 			SES_LOG(ssc, "unknown lock status 0x%x\n",
2062 			    sdata[r] & 0xff);
2063 			break;
2064 		}
2065 		ssc->ses_objmap[oid++].svalid = 1;
2066 	}
2067 	r++;
2068 
2069 	/*
2070 	 * We always have speaker status, no matter what,
2071 	 * but we only save the status if we have one.
2072 	 */
2073 	SAFT_BAIL(r, hiwater, sdata, buflen);
2074 	if (cc->Nspkrs) {
2075 		ssc->ses_objmap[oid].encstat[1] = 0;
2076 		ssc->ses_objmap[oid].encstat[2] = 0;
2077 		if (sdata[r] == 1) {
2078 			/*
2079 			 * We need to cache tone urgency indicators.
2080 			 * Someday.
2081 			 */
2082 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
2083 			ssc->ses_objmap[oid].encstat[3] = 0x8;
2084 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2085 		} else if (sdata[r] == 0) {
2086 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2087 			ssc->ses_objmap[oid].encstat[3] = 0;
2088 		} else {
2089 			ssc->ses_objmap[oid].encstat[0] =
2090 			    SES_OBJSTAT_UNSUPPORTED;
2091 			ssc->ses_objmap[oid].encstat[3] = 0;
2092 			SES_LOG(ssc, "unknown spkr status 0x%x\n",
2093 			    sdata[r] & 0xff);
2094 		}
2095 		ssc->ses_objmap[oid++].svalid = 1;
2096 	}
2097 	r++;
2098 
2099 	for (i = 0; i < cc->Ntherm; i++) {
2100 		SAFT_BAIL(r, hiwater, sdata, buflen);
2101 		/*
2102 		 * Status is a range from -10 to 245 deg Celsius,
2103 		 * which we need to normalize to -20 to -245 according
2104 		 * to the latest SCSI spec, which makes little
2105 		 * sense since this would overflow an 8bit value.
2106 		 * Well, still, the base normalization is -20,
2107 		 * not -10, so we have to adjust.
2108 		 *
2109 		 * So what's over and under temperature?
2110 		 * Hmm- we'll state that 'normal' operating
2111 		 * is 10 to 40 deg Celsius.
2112 		 */
2113 
2114 		/*
2115 		 * Actually.... All of the units that people out in the world
2116 		 * seem to have do not come even close to setting a value that
2117 		 * complies with this spec.
2118 		 *
2119 		 * The closest explanation I could find was in an
2120 		 * LSI-Logic manual, which seemed to indicate that
2121 		 * this value would be set by whatever the I2C code
2122 		 * would interpolate from the output of an LM75
2123 		 * temperature sensor.
2124 		 *
2125 		 * This means that it is impossible to use the actual
2126 		 * numeric value to predict anything. But we don't want
2127 		 * to lose the value. So, we'll propagate the *uncorrected*
2128 		 * value and set SES_OBJSTAT_NOTAVAIL. We'll depend on the
2129 		 * temperature flags for warnings.
2130 		 */
2131 		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NOTAVAIL;
2132 		ssc->ses_objmap[oid].encstat[1] = 0;
2133 		ssc->ses_objmap[oid].encstat[2] = sdata[r];
2134 		ssc->ses_objmap[oid].encstat[3] = 0;
2135 		ssc->ses_objmap[oid++].svalid = 1;
2136 		r++;
2137 	}
2138 
2139 	/*
2140 	 * Now, for "pseudo" thermometers, we have two bytes
2141 	 * of information in enclosure status- 16 bits. Actually,
2142 	 * the MSB is a single TEMP ALERT flag indicating whether
2143 	 * any other bits are set, but, thanks to fuzzy thinking,
2144 	 * in the SAF-TE spec, this can also be set even if no
2145 	 * other bits are set, thus making this really another
2146 	 * binary temperature sensor.
2147 	 */
2148 
2149 	SAFT_BAIL(r, hiwater, sdata, buflen);
2150 	tempflags = sdata[r++];
2151 	SAFT_BAIL(r, hiwater, sdata, buflen);
2152 	tempflags |= (tempflags << 8) | sdata[r++];
2153 
2154 	for (i = 0; i < NPSEUDO_THERM; i++) {
2155 		ssc->ses_objmap[oid].encstat[1] = 0;
2156 		if (tempflags & (1 << (NPSEUDO_THERM - i - 1))) {
2157 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2158 			ssc->ses_objmap[4].encstat[2] = 0xff;
2159 			/*
2160 			 * Set 'over temperature' failure.
2161 			 */
2162 			ssc->ses_objmap[oid].encstat[3] = 8;
2163 			ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2164 		} else {
2165 			/*
2166 			 * We used to say 'not available' and synthesize a
2167 			 * nominal 30 deg (C)- that was wrong. Actually,
2168 			 * Just say 'OK', and use the reserved value of
2169 			 * zero.
