xref: /netbsd-src/sys/dev/sbus/magma.c (revision 4b71a66d0f279143147d63ebfcfd8a59499a3684)
1 /*	$NetBSD: magma.c,v 1.46 2008/04/05 18:35:32 cegger Exp $	*/
2 /*
3  * magma.c
4  *
5  * Copyright (c) 1998 Iain Hibbert
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Iain Hibbert
19  * 4. The name of the author may not be used to endorse or promote products
20  *    derived from this software without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
27  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
31  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  */
34 
35 /*
36  * Driver for Magma SBus Serial/Parallel cards using the Cirrus Logic
37  * CD1400 & CD1190 chips
38  */
39 
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: magma.c,v 1.46 2008/04/05 18:35:32 cegger Exp $");
42 
43 #if 0
44 #define MAGMA_DEBUG
45 #endif
46 
47 #include "magma.h"
48 #if NMAGMA > 0
49 
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/proc.h>
53 #include <sys/device.h>
54 #include <sys/file.h>
55 #include <sys/ioctl.h>
56 #include <sys/malloc.h>
57 #include <sys/tty.h>
58 #include <sys/time.h>
59 #include <sys/kernel.h>
60 #include <sys/syslog.h>
61 #include <sys/conf.h>
62 #include <sys/errno.h>
63 #include <sys/kauth.h>
64 #include <sys/intr.h>
65 
66 #include <sys/bus.h>
67 #include <machine/autoconf.h>
68 
69 #include <dev/sbus/sbusvar.h>
70 
71 #include <dev/ic/cd1400reg.h>
72 #include <dev/ic/cd1190reg.h>
73 
74 #include <dev/sbus/mbppio.h>
75 #include <dev/sbus/magmareg.h>
76 
77 /* supported cards
78  *
79  *  The table below lists the cards that this driver is likely to
80  *  be able to support.
81  *
82  *  Cards with parallel ports: except for the LC2+1Sp, they all use
83  *  the CD1190 chip which I know nothing about.  I've tried to leave
84  *  hooks for it so it shouldn't be too hard to add support later.
85  *  (I think somebody is working on this separately)
86  *
87  *  Thanks to Bruce at Magma for telling me the hardware offsets.
88  */
89 static struct magma_board_info supported_cards[] = {
90 	{
91 		"MAGMA_Sp", "MAGMA,4_Sp", "Magma 4 Sp", 4, 0,
92 		1, 0xa000, 0xc000, 0xe000, { 0x8000, 0, 0, 0 },
93 		0, { 0, 0 }
94 	},
95 	{
96 		"MAGMA_Sp", "MAGMA,8_Sp", "Magma 8 Sp", 8, 0,
97 		2, 0xa000, 0xc000, 0xe000, { 0x4000, 0x6000, 0, 0 },
98 		0, { 0, 0 }
99 	},
100 	{
101 		"MAGMA_Sp", "MAGMA,_8HS_Sp", "Magma Fast 8 Sp", 8, 0,
102 		2, 0x2000, 0x4000, 0x6000, { 0x8000, 0xa000, 0, 0 },
103 		0, { 0, 0 }
104 	},
105 	{
106 		"MAGMA_Sp", "MAGMA,_8SP_422", "Magma 8 Sp - 422", 8, 0,
107 		2, 0x2000, 0x4000, 0x6000, { 0x8000, 0xa000, 0, 0 },
108 		0, { 0, 0 }
109 	},
110 	{
111 		"MAGMA_Sp", "MAGMA,12_Sp", "Magma 12 Sp", 12, 0,
112 		3, 0xa000, 0xc000, 0xe000, { 0x2000, 0x4000, 0x6000, 0 },
113 		0, { 0, 0 }
114 	},
115 	{
116 		"MAGMA_Sp", "MAGMA,16_Sp", "Magma 16 Sp", 16, 0,
117 		4, 0xd000, 0xe000, 0xf000, { 0x8000, 0x9000, 0xa000, 0xb000 },
118 		0, { 0, 0 }
119 	},
120 	{
121 		"MAGMA_Sp", "MAGMA,16_Sp_2", "Magma 16 Sp", 16, 0,
122 		4, 0x2000, 0x4000, 0x6000, { 0x8000, 0xa000, 0xc000, 0xe000 },
123 		0, { 0, 0 }
124 	},
125 	{
126 		"MAGMA_Sp", "MAGMA,16HS_Sp", "Magma Fast 16 Sp", 16, 0,
127 		4, 0x2000, 0x4000, 0x6000, { 0x8000, 0xa000, 0xc000, 0xe000 },
128 		0, { 0, 0 }
129 	},
130 	{
131 		"MAGMA_Sp", "MAGMA,21_Sp", "Magma LC 2+1 Sp", 2, 1,
132 		1, 0xa000, 0xc000, 0xe000, { 0x8000, 0, 0, 0 },
133 		0, { 0, 0 }
134 	},
135 	{
136 		"MAGMA_Sp", "MAGMA,21HS_Sp", "Magma 2+1 Sp", 2, 1,
137 		1, 0xa000, 0xc000, 0xe000, { 0x4000, 0, 0, 0 },
138 		1, { 0x6000, 0 }
139 	},
140 	{
141 		"MAGMA_Sp", "MAGMA,41_Sp", "Magma 4+1 Sp", 4, 1,
142 		1, 0xa000, 0xc000, 0xe000, { 0x4000, 0, 0, 0 },
143 		1, { 0x6000, 0 }
144 	},
145 	{
146 		"MAGMA_Sp", "MAGMA,82_Sp", "Magma 8+2 Sp", 8, 2,
147 		2, 0xd000, 0xe000, 0xf000, { 0x8000, 0x9000, 0, 0 },
148 		2, { 0xa000, 0xb000 }
149 	},
150 	{
151 		"MAGMA_Sp", "MAGMA,P1_Sp", "Magma P1 Sp", 0, 1,
152 		0, 0, 0, 0, { 0, 0, 0, 0 },
153 		1, { 0x8000, 0 }
154 	},
155 	{
156 		"MAGMA_Sp", "MAGMA,P2_Sp", "Magma P2 Sp", 0, 2,
157 		0, 0, 0, 0, { 0, 0, 0, 0 },
158 		2, { 0x4000, 0x8000 }
159 	},
160 	{
161 		"MAGMA 2+1HS Sp", "", "Magma 2+1HS Sp", 2, 0,
162 		1, 0xa000, 0xc000, 0xe000, { 0x4000, 0, 0, 0 },
163 		1, { 0x8000, 0 }
164 	},
165 	{
166 		NULL, NULL, NULL, 0, 0,
167 		0, 0, 0, 0, { 0, 0, 0, 0 },
168 		0, { 0, 0 }
169 	}
170 };
171 
172 /************************************************************************
173  *
174  *  Autoconfig Stuff
175  */
176 
177 CFATTACH_DECL(magma, sizeof(struct magma_softc),
178     magma_match, magma_attach, NULL, NULL);
179 
180 CFATTACH_DECL(mtty, sizeof(struct mtty_softc),
181     mtty_match, mtty_attach, NULL, NULL);
182 
183 CFATTACH_DECL(mbpp, sizeof(struct mbpp_softc),
184     mbpp_match, mbpp_attach, NULL, NULL);
185 
186 extern struct cfdriver mtty_cd;
187 extern struct cfdriver mbpp_cd;
188 
189 dev_type_open(mttyopen);
190 dev_type_close(mttyclose);
191 dev_type_read(mttyread);
192 dev_type_write(mttywrite);
193 dev_type_ioctl(mttyioctl);
194 dev_type_stop(mttystop);
195 dev_type_tty(mttytty);
196 dev_type_poll(mttypoll);
197 
198 const struct cdevsw mtty_cdevsw = {
199 	mttyopen, mttyclose, mttyread, mttywrite, mttyioctl,
200 	mttystop, mttytty, mttypoll, nommap, ttykqfilter, D_TTY
201 };
202 
203 dev_type_open(mbppopen);
204 dev_type_close(mbppclose);
205 dev_type_read(mbpp_rw);
206 dev_type_ioctl(mbppioctl);
207 
208 const struct cdevsw mbpp_cdevsw = {
209 	mbppopen, mbppclose, mbpp_rw, mbpp_rw, mbppioctl,
210 	nostop, notty, nopoll, nommap, nokqfilter, D_OTHER
211 };
212 
213 /************************************************************************
214  *
215  *  CD1400 Routines
216  *
217  *	cd1400_compute_baud		calculate COR/BPR register values
218  *	cd1400_write_ccr		write a value to CD1400 ccr
219  *	cd1400_read_reg			read from a CD1400 register
220  *	cd1400_write_reg		write to a CD1400 register
221  *	cd1400_enable_transmitter	enable transmitting on CD1400 channel
222  */
223 
224 /*
225  * compute the bpr/cor pair for any baud rate
226  * returns 0 for success, 1 for failure
227  */
228 int
229 cd1400_compute_baud(speed, clock, cor, bpr)
230 	speed_t speed;
231 	int clock;
232 	int *cor, *bpr;
233 {
234 	int c, co, br;
235 
236 	if( speed < 50 || speed > 150000 )
237 		return(1);
238 
239 	for( c = 0, co = 8 ; co <= 2048 ; co <<= 2, c++ ) {
240 		br = ((clock * 1000000) + (co * speed) / 2) / (co * speed);
241 		if( br < 0x100 ) {
242 			*bpr = br;
243 			*cor = c;
244 			return(0);
245 		}
246 	}
247 
248 	return(1);
249 }
250 
251 /*
252  * Write a CD1400 channel command, should have a timeout?
