xref: /netbsd-src/sys/dev/sbus/magma.c (revision 8b0f9554ff8762542c4defc4f70e1eb76fb508fa)
1 /*	$NetBSD: magma.c,v 1.45 2007/11/19 18:51:50 ad Exp $	*/
2 /*
3  * magma.c
4  *
5  * Copyright (c) 1998 Iain Hibbert
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Iain Hibbert
19  * 4. The name of the author may not be used to endorse or promote products
20  *    derived from this software without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
27  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
31  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  */
34 
35 /*
36  * Driver for Magma SBus Serial/Parallel cards using the Cirrus Logic
37  * CD1400 & CD1190 chips
38  */
39 
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: magma.c,v 1.45 2007/11/19 18:51:50 ad Exp $");
42 
43 #if 0
44 #define MAGMA_DEBUG
45 #endif
46 
47 #include "magma.h"
48 #if NMAGMA > 0
49 
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/proc.h>
53 #include <sys/device.h>
54 #include <sys/file.h>
55 #include <sys/ioctl.h>
56 #include <sys/malloc.h>
57 #include <sys/tty.h>
58 #include <sys/time.h>
59 #include <sys/kernel.h>
60 #include <sys/syslog.h>
61 #include <sys/conf.h>
62 #include <sys/errno.h>
63 #include <sys/kauth.h>
64 #include <sys/intr.h>
65 
66 #include <sys/bus.h>
67 #include <machine/autoconf.h>
68 
69 #include <dev/sbus/sbusvar.h>
70 
71 #include <dev/ic/cd1400reg.h>
72 #include <dev/ic/cd1190reg.h>
73 
74 #include <dev/sbus/mbppio.h>
75 #include <dev/sbus/magmareg.h>
76 
77 /* supported cards
78  *
79  *  The table below lists the cards that this driver is likely to
80  *  be able to support.
81  *
82  *  Cards with parallel ports: except for the LC2+1Sp, they all use
83  *  the CD1190 chip which I know nothing about.  I've tried to leave
84  *  hooks for it so it shouldn't be too hard to add support later.
85  *  (I think somebody is working on this separately)
86  *
87  *  Thanks to Bruce at Magma for telling me the hardware offsets.
88  */
89 static struct magma_board_info supported_cards[] = {
90 	{
91 		"MAGMA_Sp", "MAGMA,4_Sp", "Magma 4 Sp", 4, 0,
92 		1, 0xa000, 0xc000, 0xe000, { 0x8000, 0, 0, 0 },
93 		0, { 0, 0 }
94 	},
95 	{
96 		"MAGMA_Sp", "MAGMA,8_Sp", "Magma 8 Sp", 8, 0,
97 		2, 0xa000, 0xc000, 0xe000, { 0x4000, 0x6000, 0, 0 },
98 		0, { 0, 0 }
99 	},
100 	{
101 		"MAGMA_Sp", "MAGMA,_8HS_Sp", "Magma Fast 8 Sp", 8, 0,
102 		2, 0x2000, 0x4000, 0x6000, { 0x8000, 0xa000, 0, 0 },
103 		0, { 0, 0 }
104 	},
105 	{
106 		"MAGMA_Sp", "MAGMA,_8SP_422", "Magma 8 Sp - 422", 8, 0,
107 		2, 0x2000, 0x4000, 0x6000, { 0x8000, 0xa000, 0, 0 },
108 		0, { 0, 0 }
109 	},
110 	{
111 		"MAGMA_Sp", "MAGMA,12_Sp", "Magma 12 Sp", 12, 0,
112 		3, 0xa000, 0xc000, 0xe000, { 0x2000, 0x4000, 0x6000, 0 },
113 		0, { 0, 0 }
114 	},
115 	{
116 		"MAGMA_Sp", "MAGMA,16_Sp", "Magma 16 Sp", 16, 0,
117 		4, 0xd000, 0xe000, 0xf000, { 0x8000, 0x9000, 0xa000, 0xb000 },
118 		0, { 0, 0 }
119 	},
120 	{
121 		"MAGMA_Sp", "MAGMA,16_Sp_2", "Magma 16 Sp", 16, 0,
122 		4, 0x2000, 0x4000, 0x6000, { 0x8000, 0xa000, 0xc000, 0xe000 },
123 		0, { 0, 0 }
124 	},
125 	{
126 		"MAGMA_Sp", "MAGMA,16HS_Sp", "Magma Fast 16 Sp", 16, 0,
127 		4, 0x2000, 0x4000, 0x6000, { 0x8000, 0xa000, 0xc000, 0xe000 },
128 		0, { 0, 0 }
129 	},
130 	{
131 		"MAGMA_Sp", "MAGMA,21_Sp", "Magma LC 2+1 Sp", 2, 1,
132 		1, 0xa000, 0xc000, 0xe000, { 0x8000, 0, 0, 0 },
133 		0, { 0, 0 }
134 	},
135 	{
136 		"MAGMA_Sp", "MAGMA,21HS_Sp", "Magma 2+1 Sp", 2, 1,
137 		1, 0xa000, 0xc000, 0xe000, { 0x4000, 0, 0, 0 },
138 		1, { 0x6000, 0 }
139 	},
140 	{
141 		"MAGMA_Sp", "MAGMA,41_Sp", "Magma 4+1 Sp", 4, 1,
142 		1, 0xa000, 0xc000, 0xe000, { 0x4000, 0, 0, 0 },
143 		1, { 0x6000, 0 }
144 	},
145 	{
146 		"MAGMA_Sp", "MAGMA,82_Sp", "Magma 8+2 Sp", 8, 2,
147 		2, 0xd000, 0xe000, 0xf000, { 0x8000, 0x9000, 0, 0 },
148 		2, { 0xa000, 0xb000 }
149 	},
150 	{
151 		"MAGMA_Sp", "MAGMA,P1_Sp", "Magma P1 Sp", 0, 1,
152 		0, 0, 0, 0, { 0, 0, 0, 0 },
153 		1, { 0x8000, 0 }
154 	},
155 	{
156 		"MAGMA_Sp", "MAGMA,P2_Sp", "Magma P2 Sp", 0, 2,
157 		0, 0, 0, 0, { 0, 0, 0, 0 },
158 		2, { 0x4000, 0x8000 }
159 	},
160 	{
161 		"MAGMA 2+1HS Sp", "", "Magma 2+1HS Sp", 2, 0,
162 		1, 0xa000, 0xc000, 0xe000, { 0x4000, 0, 0, 0 },
163 		1, { 0x8000, 0 }
164 	},
165 	{
166 		NULL, NULL, NULL, 0, 0,
167 		0, 0, 0, 0, { 0, 0, 0, 0 },
168 		0, { 0, 0 }
169 	}
170 };
171 
172 /************************************************************************
173  *
174  *  Autoconfig Stuff
175  */
176 
177 CFATTACH_DECL(magma, sizeof(struct magma_softc),
178     magma_match, magma_attach, NULL, NULL);
179 
180 CFATTACH_DECL(mtty, sizeof(struct mtty_softc),
181     mtty_match, mtty_attach, NULL, NULL);
182 
183 CFATTACH_DECL(mbpp, sizeof(struct mbpp_softc),
184     mbpp_match, mbpp_attach, NULL, NULL);
185 
186 extern struct cfdriver mtty_cd;
187 extern struct cfdriver mbpp_cd;
188 
189 dev_type_open(mttyopen);
190 dev_type_close(mttyclose);
191 dev_type_read(mttyread);
192 dev_type_write(mttywrite);
193 dev_type_ioctl(mttyioctl);
194 dev_type_stop(mttystop);
195 dev_type_tty(mttytty);
196 dev_type_poll(mttypoll);
197 
198 const struct cdevsw mtty_cdevsw = {
199 	mttyopen, mttyclose, mttyread, mttywrite, mttyioctl,
200 	mttystop, mttytty, mttypoll, nommap, ttykqfilter, D_TTY
201 };
202 
203 dev_type_open(mbppopen);
204 dev_type_close(mbppclose);
205 dev_type_read(mbpp_rw);
206 dev_type_ioctl(mbppioctl);
207 
208 const struct cdevsw mbpp_cdevsw = {
209 	mbppopen, mbppclose, mbpp_rw, mbpp_rw, mbppioctl,
210 	nostop, notty, nopoll, nommap, nokqfilter, D_OTHER
211 };
212 
213 /************************************************************************
214  *
215  *  CD1400 Routines
216  *
217  *	cd1400_compute_baud		calculate COR/BPR register values
218  *	cd1400_write_ccr		write a value to CD1400 ccr
219  *	cd1400_read_reg			read from a CD1400 register
220  *	cd1400_write_reg		write to a CD1400 register
221  *	cd1400_enable_transmitter	enable transmitting on CD1400 channel
222  */
223 
224 /*
225  * compute the bpr/cor pair for any baud rate
226  * returns 0 for success, 1 for failure
227  */
228 int
229 cd1400_compute_baud(speed, clock, cor, bpr)
230 	speed_t speed;
231 	int clock;
232 	int *cor, *bpr;
233 {
234 	int c, co, br;
235 
236 	if( speed < 50 || speed > 150000 )
237 		return(1);
238 
239 	for( c = 0, co = 8 ; co <= 2048 ; co <<= 2, c++ ) {
240 		br = ((clock * 1000000) + (co * speed) / 2) / (co * speed);
241 		if( br < 0x100 ) {
242 			*bpr = br;
243 			*cor = c;
244 			return(0);
245 		}
246 	}
247 
248 	return(1);
249 }
250 
251 /*
252  * Write a CD1400 channel command, should have a timeout?