2170 			 */
2171 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2172 			ssc->ses_objmap[oid].encstat[2] = 0;
2173 			ssc->ses_objmap[oid].encstat[3] = 0;
2174 		}
2175 		ssc->ses_objmap[oid++].svalid = 1;
2176 	}
2177 
2178 	/*
2179 	 * Get alarm status.
2180 	 */
2181 	ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2182 	ssc->ses_objmap[oid].encstat[3] = ssc->ses_objmap[oid].priv;
2183 	ssc->ses_objmap[oid++].svalid = 1;
2184 
2185 	/*
2186 	 * Now get drive slot status
2187 	 */
2188 	cdb[2] = SAFTE_RD_RDDSTS;
2189 	amt = buflen;
2190 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2191 	if (err) {
2192 		SES_FREE(sdata, buflen);
2193 		return (err);
2194 	}
2195 	hiwater = buflen - amt;
2196 	for (r = i = 0; i < cc->Nslots; i++, r += 4) {
2197 		SAFT_BAIL(r+3, hiwater, sdata, buflen);
2198 		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNSUPPORTED;
2199 		ssc->ses_objmap[oid].encstat[1] = (uint8_t) i;
2200 		ssc->ses_objmap[oid].encstat[2] = 0;
2201 		ssc->ses_objmap[oid].encstat[3] = 0;
2202 		status = sdata[r+3];
2203 		if ((status & 0x1) == 0) {	/* no device */
2204 			ssc->ses_objmap[oid].encstat[0] =
2205 			    SES_OBJSTAT_NOTINSTALLED;
2206 		} else {
2207 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2208 		}
2209 		if (status & 0x2) {
2210 			ssc->ses_objmap[oid].encstat[2] = 0x8;
2211 		}
2212 		if ((status & 0x4) == 0) {
2213 			ssc->ses_objmap[oid].encstat[3] = 0x10;
2214 		}
2215 		ssc->ses_objmap[oid++].svalid = 1;
2216 	}
2217 	/* see comment below about sticky enclosure status */
2218 	ssc->ses_encstat |= ENCI_SVALID | oencstat;
2219 	SES_FREE(sdata, buflen);
2220 	return (0);
2221 }
2222 
2223 static int
2224 set_objstat_sel(ses_softc_t *ssc, ses_objstat *obp, int slp)
2225 {
2226 	int idx;
2227 	encobj *ep;
2228 	struct scfg *cc = ssc->ses_private;
2229 
2230 	if (cc == NULL)
2231 		return (0);
2232 
2233 	idx = (int)obp->obj_id;
2234 	ep = &ssc->ses_objmap[idx];
2235 
2236 	switch (ep->enctype) {
2237 	case SESTYP_DEVICE:
2238 		if (obp->cstat[0] & SESCTL_PRDFAIL) {
2239 			ep->priv |= 0x40;
2240 		}
2241 		/* SESCTL_RSTSWAP has no correspondence in SAF-TE */
2242 		if (obp->cstat[0] & SESCTL_DISABLE) {
2243 			ep->priv |= 0x80;
2244 			/*
2245 			 * Hmm. Try to set the 'No Drive' flag.
2246 			 * Maybe that will count as a 'disable'.
2247 			 */
2248 		}
2249 		if (ep->priv & 0xc6) {
2250 			ep->priv &= ~0x1;
2251 		} else {
2252 			ep->priv |= 0x1;	/* no errors */
2253 		}
2254 		wrslot_stat(ssc, slp);
2255 		break;
2256 	case SESTYP_POWER:
2257 		/*
2258 		 * Okay- the only one that makes sense here is to
2259 		 * do the 'disable' for a power supply.
2260 		 */
2261 		if (obp->cstat[0] & SESCTL_DISABLE) {
2262 			(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
2263 				idx - cc->pwroff, 0, 0, slp);
2264 		}
2265 		break;
2266 	case SESTYP_FAN:
2267 		/*
2268 		 * Okay- the only one that makes sense here is to
2269 		 * set fan speed to zero on disable.
2270 		 */
2271 		if (obp->cstat[0] & SESCTL_DISABLE) {
2272 			/* remember- fans are the first items, so idx works */
2273 			(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
2274 		}
2275 		break;
2276 	case SESTYP_DOORLOCK:
2277 		/*
2278 		 * Well, we can 'disable' the lock.
2279 		 */
2280 		if (obp->cstat[0] & SESCTL_DISABLE) {
2281 			cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
2282 			(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2283 				cc->flag2, 0, slp);
2284 		}
2285 		break;
2286 	case SESTYP_ALARM:
2287 		/*
2288 		 * Well, we can 'disable' the alarm.
