xref: /netbsd-src/sys/dev/sbus/magma.c (revision 23c8222edbfb0f0932d88a8351d3a0cf817dfb9e)
1 /*	$NetBSD: magma.c,v 1.28 2004/03/17 17:04:58 pk Exp $	*/
2 /*
3  * magma.c
4  *
5  * Copyright (c) 1998 Iain Hibbert
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Iain Hibbert
19  * 4. The name of the author may not be used to endorse or promote products
20  *    derived from this software without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
27  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
31  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  */
34 
35 /*
36  * Driver for Magma SBus Serial/Parallel cards using the Cirrus Logic
37  * CD1400 & CD1190 chips
38  */
39 
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: magma.c,v 1.28 2004/03/17 17:04:58 pk Exp $");
42 
43 #if 0
44 #define MAGMA_DEBUG
45 #endif
46 
47 #include "magma.h"
48 #if NMAGMA > 0
49 
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/proc.h>
53 #include <sys/device.h>
54 #include <sys/file.h>
55 #include <sys/ioctl.h>
56 #include <sys/malloc.h>
57 #include <sys/tty.h>
58 #include <sys/time.h>
59 #include <sys/kernel.h>
60 #include <sys/syslog.h>
61 #include <sys/conf.h>
62 #include <sys/errno.h>
63 
64 #include <machine/bus.h>
65 #include <machine/intr.h>
66 #include <machine/autoconf.h>
67 
68 #include <dev/sbus/sbusvar.h>
69 
70 #include <dev/ic/cd1400reg.h>
71 #include <dev/ic/cd1190reg.h>
72 
73 #include <dev/sbus/mbppio.h>
74 #include <dev/sbus/magmareg.h>
75 
76 /* supported cards
77  *
78  *  The table below lists the cards that this driver is likely to
79  *  be able to support.
80  *
81  *  Cards with parallel ports: except for the LC2+1Sp, they all use
82  *  the CD1190 chip which I know nothing about.  I've tried to leave
83  *  hooks for it so it shouldn't be too hard to add support later.
84  *  (I think somebody is working on this separately)
85  *
86  *  Thanks to Bruce at Magma for telling me the hardware offsets.
87  */
88 static struct magma_board_info supported_cards[] = {
89 	{
90 		"MAGMA_Sp", "MAGMA,4_Sp", "Magma 4 Sp", 4, 0,
91 		1, 0xa000, 0xc000, 0xe000, { 0x8000, 0, 0, 0 },
92 		0, { 0, 0 }
93 	},
94 	{
95 		"MAGMA_Sp", "MAGMA,8_Sp", "Magma 8 Sp", 8, 0,
96 		2, 0xa000, 0xc000, 0xe000, { 0x4000, 0x6000, 0, 0 },
97 		0, { 0, 0 }
98 	},
99 	{
100 		"MAGMA_Sp", "MAGMA,_8HS_Sp", "Magma Fast 8 Sp", 8, 0,
101 		2, 0x2000, 0x4000, 0x6000, { 0x8000, 0xa000, 0, 0 },
102 		0, { 0, 0 }
103 	},
104 	{
105 		"MAGMA_Sp", "MAGMA,_8SP_422", "Magma 8 Sp - 422", 8, 0,
106 		2, 0x2000, 0x4000, 0x6000, { 0x8000, 0xa000, 0, 0 },
107 		0, { 0, 0 }
108 	},
109 	{
110 		"MAGMA_Sp", "MAGMA,12_Sp", "Magma 12 Sp", 12, 0,
111 		3, 0xa000, 0xc000, 0xe000, { 0x2000, 0x4000, 0x6000, 0 },
112 		0, { 0, 0 }
113 	},
114 	{
115 		"MAGMA_Sp", "MAGMA,16_Sp", "Magma 16 Sp", 16, 0,
116 		4, 0xd000, 0xe000, 0xf000, { 0x8000, 0x9000, 0xa000, 0xb000 },
117 		0, { 0, 0 }
118 	},
119 	{
120 		"MAGMA_Sp", "MAGMA,16_Sp_2", "Magma 16 Sp", 16, 0,
121 		4, 0x2000, 0x4000, 0x6000, { 0x8000, 0xa000, 0xc000, 0xe000 },
122 		0, { 0, 0 }
123 	},
124 	{
125 		"MAGMA_Sp", "MAGMA,16HS_Sp", "Magma Fast 16 Sp", 16, 0,
126 		4, 0x2000, 0x4000, 0x6000, { 0x8000, 0xa000, 0xc000, 0xe000 },
127 		0, { 0, 0 }
128 	},
129 	{
130 		"MAGMA_Sp", "MAGMA,21_Sp", "Magma LC 2+1 Sp", 2, 1,
131 		1, 0xa000, 0xc000, 0xe000, { 0x8000, 0, 0, 0 },
132 		0, { 0, 0 }
133 	},
134 	{
135 		"MAGMA_Sp", "MAGMA,21HS_Sp", "Magma 2+1 Sp", 2, 1,
136 		1, 0xa000, 0xc000, 0xe000, { 0x4000, 0, 0, 0 },
137 		1, { 0x6000, 0 }
138 	},
139 	{
140 		"MAGMA_Sp", "MAGMA,41_Sp", "Magma 4+1 Sp", 4, 1,
141 		1, 0xa000, 0xc000, 0xe000, { 0x4000, 0, 0, 0 },
142 		1, { 0x6000, 0 }
143 	},
144 	{
145 		"MAGMA_Sp", "MAGMA,82_Sp", "Magma 8+2 Sp", 8, 2,
146 		2, 0xd000, 0xe000, 0xf000, { 0x8000, 0x9000, 0, 0 },
147 		2, { 0xa000, 0xb000 }
148 	},
149 	{
150 		"MAGMA_Sp", "MAGMA,P1_Sp", "Magma P1 Sp", 0, 1,
151 		0, 0, 0, 0, { 0, 0, 0, 0 },
152 		1, { 0x8000, 0 }
153 	},
154 	{
155 		"MAGMA_Sp", "MAGMA,P2_Sp", "Magma P2 Sp", 0, 2,
156 		0, 0, 0, 0, { 0, 0, 0, 0 },
157 		2, { 0x4000, 0x8000 }
158 	},
159 	{
160 		"MAGMA 2+1HS Sp", "", "Magma 2+1HS Sp", 2, 0,
161 		1, 0xa000, 0xc000, 0xe000, { 0x4000, 0, 0, 0 },
162 		1, { 0x8000, 0 }
163 	},
164 	{
165 		NULL, NULL, NULL, 0, 0,
166 		0, 0, 0, 0, { 0, 0, 0, 0 },
167 		0, { 0, 0 }
168 	}
169 };
170 
171 /************************************************************************
172  *
173  *  Autoconfig Stuff
174  */
175 
176 CFATTACH_DECL(magma, sizeof(struct magma_softc),
177     magma_match, magma_attach, NULL, NULL);
178 
179 CFATTACH_DECL(mtty, sizeof(struct mtty_softc),
180     mtty_match, mtty_attach, NULL, NULL);
181 
182 CFATTACH_DECL(mbpp, sizeof(struct mbpp_softc),
183     mbpp_match, mbpp_attach, NULL, NULL);
184 
185 extern struct cfdriver mtty_cd;
186 extern struct cfdriver mbpp_cd;
187 
188 dev_type_open(mttyopen);
189 dev_type_close(mttyclose);
190 dev_type_read(mttyread);
191 dev_type_write(mttywrite);
192 dev_type_ioctl(mttyioctl);
193 dev_type_stop(mttystop);
194 dev_type_tty(mttytty);
195 dev_type_poll(mttypoll);
196 
197 const struct cdevsw mtty_cdevsw = {
198 	mttyopen, mttyclose, mttyread, mttywrite, mttyioctl,
199 	mttystop, mttytty, mttypoll, nommap, ttykqfilter, D_TTY
200 };
201 
202 dev_type_open(mbppopen);
203 dev_type_close(mbppclose);
204 dev_type_read(mbpp_rw);
205 dev_type_ioctl(mbppioctl);
206 
207 const struct cdevsw mbpp_cdevsw = {
208 	mbppopen, mbppclose, mbpp_rw, mbpp_rw, mbppioctl,
209 	nostop, notty, nopoll, nommap, nokqfilter,
210 };
211 
212 /************************************************************************
213  *
214  *  CD1400 Routines
215  *
216  *	cd1400_compute_baud		calculate COR/BPR register values
217  *	cd1400_write_ccr		write a value to CD1400 ccr
218  *	cd1400_read_reg			read from a CD1400 register
219  *	cd1400_write_reg		write to a CD1400 register
220  *	cd1400_enable_transmitter	enable transmitting on CD1400 channel
221  */
222 
223 /*
224  * compute the bpr/cor pair for any baud rate
225  * returns 0 for success, 1 for failure
226  */
227 int
228 cd1400_compute_baud(speed, clock, cor, bpr)
229 	speed_t speed;
230 	int clock;
231 	int *cor, *bpr;
232 {
233 	int c, co, br;
234 
235 	if( speed < 50 || speed > 150000 )
236 		return(1);
237 
238 	for( c = 0, co = 8 ; co <= 2048 ; co <<= 2, c++ ) {
239 		br = ((clock * 1000000) + (co * speed) / 2) / (co * speed);
240 		if( br < 0x100 ) {
241 			*bpr = br;
242 			*cor = c;
243 			return(0);
244 		}
245 	}
246 
247 	return(1);
248 }
249 
250 /*
251  * Write a CD1400 channel command, should have a timeout?