253  */
254 inline void
255 cd1400_write_ccr(cd, cmd)
256 	struct cd1400 *cd;
257 	u_char cmd;
258 {
259 	while( cd1400_read_reg(cd, CD1400_CCR) )
260 		;
261 
262 	cd1400_write_reg(cd, CD1400_CCR, cmd);
263 }
264 
265 /*
266  * read a value from a cd1400 register
267  */
268 inline u_char
269 cd1400_read_reg(cd, reg)
270 	struct cd1400 *cd;
271 	int reg;
272 {
273 	return(cd->cd_reg[reg]);
274 }
275 
276 /*
277  * write a value to a cd1400 register
278  */
279 inline void
280 cd1400_write_reg(cd, reg, value)
281 	struct cd1400 *cd;
282 	int reg;
283 	u_char value;
284 {
285 	cd->cd_reg[reg] = value;
286 }
287 
288 /*
289  * enable transmit service requests for cd1400 channel
290  */
291 void
292 cd1400_enable_transmitter(cd, channel)
293 	struct cd1400 *cd;
294 	int channel;
295 {
296 	int s, srer;
297 
298 	s = spltty();
299 	cd1400_write_reg(cd, CD1400_CAR, channel);
300 	srer = cd1400_read_reg(cd, CD1400_SRER);
301 	SET(srer, CD1400_SRER_TXRDY);
302 	cd1400_write_reg(cd, CD1400_SRER, srer);
303 	splx(s);
304 }
305 
306 /************************************************************************
307  *
308  *  CD1190 Routines
309  */
310 
311 /* well, there are none yet */
312 
313 /************************************************************************
314  *
315  *  Magma Routines
316  *
317  * magma_match		reports if we have a magma board available
318  * magma_attach		attaches magma boards to the sbus
319  * magma_hard		hardware level interrupt routine
320  * magma_soft		software level interrupt routine
321  */
322 
323 int
324 magma_match(parent, cf, aux)
325 	struct device *parent;
326 	struct cfdata *cf;
327 	void *aux;
328 {
329 	struct sbus_attach_args *sa = aux;
330 	struct magma_board_info *card;
331 
332 	/* See if we support this device */
333 	for (card = supported_cards; ; card++) {
334 		if (card->mb_sbusname == NULL)
335 			/* End of table: no match */
336 			return (0);
337 		if (strcmp(sa->sa_name, card->mb_sbusname) == 0)
338 			break;
339 	}
340 
341 	dprintf(("magma: matched `%s'\n", sa->sa_name));
342 	dprintf(("magma: magma_prom `%s'\n",
343 		prom_getpropstring(sa->sa_node, "magma_prom")));
344 	dprintf(("magma: intlevels `%s'\n",
345 		prom_getpropstring(sa->sa_node, "intlevels")));
346 	dprintf(("magma: chiprev `%s'\n",
347 		prom_getpropstring(sa->sa_node, "chiprev")));
348 	dprintf(("magma: clock `%s'\n",
349 		prom_getpropstring(sa->sa_node, "clock")));
350 
351 	return (1);
352 }
353 
354 void
355 magma_attach(parent, self, aux)
356 	struct device *parent;
357 	struct device *self;
358 	void *aux;
359 {
360 	struct sbus_attach_args *sa = aux;
361 	struct magma_softc *sc = (struct magma_softc *)self;
362 	struct magma_board_info *card;
363 	bus_space_handle_t bh;
364 	char *magma_prom, *clockstr;
365 	int cd_clock;
366 	int node, chip;
367 
368 	node = sa->sa_node;
369 
370 	/*
371 	 * Find the card model.
372 	 * Older models all have sbus node name `MAGMA_Sp' (see
373 	 * `supported_cards[]' above), and must be distinguished
374 	 * by the `magma_prom' property.
375 	 */
376 	magma_prom = prom_getpropstring(node, "magma_prom");
377 
378 	for (card = supported_cards; card->mb_name != NULL; card++) {
379 		if (strcmp(sa->sa_name, card->mb_sbusname) != 0)
380 			/* Sbus node name doesn't match */
381 			continue;
382 		if (strcmp(magma_prom, card->mb_name) == 0)
383 			/* Model name match */
384 			break;
385 	}
386 
387 	if( card->mb_name == NULL ) {
388 		printf(": %s (unsupported)\n", magma_prom);
389 		return;
390 	}
391 
392 	dprintf((" addr %p", sc));
393 	printf(": %s\n", card->mb_realname);
394 
395 	sc->ms_board = card;
396 	sc->ms_ncd1400 = card->mb_ncd1400;
397 	sc->ms_ncd1190 = card->mb_ncd1190;
398 
399 	if (sbus_bus_map(sa->sa_bustag,
400 			 sa->sa_slot, sa->sa_offset, sa->sa_size,
401 			 BUS_SPACE_MAP_LINEAR, &bh) != 0) {
402 		printf("%s @ sbus: cannot map registers\n", self->dv_xname);
403 		return;
404 	}
405 
406 	/* the SVCACK* lines are daisychained */
407 	sc->ms_svcackr = (char *)bus_space_vaddr(sa->sa_bustag, bh)
408 		+ card->mb_svcackr;
409 	sc->ms_svcackt = (char *)bus_space_vaddr(sa->sa_bustag, bh)
410 		+ card->mb_svcackt;
411 	sc->ms_svcackm = (char *)bus_space_vaddr(sa->sa_bustag, bh)
412 		+ card->mb_svcackm;
413 
414 	/*
415 	 * Find the clock speed; it's the same for all CD1400 chips
416 	 * on the board.
417 	 */
418 	clockstr = prom_getpropstring(node, "clock");
419 	if (*clockstr == '\0')
420 		/* Default to 25MHz */
421 		cd_clock = 25;
422 	else {
423 		cd_clock = 0;
424 		while (*clockstr != '\0')
425 			cd_clock = (cd_clock * 10) + (*clockstr++ - '0');
426 	}
427 
428 	/* init the cd1400 chips */
429 	for( chip = 0 ; chip < card->mb_ncd1400 ; chip++ ) {
430 		struct cd1400 *cd = &sc->ms_cd1400[chip];
431 
432 		cd->cd_clock = cd_clock;
433 		cd->cd_reg = (char *)bus_space_vaddr(sa->sa_bustag, bh) +
434 		    card->mb_cd1400[chip];
435 
436 		/* prom_getpropstring(node, "chiprev"); */
437 		/* seemingly the Magma drivers just ignore the propstring */
438 		cd->cd_chiprev = cd1400_read_reg(cd, CD1400_GFRCR);
439 
440 		dprintf(("%s attach CD1400 %d addr %p rev %x clock %dMHz\n",
441 			sc->ms_dev.dv_xname, chip,
442 			cd->cd_reg, cd->cd_chiprev, cd->cd_clock));
443 
444 		/* clear GFRCR */
445 		cd1400_write_reg(cd, CD1400_GFRCR, 0x00);
446 
447 		/* reset whole chip */
448 		cd1400_write_ccr(cd, CD1400_CCR_CMDRESET | CD1400_CCR_FULLRESET);
449 
450 		/* wait for revision code to be restored */
451 		while( cd1400_read_reg(cd, CD1400_GFRCR) != cd->cd_chiprev )
452 		        ;
453 
454 		/* set the Prescaler Period Register to tick at 1ms */
455 		cd1400_write_reg(cd, CD1400_PPR,
456 			((cd->cd_clock * 1000000 / CD1400_PPR_PRESCALER + 500) / 1000));
457 
458 		/* The LC2+1Sp card is the only card that doesn't have
459 		 * a CD1190 for the parallel port, but uses channel 0 of
460 		 * the CD1400, so we make a note of it for later and set up
461 		 * the CD1400 for parallel mode operation.
462 		 */
463 		if( card->mb_npar && card->mb_ncd1190 == 0 ) {
464 			cd1400_write_reg(cd, CD1400_GCR, CD1400_GCR_PARALLEL);
465 			cd->cd_parmode = 1;
466 		}
467 	}
468 
469 	/* init the cd1190 chips */
470 	for( chip = 0 ; chip < card->mb_ncd1190 ; chip++ ) {
471 		struct cd1190 *cd = &sc->ms_cd1190[chip];
472 
473 		cd->cd_reg = (char *)bus_space_vaddr(sa->sa_bustag, bh) +
474 		    card->mb_cd1190[chip];
475 
476 		/* XXX don't know anything about these chips yet */
477 		printf("%s: CD1190 %d addr %p (unsupported)\n",
478 			self->dv_xname, chip, cd->cd_reg);
479 	}
480 
481 	sbus_establish(&sc->ms_sd, &sc->ms_dev);
482 
483 	/* configure the children */
484 	(void)config_found(self, mtty_match, NULL);
485 	(void)config_found(self, mbpp_match, NULL);
486 
487 	/*
488 	 * Establish the interrupt handlers.
