xref: /netbsd-src/sys/dev/scsipi/ses.c (revision 06be8101a16cc95f40783b3cb7afd12112103a9a)
1 /*	$NetBSD: ses.c,v 1.12 2001/11/13 06:56:41 lukem Exp $ */
2 /*
3  * Copyright (C) 2000 National Aeronautics & Space Administration
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. The name of the author may not be used to endorse or promote products
12  *    derived from this software without specific prior written permission
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24  *
25  * Author:	mjacob@nas.nasa.gov
26  */
27 
28 #include <sys/cdefs.h>
29 __KERNEL_RCSID(0, "$NetBSD: ses.c,v 1.12 2001/11/13 06:56:41 lukem Exp $");
30 
31 #include "opt_scsi.h"
32 
33 #include <sys/types.h>
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/kernel.h>
37 #include <sys/file.h>
38 #include <sys/stat.h>
39 #include <sys/ioctl.h>
40 #include <sys/scsiio.h>
41 #include <sys/buf.h>
42 #include <sys/uio.h>
43 #include <sys/malloc.h>
44 #include <sys/errno.h>
45 #include <sys/device.h>
46 #include <sys/disklabel.h>
47 #include <sys/disk.h>
48 #include <sys/proc.h>
49 #include <sys/conf.h>
50 #include <sys/vnode.h>
51 #include <machine/stdarg.h>
52 
53 #include <dev/scsipi/scsipi_all.h>
54 #include <dev/scsipi/scsi_all.h>
55 #include <dev/scsipi/scsipi_disk.h>
56 #include <dev/scsipi/scsi_disk.h>
57 #include <dev/scsipi/scsiconf.h>
58 #include <dev/scsipi/ses.h>
59 
60 /*
61  * Platform Independent Driver Internal Definitions for SES devices.
62  */
63 typedef enum {
64 	SES_NONE,
65 	SES_SES_SCSI2,
66 	SES_SES,
67 	SES_SES_PASSTHROUGH,
68 	SES_SEN,
69 	SES_SAFT
70 } enctyp;
71 
72 struct ses_softc;
73 typedef struct ses_softc ses_softc_t;
74 typedef struct {
75 	int (*softc_init) 	__P((ses_softc_t *, int));
76 	int (*init_enc)		__P((ses_softc_t *));
77 	int (*get_encstat)	__P((ses_softc_t *, int));
78 	int (*set_encstat)	__P((ses_softc_t *, ses_encstat, int));
79 	int (*get_objstat)	__P((ses_softc_t *, ses_objstat *, int));
80 	int (*set_objstat)	__P((ses_softc_t *, ses_objstat *, int));
81 } encvec;
82 
83 #define	ENCI_SVALID	0x80
84 
85 typedef struct {
86 	uint32_t
87 		enctype	: 8,		/* enclosure type */
88 		subenclosure : 8,	/* subenclosure id */
89 		svalid	: 1,		/* enclosure information valid */
90 		priv	: 15;		/* private data, per object */
91 	uint8_t	encstat[4];	/* state && stats */
92 } encobj;
93 
94 #define	SEN_ID		"UNISYS           SUN_SEN"
95 #define	SEN_ID_LEN	24
96 
97 static enctyp ses_type __P((struct scsipi_inquiry_data *));
98 
99 
100 /* Forward reference to Enclosure Functions */
101 static int ses_softc_init __P((ses_softc_t *, int));
102 static int ses_init_enc __P((ses_softc_t *));
103 static int ses_get_encstat __P((ses_softc_t *, int));
104 static int ses_set_encstat __P((ses_softc_t *, uint8_t, int));
105 static int ses_get_objstat __P((ses_softc_t *, ses_objstat *, int));
106 static int ses_set_objstat __P((ses_softc_t *, ses_objstat *, int));
107 
108 static int safte_softc_init __P((ses_softc_t *, int));
109 static int safte_init_enc __P((ses_softc_t *));
110 static int safte_get_encstat __P((ses_softc_t *, int));
111 static int safte_set_encstat __P((ses_softc_t *, uint8_t, int));
112 static int safte_get_objstat __P((ses_softc_t *, ses_objstat *, int));
113 static int safte_set_objstat __P((ses_softc_t *, ses_objstat *, int));
114 
115 /*
116  * Platform implementation defines/functions for SES internal kernel stuff
117  */
118 
119 #define	STRNCMP			strncmp
120 #define	PRINTF			printf
121 #define	SES_LOG			ses_log
122 #if	defined(DEBUG) || defined(SCSIDEBUG)
123 #define	SES_VLOG		ses_log
124 #else
125 #define	SES_VLOG		if (0) ses_log
126 #endif
127 #define	SES_MALLOC(amt)		malloc(amt, M_DEVBUF, M_NOWAIT)
128 #define	SES_FREE(ptr, amt)	free(ptr, M_DEVBUF)
129 #define	MEMZERO(dest, amt)	memset(dest, 0, amt)
130 #define	MEMCPY(dest, src, amt)	memcpy(dest, src, amt)
131 #define	RECEIVE_DIAGNOSTIC	0x1c
132 #define	SEND_DIAGNOSTIC		0x1d
133 #define	WRITE_BUFFER		0x3b
134 #define	READ_BUFFER		0x3c
135 
136 int sesopen __P((dev_t, int, int, struct proc *));
137 int sesclose __P((dev_t, int, int, struct proc *));
138 int sesioctl __P((dev_t, u_long, caddr_t, int, struct proc *));
139 
140 static int ses_runcmd	__P((struct ses_softc *, char *, int, char *, int *));
141 static void ses_log	__P((struct ses_softc *, const char *, ...))
142      __attribute__((__format__(__printf__, 2, 3)));
143 
144 /*
145  * General NetBSD kernel stuff.
146  */
147 
148 struct ses_softc {
149 	struct device	sc_device;
150 	struct scsipi_periph *sc_periph;
151 	enctyp		ses_type;	/* type of enclosure */
152 	encvec		ses_vec;	/* vector to handlers */
153 	void *		ses_private;	/* per-type private data */
154 	encobj *	ses_objmap;	/* objects */
155 	u_int32_t	ses_nobjects;	/* number of objects */
156 	ses_encstat	ses_encstat;	/* overall status */
157 	u_int8_t	ses_flags;
158 };
159 #define	SES_FLAG_INVALID	0x01
160 #define	SES_FLAG_OPEN		0x02
161 #define	SES_FLAG_INITIALIZED	0x04
162 
163 #define SESUNIT(x)       (minor((x)))
164 
165 static int ses_match __P((struct device *, struct cfdata *, void *));
166 static void ses_attach __P((struct device *, struct device *, void *));
167 static enctyp ses_device_type __P((struct scsipibus_attach_args *));
168 
169 struct cfattach ses_ca = {
170 	sizeof (struct ses_softc), ses_match, ses_attach
171 };
172 extern struct cfdriver ses_cd;
173 
174 const struct scsipi_periphsw ses_switch = {
175 	NULL,
176 	NULL,
177 	NULL,
178 	NULL
179 };
180 
181 
182 int
183 ses_match(parent, match, aux)
184 	struct device *parent;
185 	struct cfdata *match;
186 	void *aux;
187 {
188 	struct scsipibus_attach_args *sa = aux;
189 
190 	switch (ses_device_type(sa)) {
191 	case SES_SES:
192 	case SES_SES_SCSI2:
193 	case SES_SEN:
194 	case SES_SAFT:
195 	case SES_SES_PASSTHROUGH:
196 		/*
197 		 * For these devices, it's a perfect match.
198 		 */
199 		return (24);
200 	default:
201 		return (0);
202 	}
203 }
204 
205 
206 /*
207  * Complete the attachment.
208  *
209  * We have to repeat the rerun of INQUIRY data as above because
210  * it's not until the return from the match routine that we have
211  * the softc available to set stuff in.
212  */
213 void
214 ses_attach(parent, self, aux)
215 	struct device *parent;
216 	struct device *self;
217 	void *aux;
218 {
219 	char *tname;
220 	struct ses_softc *softc = (void *)self;
221 	struct scsipibus_attach_args *sa = aux;
222 	struct scsipi_periph *periph = sa->sa_periph;
223 
224 	SC_DEBUG(periph, SCSIPI_DB2, ("ssattach: "));
225 	softc->sc_periph = periph;
226 	periph->periph_dev = &softc->sc_device;
227 	periph->periph_switch = &ses_switch;
228 	periph->periph_openings = 1;
229 
230 	softc->ses_type = ses_device_type(sa);
231 	switch (softc->ses_type) {
232 	case SES_SES:
233 	case SES_SES_SCSI2:
234         case SES_SES_PASSTHROUGH:
235 		softc->ses_vec.softc_init = ses_softc_init;
236 		softc->ses_vec.init_enc = ses_init_enc;
237 		softc->ses_vec.get_encstat = ses_get_encstat;
238 		softc->ses_vec.set_encstat = ses_set_encstat;
239 		softc->ses_vec.get_objstat = ses_get_objstat;
240 		softc->ses_vec.set_objstat = ses_set_objstat;
241 		break;
242         case SES_SAFT:
243 		softc->ses_vec.softc_init = safte_softc_init;
244 		softc->ses_vec.init_enc = safte_init_enc;
245 		softc->ses_vec.get_encstat = safte_get_encstat;
246 		softc->ses_vec.set_encstat = safte_set_encstat;
247 		softc->ses_vec.get_objstat = safte_get_objstat;
248 		softc->ses_vec.set_objstat = safte_set_objstat;
249 		break;
250         case SES_SEN:
251 		break;
252 	case SES_NONE:
253 	default:
254 		break;
255 	}
256 
257 	switch (softc->ses_type) {
258 	default:
259 	case SES_NONE:
260 		tname = "No SES device";
261 		break;
262 	case SES_SES_SCSI2:
263 		tname = "SCSI-2 SES Device";
264 		break;
265 	case SES_SES:
266 		tname = "SCSI-3 SES Device";
267 		break;
268         case SES_SES_PASSTHROUGH:
269 		tname = "SES Passthrough Device";
270 		break;
271         case SES_SEN:
272 		tname = "UNISYS SEN Device (NOT HANDLED YET)";
273 		break;
274         case SES_SAFT:
275 		tname = "SAF-TE Compliant Device";
276 		break;
277 	}
278 	printf("\n%s: %s\n", softc->sc_device.dv_xname, tname);
279 }
280 
281 
282 static enctyp
283 ses_device_type(sa)
284 	struct scsipibus_attach_args *sa;
285 {
286 	struct scsipi_inquiry_data *inqp = sa->sa_inqptr;
287 
288 	if (inqp == NULL)
289 		return (SES_NONE);
290 
291 	return (ses_type(inqp));
292 }
293 
294 int
295 sesopen(dev, flags, fmt, p)
296 	dev_t dev;
297 	int flags;
298 	int fmt;
299 	struct proc *p;
300 {
301 	struct ses_softc *softc;
302 	int error, unit;
303 
304 	unit = SESUNIT(dev);
305 	if (unit >= ses_cd.cd_ndevs)
306 		return (ENXIO);
307 	softc = ses_cd.cd_devs[unit];
308 	if (softc == NULL)
309 		return (ENXIO);
310 
311 	if (softc->ses_flags & SES_FLAG_INVALID) {
312 		error = ENXIO;
313 		goto out;
314 	}
315 	if (softc->ses_flags & SES_FLAG_OPEN) {
316 		error = EBUSY;
317 		goto out;
318 	}
319 	if (softc->ses_vec.softc_init == NULL) {
320 		error = ENXIO;
321 		goto out;
322 	}
323 	error = scsipi_adapter_addref(
324 	    softc->sc_periph->periph_channel->chan_adapter);
325 	if (error != 0)
326                 goto out;
327 
328 
329 	softc->ses_flags |= SES_FLAG_OPEN;
330 	if ((softc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
331 		error = (*softc->ses_vec.softc_init)(softc, 1);
332 		if (error)
333 			softc->ses_flags &= ~SES_FLAG_OPEN;
334 		else
335 			softc->ses_flags |= SES_FLAG_INITIALIZED;
336 	}
337 
338 out:
339 	return (error);
340 }
341 
342 int
343 sesclose(dev, flags, fmt, p)
344 	dev_t dev;
345 	int flags;
346 	int fmt;
347 	struct proc *p;
348 {
349 	struct ses_softc *softc;
350 	int unit;
351 
352 	unit = SESUNIT(dev);
353 	if (unit >= ses_cd.cd_ndevs)
354 		return (ENXIO);
355 	softc = ses_cd.cd_devs[unit];
356 	if (softc == NULL)
357 		return (ENXIO);
358 
359 	scsipi_wait_drain(softc->sc_periph);
360 	scsipi_adapter_delref(softc->sc_periph->periph_channel->chan_adapter);
361 	softc->ses_flags &= ~SES_FLAG_OPEN;
362 	return (0);
363 }
364 
365 int
366 sesioctl(dev, cmd, arg_addr, flag, p)
367 	dev_t dev;
368 	u_long cmd;
369 	caddr_t arg_addr;
370 	int flag;
371 	struct proc *p;
372 {
373 	ses_encstat tmp;
374 	ses_objstat objs;
375 	ses_object obj, *uobj;
376 	struct ses_softc *ssc = ses_cd.cd_devs[SESUNIT(dev)];
377 	void *addr;
378 	int error, i;
379 
380 
381 	if (arg_addr)
382 		addr = *((caddr_t *) arg_addr);
383 	else
384 		addr = NULL;
385 
386 	SC_DEBUG(ssc->sc_periph, SCSIPI_DB2, ("sesioctl 0x%lx ", cmd));
387 
388 	/*
389 	 * Now check to see whether we're initialized or not.