2289 		 */
2290 		if (obp->cstat[0] & SESCTL_DISABLE) {
2291 			cc->flag2 &= ~SAFT_FLG1_ALARM;
2292 			ep->priv |= 0x40;	/* Muted */
2293 			(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2294 				cc->flag2, 0, slp);
2295 		}
2296 		break;
2297 	default:
2298 		break;
2299 	}
2300 	ep->svalid = 0;
2301 	return (0);
2302 }
2303 
2304 /*
2305  * This function handles all of the 16 byte WRITE BUFFER commands.
2306  */
2307 static int
2308 wrbuf16(ses_softc_t *ssc, uint8_t op, uint8_t b1, uint8_t b2,
2309     uint8_t b3, int slp)
2310 {
2311 	int err, amt;
2312 	char *sdata;
2313 	struct scfg *cc = ssc->ses_private;
2314 	static char cdb[10] = { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
2315 
2316 	if (cc == NULL)
2317 		return (0);
2318 
2319 	sdata = SES_MALLOC(16);
2320 	if (sdata == NULL)
2321 		return (ENOMEM);
2322 
2323 	SES_VLOG(ssc, "saf_wrbuf16 %x %x %x %x\n", op, b1, b2, b3);
2324 
2325 	sdata[0] = op;
2326 	sdata[1] = b1;
2327 	sdata[2] = b2;
2328 	sdata[3] = b3;
2329 	MEMZERO(&sdata[4], 12);
2330 	amt = -16;
2331 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2332 	SES_FREE(sdata, 16);
2333 	return (err);
2334 }
2335 
2336 /*
2337  * This function updates the status byte for the device slot described.
2338  *
2339  * Since this is an optional SAF-TE command, there's no point in
2340  * returning an error.
2341  */
2342 static void
2343 wrslot_stat(ses_softc_t *ssc, int slp)
2344 {
2345 	int i, amt;
2346 	encobj *ep;
2347 	char cdb[10], *sdata;
2348 	struct scfg *cc = ssc->ses_private;
2349 
2350 	if (cc == NULL)
2351 		return;
2352 
2353 	SES_VLOG(ssc, "saf_wrslot\n");
2354 	cdb[0] = WRITE_BUFFER;
2355 	cdb[1] = 1;
2356 	cdb[2] = 0;
2357 	cdb[3] = 0;
2358 	cdb[4] = 0;
2359 	cdb[5] = 0;
2360 	cdb[6] = 0;
2361 	cdb[7] = 0;
2362 	cdb[8] = cc->Nslots * 3 + 1;
2363 	cdb[9] = 0;
2364 
2365 	sdata = SES_MALLOC(cc->Nslots * 3 + 1);
2366 	if (sdata == NULL)
2367 		return;
2368 	MEMZERO(sdata, cc->Nslots * 3 + 1);
2369 
2370 	sdata[0] = SAFTE_WT_DSTAT;
2371 	for (i = 0; i < cc->Nslots; i++) {
2372 		ep = &ssc->ses_objmap[cc->slotoff + i];
2373 		SES_VLOG(ssc, "saf_wrslot %d <- %x\n", i, ep->priv & 0xff);
2374 		sdata[1 + (3 * i)] = ep->priv & 0xff;
2375 	}
2376 	amt = -(cc->Nslots * 3 + 1);
2377 	(void) ses_runcmd(ssc, cdb, 10, sdata, &amt);
2378 	SES_FREE(sdata, cc->Nslots * 3 + 1);
2379 }
2380 
2381 /*
2382  * This function issues the "PERFORM SLOT OPERATION" command.
2383  */
2384 static int
2385 perf_slotop(ses_softc_t *ssc, uint8_t slot, uint8_t opflag, int slp)
2386 {
2387 	int err, amt;
2388 	char *sdata;
2389 	struct scfg *cc = ssc->ses_private;
2390 	static char cdb[10] =
2391 	    { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
2392 
2393 	if (cc == NULL)
2394 		return (0);
2395 
2396 	sdata = SES_MALLOC(SAFT_SCRATCH);
2397 	if (sdata == NULL)
2398 		return (ENOMEM);
2399 	MEMZERO(sdata, SAFT_SCRATCH);
2400 
2401 	sdata[0] = SAFTE_WT_SLTOP;
2402 	sdata[1] = slot;
2403 	sdata[2] = opflag;
2404 	SES_VLOG(ssc, "saf_slotop slot %d op %x\n", slot, opflag);
2405 	amt = -SAFT_SCRATCH;
2406 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2407 	SES_FREE(sdata, SAFT_SCRATCH);
2408 	return (err);
2409 }
2410