xref: /netbsd-src/sys/dev/sbus/dbri.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /*	$NetBSD: dbri.c,v 1.38 2018/01/12 05:59:20 mrg Exp $	*/
2 
3 /*
4  * Copyright (C) 1997 Rudolf Koenig (rfkoenig@immd4.informatik.uni-erlangen.de)
5  * Copyright (c) 1998, 1999 Brent Baccala (baccala@freesoft.org)
6  * Copyright (c) 2001, 2002 Jared D. McNeill <jmcneill@netbsd.org>
7  * Copyright (c) 2005 Michael Lorenz <macallan@netbsd.org>
8  * All rights reserved.
9  *
10  * This driver is losely based on a Linux driver written by Rudolf Koenig and
11  * Brent Baccala who kindly gave their permission to use their code in a
12  * BSD-licensed driver.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
28  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
29  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  */
35 
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: dbri.c,v 1.38 2018/01/12 05:59:20 mrg Exp $");
38 
39 #include "audio.h"
40 #if NAUDIO > 0
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/errno.h>
45 #include <sys/device.h>
46 #include <sys/proc.h>
47 #include <sys/kernel.h>
48 #include <sys/bus.h>
49 #include <sys/intr.h>
50 #include <sys/kmem.h>
51 
52 #include <dev/sbus/sbusvar.h>
53 #include <sparc/sparc/auxreg.h>
54 #include <machine/autoconf.h>
55 
56 #include <sys/audioio.h>
57 #include <dev/audio_if.h>
58 #include <dev/auconv.h>
59 
60 #include <dev/ic/cs4215reg.h>
61 #include <dev/ic/cs4215var.h>
62 #include <dev/sbus/dbrireg.h>
63 #include <dev/sbus/dbrivar.h>
64 
65 #include "opt_sbus_dbri.h"
66 
67 #define DBRI_ROM_NAME_PREFIX		"SUNW,DBRI"
68 
69 #ifdef DBRI_DEBUG
70 # define DPRINTF aprint_normal
71 #else
72 # define DPRINTF while (0) printf
73 #endif
74 
75 static const char *dbri_supported[] = {
76 	"e",
77 	"s3",
78 	""
79 };
80 
81 enum ms {
82 	CHImaster,
83 	CHIslave
84 };
85 
86 enum io {
87 	PIPEinput,
88 	PIPEoutput
89 };
90 
91 /*
92  * Function prototypes
93  */
94 
95 /* softc stuff */
96 static void	dbri_attach_sbus(device_t, device_t, void *);
97 static int	dbri_match_sbus(device_t, cfdata_t, void *);
98 
99 static int	dbri_config_interrupts(device_t);
100 
101 /* interrupt handler */
102 static int	dbri_intr(void *);
103 static void	dbri_softint(void *);
104 
105 /* supporting subroutines */
106 static int	dbri_init(struct dbri_softc *);
107 static int	dbri_reset(struct dbri_softc *);
108 static volatile uint32_t *dbri_command_lock(struct dbri_softc *);
109 static void	dbri_command_send(struct dbri_softc *, volatile uint32_t *);
110 static void	dbri_process_interrupt_buffer(struct dbri_softc *);
111 static void	dbri_process_interrupt(struct dbri_softc *, int32_t);
112 
113 /* mmcodec subroutines */
114 static int	mmcodec_init(struct dbri_softc *);
115 static void	mmcodec_init_data(struct dbri_softc *);
116 static void	mmcodec_pipe_init(struct dbri_softc *);
117 static void	mmcodec_default(struct dbri_softc *);
118 static void	mmcodec_setgain(struct dbri_softc *, int);
119 static int	mmcodec_setcontrol(struct dbri_softc *);
120 
121 /* chi subroutines */
