xref: /netbsd-src/sys/dev/sbus/magma.c (revision 1ad9454efb13a65cd7535ccf867508cb14d9d30e)
1 /*	$NetBSD: magma.c,v 1.36 2006/09/23 04:45:49 jmcneill Exp $	*/
2 /*
3  * magma.c
4  *
5  * Copyright (c) 1998 Iain Hibbert
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Iain Hibbert
19  * 4. The name of the author may not be used to endorse or promote products
20  *    derived from this software without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
27  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
31  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  */
34 
35 /*
36  * Driver for Magma SBus Serial/Parallel cards using the Cirrus Logic
37  * CD1400 & CD1190 chips
38  */
39 
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: magma.c,v 1.36 2006/09/23 04:45:49 jmcneill Exp $");
42 
43 #if 0
44 #define MAGMA_DEBUG
45 #endif
46 
47 #include "magma.h"
48 #if NMAGMA > 0
49 
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/proc.h>
53 #include <sys/device.h>
54 #include <sys/file.h>
55 #include <sys/ioctl.h>
56 #include <sys/malloc.h>
57 #include <sys/tty.h>
58 #include <sys/time.h>
59 #include <sys/kernel.h>
60 #include <sys/syslog.h>
61 #include <sys/conf.h>
62 #include <sys/errno.h>
63 #include <sys/kauth.h>
64 
65 #include <machine/bus.h>
66 #include <machine/intr.h>
67 #include <machine/autoconf.h>
68 
69 #include <dev/sbus/sbusvar.h>
70 
71 #include <dev/ic/cd1400reg.h>
72 #include <dev/ic/cd1190reg.h>
73 
74 #include <dev/sbus/mbppio.h>
75 #include <dev/sbus/magmareg.h>
76 
77 /* supported cards
78  *
79  *  The table below lists the cards that this driver is likely to
80  *  be able to support.
81  *
82  *  Cards with parallel ports: except for the LC2+1Sp, they all use
83  *  the CD1190 chip which I know nothing about.  I've tried to leave
84  *  hooks for it so it shouldn't be too hard to add support later.
85  *  (I think somebody is working on this separately)
86  *
87  *  Thanks to Bruce at Magma for telling me the hardware offsets.
88  */
89 static struct magma_board_info supported_cards[] = {
90 	{
91 		"MAGMA_Sp", "MAGMA,4_Sp", "Magma 4 Sp", 4, 0,
92 		1, 0xa000, 0xc000, 0xe000, { 0x8000, 0, 0, 0 },
93 		0, { 0, 0 }
94 	},
95 	{
96 		"MAGMA_Sp", "MAGMA,8_Sp", "Magma 8 Sp", 8, 0,
97 		2, 0xa000, 0xc000, 0xe000, { 0x4000, 0x6000, 0, 0 },
98 		0, { 0, 0 }
99 	},
100 	{
101 		"MAGMA_Sp", "MAGMA,_8HS_Sp", "Magma Fast 8 Sp", 8, 0,
102 		2, 0x2000, 0x4000, 0x6000, { 0x8000, 0xa000, 0, 0 },
103 		0, { 0, 0 }
104 	},
105 	{
106 		"MAGMA_Sp", "MAGMA,_8SP_422", "Magma 8 Sp - 422", 8, 0,
107 		2, 0x2000, 0x4000, 0x6000, { 0x8000, 0xa000, 0, 0 },
108 		0, { 0, 0 }
109 	},
110 	{
111 		"MAGMA_Sp", "MAGMA,12_Sp", "Magma 12 Sp", 12, 0,
112 		3, 0xa000, 0xc000, 0xe000, { 0x2000, 0x4000, 0x6000, 0 },
113 		0, { 0, 0 }
114 	},
115 	{
116 		"MAGMA_Sp", "MAGMA,16_Sp", "Magma 16 Sp", 16, 0,
117 		4, 0xd000, 0xe000, 0xf000, { 0x8000, 0x9000, 0xa000, 0xb000 },
118 		0, { 0, 0 }
119 	},
120 	{
121 		"MAGMA_Sp", "MAGMA,16_Sp_2", "Magma 16 Sp", 16, 0,
122 		4, 0x2000, 0x4000, 0x6000, { 0x8000, 0xa000, 0xc000, 0xe000 },
123 		0, { 0, 0 }
124 	},
125 	{
126 		"MAGMA_Sp", "MAGMA,16HS_Sp", "Magma Fast 16 Sp", 16, 0,
127 		4, 0x2000, 0x4000, 0x6000, { 0x8000, 0xa000, 0xc000, 0xe000 },
128 		0, { 0, 0 }
129 	},
130 	{
131 		"MAGMA_Sp", "MAGMA,21_Sp", "Magma LC 2+1 Sp", 2, 1,
132 		1, 0xa000, 0xc000, 0xe000, { 0x8000, 0, 0, 0 },
133 		0, { 0, 0 }
134 	},
135 	{
136 		"MAGMA_Sp", "MAGMA,21HS_Sp", "Magma 2+1 Sp", 2, 1,
137 		1, 0xa000, 0xc000, 0xe000, { 0x4000, 0, 0, 0 },
138 		1, { 0x6000, 0 }
139 	},
140 	{
141 		"MAGMA_Sp", "MAGMA,41_Sp", "Magma 4+1 Sp", 4, 1,
142 		1, 0xa000, 0xc000, 0xe000, { 0x4000, 0, 0, 0 },
143 		1, { 0x6000, 0 }
144 	},
145 	{
146 		"MAGMA_Sp", "MAGMA,82_Sp", "Magma 8+2 Sp", 8, 2,
147 		2, 0xd000, 0xe000, 0xf000, { 0x8000, 0x9000, 0, 0 },
148 		2, { 0xa000, 0xb000 }
149 	},
150 	{
151 		"MAGMA_Sp", "MAGMA,P1_Sp", "Magma P1 Sp", 0, 1,
152 		0, 0, 0, 0, { 0, 0, 0, 0 },
153 		1, { 0x8000, 0 }
154 	},
155 	{
156 		"MAGMA_Sp", "MAGMA,P2_Sp", "Magma P2 Sp", 0, 2,
157 		0, 0, 0, 0, { 0, 0, 0, 0 },
158 		2, { 0x4000, 0x8000 }
159 	},
160 	{
161 		"MAGMA 2+1HS Sp", "", "Magma 2+1HS Sp", 2, 0,
162 		1, 0xa000, 0xc000, 0xe000, { 0x4000, 0, 0, 0 },
163 		1, { 0x8000, 0 }
164 	},
165 	{
166 		NULL, NULL, NULL, 0, 0,
167 		0, 0, 0, 0, { 0, 0, 0, 0 },
168 		0, { 0, 0 }
169 	}
170 };
171 
172 /************************************************************************
173  *
174  *  Autoconfig Stuff
175  */
176 
177 CFATTACH_DECL(magma, sizeof(struct magma_softc),
178     magma_match, magma_attach, NULL, NULL);
179 
180 CFATTACH_DECL(mtty, sizeof(struct mtty_softc),
181     mtty_match, mtty_attach, NULL, NULL);
182 
183 CFATTACH_DECL(mbpp, sizeof(struct mbpp_softc),
184     mbpp_match, mbpp_attach, NULL, NULL);
185 
186 extern struct cfdriver mtty_cd;
187 extern struct cfdriver mbpp_cd;
188 
189 dev_type_open(mttyopen);
190 dev_type_close(mttyclose);
191 dev_type_read(mttyread);
192 dev_type_write(mttywrite);
193 dev_type_ioctl(mttyioctl);
194 dev_type_stop(mttystop);
195 dev_type_tty(mttytty);
196 dev_type_poll(mttypoll);
197 
198 const struct cdevsw mtty_cdevsw = {
199 	mttyopen, mttyclose, mttyread, mttywrite, mttyioctl,
200 	mttystop, mttytty, mttypoll, nommap, ttykqfilter, D_TTY
201 };
202 
203 dev_type_open(mbppopen);
204 dev_type_close(mbppclose);
205 dev_type_read(mbpp_rw);
206 dev_type_ioctl(mbppioctl);
207 
208 const struct cdevsw mbpp_cdevsw = {
209 	mbppopen, mbppclose, mbpp_rw, mbpp_rw, mbppioctl,
210 	nostop, notty, nopoll, nommap, nokqfilter,
211 };
212 
213 /************************************************************************
214  *
215  *  CD1400 Routines
216  *
217  *	cd1400_compute_baud		calculate COR/BPR register values
218  *	cd1400_write_ccr		write a value to CD1400 ccr
219  *	cd1400_read_reg			read from a CD1400 register
220  *	cd1400_write_reg		write to a CD1400 register
221  *	cd1400_enable_transmitter	enable transmitting on CD1400 channel
222  */
223 
224 /*
225  * compute the bpr/cor pair for any baud rate
226  * returns 0 for success, 1 for failure
227  */
228 int
229 cd1400_compute_baud(speed, clock, cor, bpr)
230 	speed_t speed;
231 	int clock;
232 	int *cor, *bpr;
233 {
234 	int c, co, br;
235 
236 	if( speed < 50 || speed > 150000 )
237 		return(1);
238 
239 	for( c = 0, co = 8 ; co <= 2048 ; co <<= 2, c++ ) {
240 		br = ((clock * 1000000) + (co * speed) / 2) / (co * speed);
241 		if( br < 0x100 ) {
242 			*bpr = br;
243 			*cor = c;
244 			return(0);
245 		}
246 	}
247 
248 	return(1);
249 }
250 
251 /*
252  * Write a CD1400 channel command, should have a timeout?