390 	 */
391 	if ((ssc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
392 		return (ENODEV);
393 	}
394 
395 	error = 0;
396 
397 	/*
398 	 * If this command can change the device's state,
399 	 * we must have the device open for writing.
400 	 */
401 	switch (cmd) {
402 	case SESIOC_GETNOBJ:
403 	case SESIOC_GETOBJMAP:
404 	case SESIOC_GETENCSTAT:
405 	case SESIOC_GETOBJSTAT:
406 		break;
407 	default:
408 		if ((flag & FWRITE) == 0) {
409 			return (EBADF);
410 		}
411 	}
412 
413 	switch (cmd) {
414 	case SESIOC_GETNOBJ:
415 		error = copyout(&ssc->ses_nobjects, addr,
416 		    sizeof (ssc->ses_nobjects));
417 		break;
418 
419 	case SESIOC_GETOBJMAP:
420 		for (uobj = addr, i = 0; i != ssc->ses_nobjects; i++, uobj++) {
421 			obj.obj_id = i;
422 			obj.subencid = ssc->ses_objmap[i].subenclosure;
423 			obj.object_type = ssc->ses_objmap[i].enctype;
424 			error = copyout(&obj, uobj, sizeof (ses_object));
425 			if (error) {
426 				break;
427 			}
428 		}
429 		break;
430 
431 	case SESIOC_GETENCSTAT:
432 		error = (*ssc->ses_vec.get_encstat)(ssc, 1);
433 		if (error)
434 			break;
435 		tmp = ssc->ses_encstat & ~ENCI_SVALID;
436 		error = copyout(&tmp, addr, sizeof (ses_encstat));
437 		ssc->ses_encstat = tmp;
438 		break;
439 
440 	case SESIOC_SETENCSTAT:
441 		error = copyin(addr, &tmp, sizeof (ses_encstat));
442 		if (error)
443 			break;
444 		error = (*ssc->ses_vec.set_encstat)(ssc, tmp, 1);
445 		break;
446 
447 	case SESIOC_GETOBJSTAT:
448 		error = copyin(addr, &objs, sizeof (ses_objstat));
449 		if (error)
450 			break;
451 		if (objs.obj_id >= ssc->ses_nobjects) {
452 			error = EINVAL;
453 			break;
454 		}
455 		error = (*ssc->ses_vec.get_objstat)(ssc, &objs, 1);
456 		if (error)
457 			break;
458 		error = copyout(&objs, addr, sizeof (ses_objstat));
459 		/*
460 		 * Always (for now) invalidate entry.
461 		 */
462 		ssc->ses_objmap[objs.obj_id].svalid = 0;
463 		break;
464 
465 	case SESIOC_SETOBJSTAT:
466 		error = copyin(addr, &objs, sizeof (ses_objstat));
467 		if (error)
468 			break;
469 
470 		if (objs.obj_id >= ssc->ses_nobjects) {
471 			error = EINVAL;
472 			break;
473 		}
474 		error = (*ssc->ses_vec.set_objstat)(ssc, &objs, 1);
475 
476 		/*
477 		 * Always (for now) invalidate entry.
478 		 */
479 		ssc->ses_objmap[objs.obj_id].svalid = 0;
480 		break;
481 
482 	case SESIOC_INIT:
483 
484 		error = (*ssc->ses_vec.init_enc)(ssc);
485 		break;
486 
487 	default:
488 		error = scsipi_do_ioctl(ssc->sc_periph,
489 			    dev, cmd, addr, flag, p);
490 		break;
491 	}
492 	return (error);
493 }
494 
495 static int
496 ses_runcmd(struct ses_softc *ssc, char *cdb, int cdbl, char *dptr, int *dlenp)
497 {
498 	struct scsipi_generic sgen;
499 	int dl, flg, error;
500 
501 	if (dptr) {
502 		if ((dl = *dlenp) < 0) {
503 			dl = -dl;
504 			flg = XS_CTL_DATA_OUT;
505 		} else {
506 			flg = XS_CTL_DATA_IN;
507 		}
508 	} else {
509 		dl = 0;
510 		flg = 0;
511 	}
512 
513 	if (cdbl > sizeof (struct scsipi_generic)) {
514 		cdbl = sizeof (struct scsipi_generic);
515 	}
516 	memcpy(&sgen, cdb, cdbl);
517 #ifndef	SCSIDEBUG
518 	flg |= XS_CTL_SILENT;
519 #endif
520 	error = scsipi_command(ssc->sc_periph, &sgen, cdbl,
521 	    (u_char *) dptr, dl, SCSIPIRETRIES, 30000, NULL, flg);
522 
523 	if (error == 0 && dptr)
524 		*dlenp = 0;
525 
526 	return (error);
527 }
528 
529 #ifdef	__STDC__
530 static void
531 ses_log(struct ses_softc *ssc, const char *fmt, ...)
532 {
533 	va_list ap;
534 
535 	printf("%s: ", ssc->sc_device.dv_xname);
536 	va_start(ap, fmt);
537 	vprintf(fmt, ap);
538 	va_end(ap);
539 }
540 #else
541 static void
542 ses_log(ssc, fmt, va_alist)
543 	struct ses_softc *ssc;
544 	char *fmt;
545 	va_dcl
546 {
547 	va_list ap;
548 
549 	printf("%s: ", ssc->sc_device.dv_xname);
550 	va_start(ap, fmt);
551 	vprintf(fmt, ap);
552 	va_end(ap);
553 }
554 #endif
555 
556 /*
557  * The code after this point runs on many platforms,
558  * so forgive the slightly awkward and nonconforming
559  * appearance.
560  */
561 
562 /*
563  * Is this a device that supports enclosure services?
564  *
565  * It's a a pretty simple ruleset- if it is device type 0x0D (13), it's
566  * an SES device. If it happens to be an old UNISYS SEN device, we can
567  * handle that too.
568  */
569 
570 #define	SAFTE_START	44
571 #define	SAFTE_END	50
572 #define	SAFTE_LEN	SAFTE_END-SAFTE_START
573 
574 static enctyp
575 ses_type(inqp)
576 	struct scsipi_inquiry_data *inqp;
577 {
578 	size_t	given_len = inqp->additional_length + 4;
579 
580 	if (given_len < 8+SEN_ID_LEN)
581 		return (SES_NONE);
582 
583 	if ((inqp->device & SID_TYPE) == T_ENCLOSURE) {
584 		if (STRNCMP(inqp->vendor, SEN_ID, SEN_ID_LEN) == 0) {
585 			return (SES_SEN);
586 		} else if ((inqp->version & SID_ANSII) > 2) {
587 			return (SES_SES);
588 		} else {
589 			return (SES_SES_SCSI2);
590 		}
591 		return (SES_NONE);
592 	}
593 
594 #ifdef	SES_ENABLE_PASSTHROUGH
595 	if ((inqp->flags2 & SID_EncServ) && (inqp->version & SID_ANSII) >= 2) {
596 		/*
597 		 * PassThrough Device.
598 		 */
599 		return (SES_SES_PASSTHROUGH);
600 	}
601 #endif
602 
603 	/*
604 	 * The comparison is short for a reason-
605 	 * some vendors were chopping it short.
606 	 */
607 
608 	if (given_len < SAFTE_END - 2) {
609 		return (SES_NONE);
610 	}
611 
612 	if (STRNCMP((char *)&inqp->vendor_specific[8], "SAF-TE",
613 			SAFTE_LEN - 2) == 0) {
614 		return (SES_SAFT);
615 	}
616 
617 	return (SES_NONE);
618 }
619 
620 /*
621  * SES Native Type Device Support
622  */
623 
624 /*
625  * SES Diagnostic Page Codes
626  */
627 
628 typedef enum {
629 	SesConfigPage = 0x1,
630 	SesControlPage,
631 #define	SesStatusPage SesControlPage
632 	SesHelpTxt,
633 	SesStringOut,
634 #define	SesStringIn	SesStringOut
635 	SesThresholdOut,
636 #define	SesThresholdIn SesThresholdOut
637 	SesArrayControl,
638 #define	SesArrayStatus	SesArrayControl
639 	SesElementDescriptor,
640 	SesShortStatus
641 } SesDiagPageCodes;
642 
643 /*
644  * minimal amounts
645  */
646 
647 /*
648  * Minimum amount of data, starting from byte 0, to have
649  * the config header.
650  */
651 #define	SES_CFGHDR_MINLEN	12
652 
653 /*
654  * Minimum amount of data, starting from byte 0, to have
655  * the config header and one enclosure header.