489 	 */
490 	if (sa->sa_nintr == 0)
491 		return;		/* No interrupts to service!? */
492 
493 	(void)bus_intr_establish(sa->sa_bustag, sa->sa_pri, IPL_SERIAL,
494 				 magma_hard, sc);
495 	sc->ms_sicookie = softint_establish(SOFTINT_SERIAL, magma_soft, sc);
496 	if (sc->ms_sicookie == NULL) {
497 		printf("\n%s: cannot establish soft int handler\n",
498 			sc->ms_dev.dv_xname);
499 		return;
500 	}
501 	evcnt_attach_dynamic(&sc->ms_intrcnt, EVCNT_TYPE_INTR, NULL,
502 	    sc->ms_dev.dv_xname, "intr");
503 }
504 
505 /*
506  * hard interrupt routine
507  *
508  *  returns 1 if it handled it, otherwise 0
509  *
510  *  runs at IPL_SERIAL
511  */
512 int
513 magma_hard(arg)
514 	void *arg;
515 {
516 	struct magma_softc *sc = arg;
517 	struct cd1400 *cd;
518 	int chip, status = 0;
519 	int serviced = 0;
520 	int needsoftint = 0;
521 
522 	/*
523 	 * check status of all the CD1400 chips
524 	 */
525 	for( chip = 0 ; chip < sc->ms_ncd1400 ; chip++ )
526 		status |= cd1400_read_reg(&sc->ms_cd1400[chip], CD1400_SVRR);
527 
528 	if( ISSET(status, CD1400_SVRR_RXRDY) ) {
529 		u_char rivr = *sc->ms_svcackr;	/* enter rx service context */
530 		int port = rivr >> 4;
531 
532 		if( rivr & (1<<3) ) {			/* parallel port */
533 			struct mbpp_port *mbpp;
534 			int n_chars;
535 
536 			mbpp = &sc->ms_mbpp->ms_port[port];
537 			cd = mbpp->mp_cd1400;
538 
539 			/* don't think we have to handle exceptions */
540 			n_chars = cd1400_read_reg(cd, CD1400_RDCR);
541 			while (n_chars--) {
542 				if( mbpp->mp_cnt == 0 ) {
543 					SET(mbpp->mp_flags, MBPPF_WAKEUP);
544 					needsoftint = 1;
545 					break;
546 				}
547 				*mbpp->mp_ptr = cd1400_read_reg(cd,CD1400_RDSR);
548 				mbpp->mp_ptr++;
549 				mbpp->mp_cnt--;
550 			}
551 		} else {				/* serial port */
552 			struct mtty_port *mtty;
553 			u_char *ptr, n_chars, line_stat;
554 
555 			mtty = &sc->ms_mtty->ms_port[port];
556 			cd = mtty->mp_cd1400;
557 
558 			if( ISSET(rivr, CD1400_RIVR_EXCEPTION) ) {
559 				line_stat = cd1400_read_reg(cd, CD1400_RDSR);
560 				n_chars = 1;
561 			} else { /* no exception, received data OK */
562 				line_stat = 0;
563 				n_chars = cd1400_read_reg(cd, CD1400_RDCR);
564 			}
565 
566 			ptr = mtty->mp_rput;
567 			while( n_chars-- ) {
568 				*ptr++ = line_stat;
569 				*ptr++ = cd1400_read_reg(cd, CD1400_RDSR);
570 				if( ptr == mtty->mp_rend ) ptr = mtty->mp_rbuf;
571 				if( ptr == mtty->mp_rget ) {
572 					if( ptr == mtty->mp_rbuf )
573 						ptr = mtty->mp_rend;
574 					ptr -= 2;
575 					SET(mtty->mp_flags, MTTYF_RING_OVERFLOW);
576 					break;
577 				}
578 			}
579 			mtty->mp_rput = ptr;
580 
581 			needsoftint = 1;
582 		}
583 
584 		cd1400_write_reg(cd, CD1400_EOSRR, 0);	/* end service context */
585 		serviced = 1;
586 	} /* if(rx_service...) */
587 
588 	if( ISSET(status, CD1400_SVRR_MDMCH) ) {
589 		u_char mivr = *sc->ms_svcackm;	/* enter mdm service context */
590 		int port = mivr >> 4;
591 		struct mtty_port *mtty;
592 		int carrier;
593 		u_char msvr;
594 
595 		/*
596 		 * Handle CD (LC2+1Sp = DSR) changes.
597 		 */
598 		mtty = &sc->ms_mtty->ms_port[port];
599 		cd = mtty->mp_cd1400;
600 		msvr = cd1400_read_reg(cd, CD1400_MSVR2);
601 		carrier = ISSET(msvr, cd->cd_parmode ? CD1400_MSVR2_DSR : CD1400_MSVR2_CD);
602 
603 		if( mtty->mp_carrier != carrier ) {
604 			SET(mtty->mp_flags, MTTYF_CARRIER_CHANGED);
605 			mtty->mp_carrier = carrier;
606 			needsoftint = 1;
607 		}
608 
609 		cd1400_write_reg(cd, CD1400_EOSRR, 0);	/* end service context */
610 		serviced = 1;
611 	} /* if(mdm_service...) */
612 
613 	if( ISSET(status, CD1400_SVRR_TXRDY) ) {
614 		u_char tivr = *sc->ms_svcackt;	/* enter tx service context */
615 		int port = tivr >> 4;
616 
617 		if( tivr & (1<<3) ) {	/* parallel port */
618 			struct mbpp_port *mbpp;
619 
620 			mbpp = &sc->ms_mbpp->ms_port[port];
621 			cd = mbpp->mp_cd1400;
622 
623 			if( mbpp->mp_cnt ) {
624 				int count = 0;
625 
626 				/* fill the fifo */
627 				while (mbpp->mp_cnt &&
628 					count++ < CD1400_PAR_FIFO_SIZE) {
629 					cd1400_write_reg(cd, CD1400_TDR,
630 							 *mbpp->mp_ptr);
631 					mbpp->mp_ptr++;
632 					mbpp->mp_cnt--;
633 				}
634 			} else {
635 				/*
636 				 * fifo is empty and we got no more data
637 				 * to send, so shut off interrupts and
638 				 * signal for a wakeup, which can't be
639 				 * done here in case we beat mbpp_send to
640 				 * the tsleep call (we are running at >spltty)
641 				 */
642 				cd1400_write_reg(cd, CD1400_SRER, 0);
643 				SET(mbpp->mp_flags, MBPPF_WAKEUP);
644 				needsoftint = 1;
645 			}
646 		} else {		/* serial port */
647 			struct mtty_port *mtty;
648 			struct tty *tp;
649 
650 			mtty = &sc->ms_mtty->ms_port[port];
651 			cd = mtty->mp_cd1400;
652 			tp = mtty->mp_tty;
653 
654 			if( !ISSET(mtty->mp_flags, MTTYF_STOP) ) {
655 				int count = 0;
656 
657 				/* check if we should start/stop a break */
658 				if( ISSET(mtty->mp_flags, MTTYF_SET_BREAK) ) {
659 					cd1400_write_reg(cd, CD1400_TDR, 0);
660 					cd1400_write_reg(cd, CD1400_TDR, 0x81);
661 					/* should we delay too? */
662 					CLR(mtty->mp_flags, MTTYF_SET_BREAK);
663 					count += 2;
664 				}
665 
666 				if( ISSET(mtty->mp_flags, MTTYF_CLR_BREAK) ) {
667 					cd1400_write_reg(cd, CD1400_TDR, 0);
668 					cd1400_write_reg(cd, CD1400_TDR, 0x83);
669 					CLR(mtty->mp_flags, MTTYF_CLR_BREAK);
670 					count += 2;
671 				}
672 
673 				/* I don't quite fill the fifo in case the last one is a
674 				 * NULL which I have to double up because its the escape
675 				 * code for embedded transmit characters.
676 				 */
677 				while( mtty->mp_txc > 0 && count < CD1400_TX_FIFO_SIZE - 1 ) {
678 					u_char ch;
679 
680 					ch = *mtty->mp_txp;
681 
682 					mtty->mp_txc--;
683 					mtty->mp_txp++;
684 
685 					if( ch == 0 ) {
686 						cd1400_write_reg(cd, CD1400_TDR, ch);
687 						count++;
688 					}
689 
690 					cd1400_write_reg(cd, CD1400_TDR, ch);
691 					count++;
692 				}
693 			}
694 
695 			/* if we ran out of work or are requested to STOP then
696 			 * shut off the txrdy interrupts and signal DONE to flush
697 			 * out the chars we have sent.