253  */
254 inline void
255 cd1400_write_ccr(cd, cmd)
256 	struct cd1400 *cd;
257 	u_char cmd;
258 {
259 	while( cd1400_read_reg(cd, CD1400_CCR) )
260 		;
261 
262 	cd1400_write_reg(cd, CD1400_CCR, cmd);
263 }
264 
265 /*
266  * read a value from a cd1400 register
267  */
268 inline u_char
269 cd1400_read_reg(cd, reg)
270 	struct cd1400 *cd;
271 	int reg;
272 {
273 	return(cd->cd_reg[reg]);
274 }
275 
276 /*
277  * write a value to a cd1400 register
278  */
279 inline void
280 cd1400_write_reg(cd, reg, value)
281 	struct cd1400 *cd;
282 	int reg;
283 	u_char value;
284 {
285 	cd->cd_reg[reg] = value;
286 }
287 
288 /*
289  * enable transmit service requests for cd1400 channel
290  */
291 void
292 cd1400_enable_transmitter(cd, channel)
293 	struct cd1400 *cd;
294 	int channel;
295 {
296 	int s, srer;
297 
298 	s = spltty();
299 	cd1400_write_reg(cd, CD1400_CAR, channel);
300 	srer = cd1400_read_reg(cd, CD1400_SRER);
301 	SET(srer, CD1400_SRER_TXRDY);
302 	cd1400_write_reg(cd, CD1400_SRER, srer);
303 	splx(s);
304 }
305 
306 /************************************************************************
307  *
308  *  CD1190 Routines
309  */
310 
311 /* well, there are none yet */
312 
313 /************************************************************************
314  *
315  *  Magma Routines
316  *
317  * magma_match		reports if we have a magma board available
318  * magma_attach		attaches magma boards to the sbus
319  * magma_hard		hardware level interrupt routine
320  * magma_soft		software level interrupt routine
321  */
322 
323 int
324 magma_match(parent, cf, aux)
325 	struct device *parent;
326 	struct cfdata *cf;
327 	void *aux;
328 {
329 	struct sbus_attach_args *sa = aux;
330 	struct magma_board_info *card;
331 
332 	/* See if we support this device */
333 	for (card = supported_cards; ; card++) {
334 		if (card->mb_sbusname == NULL)
335 			/* End of table: no match */
336 			return (0);
337 		if (strcmp(sa->sa_name, card->mb_sbusname) == 0)
338 			break;
339 	}
340 
341 	dprintf(("magma: matched `%s'\n", sa->sa_name));
342 	dprintf(("magma: magma_prom `%s'\n",
343 		prom_getpropstring(sa->sa_node, "magma_prom")));
344 	dprintf(("magma: intlevels `%s'\n",
345 		prom_getpropstring(sa->sa_node, "intlevels")));
346 	dprintf(("magma: chiprev `%s'\n",
347 		prom_getpropstring(sa->sa_node, "chiprev")));
348 	dprintf(("magma: clock `%s'\n",
349 		prom_getpropstring(sa->sa_node, "clock")));
350 
351 	return (1);
352 }
353 
354 void
355 magma_attach(parent, self, aux)
356 	struct device *parent;
357 	struct device *self;
358 	void *aux;
359 {
360 	struct sbus_attach_args *sa = aux;
361 	struct magma_softc *sc = (struct magma_softc *)self;
362 	struct magma_board_info *card;
363 	bus_space_handle_t bh;
364 	char *magma_prom, *clockstr;
365 	int cd_clock;
366 	int node, chip;
367 
368 	node = sa->sa_node;
369 
370 	/*
371 	 * Find the card model.
372 	 * Older models all have sbus node name `MAGMA_Sp' (see
373 	 * `supported_cards[]' above), and must be distinguished
374 	 * by the `magma_prom' property.
375 	 */
376 	magma_prom = prom_getpropstring(node, "magma_prom");
377 
378 	for (card = supported_cards; card->mb_name != NULL; card++) {
379 		if (strcmp(sa->sa_name, card->mb_sbusname) != 0)
380 			/* Sbus node name doesn't match */
381 			continue;
382 		if (strcmp(magma_prom, card->mb_name) == 0)
383 			/* Model name match */
384 			break;
385 	}
386 
387 	if( card->mb_name == NULL ) {
388 		printf(": %s (unsupported)\n", magma_prom);
389 		return;
390 	}
391 
392 	dprintf((" addr %p", sc));
393 	printf(": %s\n", card->mb_realname);
394 
395 	sc->ms_board = card;
396 	sc->ms_ncd1400 = card->mb_ncd1400;
397 	sc->ms_ncd1190 = card->mb_ncd1190;
398 
399 	if (sbus_bus_map(sa->sa_bustag,
400 			 sa->sa_slot, sa->sa_offset, sa->sa_size,
401 			 BUS_SPACE_MAP_LINEAR, &bh) != 0) {
402 		aprint_error("%s @ sbus: cannot map registers\n",
403 			device_xname(self));
404 		return;
405 	}
406 
407 	/* the SVCACK* lines are daisychained */
408 	sc->ms_svcackr = (char *)bus_space_vaddr(sa->sa_bustag, bh)
409 		+ card->mb_svcackr;
410 	sc->ms_svcackt = (char *)bus_space_vaddr(sa->sa_bustag, bh)
411 		+ card->mb_svcackt;
412 	sc->ms_svcackm = (char *)bus_space_vaddr(sa->sa_bustag, bh)
413 		+ card->mb_svcackm;
414 
415 	/*
416 	 * Find the clock speed; it's the same for all CD1400 chips
417 	 * on the board.
418 	 */
419 	clockstr = prom_getpropstring(node, "clock");
420 	if (*clockstr == '\0')
421 		/* Default to 25MHz */
422 		cd_clock = 25;
423 	else {
424 		cd_clock = 0;
425 		while (*clockstr != '\0')
426 			cd_clock = (cd_clock * 10) + (*clockstr++ - '0');
427 	}
428 
429 	/* init the cd1400 chips */
430 	for( chip = 0 ; chip < card->mb_ncd1400 ; chip++ ) {
431 		struct cd1400 *cd = &sc->ms_cd1400[chip];
432 
433 		cd->cd_clock = cd_clock;
434 		cd->cd_reg = (char *)bus_space_vaddr(sa->sa_bustag, bh) +
435 		    card->mb_cd1400[chip];
436 
437 		/* prom_getpropstring(node, "chiprev"); */
438 		/* seemingly the Magma drivers just ignore the propstring */
439 		cd->cd_chiprev = cd1400_read_reg(cd, CD1400_GFRCR);
440 
441 		dprintf(("%s attach CD1400 %d addr %p rev %x clock %dMHz\n",
442 			device_xname(&sc->ms_dev), chip,
443 			cd->cd_reg, cd->cd_chiprev, cd->cd_clock));
444 
445 		/* clear GFRCR */
446 		cd1400_write_reg(cd, CD1400_GFRCR, 0x00);
447 
448 		/* reset whole chip */
449 		cd1400_write_ccr(cd, CD1400_CCR_CMDRESET | CD1400_CCR_FULLRESET);
450 
451 		/* wait for revision code to be restored */
452 		while( cd1400_read_reg(cd, CD1400_GFRCR) != cd->cd_chiprev )
453 		        ;
454 
455 		/* set the Prescaler Period Register to tick at 1ms */
456 		cd1400_write_reg(cd, CD1400_PPR,
457 			((cd->cd_clock * 1000000 / CD1400_PPR_PRESCALER + 500) / 1000));
458 
459 		/* The LC2+1Sp card is the only card that doesn't have
460 		 * a CD1190 for the parallel port, but uses channel 0 of
461 		 * the CD1400, so we make a note of it for later and set up
462 		 * the CD1400 for parallel mode operation.
463 		 */
464 		if( card->mb_npar && card->mb_ncd1190 == 0 ) {
465 			cd1400_write_reg(cd, CD1400_GCR, CD1400_GCR_PARALLEL);
466 			cd->cd_parmode = 1;
467 		}
468 	}
469 
470 	/* init the cd1190 chips */
471 	for( chip = 0 ; chip < card->mb_ncd1190 ; chip++ ) {
472 		struct cd1190 *cd = &sc->ms_cd1190[chip];
473 
474 		cd->cd_reg = (char *)bus_space_vaddr(sa->sa_bustag, bh) +
475 		    card->mb_cd1190[chip];
476 
477 		/* XXX don't know anything about these chips yet */
478 		printf("%s: CD1190 %d addr %p (unsupported)\n",
479 			device_xname(self), chip, cd->cd_reg);
480 	}
481 
482 	sbus_establish(&sc->ms_sd, &sc->ms_dev);
483 
484 	/* configure the children */
485 	(void)config_found(self, mtty_match, NULL);
486 	(void)config_found(self, mbpp_match, NULL);
487 
488 	/*
489 	 * Establish the interrupt handlers.