252  */
253 __inline void
254 cd1400_write_ccr(cd, cmd)
255 	struct cd1400 *cd;
256 	u_char cmd;
257 {
258 	while( cd1400_read_reg(cd, CD1400_CCR) )
259 		;
260 
261 	cd1400_write_reg(cd, CD1400_CCR, cmd);
262 }
263 
264 /*
265  * read a value from a cd1400 register
266  */
267 __inline u_char
268 cd1400_read_reg(cd, reg)
269 	struct cd1400 *cd;
270 	int reg;
271 {
272 	return(cd->cd_reg[reg]);
273 }
274 
275 /*
276  * write a value to a cd1400 register
277  */
278 __inline void
279 cd1400_write_reg(cd, reg, value)
280 	struct cd1400 *cd;
281 	int reg;
282 	u_char value;
283 {
284 	cd->cd_reg[reg] = value;
285 }
286 
287 /*
288  * enable transmit service requests for cd1400 channel
289  */
290 void
291 cd1400_enable_transmitter(cd, channel)
292 	struct cd1400 *cd;
293 	int channel;
294 {
295 	int s, srer;
296 
297 	s = spltty();
298 	cd1400_write_reg(cd, CD1400_CAR, channel);
299 	srer = cd1400_read_reg(cd, CD1400_SRER);
300 	SET(srer, CD1400_SRER_TXRDY);
301 	cd1400_write_reg(cd, CD1400_SRER, srer);
302 	splx(s);
303 }
304 
305 /************************************************************************
306  *
307  *  CD1190 Routines
308  */
309 
310 /* well, there are none yet */
311 
312 /************************************************************************
313  *
314  *  Magma Routines
315  *
316  * magma_match		reports if we have a magma board available
317  * magma_attach		attaches magma boards to the sbus
318  * magma_hard		hardware level interrupt routine
319  * magma_soft		software level interrupt routine
320  */
321 
322 int
323 magma_match(parent, cf, aux)
324 	struct device *parent;
325 	struct cfdata *cf;
326 	void *aux;
327 {
328 	struct sbus_attach_args *sa = aux;
329 	struct magma_board_info *card;
330 
331 	/* See if we support this device */
332 	for (card = supported_cards; ; card++) {
333 		if (card->mb_sbusname == NULL)
334 			/* End of table: no match */
335 			return (0);
336 		if (strcmp(sa->sa_name, card->mb_sbusname) == 0)
337 			break;
338 	}
339 
340 	dprintf(("magma: matched `%s'\n", sa->sa_name));
341 	dprintf(("magma: magma_prom `%s'\n",
342 		prom_getpropstring(sa->sa_node, "magma_prom")));
343 	dprintf(("magma: intlevels `%s'\n",
344 		prom_getpropstring(sa->sa_node, "intlevels")));
345 	dprintf(("magma: chiprev `%s'\n",
346 		prom_getpropstring(sa->sa_node, "chiprev")));
347 	dprintf(("magma: clock `%s'\n",
348 		prom_getpropstring(sa->sa_node, "clock")));
349 
350 	return (1);
351 }
352 
353 void
354 magma_attach(parent, self, aux)
355 	struct device *parent;
356 	struct device *self;
357 	void *aux;
358 {
359 	struct sbus_attach_args *sa = aux;
360 	struct magma_softc *sc = (struct magma_softc *)self;
361 	struct magma_board_info *card;
362 	bus_space_handle_t bh;
363 	char *magma_prom, *clockstr;
364 	int cd_clock;
365 	int node, chip;
366 
367 	node = sa->sa_node;
368 
369 	/*
370 	 * Find the card model.
371 	 * Older models all have sbus node name `MAGMA_Sp' (see
372 	 * `supported_cards[]' above), and must be distinguished
373 	 * by the `magma_prom' property.
374 	 */
375 	magma_prom = prom_getpropstring(node, "magma_prom");
376 
377 	for (card = supported_cards; card->mb_name != NULL; card++) {
378 		if (strcmp(sa->sa_name, card->mb_sbusname) != 0)
379 			/* Sbus node name doesn't match */
380 			continue;
381 		if (strcmp(magma_prom, card->mb_name) == 0)
382 			/* Model name match */
383 			break;
384 	}
385 
386 	if( card->mb_name == NULL ) {
387 		printf(": %s (unsupported)\n", magma_prom);
388 		return;
389 	}
390 
391 	dprintf((" addr %p", sc));
392 	printf(": %s\n", card->mb_realname);
393 
394 	sc->ms_board = card;
395 	sc->ms_ncd1400 = card->mb_ncd1400;
396 	sc->ms_ncd1190 = card->mb_ncd1190;
397 
398 	if (sbus_bus_map(sa->sa_bustag,
399 			 sa->sa_slot, sa->sa_offset, sa->sa_size,
400 			 BUS_SPACE_MAP_LINEAR, &bh) != 0) {
401 		printf("%s @ sbus: cannot map registers\n", self->dv_xname);
402 		return;
403 	}
404 
405 	/* the SVCACK* lines are daisychained */
406 	sc->ms_svcackr = (caddr_t)bus_space_vaddr(sa->sa_bustag, bh)
407 		+ card->mb_svcackr;
408 	sc->ms_svcackt = (caddr_t)bus_space_vaddr(sa->sa_bustag, bh)
409 		+ card->mb_svcackt;
410 	sc->ms_svcackm = (caddr_t)bus_space_vaddr(sa->sa_bustag, bh)
411 		+ card->mb_svcackm;
412 
413 	/*
414 	 * Find the clock speed; it's the same for all CD1400 chips
415 	 * on the board.
416 	 */
417 	clockstr = prom_getpropstring(node, "clock");
418 	if (*clockstr == '\0')
419 		/* Default to 25MHz */
420 		cd_clock = 25;
421 	else {
422 		cd_clock = 0;
423 		while (*clockstr != '\0')
424 			cd_clock = (cd_clock * 10) + (*clockstr++ - '0');
425 	}
426 
427 	/* init the cd1400 chips */
428 	for( chip = 0 ; chip < card->mb_ncd1400 ; chip++ ) {
429 		struct cd1400 *cd = &sc->ms_cd1400[chip];
430 
431 		cd->cd_clock = cd_clock;
432 		cd->cd_reg = (caddr_t)bh + card->mb_cd1400[chip];
433 
434 		/* prom_getpropstring(node, "chiprev"); */
435 		/* seemingly the Magma drivers just ignore the propstring */
436 		cd->cd_chiprev = cd1400_read_reg(cd, CD1400_GFRCR);
437 
438 		dprintf(("%s attach CD1400 %d addr %p rev %x clock %dMHz\n",
439 			sc->ms_dev.dv_xname, chip,
440 			cd->cd_reg, cd->cd_chiprev, cd->cd_clock));
441 
442 		/* clear GFRCR */
443 		cd1400_write_reg(cd, CD1400_GFRCR, 0x00);
444 
445 		/* reset whole chip */
446 		cd1400_write_ccr(cd, CD1400_CCR_CMDRESET | CD1400_CCR_FULLRESET);
447 
448 		/* wait for revision code to be restored */
449 		while( cd1400_read_reg(cd, CD1400_GFRCR) != cd->cd_chiprev )
450 		        ;
451 
452 		/* set the Prescaler Period Register to tick at 1ms */
453 		cd1400_write_reg(cd, CD1400_PPR,
454 			((cd->cd_clock * 1000000 / CD1400_PPR_PRESCALER + 500) / 1000));
455 
456 		/* The LC2+1Sp card is the only card that doesn't have
457 		 * a CD1190 for the parallel port, but uses channel 0 of
458 		 * the CD1400, so we make a note of it for later and set up
459 		 * the CD1400 for parallel mode operation.
460 		 */
461 		if( card->mb_npar && card->mb_ncd1190 == 0 ) {
462 			cd1400_write_reg(cd, CD1400_GCR, CD1400_GCR_PARALLEL);
463 			cd->cd_parmode = 1;
464 		}
465 	}
466 
467 	/* init the cd1190 chips */
468 	for( chip = 0 ; chip < card->mb_ncd1190 ; chip++ ) {
469 		struct cd1190 *cd = &sc->ms_cd1190[chip];
470 
471 		cd->cd_reg = (caddr_t)bh + card->mb_cd1190[chip];
472 
473 		/* XXX don't know anything about these chips yet */
474 		printf("%s: CD1190 %d addr %p (unsupported)\n",
475 			self->dv_xname, chip, cd->cd_reg);
476 	}
477 
478 	sbus_establish(&sc->ms_sd, &sc->ms_dev);
479 
480 	/* configure the children */
481 	(void)config_found(self, mtty_match, NULL);
482 	(void)config_found(self, mbpp_match, NULL);
483 
484 	/*
485 	 * Establish the interrupt handlers.