698 			 */
699 			if( mtty->mp_txc == 0 || ISSET(mtty->mp_flags, MTTYF_STOP) ) {
700 				register int srer;
701 
702 				srer = cd1400_read_reg(cd, CD1400_SRER);
703 				CLR(srer, CD1400_SRER_TXRDY);
704 				cd1400_write_reg(cd, CD1400_SRER, srer);
705 				CLR(mtty->mp_flags, MTTYF_STOP);
706 
707 				SET(mtty->mp_flags, MTTYF_DONE);
708 				needsoftint = 1;
709 			}
710 		}
711 
712 		cd1400_write_reg(cd, CD1400_EOSRR, 0);	/* end service context */
713 		serviced = 1;
714 	} /* if(tx_service...) */
715 
716 	/* XXX service CD1190 interrupts too
717 	for( chip = 0 ; chip < sc->ms_ncd1190 ; chip++ ) {
718 	}
719 	*/
720 
721 	if (needsoftint)
722 		/* trigger the soft interrupt */
723 		softint_schedule(sc->ms_sicookie);
724 
725 	return(serviced);
726 }
727 
728 /*
729  * magma soft interrupt handler
730  *
731  * runs at IPL_SOFTSERIAL
732  */
733 void
734 magma_soft(arg)
735 	void *arg;
736 {
737 	struct magma_softc *sc = arg;
738 	struct mtty_softc *mtty = sc->ms_mtty;
739 	struct mbpp_softc *mbpp = sc->ms_mbpp;
740 	int port;
741 	int s, flags;
742 
743 	if (mtty == NULL)
744 		goto chkbpp;
745 
746 	/*
747 	 * check the tty ports to see what needs doing
748 	 */
749 	for( port = 0 ; port < mtty->ms_nports ; port++ ) {
750 		struct mtty_port *mp = &mtty->ms_port[port];
751 		struct tty *tp = mp->mp_tty;
752 
753 		if( !ISSET(tp->t_state, TS_ISOPEN) )
754 			continue;
755 
756 		/*
757 		 * handle any received data
758 		 */
759 		while( mp->mp_rget != mp->mp_rput ) {
760 			u_char stat;
761 			int data;
762 
763 			stat = mp->mp_rget[0];
764 			data = mp->mp_rget[1];
765 			mp->mp_rget = ((mp->mp_rget + 2) == mp->mp_rend)
766 				? mp->mp_rbuf : (mp->mp_rget + 2);
767 
768 			if( stat & (CD1400_RDSR_BREAK | CD1400_RDSR_FE) )
769 				data |= TTY_FE;
770 			if( stat & CD1400_RDSR_PE )
771 				data |= TTY_PE;
772 
773 			if( stat & CD1400_RDSR_OE )
774 				log(LOG_WARNING, "%s%x: fifo overflow\n",
775 				    mtty->ms_dev.dv_xname, port);
776 
777 			(*tp->t_linesw->l_rint)(data, tp);
778 		}
779 
780 		s = splserial();	/* block out hard interrupt routine */
781 		flags = mp->mp_flags;
782 		CLR(mp->mp_flags, MTTYF_DONE | MTTYF_CARRIER_CHANGED | MTTYF_RING_OVERFLOW);
783 		splx(s);	/* ok */
784 
785 		if( ISSET(flags, MTTYF_CARRIER_CHANGED) ) {
786 			dprintf(("%s%x: cd %s\n", mtty->ms_dev.dv_xname,
787 				port, mp->mp_carrier ? "on" : "off"));
788 			(*tp->t_linesw->l_modem)(tp, mp->mp_carrier);
789 		}
790 
791 		if( ISSET(flags, MTTYF_RING_OVERFLOW) ) {
792 			log(LOG_WARNING, "%s%x: ring buffer overflow\n",
793 			    mtty->ms_dev.dv_xname, port);
794 		}
795 
796 		if( ISSET(flags, MTTYF_DONE) ) {
797 			ndflush(&tp->t_outq, mp->mp_txp - tp->t_outq.c_cf);
798 			CLR(tp->t_state, TS_BUSY);
799 			(*tp->t_linesw->l_start)(tp);	/* might be some more */
800 		}
801 	} /* for(each mtty...) */
802 
803 
804 chkbpp:
805 	/*
806 	 * Check the bpp ports (if any) to see what needs doing
807 	 */
808 	if (mbpp == NULL)
809 		return;
810 
811 	for( port = 0 ; port < mbpp->ms_nports ; port++ ) {
812 		struct mbpp_port *mp = &mbpp->ms_port[port];
813 
814 		if( !ISSET(mp->mp_flags, MBPPF_OPEN) )
815 			continue;
816 
817 		s = splserial();
818 		flags = mp->mp_flags;
819 		CLR(mp->mp_flags, MBPPF_WAKEUP);
820 		splx(s);
821 
822 		if( ISSET(flags, MBPPF_WAKEUP) ) {
823 			wakeup(mp);
824 		}
825 
826 	} /* for(each mbpp...) */
827 }
828 
829 /************************************************************************
830  *
831  *  MTTY Routines
832  *
833  *	mtty_match		match one mtty device
834  *	mtty_attach		attach mtty devices
835  *	mttyopen		open mtty device
836  *	mttyclose		close mtty device
837  *	mttyread		read from mtty
838  *	mttywrite		write to mtty
839  *	mttyioctl		do ioctl on mtty
840  *	mttytty			return tty pointer for mtty
841  *	mttystop		stop mtty device
842  *	mtty_start		start mtty device
843  *	mtty_param		set mtty parameters
844  *	mtty_modem_control	set modem control lines
845  */
846 
847 int
848 mtty_match(parent, cf, args)
849 	struct device *parent;
850 	struct cfdata *cf;
851 	void *args;
852 {
853 	struct magma_softc *sc = (struct magma_softc *)parent;
854 
855 	return( args == mtty_match && sc->ms_board->mb_nser && sc->ms_mtty == NULL );
856 }
857 
858 void
859 mtty_attach(parent, dev, args)
860 	struct device *parent;
861 	struct device *dev;
862 	void *args;
863 {
864 	struct magma_softc *sc = (struct magma_softc *)parent;
865 	struct mtty_softc *ms = (struct mtty_softc *)dev;
866 	int port, chip, chan;
867 
868 	sc->ms_mtty = ms;
869 	dprintf((" addr %p", ms));
870 
871 	for( port = 0, chip = 0, chan = 0 ; port < sc->ms_board->mb_nser ; port++ ) {
872 		struct mtty_port *mp = &ms->ms_port[port];
873 		struct tty *tp;
874 
875 		mp->mp_cd1400 = &sc->ms_cd1400[chip];
876 		if (mp->mp_cd1400->cd_parmode && chan == 0)
877 			chan = 1; /* skip channel 0 if parmode */
878 		mp->mp_channel = chan;
879 
880 		tp = ttymalloc();
881 		if (tp == NULL) break;
882 		tty_attach(tp);
883 		tp->t_oproc = mtty_start;
884 		tp->t_param = mtty_param;
885 
886 		mp->mp_tty = tp;
887 
888 		mp->mp_rbuf = malloc(MTTY_RBUF_SIZE, M_DEVBUF, M_NOWAIT);
889 		if (mp->mp_rbuf == NULL) break;
890 
891 		mp->mp_rend = mp->mp_rbuf + MTTY_RBUF_SIZE;
892 
893 		chan = (chan + 1) % CD1400_NO_OF_CHANNELS;
894 		if (chan == 0)
895 			chip++;
896 	}
897 
898 	ms->ms_nports = port;
899 	printf(": %d tty%s\n", port, port == 1 ? "" : "s");
900 }
901 
902 /*
903  * open routine. returns zero if successful, else error code
904  */
905 int
906 mttyopen(dev, flags, mode, l)
907 	dev_t dev;
908 	int flags;
909 	int mode;
910 	struct lwp *l;
911 {
912 	int card = MAGMA_CARD(dev);
913 	int port = MAGMA_PORT(dev);
914 	struct mtty_softc *ms;
915 	struct mtty_port *mp;
916 	struct tty *tp;
917 	struct cd1400 *cd;
918 	int error, s;
919 
920 	if( card >= mtty_cd.cd_ndevs ||
921 	    (ms = mtty_cd.cd_devs[card]) == NULL || port >= ms->ms_nports )
922 		return(ENXIO);	/* device not configured */
923 
924 	mp = &ms->ms_port[port];
925 	tp = mp->mp_tty;
926 	tp->t_dev = dev;
927 
928 	if (kauth_authorize_device_tty(l->l_cred, KAUTH_DEVICE_TTY_OPEN, tp))
929 		return (EBUSY);
930 
931 	s = spltty();
932 
933 	if( !ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
934 
935 		/* set defaults */
936 		ttychars(tp);
937 		tp->t_iflag = TTYDEF_IFLAG;
938 		tp->t_oflag = TTYDEF_OFLAG;
939 		tp->t_cflag = TTYDEF_CFLAG;
940 		if( ISSET(mp->mp_openflags, TIOCFLAG_CLOCAL) )
941 			SET(tp->t_cflag, CLOCAL);
942 		if( ISSET(mp->mp_openflags, TIOCFLAG_CRTSCTS) )
943 			SET(tp->t_cflag, CRTSCTS);
944 		if( ISSET(mp->mp_openflags, TIOCFLAG_MDMBUF) )
945 			SET(tp->t_cflag, MDMBUF);
946 		tp->t_lflag = TTYDEF_LFLAG;
947 		tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
948 
949 		/* init ring buffer */
950 		mp->mp_rput = mp->mp_rget = mp->mp_rbuf;
951 
952 		/* reset CD1400 channel */
953 		cd = mp->mp_cd1400;
954 		cd1400_write_reg(cd, CD1400_CAR, mp->mp_channel);
955 		cd1400_write_ccr(cd, CD1400_CCR_CMDRESET);
956 
957 		/* encode the port number in top half of LIVR */
958 		cd1400_write_reg(cd, CD1400_LIVR, port << 4 );
959 
960 		/* sets parameters and raises DTR */
961 		(void)mtty_param(tp, &tp->t_termios);
962 
963 		/* set tty watermarks */
964 		ttsetwater(tp);
965 
966 		/* enable service requests */
967 		cd1400_write_reg(cd, CD1400_SRER,
968 				 CD1400_SRER_RXDATA | CD1400_SRER_MDMCH);
969 
970 		/* tell the tty about the carrier status */
971 		if( ISSET(mp->mp_openflags, TIOCFLAG_SOFTCAR) ||
972 		    mp->mp_carrier )
973 			SET(tp->t_state, TS_CARR_ON);
974 		else
975 			CLR(tp->t_state, TS_CARR_ON);
976 	}
977 	splx(s);
978 
979 	error = ttyopen(tp, MTTY_DIALOUT(dev), ISSET(flags, O_NONBLOCK));
980 	if (error != 0)
981 		goto bad;
982 
983 	error = (*tp->t_linesw->l_open)(dev, tp);
984 	if (error != 0)
985 		goto bad;
986 
987 bad:
988 	if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
989 		/*
990 		 * We failed to open the device, and nobody else had it opened.