253  */
254 inline void
255 cd1400_write_ccr(cd, cmd)
256 	struct cd1400 *cd;
257 	u_char cmd;
258 {
259 	while( cd1400_read_reg(cd, CD1400_CCR) )
260 		;
261 
262 	cd1400_write_reg(cd, CD1400_CCR, cmd);
263 }
264 
265 /*
266  * read a value from a cd1400 register
267  */
268 inline u_char
269 cd1400_read_reg(cd, reg)
270 	struct cd1400 *cd;
271 	int reg;
272 {
273 	return(cd->cd_reg[reg]);
274 }
275 
276 /*
277  * write a value to a cd1400 register
278  */
279 inline void
280 cd1400_write_reg(cd, reg, value)
281 	struct cd1400 *cd;
282 	int reg;
283 	u_char value;
284 {
285 	cd->cd_reg[reg] = value;
286 }
287 
288 /*
289  * enable transmit service requests for cd1400 channel
290  */
291 void
292 cd1400_enable_transmitter(cd, channel)
293 	struct cd1400 *cd;
294 	int channel;
295 {
296 	int s, srer;
297 
298 	s = spltty();
299 	cd1400_write_reg(cd, CD1400_CAR, channel);
300 	srer = cd1400_read_reg(cd, CD1400_SRER);
301 	SET(srer, CD1400_SRER_TXRDY);
302 	cd1400_write_reg(cd, CD1400_SRER, srer);
303 	splx(s);
304 }
305 
306 /************************************************************************
307  *
308  *  CD1190 Routines
309  */
310 
311 /* well, there are none yet */
312 
313 /************************************************************************
314  *
315  *  Magma Routines
316  *
317  * magma_match		reports if we have a magma board available
318  * magma_attach		attaches magma boards to the sbus
319  * magma_hard		hardware level interrupt routine
320  * magma_soft		software level interrupt routine
321  */
322 
323 int
324 magma_match(parent, cf, aux)
325 	struct device *parent;
326 	struct cfdata *cf;
327 	void *aux;
328 {
329 	struct sbus_attach_args *sa = aux;
330 	struct magma_board_info *card;
331 
332 	/* See if we support this device */
333 	for (card = supported_cards; ; card++) {
334 		if (card->mb_sbusname == NULL)
335 			/* End of table: no match */
336 			return (0);
337 		if (strcmp(sa->sa_name, card->mb_sbusname) == 0)
338 			break;
339 	}
340 
341 	dprintf(("magma: matched `%s'\n", sa->sa_name));
342 	dprintf(("magma: magma_prom `%s'\n",
343 		prom_getpropstring(sa->sa_node, "magma_prom")));
344 	dprintf(("magma: intlevels `%s'\n",
345 		prom_getpropstring(sa->sa_node, "intlevels")));
346 	dprintf(("magma: chiprev `%s'\n",
347 		prom_getpropstring(sa->sa_node, "chiprev")));
348 	dprintf(("magma: clock `%s'\n",
349 		prom_getpropstring(sa->sa_node, "clock")));
350 
351 	return (1);
352 }
353 
354 void
355 magma_attach(parent, self, aux)
356 	struct device *parent;
357 	struct device *self;
358 	void *aux;
359 {
360 	struct sbus_attach_args *sa = aux;
361 	struct magma_softc *sc = (struct magma_softc *)self;
362 	struct magma_board_info *card;
363 	bus_space_handle_t bh;
364 	char *magma_prom, *clockstr;
365 	int cd_clock;
366 	int node, chip;
367 
368 	node = sa->sa_node;
369 
370 	/*
371 	 * Find the card model.
372 	 * Older models all have sbus node name `MAGMA_Sp' (see
373 	 * `supported_cards[]' above), and must be distinguished
374 	 * by the `magma_prom' property.
375 	 */
376 	magma_prom = prom_getpropstring(node, "magma_prom");
377 
378 	for (card = supported_cards; card->mb_name != NULL; card++) {
379 		if (strcmp(sa->sa_name, card->mb_sbusname) != 0)
380 			/* Sbus node name doesn't match */
381 			continue;
382 		if (strcmp(magma_prom, card->mb_name) == 0)
383 			/* Model name match */
384 			break;
385 	}
386 
387 	if( card->mb_name == NULL ) {
388 		printf(": %s (unsupported)\n", magma_prom);
389 		return;
390 	}
391 
392 	dprintf((" addr %p", sc));
393 	printf(": %s\n", card->mb_realname);
394 
395 	sc->ms_board = card;
396 	sc->ms_ncd1400 = card->mb_ncd1400;
397 	sc->ms_ncd1190 = card->mb_ncd1190;
398 
399 	if (sbus_bus_map(sa->sa_bustag,
400 			 sa->sa_slot, sa->sa_offset, sa->sa_size,
401 			 BUS_SPACE_MAP_LINEAR, &bh) != 0) {
402 		printf("%s @ sbus: cannot map registers\n", self->dv_xname);
403 		return;
404 	}
405 
406 	/* the SVCACK* lines are daisychained */
407 	sc->ms_svcackr = (caddr_t)bus_space_vaddr(sa->sa_bustag, bh)
408 		+ card->mb_svcackr;
409 	sc->ms_svcackt = (caddr_t)bus_space_vaddr(sa->sa_bustag, bh)
410 		+ card->mb_svcackt;
411 	sc->ms_svcackm = (caddr_t)bus_space_vaddr(sa->sa_bustag, bh)
412 		+ card->mb_svcackm;
413 
414 	/*
415 	 * Find the clock speed; it's the same for all CD1400 chips
416 	 * on the board.
417 	 */
418 	clockstr = prom_getpropstring(node, "clock");
419 	if (*clockstr == '\0')
420 		/* Default to 25MHz */
421 		cd_clock = 25;
422 	else {
423 		cd_clock = 0;
424 		while (*clockstr != '\0')
425 			cd_clock = (cd_clock * 10) + (*clockstr++ - '0');
426 	}
427 
428 	/* init the cd1400 chips */
429 	for( chip = 0 ; chip < card->mb_ncd1400 ; chip++ ) {
430 		struct cd1400 *cd = &sc->ms_cd1400[chip];
431 
432 		cd->cd_clock = cd_clock;
433 		cd->cd_reg = (caddr_t)bh + card->mb_cd1400[chip];
434 
435 		/* prom_getpropstring(node, "chiprev"); */
436 		/* seemingly the Magma drivers just ignore the propstring */
437 		cd->cd_chiprev = cd1400_read_reg(cd, CD1400_GFRCR);
438 
439 		dprintf(("%s attach CD1400 %d addr %p rev %x clock %dMHz\n",
440 			sc->ms_dev.dv_xname, chip,
441 			cd->cd_reg, cd->cd_chiprev, cd->cd_clock));
442 
443 		/* clear GFRCR */
444 		cd1400_write_reg(cd, CD1400_GFRCR, 0x00);
445 
446 		/* reset whole chip */
447 		cd1400_write_ccr(cd, CD1400_CCR_CMDRESET | CD1400_CCR_FULLRESET);
448 
449 		/* wait for revision code to be restored */
450 		while( cd1400_read_reg(cd, CD1400_GFRCR) != cd->cd_chiprev )
451 		        ;
452 
453 		/* set the Prescaler Period Register to tick at 1ms */
454 		cd1400_write_reg(cd, CD1400_PPR,
455 			((cd->cd_clock * 1000000 / CD1400_PPR_PRESCALER + 500) / 1000));
456 
457 		/* The LC2+1Sp card is the only card that doesn't have
458 		 * a CD1190 for the parallel port, but uses channel 0 of
459 		 * the CD1400, so we make a note of it for later and set up
460 		 * the CD1400 for parallel mode operation.
461 		 */
462 		if( card->mb_npar && card->mb_ncd1190 == 0 ) {
463 			cd1400_write_reg(cd, CD1400_GCR, CD1400_GCR_PARALLEL);
464 			cd->cd_parmode = 1;
465 		}
466 	}
467 
468 	/* init the cd1190 chips */
469 	for( chip = 0 ; chip < card->mb_ncd1190 ; chip++ ) {
470 		struct cd1190 *cd = &sc->ms_cd1190[chip];
471 
472 		cd->cd_reg = (caddr_t)bh + card->mb_cd1190[chip];
473 
474 		/* XXX don't know anything about these chips yet */
475 		printf("%s: CD1190 %d addr %p (unsupported)\n",
476 			self->dv_xname, chip, cd->cd_reg);
477 	}
478 
479 	sbus_establish(&sc->ms_sd, &sc->ms_dev);
480 
481 	/* configure the children */
482 	(void)config_found(self, mtty_match, NULL);
483 	(void)config_found(self, mbpp_match, NULL);
484 
485 	/*
486 	 * Establish the interrupt handlers.