490 	 */
491 	if (sa->sa_nintr == 0)
492 		return;		/* No interrupts to service!? */
493 
494 	(void)bus_intr_establish(sa->sa_bustag, sa->sa_pri, IPL_SERIAL,
495 				 magma_hard, sc);
496 	sc->ms_sicookie = softint_establish(SOFTINT_SERIAL, magma_soft, sc);
497 	if (sc->ms_sicookie == NULL) {
498 		aprint_normal("\n");
499 		aprint_error_dev(&sc->ms_dev, "cannot establish soft int handler\n");
500 		return;
501 	}
502 	evcnt_attach_dynamic(&sc->ms_intrcnt, EVCNT_TYPE_INTR, NULL,
503 	    device_xname(&sc->ms_dev), "intr");
504 }
505 
506 /*
507  * hard interrupt routine
508  *
509  *  returns 1 if it handled it, otherwise 0
510  *
511  *  runs at IPL_SERIAL
512  */
513 int
514 magma_hard(arg)
515 	void *arg;
516 {
517 	struct magma_softc *sc = arg;
518 	struct cd1400 *cd;
519 	int chip, status = 0;
520 	int serviced = 0;
521 	int needsoftint = 0;
522 
523 	/*
524 	 * check status of all the CD1400 chips
525 	 */
526 	for( chip = 0 ; chip < sc->ms_ncd1400 ; chip++ )
527 		status |= cd1400_read_reg(&sc->ms_cd1400[chip], CD1400_SVRR);
528 
529 	if( ISSET(status, CD1400_SVRR_RXRDY) ) {
530 		u_char rivr = *sc->ms_svcackr;	/* enter rx service context */
531 		int port = rivr >> 4;
532 
533 		if( rivr & (1<<3) ) {			/* parallel port */
534 			struct mbpp_port *mbpp;
535 			int n_chars;
536 
537 			mbpp = &sc->ms_mbpp->ms_port[port];
538 			cd = mbpp->mp_cd1400;
539 
540 			/* don't think we have to handle exceptions */
541 			n_chars = cd1400_read_reg(cd, CD1400_RDCR);
542 			while (n_chars--) {
543 				if( mbpp->mp_cnt == 0 ) {
544 					SET(mbpp->mp_flags, MBPPF_WAKEUP);
545 					needsoftint = 1;
546 					break;
547 				}
548 				*mbpp->mp_ptr = cd1400_read_reg(cd,CD1400_RDSR);
549 				mbpp->mp_ptr++;
550 				mbpp->mp_cnt--;
551 			}
552 		} else {				/* serial port */
553 			struct mtty_port *mtty;
554 			u_char *ptr, n_chars, line_stat;
555 
556 			mtty = &sc->ms_mtty->ms_port[port];
557 			cd = mtty->mp_cd1400;
558 
559 			if( ISSET(rivr, CD1400_RIVR_EXCEPTION) ) {
560 				line_stat = cd1400_read_reg(cd, CD1400_RDSR);
561 				n_chars = 1;
562 			} else { /* no exception, received data OK */
563 				line_stat = 0;
564 				n_chars = cd1400_read_reg(cd, CD1400_RDCR);
565 			}
566 
567 			ptr = mtty->mp_rput;
568 			while( n_chars-- ) {
569 				*ptr++ = line_stat;
570 				*ptr++ = cd1400_read_reg(cd, CD1400_RDSR);
571 				if( ptr == mtty->mp_rend ) ptr = mtty->mp_rbuf;
572 				if( ptr == mtty->mp_rget ) {
573 					if( ptr == mtty->mp_rbuf )
574 						ptr = mtty->mp_rend;
575 					ptr -= 2;
576 					SET(mtty->mp_flags, MTTYF_RING_OVERFLOW);
577 					break;
578 				}
579 			}
580 			mtty->mp_rput = ptr;
581 
582 			needsoftint = 1;
583 		}
584 
585 		cd1400_write_reg(cd, CD1400_EOSRR, 0);	/* end service context */
586 		serviced = 1;
587 	} /* if(rx_service...) */
588 
589 	if( ISSET(status, CD1400_SVRR_MDMCH) ) {
590 		u_char mivr = *sc->ms_svcackm;	/* enter mdm service context */
591 		int port = mivr >> 4;
592 		struct mtty_port *mtty;
593 		int carrier;
594 		u_char msvr;
595 
596 		/*
597 		 * Handle CD (LC2+1Sp = DSR) changes.
598 		 */
599 		mtty = &sc->ms_mtty->ms_port[port];
600 		cd = mtty->mp_cd1400;
601 		msvr = cd1400_read_reg(cd, CD1400_MSVR2);
602 		carrier = ISSET(msvr, cd->cd_parmode ? CD1400_MSVR2_DSR : CD1400_MSVR2_CD);
603 
604 		if( mtty->mp_carrier != carrier ) {
605 			SET(mtty->mp_flags, MTTYF_CARRIER_CHANGED);
606 			mtty->mp_carrier = carrier;
607 			needsoftint = 1;
608 		}
609 
610 		cd1400_write_reg(cd, CD1400_EOSRR, 0);	/* end service context */
611 		serviced = 1;
612 	} /* if(mdm_service...) */
613 
614 	if( ISSET(status, CD1400_SVRR_TXRDY) ) {
615 		u_char tivr = *sc->ms_svcackt;	/* enter tx service context */
616 		int port = tivr >> 4;
617 
618 		if( tivr & (1<<3) ) {	/* parallel port */
619 			struct mbpp_port *mbpp;
620 
621 			mbpp = &sc->ms_mbpp->ms_port[port];
622 			cd = mbpp->mp_cd1400;
623 
624 			if( mbpp->mp_cnt ) {
625 				int count = 0;
626 
627 				/* fill the fifo */
628 				while (mbpp->mp_cnt &&
629 					count++ < CD1400_PAR_FIFO_SIZE) {
630 					cd1400_write_reg(cd, CD1400_TDR,
631 							 *mbpp->mp_ptr);
632 					mbpp->mp_ptr++;
633 					mbpp->mp_cnt--;
634 				}
635 			} else {
636 				/*
637 				 * fifo is empty and we got no more data
638 				 * to send, so shut off interrupts and
639 				 * signal for a wakeup, which can't be
640 				 * done here in case we beat mbpp_send to
641 				 * the tsleep call (we are running at >spltty)
642 				 */
643 				cd1400_write_reg(cd, CD1400_SRER, 0);
644 				SET(mbpp->mp_flags, MBPPF_WAKEUP);
645 				needsoftint = 1;
646 			}
647 		} else {		/* serial port */
648 			struct mtty_port *mtty;
649 			struct tty *tp;
650 
651 			mtty = &sc->ms_mtty->ms_port[port];
652 			cd = mtty->mp_cd1400;
653 			tp = mtty->mp_tty;
654 
655 			if( !ISSET(mtty->mp_flags, MTTYF_STOP) ) {
656 				int count = 0;
657 
658 				/* check if we should start/stop a break */
659 				if( ISSET(mtty->mp_flags, MTTYF_SET_BREAK) ) {
660 					cd1400_write_reg(cd, CD1400_TDR, 0);
661 					cd1400_write_reg(cd, CD1400_TDR, 0x81);
662 					/* should we delay too? */
663 					CLR(mtty->mp_flags, MTTYF_SET_BREAK);
664 					count += 2;
665 				}
666 
667 				if( ISSET(mtty->mp_flags, MTTYF_CLR_BREAK) ) {
668 					cd1400_write_reg(cd, CD1400_TDR, 0);
669 					cd1400_write_reg(cd, CD1400_TDR, 0x83);
670 					CLR(mtty->mp_flags, MTTYF_CLR_BREAK);
671 					count += 2;
672 				}
673 
674 				/* I don't quite fill the fifo in case the last one is a
675 				 * NULL which I have to double up because its the escape
676 				 * code for embedded transmit characters.
677 				 */
678 				while( mtty->mp_txc > 0 && count < CD1400_TX_FIFO_SIZE - 1 ) {
679 					u_char ch;
680 
681 					ch = *mtty->mp_txp;
682 
683 					mtty->mp_txc--;
684 					mtty->mp_txp++;
685 
686 					if( ch == 0 ) {
687 						cd1400_write_reg(cd, CD1400_TDR, ch);
688 						count++;
689 					}
690 
691 					cd1400_write_reg(cd, CD1400_TDR, ch);
692 					count++;
693 				}
694 			}
695 
696 			/* if we ran out of work or are requested to STOP then
697 			 * shut off the txrdy interrupts and signal DONE to flush
698 			 * out the chars we have sent.