991 		 * Clean up the state as appropriate.
992 		 */
993 		/* XXX - do that here */
994 	}
995 
996 	return (error);
997 }
998 
999 /*
1000  * close routine. returns zero if successful, else error code
1001  */
1002 int
1003 mttyclose(dev, flag, mode, l)
1004 	dev_t dev;
1005 	int flag;
1006 	int mode;
1007 	struct lwp *l;
1008 {
1009 	struct mtty_softc *ms = mtty_cd.cd_devs[MAGMA_CARD(dev)];
1010 	struct mtty_port *mp = &ms->ms_port[MAGMA_PORT(dev)];
1011 	struct tty *tp = mp->mp_tty;
1012 	int s;
1013 
1014 	(*tp->t_linesw->l_close)(tp, flag);
1015 	ttyclose(tp);
1016 
1017 	s = spltty();
1018 
1019 	/* if HUPCL is set, and the tty is no longer open
1020 	 * shut down the port
1021 	 */
1022 	if( ISSET(tp->t_cflag, HUPCL) || !ISSET(tp->t_state, TS_ISOPEN) ) {
1023 		/* XXX wait until FIFO is empty before turning off the channel
1024 		struct cd1400 *cd = mp->mp_cd1400;
1025 		*/
1026 
1027 		/* drop DTR and RTS */
1028 		(void)mtty_modem_control(mp, 0, DMSET);
1029 
1030 		/* turn off the channel
1031 		cd1400_write_reg(cd, CD1400_CAR, mp->mp_channel);
1032 		cd1400_write_ccr(cd, CD1400_CCR_CMDRESET);
1033 		*/
1034 	}
1035 
1036 	splx(s);
1037 
1038 	return(0);
1039 }
1040 
1041 /*
1042  * Read routine
1043  */
1044 int
1045 mttyread(dev, uio, flags)
1046 	dev_t dev;
1047 	struct uio *uio;
1048 	int flags;
1049 {
1050 	struct mtty_softc *ms = mtty_cd.cd_devs[MAGMA_CARD(dev)];
1051 	struct mtty_port *mp = &ms->ms_port[MAGMA_PORT(dev)];
1052 	struct tty *tp = mp->mp_tty;
1053 
1054 	return( (*tp->t_linesw->l_read)(tp, uio, flags) );
1055 }
1056 
1057 /*
1058  * Write routine
1059  */
1060 int
1061 mttywrite(dev, uio, flags)
1062 	dev_t dev;
1063 	struct uio *uio;
1064 	int flags;
1065 {
1066 	struct mtty_softc *ms = mtty_cd.cd_devs[MAGMA_CARD(dev)];
1067 	struct mtty_port *mp = &ms->ms_port[MAGMA_PORT(dev)];
1068 	struct tty *tp = mp->mp_tty;
1069 
1070 	return( (*tp->t_linesw->l_write)(tp, uio, flags) );
1071 }
1072 
1073 /*
1074  * Poll routine
1075  */
1076 int
1077 mttypoll(dev, events, l)
1078 	dev_t dev;
1079 	int events;
1080 	struct lwp *l;
1081 {
1082 	struct mtty_softc *ms = mtty_cd.cd_devs[MAGMA_CARD(dev)];
1083 	struct mtty_port *mp = &ms->ms_port[MAGMA_PORT(dev)];
1084 	struct tty *tp = mp->mp_tty;
1085 
1086 	return ((*tp->t_linesw->l_poll)(tp, events, l));
1087 }
1088 
1089 /*
1090  * return tty pointer
1091  */
1092 struct tty *
1093 mttytty(dev)
1094 	dev_t dev;
1095 {
1096 	struct mtty_softc *ms = mtty_cd.cd_devs[MAGMA_CARD(dev)];
1097 	struct mtty_port *mp = &ms->ms_port[MAGMA_PORT(dev)];
1098 
1099 	return(mp->mp_tty);
1100 }
1101 
1102 /*
1103  * ioctl routine
1104  */
1105 int
1106 mttyioctl(dev, cmd, data, flags, l)
1107 	dev_t dev;
1108 	u_long cmd;
1109 	void *data;
1110 	int flags;
1111 	struct lwp *l;
1112 {
1113 	struct mtty_softc *ms = mtty_cd.cd_devs[MAGMA_CARD(dev)];
1114 	struct mtty_port *mp = &ms->ms_port[MAGMA_PORT(dev)];
1115 	struct tty *tp = mp->mp_tty;
1116 	int error;
1117 
1118 	error = (*tp->t_linesw->l_ioctl)(tp, cmd, data, flags, l);
1119 	if( error != EPASSTHROUGH ) return(error);
1120 
1121 	error = ttioctl(tp, cmd, data, flags, l);
1122 	if( error != EPASSTHROUGH ) return(error);
1123 
1124 	error = 0;
1125 
1126 	switch(cmd) {
1127 	case TIOCSBRK:	/* set break */
1128 		SET(mp->mp_flags, MTTYF_SET_BREAK);
1129 		cd1400_enable_transmitter(mp->mp_cd1400, mp->mp_channel);
1130 		break;
1131 
1132 	case TIOCCBRK:	/* clear break */
1133 		SET(mp->mp_flags, MTTYF_CLR_BREAK);
1134 		cd1400_enable_transmitter(mp->mp_cd1400, mp->mp_channel);
1135 		break;
1136 
1137 	case TIOCSDTR:	/* set DTR */
1138 		mtty_modem_control(mp, TIOCM_DTR, DMBIS);
1139 		break;
1140 
1141 	case TIOCCDTR:	/* clear DTR */
1142 		mtty_modem_control(mp, TIOCM_DTR, DMBIC);
1143 		break;
1144 
1145 	case TIOCMSET:	/* set modem lines */
1146 		mtty_modem_control(mp, *((int *)data), DMSET);
1147 		break;
1148 
1149 	case TIOCMBIS:	/* bit set modem lines */
1150 		mtty_modem_control(mp, *((int *)data), DMBIS);
1151 		break;
1152 
1153 	case TIOCMBIC:	/* bit clear modem lines */
1154 		mtty_modem_control(mp, *((int *)data), DMBIC);
1155 		break;
1156 
1157 	case TIOCMGET:	/* get modem lines */
1158 		*((int *)data) = mtty_modem_control(mp, 0, DMGET);
1159 		break;
1160 
1161 	case TIOCGFLAGS:
1162 		*((int *)data) = mp->mp_openflags;
1163 		break;
1164 
1165 	case TIOCSFLAGS:
1166 		if (kauth_authorize_device_tty(l->l_cred,
1167 		    KAUTH_DEVICE_TTY_PRIVSET, tp))
1168 			error = EPERM;
1169 		else
1170 			mp->mp_openflags = *((int *)data) &
1171 				(TIOCFLAG_SOFTCAR | TIOCFLAG_CLOCAL |
1172 				TIOCFLAG_CRTSCTS | TIOCFLAG_MDMBUF);
1173 		break;
1174 
1175 	default:
1176 		error = EPASSTHROUGH;
1177 	}
1178 
1179 	return(error);
1180 }
1181 
1182 /*
1183  * Stop output, e.g., for ^S or output flush.