487 	 */
488 	if (sa->sa_nintr == 0)
489 		return;		/* No interrupts to service!? */
490 
491 	(void)bus_intr_establish(sa->sa_bustag, sa->sa_pri, IPL_SERIAL,
492 				 magma_hard, sc);
493 	sc->ms_sicookie = softintr_establish(IPL_SOFTSERIAL, magma_soft, sc);
494 	if (sc->ms_sicookie == NULL) {
495 		printf("\n%s: cannot establish soft int handler\n",
496 			sc->ms_dev.dv_xname);
497 		return;
498 	}
499 	evcnt_attach_dynamic(&sc->ms_intrcnt, EVCNT_TYPE_INTR, NULL,
500 	    sc->ms_dev.dv_xname, "intr");
501 }
502 
503 /*
504  * hard interrupt routine
505  *
506  *  returns 1 if it handled it, otherwise 0
507  *
508  *  runs at IPL_SERIAL
509  */
510 int
511 magma_hard(arg)
512 	void *arg;
513 {
514 	struct magma_softc *sc = arg;
515 	struct cd1400 *cd;
516 	int chip, status = 0;
517 	int serviced = 0;
518 	int needsoftint = 0;
519 
520 	/*
521 	 * check status of all the CD1400 chips
522 	 */
523 	for( chip = 0 ; chip < sc->ms_ncd1400 ; chip++ )
524 		status |= cd1400_read_reg(&sc->ms_cd1400[chip], CD1400_SVRR);
525 
526 	if( ISSET(status, CD1400_SVRR_RXRDY) ) {
527 		u_char rivr = *sc->ms_svcackr;	/* enter rx service context */
528 		int port = rivr >> 4;
529 
530 		if( rivr & (1<<3) ) {			/* parallel port */
531 			struct mbpp_port *mbpp;
532 			int n_chars;
533 
534 			mbpp = &sc->ms_mbpp->ms_port[port];
535 			cd = mbpp->mp_cd1400;
536 
537 			/* don't think we have to handle exceptions */
538 			n_chars = cd1400_read_reg(cd, CD1400_RDCR);
539 			while (n_chars--) {
540 				if( mbpp->mp_cnt == 0 ) {
541 					SET(mbpp->mp_flags, MBPPF_WAKEUP);
542 					needsoftint = 1;
543 					break;
544 				}
545 				*mbpp->mp_ptr = cd1400_read_reg(cd,CD1400_RDSR);
546 				mbpp->mp_ptr++;
547 				mbpp->mp_cnt--;
548 			}
549 		} else {				/* serial port */
550 			struct mtty_port *mtty;
551 			u_char *ptr, n_chars, line_stat;
552 
553 			mtty = &sc->ms_mtty->ms_port[port];
554 			cd = mtty->mp_cd1400;
555 
556 			if( ISSET(rivr, CD1400_RIVR_EXCEPTION) ) {
557 				line_stat = cd1400_read_reg(cd, CD1400_RDSR);
558 				n_chars = 1;
559 			} else { /* no exception, received data OK */
560 				line_stat = 0;
561 				n_chars = cd1400_read_reg(cd, CD1400_RDCR);
562 			}
563 
564 			ptr = mtty->mp_rput;
565 			while( n_chars-- ) {
566 				*ptr++ = line_stat;
567 				*ptr++ = cd1400_read_reg(cd, CD1400_RDSR);
568 				if( ptr == mtty->mp_rend ) ptr = mtty->mp_rbuf;
569 				if( ptr == mtty->mp_rget ) {
570 					if( ptr == mtty->mp_rbuf )
571 						ptr = mtty->mp_rend;
572 					ptr -= 2;
573 					SET(mtty->mp_flags, MTTYF_RING_OVERFLOW);
574 					break;
575 				}
576 			}
577 			mtty->mp_rput = ptr;
578 
579 			needsoftint = 1;
580 		}
581 
582 		cd1400_write_reg(cd, CD1400_EOSRR, 0);	/* end service context */
583 		serviced = 1;
584 	} /* if(rx_service...) */
585 
586 	if( ISSET(status, CD1400_SVRR_MDMCH) ) {
587 		u_char mivr = *sc->ms_svcackm;	/* enter mdm service context */
588 		int port = mivr >> 4;
589 		struct mtty_port *mtty;
590 		int carrier;
591 		u_char msvr;
592 
593 		/*
594 		 * Handle CD (LC2+1Sp = DSR) changes.
595 		 */
596 		mtty = &sc->ms_mtty->ms_port[port];
597 		cd = mtty->mp_cd1400;
598 		msvr = cd1400_read_reg(cd, CD1400_MSVR2);
599 		carrier = ISSET(msvr, cd->cd_parmode ? CD1400_MSVR2_DSR : CD1400_MSVR2_CD);
600 
601 		if( mtty->mp_carrier != carrier ) {
602 			SET(mtty->mp_flags, MTTYF_CARRIER_CHANGED);
603 			mtty->mp_carrier = carrier;
604 			needsoftint = 1;
605 		}
606 
607 		cd1400_write_reg(cd, CD1400_EOSRR, 0);	/* end service context */
608 		serviced = 1;
609 	} /* if(mdm_service...) */
610 
611 	if( ISSET(status, CD1400_SVRR_TXRDY) ) {
612 		u_char tivr = *sc->ms_svcackt;	/* enter tx service context */
613 		int port = tivr >> 4;
614 
615 		if( tivr & (1<<3) ) {	/* parallel port */
616 			struct mbpp_port *mbpp;
617 
618 			mbpp = &sc->ms_mbpp->ms_port[port];
619 			cd = mbpp->mp_cd1400;
620 
621 			if( mbpp->mp_cnt ) {
622 				int count = 0;
623 
624 				/* fill the fifo */
625 				while (mbpp->mp_cnt &&
626 					count++ < CD1400_PAR_FIFO_SIZE) {
627 					cd1400_write_reg(cd, CD1400_TDR,
628 							 *mbpp->mp_ptr);
629 					mbpp->mp_ptr++;
630 					mbpp->mp_cnt--;
631 				}
632 			} else {
633 				/*
634 				 * fifo is empty and we got no more data
635 				 * to send, so shut off interrupts and
636 				 * signal for a wakeup, which can't be
637 				 * done here in case we beat mbpp_send to
638 				 * the tsleep call (we are running at >spltty)
639 				 */
640 				cd1400_write_reg(cd, CD1400_SRER, 0);
641 				SET(mbpp->mp_flags, MBPPF_WAKEUP);
642 				needsoftint = 1;
643 			}
644 		} else {		/* serial port */
645 			struct mtty_port *mtty;
646 			struct tty *tp;
647 
648 			mtty = &sc->ms_mtty->ms_port[port];
649 			cd = mtty->mp_cd1400;
650 			tp = mtty->mp_tty;
651 
652 			if( !ISSET(mtty->mp_flags, MTTYF_STOP) ) {
653 				int count = 0;
654 
655 				/* check if we should start/stop a break */
656 				if( ISSET(mtty->mp_flags, MTTYF_SET_BREAK) ) {
657 					cd1400_write_reg(cd, CD1400_TDR, 0);
658 					cd1400_write_reg(cd, CD1400_TDR, 0x81);
659 					/* should we delay too? */
660 					CLR(mtty->mp_flags, MTTYF_SET_BREAK);
661 					count += 2;
662 				}
663 
664 				if( ISSET(mtty->mp_flags, MTTYF_CLR_BREAK) ) {
665 					cd1400_write_reg(cd, CD1400_TDR, 0);
666 					cd1400_write_reg(cd, CD1400_TDR, 0x83);
667 					CLR(mtty->mp_flags, MTTYF_CLR_BREAK);
668 					count += 2;
669 				}
670 
671 				/* I don't quite fill the fifo in case the last one is a
672 				 * NULL which I have to double up because its the escape
673 				 * code for embedded transmit characters.
674 				 */
675 				while( mtty->mp_txc > 0 && count < CD1400_TX_FIFO_SIZE - 1 ) {
676 					u_char ch;
677 
678 					ch = *mtty->mp_txp;
679 
680 					mtty->mp_txc--;
681 					mtty->mp_txp++;
682 
683 					if( ch == 0 ) {
684 						cd1400_write_reg(cd, CD1400_TDR, ch);
685 						count++;
686 					}
687 
688 					cd1400_write_reg(cd, CD1400_TDR, ch);
689 					count++;
690 				}
691 			}
692 
693 			/* if we ran out of work or are requested to STOP then
694 			 * shut off the txrdy interrupts and signal DONE to flush
695 			 * out the chars we have sent.
