xref: /netbsd-src/sys/dev/sbus/magma.c (revision 481fca6e59249d8ffcf24fef7cfbe7b131bfb080)
1 /*	$NetBSD: magma.c,v 1.8 2000/07/09 20:57:43 pk Exp $	*/
2 /*
3  * magma.c
4  *
5  * Copyright (c) 1998 Iain Hibbert
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Iain Hibbert
19  * 4. The name of the author may not be used to endorse or promote products
20  *    derived from this software without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
27  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
31  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  */
34 #if 0
35 #define MAGMA_DEBUG
36 #endif
37 
38 /*
39  * Driver for Magma SBus Serial/Parallel cards using the Cirrus Logic
40  * CD1400 & CD1190 chips
41  */
42 
43 #include "magma.h"
44 #if NMAGMA > 0
45 
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/proc.h>
49 #include <sys/device.h>
50 #include <sys/file.h>
51 #include <sys/ioctl.h>
52 #include <sys/malloc.h>
53 #include <sys/tty.h>
54 #include <sys/time.h>
55 #include <sys/kernel.h>
56 #include <sys/syslog.h>
57 #include <sys/conf.h>
58 #include <sys/errno.h>
59 
60 #include <machine/bus.h>
61 #include <machine/intr.h>
62 #include <machine/autoconf.h>
63 #include <machine/conf.h>
64 
65 #include <dev/sbus/sbusvar.h>
66 
67 #include <dev/ic/cd1400reg.h>
68 #include <dev/ic/cd1190reg.h>
69 
70 #include <dev/sbus/mbppio.h>
71 #include <dev/sbus/magmareg.h>
72 
73 /*
74  * Select tty soft interrupt bit based on TTY ipl. (stole from zs.c)
75  */
76 #if PIL_TTY == 1
77 # define IE_MSOFT IE_L1
78 #elif PIL_TTY == 4
79 # define IE_MSOFT IE_L4
80 #elif PIL_TTY == 6
81 # define IE_MSOFT IE_L6
82 #else
83 # error "no suitable software interrupt bit"
84 #endif
85 
86 /* supported cards
87  *
88  *  The table below lists the cards that this driver is likely to
89  *  be able to support.
90  *
91  *  Cards with parallel ports: except for the LC2+1Sp, they all use
92  *  the CD1190 chip which I know nothing about.  I've tried to leave
93  *  hooks for it so it shouldn't be too hard to add support later.
94  *  (I think somebody is working on this separately)
95  *
96  *  Thanks to Bruce at Magma for telling me the hardware offsets.
97  */
98 static struct magma_board_info supported_cards[] = {
99 	{
100 		"MAGMA,4_Sp", "Magma 4 Sp", 4, 0,
101 		1, 0xa000, 0xc000, 0xe000, { 0x8000, 0, 0, 0 },
102 		0, { 0, 0 }
103 	},
104 	{
105 		"MAGMA,8_Sp", "Magma 8 Sp", 8, 0,
106 		2, 0xa000, 0xc000, 0xe000, { 0x4000, 0x6000, 0, 0 },
107 		0, { 0, 0 }
108 	},
109 	{
110 		"MAGMA,_8HS_Sp", "Magma Fast 8 Sp", 8, 0,
111 		2, 0x2000, 0x4000, 0x6000, { 0x8000, 0xa000, 0, 0 },
112 		0, { 0, 0 }
113 	},
114 	{
115 		"MAGMA,_8SP_422", "Magma 8 Sp - 422", 8, 0,
116 		2, 0x2000, 0x4000, 0x6000, { 0x8000, 0xa000, 0, 0 },
117 		0, { 0, 0 }
118 	},
119 	{
120 		"MAGMA,12_Sp", "Magma 12 Sp", 12, 0,
121 		3, 0xa000, 0xc000, 0xe000, { 0x2000, 0x4000, 0x6000, 0 },
122 		0, { 0, 0 }
123 	},
124 	{
125 		"MAGMA,16_Sp", "Magma 16 Sp", 16, 0,
126 		4, 0xd000, 0xe000, 0xf000, { 0x8000, 0x9000, 0xa000, 0xb000 },
127 		0, { 0, 0 }
128 	},
129 	{
130 		"MAGMA,16_Sp_2", "Magma 16 Sp", 16, 0,
131 		4, 0x2000, 0x4000, 0x6000, { 0x8000, 0xa000, 0xc000, 0xe000 },
132 		0, { 0, 0 }
133 	},
134 	{
135 		"MAGMA,16HS_Sp", "Magma Fast 16 Sp", 16, 0,
136 		4, 0x2000, 0x4000, 0x6000, { 0x8000, 0xa000, 0xc000, 0xe000 },
137 		0, { 0, 0 }
138 	},
139 	{
140 		"MAGMA,21_Sp", "Magma LC 2+1 Sp", 2, 1,
141 		1, 0xa000, 0xc000, 0xe000, { 0x8000, 0, 0, 0 },
142 		0, { 0, 0 }
143 	},
144 	{
145 		"MAGMA,21HS_Sp", "Magma 2+1 Sp", 2, 1,
146 		1, 0xa000, 0xc000, 0xe000, { 0x4000, 0, 0, 0 },
147 		1, { 0x6000, 0 }
148 	},
149 	{
150 		"MAGMA,41_Sp", "Magma 4+1 Sp", 4, 1,
151 		1, 0xa000, 0xc000, 0xe000, { 0x4000, 0, 0, 0 },
152 		1, { 0x6000, 0 }
153 	},
154 	{
155 		"MAGMA,82_Sp", "Magma 8+2 Sp", 8, 2,
156 		2, 0xd000, 0xe000, 0xf000, { 0x8000, 0x9000, 0, 0 },
157 		2, { 0xa000, 0xb000 }
158 	},
159 	{
160 		"MAGMA,P1_Sp", "Magma P1 Sp", 0, 1,
161 		0, 0, 0, 0, { 0, 0, 0, 0 },
162 		1, { 0x8000, 0 }
163 	},
164 	{
165 		"MAGMA,P2_Sp", "Magma P2 Sp", 0, 2,
166 		0, 0, 0, 0, { 0, 0, 0, 0 },
167 		2, { 0x4000, 0x8000 }
168 	},
169 	{
170 		NULL, NULL, 0, 0,
171 		0, 0, 0, 0, { 0, 0, 0, 0 },
172 		0, { 0, 0 }
173 	}
174 };
175 
176 /************************************************************************
177  *
178  *  Autoconfig Stuff
179  */
180 
181 struct cfattach magma_ca = {
182 	sizeof(struct magma_softc), magma_match, magma_attach
183 };
184 
185 struct cfattach mtty_ca = {
186 	sizeof(struct mtty_softc), mtty_match, mtty_attach
187 };
188 
189 struct cfattach mbpp_ca = {
190 	sizeof(struct mbpp_softc), mbpp_match, mbpp_attach
191 };
192 
193 extern struct cfdriver mtty_cd;
194 extern struct cfdriver mbpp_cd;
195 
196 /************************************************************************
197  *
198  *  CD1400 Routines
199  *
200  *	cd1400_compute_baud		calculate COR/BPR register values
201  *	cd1400_write_ccr		write a value to CD1400 ccr
202  *	cd1400_read_reg			read from a CD1400 register
203  *	cd1400_write_reg		write to a CD1400 register
204  *	cd1400_enable_transmitter	enable transmitting on CD1400 channel
205  */
206 
207 /*
208  * compute the bpr/cor pair for any baud rate
209  * returns 0 for success, 1 for failure
210  */
211 int
212 cd1400_compute_baud(speed, clock, cor, bpr)
213 	speed_t speed;
214 	int clock;
215 	int *cor, *bpr;
216 {
217 	int c, co, br;
218 
219 	if( speed < 50 || speed > 150000 )
220 		return(1);
221 
222 	for( c = 0, co = 8 ; co <= 2048 ; co <<= 2, c++ ) {
223 		br = ((clock * 1000000) + (co * speed) / 2) / (co * speed);
224 		if( br < 0x100 ) {
225 			*bpr = br;
226 			*cor = c;
227 			return(0);
228 		}
229 	}
230 
231 	return(1);
232 }
233 
234 /*
235  * Write a CD1400 channel command, should have a timeout?