486 	 */
487 	if (sa->sa_nintr == 0)
488 		return;		/* No interrupts to service!? */
489 
490 	(void)bus_intr_establish(sa->sa_bustag, sa->sa_pri, IPL_SERIAL,
491 				 magma_hard, sc);
492 	sc->ms_sicookie = softintr_establish(IPL_SOFTSERIAL, magma_soft, sc);
493 	if (sc->ms_sicookie == NULL) {
494 		printf("\n%s: cannot establish soft int handler\n",
495 			sc->ms_dev.dv_xname);
496 		return;
497 	}
498 	evcnt_attach_dynamic(&sc->ms_intrcnt, EVCNT_TYPE_INTR, NULL,
499 	    sc->ms_dev.dv_xname, "intr");
500 }
501 
502 /*
503  * hard interrupt routine
504  *
505  *  returns 1 if it handled it, otherwise 0
506  *
507  *  runs at interrupt priority
508  */
509 int
510 magma_hard(arg)
511 	void *arg;
512 {
513 	struct magma_softc *sc = arg;
514 	struct cd1400 *cd;
515 	int chip, status = 0;
516 	int serviced = 0;
517 	int needsoftint = 0;
518 
519 	/*
520 	 * check status of all the CD1400 chips
521 	 */
522 	for( chip = 0 ; chip < sc->ms_ncd1400 ; chip++ )
523 		status |= cd1400_read_reg(&sc->ms_cd1400[chip], CD1400_SVRR);
524 
525 	if( ISSET(status, CD1400_SVRR_RXRDY) ) {
526 		u_char rivr = *sc->ms_svcackr;	/* enter rx service context */
527 		int port = rivr >> 4;
528 
529 		if( rivr & (1<<3) ) {			/* parallel port */
530 			struct mbpp_port *mbpp;
531 			int n_chars;
532 
533 			mbpp = &sc->ms_mbpp->ms_port[port];
534 			cd = mbpp->mp_cd1400;
535 
536 			/* don't think we have to handle exceptions */
537 			n_chars = cd1400_read_reg(cd, CD1400_RDCR);
538 			while (n_chars--) {
539 				if( mbpp->mp_cnt == 0 ) {
540 					SET(mbpp->mp_flags, MBPPF_WAKEUP);
541 					needsoftint = 1;
542 					break;
543 				}
544 				*mbpp->mp_ptr = cd1400_read_reg(cd,CD1400_RDSR);
545 				mbpp->mp_ptr++;
546 				mbpp->mp_cnt--;
547 			}
548 		} else {				/* serial port */
549 			struct mtty_port *mtty;
550 			u_char *ptr, n_chars, line_stat;
551 
552 			mtty = &sc->ms_mtty->ms_port[port];
553 			cd = mtty->mp_cd1400;
554 
555 			if( ISSET(rivr, CD1400_RIVR_EXCEPTION) ) {
556 				line_stat = cd1400_read_reg(cd, CD1400_RDSR);
557 				n_chars = 1;
558 			} else { /* no exception, received data OK */
559 				line_stat = 0;
560 				n_chars = cd1400_read_reg(cd, CD1400_RDCR);
561 			}
562 
563 			ptr = mtty->mp_rput;
564 			while( n_chars-- ) {
565 				*ptr++ = line_stat;
566 				*ptr++ = cd1400_read_reg(cd, CD1400_RDSR);
567 				if( ptr == mtty->mp_rend ) ptr = mtty->mp_rbuf;
568 				if( ptr == mtty->mp_rget ) {
569 					if( ptr == mtty->mp_rbuf )
570 						ptr = mtty->mp_rend;
571 					ptr -= 2;
572 					SET(mtty->mp_flags, MTTYF_RING_OVERFLOW);
573 					break;
574 				}
575 			}
576 			mtty->mp_rput = ptr;
577 
578 			needsoftint = 1;
579 		}
580 
581 		cd1400_write_reg(cd, CD1400_EOSRR, 0);	/* end service context */
582 		serviced = 1;
583 	} /* if(rx_service...) */
584 
585 	if( ISSET(status, CD1400_SVRR_MDMCH) ) {
586 		u_char mivr = *sc->ms_svcackm;	/* enter mdm service context */
587 		int port = mivr >> 4;
588 		struct mtty_port *mtty;
589 		int carrier;
590 		u_char msvr;
591 
592 		/*
593 		 * Handle CD (LC2+1Sp = DSR) changes.
594 		 */
595 		mtty = &sc->ms_mtty->ms_port[port];
596 		cd = mtty->mp_cd1400;
597 		msvr = cd1400_read_reg(cd, CD1400_MSVR2);
598 		carrier = ISSET(msvr, cd->cd_parmode ? CD1400_MSVR2_DSR : CD1400_MSVR2_CD);
599 
600 		if( mtty->mp_carrier != carrier ) {
601 			SET(mtty->mp_flags, MTTYF_CARRIER_CHANGED);
602 			mtty->mp_carrier = carrier;
603 			needsoftint = 1;
604 		}
605 
606 		cd1400_write_reg(cd, CD1400_EOSRR, 0);	/* end service context */
607 		serviced = 1;
608 	} /* if(mdm_service...) */
609 
610 	if( ISSET(status, CD1400_SVRR_TXRDY) ) {
611 		u_char tivr = *sc->ms_svcackt;	/* enter tx service context */
612 		int port = tivr >> 4;
613 
614 		if( tivr & (1<<3) ) {	/* parallel port */
615 			struct mbpp_port *mbpp;
616 
617 			mbpp = &sc->ms_mbpp->ms_port[port];
618 			cd = mbpp->mp_cd1400;
619 
620 			if( mbpp->mp_cnt ) {
621 				int count = 0;
622 
623 				/* fill the fifo */
624 				while (mbpp->mp_cnt &&
625 					count++ < CD1400_PAR_FIFO_SIZE) {
626 					cd1400_write_reg(cd, CD1400_TDR,
627 							 *mbpp->mp_ptr);
628 					mbpp->mp_ptr++;
629 					mbpp->mp_cnt--;
630 				}
631 			} else {
632 				/*
633 				 * fifo is empty and we got no more data
634 				 * to send, so shut off interrupts and
635 				 * signal for a wakeup, which can't be
636 				 * done here in case we beat mbpp_send to
637 				 * the tsleep call (we are running at >spltty)
638 				 */
639 				cd1400_write_reg(cd, CD1400_SRER, 0);
640 				SET(mbpp->mp_flags, MBPPF_WAKEUP);
641 				needsoftint = 1;
642 			}
643 		} else {		/* serial port */
644 			struct mtty_port *mtty;
645 			struct tty *tp;
646 
647 			mtty = &sc->ms_mtty->ms_port[port];
648 			cd = mtty->mp_cd1400;
649 			tp = mtty->mp_tty;
650 
651 			if( !ISSET(mtty->mp_flags, MTTYF_STOP) ) {
652 				int count = 0;
653 
654 				/* check if we should start/stop a break */
655 				if( ISSET(mtty->mp_flags, MTTYF_SET_BREAK) ) {
656 					cd1400_write_reg(cd, CD1400_TDR, 0);
657 					cd1400_write_reg(cd, CD1400_TDR, 0x81);
658 					/* should we delay too? */
659 					CLR(mtty->mp_flags, MTTYF_SET_BREAK);
660 					count += 2;
661 				}
662 
663 				if( ISSET(mtty->mp_flags, MTTYF_CLR_BREAK) ) {
664 					cd1400_write_reg(cd, CD1400_TDR, 0);
665 					cd1400_write_reg(cd, CD1400_TDR, 0x83);
666 					CLR(mtty->mp_flags, MTTYF_CLR_BREAK);
667 					count += 2;
668 				}
669 
670 				/* I don't quite fill the fifo in case the last one is a
671 				 * NULL which I have to double up because its the escape
672 				 * code for embedded transmit characters.
673 				 */
674 				while( mtty->mp_txc > 0 && count < CD1400_TX_FIFO_SIZE - 1 ) {
675 					u_char ch;
676 
677 					ch = *mtty->mp_txp;
678 
679 					mtty->mp_txc--;
680 					mtty->mp_txp++;
681 
682 					if( ch == 0 ) {
683 						cd1400_write_reg(cd, CD1400_TDR, ch);
684 						count++;
685 					}
686 
687 					cd1400_write_reg(cd, CD1400_TDR, ch);
688 					count++;
689 				}
690 			}
691 
692 			/* if we ran out of work or are requested to STOP then
693 			 * shut off the txrdy interrupts and signal DONE to flush
694 			 * out the chars we have sent.