696 			 */
697 			if( mtty->mp_txc == 0 || ISSET(mtty->mp_flags, MTTYF_STOP) ) {
698 				register int srer;
699 
700 				srer = cd1400_read_reg(cd, CD1400_SRER);
701 				CLR(srer, CD1400_SRER_TXRDY);
702 				cd1400_write_reg(cd, CD1400_SRER, srer);
703 				CLR(mtty->mp_flags, MTTYF_STOP);
704 
705 				SET(mtty->mp_flags, MTTYF_DONE);
706 				needsoftint = 1;
707 			}
708 		}
709 
710 		cd1400_write_reg(cd, CD1400_EOSRR, 0);	/* end service context */
711 		serviced = 1;
712 	} /* if(tx_service...) */
713 
714 	/* XXX service CD1190 interrupts too
715 	for( chip = 0 ; chip < sc->ms_ncd1190 ; chip++ ) {
716 	}
717 	*/
718 
719 	if (needsoftint)
720 		/* trigger the soft interrupt */
721 		softintr_schedule(sc->ms_sicookie);
722 
723 	return(serviced);
724 }
725 
726 /*
727  * magma soft interrupt handler
728  *
729  * runs at IPL_SOFTSERIAL
730  */
731 void
732 magma_soft(arg)
733 	void *arg;
734 {
735 	struct magma_softc *sc = arg;
736 	struct mtty_softc *mtty = sc->ms_mtty;
737 	struct mbpp_softc *mbpp = sc->ms_mbpp;
738 	int port;
739 	int s, flags;
740 
741 	if (mtty == NULL)
742 		goto chkbpp;
743 
744 	/*
745 	 * check the tty ports to see what needs doing
746 	 */
747 	for( port = 0 ; port < mtty->ms_nports ; port++ ) {
748 		struct mtty_port *mp = &mtty->ms_port[port];
749 		struct tty *tp = mp->mp_tty;
750 
751 		if( !ISSET(tp->t_state, TS_ISOPEN) )
752 			continue;
753 
754 		/*
755 		 * handle any received data
756 		 */
757 		while( mp->mp_rget != mp->mp_rput ) {
758 			u_char stat;
759 			int data;
760 
761 			stat = mp->mp_rget[0];
762 			data = mp->mp_rget[1];
763 			mp->mp_rget = ((mp->mp_rget + 2) == mp->mp_rend)
764 				? mp->mp_rbuf : (mp->mp_rget + 2);
765 
766 			if( stat & (CD1400_RDSR_BREAK | CD1400_RDSR_FE) )
767 				data |= TTY_FE;
768 			if( stat & CD1400_RDSR_PE )
769 				data |= TTY_PE;
770 
771 			if( stat & CD1400_RDSR_OE )
772 				log(LOG_WARNING, "%s%x: fifo overflow\n",
773 				    mtty->ms_dev.dv_xname, port);
774 
775 			(*tp->t_linesw->l_rint)(data, tp);
776 		}
777 
778 		s = splserial();	/* block out hard interrupt routine */
779 		flags = mp->mp_flags;
780 		CLR(mp->mp_flags, MTTYF_DONE | MTTYF_CARRIER_CHANGED | MTTYF_RING_OVERFLOW);
781 		splx(s);	/* ok */
782 
783 		if( ISSET(flags, MTTYF_CARRIER_CHANGED) ) {
784 			dprintf(("%s%x: cd %s\n", mtty->ms_dev.dv_xname,
785 				port, mp->mp_carrier ? "on" : "off"));
786 			(*tp->t_linesw->l_modem)(tp, mp->mp_carrier);
787 		}
788 
789 		if( ISSET(flags, MTTYF_RING_OVERFLOW) ) {
790 			log(LOG_WARNING, "%s%x: ring buffer overflow\n",
791 			    mtty->ms_dev.dv_xname, port);
792 		}
793 
794 		if( ISSET(flags, MTTYF_DONE) ) {
795 			ndflush(&tp->t_outq, mp->mp_txp - tp->t_outq.c_cf);
796 			CLR(tp->t_state, TS_BUSY);
797 			(*tp->t_linesw->l_start)(tp);	/* might be some more */
798 		}
799 	} /* for(each mtty...) */
800 
801 
802 chkbpp:
803 	/*
804 	 * Check the bpp ports (if any) to see what needs doing
805 	 */
806 	if (mbpp == NULL)
807 		return;
808 
809 	for( port = 0 ; port < mbpp->ms_nports ; port++ ) {
810 		struct mbpp_port *mp = &mbpp->ms_port[port];
811 
812 		if( !ISSET(mp->mp_flags, MBPPF_OPEN) )
813 			continue;
814 
815 		s = splserial();
816 		flags = mp->mp_flags;
817 		CLR(mp->mp_flags, MBPPF_WAKEUP);
818 		splx(s);
819 
820 		if( ISSET(flags, MBPPF_WAKEUP) ) {
821 			wakeup(mp);
822 		}
823 
824 	} /* for(each mbpp...) */
825 }
826 
827 /************************************************************************
828  *
829  *  MTTY Routines
830  *
831  *	mtty_match		match one mtty device
832  *	mtty_attach		attach mtty devices
833  *	mttyopen		open mtty device
834  *	mttyclose		close mtty device
835  *	mttyread		read from mtty
836  *	mttywrite		write to mtty
837  *	mttyioctl		do ioctl on mtty
838  *	mttytty			return tty pointer for mtty
839  *	mttystop		stop mtty device
840  *	mtty_start		start mtty device
841  *	mtty_param		set mtty parameters
842  *	mtty_modem_control	set modem control lines
843  */
844 
845 int
846 mtty_match(parent, cf, args)
847 	struct device *parent;
848 	struct cfdata *cf;
849 	void *args;
850 {
851 	struct magma_softc *sc = (struct magma_softc *)parent;
852 
853 	return( args == mtty_match && sc->ms_board->mb_nser && sc->ms_mtty == NULL );
854 }
855 
856 void
857 mtty_attach(parent, dev, args)
858 	struct device *parent;
859 	struct device *dev;
860 	void *args;
861 {
862 	struct magma_softc *sc = (struct magma_softc *)parent;
863 	struct mtty_softc *ms = (struct mtty_softc *)dev;
864 	int port, chip, chan;
865 
866 	sc->ms_mtty = ms;
867 	dprintf((" addr %p", ms));
868 
869 	for( port = 0, chip = 0, chan = 0 ; port < sc->ms_board->mb_nser ; port++ ) {
870 		struct mtty_port *mp = &ms->ms_port[port];
871 		struct tty *tp;
872 
873 		mp->mp_cd1400 = &sc->ms_cd1400[chip];
874 		if (mp->mp_cd1400->cd_parmode && chan == 0)
875 			chan = 1; /* skip channel 0 if parmode */
876 		mp->mp_channel = chan;
877 
878 		tp = ttymalloc();
879 		if (tp == NULL) break;
880 		tty_attach(tp);
881 		tp->t_oproc = mtty_start;
882 		tp->t_param = mtty_param;
883 
884 		mp->mp_tty = tp;
885 
886 		mp->mp_rbuf = malloc(MTTY_RBUF_SIZE, M_DEVBUF, M_NOWAIT);
887 		if (mp->mp_rbuf == NULL) break;
888 
889 		mp->mp_rend = mp->mp_rbuf + MTTY_RBUF_SIZE;
890 
891 		chan = (chan + 1) % CD1400_NO_OF_CHANNELS;
892 		if (chan == 0)
893 			chip++;
894 	}
895 
896 	ms->ms_nports = port;
897 	printf(": %d tty%s\n", port, port == 1 ? "" : "s");
898 }
899 
900 /*
901  * open routine. returns zero if successful, else error code
902  */
903 int
904 mttyopen(dev, flags, mode, l)
905 	dev_t dev;
906 	int flags;
907 	int mode;
908 	struct lwp *l;
909 {
910 	int card = MAGMA_CARD(dev);
911 	int port = MAGMA_PORT(dev);
912 	struct mtty_softc *ms;
913 	struct mtty_port *mp;
914 	struct tty *tp;
915 	struct cd1400 *cd;
916 	int error, s;
917 
918 	if( card >= mtty_cd.cd_ndevs ||
919 	    (ms = mtty_cd.cd_devs[card]) == NULL || port >= ms->ms_nports )
920 		return(ENXIO);	/* device not configured */
921 
922 	mp = &ms->ms_port[port];
923 	tp = mp->mp_tty;
924 	tp->t_dev = dev;
925 
926 	if (ISSET(tp->t_state, TS_ISOPEN) &&
927 	    ISSET(tp->t_state, TS_XCLUDE) &&
928 	    kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
929 	    &l->l_acflag) != 0)
930 		return (EBUSY);
931 
932 	s = spltty();
933 
934 	if( !ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
935 
936 		/* set defaults */
937 		ttychars(tp);
938 		tp->t_iflag = TTYDEF_IFLAG;
939 		tp->t_oflag = TTYDEF_OFLAG;
940 		tp->t_cflag = TTYDEF_CFLAG;
941 		if( ISSET(mp->mp_openflags, TIOCFLAG_CLOCAL) )
942 			SET(tp->t_cflag, CLOCAL);
943 		if( ISSET(mp->mp_openflags, TIOCFLAG_CRTSCTS) )
944 			SET(tp->t_cflag, CRTSCTS);
945 		if( ISSET(mp->mp_openflags, TIOCFLAG_MDMBUF) )
946 			SET(tp->t_cflag, MDMBUF);
947 		tp->t_lflag = TTYDEF_LFLAG;
948 		tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
949 
950 		/* init ring buffer */
951 		mp->mp_rput = mp->mp_rget = mp->mp_rbuf;
952 
953 		/* reset CD1400 channel */
954 		cd = mp->mp_cd1400;
955 		cd1400_write_reg(cd, CD1400_CAR, mp->mp_channel);
956 		cd1400_write_ccr(cd, CD1400_CCR_CMDRESET);
957 
958 		/* encode the port number in top half of LIVR */
959 		cd1400_write_reg(cd, CD1400_LIVR, port << 4 );
960 
961 		/* sets parameters and raises DTR */
962 		(void)mtty_param(tp, &tp->t_termios);
963 
964 		/* set tty watermarks */
965 		ttsetwater(tp);
966 
967 		/* enable service requests */
968 		cd1400_write_reg(cd, CD1400_SRER,
969 				 CD1400_SRER_RXDATA | CD1400_SRER_MDMCH);
970 
971 		/* tell the tty about the carrier status */
972 		if( ISSET(mp->mp_openflags, TIOCFLAG_SOFTCAR) ||
973 		    mp->mp_carrier )
974 			SET(tp->t_state, TS_CARR_ON);
975 		else
976 			CLR(tp->t_state, TS_CARR_ON);
977 	}
978 	splx(s);
979 
980 	error = ttyopen(tp, MTTY_DIALOUT(dev), ISSET(flags, O_NONBLOCK));
981 	if (error != 0)
982 		goto bad;
983 
984 	error = (*tp->t_linesw->l_open)(dev, tp);
985 	if (error != 0)
986 		goto bad;
987 
988 bad:
989 	if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
990 		/*
991 		 * We failed to open the device, and nobody else had it opened.