236  */
237 __inline void
238 cd1400_write_ccr(cd, cmd)
239 	struct cd1400 *cd;
240 	u_char cmd;
241 {
242 	while( cd1400_read_reg(cd, CD1400_CCR) )
243 		;
244 
245 	cd1400_write_reg(cd, CD1400_CCR, cmd);
246 }
247 
248 /*
249  * read a value from a cd1400 register
250  */
251 __inline u_char
252 cd1400_read_reg(cd, reg)
253 	struct cd1400 *cd;
254 	int reg;
255 {
256 	return(cd->cd_reg[reg]);
257 }
258 
259 /*
260  * write a value to a cd1400 register
261  */
262 __inline void
263 cd1400_write_reg(cd, reg, value)
264 	struct cd1400 *cd;
265 	int reg;
266 	u_char value;
267 {
268 	cd->cd_reg[reg] = value;
269 }
270 
271 /*
272  * enable transmit service requests for cd1400 channel
273  */
274 void
275 cd1400_enable_transmitter(cd, channel)
276 	struct cd1400 *cd;
277 	int channel;
278 {
279 	int s, srer;
280 
281 	s = spltty();
282 	cd1400_write_reg(cd, CD1400_CAR, channel);
283 	srer = cd1400_read_reg(cd, CD1400_SRER);
284 	SET(srer, CD1400_SRER_TXRDY);
285 	cd1400_write_reg(cd, CD1400_SRER, srer);
286 	splx(s);
287 }
288 
289 /************************************************************************
290  *
291  *  CD1190 Routines
292  */
293 
294 /* well, there are none yet */
295 
296 /************************************************************************
297  *
298  *  Magma Routines
299  *
300  * magma_match		reports if we have a magma board available
301  * magma_attach		attaches magma boards to the sbus
302  * magma_hard		hardware level interrupt routine
303  * magma_soft		software level interrupt routine
304  */
305 
306 int
307 magma_match(parent, cf, aux)
308 	struct device *parent;
309 	struct cfdata *cf;
310 	void *aux;
311 {
312 	struct sbus_attach_args *sa = aux;
313 
314 	/* is it a magma Sp card? */
315 	if( strcmp(sa->sa_name, "MAGMA_Sp") != 0 )
316 		return(0);
317 
318 	dprintf(("magma: matched `%s'\n", sa->sa_name));
319 	dprintf(("magma: magma_prom `%s'\n",
320 		getpropstring(sa->sa_node, "magma_prom")));
321 	dprintf(("magma: intlevels `%s'\n",
322 		getpropstring(sa->sa_node, "intlevels")));
323 	dprintf(("magma: chiprev `%s'\n",
324 		getpropstring(sa->sa_node, "chiprev")));
325 	dprintf(("magma: clock `%s'\n",
326 		getpropstring(sa->sa_node, "clock")));
327 
328 	return (1);
329 }
330 
331 void
332 magma_attach(parent, self, aux)
333 	struct device *parent;
334 	struct device *self;
335 	void *aux;
336 {
337 	struct sbus_attach_args *sa = aux;
338 	struct magma_softc *sc = (struct magma_softc *)self;
339 	struct magma_board_info *card = supported_cards;
340 	bus_space_handle_t bh;
341 	char *magma_prom;
342 	int node, chip;
343 
344 	node = sa->sa_node;
345 	magma_prom = getpropstring(node, "magma_prom");
346 
347 	/* find the card type */
348 	while (card->mb_name && strcmp(magma_prom, card->mb_name) != 0)
349 		card++;
350 
351 	dprintf((" addr %p", sc));
352 	printf(" softpri %d:", PIL_TTY);
353 
354 	if( card->mb_name == NULL ) {
355 		printf(" %s (unsupported)\n", magma_prom);
356 		return;
357 	}
358 
359 	printf(" %s\n", card->mb_realname);
360 
361 	sc->ms_board = card;
362 	sc->ms_ncd1400 = card->mb_ncd1400;
363 	sc->ms_ncd1190 = card->mb_ncd1190;
364 
365 	if (sbus_bus_map(sa->sa_bustag,
366 			 sa->sa_slot,
367 			 sa->sa_offset,
368 			 sa->sa_size,
369 			 BUS_SPACE_MAP_LINEAR,
370 			 0, &bh) != 0) {
371 		printf("%s @ sbus: cannot map registers\n", self->dv_xname);
372 		return;
373 	}
374 
375 	/* the SVCACK* lines are daisychained */
376 	sc->ms_svcackr = (caddr_t)bh + card->mb_svcackr;
377 	sc->ms_svcackt = (caddr_t)bh + card->mb_svcackt;
378 	sc->ms_svcackm = (caddr_t)bh + card->mb_svcackm;
379 
380 	/* init the cd1400 chips */
381 	for( chip = 0 ; chip < card->mb_ncd1400 ; chip++ ) {
382 		struct cd1400 *cd = &sc->ms_cd1400[chip];
383 
384 		cd->cd_reg = (caddr_t)bh + card->mb_cd1400[chip];
385 
386 		/* XXX getpropstring(node, "clock") */
387 		cd->cd_clock = 25;
388 
389 		/* getpropstring(node, "chiprev"); */
390 		/* seemingly the Magma drivers just ignore the propstring */
391 		cd->cd_chiprev = cd1400_read_reg(cd, CD1400_GFRCR);
392 
393 		dprintf(("%s attach CD1400 %d addr %p rev %x clock %dMhz\n",
394 			sc->ms_dev.dv_xname, chip,
395 			cd->cd_reg, cd->cd_chiprev, cd->cd_clock));
396 
397 		/* clear GFRCR */
398 		cd1400_write_reg(cd, CD1400_GFRCR, 0x00);
399 
400 		/* reset whole chip */
401 		cd1400_write_ccr(cd, CD1400_CCR_CMDRESET | CD1400_CCR_FULLRESET);
402 
403 		/* wait for revision code to be restored */
404 		while( cd1400_read_reg(cd, CD1400_GFRCR) != cd->cd_chiprev )
405 		        ;
406 
407 		/* set the Prescaler Period Register to tick at 1ms */
408 		cd1400_write_reg(cd, CD1400_PPR,
409 			((cd->cd_clock * 1000000 / CD1400_PPR_PRESCALER + 500) / 1000));
410 
411 		/* The LC2+1Sp card is the only card that doesn't have
412 		 * a CD1190 for the parallel port, but uses channel 0 of
413 		 * the CD1400, so we make a note of it for later and set up
414 		 * the CD1400 for parallel mode operation.
415 		 */
416 		if( card->mb_npar && card->mb_ncd1190 == 0 ) {
417 			cd1400_write_reg(cd, CD1400_GCR, CD1400_GCR_PARALLEL);
418 			cd->cd_parmode = 1;
419 		}
420 	}
421 
422 	/* init the cd1190 chips */
423 	for( chip = 0 ; chip < card->mb_ncd1190 ; chip++ ) {
424 		struct cd1190 *cd = &sc->ms_cd1190[chip];
425 
426 		cd->cd_reg = (caddr_t)bh + card->mb_cd1190[chip];
427 		dprintf(("%s attach CD1190 %d addr %p (failed)\n",
428 			self->dv_xname, chip, cd->cd_reg));
429 		/* XXX don't know anything about these chips yet */
430 	}
431 
432 	sbus_establish(&sc->ms_sd, &sc->ms_dev);
433 
434 	/* configure the children */
435 	(void)config_found(self, mtty_match, NULL);
436 	(void)config_found(self, mbpp_match, NULL);
437 
438 	/*
439 	 * Establish the interrupt handlers.