699 			 */
700 			if( mtty->mp_txc == 0 || ISSET(mtty->mp_flags, MTTYF_STOP) ) {
701 				register int srer;
702 
703 				srer = cd1400_read_reg(cd, CD1400_SRER);
704 				CLR(srer, CD1400_SRER_TXRDY);
705 				cd1400_write_reg(cd, CD1400_SRER, srer);
706 				CLR(mtty->mp_flags, MTTYF_STOP);
707 
708 				SET(mtty->mp_flags, MTTYF_DONE);
709 				needsoftint = 1;
710 			}
711 		}
712 
713 		cd1400_write_reg(cd, CD1400_EOSRR, 0);	/* end service context */
714 		serviced = 1;
715 	} /* if(tx_service...) */
716 
717 	/* XXX service CD1190 interrupts too
718 	for( chip = 0 ; chip < sc->ms_ncd1190 ; chip++ ) {
719 	}
720 	*/
721 
722 	if (needsoftint)
723 		/* trigger the soft interrupt */
724 		softint_schedule(sc->ms_sicookie);
725 
726 	return(serviced);
727 }
728 
729 /*
730  * magma soft interrupt handler
731  *
732  * runs at IPL_SOFTSERIAL
733  */
734 void
735 magma_soft(arg)
736 	void *arg;
737 {
738 	struct magma_softc *sc = arg;
739 	struct mtty_softc *mtty = sc->ms_mtty;
740 	struct mbpp_softc *mbpp = sc->ms_mbpp;
741 	int port;
742 	int s, flags;
743 
744 	if (mtty == NULL)
745 		goto chkbpp;
746 
747 	/*
748 	 * check the tty ports to see what needs doing
749 	 */
750 	for( port = 0 ; port < mtty->ms_nports ; port++ ) {
751 		struct mtty_port *mp = &mtty->ms_port[port];
752 		struct tty *tp = mp->mp_tty;
753 
754 		if( !ISSET(tp->t_state, TS_ISOPEN) )
755 			continue;
756 
757 		/*
758 		 * handle any received data
759 		 */
760 		while( mp->mp_rget != mp->mp_rput ) {
761 			u_char stat;
762 			int data;
763 
764 			stat = mp->mp_rget[0];
765 			data = mp->mp_rget[1];
766 			mp->mp_rget = ((mp->mp_rget + 2) == mp->mp_rend)
767 				? mp->mp_rbuf : (mp->mp_rget + 2);
768 
769 			if( stat & (CD1400_RDSR_BREAK | CD1400_RDSR_FE) )
770 				data |= TTY_FE;
771 			if( stat & CD1400_RDSR_PE )
772 				data |= TTY_PE;
773 
774 			if( stat & CD1400_RDSR_OE )
775 				log(LOG_WARNING, "%s%x: fifo overflow\n",
776 				    device_xname(&mtty->ms_dev), port);
777 
778 			(*tp->t_linesw->l_rint)(data, tp);
779 		}
780 
781 		s = splserial();	/* block out hard interrupt routine */
782 		flags = mp->mp_flags;
783 		CLR(mp->mp_flags, MTTYF_DONE | MTTYF_CARRIER_CHANGED | MTTYF_RING_OVERFLOW);
784 		splx(s);	/* ok */
785 
786 		if( ISSET(flags, MTTYF_CARRIER_CHANGED) ) {
787 			dprintf(("%s%x: cd %s\n", device_xname(&mtty->ms_dev),
788 				port, mp->mp_carrier ? "on" : "off"));
789 			(*tp->t_linesw->l_modem)(tp, mp->mp_carrier);
790 		}
791 
792 		if( ISSET(flags, MTTYF_RING_OVERFLOW) ) {
793 			log(LOG_WARNING, "%s%x: ring buffer overflow\n",
794 			    device_xname(&mtty->ms_dev), port);
795 		}
796 
797 		if( ISSET(flags, MTTYF_DONE) ) {
798 			ndflush(&tp->t_outq, mp->mp_txp - tp->t_outq.c_cf);
799 			CLR(tp->t_state, TS_BUSY);
800 			(*tp->t_linesw->l_start)(tp);	/* might be some more */
801 		}
802 	} /* for(each mtty...) */
803 
804 
805 chkbpp:
806 	/*
807 	 * Check the bpp ports (if any) to see what needs doing
808 	 */
809 	if (mbpp == NULL)
810 		return;
811 
812 	for( port = 0 ; port < mbpp->ms_nports ; port++ ) {
813 		struct mbpp_port *mp = &mbpp->ms_port[port];
814 
815 		if( !ISSET(mp->mp_flags, MBPPF_OPEN) )
816 			continue;
817 
818 		s = splserial();
819 		flags = mp->mp_flags;
820 		CLR(mp->mp_flags, MBPPF_WAKEUP);
821 		splx(s);
822 
823 		if( ISSET(flags, MBPPF_WAKEUP) ) {
824 			wakeup(mp);
825 		}
826 
827 	} /* for(each mbpp...) */
828 }
829 
830 /************************************************************************
831  *
832  *  MTTY Routines
833  *
834  *	mtty_match		match one mtty device
835  *	mtty_attach		attach mtty devices
836  *	mttyopen		open mtty device
837  *	mttyclose		close mtty device
838  *	mttyread		read from mtty
839  *	mttywrite		write to mtty
840  *	mttyioctl		do ioctl on mtty
841  *	mttytty			return tty pointer for mtty
842  *	mttystop		stop mtty device
843  *	mtty_start		start mtty device
844  *	mtty_param		set mtty parameters
845  *	mtty_modem_control	set modem control lines
846  */
847 
848 int
849 mtty_match(parent, cf, args)
850 	struct device *parent;
851 	struct cfdata *cf;
852 	void *args;
853 {
854 	struct magma_softc *sc = (struct magma_softc *)parent;
855 
856 	return( args == mtty_match && sc->ms_board->mb_nser && sc->ms_mtty == NULL );
857 }
858 
859 void
860 mtty_attach(parent, dev, args)
861 	struct device *parent;
862 	struct device *dev;
863 	void *args;
864 {
865 	struct magma_softc *sc = (struct magma_softc *)parent;
866 	struct mtty_softc *ms = (struct mtty_softc *)dev;
867 	int port, chip, chan;
868 
869 	sc->ms_mtty = ms;
870 	dprintf((" addr %p", ms));
871 
872 	for( port = 0, chip = 0, chan = 0 ; port < sc->ms_board->mb_nser ; port++ ) {
873 		struct mtty_port *mp = &ms->ms_port[port];
874 		struct tty *tp;
875 
876 		mp->mp_cd1400 = &sc->ms_cd1400[chip];
877 		if (mp->mp_cd1400->cd_parmode && chan == 0)
878 			chan = 1; /* skip channel 0 if parmode */
879 		mp->mp_channel = chan;
880 
881 		tp = ttymalloc();
882 		if (tp == NULL) break;
883 		tty_attach(tp);
884 		tp->t_oproc = mtty_start;
885 		tp->t_param = mtty_param;
886 
887 		mp->mp_tty = tp;
888 
889 		mp->mp_rbuf = malloc(MTTY_RBUF_SIZE, M_DEVBUF, M_NOWAIT);
890 		if (mp->mp_rbuf == NULL) break;
891 
892 		mp->mp_rend = mp->mp_rbuf + MTTY_RBUF_SIZE;
893 
894 		chan = (chan + 1) % CD1400_NO_OF_CHANNELS;
895 		if (chan == 0)
896 			chip++;
897 	}
898 
899 	ms->ms_nports = port;
900 	printf(": %d tty%s\n", port, port == 1 ? "" : "s");
901 }
902 
903 /*
904  * open routine. returns zero if successful, else error code
905  */
906 int
907 mttyopen(dev, flags, mode, l)
908 	dev_t dev;
909 	int flags;
910 	int mode;
911 	struct lwp *l;
912 {
913 	int card = MAGMA_CARD(dev);
914 	int port = MAGMA_PORT(dev);
915 	struct mtty_softc *ms;
916 	struct mtty_port *mp;
917 	struct tty *tp;
918 	struct cd1400 *cd;
919 	int error, s;
920 
921 	if( card >= mtty_cd.cd_ndevs ||
922 	    (ms = mtty_cd.cd_devs[card]) == NULL || port >= ms->ms_nports )
923 		return(ENXIO);	/* device not configured */
924 
925 	mp = &ms->ms_port[port];
926 	tp = mp->mp_tty;
927 	tp->t_dev = dev;
928 
929 	if (kauth_authorize_device_tty(l->l_cred, KAUTH_DEVICE_TTY_OPEN, tp))
930 		return (EBUSY);
931 
932 	s = spltty();
933 
934 	if( !ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
935 
936 		/* set defaults */
937 		ttychars(tp);
938 		tp->t_iflag = TTYDEF_IFLAG;
939 		tp->t_oflag = TTYDEF_OFLAG;
940 		tp->t_cflag = TTYDEF_CFLAG;
941 		if( ISSET(mp->mp_openflags, TIOCFLAG_CLOCAL) )
942 			SET(tp->t_cflag, CLOCAL);
943 		if( ISSET(mp->mp_openflags, TIOCFLAG_CRTSCTS) )
944 			SET(tp->t_cflag, CRTSCTS);
945 		if( ISSET(mp->mp_openflags, TIOCFLAG_MDMBUF) )
946 			SET(tp->t_cflag, MDMBUF);
947 		tp->t_lflag = TTYDEF_LFLAG;
948 		tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
949 
950 		/* init ring buffer */
951 		mp->mp_rput = mp->mp_rget = mp->mp_rbuf;
952 
953 		/* reset CD1400 channel */
954 		cd = mp->mp_cd1400;
955 		cd1400_write_reg(cd, CD1400_CAR, mp->mp_channel);
956 		cd1400_write_ccr(cd, CD1400_CCR_CMDRESET);
957 
958 		/* encode the port number in top half of LIVR */
959 		cd1400_write_reg(cd, CD1400_LIVR, port << 4 );
960 
961 		/* sets parameters and raises DTR */
962 		(void)mtty_param(tp, &tp->t_termios);
963 
964 		/* set tty watermarks */
965 		ttsetwater(tp);
966 
967 		/* enable service requests */
968 		cd1400_write_reg(cd, CD1400_SRER,
969 				 CD1400_SRER_RXDATA | CD1400_SRER_MDMCH);
970 
971 		/* tell the tty about the carrier status */
972 		if( ISSET(mp->mp_openflags, TIOCFLAG_SOFTCAR) ||
973 		    mp->mp_carrier )
974 			SET(tp->t_state, TS_CARR_ON);
975 		else
976 			CLR(tp->t_state, TS_CARR_ON);
977 	}
978 	splx(s);
979 
980 	error = ttyopen(tp, MTTY_DIALOUT(dev), ISSET(flags, O_NONBLOCK));
981 	if (error != 0)
982 		goto bad;
983 
984 	error = (*tp->t_linesw->l_open)(dev, tp);
985 	if (error != 0)
986 		goto bad;
987 
988 bad:
989 	if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
990 		/*
991 		 * We failed to open the device, and nobody else had it opened.