1184  */
1185 void
1186 mttystop(tp, flags)
1187 	struct tty *tp;
1188 	int flags;
1189 {
1190 	struct mtty_softc *ms = mtty_cd.cd_devs[MAGMA_CARD(tp->t_dev)];
1191 	struct mtty_port *mp = &ms->ms_port[MAGMA_PORT(tp->t_dev)];
1192 	int s;
1193 
1194 	s = spltty();
1195 
1196 	if( ISSET(tp->t_state, TS_BUSY) ) {
1197 		if( !ISSET(tp->t_state, TS_TTSTOP) )
1198 			SET(tp->t_state, TS_FLUSH);
1199 
1200 		/*
1201 		 * the transmit interrupt routine will disable transmit when it
1202 		 * notices that MTTYF_STOP has been set.
1203 		 */
1204 		SET(mp->mp_flags, MTTYF_STOP);
1205 	}
1206 
1207 	splx(s);
1208 }
1209 
1210 /*
1211  * Start output, after a stop.
1212  */
1213 void
1214 mtty_start(tp)
1215 	struct tty *tp;
1216 {
1217 	struct mtty_softc *ms = mtty_cd.cd_devs[MAGMA_CARD(tp->t_dev)];
1218 	struct mtty_port *mp = &ms->ms_port[MAGMA_PORT(tp->t_dev)];
1219 	int s;
1220 
1221 	s = spltty();
1222 
1223 	/* we only need to do something if we are not already busy
1224 	 * or delaying or stopped
1225 	 */
1226 	if( !ISSET(tp->t_state, TS_TTSTOP | TS_TIMEOUT | TS_BUSY) ) {
1227 		if (ttypull(tp)) {
1228 			mp->mp_txc = ndqb(&tp->t_outq, 0);
1229 			mp->mp_txp = tp->t_outq.c_cf;
1230 			SET(tp->t_state, TS_BUSY);
1231 			cd1400_enable_transmitter(mp->mp_cd1400, mp->mp_channel);
1232 		}
1233 	}
1234 
1235 	splx(s);
1236 }
1237 
1238 /*
1239  * set/get modem line status
1240  *
1241  * bits can be: TIOCM_DTR, TIOCM_RTS, TIOCM_CTS, TIOCM_CD, TIOCM_RI, TIOCM_DSR
1242  *
1243  * note that DTR and RTS lines are exchanged, and that DSR is
1244  * not available on the LC2+1Sp card (used as CD)
1245  *
1246  * only let them fiddle with RTS if CRTSCTS is not enabled
1247  */
1248 int
1249 mtty_modem_control(mp, bits, howto)
1250 	struct mtty_port *mp;
1251 	int bits;
1252 	int howto;
1253 {
1254 	struct cd1400 *cd = mp->mp_cd1400;
1255 	struct tty *tp = mp->mp_tty;
1256 	int s, msvr;
1257 
1258 	s = spltty();
1259 
1260 	cd1400_write_reg(cd, CD1400_CAR, mp->mp_channel);
1261 
1262 	switch(howto) {
1263 	case DMGET:	/* get bits */
1264 		bits = 0;
1265 
1266 		bits |= TIOCM_LE;
1267 
1268 		msvr = cd1400_read_reg(cd, CD1400_MSVR1);
1269 		if( msvr & CD1400_MSVR1_RTS ) bits |= TIOCM_DTR;
1270 
1271 		msvr = cd1400_read_reg(cd, CD1400_MSVR2);
1272 		if( msvr & CD1400_MSVR2_DTR ) bits |= TIOCM_RTS;
1273 		if( msvr & CD1400_MSVR2_CTS ) bits |= TIOCM_CTS;
1274 		if( msvr & CD1400_MSVR2_RI ) bits |= TIOCM_RI;
1275 		if( msvr & CD1400_MSVR2_DSR ) bits |= (cd->cd_parmode ? TIOCM_CD : TIOCM_DSR);
1276 		if( msvr & CD1400_MSVR2_CD ) bits |= (cd->cd_parmode ? 0 : TIOCM_CD);
1277 
1278 		break;
1279 
1280 	case DMSET:	/* reset bits */
1281 		if( !ISSET(tp->t_cflag, CRTSCTS) )
1282 			cd1400_write_reg(cd, CD1400_MSVR2, ((bits & TIOCM_RTS) ? CD1400_MSVR2_DTR : 0));
1283 
1284 		cd1400_write_reg(cd, CD1400_MSVR1, ((bits & TIOCM_DTR) ? CD1400_MSVR1_RTS : 0));
1285 
1286 		break;
1287 
1288 	case DMBIS:	/* set bits */
1289 		if( (bits & TIOCM_RTS) && !ISSET(tp->t_cflag, CRTSCTS) )
1290 			cd1400_write_reg(cd, CD1400_MSVR2, CD1400_MSVR2_DTR);
1291 
1292 		if( bits & TIOCM_DTR )
1293 			cd1400_write_reg(cd, CD1400_MSVR1, CD1400_MSVR1_RTS);
1294 
1295 		break;
1296 
1297 	case DMBIC:	/* clear bits */
1298 		if( (bits & TIOCM_RTS) && !ISSET(tp->t_cflag, CRTSCTS) )
1299 			cd1400_write_reg(cd, CD1400_MSVR2, 0);
1300 
1301 		if( bits & TIOCM_DTR )
1302 			cd1400_write_reg(cd, CD1400_MSVR1, 0);
1303 
1304 		break;
1305 	}
1306 
1307 	splx(s);
1308 	return(bits);
1309 }
1310 
1311 /*
1312  * Set tty parameters, returns error or 0 on success
1313  */
1314 int
1315 mtty_param(tp, t)
1316 	struct tty *tp;
1317 	struct termios *t;
1318 {
1319 	struct mtty_softc *ms = mtty_cd.cd_devs[MAGMA_CARD(tp->t_dev)];
1320 	struct mtty_port *mp = &ms->ms_port[MAGMA_PORT(tp->t_dev)];
1321 	struct cd1400 *cd = mp->mp_cd1400;
1322 	int rbpr, tbpr, rcor, tcor;
1323 	u_char mcor1 = 0, mcor2 = 0;
1324 	int s, opt;
1325 
1326 	if( t->c_ospeed && cd1400_compute_baud(t->c_ospeed, cd->cd_clock, &tcor, &tbpr) )
1327 		return(EINVAL);
1328 
1329 	if( t->c_ispeed && cd1400_compute_baud(t->c_ispeed, cd->cd_clock, &rcor, &rbpr) )
1330 		return(EINVAL);
1331 
1332 	s = spltty();
1333 
1334 	/* hang up the line if ospeed is zero, else raise DTR */
1335 	(void)mtty_modem_control(mp, TIOCM_DTR, (t->c_ospeed == 0 ? DMBIC : DMBIS));
1336 
1337 	/* select channel, done in mtty_modem_control() */
1338 	/* cd1400_write_reg(cd, CD1400_CAR, mp->mp_channel); */
1339 
1340 	/* set transmit speed */
1341 	if( t->c_ospeed ) {
1342 		cd1400_write_reg(cd, CD1400_TCOR, tcor);
1343 		cd1400_write_reg(cd, CD1400_TBPR, tbpr);
1344 	}
1345 
1346 	/* set receive speed */
1347 	if( t->c_ispeed ) {
1348 		cd1400_write_reg(cd, CD1400_RCOR, rcor);
1349 		cd1400_write_reg(cd, CD1400_RBPR, rbpr);
1350 	}
1351 
1352 	/* enable transmitting and receiving on this channel */
1353 	opt = CD1400_CCR_CMDCHANCTL | CD1400_CCR_XMTEN | CD1400_CCR_RCVEN;
1354 	cd1400_write_ccr(cd, opt);
1355 
1356 	/* set parity, data and stop bits */
1357 	opt = 0;
1358 	if( ISSET(t->c_cflag, PARENB) )
1359 		opt |= (ISSET(t->c_cflag, PARODD) ? CD1400_COR1_PARODD : CD1400_COR1_PARNORMAL);
1360 
1361 	if( !ISSET(t->c_iflag, INPCK) )
1362 		opt |= CD1400_COR1_NOINPCK; /* no parity checking */
1363 
1364 	if( ISSET(t->c_cflag, CSTOPB) )
1365 		opt |= CD1400_COR1_STOP2;
1366 
1367 	switch( t->c_cflag & CSIZE ) {
1368 	case CS5:
1369 		opt |= CD1400_COR1_CS5;
1370 		break;
1371 
1372 	case CS6:
1373 		opt |= CD1400_COR1_CS6;
1374 		break;
1375 
1376 	case CS7:
1377 		opt |= CD1400_COR1_CS7;
1378 		break;
1379 
1380 	default:
1381 		opt |= CD1400_COR1_CS8;
1382 		break;
1383 	}
1384 
1385 	cd1400_write_reg(cd, CD1400_COR1, opt);
1386 
1387 	/*
1388 	 * enable Embedded Transmit Commands (for breaks)
1389 	 * use the CD1400 automatic CTS flow control if CRTSCTS is set
1390 	 */
1391 	opt = CD1400_COR2_ETC;
1392 	if( ISSET(t->c_cflag, CRTSCTS) ) opt |= CD1400_COR2_CCTS_OFLOW;
1393 	cd1400_write_reg(cd, CD1400_COR2, opt);
1394 
1395 	cd1400_write_reg(cd, CD1400_COR3, MTTY_RX_FIFO_THRESHOLD);
1396 
1397 	cd1400_write_ccr(cd, CD1400_CCR_CMDCORCHG | CD1400_CCR_COR1 | CD1400_CCR_COR2 | CD1400_CCR_COR3);
1398 
1399 	cd1400_write_reg(cd, CD1400_COR4, CD1400_COR4_PFO_EXCEPTION);
1400 	cd1400_write_reg(cd, CD1400_COR5, 0);
1401 
1402 	/*
1403 	 * if automatic RTS handshaking enabled, set DTR threshold
1404 	 * (RTS and DTR lines are switched, CD1400 thinks its DTR)
1405 	 */
1406 	if( ISSET(t->c_cflag, CRTSCTS) )
1407 		mcor1 = MTTY_RX_DTR_THRESHOLD;
1408 
1409 	/* set up `carrier detect' interrupts */
1410 	if( cd->cd_parmode ) {
1411 		SET(mcor1, CD1400_MCOR1_DSRzd);
1412 		SET(mcor2, CD1400_MCOR2_DSRod);
1413 	} else {