440 	 */
441 	if (sa->sa_nintr == 0)
442 		return;		/* No interrupts to service!? */
443 
444 	(void)bus_intr_establish(sa->sa_bustag, sa->sa_pri, IPL_TTY,
445 				 0, magma_hard, sc);
446 	(void)bus_intr_establish(sa->sa_bustag, PIL_TTY, IPL_SOFTSERIAL,
447 				 BUS_INTR_ESTABLISH_SOFTINTR,
448 				 magma_soft, sc);
449 	evcnt_attach_dynamic(&sc->ms_intrcnt, EVCNT_TYPE_INTR, NULL,
450 	    sc->ms_dev.dv_xname, "intr");
451 }
452 
453 /*
454  * hard interrupt routine
455  *
456  *  returns 1 if it handled it, otherwise 0
457  *
458  *  runs at interrupt priority
459  */
460 int
461 magma_hard(arg)
462 	void *arg;
463 {
464 	struct magma_softc *sc = arg;
465 	struct cd1400 *cd;
466 	int chip, status = 0;
467 	int serviced = 0;
468 	int needsoftint = 0;
469 
470 	/*
471 	 * check status of all the CD1400 chips
472 	 */
473 	for( chip = 0 ; chip < sc->ms_ncd1400 ; chip++ )
474 		status |= cd1400_read_reg(&sc->ms_cd1400[chip], CD1400_SVRR);
475 
476 	if( ISSET(status, CD1400_SVRR_RXRDY) ) {
477 		u_char rivr = *sc->ms_svcackr;	/* enter rx service context */
478 		int port = rivr >> 4;
479 
480 		if( rivr & (1<<3) ) {			/* parallel port */
481 			struct mbpp_port *mbpp;
482 			int n_chars;
483 
484 			mbpp = &sc->ms_mbpp->ms_port[port];
485 			cd = mbpp->mp_cd1400;
486 
487 			/* don't think we have to handle exceptions */
488 			n_chars = cd1400_read_reg(cd, CD1400_RDCR);
489 			while (n_chars--) {
490 				if( mbpp->mp_cnt == 0 ) {
491 					SET(mbpp->mp_flags, MBPPF_WAKEUP);
492 					needsoftint = 1;
493 					break;
494 				}
495 				*mbpp->mp_ptr = cd1400_read_reg(cd,CD1400_RDSR);
496 				mbpp->mp_ptr++;
497 				mbpp->mp_cnt--;
498 			}
499 		} else {				/* serial port */
500 			struct mtty_port *mtty;
501 			u_char *ptr, n_chars, line_stat;
502 
503 			mtty = &sc->ms_mtty->ms_port[port];
504 			cd = mtty->mp_cd1400;
505 
506 			if( ISSET(rivr, CD1400_RIVR_EXCEPTION) ) {
507 				line_stat = cd1400_read_reg(cd, CD1400_RDSR);
508 				n_chars = 1;
509 			} else { /* no exception, received data OK */
510 				line_stat = 0;
511 				n_chars = cd1400_read_reg(cd, CD1400_RDCR);
512 			}
513 
514 			ptr = mtty->mp_rput;
515 			while( n_chars-- ) {
516 				*ptr++ = line_stat;
517 				*ptr++ = cd1400_read_reg(cd, CD1400_RDSR);
518 				if( ptr == mtty->mp_rend ) ptr = mtty->mp_rbuf;
519 				if( ptr == mtty->mp_rget ) {
520 					if( ptr == mtty->mp_rbuf )
521 						ptr = mtty->mp_rend;
522 					ptr -= 2;
523 					SET(mtty->mp_flags, MTTYF_RING_OVERFLOW);
524 					break;
525 				}
526 			}
527 			mtty->mp_rput = ptr;
528 
529 			needsoftint = 1;
530 		}
531 
532 		cd1400_write_reg(cd, CD1400_EOSRR, 0);	/* end service context */
533 		serviced = 1;
534 	} /* if(rx_service...) */
535 
536 	if( ISSET(status, CD1400_SVRR_MDMCH) ) {
537 		u_char mivr = *sc->ms_svcackm;	/* enter mdm service context */
538 		int port = mivr >> 4;
539 		struct mtty_port *mtty;
540 		int carrier;
541 		u_char msvr;
542 
543 		/*
544 		 * Handle CD (LC2+1Sp = DSR) changes.
545 		 */
546 		mtty = &sc->ms_mtty->ms_port[port];
547 		cd = mtty->mp_cd1400;
548 		msvr = cd1400_read_reg(cd, CD1400_MSVR2);
549 		carrier = ISSET(msvr, cd->cd_parmode ? CD1400_MSVR2_DSR : CD1400_MSVR2_CD);
550 
551 		if( mtty->mp_carrier != carrier ) {
552 			SET(mtty->mp_flags, MTTYF_CARRIER_CHANGED);
553 			mtty->mp_carrier = carrier;
554 			needsoftint = 1;
555 		}
556 
557 		cd1400_write_reg(cd, CD1400_EOSRR, 0);	/* end service context */
558 		serviced = 1;
559 	} /* if(mdm_service...) */
560 
561 	if( ISSET(status, CD1400_SVRR_TXRDY) ) {
562 		u_char tivr = *sc->ms_svcackt;	/* enter tx service context */
563 		int port = tivr >> 4;
564 
565 		if( tivr & (1<<3) ) {	/* parallel port */
566 			struct mbpp_port *mbpp;
567 
568 			mbpp = &sc->ms_mbpp->ms_port[port];
569 			cd = mbpp->mp_cd1400;
570 
571 			if( mbpp->mp_cnt ) {
572 				int count = 0;
573 
574 				/* fill the fifo */
575 				while (mbpp->mp_cnt &&
576 					count++ < CD1400_PAR_FIFO_SIZE) {
577 					cd1400_write_reg(cd, CD1400_TDR,
578 							 *mbpp->mp_ptr);
579 					mbpp->mp_ptr++;
580 					mbpp->mp_cnt--;
581 				}
582 			} else {
583 				/*
584 				 * fifo is empty and we got no more data
585 				 * to send, so shut off interrupts and
586 				 * signal for a wakeup, which can't be
587 				 * done here in case we beat mbpp_send to
588 				 * the tsleep call (we are running at >spltty)
589 				 */
590 				cd1400_write_reg(cd, CD1400_SRER, 0);
591 				SET(mbpp->mp_flags, MBPPF_WAKEUP);
592 				needsoftint = 1;
593 			}
594 		} else {		/* serial port */
595 			struct mtty_port *mtty;
596 			struct tty *tp;
597 
598 			mtty = &sc->ms_mtty->ms_port[port];
599 			cd = mtty->mp_cd1400;
600 			tp = mtty->mp_tty;
601 
602 			if( !ISSET(mtty->mp_flags, MTTYF_STOP) ) {
603 				int count = 0;
604 
605 				/* check if we should start/stop a break */
606 				if( ISSET(mtty->mp_flags, MTTYF_SET_BREAK) ) {
607 					cd1400_write_reg(cd, CD1400_TDR, 0);
608 					cd1400_write_reg(cd, CD1400_TDR, 0x81);
609 					/* should we delay too? */
610 					CLR(mtty->mp_flags, MTTYF_SET_BREAK);
611 					count += 2;
612 				}
613 
614 				if( ISSET(mtty->mp_flags, MTTYF_CLR_BREAK) ) {
615 					cd1400_write_reg(cd, CD1400_TDR, 0);
616 					cd1400_write_reg(cd, CD1400_TDR, 0x83);
617 					CLR(mtty->mp_flags, MTTYF_CLR_BREAK);
618 					count += 2;
619 				}
620 
621 				/* I don't quite fill the fifo in case the last one is a
622 				 * NULL which I have to double up because its the escape
623 				 * code for embedded transmit characters.
624 				 */
625 				while( mtty->mp_txc > 0 && count < CD1400_TX_FIFO_SIZE - 1 ) {
626 					u_char ch;
627 
628 					ch = *mtty->mp_txp;
629 
630 					mtty->mp_txc--;
631 					mtty->mp_txp++;
632 
633 					if( ch == 0 ) {
634 						cd1400_write_reg(cd, CD1400_TDR, ch);
635 						count++;
636 					}
637 
638 					cd1400_write_reg(cd, CD1400_TDR, ch);
639 					count++;
640 				}
641 			}
642 
643 			/* if we ran out of work or are requested to STOP then
644 			 * shut off the txrdy interrupts and signal DONE to flush
645 			 * out the chars we have sent.