992 		 * Clean up the state as appropriate.
993 		 */
994 		/* XXX - do that here */
995 	}
996 
997 	return (error);
998 }
999 
1000 /*
1001  * close routine. returns zero if successful, else error code
1002  */
1003 int
1004 mttyclose(dev, flag, mode, l)
1005 	dev_t dev;
1006 	int flag;
1007 	int mode;
1008 	struct lwp *l;
1009 {
1010 	struct mtty_softc *ms = mtty_cd.cd_devs[MAGMA_CARD(dev)];
1011 	struct mtty_port *mp = &ms->ms_port[MAGMA_PORT(dev)];
1012 	struct tty *tp = mp->mp_tty;
1013 	int s;
1014 
1015 	(*tp->t_linesw->l_close)(tp, flag);
1016 	ttyclose(tp);
1017 
1018 	s = spltty();
1019 
1020 	/* if HUPCL is set, and the tty is no longer open
1021 	 * shut down the port
1022 	 */
1023 	if( ISSET(tp->t_cflag, HUPCL) || !ISSET(tp->t_state, TS_ISOPEN) ) {
1024 		/* XXX wait until FIFO is empty before turning off the channel
1025 		struct cd1400 *cd = mp->mp_cd1400;
1026 		*/
1027 
1028 		/* drop DTR and RTS */
1029 		(void)mtty_modem_control(mp, 0, DMSET);
1030 
1031 		/* turn off the channel
1032 		cd1400_write_reg(cd, CD1400_CAR, mp->mp_channel);
1033 		cd1400_write_ccr(cd, CD1400_CCR_CMDRESET);
1034 		*/
1035 	}
1036 
1037 	splx(s);
1038 
1039 	return(0);
1040 }
1041 
1042 /*
1043  * Read routine
1044  */
1045 int
1046 mttyread(dev, uio, flags)
1047 	dev_t dev;
1048 	struct uio *uio;
1049 	int flags;
1050 {
1051 	struct mtty_softc *ms = mtty_cd.cd_devs[MAGMA_CARD(dev)];
1052 	struct mtty_port *mp = &ms->ms_port[MAGMA_PORT(dev)];
1053 	struct tty *tp = mp->mp_tty;
1054 
1055 	return( (*tp->t_linesw->l_read)(tp, uio, flags) );
1056 }
1057 
1058 /*
1059  * Write routine
1060  */
1061 int
1062 mttywrite(dev, uio, flags)
1063 	dev_t dev;
1064 	struct uio *uio;
1065 	int flags;
1066 {
1067 	struct mtty_softc *ms = mtty_cd.cd_devs[MAGMA_CARD(dev)];
1068 	struct mtty_port *mp = &ms->ms_port[MAGMA_PORT(dev)];
1069 	struct tty *tp = mp->mp_tty;
1070 
1071 	return( (*tp->t_linesw->l_write)(tp, uio, flags) );
1072 }
1073 
1074 /*
1075  * Poll routine
1076  */
1077 int
1078 mttypoll(dev, events, l)
1079 	dev_t dev;
1080 	int events;
1081 	struct lwp *l;
1082 {
1083 	struct mtty_softc *ms = mtty_cd.cd_devs[MAGMA_CARD(dev)];
1084 	struct mtty_port *mp = &ms->ms_port[MAGMA_PORT(dev)];
1085 	struct tty *tp = mp->mp_tty;
1086 
1087 	return ((*tp->t_linesw->l_poll)(tp, events, l));
1088 }
1089 
1090 /*
1091  * return tty pointer
1092  */
1093 struct tty *
1094 mttytty(dev)
1095 	dev_t dev;
1096 {
1097 	struct mtty_softc *ms = mtty_cd.cd_devs[MAGMA_CARD(dev)];
1098 	struct mtty_port *mp = &ms->ms_port[MAGMA_PORT(dev)];
1099 
1100 	return(mp->mp_tty);
1101 }
1102 
1103 /*
1104  * ioctl routine
1105  */
1106 int
1107 mttyioctl(dev, cmd, data, flags, l)
1108 	dev_t dev;
1109 	u_long cmd;
1110 	void *data;
1111 	int flags;
1112 	struct lwp *l;
1113 {
1114 	struct mtty_softc *ms = mtty_cd.cd_devs[MAGMA_CARD(dev)];
1115 	struct mtty_port *mp = &ms->ms_port[MAGMA_PORT(dev)];
1116 	struct tty *tp = mp->mp_tty;
1117 	int error;
1118 
1119 	error = (*tp->t_linesw->l_ioctl)(tp, cmd, data, flags, l);
1120 	if( error != EPASSTHROUGH ) return(error);
1121 
1122 	error = ttioctl(tp, cmd, data, flags, l);
1123 	if( error != EPASSTHROUGH ) return(error);
1124 
1125 	error = 0;
1126 
1127 	switch(cmd) {
1128 	case TIOCSBRK:	/* set break */
1129 		SET(mp->mp_flags, MTTYF_SET_BREAK);
1130 		cd1400_enable_transmitter(mp->mp_cd1400, mp->mp_channel);
1131 		break;
1132 
1133 	case TIOCCBRK:	/* clear break */
1134 		SET(mp->mp_flags, MTTYF_CLR_BREAK);
1135 		cd1400_enable_transmitter(mp->mp_cd1400, mp->mp_channel);
1136 		break;
1137 
1138 	case TIOCSDTR:	/* set DTR */
1139 		mtty_modem_control(mp, TIOCM_DTR, DMBIS);
1140 		break;
1141 
1142 	case TIOCCDTR:	/* clear DTR */
1143 		mtty_modem_control(mp, TIOCM_DTR, DMBIC);
1144 		break;
1145 
1146 	case TIOCMSET:	/* set modem lines */
1147 		mtty_modem_control(mp, *((int *)data), DMSET);
1148 		break;
1149 
1150 	case TIOCMBIS:	/* bit set modem lines */
1151 		mtty_modem_control(mp, *((int *)data), DMBIS);
1152 		break;
1153 
1154 	case TIOCMBIC:	/* bit clear modem lines */
1155 		mtty_modem_control(mp, *((int *)data), DMBIC);
1156 		break;
1157 
1158 	case TIOCMGET:	/* get modem lines */
1159 		*((int *)data) = mtty_modem_control(mp, 0, DMGET);
1160 		break;
1161 
1162 	case TIOCGFLAGS:
1163 		*((int *)data) = mp->mp_openflags;
1164 		break;
1165 
1166 	case TIOCSFLAGS:
1167 		if (kauth_authorize_device_tty(l->l_cred,
1168 		    KAUTH_DEVICE_TTY_PRIVSET, tp))
1169 			error = EPERM;
1170 		else
1171 			mp->mp_openflags = *((int *)data) &
1172 				(TIOCFLAG_SOFTCAR | TIOCFLAG_CLOCAL |
1173 				TIOCFLAG_CRTSCTS | TIOCFLAG_MDMBUF);
1174 		break;
1175 
1176 	default:
1177 		error = EPASSTHROUGH;
1178 	}
1179 
1180 	return(error);
1181 }
1182 
1183 /*
1184  * Stop output, e.g., for ^S or output flush.