1414 		SET(mcor1, CD1400_MCOR1_CDzd);
1415 		SET(mcor2, CD1400_MCOR2_CDod);
1416 	}
1417 
1418 	cd1400_write_reg(cd, CD1400_MCOR1, mcor1);
1419 	cd1400_write_reg(cd, CD1400_MCOR2, mcor2);
1420 
1421 	/* receive timeout 2ms */
1422 	cd1400_write_reg(cd, CD1400_RTPR, 2);
1423 
1424 	splx(s);
1425 	return(0);
1426 }
1427 
1428 /************************************************************************
1429  *
1430  *  MBPP Routines
1431  *
1432  *	mbpp_match	match one mbpp device
1433  *	mbpp_attach	attach mbpp devices
1434  *	mbppopen	open mbpp device
1435  *	mbppclose	close mbpp device
1436  *	mbppioctl	do ioctl on mbpp
1437  *	mbpp_rw		general rw routine
1438  *	mbpp_timeout	rw timeout
1439  *	mbpp_start	rw start after delay
1440  *	mbpp_send	send data
1441  *	mbpp_recv	recv data
1442  */
1443 
1444 int
1445 mbpp_match(parent, cf, args)
1446 	struct device *parent;
1447 	struct cfdata *cf;
1448 	void *args;
1449 {
1450 	struct magma_softc *sc = (struct magma_softc *)parent;
1451 
1452 	return( args == mbpp_match && sc->ms_board->mb_npar && sc->ms_mbpp == NULL );
1453 }
1454 
1455 void
1456 mbpp_attach(parent, dev, args)
1457 	struct device *parent;
1458 	struct device *dev;
1459 	void *args;
1460 {
1461 	struct magma_softc *sc = (struct magma_softc *)parent;
1462 	struct mbpp_softc *ms = (struct mbpp_softc *)dev;
1463 	struct mbpp_port *mp;
1464 	int port;
1465 
1466 	sc->ms_mbpp = ms;
1467 	dprintf((" addr %p", ms));
1468 
1469 	for( port = 0 ; port < sc->ms_board->mb_npar ; port++ ) {
1470 		mp = &ms->ms_port[port];
1471 
1472 		callout_init(&mp->mp_timeout_ch, 0);
1473 		callout_init(&mp->mp_start_ch, 0);
1474 
1475 		if( sc->ms_ncd1190 )
1476 			mp->mp_cd1190 = &sc->ms_cd1190[port];
1477 		else
1478 			mp->mp_cd1400 = &sc->ms_cd1400[0];
1479 	}
1480 
1481 	ms->ms_nports = port;
1482 	printf(": %d port%s\n", port, port == 1 ? "" : "s");
1483 }
1484 
1485 /*
1486  * open routine. returns zero if successful, else error code
1487  */
1488 int
1489 mbppopen(dev, flags, mode, l)
1490 	dev_t dev;
1491 	int flags;
1492 	int mode;
1493 	struct lwp *l;
1494 {
1495 	int card = MAGMA_CARD(dev);
1496 	int port = MAGMA_PORT(dev);
1497 	struct mbpp_softc *ms;
1498 	struct mbpp_port *mp;
1499 	int s;
1500 
1501 	if( card >= mbpp_cd.cd_ndevs ||
1502 	    (ms = mbpp_cd.cd_devs[card]) == NULL || port >= ms->ms_nports )
1503 		return(ENXIO);
1504 
1505 	mp = &ms->ms_port[port];
1506 
1507 	s = spltty();
1508 	if( ISSET(mp->mp_flags, MBPPF_OPEN) ) {
1509 		splx(s);
1510 		return(EBUSY);
1511 	}
1512 	SET(mp->mp_flags, MBPPF_OPEN);
1513 	splx(s);
1514 
1515 	/* set defaults */
1516 	mp->mp_burst = MBPP_BURST;
1517 	mp->mp_timeout = mbpp_mstohz(MBPP_TIMEOUT);
1518 	mp->mp_delay = mbpp_mstohz(MBPP_DELAY);
1519 
1520 	/* init chips */
1521 	if( mp->mp_cd1400 ) {	/* CD1400 */
1522 		struct cd1400 *cd = mp->mp_cd1400;
1523 
1524 		/* set up CD1400 channel */
1525 		s = spltty();
1526 		cd1400_write_reg(cd, CD1400_CAR, 0);
1527 		cd1400_write_ccr(cd, CD1400_CCR_CMDRESET);
1528 		cd1400_write_reg(cd, CD1400_LIVR, (1<<3));
1529 		splx(s);
1530 	} else {		/* CD1190 */
1531 		mp->mp_flags = 0;
1532 		return (ENXIO);
1533 	}
1534 
1535 	return (0);
1536 }
1537 
1538 /*
1539  * close routine. returns zero if successful, else error code
1540  */
1541 int
1542 mbppclose(dev, flag, mode, l)
1543 	dev_t dev;
1544 	int flag;
1545 	int mode;
1546 	struct lwp *l;
1547 {
1548 	struct mbpp_softc *ms = mbpp_cd.cd_devs[MAGMA_CARD(dev)];
1549 	struct mbpp_port *mp = &ms->ms_port[MAGMA_PORT(dev)];
1550 
1551 	mp->mp_flags = 0;
1552 	return(0);
1553 }
1554 
1555 /*
1556  * ioctl routine
1557  */
1558 int
1559 mbppioctl(dev, cmd, data, flags, l)
1560 	dev_t dev;
1561 	u_long cmd;
1562 	void *data;
1563 	int flags;
1564 	struct lwp *l;
1565 {
1566 	struct mbpp_softc *ms = mbpp_cd.cd_devs[MAGMA_CARD(dev)];
1567 	struct mbpp_port *mp = &ms->ms_port[MAGMA_PORT(dev)];
1568 	struct mbpp_param *bp;
1569 	int error = 0;
1570 	int s;
1571 
1572 	switch(cmd) {
1573 	case MBPPIOCSPARAM:
1574 		bp = (struct mbpp_param *)data;
1575 		if( bp->bp_burst < MBPP_BURST_MIN || bp->bp_burst > MBPP_BURST_MAX ||
1576 		    bp->bp_delay < MBPP_DELAY_MIN || bp->bp_delay > MBPP_DELAY_MIN ) {
1577 			error = EINVAL;
1578 		} else {
1579 			mp->mp_burst = bp->bp_burst;
1580 			mp->mp_timeout = mbpp_mstohz(bp->bp_timeout);
1581 			mp->mp_delay = mbpp_mstohz(bp->bp_delay);
1582 		}
1583 		break;
1584 	case MBPPIOCGPARAM:
1585 		bp = (struct mbpp_param *)data;
1586 		bp->bp_burst = mp->mp_burst;
1587 		bp->bp_timeout = mbpp_hztoms(mp->mp_timeout);
1588 		bp->bp_delay = mbpp_hztoms(mp->mp_delay);
1589 		break;
1590 	case MBPPIOCGSTAT:
1591 		/* XXX make this more generic */
1592 		s = spltty();
1593 		cd1400_write_reg(mp->mp_cd1400, CD1400_CAR, 0);
1594 		*(int *)data = cd1400_read_reg(mp->mp_cd1400, CD1400_PSVR);
1595 		splx(s);
1596 		break;
1597 	default:
1598 		error = ENOTTY;
1599 	}
1600 
1601 	return(error);
1602 }
1603 
1604 int
1605 mbpp_rw(dev, uio, flag)
1606 	dev_t dev;
1607 	struct uio *uio;
1608 	int flag;
1609 {
1610 	int card = MAGMA_CARD(dev);
1611 	int port = MAGMA_PORT(dev);
1612 	struct mbpp_softc *ms = mbpp_cd.cd_devs[card];
1613 	struct mbpp_port *mp = &ms->ms_port[port];
1614 	char *buffer, *ptr;
1615 	int buflen, cnt, len;
1616 	int s, error = 0;
1617 	int gotdata = 0;
1618 
1619 	if( uio->uio_resid == 0 )
1620 		return(0);
1621 
1622 	buflen = min(uio->uio_resid, mp->mp_burst);
1623 	buffer = malloc(buflen, M_DEVBUF, M_WAITOK);
1624 	if( buffer == NULL )
1625 		return(ENOMEM);
1626 
1627 	SET(mp->mp_flags, MBPPF_UIO);
1628 
1629 	/*
1630 	 * start timeout, if needed
1631 	 */
1632 	if( mp->mp_timeout > 0 ) {
1633 		SET(mp->mp_flags, MBPPF_TIMEOUT);
1634 		callout_reset(&mp->mp_timeout_ch, mp->mp_timeout,
1635 		    mbpp_timeout, mp);
1636 	}
1637 
1638 	len = cnt = 0;
1639 	while( uio->uio_resid > 0 ) {
1640 		len = min(buflen, uio->uio_resid);
1641 		ptr = buffer;
1642 
1643 		if( uio->uio_rw == UIO_WRITE ) {
1644 			error = uiomove(ptr, len, uio);
1645 			if( error ) break;
1646 		}
1647 again:		/* goto bad */
1648 		/* timed out?  */
1649 		if( !ISSET(mp->mp_flags, MBPPF_UIO) )
1650 			break;
1651 
1652 		/*
1653 		 * perform the operation
1654 		 */
1655 		if( uio->uio_rw == UIO_WRITE ) {
1656 			cnt = mbpp_send(mp, ptr, len);
1657 		} else {
1658 			cnt = mbpp_recv(mp, ptr, len);
1659 		}
1660 
1661 		if( uio->uio_rw == UIO_READ ) {
1662 			if( cnt ) {
1663 				error = uiomove(ptr, cnt, uio);
1664 				if( error ) break;
1665 				gotdata++;
1666 			}
1667 			else if( gotdata )	/* consider us done */
1668 				break;
1669 		}
1670 
1671 		/* timed out?  */
1672 		if( !ISSET(mp->mp_flags, MBPPF_UIO) )
1673 			break;
1674 
1675 		/*
1676 		 * poll delay?