122 static void	chi_reset(struct dbri_softc *, enum ms, int);
123 
124 /* pipe subroutines */
125 static void	pipe_setup(struct dbri_softc *, int, int);
126 static void	pipe_reset(struct dbri_softc *, int);
127 static void	pipe_receive_fixed(struct dbri_softc *, int,
128     volatile uint32_t *);
129 static void	pipe_transmit_fixed(struct dbri_softc *, int, uint32_t);
130 
131 static void	pipe_ts_link(struct dbri_softc *, int, enum io, int, int, int);
132 static int	pipe_active(struct dbri_softc *, int);
133 
134 /* audio(9) stuff */
135 static int	dbri_query_encoding(void *, struct audio_encoding *);
136 static int	dbri_set_params(void *, int, int, struct audio_params *,
137     struct audio_params *,stream_filter_list_t *, stream_filter_list_t *);
138 static int	dbri_round_blocksize(void *, int, int, const audio_params_t *);
139 static int	dbri_halt_output(void *);
140 static int	dbri_halt_input(void *);
141 static int	dbri_getdev(void *, struct audio_device *);
142 static int	dbri_set_port(void *, mixer_ctrl_t *);
143 static int	dbri_get_port(void *, mixer_ctrl_t *);
144 static int	dbri_query_devinfo(void *, mixer_devinfo_t *);
145 static size_t	dbri_round_buffersize(void *, int, size_t);
146 static int	dbri_get_props(void *);
147 static int	dbri_open(void *, int);
148 static void	dbri_close(void *);
149 
150 static void	setup_ring_xmit(struct dbri_softc *, int, int, int, int,
151     void (*)(void *), void *);
152 static void	setup_ring_recv(struct dbri_softc *, int, int, int, int,
153     void (*)(void *), void *);
154 
155 static int	dbri_trigger_output(void *, void *, void *, int,
156     void (*)(void *), void *, const struct audio_params *);
157 static int	dbri_trigger_input(void *, void *, void *, int,
158     void (*)(void *), void *, const struct audio_params *);
159 static void	dbri_get_locks(void *, kmutex_t **, kmutex_t **);
160 
161 static void	*dbri_malloc(void *, int, size_t);
162 static void	dbri_free(void *, void *, size_t);
163 static paddr_t	dbri_mappage(void *, void *, off_t, int);
164 static void	dbri_set_power(struct dbri_softc *, int);
165 static void	dbri_bring_up(struct dbri_softc *);
166 static bool	dbri_suspend(device_t, const pmf_qual_t *);
167 static bool	dbri_resume(device_t, const pmf_qual_t *);
168 static int	dbri_commit(void *);
169 
170 /* stupid support routines */
171 static uint32_t	reverse_bytes(uint32_t, int);
172 
173 struct audio_device dbri_device = {
174 	"CS4215",
175 	"",
176 	"dbri"
177 };
178 
179 struct audio_hw_if dbri_hw_if = {
180 	.open			= dbri_open,
181 	.close			= dbri_close,
182 	.query_encoding		= dbri_query_encoding,
183 	.set_params		= dbri_set_params,
184 	.round_blocksize	= dbri_round_blocksize,
185 	.halt_output		= dbri_halt_output,
186 	.halt_input		= dbri_halt_input,
187 	.getdev			= dbri_getdev,
188 	.set_port		= dbri_set_port,
189 	.get_port		= dbri_get_port,
190 	.query_devinfo		= dbri_query_devinfo,
191 	.allocm			= dbri_malloc,
192 	.freem			= dbri_free,
193 	.round_buffersize	= dbri_round_buffersize,
194 	.mappage		= dbri_mappage,