656  */
657 #define	SES_ENCHDR_MINLEN	48
658 
659 /*
660  * Take this value, subtract it from VEnclen and you know
661  * the length of the vendor unique bytes.
662  */
663 #define	SES_ENCHDR_VMIN		36
664 
665 /*
666  * SES Data Structures
667  */
668 
669 typedef struct {
670 	uint32_t GenCode;	/* Generation Code */
671 	uint8_t	Nsubenc;	/* Number of Subenclosures */
672 } SesCfgHdr;
673 
674 typedef struct {
675 	uint8_t	Subencid;	/* SubEnclosure Identifier */
676 	uint8_t	Ntypes;		/* # of supported types */
677 	uint8_t	VEnclen;	/* Enclosure Descriptor Length */
678 } SesEncHdr;
679 
680 typedef struct {
681 	uint8_t	encWWN[8];	/* XXX- Not Right Yet */
682 	uint8_t	encVid[8];
683 	uint8_t	encPid[16];
684 	uint8_t	encRev[4];
685 	uint8_t	encVen[1];
686 } SesEncDesc;
687 
688 typedef struct {
689 	uint8_t	enc_type;		/* type of element */
690 	uint8_t	enc_maxelt;		/* maximum supported */
691 	uint8_t	enc_subenc;		/* in SubEnc # N */
692 	uint8_t	enc_tlen;		/* Type Descriptor Text Length */
693 } SesThdr;
694 
695 typedef struct {
696 	uint8_t	comstatus;
697 	uint8_t	comstat[3];
698 } SesComStat;
699 
700 struct typidx {
701 	int ses_tidx;
702 	int ses_oidx;
703 };
704 
705 struct sscfg {
706 	uint8_t ses_ntypes;	/* total number of types supported */
707 
708 	/*
709 	 * We need to keep a type index as well as an
710 	 * object index for each object in an enclosure.
711 	 */
712 	struct typidx *ses_typidx;
713 
714 	/*
715 	 * We also need to keep track of the number of elements
716 	 * per type of element. This is needed later so that we
717 	 * can find precisely in the returned status data the
718 	 * status for the Nth element of the Kth type.
719 	 */
720 	uint8_t *	ses_eltmap;
721 };
722 
723 
724 /*
725  * (de)canonicalization defines
726  */
727 #define	sbyte(x, byte)		((((uint32_t)(x)) >> (byte * 8)) & 0xff)
728 #define	sbit(x, bit)		(((uint32_t)(x)) << bit)
729 #define	sset8(outp, idx, sval)	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
730 
731 #define	sset16(outp, idx, sval)	\
732 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
733 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
734 
735 
736 #define	sset24(outp, idx, sval)	\
737 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
738 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
739 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
740 
741 
742 #define	sset32(outp, idx, sval)	\
743 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 3), \
744 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
745 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
746 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
747 
748 #define	gbyte(x, byte)	((((uint32_t)(x)) & 0xff) << (byte * 8))
749 #define	gbit(lv, in, idx, shft, mask)	lv = ((in[idx] >> shft) & mask)
750 #define	sget8(inp, idx, lval)	lval = (((uint8_t *)(inp))[idx++])
751 #define	gget8(inp, idx, lval)	lval = (((uint8_t *)(inp))[idx])
752 
753 #define	sget16(inp, idx, lval)	\
754 	lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
755 		(((uint8_t *)(inp))[idx+1]), idx += 2
756 
757 #define	gget16(inp, idx, lval)	\
758 	lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
759 		(((uint8_t *)(inp))[idx+1])
760 
761 #define	sget24(inp, idx, lval)	\
762 	lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
763 		gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
764 			(((uint8_t *)(inp))[idx+2]), idx += 3
765 
766 #define	gget24(inp, idx, lval)	\
767 	lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
768 		gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
769 			(((uint8_t *)(inp))[idx+2])
770 
771 #define	sget32(inp, idx, lval)	\
772 	lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
773 		gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
774 		gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
775 			(((uint8_t *)(inp))[idx+3]), idx += 4
776 
777 #define	gget32(inp, idx, lval)	\
778 	lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
779 		gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
780 		gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
781 			(((uint8_t *)(inp))[idx+3])
782 
783 #define	SCSZ	0x2000
784 #define	CFLEN	(256 + SES_ENCHDR_MINLEN)
785 
786 /*
787  * Routines specific && private to SES only
788  */
789 
790 static int ses_getconfig(ses_softc_t *);
791 static int ses_getputstat(ses_softc_t *, int, SesComStat *, int, int);
792 static int ses_cfghdr(uint8_t *, int, SesCfgHdr *);
793 static int ses_enchdr(uint8_t *, int, uint8_t, SesEncHdr *);
794 static int ses_encdesc(uint8_t *, int, uint8_t, SesEncDesc *);
795 static int ses_getthdr(uint8_t *, int,  int, SesThdr *);
796 static int ses_decode(char *, int, uint8_t *, int, int, SesComStat *);
797 static int ses_encode(char *, int, uint8_t *, int, int, SesComStat *);
798 
799 static int
800 ses_softc_init(ses_softc_t *ssc, int doinit)
801 {
802 	if (doinit == 0) {
803 		struct sscfg *cc;
804 		if (ssc->ses_nobjects) {
805 			SES_FREE(ssc->ses_objmap,
806 			    ssc->ses_nobjects * sizeof (encobj));
807 			ssc->ses_objmap = NULL;
808 		}
809 		if ((cc = ssc->ses_private) != NULL) {
810 			if (cc->ses_eltmap && cc->ses_ntypes) {
811 				SES_FREE(cc->ses_eltmap, cc->ses_ntypes);
812 				cc->ses_eltmap = NULL;
813 				cc->ses_ntypes = 0;
814 			}
815 			if (cc->ses_typidx && ssc->ses_nobjects) {
816 				SES_FREE(cc->ses_typidx,
817 				    ssc->ses_nobjects * sizeof (struct typidx));
818 				cc->ses_typidx = NULL;
819 			}
820 			SES_FREE(cc, sizeof (struct sscfg));
821 			ssc->ses_private = NULL;
822 		}
823 		ssc->ses_nobjects = 0;
824 		return (0);
825 	}
826 	if (ssc->ses_private == NULL) {
827 		ssc->ses_private = SES_MALLOC(sizeof (struct sscfg));
828 	}
829 	if (ssc->ses_private == NULL) {
830 		return (ENOMEM);
831 	}
832 	ssc->ses_nobjects = 0;
833 	ssc->ses_encstat = 0;
834 	return (ses_getconfig(ssc));
835 }
836 
837 static int
838 ses_init_enc(ses_softc_t *ssc)
839 {
840 	return (0);
841 }
842 
843 static int
844 ses_get_encstat(ses_softc_t *ssc, int slpflag)
845 {
846 	SesComStat ComStat;
847 	int status;
848 
849 	if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 1)) != 0) {
850 		return (status);
851 	}
852 	ssc->ses_encstat = ComStat.comstatus | ENCI_SVALID;
853 	return (0);
854 }
855 
856 static int
857 ses_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflag)
858 {
859 	SesComStat ComStat;
860 	int status;
861 
862 	ComStat.comstatus = encstat & 0xf;
863 	if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 0)) != 0) {
864 		return (status);
865 	}
866 	ssc->ses_encstat = encstat & 0xf;	/* note no SVALID set */
867 	return (0);
868 }
869 
870 static int
871 ses_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
872 {
873 	int i = (int)obp->obj_id;
874 
875 	if (ssc->ses_objmap[i].svalid == 0) {
876 		SesComStat ComStat;
877 		int err = ses_getputstat(ssc, i, &ComStat, slpflag, 1);
878 		if (err)
879 			return (err);
880 		ssc->ses_objmap[i].encstat[0] = ComStat.comstatus;
881 		ssc->ses_objmap[i].encstat[1] = ComStat.comstat[0];
882 		ssc->ses_objmap[i].encstat[2] = ComStat.comstat[1];
883 		ssc->ses_objmap[i].encstat[3] = ComStat.comstat[2];
884 		ssc->ses_objmap[i].svalid = 1;
885 	}
886 	obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
887 	obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
888 	obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
889 	obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
890 	return (0);
891 }
892 
893 static int
894 ses_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
895 {
896 	SesComStat ComStat;
897 	int err;
898 	/*
899 	 * If this is clear, we don't do diddly.
900 	 */
901 	if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
902 		return (0);
903 	}
904 	ComStat.comstatus = obp->cstat[0];
905 	ComStat.comstat[0] = obp->cstat[1];
906 	ComStat.comstat[1] = obp->cstat[2];
907 	ComStat.comstat[2] = obp->cstat[3];
908 	err = ses_getputstat(ssc, (int)obp->obj_id, &ComStat, slpflag, 0);
909 	ssc->ses_objmap[(int)obp->obj_id].svalid = 0;
910 	return (err);
911 }
912 
913 static int
914 ses_getconfig(ses_softc_t *ssc)
915 {
916 	struct sscfg *cc;
917 	SesCfgHdr cf;
918 	SesEncHdr hd;
919 	SesEncDesc *cdp;
920 	SesThdr thdr;
921 	int err, amt, i, nobj, ntype, maxima;
922 	char storage[CFLEN], *sdata;
923 	static char cdb[6] = {
924 	    RECEIVE_DIAGNOSTIC, 0x1, SesConfigPage, SCSZ >> 8, SCSZ & 0xff, 0
925 	};
926 
927 	cc = ssc->ses_private;
928 	if (cc == NULL) {
929 		return (ENXIO);
930 	}
931 
932 	sdata = SES_MALLOC(SCSZ);
933 	if (sdata == NULL)
934 		return (ENOMEM);
935 
936 	amt = SCSZ;
937 	err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
938 	if (err) {
939 		SES_FREE(sdata, SCSZ);
940 		return (err);
941 	}
942 	amt = SCSZ - amt;
943 
944 	if (ses_cfghdr((uint8_t *) sdata, amt, &cf)) {
945 		SES_LOG(ssc, "Unable to parse SES Config Header\n");
946 		SES_FREE(sdata, SCSZ);
947 		return (EIO);
948 	}
949 	if (amt < SES_ENCHDR_MINLEN) {
950 		SES_LOG(ssc, "runt enclosure length (%d)\n", amt);
951 		SES_FREE(sdata, SCSZ);
952 		return (EIO);
953 	}
954 
955 	SES_VLOG(ssc, "GenCode %x %d Subenclosures\n", cf.GenCode, cf.Nsubenc);
956 
957 	/*
958 	 * Now waltz through all the subenclosures toting up the
959 	 * number of types available in each. For this, we only
960 	 * really need the enclosure header. However, we get the
961 	 * enclosure descriptor for debug purposes, as well
962 	 * as self-consistency checking purposes.