1185  */
1186 void
1187 mttystop(tp, flags)
1188 	struct tty *tp;
1189 	int flags;
1190 {
1191 	struct mtty_softc *ms = mtty_cd.cd_devs[MAGMA_CARD(tp->t_dev)];
1192 	struct mtty_port *mp = &ms->ms_port[MAGMA_PORT(tp->t_dev)];
1193 	int s;
1194 
1195 	s = spltty();
1196 
1197 	if( ISSET(tp->t_state, TS_BUSY) ) {
1198 		if( !ISSET(tp->t_state, TS_TTSTOP) )
1199 			SET(tp->t_state, TS_FLUSH);
1200 
1201 		/*
1202 		 * the transmit interrupt routine will disable transmit when it
1203 		 * notices that MTTYF_STOP has been set.
1204 		 */
1205 		SET(mp->mp_flags, MTTYF_STOP);
1206 	}
1207 
1208 	splx(s);
1209 }
1210 
1211 /*
1212  * Start output, after a stop.
1213  */
1214 void
1215 mtty_start(tp)
1216 	struct tty *tp;
1217 {
1218 	struct mtty_softc *ms = mtty_cd.cd_devs[MAGMA_CARD(tp->t_dev)];
1219 	struct mtty_port *mp = &ms->ms_port[MAGMA_PORT(tp->t_dev)];
1220 	int s;
1221 
1222 	s = spltty();
1223 
1224 	/* we only need to do something if we are not already busy
1225 	 * or delaying or stopped
1226 	 */
1227 	if( !ISSET(tp->t_state, TS_TTSTOP | TS_TIMEOUT | TS_BUSY) ) {
1228 		if (ttypull(tp)) {
1229 			mp->mp_txc = ndqb(&tp->t_outq, 0);
1230 			mp->mp_txp = tp->t_outq.c_cf;
1231 			SET(tp->t_state, TS_BUSY);
1232 			cd1400_enable_transmitter(mp->mp_cd1400, mp->mp_channel);
1233 		}
1234 	}
1235 
1236 	splx(s);
1237 }
1238 
1239 /*
1240  * set/get modem line status
1241  *
1242  * bits can be: TIOCM_DTR, TIOCM_RTS, TIOCM_CTS, TIOCM_CD, TIOCM_RI, TIOCM_DSR
1243  *
1244  * note that DTR and RTS lines are exchanged, and that DSR is
1245  * not available on the LC2+1Sp card (used as CD)
1246  *
1247  * only let them fiddle with RTS if CRTSCTS is not enabled
1248  */
1249 int
1250 mtty_modem_control(mp, bits, howto)
1251 	struct mtty_port *mp;
1252 	int bits;
1253 	int howto;
1254 {
1255 	struct cd1400 *cd = mp->mp_cd1400;
1256 	struct tty *tp = mp->mp_tty;
1257 	int s, msvr;
1258 
1259 	s = spltty();
1260 
1261 	cd1400_write_reg(cd, CD1400_CAR, mp->mp_channel);
1262 
1263 	switch(howto) {
1264 	case DMGET:	/* get bits */
1265 		bits = 0;
1266 
1267 		bits |= TIOCM_LE;
1268 
1269 		msvr = cd1400_read_reg(cd, CD1400_MSVR1);
1270 		if( msvr & CD1400_MSVR1_RTS ) bits |= TIOCM_DTR;
1271 
1272 		msvr = cd1400_read_reg(cd, CD1400_MSVR2);
1273 		if( msvr & CD1400_MSVR2_DTR ) bits |= TIOCM_RTS;
1274 		if( msvr & CD1400_MSVR2_CTS ) bits |= TIOCM_CTS;
1275 		if( msvr & CD1400_MSVR2_RI ) bits |= TIOCM_RI;
1276 		if( msvr & CD1400_MSVR2_DSR ) bits |= (cd->cd_parmode ? TIOCM_CD : TIOCM_DSR);
1277 		if( msvr & CD1400_MSVR2_CD ) bits |= (cd->cd_parmode ? 0 : TIOCM_CD);
1278 
1279 		break;
1280 
1281 	case DMSET:	/* reset bits */
1282 		if( !ISSET(tp->t_cflag, CRTSCTS) )
1283 			cd1400_write_reg(cd, CD1400_MSVR2, ((bits & TIOCM_RTS) ? CD1400_MSVR2_DTR : 0));
1284 
1285 		cd1400_write_reg(cd, CD1400_MSVR1, ((bits & TIOCM_DTR) ? CD1400_MSVR1_RTS : 0));
1286 
1287 		break;
1288 
1289 	case DMBIS:	/* set bits */
1290 		if( (bits & TIOCM_RTS) && !ISSET(tp->t_cflag, CRTSCTS) )
1291 			cd1400_write_reg(cd, CD1400_MSVR2, CD1400_MSVR2_DTR);
1292 
1293 		if( bits & TIOCM_DTR )
1294 			cd1400_write_reg(cd, CD1400_MSVR1, CD1400_MSVR1_RTS);
1295 
1296 		break;
1297 
1298 	case DMBIC:	/* clear bits */
1299 		if( (bits & TIOCM_RTS) && !ISSET(tp->t_cflag, CRTSCTS) )
1300 			cd1400_write_reg(cd, CD1400_MSVR2, 0);
1301 
1302 		if( bits & TIOCM_DTR )
1303 			cd1400_write_reg(cd, CD1400_MSVR1, 0);
1304 
1305 		break;
1306 	}
1307 
1308 	splx(s);
1309 	return(bits);
1310 }
1311 
1312 /*
1313  * Set tty parameters, returns error or 0 on success
1314  */
1315 int
1316 mtty_param(tp, t)
1317 	struct tty *tp;
1318 	struct termios *t;
1319 {
1320 	struct mtty_softc *ms = mtty_cd.cd_devs[MAGMA_CARD(tp->t_dev)];
1321 	struct mtty_port *mp = &ms->ms_port[MAGMA_PORT(tp->t_dev)];
1322 	struct cd1400 *cd = mp->mp_cd1400;
1323 	int rbpr, tbpr, rcor, tcor;
1324 	u_char mcor1 = 0, mcor2 = 0;
1325 	int s, opt;
1326 
1327 	if( t->c_ospeed && cd1400_compute_baud(t->c_ospeed, cd->cd_clock, &tcor, &tbpr) )
1328 		return(EINVAL);
1329 
1330 	if( t->c_ispeed && cd1400_compute_baud(t->c_ispeed, cd->cd_clock, &rcor, &rbpr) )
1331 		return(EINVAL);
1332 
1333 	s = spltty();
1334 
1335 	/* hang up the line if ospeed is zero, else raise DTR */
1336 	(void)mtty_modem_control(mp, TIOCM_DTR, (t->c_ospeed == 0 ? DMBIC : DMBIS));
1337 
1338 	/* select channel, done in mtty_modem_control() */
1339 	/* cd1400_write_reg(cd, CD1400_CAR, mp->mp_channel); */
1340 
1341 	/* set transmit speed */
1342 	if( t->c_ospeed ) {
1343 		cd1400_write_reg(cd, CD1400_TCOR, tcor);
1344 		cd1400_write_reg(cd, CD1400_TBPR, tbpr);
1345 	}
1346 
1347 	/* set receive speed */
1348 	if( t->c_ispeed ) {
1349 		cd1400_write_reg(cd, CD1400_RCOR, rcor);
1350 		cd1400_write_reg(cd, CD1400_RBPR, rbpr);
1351 	}
1352 
1353 	/* enable transmitting and receiving on this channel */
1354 	opt = CD1400_CCR_CMDCHANCTL | CD1400_CCR_XMTEN | CD1400_CCR_RCVEN;
1355 	cd1400_write_ccr(cd, opt);
1356 
1357 	/* set parity, data and stop bits */
1358 	opt = 0;
1359 	if( ISSET(t->c_cflag, PARENB) )
1360 		opt |= (ISSET(t->c_cflag, PARODD) ? CD1400_COR1_PARODD : CD1400_COR1_PARNORMAL);
1361 
1362 	if( !ISSET(t->c_iflag, INPCK) )
1363 		opt |= CD1400_COR1_NOINPCK; /* no parity checking */
1364 
1365 	if( ISSET(t->c_cflag, CSTOPB) )
1366 		opt |= CD1400_COR1_STOP2;
1367 
1368 	switch( t->c_cflag & CSIZE ) {
1369 	case CS5:
1370 		opt |= CD1400_COR1_CS5;
1371 		break;
1372 
1373 	case CS6:
1374 		opt |= CD1400_COR1_CS6;
1375 		break;
1376 
1377 	case CS7:
1378 		opt |= CD1400_COR1_CS7;
1379 		break;
1380 
1381 	default:
1382 		opt |= CD1400_COR1_CS8;
1383 		break;
1384 	}
1385 
1386 	cd1400_write_reg(cd, CD1400_COR1, opt);
1387 
1388 	/*
1389 	 * enable Embedded Transmit Commands (for breaks)
1390 	 * use the CD1400 automatic CTS flow control if CRTSCTS is set
1391 	 */
1392 	opt = CD1400_COR2_ETC;
1393 	if( ISSET(t->c_cflag, CRTSCTS) ) opt |= CD1400_COR2_CCTS_OFLOW;
1394 	cd1400_write_reg(cd, CD1400_COR2, opt);
1395 
1396 	cd1400_write_reg(cd, CD1400_COR3, MTTY_RX_FIFO_THRESHOLD);
1397 
1398 	cd1400_write_ccr(cd, CD1400_CCR_CMDCORCHG | CD1400_CCR_COR1 | CD1400_CCR_COR2 | CD1400_CCR_COR3);
1399 
1400 	cd1400_write_reg(cd, CD1400_COR4, CD1400_COR4_PFO_EXCEPTION);
1401 	cd1400_write_reg(cd, CD1400_COR5, 0);
1402 
1403 	/*
1404 	 * if automatic RTS handshaking enabled, set DTR threshold
1405 	 * (RTS and DTR lines are switched, CD1400 thinks its DTR)
1406 	 */
1407 	if( ISSET(t->c_cflag, CRTSCTS) )
1408 		mcor1 = MTTY_RX_DTR_THRESHOLD;
1409 
1410 	/* set up `carrier detect' interrupts */
1411 	if( cd->cd_parmode ) {
1412 		SET(mcor1, CD1400_MCOR1_DSRzd);
1413 		SET(mcor2, CD1400_MCOR2_DSRod);
1414 	} else {