695 			 */
696 			if( mtty->mp_txc == 0 || ISSET(mtty->mp_flags, MTTYF_STOP) ) {
697 				register int srer;
698 
699 				srer = cd1400_read_reg(cd, CD1400_SRER);
700 				CLR(srer, CD1400_SRER_TXRDY);
701 				cd1400_write_reg(cd, CD1400_SRER, srer);
702 				CLR(mtty->mp_flags, MTTYF_STOP);
703 
704 				SET(mtty->mp_flags, MTTYF_DONE);
705 				needsoftint = 1;
706 			}
707 		}
708 
709 		cd1400_write_reg(cd, CD1400_EOSRR, 0);	/* end service context */
710 		serviced = 1;
711 	} /* if(tx_service...) */
712 
713 	/* XXX service CD1190 interrupts too
714 	for( chip = 0 ; chip < sc->ms_ncd1190 ; chip++ ) {
715 	}
716 	*/
717 
718 	if (needsoftint)
719 		/* trigger the soft interrupt */
720 		softintr_schedule(sc->ms_sicookie);
721 
722 	return(serviced);
723 }
724 
725 /*
726  * magma soft interrupt handler
727  *
728  *  returns 1 if it handled it, 0 otherwise
729  *
730  *  runs at spltty()
731  */
732 void
733 magma_soft(arg)
734 	void *arg;
735 {
736 	struct magma_softc *sc = arg;
737 	struct mtty_softc *mtty = sc->ms_mtty;
738 	struct mbpp_softc *mbpp = sc->ms_mbpp;
739 	int port;
740 	int s, flags;
741 
742 	if (mtty == NULL)
743 		goto chkbpp;
744 
745 	/*
746 	 * check the tty ports to see what needs doing
747 	 */
748 	for( port = 0 ; port < mtty->ms_nports ; port++ ) {
749 		struct mtty_port *mp = &mtty->ms_port[port];
750 		struct tty *tp = mp->mp_tty;
751 
752 		if( !ISSET(tp->t_state, TS_ISOPEN) )
753 			continue;
754 
755 		/*
756 		 * handle any received data
757 		 */
758 		while( mp->mp_rget != mp->mp_rput ) {
759 			u_char stat;
760 			int data;
761 
762 			stat = mp->mp_rget[0];
763 			data = mp->mp_rget[1];
764 			mp->mp_rget = ((mp->mp_rget + 2) == mp->mp_rend)
765 				? mp->mp_rbuf : (mp->mp_rget + 2);
766 
767 			if( stat & (CD1400_RDSR_BREAK | CD1400_RDSR_FE) )
768 				data |= TTY_FE;
769 			if( stat & CD1400_RDSR_PE )
770 				data |= TTY_PE;
771 
772 			if( stat & CD1400_RDSR_OE )
773 				log(LOG_WARNING, "%s%x: fifo overflow\n",
774 				    mtty->ms_dev.dv_xname, port);
775 
776 			(*tp->t_linesw->l_rint)(data, tp);
777 		}
778 
779 		s = splhigh();	/* block out hard interrupt routine */
780 		flags = mp->mp_flags;
781 		CLR(mp->mp_flags, MTTYF_DONE | MTTYF_CARRIER_CHANGED | MTTYF_RING_OVERFLOW);
782 		splx(s);	/* ok */
783 
784 		if( ISSET(flags, MTTYF_CARRIER_CHANGED) ) {
785 			dprintf(("%s%x: cd %s\n", mtty->ms_dev.dv_xname,
786 				port, mp->mp_carrier ? "on" : "off"));
787 			(*tp->t_linesw->l_modem)(tp, mp->mp_carrier);
788 		}
789 
790 		if( ISSET(flags, MTTYF_RING_OVERFLOW) ) {
791 			log(LOG_WARNING, "%s%x: ring buffer overflow\n",
792 			    mtty->ms_dev.dv_xname, port);
793 		}
794 
795 		if( ISSET(flags, MTTYF_DONE) ) {
796 			ndflush(&tp->t_outq, mp->mp_txp - tp->t_outq.c_cf);
797 			CLR(tp->t_state, TS_BUSY);
798 			(*tp->t_linesw->l_start)(tp);	/* might be some more */
799 		}
800 	} /* for(each mtty...) */
801 
802 
803 chkbpp:
804 	/*
805 	 * Check the bpp ports (if any) to see what needs doing
806 	 */
807 	if (mbpp == NULL)
808 		return;
809 
810 	for( port = 0 ; port < mbpp->ms_nports ; port++ ) {
811 		struct mbpp_port *mp = &mbpp->ms_port[port];
812 
813 		if( !ISSET(mp->mp_flags, MBPPF_OPEN) )
814 			continue;
815 
816 		s = splhigh();
817 		flags = mp->mp_flags;
818 		CLR(mp->mp_flags, MBPPF_WAKEUP);
819 		splx(s);
820 
821 		if( ISSET(flags, MBPPF_WAKEUP) ) {
822 			wakeup(mp);
823 		}
824 
825 	} /* for(each mbpp...) */
826 }
827 
828 /************************************************************************
829  *
830  *  MTTY Routines
831  *
832  *	mtty_match		match one mtty device
833  *	mtty_attach		attach mtty devices
834  *	mttyopen		open mtty device
835  *	mttyclose		close mtty device
836  *	mttyread		read from mtty
837  *	mttywrite		write to mtty
838  *	mttyioctl		do ioctl on mtty
839  *	mttytty			return tty pointer for mtty
840  *	mttystop		stop mtty device
841  *	mtty_start		start mtty device
842  *	mtty_param		set mtty parameters
843  *	mtty_modem_control	set modem control lines
844  */
845 
846 int
847 mtty_match(parent, cf, args)
848 	struct device *parent;
849 	struct cfdata *cf;
850 	void *args;
851 {
852 	struct magma_softc *sc = (struct magma_softc *)parent;
853 
854 	return( args == mtty_match && sc->ms_board->mb_nser && sc->ms_mtty == NULL );
855 }
856 
857 void
858 mtty_attach(parent, dev, args)
859 	struct device *parent;
860 	struct device *dev;
861 	void *args;
862 {
863 	struct magma_softc *sc = (struct magma_softc *)parent;
864 	struct mtty_softc *ms = (struct mtty_softc *)dev;
865 	int port, chip, chan;
866 
867 	sc->ms_mtty = ms;
868 	dprintf((" addr %p", ms));
869 
870 	for( port = 0, chip = 0, chan = 0 ; port < sc->ms_board->mb_nser ; port++ ) {
871 		struct mtty_port *mp = &ms->ms_port[port];
872 		struct tty *tp;
873 
874 		mp->mp_cd1400 = &sc->ms_cd1400[chip];
875 		if (mp->mp_cd1400->cd_parmode && chan == 0)
876 			chan = 1; /* skip channel 0 if parmode */
877 		mp->mp_channel = chan;
878 
879 		tp = ttymalloc();
880 		if (tp == NULL) break;
881 		tty_attach(tp);
882 		tp->t_oproc = mtty_start;
883 		tp->t_param = mtty_param;
884 
885 		mp->mp_tty = tp;
886 
887 		mp->mp_rbuf = malloc(MTTY_RBUF_SIZE, M_DEVBUF, M_NOWAIT);
888 		if (mp->mp_rbuf == NULL) break;
889 
890 		mp->mp_rend = mp->mp_rbuf + MTTY_RBUF_SIZE;
891 
892 		chan = (chan + 1) % CD1400_NO_OF_CHANNELS;
893 		if (chan == 0)
894 			chip++;
895 	}
896 
897 	ms->ms_nports = port;
898 	printf(": %d tty%s\n", port, port == 1 ? "" : "s");
899 }
900 
901 /*
902  * open routine. returns zero if successful, else error code
903  */
904 int
905 mttyopen(dev, flags, mode, p)
906 	dev_t dev;
907 	int flags;
908 	int mode;
909 	struct proc *p;
910 {
911 	int card = MAGMA_CARD(dev);
912 	int port = MAGMA_PORT(dev);
913 	struct mtty_softc *ms;
914 	struct mtty_port *mp;
915 	struct tty *tp;
916 	struct cd1400 *cd;
917 	int error, s;
918 
919 	if( card >= mtty_cd.cd_ndevs ||
920 	    (ms = mtty_cd.cd_devs[card]) == NULL || port >= ms->ms_nports )
921 		return(ENXIO);	/* device not configured */
922 
923 	mp = &ms->ms_port[port];
924 	tp = mp->mp_tty;
925 	tp->t_dev = dev;
926 
927 	if (ISSET(tp->t_state, TS_ISOPEN) &&
928 	    ISSET(tp->t_state, TS_XCLUDE) &&
929 	    p->p_ucred->cr_uid != 0)
930 		return (EBUSY);
931 
932 	s = spltty();
933 
934 	if( !ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
935 
936 		/* set defaults */
937 		ttychars(tp);
938 		tp->t_iflag = TTYDEF_IFLAG;
939 		tp->t_oflag = TTYDEF_OFLAG;
940 		tp->t_cflag = TTYDEF_CFLAG;
941 		if( ISSET(mp->mp_openflags, TIOCFLAG_CLOCAL) )
942 			SET(tp->t_cflag, CLOCAL);
943 		if( ISSET(mp->mp_openflags, TIOCFLAG_CRTSCTS) )
944 			SET(tp->t_cflag, CRTSCTS);
945 		if( ISSET(mp->mp_openflags, TIOCFLAG_MDMBUF) )
946 			SET(tp->t_cflag, MDMBUF);
947 		tp->t_lflag = TTYDEF_LFLAG;
948 		tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
949 
950 		/* init ring buffer */
951 		mp->mp_rput = mp->mp_rget = mp->mp_rbuf;
952 
953 		/* reset CD1400 channel */
954 		cd = mp->mp_cd1400;
955 		cd1400_write_reg(cd, CD1400_CAR, mp->mp_channel);
956 		cd1400_write_ccr(cd, CD1400_CCR_CMDRESET);
957 
958 		/* encode the port number in top half of LIVR */
959 		cd1400_write_reg(cd, CD1400_LIVR, port << 4 );
960 
961 		/* sets parameters and raises DTR */
962 		(void)mtty_param(tp, &tp->t_termios);
963 
964 		/* set tty watermarks */
965 		ttsetwater(tp);
966 
967 		/* enable service requests */
968 		cd1400_write_reg(cd, CD1400_SRER,
969 				 CD1400_SRER_RXDATA | CD1400_SRER_MDMCH);
970 
971 		/* tell the tty about the carrier status */
972 		if( ISSET(mp->mp_openflags, TIOCFLAG_SOFTCAR) ||
973 		    mp->mp_carrier )
974 			SET(tp->t_state, TS_CARR_ON);
975 		else
976 			CLR(tp->t_state, TS_CARR_ON);
977 	}
978 	splx(s);
979 
980 	error = ttyopen(tp, MTTY_DIALOUT(dev), ISSET(flags, O_NONBLOCK));
981 	if (error != 0)
982 		goto bad;
983 
984 	error = (*tp->t_linesw->l_open)(dev, tp);
985 	if (error != 0)
986 		goto bad;
987 
988 bad:
989 	if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
990 		/*
991 		 * We failed to open the device, and nobody else had it opened.