195 	.get_props		= dbri_get_props,
196 	.trigger_output		= dbri_trigger_output,
197 	.trigger_input		= dbri_trigger_input,
198 	.get_locks		= dbri_get_locks,
199 	.commit_settings	= dbri_commit,
200 };
201 
202 CFATTACH_DECL_NEW(dbri, sizeof(struct dbri_softc),
203     dbri_match_sbus, dbri_attach_sbus, NULL, NULL);
204 
205 #define DBRI_NFORMATS		4
206 static const struct audio_format dbri_formats[DBRI_NFORMATS] = {
207 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_BE, 16, 16,
208 	 2, AUFMT_STEREO, 8, {8000, 9600, 11025, 16000, 22050, 32000, 44100,
209 	 48000}},
210 /*	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULAW, 8, 8,
211 	 2, AUFMT_STEREO, 8, {8000, 9600, 11025, 16000, 22050, 32000, 44100,
212 	 48000}},
213 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ALAW, 8, 8,
214 	 2, AUFMT_STEREO, 8, {8000, 9600, 11025, 16000, 22050, 32000, 44100,
215 	 48000}},
216 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR, 8, 8,
217 	 2, AUFMT_STEREO, 8, {8000, 9600, 11025, 16000, 22050, 32000, 44100,
218 	 48000}},*/
219 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULAW, 8, 8,
220 	 1, AUFMT_MONAURAL, 8, {8000, 9600, 11025, 16000, 22050, 32000, 44100,
221 	 48000}},
222 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ALAW, 8, 8,
223 	 1, AUFMT_MONAURAL, 8, {8000, 9600, 11025, 16000, 22050, 32000, 44100,
224 	 48000}},
225 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR, 8, 8,
226 	 1, AUFMT_MONAURAL, 8, {8000, 9600, 11025, 16000, 22050, 32000, 44100,
227 	 48000}},
228 };
229 
230 enum {
231 	DBRI_OUTPUT_CLASS,
232 	DBRI_VOL_OUTPUT,
233 	DBRI_ENABLE_MONO,
234 	DBRI_ENABLE_HEADPHONE,
235 	DBRI_ENABLE_LINE,
236 	DBRI_MONITOR_CLASS,
237 	DBRI_VOL_MONITOR,
238 	DBRI_INPUT_CLASS,
239 	DBRI_INPUT_GAIN,
240 	DBRI_INPUT_SELECT,
241 	DBRI_RECORD_CLASS,
242 	DBRI_ENUM_LAST
243 };
244 
245 /*
246  * Autoconfig routines
247  */
248 static int
249 dbri_match_sbus(device_t parent, cfdata_t match, void *aux)
250 {
251 	struct sbus_attach_args *sa = aux;
252 	char *ver;
253 	int i;
254 
255 	if (strncmp(DBRI_ROM_NAME_PREFIX, sa->sa_name, 9))
256 		return (0);
257 
258 	ver = &sa->sa_name[9];
259 
260 	for (i = 0; dbri_supported[i][0] != '\0'; i++)
261 		if (strcmp(dbri_supported[i], ver) == 0)
262 			return (1);
263 
264 	return (0);
265 }
266 
267 static void
268 dbri_attach_sbus(device_t parent, device_t self, void *aux)
269 {
270 	struct dbri_softc *sc = device_private(self);
271 	struct sbus_attach_args *sa = aux;
272 	bus_space_handle_t ioh;
273 	bus_size_t size;
274 	int error, rseg, pwr, i;
275 	char *ver = &sa->sa_name[9];
276 
277 	sc->sc_dev = self;
278 	sc->sc_iot = sa->sa_bustag;
279 	sc->sc_dmat = sa->sa_dmatag;
280 	sc->sc_powerstate = 1;
281 
282 	sc->sc_whack_codec = 0;
283 
284 	pwr = prom_getpropint(sa->sa_node,"pwr-on-auxio",0);
285 	aprint_normal(": rev %s\n", ver);
286 
287 	if (pwr) {
288 		/*
289 		 * we can control DBRI power via auxio and we're initially
290 		 * powered down
291 		 */
292 
293 		sc->sc_have_powerctl = 1;
294 		sc->sc_powerstate = 0;