646 			 */
647 			if( mtty->mp_txc == 0 || ISSET(mtty->mp_flags, MTTYF_STOP) ) {
648 				register int srer;
649 
650 				srer = cd1400_read_reg(cd, CD1400_SRER);
651 				CLR(srer, CD1400_SRER_TXRDY);
652 				cd1400_write_reg(cd, CD1400_SRER, srer);
653 				CLR(mtty->mp_flags, MTTYF_STOP);
654 
655 				SET(mtty->mp_flags, MTTYF_DONE);
656 				needsoftint = 1;
657 			}
658 		}
659 
660 		cd1400_write_reg(cd, CD1400_EOSRR, 0);	/* end service context */
661 		serviced = 1;
662 	} /* if(tx_service...) */
663 
664 	/* XXX service CD1190 interrupts too
665 	for( chip = 0 ; chip < sc->ms_ncd1190 ; chip++ ) {
666 	}
667 	*/
668 
669 	if( needsoftint ) {	/* trigger the soft interrupt */
670 #if defined(SUN4M)
671 		if( CPU_ISSUN4M )
672 			raise(0, PIL_TTY);
673 		else
674 #endif
675 			ienab_bis(IE_MSOFT);
676 	}
677 
678 	return(serviced);
679 }
680 
681 /*
682  * magma soft interrupt handler
683  *
684  *  returns 1 if it handled it, 0 otherwise
685  *
686  *  runs at spltty()
687  */
688 int
689 magma_soft(arg)
690 	void *arg;
691 {
692 	struct magma_softc *sc = arg;
693 	struct mtty_softc *mtty = sc->ms_mtty;
694 	struct mbpp_softc *mbpp = sc->ms_mbpp;
695 	int port;
696 	int serviced = 0;
697 	int s, flags;
698 
699 	if (mtty == NULL)
700 		goto chkbpp;
701 
702 	/*
703 	 * check the tty ports to see what needs doing
704 	 */
705 	for( port = 0 ; port < mtty->ms_nports ; port++ ) {
706 		struct mtty_port *mp = &mtty->ms_port[port];
707 		struct tty *tp = mp->mp_tty;
708 
709 		if( !ISSET(tp->t_state, TS_ISOPEN) )
710 			continue;
711 
712 		/*
713 		 * handle any received data
714 		 */
715 		while( mp->mp_rget != mp->mp_rput ) {
716 			u_char stat;
717 			int data;
718 
719 			stat = mp->mp_rget[0];
720 			data = mp->mp_rget[1];
721 			mp->mp_rget = ((mp->mp_rget + 2) == mp->mp_rend)
722 				? mp->mp_rbuf : (mp->mp_rget + 2);
723 
724 			if( stat & (CD1400_RDSR_BREAK | CD1400_RDSR_FE) )
725 				data |= TTY_FE;
726 			if( stat & CD1400_RDSR_PE )
727 				data |= TTY_PE;
728 
729 			if( stat & CD1400_RDSR_OE )
730 				log(LOG_WARNING, "%s%x: fifo overflow\n",
731 				    mtty->ms_dev.dv_xname, port);
732 
733 			(*linesw[tp->t_line].l_rint)(data, tp);
734 			serviced = 1;
735 		}
736 
737 		s = splhigh();	/* block out hard interrupt routine */
738 		flags = mp->mp_flags;
739 		CLR(mp->mp_flags, MTTYF_DONE | MTTYF_CARRIER_CHANGED | MTTYF_RING_OVERFLOW);
740 		splx(s);	/* ok */
741 
742 		if( ISSET(flags, MTTYF_CARRIER_CHANGED) ) {
743 			dprintf(("%s%x: cd %s\n", mtty->ms_dev.dv_xname,
744 				port, mp->mp_carrier ? "on" : "off"));
745 			(*linesw[tp->t_line].l_modem)(tp, mp->mp_carrier);
746 			serviced = 1;
747 		}
748 
749 		if( ISSET(flags, MTTYF_RING_OVERFLOW) ) {
750 			log(LOG_WARNING, "%s%x: ring buffer overflow\n",
751 			    mtty->ms_dev.dv_xname, port);
752 			serviced = 1;
753 		}
754 
755 		if( ISSET(flags, MTTYF_DONE) ) {
756 			ndflush(&tp->t_outq, mp->mp_txp - tp->t_outq.c_cf);
757 			CLR(tp->t_state, TS_BUSY);
758 			(*linesw[tp->t_line].l_start)(tp);	/* might be some more */
759 			serviced = 1;
760 		}
761 	} /* for(each mtty...) */
762 
763 
764 chkbpp:
765 	/*
766 	 * Check the bpp ports (if any) to see what needs doing
767 	 */
768 	if (mbpp == NULL)
769 		return (serviced);
770 
771 	for( port = 0 ; port < mbpp->ms_nports ; port++ ) {
772 		struct mbpp_port *mp = &mbpp->ms_port[port];
773 
774 		if( !ISSET(mp->mp_flags, MBPPF_OPEN) )
775 			continue;
776 
777 		s = splhigh();
778 		flags = mp->mp_flags;
779 		CLR(mp->mp_flags, MBPPF_WAKEUP);
780 		splx(s);
781 
782 		if( ISSET(flags, MBPPF_WAKEUP) ) {
783 			wakeup(mp);
784 			serviced = 1;
785 		}
786 
787 	} /* for(each mbpp...) */
788 
789 	return(serviced);
790 }
791 
792 /************************************************************************
793  *
794  *  MTTY Routines
795  *
796  *	mtty_match		match one mtty device
797  *	mtty_attach		attach mtty devices
798  *	mttyopen		open mtty device
799  *	mttyclose		close mtty device
800  *	mttyread		read from mtty
801  *	mttywrite		write to mtty
802  *	mttyioctl		do ioctl on mtty
803  *	mttytty			return tty pointer for mtty
804  *	mttystop		stop mtty device
805  *	mtty_start		start mtty device
806  *	mtty_param		set mtty parameters
807  *	mtty_modem_control	set modem control lines
808  */
809 
810 int
811 mtty_match(parent, cf, args)
812 	struct device *parent;
813 	struct cfdata *cf;
814 	void *args;
815 {
816 	struct magma_softc *sc = (struct magma_softc *)parent;
817 
818 	return( args == mtty_match && sc->ms_board->mb_nser && sc->ms_mtty == NULL );
819 }
820 
821 void
822 mtty_attach(parent, dev, args)
823 	struct device *parent;
824 	struct device *dev;
825 	void *args;
826 {
827 	struct magma_softc *sc = (struct magma_softc *)parent;
828 	struct mtty_softc *ms = (struct mtty_softc *)dev;
829 	int port, chip, chan;
830 
831 	sc->ms_mtty = ms;
832 	dprintf((" addr %p", ms));
833 
834 	for( port = 0, chip = 0, chan = 0 ; port < sc->ms_board->mb_nser ; port++ ) {
835 		struct mtty_port *mp = &ms->ms_port[port];
836 		struct tty *tp;
837 
838 		mp->mp_cd1400 = &sc->ms_cd1400[chip];
839 		if( mp->mp_cd1400->cd_parmode && chan == 0 )
840 			chan = 1; /* skip channel 0 if parmode */
841 		mp->mp_channel = chan;
842 
843 		tp = ttymalloc();
844 		if( tp == NULL ) break;
845 		tty_attach(tp);
846 		tp->t_oproc = mtty_start;
847 		tp->t_param = mtty_param;
848 
849 		mp->mp_tty = tp;
850 
851 		mp->mp_rbuf = malloc(MTTY_RBUF_SIZE, M_DEVBUF, M_NOWAIT);
852 		if( mp->mp_rbuf == NULL ) break;
853 
854 		mp->mp_rend = mp->mp_rbuf + MTTY_RBUF_SIZE;
855 
856 		chan = (chan + 1) % CD1400_NO_OF_CHANNELS;
857 		if( chan == 0 ) chip++;
858 	}
859 
860 	ms->ms_nports = port;
861 	printf(": %d tty%s\n", port, port == 1 ? "" : "s");
862 }
863 
864 /*
865  * open routine. returns zero if successful, else error code
866  */
867 int
868 mttyopen(dev, flags, mode, p)
869 	dev_t dev;
870 	int flags;
871 	int mode;
872 	struct proc *p;
873 {
874 	int card = MAGMA_CARD(dev);
875 	int port = MAGMA_PORT(dev);
876 	struct mtty_softc *ms;
877 	struct mtty_port *mp;
878 	struct tty *tp;
879 	struct cd1400 *cd;
880 	int error, s;
881 
882 	if( card >= mtty_cd.cd_ndevs ||
883 	    (ms = mtty_cd.cd_devs[card]) == NULL || port >= ms->ms_nports )
884 		return(ENXIO);	/* device not configured */
885 
886 	mp = &ms->ms_port[port];
887 	tp = mp->mp_tty;
888 	tp->t_dev = dev;
889 
890 	if (ISSET(tp->t_state, TS_ISOPEN) &&
891 	    ISSET(tp->t_state, TS_XCLUDE) &&
892 	    p->p_ucred->cr_uid != 0)
893 		return (EBUSY);
894 
895 	s = spltty();
896 
897 	if( !ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
898 
899 		/* set defaults */
900 		ttychars(tp);
901 		tp->t_iflag = TTYDEF_IFLAG;
902 		tp->t_oflag = TTYDEF_OFLAG;
903 		tp->t_cflag = TTYDEF_CFLAG;
904 		if( ISSET(mp->mp_openflags, TIOCFLAG_CLOCAL) )
905 			SET(tp->t_cflag, CLOCAL);
906 		if( ISSET(mp->mp_openflags, TIOCFLAG_CRTSCTS) )
907 			SET(tp->t_cflag, CRTSCTS);
908 		if( ISSET(mp->mp_openflags, TIOCFLAG_MDMBUF) )
909 			SET(tp->t_cflag, MDMBUF);
910 		tp->t_lflag = TTYDEF_LFLAG;
911 		tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
912 
913 		/* init ring buffer */
914 		mp->mp_rput = mp->mp_rget = mp->mp_rbuf;
915 
916 		/* reset CD1400 channel */
917 		cd = mp->mp_cd1400;
918 		cd1400_write_reg(cd, CD1400_CAR, mp->mp_channel);
919 		cd1400_write_ccr(cd, CD1400_CCR_CMDRESET);
920 
921 		/* encode the port number in top half of LIVR */
922 		cd1400_write_reg(cd, CD1400_LIVR, port << 4 );
923 
924 		/* sets parameters and raises DTR */
925 		(void)mtty_param(tp, &tp->t_termios);
926 
927 		/* set tty watermarks */
928 		ttsetwater(tp);
929 
930 		/* enable service requests */
931 		cd1400_write_reg(cd, CD1400_SRER,
932 				 CD1400_SRER_RXDATA | CD1400_SRER_MDMCH);
933 
934 		/* tell the tty about the carrier status */
935 		if( ISSET(mp->mp_openflags, TIOCFLAG_SOFTCAR) ||
936 		    mp->mp_carrier )
937 			SET(tp->t_state, TS_CARR_ON);
938 		else
939 			CLR(tp->t_state, TS_CARR_ON);
940 	}
941 	splx(s);
942 
943 	error = ttyopen(tp, MTTY_DIALOUT(dev), ISSET(flags, O_NONBLOCK));
944 	if (error != 0)
945 		goto bad;
946 
947 	error = (*linesw[tp->t_line].l_open)(dev, tp);
948 	if (error != 0)
949 		goto bad;
950 
951 bad:
952 	if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
953 		/*
954 		 * We failed to open the device, and nobody else had it opened.