963 	 */
964 
965 	maxima = cf.Nsubenc + 1;
966 	cdp = (SesEncDesc *) storage;
967 	for (ntype = i = 0; i < maxima; i++) {
968 		MEMZERO((caddr_t)cdp, sizeof (*cdp));
969 		if (ses_enchdr((uint8_t *) sdata, amt, i, &hd)) {
970 			SES_LOG(ssc, "Cannot Extract Enclosure Header %d\n", i);
971 			SES_FREE(sdata, SCSZ);
972 			return (EIO);
973 		}
974 		SES_VLOG(ssc, " SubEnclosure ID %d, %d Types With this ID, En"
975 		    "closure Length %d\n", hd.Subencid, hd.Ntypes, hd.VEnclen);
976 
977 		if (ses_encdesc((uint8_t *)sdata, amt, i, cdp)) {
978 			SES_LOG(ssc, "Can't get Enclosure Descriptor %d\n", i);
979 			SES_FREE(sdata, SCSZ);
980 			return (EIO);
981 		}
982 		SES_VLOG(ssc, " WWN: %02x%02x%02x%02x%02x%02x%02x%02x\n",
983 		    cdp->encWWN[0], cdp->encWWN[1], cdp->encWWN[2],
984 		    cdp->encWWN[3], cdp->encWWN[4], cdp->encWWN[5],
985 		    cdp->encWWN[6], cdp->encWWN[7]);
986 		ntype += hd.Ntypes;
987 	}
988 
989 	/*
990 	 * Now waltz through all the types that are available, getting
991 	 * the type header so we can start adding up the number of
992 	 * objects available.
993 	 */
994 	for (nobj = i = 0; i < ntype; i++) {
995 		if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
996 			SES_LOG(ssc, "Can't get Enclosure Type Header %d\n", i);
997 			SES_FREE(sdata, SCSZ);
998 			return (EIO);
999 		}
1000 		SES_LOG(ssc, " Type Desc[%d]: Type 0x%x, MaxElt %d, In Subenc "
1001 		    "%d, Text Length %d\n", i, thdr.enc_type, thdr.enc_maxelt,
1002 		    thdr.enc_subenc, thdr.enc_tlen);
1003 		nobj += thdr.enc_maxelt;
1004 	}
1005 
1006 
1007 	/*
1008 	 * Now allocate the object array and type map.
1009 	 */
1010 
1011 	ssc->ses_objmap = SES_MALLOC(nobj * sizeof (encobj));
1012 	cc->ses_typidx = SES_MALLOC(nobj * sizeof (struct typidx));
1013 	cc->ses_eltmap = SES_MALLOC(ntype);
1014 
1015 	if (ssc->ses_objmap == NULL || cc->ses_typidx == NULL ||
1016 	    cc->ses_eltmap == NULL) {
1017 		if (ssc->ses_objmap) {
1018 			SES_FREE(ssc->ses_objmap, (nobj * sizeof (encobj)));
1019 			ssc->ses_objmap = NULL;
1020 		}
1021 		if (cc->ses_typidx) {
1022 			SES_FREE(cc->ses_typidx,
1023 			    (nobj * sizeof (struct typidx)));
1024 			cc->ses_typidx = NULL;
1025 		}
1026 		if (cc->ses_eltmap) {
1027 			SES_FREE(cc->ses_eltmap, ntype);
1028 			cc->ses_eltmap = NULL;
1029 		}
1030 		SES_FREE(sdata, SCSZ);
1031 		return (ENOMEM);
1032 	}
1033 	MEMZERO(ssc->ses_objmap, nobj * sizeof (encobj));
1034 	MEMZERO(cc->ses_typidx, nobj * sizeof (struct typidx));
1035 	MEMZERO(cc->ses_eltmap, ntype);
1036 	cc->ses_ntypes = (uint8_t) ntype;
1037 	ssc->ses_nobjects = nobj;
1038 
1039 	/*
1040 	 * Now waltz through the # of types again to fill in the types
1041 	 * (and subenclosure ids) of the allocated objects.
1042 	 */
1043 	nobj = 0;
1044 	for (i = 0; i < ntype; i++) {
1045 		int j;
1046 		if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
1047 			continue;
1048 		}
1049 		cc->ses_eltmap[i] = thdr.enc_maxelt;
1050 		for (j = 0; j < thdr.enc_maxelt; j++) {
1051 			cc->ses_typidx[nobj].ses_tidx = i;
1052 			cc->ses_typidx[nobj].ses_oidx = j;
1053 			ssc->ses_objmap[nobj].subenclosure = thdr.enc_subenc;
1054 			ssc->ses_objmap[nobj++].enctype = thdr.enc_type;
1055 		}
1056 	}
1057 	SES_FREE(sdata, SCSZ);
1058 	return (0);
1059 }
1060 
1061 static int
1062 ses_getputstat(ses_softc_t *ssc, int objid, SesComStat *sp, int slp, int in)
1063 {
1064 	struct sscfg *cc;
1065 	int err, amt, bufsiz, tidx, oidx;
1066 	char cdb[6], *sdata;
1067 
1068 	cc = ssc->ses_private;
1069 	if (cc == NULL) {
1070 		return (ENXIO);
1071 	}
1072 
1073 	/*
1074 	 * If we're just getting overall enclosure status,
1075 	 * we only need 2 bytes of data storage.
1076 	 *
1077 	 * If we're getting anything else, we know how much
1078 	 * storage we need by noting that starting at offset
1079 	 * 8 in returned data, all object status bytes are 4
1080 	 * bytes long, and are stored in chunks of types(M)
1081 	 * and nth+1 instances of type M.
1082 	 */
1083 	if (objid == -1) {
1084 		bufsiz = 2;
1085 	} else {
1086 		bufsiz = (ssc->ses_nobjects * 4) + (cc->ses_ntypes * 4) + 8;
1087 	}
1088 	sdata = SES_MALLOC(bufsiz);
1089 	if (sdata == NULL)
1090 		return (ENOMEM);
1091 
1092 	cdb[0] = RECEIVE_DIAGNOSTIC;
1093 	cdb[1] = 1;
1094 	cdb[2] = SesStatusPage;
1095 	cdb[3] = bufsiz >> 8;
1096 	cdb[4] = bufsiz & 0xff;
1097 	cdb[5] = 0;
1098 	amt = bufsiz;
1099 	err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1100 	if (err) {
1101 		SES_FREE(sdata, bufsiz);
1102 		return (err);
1103 	}
1104 	amt = bufsiz - amt;
1105 
1106 	if (objid == -1) {
1107 		tidx = -1;
1108 		oidx = -1;
1109 	} else {
1110 		tidx = cc->ses_typidx[objid].ses_tidx;
1111 		oidx = cc->ses_typidx[objid].ses_oidx;
1112 	}
1113 	if (in) {
1114 		if (ses_decode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1115 			err = ENODEV;
1116 		}
1117 	} else {
1118 		if (ses_encode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1119 			err = ENODEV;
1120 		} else {
1121 			cdb[0] = SEND_DIAGNOSTIC;
1122 			cdb[1] = 0x10;
1123 			cdb[2] = 0;
1124 			cdb[3] = bufsiz >> 8;
1125 			cdb[4] = bufsiz & 0xff;
1126 			cdb[5] = 0;
1127 			amt = -bufsiz;
1128 			err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1129 		}
1130 	}
1131 	SES_FREE(sdata, bufsiz);
1132 	return (0);
1133 }
1134 
1135 
1136 /*
1137  * Routines to parse returned SES data structures.
1138  * Architecture and compiler independent.
1139  */
1140 
1141 static int
1142 ses_cfghdr(uint8_t *buffer, int buflen, SesCfgHdr *cfp)
1143 {
1144 	if (buflen < SES_CFGHDR_MINLEN) {
1145 		return (-1);
1146 	}
1147 	gget8(buffer, 1, cfp->Nsubenc);
1148 	gget32(buffer, 4, cfp->GenCode);
1149 	return (0);
1150 }
1151 
1152 static int
1153 ses_enchdr(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncHdr *chp)
1154 {
1155 	int s, off = 8;
1156 	for (s = 0; s < SubEncId; s++) {
1157 		if (off + 3 > amt)
1158 			return (-1);
1159 		off += buffer[off+3] + 4;
1160 	}
1161 	if (off + 3 > amt) {
1162 		return (-1);
1163 	}
1164 	gget8(buffer, off+1, chp->Subencid);
1165 	gget8(buffer, off+2, chp->Ntypes);
1166 	gget8(buffer, off+3, chp->VEnclen);
1167 	return (0);
1168 }
1169 
1170 static int
1171 ses_encdesc(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncDesc *cdp)
1172 {
1173 	int s, e, enclen, off = 8;
1174 	for (s = 0; s < SubEncId; s++) {
1175 		if (off + 3 > amt)
1176 			return (-1);
1177 		off += buffer[off+3] + 4;
1178 	}
1179 	if (off + 3 > amt) {
1180 		return (-1);
1181 	}
1182 	gget8(buffer, off+3, enclen);
1183 	off += 4;
1184 	if (off  >= amt)
1185 		return (-1);
1186 
1187 	e = off + enclen;
1188 	if (e > amt) {
1189 		e = amt;
1190 	}
1191 	MEMCPY(cdp, &buffer[off], e - off);
1192 	return (0);
1193 }
1194 
1195 static int
1196 ses_getthdr(uint8_t *buffer, int amt, int nth, SesThdr *thp)
1197 {
1198 	int s, off = 8;
1199 
1200 	if (amt < SES_CFGHDR_MINLEN) {
1201 		return (-1);
1202 	}
1203 	for (s = 0; s < buffer[1]; s++) {
1204 		if (off + 3 > amt)
1205 			return (-1);
1206 		off += buffer[off+3] + 4;
1207 	}
1208 	if (off + 3 > amt) {
1209 		return (-1);
1210 	}
1211 	off += buffer[off+3] + 4 + (nth * 4);
1212 	if (amt < (off + 4))
1213 		return (-1);
1214 
1215 	gget8(buffer, off++, thp->enc_type);
1216 	gget8(buffer, off++, thp->enc_maxelt);
1217 	gget8(buffer, off++, thp->enc_subenc);
1218 	gget8(buffer, off, thp->enc_tlen);
1219 	return (0);
1220 }
1221 
1222 /*
1223  * This function needs a little explanation.
1224  *
1225  * The arguments are:
1226  *
1227  *
1228  *	char *b, int amt
1229  *
1230  *		These describes the raw input SES status data and length.
1231  *
1232  *	uint8_t *ep
1233  *
1234  *		This is a map of the number of types for each element type
1235  *		in the enclosure.
1236  *
1237  *	int elt
1238  *
1239  *		This is the element type being sought. If elt is -1,
1240  *		then overall enclosure status is being sought.
1241  *
1242  *	int elm
1243  *
1244  *		This is the ordinal Mth element of type elt being sought.
1245  *
1246  *	SesComStat *sp
1247  *
1248  *		This is the output area to store the status for
1249  *		the Mth element of type Elt.
1250  */
1251 
1252 static int
1253 ses_decode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1254 {
1255 	int idx, i;
1256 
1257 	/*
1258 	 * If it's overall enclosure status being sought, get that.
1259 	 * We need at least 2 bytes of status data to get that.