295 		dbri_set_power(sc, 1);
296 		if (!pmf_device_register(self, dbri_suspend, dbri_resume)) {
297 			aprint_error_dev(self,
298 			    "cannot set power mgmt handler\n");
299 		}
300 	} else {
301 		/* we can't control power so we're always up */
302 		sc->sc_have_powerctl = 0;
303 		sc->sc_powerstate = 1;
304 	}
305 
306 	for (i = 0; i < DBRI_NUM_DESCRIPTORS; i++) {
307 		sc->sc_desc[i].softint = softint_establish(SOFTINT_SERIAL,
308 		    dbri_softint, &sc->sc_desc[i]);
309 	}
310 
311 	if (sa->sa_npromvaddrs)
312 		ioh = (bus_space_handle_t)sa->sa_promvaddrs[0];
313 	else {
314 		if (sbus_bus_map(sa->sa_bustag, sa->sa_slot,
315 				 sa->sa_offset, sa->sa_size,
316 				 BUS_SPACE_MAP_LINEAR, /*0,*/ &ioh) != 0) {
317 			aprint_error("%s @ sbus: cannot map registers\n",
318 				device_xname(self));
319 			return;
320 		}
321 	}
322 
323 	sc->sc_ioh = ioh;
324 
325 	size = sizeof(struct dbri_dma);
326 
327 	/* get a DMA handle */
328 	if ((error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
329 				       BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
330 		aprint_error_dev(self, "DMA map create error %d\n",
331 		    error);
332 		return;
333 	}
334 
335 	/* allocate DMA buffer */
336 	if ((error = bus_dmamem_alloc(sc->sc_dmat, size, 0, 0, &sc->sc_dmaseg,
337 				      1, &rseg, BUS_DMA_NOWAIT)) != 0) {
338 		aprint_error_dev(self, "DMA buffer alloc error %d\n",
339 		    error);
340 		return;
341 	}
342 
343 	/* map DMA buffer into CPU addressable space */
344 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dmaseg, rseg, size,
345 				    &sc->sc_membase,
346 				    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
347 		aprint_error_dev(self, "DMA buffer map error %d\n",
348 		    error);
349 		return;
350 	}
351 
352 	/* load the buffer */
353 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
354 				     sc->sc_membase, size, NULL,
355 				     BUS_DMA_NOWAIT)) != 0) {
356 		aprint_error_dev(self, "DMA buffer map load error %d\n",
357 		    error);
358 		bus_dmamem_unmap(sc->sc_dmat, sc->sc_membase, size);
359 		bus_dmamem_free(sc->sc_dmat, &sc->sc_dmaseg, rseg);
360 		return;
361 	}
362 
363 	/* map the registers into memory */
364 
365 	/* kernel virtual address of DMA buffer */
366 	sc->sc_dma = (struct dbri_dma *)sc->sc_membase;
367 	/* physical address of DMA buffer */
368 	sc->sc_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr;
369 	sc->sc_bufsiz = size;
370 
371 	mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NONE);
372 	mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_AUDIO);
373 
374 #ifndef DBRI_SPIN
375 	cv_init(&sc->sc_cv, "dbricv");
376 #endif
377 
378 	bus_intr_establish(sa->sa_bustag, sa->sa_pri, IPL_AUDIO, dbri_intr,
379 	    sc);
380 
381 	sc->sc_locked = 0;
382 	sc->sc_desc_used = 0;
383 	sc->sc_refcount = 0;
384 	sc->sc_playing = 0;
385 	sc->sc_recording = 0;
386 	sc->sc_init_done = 0;
387 	config_finalize_register(self, &dbri_config_interrupts);
388 
389 	return;
390 }
391 
392 /*
393  * lowlevel routine to switch power for the DBRI chip
394  */