955 		 * Clean up the state as appropriate.
956 		 */
957 		/* XXX - do that here */
958 	}
959 
960 	return (error);
961 }
962 
963 /*
964  * close routine. returns zero if successful, else error code
965  */
966 int
967 mttyclose(dev, flag, mode, p)
968 	dev_t dev;
969 	int flag;
970 	int mode;
971 	struct proc *p;
972 {
973 	struct mtty_softc *ms = mtty_cd.cd_devs[MAGMA_CARD(dev)];
974 	struct mtty_port *mp = &ms->ms_port[MAGMA_PORT(dev)];
975 	struct tty *tp = mp->mp_tty;
976 	int s;
977 
978 	(*linesw[tp->t_line].l_close)(tp, flag);
979 	ttyclose(tp);
980 
981 	s = spltty();
982 
983 	/* if HUPCL is set, and the tty is no longer open
984 	 * shut down the port
985 	 */
986 	if( ISSET(tp->t_cflag, HUPCL) || !ISSET(tp->t_state, TS_ISOPEN) ) {
987 		/* XXX wait until FIFO is empty before turning off the channel
988 		struct cd1400 *cd = mp->mp_cd1400;
989 		*/
990 
991 		/* drop DTR and RTS */
992 		(void)mtty_modem_control(mp, 0, DMSET);
993 
994 		/* turn off the channel
995 		cd1400_write_reg(cd, CD1400_CAR, mp->mp_channel);
996 		cd1400_write_ccr(cd, CD1400_CCR_CMDRESET);
997 		*/
998 	}
999 
1000 	splx(s);
1001 
1002 	return(0);
1003 }
1004 
1005 /*
1006  * Read routine
1007  */
1008 int
1009 mttyread(dev, uio, flags)
1010 	dev_t dev;
1011 	struct uio *uio;
1012 	int flags;
1013 {
1014 	struct mtty_softc *ms = mtty_cd.cd_devs[MAGMA_CARD(dev)];
1015 	struct mtty_port *mp = &ms->ms_port[MAGMA_PORT(dev)];
1016 	struct tty *tp = mp->mp_tty;
1017 
1018 	return( (*linesw[tp->t_line].l_read)(tp, uio, flags) );
1019 }
1020 
1021 /*
1022  * Write routine
1023  */
1024 int
1025 mttywrite(dev, uio, flags)
1026 	dev_t dev;
1027 	struct uio *uio;
1028 	int flags;
1029 {
1030 	struct mtty_softc *ms = mtty_cd.cd_devs[MAGMA_CARD(dev)];
1031 	struct mtty_port *mp = &ms->ms_port[MAGMA_PORT(dev)];
1032 	struct tty *tp = mp->mp_tty;
1033 
1034 	return( (*linesw[tp->t_line].l_write)(tp, uio, flags) );
1035 }
1036 
1037 /*
1038  * return tty pointer
1039  */
1040 struct tty *
1041 mttytty(dev)
1042 	dev_t dev;
1043 {
1044 	struct mtty_softc *ms = mtty_cd.cd_devs[MAGMA_CARD(dev)];
1045 	struct mtty_port *mp = &ms->ms_port[MAGMA_PORT(dev)];
1046 
1047 	return(mp->mp_tty);
1048 }
1049 
1050 /*
1051  * ioctl routine
1052  */
1053 int
1054 mttyioctl(dev, cmd, data, flags, p)
1055 	dev_t dev;
1056 	u_long cmd;
1057 	caddr_t data;
1058 	int flags;
1059 	struct proc *p;
1060 {
1061 	struct mtty_softc *ms = mtty_cd.cd_devs[MAGMA_CARD(dev)];
1062 	struct mtty_port *mp = &ms->ms_port[MAGMA_PORT(dev)];
1063 	struct tty *tp = mp->mp_tty;
1064 	int error;
1065 
1066 	error = (*linesw[tp->t_line].l_ioctl)(tp, cmd, data, flags, p);
1067 	if( error >= 0 ) return(error);
1068 
1069 	error = ttioctl(tp, cmd, data, flags, p);
1070 	if( error >= 0 ) return(error);
1071 
1072 	error = 0;
1073 
1074 	switch(cmd) {
1075 	case TIOCSBRK:	/* set break */
1076 		SET(mp->mp_flags, MTTYF_SET_BREAK);
1077 		cd1400_enable_transmitter(mp->mp_cd1400, mp->mp_channel);
1078 		break;
1079 
1080 	case TIOCCBRK:	/* clear break */
1081 		SET(mp->mp_flags, MTTYF_CLR_BREAK);
1082 		cd1400_enable_transmitter(mp->mp_cd1400, mp->mp_channel);
1083 		break;
1084 
1085 	case TIOCSDTR:	/* set DTR */
1086 		mtty_modem_control(mp, TIOCM_DTR, DMBIS);
1087 		break;
1088 
1089 	case TIOCCDTR:	/* clear DTR */
1090 		mtty_modem_control(mp, TIOCM_DTR, DMBIC);
1091 		break;
1092 
1093 	case TIOCMSET:	/* set modem lines */
1094 		mtty_modem_control(mp, *((int *)data), DMSET);
1095 		break;
1096 
1097 	case TIOCMBIS:	/* bit set modem lines */
1098 		mtty_modem_control(mp, *((int *)data), DMBIS);
1099 		break;
1100 
1101 	case TIOCMBIC:	/* bit clear modem lines */
1102 		mtty_modem_control(mp, *((int *)data), DMBIC);
1103 		break;
1104 
1105 	case TIOCMGET:	/* get modem lines */
1106 		*((int *)data) = mtty_modem_control(mp, 0, DMGET);
1107 		break;
1108 
1109 	case TIOCGFLAGS:
1110 		*((int *)data) = mp->mp_openflags;
1111 		break;
1112 
1113 	case TIOCSFLAGS:
1114 		if( suser(p->p_ucred, &p->p_acflag) )
1115 			error = EPERM;
1116 		else
1117 			mp->mp_openflags = *((int *)data) &
1118 				(TIOCFLAG_SOFTCAR | TIOCFLAG_CLOCAL |
1119 				TIOCFLAG_CRTSCTS | TIOCFLAG_MDMBUF);
1120 		break;
1121 
1122 	default:
1123 		error = ENOTTY;
1124 	}
1125 
1126 	return(error);
1127 }
1128 
1129 /*
1130  * Stop output, e.g., for ^S or output flush.
1131  */
1132 void
1133 mttystop(tp, flags)
1134 	struct tty *tp;
1135 	int flags;
1136 {
1137 	struct mtty_softc *ms = mtty_cd.cd_devs[MAGMA_CARD(tp->t_dev)];
1138 	struct mtty_port *mp = &ms->ms_port[MAGMA_PORT(tp->t_dev)];
1139 	int s;
1140 
1141 	s = spltty();
1142 
1143 	if( ISSET(tp->t_state, TS_BUSY) ) {
1144 		if( !ISSET(tp->t_state, TS_TTSTOP) )
1145 			SET(tp->t_state, TS_FLUSH);
1146 
1147 		/*
1148 		 * the transmit interrupt routine will disable transmit when it
1149 		 * notices that MTTYF_STOP has been set.
1150 		 */
1151 		SET(mp->mp_flags, MTTYF_STOP);
1152 	}
1153 
1154 	splx(s);
1155 }
1156 
1157 /*
1158  * Start output, after a stop.