1260 	 */
1261 	if (elt == -1) {
1262 		if (amt < 2)
1263 			return (-1);
1264 		gget8(b, 1, sp->comstatus);
1265 		sp->comstat[0] = 0;
1266 		sp->comstat[1] = 0;
1267 		sp->comstat[2] = 0;
1268 		return (0);
1269 	}
1270 
1271 	/*
1272 	 * Check to make sure that the Mth element is legal for type Elt.
1273 	 */
1274 
1275 	if (elm >= ep[elt])
1276 		return (-1);
1277 
1278 	/*
1279 	 * Starting at offset 8, start skipping over the storage
1280 	 * for the element types we're not interested in.
1281 	 */
1282 	for (idx = 8, i = 0; i < elt; i++) {
1283 		idx += ((ep[i] + 1) * 4);
1284 	}
1285 
1286 	/*
1287 	 * Skip over Overall status for this element type.
1288 	 */
1289 	idx += 4;
1290 
1291 	/*
1292 	 * And skip to the index for the Mth element that we're going for.
1293 	 */
1294 	idx += (4 * elm);
1295 
1296 	/*
1297 	 * Make sure we haven't overflowed the buffer.
1298 	 */
1299 	if (idx+4 > amt)
1300 		return (-1);
1301 
1302 	/*
1303 	 * Retrieve the status.
1304 	 */
1305 	gget8(b, idx++, sp->comstatus);
1306 	gget8(b, idx++, sp->comstat[0]);
1307 	gget8(b, idx++, sp->comstat[1]);
1308 	gget8(b, idx++, sp->comstat[2]);
1309 #if	0
1310 	PRINTF("Get Elt 0x%x Elm 0x%x (idx %d)\n", elt, elm, idx-4);
1311 #endif
1312 	return (0);
1313 }
1314 
1315 /*
1316  * This is the mirror function to ses_decode, but we set the 'select'
1317  * bit for the object which we're interested in. All other objects,
1318  * after a status fetch, should have that bit off. Hmm. It'd be easy
1319  * enough to ensure this, so we will.
1320  */
1321 
1322 static int
1323 ses_encode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1324 {
1325 	int idx, i;
1326 
1327 	/*
1328 	 * If it's overall enclosure status being sought, get that.
1329 	 * We need at least 2 bytes of status data to get that.
1330 	 */
1331 	if (elt == -1) {
1332 		if (amt < 2)
1333 			return (-1);
1334 		i = 0;
1335 		sset8(b, i, 0);
1336 		sset8(b, i, sp->comstatus & 0xf);
1337 #if	0
1338 		PRINTF("set EncStat %x\n", sp->comstatus);
1339 #endif
1340 		return (0);
1341 	}
1342 
1343 	/*
1344 	 * Check to make sure that the Mth element is legal for type Elt.
1345 	 */
1346 
1347 	if (elm >= ep[elt])
1348 		return (-1);
1349 
1350 	/*
1351 	 * Starting at offset 8, start skipping over the storage
1352 	 * for the element types we're not interested in.
1353 	 */
1354 	for (idx = 8, i = 0; i < elt; i++) {
1355 		idx += ((ep[i] + 1) * 4);
1356 	}
1357 
1358 	/*
1359 	 * Skip over Overall status for this element type.
1360 	 */
1361 	idx += 4;
1362 
1363 	/*
1364 	 * And skip to the index for the Mth element that we're going for.
1365 	 */
1366 	idx += (4 * elm);
1367 
1368 	/*
1369 	 * Make sure we haven't overflowed the buffer.
1370 	 */
1371 	if (idx+4 > amt)
1372 		return (-1);
1373 
1374 	/*
1375 	 * Set the status.
1376 	 */
1377 	sset8(b, idx, sp->comstatus);
1378 	sset8(b, idx, sp->comstat[0]);
1379 	sset8(b, idx, sp->comstat[1]);
1380 	sset8(b, idx, sp->comstat[2]);
1381 	idx -= 4;
1382 
1383 #if	0
1384 	PRINTF("Set Elt 0x%x Elm 0x%x (idx %d) with %x %x %x %x\n",
1385 	    elt, elm, idx, sp->comstatus, sp->comstat[0],
1386 	    sp->comstat[1], sp->comstat[2]);
1387 #endif
1388 
1389 	/*
1390 	 * Now make sure all other 'Select' bits are off.
1391 	 */
1392 	for (i = 8; i < amt; i += 4) {
1393 		if (i != idx)
1394 			b[i] &= ~0x80;
1395 	}
1396 	/*
1397 	 * And make sure the INVOP bit is clear.
1398 	 */
1399 	b[2] &= ~0x10;
1400 
1401 	return (0);
1402 }
1403 
1404 /*
1405  * SAF-TE Type Device Emulation
1406  */
1407 
1408 static int safte_getconfig(ses_softc_t *);
1409 static int safte_rdstat(ses_softc_t *, int);;
1410 static int set_objstat_sel(ses_softc_t *, ses_objstat *, int);
1411 static int wrbuf16(ses_softc_t *, uint8_t, uint8_t, uint8_t, uint8_t, int);
1412 static void wrslot_stat(ses_softc_t *, int);
1413 static int perf_slotop(ses_softc_t *, uint8_t, uint8_t, int);
1414 
1415 #define	ALL_ENC_STAT (SES_ENCSTAT_CRITICAL | SES_ENCSTAT_UNRECOV | \
1416 	SES_ENCSTAT_NONCRITICAL | SES_ENCSTAT_INFO)
1417 /*
1418  * SAF-TE specific defines- Mandatory ones only...
1419  */
1420 
1421 /*
1422  * READ BUFFER ('get' commands) IDs- placed in offset 2 of cdb
1423  */
1424 #define	SAFTE_RD_RDCFG	0x00	/* read enclosure configuration */
1425 #define	SAFTE_RD_RDESTS	0x01	/* read enclosure status */
1426 #define	SAFTE_RD_RDDSTS	0x04	/* read drive slot status */
1427 
1428 /*
1429  * WRITE BUFFER ('set' commands) IDs- placed in offset 0 of databuf
1430  */
1431 #define	SAFTE_WT_DSTAT	0x10	/* write device slot status */
1432 #define	SAFTE_WT_SLTOP	0x12	/* perform slot operation */
1433 #define	SAFTE_WT_FANSPD	0x13	/* set fan speed */
1434 #define	SAFTE_WT_ACTPWS	0x14	/* turn on/off power supply */
1435 #define	SAFTE_WT_GLOBAL	0x15	/* send global command */
1436 
1437 
1438 #define	SAFT_SCRATCH	64
1439 #define	NPSEUDO_THERM	16
1440 #define	NPSEUDO_ALARM	1
1441 struct scfg {
1442 	/*
1443 	 * Cached Configuration
1444 	 */
1445 	uint8_t	Nfans;		/* Number of Fans */
1446 	uint8_t	Npwr;		/* Number of Power Supplies */
1447 	uint8_t	Nslots;		/* Number of Device Slots */
1448 	uint8_t	DoorLock;	/* Door Lock Installed */
1449 	uint8_t	Ntherm;		/* Number of Temperature Sensors */
1450 	uint8_t	Nspkrs;		/* Number of Speakers */
1451 	uint8_t Nalarm;		/* Number of Alarms (at least one) */
1452 	/*
1453 	 * Cached Flag Bytes for Global Status
1454 	 */
1455 	uint8_t	flag1;
1456 	uint8_t	flag2;
1457 	/*
1458 	 * What object index ID is where various slots start.
1459 	 */
1460 	uint8_t	pwroff;
1461 	uint8_t	slotoff;
1462 #define	SAFT_ALARM_OFFSET(cc)	(cc)->slotoff - 1
1463 };
1464 
1465 #define	SAFT_FLG1_ALARM		0x1
1466 #define	SAFT_FLG1_GLOBFAIL	0x2
1467 #define	SAFT_FLG1_GLOBWARN	0x4
1468 #define	SAFT_FLG1_ENCPWROFF	0x8
1469 #define	SAFT_FLG1_ENCFANFAIL	0x10
1470 #define	SAFT_FLG1_ENCPWRFAIL	0x20
1471 #define	SAFT_FLG1_ENCDRVFAIL	0x40
1472 #define	SAFT_FLG1_ENCDRVWARN	0x80
1473 
1474 #define	SAFT_FLG2_LOCKDOOR	0x4
1475 #define	SAFT_PRIVATE		sizeof (struct scfg)
1476 
1477 static const char safte_2little[] = "Too Little Data Returned (%d) at line %d\n";
1478 #define	SAFT_BAIL(r, x, k, l)	\
1479 	if (r >= x) { \
1480 		SES_LOG(ssc, safte_2little, x, __LINE__);\
1481 		SES_FREE(k, l); \
1482 		return (EIO); \
1483 	}
1484 
1485 
1486 int
1487 safte_softc_init(ses_softc_t *ssc, int doinit)
1488 {
1489 	int err, i, r;
1490 	struct scfg *cc;
1491 
1492 	if (doinit == 0) {
1493 		if (ssc->ses_nobjects) {
1494 			if (ssc->ses_objmap) {
1495 				SES_FREE(ssc->ses_objmap,
1496 				    ssc->ses_nobjects * sizeof (encobj));
1497 				ssc->ses_objmap = NULL;
1498 			}
1499 			ssc->ses_nobjects = 0;
1500 		}
1501 		if (ssc->ses_private) {
1502 			SES_FREE(ssc->ses_private, SAFT_PRIVATE);
1503 			ssc->ses_private = NULL;
1504 		}
1505 		return (0);
1506 	}
1507 
1508 	if (ssc->ses_private == NULL) {
1509 		ssc->ses_private = SES_MALLOC(SAFT_PRIVATE);
1510 		if (ssc->ses_private == NULL) {
1511 			return (ENOMEM);
1512 		}
1513 		MEMZERO(ssc->ses_private, SAFT_PRIVATE);
1514 	}
1515 
1516 	ssc->ses_nobjects = 0;
1517 	ssc->ses_encstat = 0;
1518 
1519 	if ((err = safte_getconfig(ssc)) != 0) {
1520 		return (err);
1521 	}
1522 
1523 	/*
1524 	 * The number of objects here, as well as that reported by the
1525 	 * READ_BUFFER/GET_CONFIG call, are the over-temperature flags (15)
1526 	 * that get reported during READ_BUFFER/READ_ENC_STATUS.
1527 	 */
1528 	cc = ssc->ses_private;
1529 	ssc->ses_nobjects = cc->Nfans + cc->Npwr + cc->Nslots + cc->DoorLock +
1530 	    cc->Ntherm + cc->Nspkrs + NPSEUDO_THERM + NPSEUDO_ALARM;
1531 	ssc->ses_objmap = (encobj *)
1532 	    SES_MALLOC(ssc->ses_nobjects * sizeof (encobj));
1533 	if (ssc->ses_objmap == NULL) {
1534 		return (ENOMEM);
1535 	}
1536 	MEMZERO(ssc->ses_objmap, ssc->ses_nobjects * sizeof (encobj));
1537 
1538 	r = 0;
1539 	/*
1540 	 * Note that this is all arranged for the convenience
1541 	 * in later fetches of status.