992 		 * Clean up the state as appropriate.
993 		 */
994 		/* XXX - do that here */
995 	}
996 
997 	return (error);
998 }
999 
1000 /*
1001  * close routine. returns zero if successful, else error code
1002  */
1003 int
1004 mttyclose(dev, flag, mode, p)
1005 	dev_t dev;
1006 	int flag;
1007 	int mode;
1008 	struct proc *p;
1009 {
1010 	struct mtty_softc *ms = mtty_cd.cd_devs[MAGMA_CARD(dev)];
1011 	struct mtty_port *mp = &ms->ms_port[MAGMA_PORT(dev)];
1012 	struct tty *tp = mp->mp_tty;
1013 	int s;
1014 
1015 	(*tp->t_linesw->l_close)(tp, flag);
1016 	ttyclose(tp);
1017 
1018 	s = spltty();
1019 
1020 	/* if HUPCL is set, and the tty is no longer open
1021 	 * shut down the port
1022 	 */
1023 	if( ISSET(tp->t_cflag, HUPCL) || !ISSET(tp->t_state, TS_ISOPEN) ) {
1024 		/* XXX wait until FIFO is empty before turning off the channel
1025 		struct cd1400 *cd = mp->mp_cd1400;
1026 		*/
1027 
1028 		/* drop DTR and RTS */
1029 		(void)mtty_modem_control(mp, 0, DMSET);
1030 
1031 		/* turn off the channel
1032 		cd1400_write_reg(cd, CD1400_CAR, mp->mp_channel);
1033 		cd1400_write_ccr(cd, CD1400_CCR_CMDRESET);
1034 		*/
1035 	}
1036 
1037 	splx(s);
1038 
1039 	return(0);
1040 }
1041 
1042 /*
1043  * Read routine
1044  */
1045 int
1046 mttyread(dev, uio, flags)
1047 	dev_t dev;
1048 	struct uio *uio;
1049 	int flags;
1050 {
1051 	struct mtty_softc *ms = mtty_cd.cd_devs[MAGMA_CARD(dev)];
1052 	struct mtty_port *mp = &ms->ms_port[MAGMA_PORT(dev)];
1053 	struct tty *tp = mp->mp_tty;
1054 
1055 	return( (*tp->t_linesw->l_read)(tp, uio, flags) );
1056 }
1057 
1058 /*
1059  * Write routine
1060  */
1061 int
1062 mttywrite(dev, uio, flags)
1063 	dev_t dev;
1064 	struct uio *uio;
1065 	int flags;
1066 {
1067 	struct mtty_softc *ms = mtty_cd.cd_devs[MAGMA_CARD(dev)];
1068 	struct mtty_port *mp = &ms->ms_port[MAGMA_PORT(dev)];
1069 	struct tty *tp = mp->mp_tty;
1070 
1071 	return( (*tp->t_linesw->l_write)(tp, uio, flags) );
1072 }
1073 
1074 /*
1075  * Poll routine
1076  */
1077 int
1078 mttypoll(dev, events, p)
1079 	dev_t dev;
1080 	int events;
1081 	struct proc *p;
1082 {
1083 	struct mtty_softc *ms = mtty_cd.cd_devs[MAGMA_CARD(dev)];
1084 	struct mtty_port *mp = &ms->ms_port[MAGMA_PORT(dev)];
1085 	struct tty *tp = mp->mp_tty;
1086 
1087 	return ((*tp->t_linesw->l_poll)(tp, events, p));
1088 }
1089 
1090 /*
1091  * return tty pointer
1092  */
1093 struct tty *
1094 mttytty(dev)
1095 	dev_t dev;
1096 {
1097 	struct mtty_softc *ms = mtty_cd.cd_devs[MAGMA_CARD(dev)];
1098 	struct mtty_port *mp = &ms->ms_port[MAGMA_PORT(dev)];
1099 
1100 	return(mp->mp_tty);
1101 }
1102 
1103 /*
1104  * ioctl routine
1105  */
1106 int
1107 mttyioctl(dev, cmd, data, flags, p)
1108 	dev_t dev;
1109 	u_long cmd;
1110 	caddr_t data;
1111 	int flags;
1112 	struct proc *p;
1113 {
1114 	struct mtty_softc *ms = mtty_cd.cd_devs[MAGMA_CARD(dev)];
1115 	struct mtty_port *mp = &ms->ms_port[MAGMA_PORT(dev)];
1116 	struct tty *tp = mp->mp_tty;
1117 	int error;
1118 
1119 	error = (*tp->t_linesw->l_ioctl)(tp, cmd, data, flags, p);
1120 	if( error != EPASSTHROUGH ) return(error);
1121 
1122 	error = ttioctl(tp, cmd, data, flags, p);
1123 	if( error != EPASSTHROUGH ) return(error);
1124 
1125 	error = 0;
1126 
1127 	switch(cmd) {
1128 	case TIOCSBRK:	/* set break */
1129 		SET(mp->mp_flags, MTTYF_SET_BREAK);
1130 		cd1400_enable_transmitter(mp->mp_cd1400, mp->mp_channel);
1131 		break;
1132 
1133 	case TIOCCBRK:	/* clear break */
1134 		SET(mp->mp_flags, MTTYF_CLR_BREAK);
1135 		cd1400_enable_transmitter(mp->mp_cd1400, mp->mp_channel);
1136 		break;
1137 
1138 	case TIOCSDTR:	/* set DTR */
1139 		mtty_modem_control(mp, TIOCM_DTR, DMBIS);
1140 		break;
1141 
1142 	case TIOCCDTR:	/* clear DTR */
1143 		mtty_modem_control(mp, TIOCM_DTR, DMBIC);
1144 		break;
1145 
1146 	case TIOCMSET:	/* set modem lines */
1147 		mtty_modem_control(mp, *((int *)data), DMSET);
1148 		break;
1149 
1150 	case TIOCMBIS:	/* bit set modem lines */
1151 		mtty_modem_control(mp, *((int *)data), DMBIS);
1152 		break;
1153 
1154 	case TIOCMBIC:	/* bit clear modem lines */
1155 		mtty_modem_control(mp, *((int *)data), DMBIC);
1156 		break;
1157 
1158 	case TIOCMGET:	/* get modem lines */
1159 		*((int *)data) = mtty_modem_control(mp, 0, DMGET);
1160 		break;
1161 
1162 	case TIOCGFLAGS:
1163 		*((int *)data) = mp->mp_openflags;
1164 		break;
1165 
1166 	case TIOCSFLAGS:
1167 		if( suser(p->p_ucred, &p->p_acflag) )
1168 			error = EPERM;
1169 		else
1170 			mp->mp_openflags = *((int *)data) &
1171 				(TIOCFLAG_SOFTCAR | TIOCFLAG_CLOCAL |
1172 				TIOCFLAG_CRTSCTS | TIOCFLAG_MDMBUF);
1173 		break;
1174 
1175 	default:
1176 		error = EPASSTHROUGH;
1177 	}
1178 
1179 	return(error);
1180 }
1181 
1182 /*
1183  * Stop output, e.g., for ^S or output flush.
1184  */
1185 void
1186 mttystop(tp, flags)
1187 	struct tty *tp;
1188 	int flags;
1189 {
1190 	struct mtty_softc *ms = mtty_cd.cd_devs[MAGMA_CARD(tp->t_dev)];
1191 	struct mtty_port *mp = &ms->ms_port[MAGMA_PORT(tp->t_dev)];
1192 	int s;
1193 
1194 	s = spltty();
1195 
1196 	if( ISSET(tp->t_state, TS_BUSY) ) {
1197 		if( !ISSET(tp->t_state, TS_TTSTOP) )
1198 			SET(tp->t_state, TS_FLUSH);
1199 
1200 		/*
1201 		 * the transmit interrupt routine will disable transmit when it
1202 		 * notices that MTTYF_STOP has been set.