1159  */
1160 void
1161 mtty_start(tp)
1162 	struct tty *tp;
1163 {
1164 	struct mtty_softc *ms = mtty_cd.cd_devs[MAGMA_CARD(tp->t_dev)];
1165 	struct mtty_port *mp = &ms->ms_port[MAGMA_PORT(tp->t_dev)];
1166 	int s;
1167 
1168 	s = spltty();
1169 
1170 	/* we only need to do something if we are not already busy
1171 	 * or delaying or stopped
1172 	 */
1173 	if( !ISSET(tp->t_state, TS_TTSTOP | TS_TIMEOUT | TS_BUSY) ) {
1174 
1175 		/* if we are sleeping and output has drained below
1176 		 * low water mark, awaken
1177 		 */
1178 		if( tp->t_outq.c_cc <= tp->t_lowat ) {
1179 			if( ISSET(tp->t_state, TS_ASLEEP) ) {
1180 				CLR(tp->t_state, TS_ASLEEP);
1181 				wakeup(&tp->t_outq);
1182 			}
1183 
1184 			selwakeup(&tp->t_wsel);
1185 		}
1186 
1187 		/* if something to send, start transmitting
1188 		 */
1189 		if( tp->t_outq.c_cc ) {
1190 			mp->mp_txc = ndqb(&tp->t_outq, 0);
1191 			mp->mp_txp = tp->t_outq.c_cf;
1192 			SET(tp->t_state, TS_BUSY);
1193 			cd1400_enable_transmitter(mp->mp_cd1400, mp->mp_channel);
1194 		}
1195 	}
1196 
1197 	splx(s);
1198 }
1199 
1200 /*
1201  * set/get modem line status
1202  *
1203  * bits can be: TIOCM_DTR, TIOCM_RTS, TIOCM_CTS, TIOCM_CD, TIOCM_RI, TIOCM_DSR
1204  *
1205  * note that DTR and RTS lines are exchanged, and that DSR is
1206  * not available on the LC2+1Sp card (used as CD)
1207  *
1208  * only let them fiddle with RTS if CRTSCTS is not enabled
1209  */
1210 int
1211 mtty_modem_control(mp, bits, howto)
1212 	struct mtty_port *mp;
1213 	int bits;
1214 	int howto;
1215 {
1216 	struct cd1400 *cd = mp->mp_cd1400;
1217 	struct tty *tp = mp->mp_tty;
1218 	int s, msvr;
1219 
1220 	s = spltty();
1221 
1222 	cd1400_write_reg(cd, CD1400_CAR, mp->mp_channel);
1223 
1224 	switch(howto) {
1225 	case DMGET:	/* get bits */
1226 		bits = 0;
1227 
1228 		bits |= TIOCM_LE;
1229 
1230 		msvr = cd1400_read_reg(cd, CD1400_MSVR1);
1231 		if( msvr & CD1400_MSVR1_RTS ) bits |= TIOCM_DTR;
1232 
1233 		msvr = cd1400_read_reg(cd, CD1400_MSVR2);
1234 		if( msvr & CD1400_MSVR2_DTR ) bits |= TIOCM_RTS;
1235 		if( msvr & CD1400_MSVR2_CTS ) bits |= TIOCM_CTS;
1236 		if( msvr & CD1400_MSVR2_RI ) bits |= TIOCM_RI;
1237 		if( msvr & CD1400_MSVR2_DSR ) bits |= (cd->cd_parmode ? TIOCM_CD : TIOCM_DSR);
1238 		if( msvr & CD1400_MSVR2_CD ) bits |= (cd->cd_parmode ? 0 : TIOCM_CD);
1239 
1240 		break;
1241 
1242 	case DMSET:	/* reset bits */
1243 		if( !ISSET(tp->t_cflag, CRTSCTS) )
1244 			cd1400_write_reg(cd, CD1400_MSVR2, ((bits & TIOCM_RTS) ? CD1400_MSVR2_DTR : 0));
1245 
1246 		cd1400_write_reg(cd, CD1400_MSVR1, ((bits & TIOCM_DTR) ? CD1400_MSVR1_RTS : 0));
1247 
1248 		break;
1249 
1250 	case DMBIS:	/* set bits */
1251 		if( (bits & TIOCM_RTS) && !ISSET(tp->t_cflag, CRTSCTS) )
1252 			cd1400_write_reg(cd, CD1400_MSVR2, CD1400_MSVR2_DTR);
1253 
1254 		if( bits & TIOCM_DTR )
1255 			cd1400_write_reg(cd, CD1400_MSVR1, CD1400_MSVR1_RTS);
1256 
1257 		break;
1258 
1259 	case DMBIC:	/* clear bits */
1260 		if( (bits & TIOCM_RTS) && !ISSET(tp->t_cflag, CRTSCTS) )
1261 			cd1400_write_reg(cd, CD1400_MSVR2, 0);
1262 
1263 		if( bits & TIOCM_DTR )
1264 			cd1400_write_reg(cd, CD1400_MSVR1, 0);
1265 
1266 		break;
1267 	}
1268 
1269 	splx(s);
1270 	return(bits);
1271 }
1272 
1273 /*
1274  * Set tty parameters, returns error or 0 on success
1275  */
1276 int
1277 mtty_param(tp, t)
1278 	struct tty *tp;
1279 	struct termios *t;
1280 {
1281 	struct mtty_softc *ms = mtty_cd.cd_devs[MAGMA_CARD(tp->t_dev)];
1282 	struct mtty_port *mp = &ms->ms_port[MAGMA_PORT(tp->t_dev)];
1283 	struct cd1400 *cd = mp->mp_cd1400;
1284 	int rbpr, tbpr, rcor, tcor;
1285 	u_char mcor1 = 0, mcor2 = 0;
1286 	int s, opt;
1287 
1288 	if( t->c_ospeed && cd1400_compute_baud(t->c_ospeed, cd->cd_clock, &tcor, &tbpr) )
1289 		return(EINVAL);
1290 
1291 	if( t->c_ispeed && cd1400_compute_baud(t->c_ispeed, cd->cd_clock, &rcor, &rbpr) )
1292 		return(EINVAL);
1293 
1294 	s = spltty();
1295 
1296 	/* hang up the line if ospeed is zero, else raise DTR */
1297 	(void)mtty_modem_control(mp, TIOCM_DTR, (t->c_ospeed == 0 ? DMBIC : DMBIS));
1298 
1299 	/* select channel, done in mtty_modem_control() */
1300 	/* cd1400_write_reg(cd, CD1400_CAR, mp->mp_channel); */
1301 
1302 	/* set transmit speed */
1303 	if( t->c_ospeed ) {
1304 		cd1400_write_reg(cd, CD1400_TCOR, tcor);
1305 		cd1400_write_reg(cd, CD1400_TBPR, tbpr);
1306 	}
1307 
1308 	/* set receive speed */
1309 	if( t->c_ispeed ) {
1310 		cd1400_write_reg(cd, CD1400_RCOR, rcor);
1311 		cd1400_write_reg(cd, CD1400_RBPR, rbpr);
1312 	}
1313 
1314 	/* enable transmitting and receiving on this channel */
1315 	opt = CD1400_CCR_CMDCHANCTL | CD1400_CCR_XMTEN | CD1400_CCR_RCVEN;
1316 	cd1400_write_ccr(cd, opt);
1317 
1318 	/* set parity, data and stop bits */
1319 	opt = 0;
1320 	if( ISSET(t->c_cflag, PARENB) )
1321 		opt |= (ISSET(t->c_cflag, PARODD) ? CD1400_COR1_PARODD : CD1400_COR1_PARNORMAL);
1322 
1323 	if( !ISSET(t->c_iflag, INPCK) )
1324 		opt |= CD1400_COR1_NOINPCK; /* no parity checking */
1325 
1326 	if( ISSET(t->c_cflag, CSTOPB) )
1327 		opt |= CD1400_COR1_STOP2;
1328 
1329 	switch( t->c_cflag & CSIZE ) {
1330 	case CS5:
1331 		opt |= CD1400_COR1_CS5;
1332 		break;
1333 
1334 	case CS6:
1335 		opt |= CD1400_COR1_CS6;
1336 		break;
1337 
1338 	case CS7:
1339 		opt |= CD1400_COR1_CS7;
1340 		break;
1341 
1342 	default:
1343 		opt |= CD1400_COR1_CS8;
1344 		break;
1345 	}
1346 
1347 	cd1400_write_reg(cd, CD1400_COR1, opt);
1348 
1349 	/*
1350 	 * enable Embedded Transmit Commands (for breaks)
1351 	 * use the CD1400 automatic CTS flow control if CRTSCTS is set
1352 	 */
1353 	opt = CD1400_COR2_ETC;
1354 	if( ISSET(t->c_cflag, CRTSCTS) ) opt |= CD1400_COR2_CCTS_OFLOW;
1355 	cd1400_write_reg(cd, CD1400_COR2, opt);
1356 
1357 	cd1400_write_reg(cd, CD1400_COR3, MTTY_RX_FIFO_THRESHOLD);
1358 
1359 	cd1400_write_ccr(cd, CD1400_CCR_CMDCORCHG | CD1400_CCR_COR1 | CD1400_CCR_COR2 | CD1400_CCR_COR3);
1360 
1361 	cd1400_write_reg(cd, CD1400_COR4, CD1400_COR4_PFO_EXCEPTION);
1362 	cd1400_write_reg(cd, CD1400_COR5, 0);
1363 
1364 	/*
1365 	 * if automatic RTS handshaking enabled, set DTR threshold
1366 	 * (RTS and DTR lines are switched, CD1400 thinks its DTR)
1367 	 */
1368 	if( ISSET(t->c_cflag, CRTSCTS) )
1369 		mcor1 = MTTY_RX_DTR_THRESHOLD;
1370 
1371 	/* set up `carrier detect' interrupts */
1372 	if( cd->cd_parmode ) {
1373 		SET(mcor1, CD1400_MCOR1_DSRzd);
1374 		SET(mcor2, CD1400_MCOR2_DSRod);
1375 	} else {
1376 		SET(mcor1, CD1400_MCOR1_CDzd);
1377 		SET(mcor2, CD1400_MCOR2_CDod);
1378 	}
1379 
1380 	cd1400_write_reg(cd, CD1400_MCOR1, mcor1);
1381 	cd1400_write_reg(cd, CD1400_MCOR2, mcor2);
1382 
1383 	/* receive timeout 2ms */
1384 	cd1400_write_reg(cd, CD1400_RTPR, 2);
1385 
1386 	splx(s);
1387 	return(0);
1388 }
1389 
1390 /************************************************************************
1391  *
1392  *  MBPP Routines
1393  *
1394  *	mbpp_match	match one mbpp device