395 static void
396 dbri_set_power(struct dbri_softc *sc, int state)
397 {
398 	int s;
399 
400 	if (sc->sc_have_powerctl == 0)
401 		return;
402 	if (sc->sc_powerstate == state)
403 		return;
404 
405 	if (state) {
406 		DPRINTF("%s: waiting to power up... ",
407 		    device_xname(sc->sc_dev));
408 		s = splhigh();
409 		*AUXIO4M_REG |= (AUXIO4M_MMX);
410 		splx(s);
411 		delay(10000);
412 		DPRINTF("done (%02x)\n", *AUXIO4M_REG);
413 	} else {
414 		DPRINTF("%s: powering down\n", device_xname(sc->sc_dev));
415 		s = splhigh();
416 		*AUXIO4M_REG &= ~AUXIO4M_MMX;
417 		splx(s);
418 		DPRINTF("done (%02x})\n", *AUXIO4M_REG);
419 	}
420 	sc->sc_powerstate = state;
421 }
422 
423 /*
424  * power up and re-initialize the chip
425  */
426 static void
427 dbri_bring_up(struct dbri_softc *sc)
428 {
429 
430 	if (sc->sc_have_powerctl == 0)
431 		return;
432 
433 	if (sc->sc_powerstate == 1)
434 		return;
435 
436 	/* ok, we really need to do something */
437 	dbri_set_power(sc, 1);
438 
439 	/*
440 	 * re-initialize the chip but skip all the probing, don't overwrite
441 	 * any other settings either
442 	 */
443 	dbri_init(sc);
444 	mmcodec_setgain(sc, 1);
445 	mmcodec_pipe_init(sc);
446 	mmcodec_init_data(sc);
447 	mmcodec_setgain(sc, 0);
448 }
449 
450 static int
451 dbri_config_interrupts(device_t dev)
452 {
453 	struct dbri_softc *sc = device_private(dev);
454 
455 	mutex_spin_enter(&sc->sc_intr_lock);
456 	if (sc->sc_init_done != 0) {
457 		mutex_spin_exit(&sc->sc_intr_lock);
458 		return 0;
459 	}
460 	sc->sc_init_done = 1;
461 
462 	dbri_init(sc);
463 
464 	/* talking to the codec needs working interrupts */
465 	if (mmcodec_init(sc) == -1) {
466 		mutex_spin_exit(&sc->sc_intr_lock);
467 		printf("%s: no codec detected, aborting\n",
468 		    device_xname(dev));
469 		return 0;
470 	}
471 	mutex_spin_exit(&sc->sc_intr_lock);
472 
473 	/* Attach ourselves to the high level audio interface */
474 	audio_attach_mi(&dbri_hw_if, sc, sc->sc_dev);
475 
476 	/* power down until open() */
477 	mutex_spin_enter(&sc->sc_intr_lock);
478 	dbri_set_power(sc, 0);
479 	mutex_spin_exit(&sc->sc_intr_lock);
480 
481 	return 0;
482 }
483 
484 static int
485 dbri_intr(void *hdl)
486 {
487 	struct dbri_softc *sc = hdl;
488 	bus_space_tag_t iot = sc->sc_iot;
489 	bus_space_handle_t ioh = sc->sc_ioh;
490 	int x;
491 
492 	mutex_spin_enter(&sc->sc_intr_lock);
493 
494 	/* clear interrupt */
495 	x = bus_space_read_4(iot, ioh, DBRI_REG1);
496 	if (x & (DBRI_MRR | DBRI_MLE | DBRI_LBG | DBRI_MBE)) {
497 		uint32_t tmp;
498 
499 		if (x & DBRI_MRR)
500 			aprint_debug_dev(sc->sc_dev,
501 			     "multiple ack error on sbus\n");
502 		if (x & DBRI_MLE)
503 			aprint_debug_dev(sc->sc_dev,
504 			    "multiple late error on sbus\n");
505 		if (x & DBRI_LBG)
506 			aprint_debug_dev(sc->sc_dev,
507 			    "lost bus grant on sbus\n");
508 		if (x & DBRI_MBE)
509 			aprint_debug_dev(sc->sc_dev, "burst error on sbus\n");
510 
511 		/*
512 		 * Some of these errors disable the chip's circuitry.
513 		 * Re-enable the circuitry and keep on going.