1203 		 */
1204 		SET(mp->mp_flags, MTTYF_STOP);
1205 	}
1206 
1207 	splx(s);
1208 }
1209 
1210 /*
1211  * Start output, after a stop.
1212  */
1213 void
1214 mtty_start(tp)
1215 	struct tty *tp;
1216 {
1217 	struct mtty_softc *ms = mtty_cd.cd_devs[MAGMA_CARD(tp->t_dev)];
1218 	struct mtty_port *mp = &ms->ms_port[MAGMA_PORT(tp->t_dev)];
1219 	int s;
1220 
1221 	s = spltty();
1222 
1223 	/* we only need to do something if we are not already busy
1224 	 * or delaying or stopped
1225 	 */
1226 	if( !ISSET(tp->t_state, TS_TTSTOP | TS_TIMEOUT | TS_BUSY) ) {
1227 
1228 		/* if we are sleeping and output has drained below
1229 		 * low water mark, awaken
1230 		 */
1231 		if( tp->t_outq.c_cc <= tp->t_lowat ) {
1232 			if( ISSET(tp->t_state, TS_ASLEEP) ) {
1233 				CLR(tp->t_state, TS_ASLEEP);
1234 				wakeup(&tp->t_outq);
1235 			}
1236 
1237 			selwakeup(&tp->t_wsel);
1238 		}
1239 
1240 		/* if something to send, start transmitting
1241 		 */
1242 		if( tp->t_outq.c_cc ) {
1243 			mp->mp_txc = ndqb(&tp->t_outq, 0);
1244 			mp->mp_txp = tp->t_outq.c_cf;
1245 			SET(tp->t_state, TS_BUSY);
1246 			cd1400_enable_transmitter(mp->mp_cd1400, mp->mp_channel);
1247 		}
1248 	}
1249 
1250 	splx(s);
1251 }
1252 
1253 /*
1254  * set/get modem line status
1255  *
1256  * bits can be: TIOCM_DTR, TIOCM_RTS, TIOCM_CTS, TIOCM_CD, TIOCM_RI, TIOCM_DSR
1257  *
1258  * note that DTR and RTS lines are exchanged, and that DSR is
1259  * not available on the LC2+1Sp card (used as CD)
1260  *
1261  * only let them fiddle with RTS if CRTSCTS is not enabled
1262  */
1263 int
1264 mtty_modem_control(mp, bits, howto)
1265 	struct mtty_port *mp;
1266 	int bits;
1267 	int howto;
1268 {
1269 	struct cd1400 *cd = mp->mp_cd1400;
1270 	struct tty *tp = mp->mp_tty;
1271 	int s, msvr;
1272 
1273 	s = spltty();
1274 
1275 	cd1400_write_reg(cd, CD1400_CAR, mp->mp_channel);
1276 
1277 	switch(howto) {
1278 	case DMGET:	/* get bits */
1279 		bits = 0;
1280 
1281 		bits |= TIOCM_LE;
1282 
1283 		msvr = cd1400_read_reg(cd, CD1400_MSVR1);
1284 		if( msvr & CD1400_MSVR1_RTS ) bits |= TIOCM_DTR;
1285 
1286 		msvr = cd1400_read_reg(cd, CD1400_MSVR2);
1287 		if( msvr & CD1400_MSVR2_DTR ) bits |= TIOCM_RTS;
1288 		if( msvr & CD1400_MSVR2_CTS ) bits |= TIOCM_CTS;
1289 		if( msvr & CD1400_MSVR2_RI ) bits |= TIOCM_RI;
1290 		if( msvr & CD1400_MSVR2_DSR ) bits |= (cd->cd_parmode ? TIOCM_CD : TIOCM_DSR);
1291 		if( msvr & CD1400_MSVR2_CD ) bits |= (cd->cd_parmode ? 0 : TIOCM_CD);
1292 
1293 		break;
1294 
1295 	case DMSET:	/* reset bits */
1296 		if( !ISSET(tp->t_cflag, CRTSCTS) )
1297 			cd1400_write_reg(cd, CD1400_MSVR2, ((bits & TIOCM_RTS) ? CD1400_MSVR2_DTR : 0));
1298 
1299 		cd1400_write_reg(cd, CD1400_MSVR1, ((bits & TIOCM_DTR) ? CD1400_MSVR1_RTS : 0));
1300 
1301 		break;
1302 
1303 	case DMBIS:	/* set bits */
1304 		if( (bits & TIOCM_RTS) && !ISSET(tp->t_cflag, CRTSCTS) )
1305 			cd1400_write_reg(cd, CD1400_MSVR2, CD1400_MSVR2_DTR);
1306 
1307 		if( bits & TIOCM_DTR )
1308 			cd1400_write_reg(cd, CD1400_MSVR1, CD1400_MSVR1_RTS);
1309 
1310 		break;
1311 
1312 	case DMBIC:	/* clear bits */
1313 		if( (bits & TIOCM_RTS) && !ISSET(tp->t_cflag, CRTSCTS) )
1314 			cd1400_write_reg(cd, CD1400_MSVR2, 0);
1315 
1316 		if( bits & TIOCM_DTR )
1317 			cd1400_write_reg(cd, CD1400_MSVR1, 0);
1318 
1319 		break;
1320 	}
1321 
1322 	splx(s);
1323 	return(bits);
1324 }
1325 
1326 /*
1327  * Set tty parameters, returns error or 0 on success
1328  */
1329 int
1330 mtty_param(tp, t)
1331 	struct tty *tp;
1332 	struct termios *t;
1333 {
1334 	struct mtty_softc *ms = mtty_cd.cd_devs[MAGMA_CARD(tp->t_dev)];
1335 	struct mtty_port *mp = &ms->ms_port[MAGMA_PORT(tp->t_dev)];
1336 	struct cd1400 *cd = mp->mp_cd1400;
1337 	int rbpr, tbpr, rcor, tcor;
1338 	u_char mcor1 = 0, mcor2 = 0;
1339 	int s, opt;
1340 
1341 	if( t->c_ospeed && cd1400_compute_baud(t->c_ospeed, cd->cd_clock, &tcor, &tbpr) )
1342 		return(EINVAL);
1343 
1344 	if( t->c_ispeed && cd1400_compute_baud(t->c_ispeed, cd->cd_clock, &rcor, &rbpr) )
1345 		return(EINVAL);
1346 
1347 	s = spltty();
1348 
1349 	/* hang up the line if ospeed is zero, else raise DTR */
1350 	(void)mtty_modem_control(mp, TIOCM_DTR, (t->c_ospeed == 0 ? DMBIC : DMBIS));
1351 
1352 	/* select channel, done in mtty_modem_control() */
1353 	/* cd1400_write_reg(cd, CD1400_CAR, mp->mp_channel); */
1354 
1355 	/* set transmit speed */
1356 	if( t->c_ospeed ) {
1357 		cd1400_write_reg(cd, CD1400_TCOR, tcor);
1358 		cd1400_write_reg(cd, CD1400_TBPR, tbpr);
1359 	}
1360 
1361 	/* set receive speed */
1362 	if( t->c_ispeed ) {
1363 		cd1400_write_reg(cd, CD1400_RCOR, rcor);
1364 		cd1400_write_reg(cd, CD1400_RBPR, rbpr);
1365 	}
1366 
1367 	/* enable transmitting and receiving on this channel */
1368 	opt = CD1400_CCR_CMDCHANCTL | CD1400_CCR_XMTEN | CD1400_CCR_RCVEN;
1369 	cd1400_write_ccr(cd, opt);
1370 
1371 	/* set parity, data and stop bits */
1372 	opt = 0;
1373 	if( ISSET(t->c_cflag, PARENB) )
1374 		opt |= (ISSET(t->c_cflag, PARODD) ? CD1400_COR1_PARODD : CD1400_COR1_PARNORMAL);
1375 
1376 	if( !ISSET(t->c_iflag, INPCK) )
1377 		opt |= CD1400_COR1_NOINPCK; /* no parity checking */
1378 
1379 	if( ISSET(t->c_cflag, CSTOPB) )
1380 		opt |= CD1400_COR1_STOP2;
1381 
1382 	switch( t->c_cflag & CSIZE ) {
1383 	case CS5:
1384 		opt |= CD1400_COR1_CS5;
1385 		break;
1386 
1387 	case CS6:
1388 		opt |= CD1400_COR1_CS6;
1389 		break;
1390 
1391 	case CS7:
1392 		opt |= CD1400_COR1_CS7;
1393 		break;
1394 
1395 	default:
1396 		opt |= CD1400_COR1_CS8;
1397 		break;
1398 	}
1399 
1400 	cd1400_write_reg(cd, CD1400_COR1, opt);
1401 
1402 	/*
1403 	 * enable Embedded Transmit Commands (for breaks)
1404 	 * use the CD1400 automatic CTS flow control if CRTSCTS is set
1405 	 */
1406 	opt = CD1400_COR2_ETC;
1407 	if( ISSET(t->c_cflag, CRTSCTS) ) opt |= CD1400_COR2_CCTS_OFLOW;
1408 	cd1400_write_reg(cd, CD1400_COR2, opt);
1409 
1410 	cd1400_write_reg(cd, CD1400_COR3, MTTY_RX_FIFO_THRESHOLD);
1411 
1412 	cd1400_write_ccr(cd, CD1400_CCR_CMDCORCHG | CD1400_CCR_COR1 | CD1400_CCR_COR2 | CD1400_CCR_COR3);
1413 
1414 	cd1400_write_reg(cd, CD1400_COR4, CD1400_COR4_PFO_EXCEPTION);
1415 	cd1400_write_reg(cd, CD1400_COR5, 0);
1416 
1417 	/*
1418 	 * if automatic RTS handshaking enabled, set DTR threshold
1419 	 * (RTS and DTR lines are switched, CD1400 thinks its DTR)
1420 	 */
1421 	if( ISSET(t->c_cflag, CRTSCTS) )
1422 		mcor1 = MTTY_RX_DTR_THRESHOLD;
1423 
1424 	/* set up `carrier detect' interrupts */
1425 	if( cd->cd_parmode ) {
1426 		SET(mcor1, CD1400_MCOR1_DSRzd);
1427 		SET(mcor2, CD1400_MCOR2_DSRod);
1428 	} else {
1429 		SET(mcor1, CD1400_MCOR1_CDzd);
1430 		SET(mcor2, CD1400_MCOR2_CDod);