992 		 * Clean up the state as appropriate.
993 		 */
994 		/* XXX - do that here */
995 	}
996 
997 	return (error);
998 }
999 
1000 /*
1001  * close routine. returns zero if successful, else error code
1002  */
1003 int
1004 mttyclose(dev, flag, mode, l)
1005 	dev_t dev;
1006 	int flag;
1007 	int mode;
1008 	struct lwp *l;
1009 {
1010 	struct mtty_softc *ms = mtty_cd.cd_devs[MAGMA_CARD(dev)];
1011 	struct mtty_port *mp = &ms->ms_port[MAGMA_PORT(dev)];
1012 	struct tty *tp = mp->mp_tty;
1013 	int s;
1014 
1015 	(*tp->t_linesw->l_close)(tp, flag);
1016 	ttyclose(tp);
1017 
1018 	s = spltty();
1019 
1020 	/* if HUPCL is set, and the tty is no longer open
1021 	 * shut down the port
1022 	 */
1023 	if( ISSET(tp->t_cflag, HUPCL) || !ISSET(tp->t_state, TS_ISOPEN) ) {
1024 		/* XXX wait until FIFO is empty before turning off the channel
1025 		struct cd1400 *cd = mp->mp_cd1400;
1026 		*/
1027 
1028 		/* drop DTR and RTS */
1029 		(void)mtty_modem_control(mp, 0, DMSET);
1030 
1031 		/* turn off the channel
1032 		cd1400_write_reg(cd, CD1400_CAR, mp->mp_channel);
1033 		cd1400_write_ccr(cd, CD1400_CCR_CMDRESET);
1034 		*/
1035 	}
1036 
1037 	splx(s);
1038 
1039 	return(0);
1040 }
1041 
1042 /*
1043  * Read routine
1044  */
1045 int
1046 mttyread(dev, uio, flags)
1047 	dev_t dev;
1048 	struct uio *uio;
1049 	int flags;
1050 {
1051 	struct mtty_softc *ms = mtty_cd.cd_devs[MAGMA_CARD(dev)];
1052 	struct mtty_port *mp = &ms->ms_port[MAGMA_PORT(dev)];
1053 	struct tty *tp = mp->mp_tty;
1054 
1055 	return( (*tp->t_linesw->l_read)(tp, uio, flags) );
1056 }
1057 
1058 /*
1059  * Write routine
1060  */
1061 int
1062 mttywrite(dev, uio, flags)
1063 	dev_t dev;
1064 	struct uio *uio;
1065 	int flags;
1066 {
1067 	struct mtty_softc *ms = mtty_cd.cd_devs[MAGMA_CARD(dev)];
1068 	struct mtty_port *mp = &ms->ms_port[MAGMA_PORT(dev)];
1069 	struct tty *tp = mp->mp_tty;
1070 
1071 	return( (*tp->t_linesw->l_write)(tp, uio, flags) );
1072 }
1073 
1074 /*
1075  * Poll routine
1076  */
1077 int
1078 mttypoll(dev, events, l)
1079 	dev_t dev;
1080 	int events;
1081 	struct lwp *l;
1082 {
1083 	struct mtty_softc *ms = mtty_cd.cd_devs[MAGMA_CARD(dev)];
1084 	struct mtty_port *mp = &ms->ms_port[MAGMA_PORT(dev)];
1085 	struct tty *tp = mp->mp_tty;
1086 
1087 	return ((*tp->t_linesw->l_poll)(tp, events, l));
1088 }
1089 
1090 /*
1091  * return tty pointer
1092  */
1093 struct tty *
1094 mttytty(dev)
1095 	dev_t dev;
1096 {
1097 	struct mtty_softc *ms = mtty_cd.cd_devs[MAGMA_CARD(dev)];
1098 	struct mtty_port *mp = &ms->ms_port[MAGMA_PORT(dev)];
1099 
1100 	return(mp->mp_tty);
1101 }
1102 
1103 /*
1104  * ioctl routine
1105  */
1106 int
1107 mttyioctl(dev, cmd, data, flags, l)
1108 	dev_t dev;
1109 	u_long cmd;
1110 	caddr_t data;
1111 	int flags;
1112 	struct lwp *l;
1113 {
1114 	struct mtty_softc *ms = mtty_cd.cd_devs[MAGMA_CARD(dev)];
1115 	struct mtty_port *mp = &ms->ms_port[MAGMA_PORT(dev)];
1116 	struct tty *tp = mp->mp_tty;
1117 	int error;
1118 
1119 	error = (*tp->t_linesw->l_ioctl)(tp, cmd, data, flags, l);
1120 	if( error != EPASSTHROUGH ) return(error);
1121 
1122 	error = ttioctl(tp, cmd, data, flags, l);
1123 	if( error != EPASSTHROUGH ) return(error);
1124 
1125 	error = 0;
1126 
1127 	switch(cmd) {
1128 	case TIOCSBRK:	/* set break */
1129 		SET(mp->mp_flags, MTTYF_SET_BREAK);
1130 		cd1400_enable_transmitter(mp->mp_cd1400, mp->mp_channel);
1131 		break;
1132 
1133 	case TIOCCBRK:	/* clear break */
1134 		SET(mp->mp_flags, MTTYF_CLR_BREAK);
1135 		cd1400_enable_transmitter(mp->mp_cd1400, mp->mp_channel);
1136 		break;
1137 
1138 	case TIOCSDTR:	/* set DTR */
1139 		mtty_modem_control(mp, TIOCM_DTR, DMBIS);
1140 		break;
1141 
1142 	case TIOCCDTR:	/* clear DTR */
1143 		mtty_modem_control(mp, TIOCM_DTR, DMBIC);
1144 		break;
1145 
1146 	case TIOCMSET:	/* set modem lines */
1147 		mtty_modem_control(mp, *((int *)data), DMSET);
1148 		break;
1149 
1150 	case TIOCMBIS:	/* bit set modem lines */
1151 		mtty_modem_control(mp, *((int *)data), DMBIS);
1152 		break;
1153 
1154 	case TIOCMBIC:	/* bit clear modem lines */
1155 		mtty_modem_control(mp, *((int *)data), DMBIC);
1156 		break;
1157 
1158 	case TIOCMGET:	/* get modem lines */
1159 		*((int *)data) = mtty_modem_control(mp, 0, DMGET);
1160 		break;
1161 
1162 	case TIOCGFLAGS:
1163 		*((int *)data) = mp->mp_openflags;
1164 		break;
1165 
1166 	case TIOCSFLAGS:
1167 		if (kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
1168 		    &l->l_acflag) )
1169 			error = EPERM;
1170 		else
1171 			mp->mp_openflags = *((int *)data) &
1172 				(TIOCFLAG_SOFTCAR | TIOCFLAG_CLOCAL |
1173 				TIOCFLAG_CRTSCTS | TIOCFLAG_MDMBUF);
1174 		break;
1175 
1176 	default:
1177 		error = EPASSTHROUGH;
1178 	}
1179 
1180 	return(error);
1181 }
1182 
1183 /*
1184  * Stop output, e.g., for ^S or output flush.
1185  */
1186 void
1187 mttystop(tp, flags)
1188 	struct tty *tp;
1189 	int flags;
1190 {
1191 	struct mtty_softc *ms = mtty_cd.cd_devs[MAGMA_CARD(tp->t_dev)];
1192 	struct mtty_port *mp = &ms->ms_port[MAGMA_PORT(tp->t_dev)];
1193 	int s;
1194 
1195 	s = spltty();
1196 
1197 	if( ISSET(tp->t_state, TS_BUSY) ) {
1198 		if( !ISSET(tp->t_state, TS_TTSTOP) )
1199 			SET(tp->t_state, TS_FLUSH);
1200 
1201 		/*
1202 		 * the transmit interrupt routine will disable transmit when it
1203 		 * notices that MTTYF_STOP has been set.