1395  *	mbpp_attach	attach mbpp devices
1396  *	mbppopen	open mbpp device
1397  *	mbppclose	close mbpp device
1398  *	mbppread	read from mbpp
1399  *	mbppwrite	write to mbpp
1400  *	mbppioctl	do ioctl on mbpp
1401  *	mbppselect	do select on mbpp
1402  *	mbpp_rw		general rw routine
1403  *	mbpp_timeout	rw timeout
1404  *	mbpp_start	rw start after delay
1405  *	mbpp_send	send data
1406  *	mbpp_recv	recv data
1407  */
1408 
1409 int
1410 mbpp_match(parent, cf, args)
1411 	struct device *parent;
1412 	struct cfdata *cf;
1413 	void *args;
1414 {
1415 	struct magma_softc *sc = (struct magma_softc *)parent;
1416 
1417 	return( args == mbpp_match && sc->ms_board->mb_npar && sc->ms_mbpp == NULL );
1418 }
1419 
1420 void
1421 mbpp_attach(parent, dev, args)
1422 	struct device *parent;
1423 	struct device *dev;
1424 	void *args;
1425 {
1426 	struct magma_softc *sc = (struct magma_softc *)parent;
1427 	struct mbpp_softc *ms = (struct mbpp_softc *)dev;
1428 	struct mbpp_port *mp;
1429 	int port;
1430 
1431 	sc->ms_mbpp = ms;
1432 	dprintf((" addr %p", ms));
1433 
1434 	for( port = 0 ; port < sc->ms_board->mb_npar ; port++ ) {
1435 		mp = &ms->ms_port[port];
1436 
1437 		callout_init(&mp->mp_timeout_ch);
1438 		callout_init(&mp->mp_start_ch);
1439 
1440 		if( sc->ms_ncd1190 )
1441 			mp->mp_cd1190 = &sc->ms_cd1190[port];
1442 		else
1443 			mp->mp_cd1400 = &sc->ms_cd1400[0];
1444 	}
1445 
1446 	ms->ms_nports = port;
1447 	printf(": %d port%s\n", port, port == 1 ? "" : "s");
1448 }
1449 
1450 /*
1451  * open routine. returns zero if successful, else error code
1452  */
1453 int
1454 mbppopen(dev, flags, mode, p)
1455 	dev_t dev;
1456 	int flags;
1457 	int mode;
1458 	struct proc *p;
1459 {
1460 	int card = MAGMA_CARD(dev);
1461 	int port = MAGMA_PORT(dev);
1462 	struct mbpp_softc *ms;
1463 	struct mbpp_port *mp;
1464 	int s;
1465 
1466 	if( card >= mbpp_cd.cd_ndevs ||
1467 	    (ms = mbpp_cd.cd_devs[card]) == NULL || port >= ms->ms_nports )
1468 		return(ENXIO);
1469 
1470 	mp = &ms->ms_port[port];
1471 
1472 	s = spltty();
1473 	if( ISSET(mp->mp_flags, MBPPF_OPEN) ) {
1474 		splx(s);
1475 		return(EBUSY);
1476 	}
1477 	SET(mp->mp_flags, MBPPF_OPEN);
1478 	splx(s);
1479 
1480 	/* set defaults */
1481 	mp->mp_burst = MBPP_BURST;
1482 	mp->mp_timeout = mbpp_mstohz(MBPP_TIMEOUT);
1483 	mp->mp_delay = mbpp_mstohz(MBPP_DELAY);
1484 
1485 	/* init chips */
1486 	if( mp->mp_cd1400 ) {	/* CD1400 */
1487 		struct cd1400 *cd = mp->mp_cd1400;
1488 
1489 		/* set up CD1400 channel */
1490 		s = spltty();
1491 		cd1400_write_reg(cd, CD1400_CAR, 0);
1492 		cd1400_write_ccr(cd, CD1400_CCR_CMDRESET);
1493 		cd1400_write_reg(cd, CD1400_LIVR, (1<<3));
1494 		splx(s);
1495 	} else {		/* CD1190 */
1496 		mp->mp_flags = 0;
1497 		return (ENXIO);
1498 	}
1499 
1500 	return (0);
1501 }
1502 
1503 /*
1504  * close routine. returns zero if successful, else error code
1505  */
1506 int
1507 mbppclose(dev, flag, mode, p)
1508 	dev_t dev;
1509 	int flag;
1510 	int mode;
1511 	struct proc *p;
1512 {
1513 	struct mbpp_softc *ms = mbpp_cd.cd_devs[MAGMA_CARD(dev)];
1514 	struct mbpp_port *mp = &ms->ms_port[MAGMA_PORT(dev)];
1515 
1516 	mp->mp_flags = 0;
1517 	return(0);
1518 }
1519 
1520 /*
1521  * Read routine
1522  */
1523 int
1524 mbppread(dev, uio, flags)
1525 	dev_t dev;
1526 	struct uio *uio;
1527 	int flags;
1528 {
1529 
1530 	return( mbpp_rw(dev, uio) );
1531 }
1532 
1533 /*
1534  * Write routine
1535  */
1536 int
1537 mbppwrite(dev, uio, flags)
1538 	dev_t dev;
1539 	struct uio *uio;
1540 	int flags;
1541 {
1542 
1543 	return( mbpp_rw(dev, uio) );
1544 }
1545 
1546 /*
1547  * ioctl routine
1548  */
1549 int
1550 mbppioctl(dev, cmd, data, flags, p)
1551 	dev_t dev;
1552 	u_long cmd;
1553 	caddr_t data;
1554 	int flags;
1555 	struct proc *p;
1556 {
1557 	struct mbpp_softc *ms = mbpp_cd.cd_devs[MAGMA_CARD(dev)];
1558 	struct mbpp_port *mp = &ms->ms_port[MAGMA_PORT(dev)];
1559 	struct mbpp_param *bp;
1560 	int error = 0;
1561 	int s;
1562 
1563 	switch(cmd) {
1564 	case MBPPIOCSPARAM:
1565 		bp = (struct mbpp_param *)data;
1566 		if( bp->bp_burst < MBPP_BURST_MIN || bp->bp_burst > MBPP_BURST_MAX ||
1567 		    bp->bp_delay < MBPP_DELAY_MIN || bp->bp_delay > MBPP_DELAY_MIN ) {
1568 			error = EINVAL;
1569 		} else {
1570 			mp->mp_burst = bp->bp_burst;
1571 			mp->mp_timeout = mbpp_mstohz(bp->bp_timeout);
1572 			mp->mp_delay = mbpp_mstohz(bp->bp_delay);
1573 		}
1574 		break;
1575 	case MBPPIOCGPARAM:
1576 		bp = (struct mbpp_param *)data;
1577 		bp->bp_burst = mp->mp_burst;
1578 		bp->bp_timeout = mbpp_hztoms(mp->mp_timeout);
1579 		bp->bp_delay = mbpp_hztoms(mp->mp_delay);
1580 		break;
1581 	case MBPPIOCGSTAT:
1582 		/* XXX make this more generic */
1583 		s = spltty();
1584 		cd1400_write_reg(mp->mp_cd1400, CD1400_CAR, 0);
1585 		*(int *)data = cd1400_read_reg(mp->mp_cd1400, CD1400_PSVR);
1586 		splx(s);
1587 		break;
1588 	default:
1589 		error = ENOTTY;
1590 	}
1591 
1592 	return(error);
1593 }
1594 
1595 /*
1596  * poll routine
1597  */
1598 int
1599 mbpppoll(dev, rw, p)
1600 	dev_t dev;
1601 	int rw;
1602 	struct proc *p;
1603 {
1604 
1605 	return(ENODEV);
1606 }
1607 
1608 int
1609 mbpp_rw(dev, uio)
1610 	dev_t dev;
1611 	struct uio *uio;
1612 {
1613 	int card = MAGMA_CARD(dev);
1614 	int port = MAGMA_PORT(dev);
1615 	struct mbpp_softc *ms = mbpp_cd.cd_devs[card];
1616 	struct mbpp_port *mp = &ms->ms_port[port];
1617 	caddr_t buffer, ptr;
1618 	int buflen, cnt, len;
1619 	int s, error = 0;
1620 	int gotdata = 0;
1621 
1622 	if( uio->uio_resid == 0 )
1623 		return(0);
1624 
1625 	buflen = min(uio->uio_resid, mp->mp_burst);
1626 	buffer = malloc(buflen, M_DEVBUF, M_WAITOK);
1627 	if( buffer == NULL )
1628 		return(ENOMEM);
1629 
1630 	SET(mp->mp_flags, MBPPF_UIO);
1631 
1632 	/*
1633 	 * start timeout, if needed
1634 	 */
1635 	if( mp->mp_timeout > 0 ) {
1636 		SET(mp->mp_flags, MBPPF_TIMEOUT);
1637 		callout_reset(&mp->mp_timeout_ch, mp->mp_timeout,
1638 		    mbpp_timeout, mp);
1639 	}
1640 
1641 	len = cnt = 0;
1642 	while( uio->uio_resid > 0 ) {
1643 		len = min(buflen, uio->uio_resid);
1644 		ptr = buffer;
1645 
1646 		if( uio->uio_rw == UIO_WRITE ) {
1647 			error = uiomove(ptr, len, uio);
1648 			if( error ) break;
1649 		}
1650 again:		/* goto bad */
1651 		/* timed out?  */
1652 		if( !ISSET(mp->mp_flags, MBPPF_UIO) )
1653 			break;
1654 
1655 		/*
1656 		 * perform the operation
1657 		 */
1658 		if( uio->uio_rw == UIO_WRITE ) {
1659 			cnt = mbpp_send(mp, ptr, len);
1660 		} else {
1661 			cnt = mbpp_recv(mp, ptr, len);
1662 		}
1663 
1664 		if( uio->uio_rw == UIO_READ ) {
1665 			if( cnt ) {
1666 				error = uiomove(ptr, cnt, uio);
1667 				if( error ) break;
1668 				gotdata++;
1669 			}
1670 			else if( gotdata )	/* consider us done */
1671 				break;
1672 		}
1673 
1674 		/* timed out?  */
1675 		if( !ISSET(mp->mp_flags, MBPPF_UIO) )
1676 			break;
1677 
1678 		/*
1679 		 * poll delay?