1415 		SET(mcor1, CD1400_MCOR1_CDzd);
1416 		SET(mcor2, CD1400_MCOR2_CDod);
1417 	}
1418 
1419 	cd1400_write_reg(cd, CD1400_MCOR1, mcor1);
1420 	cd1400_write_reg(cd, CD1400_MCOR2, mcor2);
1421 
1422 	/* receive timeout 2ms */
1423 	cd1400_write_reg(cd, CD1400_RTPR, 2);
1424 
1425 	splx(s);
1426 	return(0);
1427 }
1428 
1429 /************************************************************************
1430  *
1431  *  MBPP Routines
1432  *
1433  *	mbpp_match	match one mbpp device
1434  *	mbpp_attach	attach mbpp devices
1435  *	mbppopen	open mbpp device
1436  *	mbppclose	close mbpp device
1437  *	mbppioctl	do ioctl on mbpp
1438  *	mbpp_rw		general rw routine
1439  *	mbpp_timeout	rw timeout
1440  *	mbpp_start	rw start after delay
1441  *	mbpp_send	send data
1442  *	mbpp_recv	recv data
1443  */
1444 
1445 int
1446 mbpp_match(parent, cf, args)
1447 	struct device *parent;
1448 	struct cfdata *cf;
1449 	void *args;
1450 {
1451 	struct magma_softc *sc = (struct magma_softc *)parent;
1452 
1453 	return( args == mbpp_match && sc->ms_board->mb_npar && sc->ms_mbpp == NULL );
1454 }
1455 
1456 void
1457 mbpp_attach(parent, dev, args)
1458 	struct device *parent;
1459 	struct device *dev;
1460 	void *args;
1461 {
1462 	struct magma_softc *sc = (struct magma_softc *)parent;
1463 	struct mbpp_softc *ms = (struct mbpp_softc *)dev;
1464 	struct mbpp_port *mp;
1465 	int port;
1466 
1467 	sc->ms_mbpp = ms;
1468 	dprintf((" addr %p", ms));
1469 
1470 	for( port = 0 ; port < sc->ms_board->mb_npar ; port++ ) {
1471 		mp = &ms->ms_port[port];
1472 
1473 		callout_init(&mp->mp_timeout_ch, 0);
1474 		callout_init(&mp->mp_start_ch, 0);
1475 
1476 		if( sc->ms_ncd1190 )
1477 			mp->mp_cd1190 = &sc->ms_cd1190[port];
1478 		else
1479 			mp->mp_cd1400 = &sc->ms_cd1400[0];
1480 	}
1481 
1482 	ms->ms_nports = port;
1483 	printf(": %d port%s\n", port, port == 1 ? "" : "s");
1484 }
1485 
1486 /*
1487  * open routine. returns zero if successful, else error code
1488  */
1489 int
1490 mbppopen(dev, flags, mode, l)
1491 	dev_t dev;
1492 	int flags;
1493 	int mode;
1494 	struct lwp *l;
1495 {
1496 	int card = MAGMA_CARD(dev);
1497 	int port = MAGMA_PORT(dev);
1498 	struct mbpp_softc *ms;
1499 	struct mbpp_port *mp;
1500 	int s;
1501 
1502 	if( card >= mbpp_cd.cd_ndevs ||
1503 	    (ms = mbpp_cd.cd_devs[card]) == NULL || port >= ms->ms_nports )
1504 		return(ENXIO);
1505 
1506 	mp = &ms->ms_port[port];
1507 
1508 	s = spltty();
1509 	if( ISSET(mp->mp_flags, MBPPF_OPEN) ) {
1510 		splx(s);
1511 		return(EBUSY);
1512 	}
1513 	SET(mp->mp_flags, MBPPF_OPEN);
1514 	splx(s);
1515 
1516 	/* set defaults */
1517 	mp->mp_burst = MBPP_BURST;
1518 	mp->mp_timeout = mbpp_mstohz(MBPP_TIMEOUT);
1519 	mp->mp_delay = mbpp_mstohz(MBPP_DELAY);
1520 
1521 	/* init chips */
1522 	if( mp->mp_cd1400 ) {	/* CD1400 */
1523 		struct cd1400 *cd = mp->mp_cd1400;
1524 
1525 		/* set up CD1400 channel */
1526 		s = spltty();
1527 		cd1400_write_reg(cd, CD1400_CAR, 0);
1528 		cd1400_write_ccr(cd, CD1400_CCR_CMDRESET);
1529 		cd1400_write_reg(cd, CD1400_LIVR, (1<<3));
1530 		splx(s);
1531 	} else {		/* CD1190 */
1532 		mp->mp_flags = 0;
1533 		return (ENXIO);
1534 	}
1535 
1536 	return (0);
1537 }
1538 
1539 /*
1540  * close routine. returns zero if successful, else error code
1541  */
1542 int
1543 mbppclose(dev, flag, mode, l)
1544 	dev_t dev;
1545 	int flag;
1546 	int mode;
1547 	struct lwp *l;
1548 {
1549 	struct mbpp_softc *ms = mbpp_cd.cd_devs[MAGMA_CARD(dev)];
1550 	struct mbpp_port *mp = &ms->ms_port[MAGMA_PORT(dev)];
1551 
1552 	mp->mp_flags = 0;
1553 	return(0);
1554 }
1555 
1556 /*
1557  * ioctl routine
1558  */
1559 int
1560 mbppioctl(dev, cmd, data, flags, l)
1561 	dev_t dev;
1562 	u_long cmd;
1563 	void *data;
1564 	int flags;
1565 	struct lwp *l;
1566 {
1567 	struct mbpp_softc *ms = mbpp_cd.cd_devs[MAGMA_CARD(dev)];
1568 	struct mbpp_port *mp = &ms->ms_port[MAGMA_PORT(dev)];
1569 	struct mbpp_param *bp;
1570 	int error = 0;
1571 	int s;
1572 
1573 	switch(cmd) {
1574 	case MBPPIOCSPARAM:
1575 		bp = (struct mbpp_param *)data;
1576 		if( bp->bp_burst < MBPP_BURST_MIN || bp->bp_burst > MBPP_BURST_MAX ||
1577 		    bp->bp_delay < MBPP_DELAY_MIN || bp->bp_delay > MBPP_DELAY_MIN ) {
1578 			error = EINVAL;
1579 		} else {
1580 			mp->mp_burst = bp->bp_burst;
1581 			mp->mp_timeout = mbpp_mstohz(bp->bp_timeout);
1582 			mp->mp_delay = mbpp_mstohz(bp->bp_delay);
1583 		}
1584 		break;
1585 	case MBPPIOCGPARAM:
1586 		bp = (struct mbpp_param *)data;
1587 		bp->bp_burst = mp->mp_burst;
1588 		bp->bp_timeout = mbpp_hztoms(mp->mp_timeout);
1589 		bp->bp_delay = mbpp_hztoms(mp->mp_delay);
1590 		break;
1591 	case MBPPIOCGSTAT:
1592 		/* XXX make this more generic */
1593 		s = spltty();
1594 		cd1400_write_reg(mp->mp_cd1400, CD1400_CAR, 0);
1595 		*(int *)data = cd1400_read_reg(mp->mp_cd1400, CD1400_PSVR);
1596 		splx(s);
1597 		break;
1598 	default:
1599 		error = ENOTTY;
1600 	}
1601 
1602 	return(error);
1603 }
1604 
1605 int
1606 mbpp_rw(dev, uio, flag)
1607 	dev_t dev;
1608 	struct uio *uio;
1609 	int flag;
1610 {
1611 	int card = MAGMA_CARD(dev);
1612 	int port = MAGMA_PORT(dev);
1613 	struct mbpp_softc *ms = mbpp_cd.cd_devs[card];
1614 	struct mbpp_port *mp = &ms->ms_port[port];
1615 	char *buffer, *ptr;
1616 	int buflen, cnt, len;
1617 	int s, error = 0;
1618 	int gotdata = 0;
1619 
1620 	if( uio->uio_resid == 0 )
1621 		return(0);
1622 
1623 	buflen = min(uio->uio_resid, mp->mp_burst);
1624 	buffer = malloc(buflen, M_DEVBUF, M_WAITOK);
1625 	if( buffer == NULL )
1626 		return(ENOMEM);
1627 
1628 	SET(mp->mp_flags, MBPPF_UIO);
1629 
1630 	/*
1631 	 * start timeout, if needed
1632 	 */
1633 	if( mp->mp_timeout > 0 ) {
1634 		SET(mp->mp_flags, MBPPF_TIMEOUT);
1635 		callout_reset(&mp->mp_timeout_ch, mp->mp_timeout,
1636 		    mbpp_timeout, mp);
1637 	}
1638 
1639 	len = cnt = 0;
1640 	while( uio->uio_resid > 0 ) {
1641 		len = min(buflen, uio->uio_resid);
1642 		ptr = buffer;
1643 
1644 		if( uio->uio_rw == UIO_WRITE ) {
1645 			error = uiomove(ptr, len, uio);
1646 			if( error ) break;
1647 		}
1648 again:		/* goto bad */
1649 		/* timed out?  */
1650 		if( !ISSET(mp->mp_flags, MBPPF_UIO) )
1651 			break;
1652 
1653 		/*
1654 		 * perform the operation
1655 		 */
1656 		if( uio->uio_rw == UIO_WRITE ) {
1657 			cnt = mbpp_send(mp, ptr, len);
1658 		} else {
1659 			cnt = mbpp_recv(mp, ptr, len);
1660 		}
1661 
1662 		if( uio->uio_rw == UIO_READ ) {
1663 			if( cnt ) {
1664 				error = uiomove(ptr, cnt, uio);
1665 				if( error ) break;
1666 				gotdata++;
1667 			}
1668 			else if( gotdata )	/* consider us done */
1669 				break;
1670 		}
1671 
1672 		/* timed out?  */
1673 		if( !ISSET(mp->mp_flags, MBPPF_UIO) )
1674 			break;
1675 
1676 		/*
1677 		 * poll delay?