1204 		 */
1205 		SET(mp->mp_flags, MTTYF_STOP);
1206 	}
1207 
1208 	splx(s);
1209 }
1210 
1211 /*
1212  * Start output, after a stop.
1213  */
1214 void
1215 mtty_start(tp)
1216 	struct tty *tp;
1217 {
1218 	struct mtty_softc *ms = mtty_cd.cd_devs[MAGMA_CARD(tp->t_dev)];
1219 	struct mtty_port *mp = &ms->ms_port[MAGMA_PORT(tp->t_dev)];
1220 	int s;
1221 
1222 	s = spltty();
1223 
1224 	/* we only need to do something if we are not already busy
1225 	 * or delaying or stopped
1226 	 */
1227 	if( !ISSET(tp->t_state, TS_TTSTOP | TS_TIMEOUT | TS_BUSY) ) {
1228 
1229 		/* if we are sleeping and output has drained below
1230 		 * low water mark, awaken
1231 		 */
1232 		if( tp->t_outq.c_cc <= tp->t_lowat ) {
1233 			if( ISSET(tp->t_state, TS_ASLEEP) ) {
1234 				CLR(tp->t_state, TS_ASLEEP);
1235 				wakeup(&tp->t_outq);
1236 			}
1237 
1238 			selwakeup(&tp->t_wsel);
1239 		}
1240 
1241 		/* if something to send, start transmitting
1242 		 */
1243 		if( tp->t_outq.c_cc ) {
1244 			mp->mp_txc = ndqb(&tp->t_outq, 0);
1245 			mp->mp_txp = tp->t_outq.c_cf;
1246 			SET(tp->t_state, TS_BUSY);
1247 			cd1400_enable_transmitter(mp->mp_cd1400, mp->mp_channel);
1248 		}
1249 	}
1250 
1251 	splx(s);
1252 }
1253 
1254 /*
1255  * set/get modem line status
1256  *
1257  * bits can be: TIOCM_DTR, TIOCM_RTS, TIOCM_CTS, TIOCM_CD, TIOCM_RI, TIOCM_DSR
1258  *
1259  * note that DTR and RTS lines are exchanged, and that DSR is
1260  * not available on the LC2+1Sp card (used as CD)
1261  *
1262  * only let them fiddle with RTS if CRTSCTS is not enabled
1263  */
1264 int
1265 mtty_modem_control(mp, bits, howto)
1266 	struct mtty_port *mp;
1267 	int bits;
1268 	int howto;
1269 {
1270 	struct cd1400 *cd = mp->mp_cd1400;
1271 	struct tty *tp = mp->mp_tty;
1272 	int s, msvr;
1273 
1274 	s = spltty();
1275 
1276 	cd1400_write_reg(cd, CD1400_CAR, mp->mp_channel);
1277 
1278 	switch(howto) {
1279 	case DMGET:	/* get bits */
1280 		bits = 0;
1281 
1282 		bits |= TIOCM_LE;
1283 
1284 		msvr = cd1400_read_reg(cd, CD1400_MSVR1);
1285 		if( msvr & CD1400_MSVR1_RTS ) bits |= TIOCM_DTR;
1286 
1287 		msvr = cd1400_read_reg(cd, CD1400_MSVR2);
1288 		if( msvr & CD1400_MSVR2_DTR ) bits |= TIOCM_RTS;
1289 		if( msvr & CD1400_MSVR2_CTS ) bits |= TIOCM_CTS;
1290 		if( msvr & CD1400_MSVR2_RI ) bits |= TIOCM_RI;
1291 		if( msvr & CD1400_MSVR2_DSR ) bits |= (cd->cd_parmode ? TIOCM_CD : TIOCM_DSR);
1292 		if( msvr & CD1400_MSVR2_CD ) bits |= (cd->cd_parmode ? 0 : TIOCM_CD);
1293 
1294 		break;
1295 
1296 	case DMSET:	/* reset bits */
1297 		if( !ISSET(tp->t_cflag, CRTSCTS) )
1298 			cd1400_write_reg(cd, CD1400_MSVR2, ((bits & TIOCM_RTS) ? CD1400_MSVR2_DTR : 0));
1299 
1300 		cd1400_write_reg(cd, CD1400_MSVR1, ((bits & TIOCM_DTR) ? CD1400_MSVR1_RTS : 0));
1301 
1302 		break;
1303 
1304 	case DMBIS:	/* set bits */
1305 		if( (bits & TIOCM_RTS) && !ISSET(tp->t_cflag, CRTSCTS) )
1306 			cd1400_write_reg(cd, CD1400_MSVR2, CD1400_MSVR2_DTR);
1307 
1308 		if( bits & TIOCM_DTR )
1309 			cd1400_write_reg(cd, CD1400_MSVR1, CD1400_MSVR1_RTS);
1310 
1311 		break;
1312 
1313 	case DMBIC:	/* clear bits */
1314 		if( (bits & TIOCM_RTS) && !ISSET(tp->t_cflag, CRTSCTS) )
1315 			cd1400_write_reg(cd, CD1400_MSVR2, 0);
1316 
1317 		if( bits & TIOCM_DTR )
1318 			cd1400_write_reg(cd, CD1400_MSVR1, 0);
1319 
1320 		break;
1321 	}
1322 
1323 	splx(s);
1324 	return(bits);
1325 }
1326 
1327 /*
1328  * Set tty parameters, returns error or 0 on success
1329  */
1330 int
1331 mtty_param(tp, t)
1332 	struct tty *tp;
1333 	struct termios *t;
1334 {
1335 	struct mtty_softc *ms = mtty_cd.cd_devs[MAGMA_CARD(tp->t_dev)];
1336 	struct mtty_port *mp = &ms->ms_port[MAGMA_PORT(tp->t_dev)];
1337 	struct cd1400 *cd = mp->mp_cd1400;
1338 	int rbpr, tbpr, rcor, tcor;
1339 	u_char mcor1 = 0, mcor2 = 0;
1340 	int s, opt;
1341 
1342 	if( t->c_ospeed && cd1400_compute_baud(t->c_ospeed, cd->cd_clock, &tcor, &tbpr) )
1343 		return(EINVAL);
1344 
1345 	if( t->c_ispeed && cd1400_compute_baud(t->c_ispeed, cd->cd_clock, &rcor, &rbpr) )
1346 		return(EINVAL);
1347 
1348 	s = spltty();
1349 
1350 	/* hang up the line if ospeed is zero, else raise DTR */
1351 	(void)mtty_modem_control(mp, TIOCM_DTR, (t->c_ospeed == 0 ? DMBIC : DMBIS));
1352 
1353 	/* select channel, done in mtty_modem_control() */
1354 	/* cd1400_write_reg(cd, CD1400_CAR, mp->mp_channel); */
1355 
1356 	/* set transmit speed */
1357 	if( t->c_ospeed ) {
1358 		cd1400_write_reg(cd, CD1400_TCOR, tcor);
1359 		cd1400_write_reg(cd, CD1400_TBPR, tbpr);
1360 	}
1361 
1362 	/* set receive speed */
1363 	if( t->c_ispeed ) {
1364 		cd1400_write_reg(cd, CD1400_RCOR, rcor);
1365 		cd1400_write_reg(cd, CD1400_RBPR, rbpr);
1366 	}
1367 
1368 	/* enable transmitting and receiving on this channel */
1369 	opt = CD1400_CCR_CMDCHANCTL | CD1400_CCR_XMTEN | CD1400_CCR_RCVEN;
1370 	cd1400_write_ccr(cd, opt);
1371 
1372 	/* set parity, data and stop bits */
1373 	opt = 0;
1374 	if( ISSET(t->c_cflag, PARENB) )
1375 		opt |= (ISSET(t->c_cflag, PARODD) ? CD1400_COR1_PARODD : CD1400_COR1_PARNORMAL);
1376 
1377 	if( !ISSET(t->c_iflag, INPCK) )
1378 		opt |= CD1400_COR1_NOINPCK; /* no parity checking */
1379 
1380 	if( ISSET(t->c_cflag, CSTOPB) )
1381 		opt |= CD1400_COR1_STOP2;
1382 
1383 	switch( t->c_cflag & CSIZE ) {
1384 	case CS5:
1385 		opt |= CD1400_COR1_CS5;
1386 		break;
1387 
1388 	case CS6:
1389 		opt |= CD1400_COR1_CS6;
1390 		break;
1391 
1392 	case CS7:
1393 		opt |= CD1400_COR1_CS7;
1394 		break;
1395 
1396 	default:
1397 		opt |= CD1400_COR1_CS8;
1398 		break;
1399 	}
1400 
1401 	cd1400_write_reg(cd, CD1400_COR1, opt);
1402 
1403 	/*
1404 	 * enable Embedded Transmit Commands (for breaks)
1405 	 * use the CD1400 automatic CTS flow control if CRTSCTS is set
1406 	 */
1407 	opt = CD1400_COR2_ETC;
1408 	if( ISSET(t->c_cflag, CRTSCTS) ) opt |= CD1400_COR2_CCTS_OFLOW;
1409 	cd1400_write_reg(cd, CD1400_COR2, opt);
1410 
1411 	cd1400_write_reg(cd, CD1400_COR3, MTTY_RX_FIFO_THRESHOLD);
1412 
1413 	cd1400_write_ccr(cd, CD1400_CCR_CMDCORCHG | CD1400_CCR_COR1 | CD1400_CCR_COR2 | CD1400_CCR_COR3);
1414 
1415 	cd1400_write_reg(cd, CD1400_COR4, CD1400_COR4_PFO_EXCEPTION);
1416 	cd1400_write_reg(cd, CD1400_COR5, 0);
1417 
1418 	/*
1419 	 * if automatic RTS handshaking enabled, set DTR threshold
1420 	 * (RTS and DTR lines are switched, CD1400 thinks its DTR)
1421 	 */
1422 	if( ISSET(t->c_cflag, CRTSCTS) )
1423 		mcor1 = MTTY_RX_DTR_THRESHOLD;
1424 
1425 	/* set up `carrier detect' interrupts */
1426 	if( cd->cd_parmode ) {
1427 		SET(mcor1, CD1400_MCOR1_DSRzd);
1428 		SET(mcor2, CD1400_MCOR2_DSRod);
1429 	} else {
1430 		SET(mcor1, CD1400_MCOR1_CDzd);
1431 		SET(mcor2, CD1400_MCOR2_CDod);