1431 	}
1432 
1433 	cd1400_write_reg(cd, CD1400_MCOR1, mcor1);
1434 	cd1400_write_reg(cd, CD1400_MCOR2, mcor2);
1435 
1436 	/* receive timeout 2ms */
1437 	cd1400_write_reg(cd, CD1400_RTPR, 2);
1438 
1439 	splx(s);
1440 	return(0);
1441 }
1442 
1443 /************************************************************************
1444  *
1445  *  MBPP Routines
1446  *
1447  *	mbpp_match	match one mbpp device
1448  *	mbpp_attach	attach mbpp devices
1449  *	mbppopen	open mbpp device
1450  *	mbppclose	close mbpp device
1451  *	mbppioctl	do ioctl on mbpp
1452  *	mbpp_rw		general rw routine
1453  *	mbpp_timeout	rw timeout
1454  *	mbpp_start	rw start after delay
1455  *	mbpp_send	send data
1456  *	mbpp_recv	recv data
1457  */
1458 
1459 int
1460 mbpp_match(parent, cf, args)
1461 	struct device *parent;
1462 	struct cfdata *cf;
1463 	void *args;
1464 {
1465 	struct magma_softc *sc = (struct magma_softc *)parent;
1466 
1467 	return( args == mbpp_match && sc->ms_board->mb_npar && sc->ms_mbpp == NULL );
1468 }
1469 
1470 void
1471 mbpp_attach(parent, dev, args)
1472 	struct device *parent;
1473 	struct device *dev;
1474 	void *args;
1475 {
1476 	struct magma_softc *sc = (struct magma_softc *)parent;
1477 	struct mbpp_softc *ms = (struct mbpp_softc *)dev;
1478 	struct mbpp_port *mp;
1479 	int port;
1480 
1481 	sc->ms_mbpp = ms;
1482 	dprintf((" addr %p", ms));
1483 
1484 	for( port = 0 ; port < sc->ms_board->mb_npar ; port++ ) {
1485 		mp = &ms->ms_port[port];
1486 
1487 		callout_init(&mp->mp_timeout_ch);
1488 		callout_init(&mp->mp_start_ch);
1489 
1490 		if( sc->ms_ncd1190 )
1491 			mp->mp_cd1190 = &sc->ms_cd1190[port];
1492 		else
1493 			mp->mp_cd1400 = &sc->ms_cd1400[0];
1494 	}
1495 
1496 	ms->ms_nports = port;
1497 	printf(": %d port%s\n", port, port == 1 ? "" : "s");
1498 }
1499 
1500 /*
1501  * open routine. returns zero if successful, else error code
1502  */
1503 int
1504 mbppopen(dev, flags, mode, p)
1505 	dev_t dev;
1506 	int flags;
1507 	int mode;
1508 	struct proc *p;
1509 {
1510 	int card = MAGMA_CARD(dev);
1511 	int port = MAGMA_PORT(dev);
1512 	struct mbpp_softc *ms;
1513 	struct mbpp_port *mp;
1514 	int s;
1515 
1516 	if( card >= mbpp_cd.cd_ndevs ||
1517 	    (ms = mbpp_cd.cd_devs[card]) == NULL || port >= ms->ms_nports )
1518 		return(ENXIO);
1519 
1520 	mp = &ms->ms_port[port];
1521 
1522 	s = spltty();
1523 	if( ISSET(mp->mp_flags, MBPPF_OPEN) ) {
1524 		splx(s);
1525 		return(EBUSY);
1526 	}
1527 	SET(mp->mp_flags, MBPPF_OPEN);
1528 	splx(s);
1529 
1530 	/* set defaults */
1531 	mp->mp_burst = MBPP_BURST;
1532 	mp->mp_timeout = mbpp_mstohz(MBPP_TIMEOUT);
1533 	mp->mp_delay = mbpp_mstohz(MBPP_DELAY);
1534 
1535 	/* init chips */
1536 	if( mp->mp_cd1400 ) {	/* CD1400 */
1537 		struct cd1400 *cd = mp->mp_cd1400;
1538 
1539 		/* set up CD1400 channel */
1540 		s = spltty();
1541 		cd1400_write_reg(cd, CD1400_CAR, 0);
1542 		cd1400_write_ccr(cd, CD1400_CCR_CMDRESET);
1543 		cd1400_write_reg(cd, CD1400_LIVR, (1<<3));
1544 		splx(s);
1545 	} else {		/* CD1190 */
1546 		mp->mp_flags = 0;
1547 		return (ENXIO);
1548 	}
1549 
1550 	return (0);
1551 }
1552 
1553 /*
1554  * close routine. returns zero if successful, else error code
1555  */
1556 int
1557 mbppclose(dev, flag, mode, p)
1558 	dev_t dev;
1559 	int flag;
1560 	int mode;
1561 	struct proc *p;
1562 {
1563 	struct mbpp_softc *ms = mbpp_cd.cd_devs[MAGMA_CARD(dev)];
1564 	struct mbpp_port *mp = &ms->ms_port[MAGMA_PORT(dev)];
1565 
1566 	mp->mp_flags = 0;
1567 	return(0);
1568 }
1569 
1570 /*
1571  * ioctl routine
1572  */
1573 int
1574 mbppioctl(dev, cmd, data, flags, p)
1575 	dev_t dev;
1576 	u_long cmd;
1577 	caddr_t data;
1578 	int flags;
1579 	struct proc *p;
1580 {
1581 	struct mbpp_softc *ms = mbpp_cd.cd_devs[MAGMA_CARD(dev)];
1582 	struct mbpp_port *mp = &ms->ms_port[MAGMA_PORT(dev)];
1583 	struct mbpp_param *bp;
1584 	int error = 0;
1585 	int s;
1586 
1587 	switch(cmd) {
1588 	case MBPPIOCSPARAM:
1589 		bp = (struct mbpp_param *)data;
1590 		if( bp->bp_burst < MBPP_BURST_MIN || bp->bp_burst > MBPP_BURST_MAX ||
1591 		    bp->bp_delay < MBPP_DELAY_MIN || bp->bp_delay > MBPP_DELAY_MIN ) {
1592 			error = EINVAL;
1593 		} else {
1594 			mp->mp_burst = bp->bp_burst;
1595 			mp->mp_timeout = mbpp_mstohz(bp->bp_timeout);
1596 			mp->mp_delay = mbpp_mstohz(bp->bp_delay);
1597 		}
1598 		break;
1599 	case MBPPIOCGPARAM:
1600 		bp = (struct mbpp_param *)data;
1601 		bp->bp_burst = mp->mp_burst;
1602 		bp->bp_timeout = mbpp_hztoms(mp->mp_timeout);
1603 		bp->bp_delay = mbpp_hztoms(mp->mp_delay);
1604 		break;
1605 	case MBPPIOCGSTAT:
1606 		/* XXX make this more generic */
1607 		s = spltty();
1608 		cd1400_write_reg(mp->mp_cd1400, CD1400_CAR, 0);
1609 		*(int *)data = cd1400_read_reg(mp->mp_cd1400, CD1400_PSVR);
1610 		splx(s);
1611 		break;
1612 	default:
1613 		error = ENOTTY;
1614 	}
1615 
1616 	return(error);
1617 }
1618 
1619 int
1620 mbpp_rw(dev, uio, flag)
1621 	dev_t dev;
1622 	struct uio *uio;
1623 	int flag;
1624 {
1625 	int card = MAGMA_CARD(dev);
1626 	int port = MAGMA_PORT(dev);
1627 	struct mbpp_softc *ms = mbpp_cd.cd_devs[card];
1628 	struct mbpp_port *mp = &ms->ms_port[port];
1629 	caddr_t buffer, ptr;
1630 	int buflen, cnt, len;
1631 	int s, error = 0;
1632 	int gotdata = 0;
1633 
1634 	if( uio->uio_resid == 0 )
1635 		return(0);
1636 
1637 	buflen = min(uio->uio_resid, mp->mp_burst);
1638 	buffer = malloc(buflen, M_DEVBUF, M_WAITOK);
1639 	if( buffer == NULL )
1640 		return(ENOMEM);
1641 
1642 	SET(mp->mp_flags, MBPPF_UIO);
1643 
1644 	/*
1645 	 * start timeout, if needed
1646 	 */
1647 	if( mp->mp_timeout > 0 ) {
1648 		SET(mp->mp_flags, MBPPF_TIMEOUT);
1649 		callout_reset(&mp->mp_timeout_ch, mp->mp_timeout,
1650 		    mbpp_timeout, mp);
1651 	}
1652 
1653 	len = cnt = 0;
1654 	while( uio->uio_resid > 0 ) {
1655 		len = min(buflen, uio->uio_resid);
1656 		ptr = buffer;
1657 
1658 		if( uio->uio_rw == UIO_WRITE ) {
1659 			error = uiomove(ptr, len, uio);
1660 			if( error ) break;
1661 		}
1662 again:		/* goto bad */
1663 		/* timed out?  */
1664 		if( !ISSET(mp->mp_flags, MBPPF_UIO) )
1665 			break;
1666 
1667 		/*
1668 		 * perform the operation
1669 		 */
1670 		if( uio->uio_rw == UIO_WRITE ) {
1671 			cnt = mbpp_send(mp, ptr, len);
1672 		} else {
1673 			cnt = mbpp_recv(mp, ptr, len);
1674 		}
1675 
1676 		if( uio->uio_rw == UIO_READ ) {
1677 			if( cnt ) {
1678 				error = uiomove(ptr, cnt, uio);
1679 				if( error ) break;
1680 				gotdata++;
1681 			}
1682 			else if( gotdata )	/* consider us done */
1683 				break;
1684 		}
1685 
1686 		/* timed out?  */
1687 		if( !ISSET(mp->mp_flags, MBPPF_UIO) )
1688 			break;
1689 
1690 		/*
1691 		 * poll delay?