514 		 */
515 
516 		tmp = bus_space_read_4(iot, ioh, DBRI_REG0);
517 		tmp &= ~(DBRI_DISABLE_MASTER);
518 		bus_space_write_4(iot, ioh, DBRI_REG0, tmp);
519 	}
520 
521 #if 0
522 	if (!x & 1)	/* XXX: DBRI_INTR_REQ */
523 		return (1);
524 #endif
525 
526 	dbri_process_interrupt_buffer(sc);
527 
528 	mutex_spin_exit(&sc->sc_intr_lock);
529 
530 	return (1);
531 }
532 
533 static void
534 dbri_softint(void *cookie)
535 {
536 	struct dbri_desc *dd = cookie;
537 
538 	if (dd->callback != NULL)
539 		dd->callback(dd->callback_args);
540 }
541 
542 static int
543 dbri_init(struct dbri_softc *sc)
544 {
545 	bus_space_tag_t iot = sc->sc_iot;
546 	bus_space_handle_t ioh = sc->sc_ioh;
547 	uint32_t reg;
548 	volatile uint32_t *cmd;
549 	bus_addr_t dmaaddr;
550 	int n;
551 
552 	KASSERT(mutex_owned(&sc->sc_intr_lock));
553 
554 	dbri_reset(sc);
555 	sc->sc_mm.status = 0;
556 
557 	cmd = dbri_command_lock(sc);
558 
559 	/* XXX: Initialize interrupt ring buffer */
560 	sc->sc_dma->intr[0] = (uint32_t)sc->sc_dmabase + dbri_dma_off(intr, 0);
561 	sc->sc_irqp = 1;
562 
563 	/* Initialize pipes */
564 	for (n = 0; n < DBRI_PIPE_MAX; n++)
565 		sc->sc_pipe[n].desc = sc->sc_pipe[n].next = -1;
566 
567 	for (n = 1; n < DBRI_INT_BLOCKS; n++) {
568 		sc->sc_dma->intr[n] = 0;
569 	}
570 
571 	/* XXX 16 byte bursts cause errors, the rest works */
572 	reg = bus_space_read_4(iot, ioh, DBRI_REG0);
573 
574 	/*reg &= ~(DBRI_BURST_4 | DBRI_BURST_8 | DBRI_BURST_16);*/
575 	reg |= (DBRI_BURST_4 | DBRI_BURST_8);
576 	bus_space_write_4(iot, ioh, DBRI_REG0, reg);
577 
578 	/* setup interrupt queue */
579 	dmaaddr = (uint32_t)sc->sc_dmabase + dbri_dma_off(intr, 0);
580 	*(cmd++) = DBRI_CMD(DBRI_COMMAND_IIQ, 0, 0);
581 	*(cmd++) = dmaaddr;
582 
583 	dbri_command_send(sc, cmd);
584 
585 	return (0);
586 }
587 
588 static int
589 dbri_reset(struct dbri_softc *sc)
590 {
591 	int bail = 0;
592 
593 	bus_space_tag_t iot = sc->sc_iot;
594 	bus_space_handle_t ioh = sc->sc_ioh;
595 
596 	bus_space_write_4(iot, ioh, DBRI_REG0, DBRI_SOFT_RESET);
597 	while ((bus_space_read_4(iot, ioh, DBRI_REG0) & DBRI_SOFT_RESET) &&
598 	    (bail < 100000)) {
599 		bail++;
600 		delay(10);
601 	}
602 	if (bail == 100000)
603 		aprint_error_dev(sc->sc_dev, "reset timed out\n");
604 	return (0);
605 }
606 
607 static volatile uint32_t *
608 dbri_command_lock(struct dbri_softc *sc)
609 {
610 
611 	if (sc->sc_locked)
612 		aprint_debug_dev(sc->sc_dev, "command buffer locked\n");
613 
614 	sc->sc_locked++;
615 
616 	return (&sc->sc_dma->command[0]);
617 }
618 
619 static void
620 dbri_command_send(struct dbri_softc *sc, volatile uint32_t *cmd)
621 {
622 	bus_space_handle_t ioh = sc->sc_ioh;
623 	bus_space_tag_t iot = sc->sc_iot;
624 	int maxloops = 1000000;
625 
626 	KASSERT(mutex_owned(&sc->sc_intr_lock));
627 
628 	sc->sc_locked--;
629 
630 	if (sc->sc_locked != 0) {
631 		aprint_error_dev(sc->sc_dev,
632 		    "command buffer improperly locked\n");