1542 	 */
1543 	for (i = 0; i < cc->Nfans; i++)
1544 		ssc->ses_objmap[r++].enctype = SESTYP_FAN;
1545 	cc->pwroff = (uint8_t) r;
1546 	for (i = 0; i < cc->Npwr; i++)
1547 		ssc->ses_objmap[r++].enctype = SESTYP_POWER;
1548 	for (i = 0; i < cc->DoorLock; i++)
1549 		ssc->ses_objmap[r++].enctype = SESTYP_DOORLOCK;
1550 	for (i = 0; i < cc->Nspkrs; i++)
1551 		ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1552 	for (i = 0; i < cc->Ntherm; i++)
1553 		ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1554 	for (i = 0; i < NPSEUDO_THERM; i++)
1555 		ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1556 	ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1557 	cc->slotoff = (uint8_t) r;
1558 	for (i = 0; i < cc->Nslots; i++)
1559 		ssc->ses_objmap[r++].enctype = SESTYP_DEVICE;
1560 	return (0);
1561 }
1562 
1563 int
1564 safte_init_enc(ses_softc_t *ssc)
1565 {
1566 	int err, amt;
1567 	char *sdata;
1568 	static char cdb0[6] = { SEND_DIAGNOSTIC };
1569 	static char cdb[10] =
1570 	    { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
1571 
1572 	sdata = SES_MALLOC(SAFT_SCRATCH);
1573 	if (sdata == NULL)
1574 		return (ENOMEM);
1575 
1576 	err = ses_runcmd(ssc, cdb0, 6, NULL, 0);
1577 	if (err) {
1578 		SES_FREE(sdata, SAFT_SCRATCH);
1579 		return (err);
1580 	}
1581 	sdata[0] = SAFTE_WT_GLOBAL;
1582 	MEMZERO(&sdata[1], 15);
1583 	amt = -SAFT_SCRATCH;
1584 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1585 	SES_FREE(sdata, SAFT_SCRATCH);
1586 	return (err);
1587 }
1588 
1589 int
1590 safte_get_encstat(ses_softc_t *ssc, int slpflg)
1591 {
1592 	return (safte_rdstat(ssc, slpflg));
1593 }
1594 
1595 int
1596 safte_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflg)
1597 {
1598 	struct scfg *cc = ssc->ses_private;
1599 	if (cc == NULL)
1600 		return (0);
1601 	/*
1602 	 * Since SAF-TE devices aren't necessarily sticky in terms
1603 	 * of state, make our soft copy of enclosure status 'sticky'-
1604 	 * that is, things set in enclosure status stay set (as implied
1605 	 * by conditions set in reading object status) until cleared.
1606 	 */
1607 	ssc->ses_encstat &= ~ALL_ENC_STAT;
1608 	ssc->ses_encstat |= (encstat & ALL_ENC_STAT);
1609 	ssc->ses_encstat |= ENCI_SVALID;
1610 	cc->flag1 &= ~(SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL|SAFT_FLG1_GLOBWARN);
1611 	if ((encstat & (SES_ENCSTAT_CRITICAL|SES_ENCSTAT_UNRECOV)) != 0) {
1612 		cc->flag1 |= SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL;
1613 	} else if ((encstat & SES_ENCSTAT_NONCRITICAL) != 0) {
1614 		cc->flag1 |= SAFT_FLG1_GLOBWARN;
1615 	}
1616 	return (wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slpflg));
1617 }
1618 
1619 int
1620 safte_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflg)
1621 {
1622 	int i = (int)obp->obj_id;
1623 
1624 	if ((ssc->ses_encstat & ENCI_SVALID) == 0 ||
1625 	    (ssc->ses_objmap[i].svalid) == 0) {
1626 		int err = safte_rdstat(ssc, slpflg);
1627 		if (err)
1628 			return (err);
1629 	}
1630 	obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
1631 	obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
1632 	obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
1633 	obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
1634 	return (0);
1635 }
1636 
1637 
1638 int
1639 safte_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slp)
1640 {
1641 	int idx, err;
1642 	encobj *ep;
1643 	struct scfg *cc;
1644 
1645 
1646 	SES_VLOG(ssc, "safte_set_objstat(%d): %x %x %x %x\n",
1647 	    (int)obp->obj_id, obp->cstat[0], obp->cstat[1], obp->cstat[2],
1648 	    obp->cstat[3]);
1649 
1650 	/*
1651 	 * If this is clear, we don't do diddly.
1652 	 */
1653 	if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
1654 		return (0);
1655 	}
1656 
1657 	err = 0;
1658 	/*
1659 	 * Check to see if the common bits are set and do them first.
1660 	 */
1661 	if (obp->cstat[0] & ~SESCTL_CSEL) {
1662 		err = set_objstat_sel(ssc, obp, slp);
1663 		if (err)
1664 			return (err);
1665 	}
1666 
1667 	cc = ssc->ses_private;
1668 	if (cc == NULL)
1669 		return (0);
1670 
1671 	idx = (int)obp->obj_id;
1672 	ep = &ssc->ses_objmap[idx];
1673 
1674 	switch (ep->enctype) {
1675 	case SESTYP_DEVICE:
1676 	{
1677 		uint8_t slotop = 0;
1678 		/*
1679 		 * XXX: I should probably cache the previous state
1680 		 * XXX: of SESCTL_DEVOFF so that when it goes from
1681 		 * XXX: true to false I can then set PREPARE FOR OPERATION
1682 		 * XXX: flag in PERFORM SLOT OPERATION write buffer command.
1683 		 */
1684 		if (obp->cstat[2] & (SESCTL_RQSINS|SESCTL_RQSRMV)) {
1685 			slotop |= 0x2;
1686 		}
1687 		if (obp->cstat[2] & SESCTL_RQSID) {
1688 			slotop |= 0x4;
1689 		}
1690 		err = perf_slotop(ssc, (uint8_t) idx - (uint8_t) cc->slotoff,
1691 		    slotop, slp);
1692 		if (err)
1693 			return (err);
1694 		if (obp->cstat[3] & SESCTL_RQSFLT) {
1695 			ep->priv |= 0x2;
1696 		} else {
1697 			ep->priv &= ~0x2;
1698 		}
1699 		if (ep->priv & 0xc6) {
1700 			ep->priv &= ~0x1;
1701 		} else {
1702 			ep->priv |= 0x1;	/* no errors */
1703 		}
1704 		wrslot_stat(ssc, slp);
1705 		break;
1706 	}
1707 	case SESTYP_POWER:
1708 		if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1709 			cc->flag1 |= SAFT_FLG1_ENCPWRFAIL;
1710 		} else {
1711 			cc->flag1 &= ~SAFT_FLG1_ENCPWRFAIL;
1712 		}
1713 		err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1714 		    cc->flag2, 0, slp);
1715 		if (err)
1716 			return (err);
1717 		if (obp->cstat[3] & SESCTL_RQSTON) {
1718 			(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1719 				idx - cc->pwroff, 0, 0, slp);
1720 		} else {
1721 			(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1722 				idx - cc->pwroff, 0, 1, slp);
1723 		}
1724 		break;
1725 	case SESTYP_FAN:
1726 		if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1727 			cc->flag1 |= SAFT_FLG1_ENCFANFAIL;
1728 		} else {
1729 			cc->flag1 &= ~SAFT_FLG1_ENCFANFAIL;
1730 		}
1731 		err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1732 		    cc->flag2, 0, slp);
1733 		if (err)
1734 			return (err);
1735 		if (obp->cstat[3] & SESCTL_RQSTON) {
1736 			uint8_t fsp;
1737 			if ((obp->cstat[3] & 0x7) == 7) {
1738 				fsp = 4;
1739 			} else if ((obp->cstat[3] & 0x7) == 6) {
1740 				fsp = 3;
1741 			} else if ((obp->cstat[3] & 0x7) == 4) {
1742 				fsp = 2;
1743 			} else {
1744 				fsp = 1;
1745 			}
1746 			(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, fsp, 0, slp);
1747 		} else {
1748 			(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
1749 		}
1750 		break;
1751 	case SESTYP_DOORLOCK:
1752 		if (obp->cstat[3] & 0x1) {
1753 			cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
1754 		} else {
1755 			cc->flag2 |= SAFT_FLG2_LOCKDOOR;
1756 		}
1757 		(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1758 		    cc->flag2, 0, slp);
1759 		break;
1760 	case SESTYP_ALARM:
1761 		/*
1762 		 * On all nonzero but the 'muted' bit, we turn on the alarm,
1763 		 */
1764 		obp->cstat[3] &= ~0xa;
1765 		if (obp->cstat[3] & 0x40) {
1766 			cc->flag2 &= ~SAFT_FLG1_ALARM;
1767 		} else if (obp->cstat[3] != 0) {
1768 			cc->flag2 |= SAFT_FLG1_ALARM;
1769 		} else {
1770 			cc->flag2 &= ~SAFT_FLG1_ALARM;
1771 		}
1772 		ep->priv = obp->cstat[3];
1773 		(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1774 			cc->flag2, 0, slp);
1775 		break;
1776 	default:
1777 		break;
1778 	}
1779 	ep->svalid = 0;
1780 	return (0);
1781 }
1782 
1783 static int
1784 safte_getconfig(ses_softc_t *ssc)
1785 {
1786 	struct scfg *cfg;
1787 	int err, amt;
1788 	char *sdata;
1789 	static char cdb[10] =
1790 	    { READ_BUFFER, 1, SAFTE_RD_RDCFG, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
1791 
1792 	cfg = ssc->ses_private;
1793 	if (cfg == NULL)
1794 		return (ENXIO);
1795 
1796 	sdata = SES_MALLOC(SAFT_SCRATCH);
1797 	if (sdata == NULL)
1798 		return (ENOMEM);
1799 
1800 	amt = SAFT_SCRATCH;
1801 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1802 	if (err) {
1803 		SES_FREE(sdata, SAFT_SCRATCH);
1804 		return (err);
1805 	}
1806 	amt = SAFT_SCRATCH - amt;
1807 	if (amt < 6) {
1808 		SES_LOG(ssc, "too little data (%d) for configuration\n", amt);
1809 		SES_FREE(sdata, SAFT_SCRATCH);
1810 		return (EIO);
1811 	}
1812 	SES_VLOG(ssc, "Nfans %d Npwr %d Nslots %d Lck %d Ntherm %d Nspkrs %d\n",
1813 	    sdata[0], sdata[1], sdata[2], sdata[3], sdata[4], sdata[5]);
1814 	cfg->Nfans = sdata[0];
1815 	cfg->Npwr = sdata[1];
1816 	cfg->Nslots = sdata[2];
1817 	cfg->DoorLock = sdata[3];
1818 	cfg->Ntherm = sdata[4];
1819 	cfg->Nspkrs = sdata[5];
1820 	cfg->Nalarm = NPSEUDO_ALARM;
1821 	SES_FREE(sdata, SAFT_SCRATCH);
1822 	return (0);
1823 }
1824 
1825 static int
1826 safte_rdstat(ses_softc_t *ssc, int slpflg)
1827 {
1828 	int err, oid, r, i, hiwater, nitems, amt;
1829 	uint16_t tempflags;
1830 	size_t buflen;
1831 	uint8_t status, oencstat;
1832 	char *sdata, cdb[10];
1833 	struct scfg *cc = ssc->ses_private;
1834 
1835 
1836 	/*
1837 	 * The number of objects overstates things a bit,
1838 	 * both for the bogus 'thermometer' entries and
1839 	 * the drive status (which isn't read at the same
1840 	 * time as the enclosure status), but that's okay.