1692 		 */
1693 		if( mp->mp_delay > 0 ) {
1694 			s = splsoftclock();
1695 			SET(mp->mp_flags, MBPPF_DELAY);
1696 			callout_reset(&mp->mp_start_ch, mp->mp_delay,
1697 			    mbpp_start, mp);
1698 			error = tsleep(mp, PCATCH | PZERO, "mbppdelay", 0);
1699 			splx(s);
1700 			if( error ) break;
1701 		}
1702 
1703 		/*
1704 		 * don't call uiomove again until we used all the data we grabbed
1705 		 */
1706 		if( uio->uio_rw == UIO_WRITE && cnt != len ) {
1707 			ptr += cnt;
1708 			len -= cnt;
1709 			cnt = 0;
1710 			goto again;
1711 		}
1712 	}
1713 
1714 	/*
1715 	 * clear timeouts
1716 	 */
1717 	s = splsoftclock();
1718 	if( ISSET(mp->mp_flags, MBPPF_TIMEOUT) ) {
1719 		callout_stop(&mp->mp_timeout_ch);
1720 		CLR(mp->mp_flags, MBPPF_TIMEOUT);
1721 	}
1722 	if( ISSET(mp->mp_flags, MBPPF_DELAY) ) {
1723 		callout_stop(&mp->mp_start_ch);
1724 		CLR(mp->mp_flags, MBPPF_DELAY);
1725 	}
1726 	splx(s);
1727 
1728 	/*
1729 	 * adjust for those chars that we uiomoved but never actually wrote
1730 	 */
1731 	if( uio->uio_rw == UIO_WRITE && cnt != len ) {
1732 		uio->uio_resid += (len - cnt);
1733 	}
1734 
1735 	free(buffer, M_DEVBUF);
1736 	return(error);
1737 }
1738 
1739 void
1740 mbpp_timeout(arg)
1741 	void *arg;
1742 {
1743 	struct mbpp_port *mp = arg;
1744 
1745 	CLR(mp->mp_flags, MBPPF_UIO | MBPPF_TIMEOUT);
1746 	wakeup(mp);
1747 }
1748 
1749 void
1750 mbpp_start(arg)
1751 	void *arg;
1752 {
1753 	struct mbpp_port *mp = arg;
1754 
1755 	CLR(mp->mp_flags, MBPPF_DELAY);
1756 	wakeup(mp);
1757 }
1758 
1759 int
1760 mbpp_send(mp, ptr, len)
1761 	struct mbpp_port *mp;
1762 	caddr_t ptr;
1763 	int len;
1764 {
1765 	int s;
1766 	struct cd1400 *cd = mp->mp_cd1400;
1767 
1768 	/* set up io information */
1769 	mp->mp_ptr = ptr;
1770 	mp->mp_cnt = len;
1771 
1772 	/* start transmitting */
1773 	s = spltty();
1774 	if( cd ) {
1775 		cd1400_write_reg(cd, CD1400_CAR, 0);
1776 
1777 		/* output strobe width ~1microsecond */
1778 		cd1400_write_reg(cd, CD1400_TBPR, 10);
1779 
1780 		/* enable channel */
1781 		cd1400_write_ccr(cd, CD1400_CCR_CMDCHANCTL | CD1400_CCR_XMTEN);
1782 		cd1400_write_reg(cd, CD1400_SRER, CD1400_SRER_TXRDY);
1783 	}
1784 
1785 	/* ZZzzz... */
1786 	tsleep(mp, PCATCH | PZERO, "mbpp_send", 0);
1787 
1788 	/* stop transmitting */
1789 	if( cd ) {
1790 		cd1400_write_reg(cd, CD1400_CAR, 0);
1791 
1792 		/* disable transmitter */
1793 		cd1400_write_reg(cd, CD1400_SRER, 0);
1794 		cd1400_write_ccr(cd, CD1400_CCR_CMDCHANCTL | CD1400_CCR_XMTDIS);
1795 
1796 		/* flush fifo */
1797 		cd1400_write_ccr(cd, CD1400_CCR_CMDRESET | CD1400_CCR_FTF);
1798 	}
1799 	splx(s);
1800 
1801 	/* return number of chars sent */
1802 	return(len - mp->mp_cnt);
1803 }
1804 
1805 int
1806 mbpp_recv(mp, ptr, len)
1807 	struct mbpp_port *mp;
1808 	caddr_t ptr;
1809 	int len;
1810 {
1811 	int s;
1812 	struct cd1400 *cd = mp->mp_cd1400;
1813 
1814 	/* set up io information */
1815 	mp->mp_ptr = ptr;
1816 	mp->mp_cnt = len;
1817 
1818 	/* start receiving */
1819 	s = spltty();
1820 	if( cd ) {
1821 	int rcor, rbpr;
1822 
1823 		cd1400_write_reg(cd, CD1400_CAR, 0);
1824 
1825 		/* input strobe at 100kbaud (10microseconds) */
1826 		cd1400_compute_baud(100000, cd->cd_clock, &rcor, &rbpr);
1827 		cd1400_write_reg(cd, CD1400_RCOR, rcor);
1828 		cd1400_write_reg(cd, CD1400_RBPR, rbpr);
1829 
1830 		/* rx threshold */
1831 		cd1400_write_reg(cd, CD1400_COR3, MBPP_RX_FIFO_THRESHOLD);
1832 		cd1400_write_ccr(cd, CD1400_CCR_CMDCORCHG | CD1400_CCR_COR3);
1833 
1834 		/* enable channel */
1835 		cd1400_write_ccr(cd, CD1400_CCR_CMDCHANCTL | CD1400_CCR_RCVEN);
1836 		cd1400_write_reg(cd, CD1400_SRER, CD1400_SRER_RXDATA);
1837 	}
1838 
1839 	/* ZZzzz... */
1840 	tsleep(mp, PCATCH | PZERO, "mbpp_recv", 0);
1841 
1842 	/* stop receiving */
1843 	if( cd ) {
1844 		cd1400_write_reg(cd, CD1400_CAR, 0);
1845 
1846 		/* disable receiving */
1847 		cd1400_write_reg(cd, CD1400_SRER, 0);
1848 		cd1400_write_ccr(cd, CD1400_CCR_CMDCHANCTL | CD1400_CCR_RCVDIS);
1849 	}
1850 	splx(s);
1851 
1852 	/* return number of chars received */
1853 	return(len - mp->mp_cnt);
1854 }
1855 
1856 int
1857 mbpp_hztoms(h)
1858 	int h;
1859 {
1860 	int m = h;
1861 
1862 	if( m > 0 )
1863 		m = m * 1000 / hz;
1864 	return(m);
1865 }
1866 
1867 int
1868 mbpp_mstohz(m)
1869 	int m;
1870 {
1871 	int h = m;
1872 
1873 	if( h > 0 ) {
1874 		h = h * hz / 1000;
1875 		if( h == 0 )
1876 			h = 1000 / hz;
1877 	}
1878 	return(h);
1879 }
1880 
1881 #endif /* NMAGMA */
1882