1678 		 */
1679 		if( mp->mp_delay > 0 ) {
1680 			s = splsoftclock();
1681 			SET(mp->mp_flags, MBPPF_DELAY);
1682 			callout_reset(&mp->mp_start_ch, mp->mp_delay,
1683 			    mbpp_start, mp);
1684 			error = tsleep(mp, PCATCH | PZERO, "mbppdelay", 0);
1685 			splx(s);
1686 			if( error ) break;
1687 		}
1688 
1689 		/*
1690 		 * don't call uiomove again until we used all the data we grabbed
1691 		 */
1692 		if( uio->uio_rw == UIO_WRITE && cnt != len ) {
1693 			ptr += cnt;
1694 			len -= cnt;
1695 			cnt = 0;
1696 			goto again;
1697 		}
1698 	}
1699 
1700 	/*
1701 	 * clear timeouts
1702 	 */
1703 	s = splsoftclock();
1704 	if( ISSET(mp->mp_flags, MBPPF_TIMEOUT) ) {
1705 		callout_stop(&mp->mp_timeout_ch);
1706 		CLR(mp->mp_flags, MBPPF_TIMEOUT);
1707 	}
1708 	if( ISSET(mp->mp_flags, MBPPF_DELAY) ) {
1709 		callout_stop(&mp->mp_start_ch);
1710 		CLR(mp->mp_flags, MBPPF_DELAY);
1711 	}
1712 	splx(s);
1713 
1714 	/*
1715 	 * adjust for those chars that we uiomoved but never actually wrote
1716 	 */
1717 	if( uio->uio_rw == UIO_WRITE && cnt != len ) {
1718 		uio->uio_resid += (len - cnt);
1719 	}
1720 
1721 	free(buffer, M_DEVBUF);
1722 	return(error);
1723 }
1724 
1725 void
1726 mbpp_timeout(arg)
1727 	void *arg;
1728 {
1729 	struct mbpp_port *mp = arg;
1730 
1731 	CLR(mp->mp_flags, MBPPF_UIO | MBPPF_TIMEOUT);
1732 	wakeup(mp);
1733 }
1734 
1735 void
1736 mbpp_start(arg)
1737 	void *arg;
1738 {
1739 	struct mbpp_port *mp = arg;
1740 
1741 	CLR(mp->mp_flags, MBPPF_DELAY);
1742 	wakeup(mp);
1743 }
1744 
1745 int
1746 mbpp_send(mp, ptr, len)
1747 	struct mbpp_port *mp;
1748 	void *ptr;
1749 	int len;
1750 {
1751 	int s;
1752 	struct cd1400 *cd = mp->mp_cd1400;
1753 
1754 	/* set up io information */
1755 	mp->mp_ptr = ptr;
1756 	mp->mp_cnt = len;
1757 
1758 	/* start transmitting */
1759 	s = spltty();
1760 	if( cd ) {
1761 		cd1400_write_reg(cd, CD1400_CAR, 0);
1762 
1763 		/* output strobe width ~1microsecond */
1764 		cd1400_write_reg(cd, CD1400_TBPR, 10);
1765 
1766 		/* enable channel */
1767 		cd1400_write_ccr(cd, CD1400_CCR_CMDCHANCTL | CD1400_CCR_XMTEN);
1768 		cd1400_write_reg(cd, CD1400_SRER, CD1400_SRER_TXRDY);
1769 	}
1770 
1771 	/* ZZzzz... */
1772 	tsleep(mp, PCATCH | PZERO, "mbpp_send", 0);
1773 
1774 	/* stop transmitting */
1775 	if( cd ) {
1776 		cd1400_write_reg(cd, CD1400_CAR, 0);
1777 
1778 		/* disable transmitter */
1779 		cd1400_write_reg(cd, CD1400_SRER, 0);
1780 		cd1400_write_ccr(cd, CD1400_CCR_CMDCHANCTL | CD1400_CCR_XMTDIS);
1781 
1782 		/* flush fifo */
1783 		cd1400_write_ccr(cd, CD1400_CCR_CMDRESET | CD1400_CCR_FTF);
1784 	}
1785 	splx(s);
1786 
1787 	/* return number of chars sent */
1788 	return(len - mp->mp_cnt);
1789 }
1790 
1791 int
1792 mbpp_recv(mp, ptr, len)
1793 	struct mbpp_port *mp;
1794 	void *ptr;
1795 	int len;
1796 {
1797 	int s;
1798 	struct cd1400 *cd = mp->mp_cd1400;
1799 
1800 	/* set up io information */
1801 	mp->mp_ptr = ptr;
1802 	mp->mp_cnt = len;
1803 
1804 	/* start receiving */
1805 	s = spltty();
1806 	if( cd ) {
1807 	int rcor, rbpr;
1808 
1809 		cd1400_write_reg(cd, CD1400_CAR, 0);
1810 
1811 		/* input strobe at 100kbaud (10microseconds) */
1812 		cd1400_compute_baud(100000, cd->cd_clock, &rcor, &rbpr);
1813 		cd1400_write_reg(cd, CD1400_RCOR, rcor);
1814 		cd1400_write_reg(cd, CD1400_RBPR, rbpr);
1815 
1816 		/* rx threshold */
1817 		cd1400_write_reg(cd, CD1400_COR3, MBPP_RX_FIFO_THRESHOLD);
1818 		cd1400_write_ccr(cd, CD1400_CCR_CMDCORCHG | CD1400_CCR_COR3);
1819 
1820 		/* enable channel */
1821 		cd1400_write_ccr(cd, CD1400_CCR_CMDCHANCTL | CD1400_CCR_RCVEN);
1822 		cd1400_write_reg(cd, CD1400_SRER, CD1400_SRER_RXDATA);
1823 	}
1824 
1825 	/* ZZzzz... */
1826 	tsleep(mp, PCATCH | PZERO, "mbpp_recv", 0);
1827 
1828 	/* stop receiving */
1829 	if( cd ) {
1830 		cd1400_write_reg(cd, CD1400_CAR, 0);
1831 
1832 		/* disable receiving */
1833 		cd1400_write_reg(cd, CD1400_SRER, 0);
1834 		cd1400_write_ccr(cd, CD1400_CCR_CMDCHANCTL | CD1400_CCR_RCVDIS);
1835 	}
1836 	splx(s);
1837 
1838 	/* return number of chars received */
1839 	return(len - mp->mp_cnt);
1840 }
1841 
1842 int
1843 mbpp_hztoms(h)
1844 	int h;
1845 {
1846 	int m = h;
1847 
1848 	if( m > 0 )
1849 		m = m * 1000 / hz;
1850 	return(m);
1851 }
1852 
1853 int
1854 mbpp_mstohz(m)
1855 	int m;
1856 {
1857 	int h = m;
1858 
1859 	if( h > 0 ) {
1860 		h = h * hz / 1000;
1861 		if( h == 0 )
1862 			h = 1000 / hz;
1863 	}
1864 	return(h);
1865 }
1866 
1867 #endif /* NMAGMA */
1868