1841 	 */
1842 	buflen = 4 * cc->Nslots;
1843 	if (ssc->ses_nobjects > buflen)
1844 		buflen = ssc->ses_nobjects;
1845 	sdata = SES_MALLOC(buflen);
1846 	if (sdata == NULL)
1847 		return (ENOMEM);
1848 
1849 	cdb[0] = READ_BUFFER;
1850 	cdb[1] = 1;
1851 	cdb[2] = SAFTE_RD_RDESTS;
1852 	cdb[3] = 0;
1853 	cdb[4] = 0;
1854 	cdb[5] = 0;
1855 	cdb[6] = 0;
1856 	cdb[7] = (buflen >> 8) & 0xff;
1857 	cdb[8] = buflen & 0xff;
1858 	cdb[9] = 0;
1859 	amt = buflen;
1860 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1861 	if (err) {
1862 		SES_FREE(sdata, buflen);
1863 		return (err);
1864 	}
1865 	hiwater = buflen - amt;
1866 
1867 
1868 	/*
1869 	 * invalidate all status bits.
1870 	 */
1871 	for (i = 0; i < ssc->ses_nobjects; i++)
1872 		ssc->ses_objmap[i].svalid = 0;
1873 	oencstat = ssc->ses_encstat & ALL_ENC_STAT;
1874 	ssc->ses_encstat = 0;
1875 
1876 
1877 	/*
1878 	 * Now parse returned buffer.
1879 	 * If we didn't get enough data back,
1880 	 * that's considered a fatal error.
1881 	 */
1882 	oid = r = 0;
1883 
1884 	for (nitems = i = 0; i < cc->Nfans; i++) {
1885 		SAFT_BAIL(r, hiwater, sdata, buflen);
1886 		/*
1887 		 * 0 = Fan Operational
1888 		 * 1 = Fan is malfunctioning
1889 		 * 2 = Fan is not present
1890 		 * 0x80 = Unknown or Not Reportable Status
1891 		 */
1892 		ssc->ses_objmap[oid].encstat[1] = 0;	/* resvd */
1893 		ssc->ses_objmap[oid].encstat[2] = 0;	/* resvd */
1894 		switch ((int)(uint8_t)sdata[r]) {
1895 		case 0:
1896 			nitems++;
1897 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1898 			/*
1899 			 * We could get fancier and cache
1900 			 * fan speeds that we have set, but
1901 			 * that isn't done now.
1902 			 */
1903 			ssc->ses_objmap[oid].encstat[3] = 7;
1904 			break;
1905 
1906 		case 1:
1907 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1908 			/*
1909 			 * FAIL and FAN STOPPED synthesized
1910 			 */
1911 			ssc->ses_objmap[oid].encstat[3] = 0x40;
1912 			/*
1913 			 * Enclosure marked with CRITICAL error
1914 			 * if only one fan or no thermometers,
1915 			 * else the NONCRITICAL error is set.
1916 			 */
1917 			if (cc->Nfans == 1 || cc->Ntherm == 0)
1918 				ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1919 			else
1920 				ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1921 			break;
1922 		case 2:
1923 			ssc->ses_objmap[oid].encstat[0] =
1924 			    SES_OBJSTAT_NOTINSTALLED;
1925 			ssc->ses_objmap[oid].encstat[3] = 0;
1926 			/*
1927 			 * Enclosure marked with CRITICAL error
1928 			 * if only one fan or no thermometers,
1929 			 * else the NONCRITICAL error is set.
1930 			 */
1931 			if (cc->Nfans == 1)
1932 				ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1933 			else
1934 				ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1935 			break;
1936 		case 0x80:
1937 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1938 			ssc->ses_objmap[oid].encstat[3] = 0;
1939 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
1940 			break;
1941 		default:
1942 			ssc->ses_objmap[oid].encstat[0] =
1943 			    SES_OBJSTAT_UNSUPPORTED;
1944 			SES_LOG(ssc, "Unknown fan%d status 0x%x\n", i,
1945 			    sdata[r] & 0xff);
1946 			break;
1947 		}
1948 		ssc->ses_objmap[oid++].svalid = 1;
1949 		r++;
1950 	}
1951 
1952 	/*
1953 	 * No matter how you cut it, no cooling elements when there
1954 	 * should be some there is critical.
1955 	 */
1956 	if (cc->Nfans && nitems == 0) {
1957 		ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1958 	}
1959 
1960 
1961 	for (i = 0; i < cc->Npwr; i++) {
1962 		SAFT_BAIL(r, hiwater, sdata, buflen);
1963 		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1964 		ssc->ses_objmap[oid].encstat[1] = 0;	/* resvd */
1965 		ssc->ses_objmap[oid].encstat[2] = 0;	/* resvd */
1966 		ssc->ses_objmap[oid].encstat[3] = 0x20;	/* requested on */
1967 		switch ((uint8_t)sdata[r]) {
1968 		case 0x00:	/* pws operational and on */
1969 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1970 			break;
1971 		case 0x01:	/* pws operational and off */
1972 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1973 			ssc->ses_objmap[oid].encstat[3] = 0x10;
1974 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
1975 			break;
1976 		case 0x10:	/* pws is malfunctioning and commanded on */
1977 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1978 			ssc->ses_objmap[oid].encstat[3] = 0x61;
1979 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1980 			break;
1981 
1982 		case 0x11:	/* pws is malfunctioning and commanded off */
1983 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
1984 			ssc->ses_objmap[oid].encstat[3] = 0x51;
1985 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1986 			break;
1987 		case 0x20:	/* pws is not present */
1988 			ssc->ses_objmap[oid].encstat[0] =
1989 			    SES_OBJSTAT_NOTINSTALLED;
1990 			ssc->ses_objmap[oid].encstat[3] = 0;
1991 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
1992 			break;
1993 		case 0x21:	/* pws is present */
1994 			/*
1995 			 * This is for enclosures that cannot tell whether the
1996 			 * device is on or malfunctioning, but know that it is
1997 			 * present. Just fall through.
1998 			 */
1999 			/* FALLTHROUGH */
2000 		case 0x80:	/* Unknown or Not Reportable Status */
2001 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2002 			ssc->ses_objmap[oid].encstat[3] = 0;
2003 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
2004 			break;
2005 		default:
2006 			SES_LOG(ssc, "unknown power supply %d status (0x%x)\n",
2007 			    i, sdata[r] & 0xff);
2008 			break;
2009 		}
2010 		ssc->ses_objmap[oid++].svalid = 1;
2011 		r++;
2012 	}
2013 
2014 	/*
2015 	 * Skip over Slot SCSI IDs
2016 	 */
2017 	r += cc->Nslots;
2018 
2019 	/*
2020 	 * We always have doorlock status, no matter what,
2021 	 * but we only save the status if we have one.
2022 	 */
2023 	SAFT_BAIL(r, hiwater, sdata, buflen);
2024 	if (cc->DoorLock) {
2025 		/*
2026 		 * 0 = Door Locked
2027 		 * 1 = Door Unlocked, or no Lock Installed
2028 		 * 0x80 = Unknown or Not Reportable Status
2029 		 */
2030 		ssc->ses_objmap[oid].encstat[1] = 0;
2031 		ssc->ses_objmap[oid].encstat[2] = 0;
2032 		switch ((uint8_t)sdata[r]) {
2033 		case 0:
2034 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2035 			ssc->ses_objmap[oid].encstat[3] = 0;
2036 			break;
2037 		case 1:
2038 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2039 			ssc->ses_objmap[oid].encstat[3] = 1;
2040 			break;
2041 		case 0x80:
2042 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2043 			ssc->ses_objmap[oid].encstat[3] = 0;
2044 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
2045 			break;
2046 		default:
2047 			ssc->ses_objmap[oid].encstat[0] =
2048 			    SES_OBJSTAT_UNSUPPORTED;
2049 			SES_LOG(ssc, "unknown lock status 0x%x\n",
2050 			    sdata[r] & 0xff);
2051 			break;
2052 		}
2053 		ssc->ses_objmap[oid++].svalid = 1;
2054 	}
2055 	r++;
2056 
2057 	/*
2058 	 * We always have speaker status, no matter what,
2059 	 * but we only save the status if we have one.
2060 	 */
2061 	SAFT_BAIL(r, hiwater, sdata, buflen);
2062 	if (cc->Nspkrs) {
2063 		ssc->ses_objmap[oid].encstat[1] = 0;
2064 		ssc->ses_objmap[oid].encstat[2] = 0;
2065 		if (sdata[r] == 1) {
2066 			/*
2067 			 * We need to cache tone urgency indicators.
2068 			 * Someday.
2069 			 */
2070 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
2071 			ssc->ses_objmap[oid].encstat[3] = 0x8;
2072 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2073 		} else if (sdata[r] == 0) {
2074 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2075 			ssc->ses_objmap[oid].encstat[3] = 0;
2076 		} else {
2077 			ssc->ses_objmap[oid].encstat[0] =
2078 			    SES_OBJSTAT_UNSUPPORTED;
2079 			ssc->ses_objmap[oid].encstat[3] = 0;
2080 			SES_LOG(ssc, "unknown spkr status 0x%x\n",
2081 			    sdata[r] & 0xff);
2082 		}
2083 		ssc->ses_objmap[oid++].svalid = 1;
2084 	}
2085 	r++;
2086 
2087 	for (i = 0; i < cc->Ntherm; i++) {
2088 		SAFT_BAIL(r, hiwater, sdata, buflen);
2089 		/*
2090 		 * Status is a range from -10 to 245 deg Celsius,
2091 		 * which we need to normalize to -20 to -245 according
2092 		 * to the latest SCSI spec, which makes little
2093 		 * sense since this would overflow an 8bit value.
2094 		 * Well, still, the base normalization is -20,
2095 		 * not -10, so we have to adjust.
2096 		 *
2097 		 * So what's over and under temperature?
2098 		 * Hmm- we'll state that 'normal' operating
2099 		 * is 10 to 40 deg Celsius.
2100 		 */
2101 
2102 		/*
2103 		 * Actually.... All of the units that people out in the world
2104 		 * seem to have do not come even close to setting a value that
2105 		 * complies with this spec.
2106 		 *
2107 		 * The closest explanation I could find was in an
2108 		 * LSI-Logic manual, which seemed to indicate that
2109 		 * this value would be set by whatever the I2C code
2110 		 * would interpolate from the output of an LM75
2111 		 * temperature sensor.
2112 		 *
2113 		 * This means that it is impossible to use the actual
2114 		 * numeric value to predict anything. But we don't want
2115 		 * to lose the value. So, we'll propagate the *uncorrected*
2116 		 * value and set SES_OBJSTAT_NOTAVAIL. We'll depend on the
2117 		 * temperature flags for warnings.