1677 		 */
1678 		if( mp->mp_delay > 0 ) {
1679 			s = splsoftclock();
1680 			SET(mp->mp_flags, MBPPF_DELAY);
1681 			callout_reset(&mp->mp_start_ch, mp->mp_delay,
1682 			    mbpp_start, mp);
1683 			error = tsleep(mp, PCATCH | PZERO, "mbppdelay", 0);
1684 			splx(s);
1685 			if( error ) break;
1686 		}
1687 
1688 		/*
1689 		 * don't call uiomove again until we used all the data we grabbed
1690 		 */
1691 		if( uio->uio_rw == UIO_WRITE && cnt != len ) {
1692 			ptr += cnt;
1693 			len -= cnt;
1694 			cnt = 0;
1695 			goto again;
1696 		}
1697 	}
1698 
1699 	/*
1700 	 * clear timeouts
1701 	 */
1702 	s = splsoftclock();
1703 	if( ISSET(mp->mp_flags, MBPPF_TIMEOUT) ) {
1704 		callout_stop(&mp->mp_timeout_ch);
1705 		CLR(mp->mp_flags, MBPPF_TIMEOUT);
1706 	}
1707 	if( ISSET(mp->mp_flags, MBPPF_DELAY) ) {
1708 		callout_stop(&mp->mp_start_ch);
1709 		CLR(mp->mp_flags, MBPPF_DELAY);
1710 	}
1711 	splx(s);
1712 
1713 	/*
1714 	 * adjust for those chars that we uiomoved but never actually wrote
1715 	 */
1716 	if( uio->uio_rw == UIO_WRITE && cnt != len ) {
1717 		uio->uio_resid += (len - cnt);
1718 	}
1719 
1720 	free(buffer, M_DEVBUF);
1721 	return(error);
1722 }
1723 
1724 void
1725 mbpp_timeout(arg)
1726 	void *arg;
1727 {
1728 	struct mbpp_port *mp = arg;
1729 
1730 	CLR(mp->mp_flags, MBPPF_UIO | MBPPF_TIMEOUT);
1731 	wakeup(mp);
1732 }
1733 
1734 void
1735 mbpp_start(arg)
1736 	void *arg;
1737 {
1738 	struct mbpp_port *mp = arg;
1739 
1740 	CLR(mp->mp_flags, MBPPF_DELAY);
1741 	wakeup(mp);
1742 }
1743 
1744 int
1745 mbpp_send(mp, ptr, len)
1746 	struct mbpp_port *mp;
1747 	void *ptr;
1748 	int len;
1749 {
1750 	int s;
1751 	struct cd1400 *cd = mp->mp_cd1400;
1752 
1753 	/* set up io information */
1754 	mp->mp_ptr = ptr;
1755 	mp->mp_cnt = len;
1756 
1757 	/* start transmitting */
1758 	s = spltty();
1759 	if( cd ) {
1760 		cd1400_write_reg(cd, CD1400_CAR, 0);
1761 
1762 		/* output strobe width ~1microsecond */
1763 		cd1400_write_reg(cd, CD1400_TBPR, 10);
1764 
1765 		/* enable channel */
1766 		cd1400_write_ccr(cd, CD1400_CCR_CMDCHANCTL | CD1400_CCR_XMTEN);
1767 		cd1400_write_reg(cd, CD1400_SRER, CD1400_SRER_TXRDY);
1768 	}
1769 
1770 	/* ZZzzz... */
1771 	tsleep(mp, PCATCH | PZERO, "mbpp_send", 0);
1772 
1773 	/* stop transmitting */
1774 	if( cd ) {
1775 		cd1400_write_reg(cd, CD1400_CAR, 0);
1776 
1777 		/* disable transmitter */
1778 		cd1400_write_reg(cd, CD1400_SRER, 0);
1779 		cd1400_write_ccr(cd, CD1400_CCR_CMDCHANCTL | CD1400_CCR_XMTDIS);
1780 
1781 		/* flush fifo */
1782 		cd1400_write_ccr(cd, CD1400_CCR_CMDRESET | CD1400_CCR_FTF);
1783 	}
1784 	splx(s);
1785 
1786 	/* return number of chars sent */
1787 	return(len - mp->mp_cnt);
1788 }
1789 
1790 int
1791 mbpp_recv(mp, ptr, len)
1792 	struct mbpp_port *mp;
1793 	void *ptr;
1794 	int len;
1795 {
1796 	int s;
1797 	struct cd1400 *cd = mp->mp_cd1400;
1798 
1799 	/* set up io information */
1800 	mp->mp_ptr = ptr;
1801 	mp->mp_cnt = len;
1802 
1803 	/* start receiving */
1804 	s = spltty();
1805 	if( cd ) {
1806 	int rcor, rbpr;
1807 
1808 		cd1400_write_reg(cd, CD1400_CAR, 0);
1809 
1810 		/* input strobe at 100kbaud (10microseconds) */
1811 		cd1400_compute_baud(100000, cd->cd_clock, &rcor, &rbpr);
1812 		cd1400_write_reg(cd, CD1400_RCOR, rcor);
1813 		cd1400_write_reg(cd, CD1400_RBPR, rbpr);
1814 
1815 		/* rx threshold */
1816 		cd1400_write_reg(cd, CD1400_COR3, MBPP_RX_FIFO_THRESHOLD);
1817 		cd1400_write_ccr(cd, CD1400_CCR_CMDCORCHG | CD1400_CCR_COR3);
1818 
1819 		/* enable channel */
1820 		cd1400_write_ccr(cd, CD1400_CCR_CMDCHANCTL | CD1400_CCR_RCVEN);
1821 		cd1400_write_reg(cd, CD1400_SRER, CD1400_SRER_RXDATA);
1822 	}
1823 
1824 	/* ZZzzz... */
1825 	tsleep(mp, PCATCH | PZERO, "mbpp_recv", 0);
1826 
1827 	/* stop receiving */
1828 	if( cd ) {
1829 		cd1400_write_reg(cd, CD1400_CAR, 0);
1830 
1831 		/* disable receiving */
1832 		cd1400_write_reg(cd, CD1400_SRER, 0);
1833 		cd1400_write_ccr(cd, CD1400_CCR_CMDCHANCTL | CD1400_CCR_RCVDIS);
1834 	}
1835 	splx(s);
1836 
1837 	/* return number of chars received */
1838 	return(len - mp->mp_cnt);
1839 }
1840 
1841 int
1842 mbpp_hztoms(h)
1843 	int h;
1844 {
1845 	int m = h;
1846 
1847 	if( m > 0 )
1848 		m = m * 1000 / hz;
1849 	return(m);
1850 }
1851 
1852 int
1853 mbpp_mstohz(m)
1854 	int m;
1855 {
1856 	int h = m;
1857 
1858 	if( h > 0 ) {
1859 		h = h * hz / 1000;
1860 		if( h == 0 )
1861 			h = 1000 / hz;
1862 	}
1863 	return(h);
1864 }
1865 
1866 #endif /* NMAGMA */
1867