1432 	}
1433 
1434 	cd1400_write_reg(cd, CD1400_MCOR1, mcor1);
1435 	cd1400_write_reg(cd, CD1400_MCOR2, mcor2);
1436 
1437 	/* receive timeout 2ms */
1438 	cd1400_write_reg(cd, CD1400_RTPR, 2);
1439 
1440 	splx(s);
1441 	return(0);
1442 }
1443 
1444 /************************************************************************
1445  *
1446  *  MBPP Routines
1447  *
1448  *	mbpp_match	match one mbpp device
1449  *	mbpp_attach	attach mbpp devices
1450  *	mbppopen	open mbpp device
1451  *	mbppclose	close mbpp device
1452  *	mbppioctl	do ioctl on mbpp
1453  *	mbpp_rw		general rw routine
1454  *	mbpp_timeout	rw timeout
1455  *	mbpp_start	rw start after delay
1456  *	mbpp_send	send data
1457  *	mbpp_recv	recv data
1458  */
1459 
1460 int
1461 mbpp_match(parent, cf, args)
1462 	struct device *parent;
1463 	struct cfdata *cf;
1464 	void *args;
1465 {
1466 	struct magma_softc *sc = (struct magma_softc *)parent;
1467 
1468 	return( args == mbpp_match && sc->ms_board->mb_npar && sc->ms_mbpp == NULL );
1469 }
1470 
1471 void
1472 mbpp_attach(parent, dev, args)
1473 	struct device *parent;
1474 	struct device *dev;
1475 	void *args;
1476 {
1477 	struct magma_softc *sc = (struct magma_softc *)parent;
1478 	struct mbpp_softc *ms = (struct mbpp_softc *)dev;
1479 	struct mbpp_port *mp;
1480 	int port;
1481 
1482 	sc->ms_mbpp = ms;
1483 	dprintf((" addr %p", ms));
1484 
1485 	for( port = 0 ; port < sc->ms_board->mb_npar ; port++ ) {
1486 		mp = &ms->ms_port[port];
1487 
1488 		callout_init(&mp->mp_timeout_ch);
1489 		callout_init(&mp->mp_start_ch);
1490 
1491 		if( sc->ms_ncd1190 )
1492 			mp->mp_cd1190 = &sc->ms_cd1190[port];
1493 		else
1494 			mp->mp_cd1400 = &sc->ms_cd1400[0];
1495 	}
1496 
1497 	ms->ms_nports = port;
1498 	printf(": %d port%s\n", port, port == 1 ? "" : "s");
1499 }
1500 
1501 /*
1502  * open routine. returns zero if successful, else error code
1503  */
1504 int
1505 mbppopen(dev, flags, mode, l)
1506 	dev_t dev;
1507 	int flags;
1508 	int mode;
1509 	struct lwp *l;
1510 {
1511 	int card = MAGMA_CARD(dev);
1512 	int port = MAGMA_PORT(dev);
1513 	struct mbpp_softc *ms;
1514 	struct mbpp_port *mp;
1515 	int s;
1516 
1517 	if( card >= mbpp_cd.cd_ndevs ||
1518 	    (ms = mbpp_cd.cd_devs[card]) == NULL || port >= ms->ms_nports )
1519 		return(ENXIO);
1520 
1521 	mp = &ms->ms_port[port];
1522 
1523 	s = spltty();
1524 	if( ISSET(mp->mp_flags, MBPPF_OPEN) ) {
1525 		splx(s);
1526 		return(EBUSY);
1527 	}
1528 	SET(mp->mp_flags, MBPPF_OPEN);
1529 	splx(s);
1530 
1531 	/* set defaults */
1532 	mp->mp_burst = MBPP_BURST;
1533 	mp->mp_timeout = mbpp_mstohz(MBPP_TIMEOUT);
1534 	mp->mp_delay = mbpp_mstohz(MBPP_DELAY);
1535 
1536 	/* init chips */
1537 	if( mp->mp_cd1400 ) {	/* CD1400 */
1538 		struct cd1400 *cd = mp->mp_cd1400;
1539 
1540 		/* set up CD1400 channel */
1541 		s = spltty();
1542 		cd1400_write_reg(cd, CD1400_CAR, 0);
1543 		cd1400_write_ccr(cd, CD1400_CCR_CMDRESET);
1544 		cd1400_write_reg(cd, CD1400_LIVR, (1<<3));
1545 		splx(s);
1546 	} else {		/* CD1190 */
1547 		mp->mp_flags = 0;
1548 		return (ENXIO);
1549 	}
1550 
1551 	return (0);
1552 }
1553 
1554 /*
1555  * close routine. returns zero if successful, else error code
1556  */
1557 int
1558 mbppclose(dev, flag, mode, l)
1559 	dev_t dev;
1560 	int flag;
1561 	int mode;
1562 	struct lwp *l;
1563 {
1564 	struct mbpp_softc *ms = mbpp_cd.cd_devs[MAGMA_CARD(dev)];
1565 	struct mbpp_port *mp = &ms->ms_port[MAGMA_PORT(dev)];
1566 
1567 	mp->mp_flags = 0;
1568 	return(0);
1569 }
1570 
1571 /*
1572  * ioctl routine
1573  */
1574 int
1575 mbppioctl(dev, cmd, data, flags, l)
1576 	dev_t dev;
1577 	u_long cmd;
1578 	caddr_t data;
1579 	int flags;
1580 	struct lwp *l;
1581 {
1582 	struct mbpp_softc *ms = mbpp_cd.cd_devs[MAGMA_CARD(dev)];
1583 	struct mbpp_port *mp = &ms->ms_port[MAGMA_PORT(dev)];
1584 	struct mbpp_param *bp;
1585 	int error = 0;
1586 	int s;
1587 
1588 	switch(cmd) {
1589 	case MBPPIOCSPARAM:
1590 		bp = (struct mbpp_param *)data;
1591 		if( bp->bp_burst < MBPP_BURST_MIN || bp->bp_burst > MBPP_BURST_MAX ||
1592 		    bp->bp_delay < MBPP_DELAY_MIN || bp->bp_delay > MBPP_DELAY_MIN ) {
1593 			error = EINVAL;
1594 		} else {
1595 			mp->mp_burst = bp->bp_burst;
1596 			mp->mp_timeout = mbpp_mstohz(bp->bp_timeout);
1597 			mp->mp_delay = mbpp_mstohz(bp->bp_delay);
1598 		}
1599 		break;
1600 	case MBPPIOCGPARAM:
1601 		bp = (struct mbpp_param *)data;
1602 		bp->bp_burst = mp->mp_burst;
1603 		bp->bp_timeout = mbpp_hztoms(mp->mp_timeout);
1604 		bp->bp_delay = mbpp_hztoms(mp->mp_delay);
1605 		break;
1606 	case MBPPIOCGSTAT:
1607 		/* XXX make this more generic */
1608 		s = spltty();
1609 		cd1400_write_reg(mp->mp_cd1400, CD1400_CAR, 0);
1610 		*(int *)data = cd1400_read_reg(mp->mp_cd1400, CD1400_PSVR);
1611 		splx(s);
1612 		break;
1613 	default:
1614 		error = ENOTTY;
1615 	}
1616 
1617 	return(error);
1618 }
1619 
1620 int
1621 mbpp_rw(dev, uio, flag)
1622 	dev_t dev;
1623 	struct uio *uio;
1624 	int flag;
1625 {
1626 	int card = MAGMA_CARD(dev);
1627 	int port = MAGMA_PORT(dev);
1628 	struct mbpp_softc *ms = mbpp_cd.cd_devs[card];
1629 	struct mbpp_port *mp = &ms->ms_port[port];
1630 	caddr_t buffer, ptr;
1631 	int buflen, cnt, len;
1632 	int s, error = 0;
1633 	int gotdata = 0;
1634 
1635 	if( uio->uio_resid == 0 )
1636 		return(0);
1637 
1638 	buflen = min(uio->uio_resid, mp->mp_burst);
1639 	buffer = malloc(buflen, M_DEVBUF, M_WAITOK);
1640 	if( buffer == NULL )
1641 		return(ENOMEM);
1642 
1643 	SET(mp->mp_flags, MBPPF_UIO);
1644 
1645 	/*
1646 	 * start timeout, if needed
1647 	 */
1648 	if( mp->mp_timeout > 0 ) {
1649 		SET(mp->mp_flags, MBPPF_TIMEOUT);
1650 		callout_reset(&mp->mp_timeout_ch, mp->mp_timeout,
1651 		    mbpp_timeout, mp);
1652 	}
1653 
1654 	len = cnt = 0;
1655 	while( uio->uio_resid > 0 ) {
1656 		len = min(buflen, uio->uio_resid);
1657 		ptr = buffer;
1658 
1659 		if( uio->uio_rw == UIO_WRITE ) {
1660 			error = uiomove(ptr, len, uio);
1661 			if( error ) break;
1662 		}
1663 again:		/* goto bad */
1664 		/* timed out?  */
1665 		if( !ISSET(mp->mp_flags, MBPPF_UIO) )
1666 			break;
1667 
1668 		/*
1669 		 * perform the operation
1670 		 */
1671 		if( uio->uio_rw == UIO_WRITE ) {
1672 			cnt = mbpp_send(mp, ptr, len);
1673 		} else {
1674 			cnt = mbpp_recv(mp, ptr, len);
1675 		}
1676 
1677 		if( uio->uio_rw == UIO_READ ) {
1678 			if( cnt ) {
1679 				error = uiomove(ptr, cnt, uio);
1680 				if( error ) break;
1681 				gotdata++;
1682 			}
1683 			else if( gotdata )	/* consider us done */
1684 				break;
1685 		}
1686 
1687 		/* timed out?  */
1688 		if( !ISSET(mp->mp_flags, MBPPF_UIO) )
1689 			break;
1690 
1691 		/*
1692 		 * poll delay?