2118 		 */
2119 		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NOTAVAIL;
2120 		ssc->ses_objmap[oid].encstat[1] = 0;
2121 		ssc->ses_objmap[oid].encstat[2] = sdata[r];
2122 		ssc->ses_objmap[oid].encstat[3] = 0;;
2123 		ssc->ses_objmap[oid++].svalid = 1;
2124 		r++;
2125 	}
2126 
2127 	/*
2128 	 * Now, for "pseudo" thermometers, we have two bytes
2129 	 * of information in enclosure status- 16 bits. Actually,
2130 	 * the MSB is a single TEMP ALERT flag indicating whether
2131 	 * any other bits are set, but, thanks to fuzzy thinking,
2132 	 * in the SAF-TE spec, this can also be set even if no
2133 	 * other bits are set, thus making this really another
2134 	 * binary temperature sensor.
2135 	 */
2136 
2137 	SAFT_BAIL(r, hiwater, sdata, buflen);
2138 	tempflags = sdata[r++];
2139 	SAFT_BAIL(r, hiwater, sdata, buflen);
2140 	tempflags |= (tempflags << 8) | sdata[r++];
2141 
2142 	for (i = 0; i < NPSEUDO_THERM; i++) {
2143 		ssc->ses_objmap[oid].encstat[1] = 0;
2144 		if (tempflags & (1 << (NPSEUDO_THERM - i - 1))) {
2145 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2146 			ssc->ses_objmap[4].encstat[2] = 0xff;
2147 			/*
2148 			 * Set 'over temperature' failure.
2149 			 */
2150 			ssc->ses_objmap[oid].encstat[3] = 8;
2151 			ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2152 		} else {
2153 			/*
2154 			 * We used to say 'not available' and synthesize a
2155 			 * nominal 30 deg (C)- that was wrong. Actually,
2156 			 * Just say 'OK', and use the reserved value of
2157 			 * zero.
2158 			 */
2159 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2160 			ssc->ses_objmap[oid].encstat[2] = 0;
2161 			ssc->ses_objmap[oid].encstat[3] = 0;
2162 		}
2163 		ssc->ses_objmap[oid++].svalid = 1;
2164 	}
2165 
2166 	/*
2167 	 * Get alarm status.
2168 	 */
2169 	ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2170 	ssc->ses_objmap[oid].encstat[3] = ssc->ses_objmap[oid].priv;
2171 	ssc->ses_objmap[oid++].svalid = 1;
2172 
2173 	/*
2174 	 * Now get drive slot status
2175 	 */
2176 	cdb[2] = SAFTE_RD_RDDSTS;
2177 	amt = buflen;
2178 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2179 	if (err) {
2180 		SES_FREE(sdata, buflen);
2181 		return (err);
2182 	}
2183 	hiwater = buflen - amt;
2184 	for (r = i = 0; i < cc->Nslots; i++, r += 4) {
2185 		SAFT_BAIL(r+3, hiwater, sdata, buflen);
2186 		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNSUPPORTED;
2187 		ssc->ses_objmap[oid].encstat[1] = (uint8_t) i;
2188 		ssc->ses_objmap[oid].encstat[2] = 0;
2189 		ssc->ses_objmap[oid].encstat[3] = 0;
2190 		status = sdata[r+3];
2191 		if ((status & 0x1) == 0) {	/* no device */
2192 			ssc->ses_objmap[oid].encstat[0] =
2193 			    SES_OBJSTAT_NOTINSTALLED;
2194 		} else {
2195 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2196 		}
2197 		if (status & 0x2) {
2198 			ssc->ses_objmap[oid].encstat[2] = 0x8;
2199 		}
2200 		if ((status & 0x4) == 0) {
2201 			ssc->ses_objmap[oid].encstat[3] = 0x10;
2202 		}
2203 		ssc->ses_objmap[oid++].svalid = 1;
2204 	}
2205 	/* see comment below about sticky enclosure status */
2206 	ssc->ses_encstat |= ENCI_SVALID | oencstat;
2207 	SES_FREE(sdata, buflen);
2208 	return (0);
2209 }
2210 
2211 static int
2212 set_objstat_sel(ses_softc_t *ssc, ses_objstat *obp, int slp)
2213 {
2214 	int idx;
2215 	encobj *ep;
2216 	struct scfg *cc = ssc->ses_private;
2217 
2218 	if (cc == NULL)
2219 		return (0);
2220 
2221 	idx = (int)obp->obj_id;
2222 	ep = &ssc->ses_objmap[idx];
2223 
2224 	switch (ep->enctype) {
2225 	case SESTYP_DEVICE:
2226 		if (obp->cstat[0] & SESCTL_PRDFAIL) {
2227 			ep->priv |= 0x40;
2228 		}
2229 		/* SESCTL_RSTSWAP has no correspondence in SAF-TE */
2230 		if (obp->cstat[0] & SESCTL_DISABLE) {
2231 			ep->priv |= 0x80;
2232 			/*
2233 			 * Hmm. Try to set the 'No Drive' flag.
2234 			 * Maybe that will count as a 'disable'.
2235 			 */
2236 		}
2237 		if (ep->priv & 0xc6) {
2238 			ep->priv &= ~0x1;
2239 		} else {
2240 			ep->priv |= 0x1;	/* no errors */
2241 		}
2242 		wrslot_stat(ssc, slp);
2243 		break;
2244 	case SESTYP_POWER:
2245 		/*
2246 		 * Okay- the only one that makes sense here is to
2247 		 * do the 'disable' for a power supply.
2248 		 */
2249 		if (obp->cstat[0] & SESCTL_DISABLE) {
2250 			(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
2251 				idx - cc->pwroff, 0, 0, slp);
2252 		}
2253 		break;
2254 	case SESTYP_FAN:
2255 		/*
2256 		 * Okay- the only one that makes sense here is to
2257 		 * set fan speed to zero on disable.
2258 		 */
2259 		if (obp->cstat[0] & SESCTL_DISABLE) {
2260 			/* remember- fans are the first items, so idx works */
2261 			(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
2262 		}
2263 		break;
2264 	case SESTYP_DOORLOCK:
2265 		/*
2266 		 * Well, we can 'disable' the lock.
2267 		 */
2268 		if (obp->cstat[0] & SESCTL_DISABLE) {
2269 			cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
2270 			(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2271 				cc->flag2, 0, slp);
2272 		}
2273 		break;
2274 	case SESTYP_ALARM:
2275 		/*
2276 		 * Well, we can 'disable' the alarm.
2277 		 */
2278 		if (obp->cstat[0] & SESCTL_DISABLE) {
2279 			cc->flag2 &= ~SAFT_FLG1_ALARM;
2280 			ep->priv |= 0x40;	/* Muted */
2281 			(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2282 				cc->flag2, 0, slp);
2283 		}
2284 		break;
2285 	default:
2286 		break;
2287 	}
2288 	ep->svalid = 0;
2289 	return (0);
2290 }
2291 
2292 /*
2293  * This function handles all of the 16 byte WRITE BUFFER commands.
2294  */
2295 static int
2296 wrbuf16(ses_softc_t *ssc, uint8_t op, uint8_t b1, uint8_t b2,
2297     uint8_t b3, int slp)
2298 {
2299 	int err, amt;
2300 	char *sdata;
2301 	struct scfg *cc = ssc->ses_private;
2302 	static char cdb[10] = { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
2303 
2304 	if (cc == NULL)
2305 		return (0);
2306 
2307 	sdata = SES_MALLOC(16);
2308 	if (sdata == NULL)
2309 		return (ENOMEM);
2310 
2311 	SES_VLOG(ssc, "saf_wrbuf16 %x %x %x %x\n", op, b1, b2, b3);
2312 
2313 	sdata[0] = op;
2314 	sdata[1] = b1;
2315 	sdata[2] = b2;
2316 	sdata[3] = b3;
2317 	MEMZERO(&sdata[4], 12);
2318 	amt = -16;
2319 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2320 	SES_FREE(sdata, 16);
2321 	return (err);
2322 }
2323 
2324 /*
2325  * This function updates the status byte for the device slot described.
2326  *
2327  * Since this is an optional SAF-TE command, there's no point in
2328  * returning an error.
2329  */
2330 static void
2331 wrslot_stat(ses_softc_t *ssc, int slp)
2332 {
2333 	int i, amt;
2334 	encobj *ep;
2335 	char cdb[10], *sdata;
2336 	struct scfg *cc = ssc->ses_private;
2337 
2338 	if (cc == NULL)
2339 		return;
2340 
2341 	SES_VLOG(ssc, "saf_wrslot\n");
2342 	cdb[0] = WRITE_BUFFER;
2343 	cdb[1] = 1;
2344 	cdb[2] = 0;
2345 	cdb[3] = 0;
2346 	cdb[4] = 0;
2347 	cdb[5] = 0;
2348 	cdb[6] = 0;
2349 	cdb[7] = 0;
2350 	cdb[8] = cc->Nslots * 3 + 1;
2351 	cdb[9] = 0;
2352 
2353 	sdata = SES_MALLOC(cc->Nslots * 3 + 1);
2354 	if (sdata == NULL)
2355 		return;
2356 	MEMZERO(sdata, cc->Nslots * 3 + 1);
2357 
2358 	sdata[0] = SAFTE_WT_DSTAT;
2359 	for (i = 0; i < cc->Nslots; i++) {
2360 		ep = &ssc->ses_objmap[cc->slotoff + i];
2361 		SES_VLOG(ssc, "saf_wrslot %d <- %x\n", i, ep->priv & 0xff);
2362 		sdata[1 + (3 * i)] = ep->priv & 0xff;
2363 	}
2364 	amt = -(cc->Nslots * 3 + 1);
2365 	(void) ses_runcmd(ssc, cdb, 10, sdata, &amt);
2366 	SES_FREE(sdata, cc->Nslots * 3 + 1);
2367 }
2368 
2369 /*
2370  * This function issues the "PERFORM SLOT OPERATION" command.
2371  */
2372 static int
2373 perf_slotop(ses_softc_t *ssc, uint8_t slot, uint8_t opflag, int slp)
2374 {
2375 	int err, amt;
2376 	char *sdata;
2377 	struct scfg *cc = ssc->ses_private;
2378 	static char cdb[10] =
2379 	    { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
2380 
2381 	if (cc == NULL)
2382 		return (0);
2383 
2384 	sdata = SES_MALLOC(SAFT_SCRATCH);
2385 	if (sdata == NULL)
2386 		return (ENOMEM);
2387 	MEMZERO(sdata, SAFT_SCRATCH);
2388 
2389 	sdata[0] = SAFTE_WT_SLTOP;
2390 	sdata[1] = slot;
2391 	sdata[2] = opflag;
2392 	SES_VLOG(ssc, "saf_slotop slot %d op %x\n", slot, opflag);
2393 	amt = -SAFT_SCRATCH;
2394 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2395 	SES_FREE(sdata, SAFT_SCRATCH);
2396 	return (err);
2397 }
2398