1680 		 */
1681 		if( mp->mp_delay > 0 ) {
1682 			s = splsoftclock();
1683 			SET(mp->mp_flags, MBPPF_DELAY);
1684 			callout_reset(&mp->mp_start_ch, mp->mp_delay,
1685 			    mbpp_start, mp);
1686 			error = tsleep(mp, PCATCH | PZERO, "mbppdelay", 0);
1687 			splx(s);
1688 			if( error ) break;
1689 		}
1690 
1691 		/*
1692 		 * don't call uiomove again until we used all the data we grabbed
1693 		 */
1694 		if( uio->uio_rw == UIO_WRITE && cnt != len ) {
1695 			ptr += cnt;
1696 			len -= cnt;
1697 			cnt = 0;
1698 			goto again;
1699 		}
1700 	}
1701 
1702 	/*
1703 	 * clear timeouts
1704 	 */
1705 	s = splsoftclock();
1706 	if( ISSET(mp->mp_flags, MBPPF_TIMEOUT) ) {
1707 		callout_stop(&mp->mp_timeout_ch);
1708 		CLR(mp->mp_flags, MBPPF_TIMEOUT);
1709 	}
1710 	if( ISSET(mp->mp_flags, MBPPF_DELAY) ) {
1711 		callout_stop(&mp->mp_start_ch);
1712 		CLR(mp->mp_flags, MBPPF_DELAY);
1713 	}
1714 	splx(s);
1715 
1716 	/*
1717 	 * adjust for those chars that we uiomoved but never actually wrote
1718 	 */
1719 	if( uio->uio_rw == UIO_WRITE && cnt != len ) {
1720 		uio->uio_resid += (len - cnt);
1721 	}
1722 
1723 	free(buffer, M_DEVBUF);
1724 	return(error);
1725 }
1726 
1727 void
1728 mbpp_timeout(arg)
1729 	void *arg;
1730 {
1731 	struct mbpp_port *mp = arg;
1732 
1733 	CLR(mp->mp_flags, MBPPF_UIO | MBPPF_TIMEOUT);
1734 	wakeup(mp);
1735 }
1736 
1737 void
1738 mbpp_start(arg)
1739 	void *arg;
1740 {
1741 	struct mbpp_port *mp = arg;
1742 
1743 	CLR(mp->mp_flags, MBPPF_DELAY);
1744 	wakeup(mp);
1745 }
1746 
1747 int
1748 mbpp_send(mp, ptr, len)
1749 	struct mbpp_port *mp;
1750 	caddr_t ptr;
1751 	int len;
1752 {
1753 	int s;
1754 	struct cd1400 *cd = mp->mp_cd1400;
1755 
1756 	/* set up io information */
1757 	mp->mp_ptr = ptr;
1758 	mp->mp_cnt = len;
1759 
1760 	/* start transmitting */
1761 	s = spltty();
1762 	if( cd ) {
1763 		cd1400_write_reg(cd, CD1400_CAR, 0);
1764 
1765 		/* output strobe width ~1microsecond */
1766 		cd1400_write_reg(cd, CD1400_TBPR, 10);
1767 
1768 		/* enable channel */
1769 		cd1400_write_ccr(cd, CD1400_CCR_CMDCHANCTL | CD1400_CCR_XMTEN);
1770 		cd1400_write_reg(cd, CD1400_SRER, CD1400_SRER_TXRDY);
1771 	}
1772 
1773 	/* ZZzzz... */
1774 	tsleep(mp, PCATCH | PZERO, "mbpp_send", 0);
1775 
1776 	/* stop transmitting */
1777 	if( cd ) {
1778 		cd1400_write_reg(cd, CD1400_CAR, 0);
1779 
1780 		/* disable transmitter */
1781 		cd1400_write_reg(cd, CD1400_SRER, 0);
1782 		cd1400_write_ccr(cd, CD1400_CCR_CMDCHANCTL | CD1400_CCR_XMTDIS);
1783 
1784 		/* flush fifo */
1785 		cd1400_write_ccr(cd, CD1400_CCR_CMDRESET | CD1400_CCR_FTF);
1786 	}
1787 	splx(s);
1788 
1789 	/* return number of chars sent */
1790 	return(len - mp->mp_cnt);
1791 }
1792 
1793 int
1794 mbpp_recv(mp, ptr, len)
1795 	struct mbpp_port *mp;
1796 	caddr_t ptr;
1797 	int len;
1798 {
1799 	int s;
1800 	struct cd1400 *cd = mp->mp_cd1400;
1801 
1802 	/* set up io information */
1803 	mp->mp_ptr = ptr;
1804 	mp->mp_cnt = len;
1805 
1806 	/* start receiving */
1807 	s = spltty();
1808 	if( cd ) {
1809 	int rcor, rbpr;
1810 
1811 		cd1400_write_reg(cd, CD1400_CAR, 0);
1812 
1813 		/* input strobe at 100kbaud (10microseconds) */
1814 		cd1400_compute_baud(100000, cd->cd_clock, &rcor, &rbpr);
1815 		cd1400_write_reg(cd, CD1400_RCOR, rcor);
1816 		cd1400_write_reg(cd, CD1400_RBPR, rbpr);
1817 
1818 		/* rx threshold */
1819 		cd1400_write_reg(cd, CD1400_COR3, MBPP_RX_FIFO_THRESHOLD);
1820 		cd1400_write_ccr(cd, CD1400_CCR_CMDCORCHG | CD1400_CCR_COR3);
1821 
1822 		/* enable channel */
1823 		cd1400_write_ccr(cd, CD1400_CCR_CMDCHANCTL | CD1400_CCR_RCVEN);
1824 		cd1400_write_reg(cd, CD1400_SRER, CD1400_SRER_RXDATA);
1825 	}
1826 
1827 	/* ZZzzz... */
1828 	tsleep(mp, PCATCH | PZERO, "mbpp_recv", 0);
1829 
1830 	/* stop receiving */
1831 	if( cd ) {
1832 		cd1400_write_reg(cd, CD1400_CAR, 0);
1833 
1834 		/* disable receiving */
1835 		cd1400_write_reg(cd, CD1400_SRER, 0);
1836 		cd1400_write_ccr(cd, CD1400_CCR_CMDCHANCTL | CD1400_CCR_RCVDIS);
1837 	}
1838 	splx(s);
1839 
1840 	/* return number of chars received */
1841 	return(len - mp->mp_cnt);
1842 }
1843 
1844 int
1845 mbpp_hztoms(h)
1846 	int h;
1847 {
1848 	int m = h;
1849 
1850 	if( m > 0 )
1851 		m = m * 1000 / hz;
1852 	return(m);
1853 }
1854 
1855 int
1856 mbpp_mstohz(m)
1857 	int m;
1858 {
1859 	int h = m;
1860 
1861 	if( h > 0 ) {
1862 		h = h * hz / 1000;
1863 		if( h == 0 )
1864 			h = 1000 / hz;
1865 	}
1866 	return(h);
1867 }
1868 
1869 #endif /* NMAGMA */
1870