1693 		 */
1694 		if( mp->mp_delay > 0 ) {
1695 			s = splsoftclock();
1696 			SET(mp->mp_flags, MBPPF_DELAY);
1697 			callout_reset(&mp->mp_start_ch, mp->mp_delay,
1698 			    mbpp_start, mp);
1699 			error = tsleep(mp, PCATCH | PZERO, "mbppdelay", 0);
1700 			splx(s);
1701 			if( error ) break;
1702 		}
1703 
1704 		/*
1705 		 * don't call uiomove again until we used all the data we grabbed
1706 		 */
1707 		if( uio->uio_rw == UIO_WRITE && cnt != len ) {
1708 			ptr += cnt;
1709 			len -= cnt;
1710 			cnt = 0;
1711 			goto again;
1712 		}
1713 	}
1714 
1715 	/*
1716 	 * clear timeouts
1717 	 */
1718 	s = splsoftclock();
1719 	if( ISSET(mp->mp_flags, MBPPF_TIMEOUT) ) {
1720 		callout_stop(&mp->mp_timeout_ch);
1721 		CLR(mp->mp_flags, MBPPF_TIMEOUT);
1722 	}
1723 	if( ISSET(mp->mp_flags, MBPPF_DELAY) ) {
1724 		callout_stop(&mp->mp_start_ch);
1725 		CLR(mp->mp_flags, MBPPF_DELAY);
1726 	}
1727 	splx(s);
1728 
1729 	/*
1730 	 * adjust for those chars that we uiomoved but never actually wrote
1731 	 */
1732 	if( uio->uio_rw == UIO_WRITE && cnt != len ) {
1733 		uio->uio_resid += (len - cnt);
1734 	}
1735 
1736 	free(buffer, M_DEVBUF);
1737 	return(error);
1738 }
1739 
1740 void
1741 mbpp_timeout(arg)
1742 	void *arg;
1743 {
1744 	struct mbpp_port *mp = arg;
1745 
1746 	CLR(mp->mp_flags, MBPPF_UIO | MBPPF_TIMEOUT);
1747 	wakeup(mp);
1748 }
1749 
1750 void
1751 mbpp_start(arg)
1752 	void *arg;
1753 {
1754 	struct mbpp_port *mp = arg;
1755 
1756 	CLR(mp->mp_flags, MBPPF_DELAY);
1757 	wakeup(mp);
1758 }
1759 
1760 int
1761 mbpp_send(mp, ptr, len)
1762 	struct mbpp_port *mp;
1763 	caddr_t ptr;
1764 	int len;
1765 {
1766 	int s;
1767 	struct cd1400 *cd = mp->mp_cd1400;
1768 
1769 	/* set up io information */
1770 	mp->mp_ptr = ptr;
1771 	mp->mp_cnt = len;
1772 
1773 	/* start transmitting */
1774 	s = spltty();
1775 	if( cd ) {
1776 		cd1400_write_reg(cd, CD1400_CAR, 0);
1777 
1778 		/* output strobe width ~1microsecond */
1779 		cd1400_write_reg(cd, CD1400_TBPR, 10);
1780 
1781 		/* enable channel */
1782 		cd1400_write_ccr(cd, CD1400_CCR_CMDCHANCTL | CD1400_CCR_XMTEN);
1783 		cd1400_write_reg(cd, CD1400_SRER, CD1400_SRER_TXRDY);
1784 	}
1785 
1786 	/* ZZzzz... */
1787 	tsleep(mp, PCATCH | PZERO, "mbpp_send", 0);
1788 
1789 	/* stop transmitting */
1790 	if( cd ) {
1791 		cd1400_write_reg(cd, CD1400_CAR, 0);
1792 
1793 		/* disable transmitter */
1794 		cd1400_write_reg(cd, CD1400_SRER, 0);
1795 		cd1400_write_ccr(cd, CD1400_CCR_CMDCHANCTL | CD1400_CCR_XMTDIS);
1796 
1797 		/* flush fifo */
1798 		cd1400_write_ccr(cd, CD1400_CCR_CMDRESET | CD1400_CCR_FTF);
1799 	}
1800 	splx(s);
1801 
1802 	/* return number of chars sent */
1803 	return(len - mp->mp_cnt);
1804 }
1805 
1806 int
1807 mbpp_recv(mp, ptr, len)
1808 	struct mbpp_port *mp;
1809 	caddr_t ptr;
1810 	int len;
1811 {
1812 	int s;
1813 	struct cd1400 *cd = mp->mp_cd1400;
1814 
1815 	/* set up io information */
1816 	mp->mp_ptr = ptr;
1817 	mp->mp_cnt = len;
1818 
1819 	/* start receiving */
1820 	s = spltty();
1821 	if( cd ) {
1822 	int rcor, rbpr;
1823 
1824 		cd1400_write_reg(cd, CD1400_CAR, 0);
1825 
1826 		/* input strobe at 100kbaud (10microseconds) */
1827 		cd1400_compute_baud(100000, cd->cd_clock, &rcor, &rbpr);
1828 		cd1400_write_reg(cd, CD1400_RCOR, rcor);
1829 		cd1400_write_reg(cd, CD1400_RBPR, rbpr);
1830 
1831 		/* rx threshold */
1832 		cd1400_write_reg(cd, CD1400_COR3, MBPP_RX_FIFO_THRESHOLD);
1833 		cd1400_write_ccr(cd, CD1400_CCR_CMDCORCHG | CD1400_CCR_COR3);
1834 
1835 		/* enable channel */
1836 		cd1400_write_ccr(cd, CD1400_CCR_CMDCHANCTL | CD1400_CCR_RCVEN);
1837 		cd1400_write_reg(cd, CD1400_SRER, CD1400_SRER_RXDATA);
1838 	}
1839 
1840 	/* ZZzzz... */
1841 	tsleep(mp, PCATCH | PZERO, "mbpp_recv", 0);
1842 
1843 	/* stop receiving */
1844 	if( cd ) {
1845 		cd1400_write_reg(cd, CD1400_CAR, 0);
1846 
1847 		/* disable receiving */
1848 		cd1400_write_reg(cd, CD1400_SRER, 0);
1849 		cd1400_write_ccr(cd, CD1400_CCR_CMDCHANCTL | CD1400_CCR_RCVDIS);
1850 	}
1851 	splx(s);
1852 
1853 	/* return number of chars received */
1854 	return(len - mp->mp_cnt);
1855 }
1856 
1857 int
1858 mbpp_hztoms(h)
1859 	int h;
1860 {
1861 	int m = h;
1862 
1863 	if( m > 0 )
1864 		m = m * 1000 / hz;
1865 	return(m);
1866 }
1867 
1868 int
1869 mbpp_mstohz(m)
1870 	int m;
1871 {
1872 	int h = m;
1873 
1874 	if( h > 0 ) {
1875 		h = h * hz / 1000;
1876 		if( h == 0 )
1877 			h = 1000 / hz;
1878 	}
1879 	return(h);
1880 }
1881 
1882 #endif /* NMAGMA */
1883