633 	} else if ((cmd - &sc->sc_dma->command[0]) >= DBRI_NUM_COMMANDS - 1) {
634 		aprint_error_dev(sc->sc_dev, "command buffer overflow\n");
635 	} else {
636 		*(cmd++) = DBRI_CMD(DBRI_COMMAND_PAUSE, 0, 0);
637 		*(cmd++) = DBRI_CMD(DBRI_COMMAND_WAIT, 1, 0);
638 		sc->sc_waitseen = 0;
639 		bus_space_write_4(iot, ioh, DBRI_REG8, sc->sc_dmabase);
640 		while ((--maxloops) > 0 &&
641 		    (bus_space_read_4(iot, ioh, DBRI_REG0)
642 		     & DBRI_COMMAND_VALID)) {
643 			bus_space_barrier(iot, ioh, DBRI_REG0, 4,
644 					  BUS_SPACE_BARRIER_READ);
645 			delay(1000);
646 		}
647 
648 		if (maxloops == 0) {
649 			aprint_error_dev(sc->sc_dev,
650 			    "chip never completed command buffer\n");
651 		} else {
652 
653 			DPRINTF("%s: command completed\n",
654 			    device_xname(sc->sc_dev));
655 
656 			while ((--maxloops) > 0 && (!sc->sc_waitseen))
657 				dbri_process_interrupt_buffer(sc);
658 			if (maxloops == 0) {
659 				aprint_error_dev(sc->sc_dev, "chip never acked WAIT\n");
660 			}
661 		}
662 	}
663 
664 	return;
665 }
666 
667 static void
668 dbri_process_interrupt_buffer(struct dbri_softc *sc)
669 {
670 	int32_t i;
671 	int orig_irqp = sc->sc_irqp;
672 
673 	KASSERT(mutex_owned(&sc->sc_intr_lock));
674 
675 	while ((i = sc->sc_dma->intr[sc->sc_irqp]) != 0) {
676 		sc->sc_dma->intr[sc->sc_irqp] = 0;
677 		sc->sc_irqp++;
678 
679 		if (sc->sc_irqp == DBRI_INT_BLOCKS)
680 			sc->sc_irqp = 1;
681 		else if ((sc->sc_irqp & (DBRI_INT_BLOCKS - 1)) == 0)
682 			sc->sc_irqp++;
683 
684 		dbri_process_interrupt(sc, i);
685 
686 		/* don't loop more than once. */
687 		if (orig_irqp == sc->sc_irqp)
688 			break;
689 	}
690 
691 	return;
692 }
693 
694 static void
695 dbri_process_interrupt(struct dbri_softc *sc, int32_t i)
696 {
697 #if 0
698 	const int liu_states[] = { 1, 0, 8, 3, 4, 5, 6, 7 };
699 #endif
700 	int val = DBRI_INTR_GETVAL(i);
701 	int channel = DBRI_INTR_GETCHAN(i);
702 	int command = DBRI_INTR_GETCMD(i);
703 	int code = DBRI_INTR_GETCODE(i);
704 #if 0
705 	int rval = DBRI_INTR_GETRVAL(i);
706 #endif
707 	if (channel == DBRI_INTR_CMD && command == DBRI_COMMAND_WAIT)
708 		sc->sc_waitseen++;
709 
710 	switch (code) {
711 	case DBRI_INTR_XCMP:	/* transmission complete */
712 	{
713 		int td;
714 		struct dbri_desc *dd;
715 
716 		DPRINTF("%s:%d tx complete\n", __func__, channel);
717 		td = sc->sc_pipe[channel].desc;
718 		dd = &sc->sc_desc[td];
719 
720 		if (dd->callback != NULL)
721 			softint_schedule(dd->softint);
722 		break;
723 	}
724 	case DBRI_INTR_FXDT:		/* fixed data change */
725 		DPRINTF("%s:%d: Fixed data change: %x\n", __func__, channel,
726 		    val);
727 		if (sc->sc_pipe[channel].sdp & DBRI_SDP_MSB)
728 			val = reverse_bytes(val, sc->sc_pipe[channel].length);
729 		if (sc->sc_pipe[channel].prec)
730 			*(sc->sc_pipe[channel].prec) = val;
731 #ifndef DBRI_SPIN
732 		DPRINTF("%s: cv_broadcast %p\n", device_xname(sc->sc_dev), sc);
733 		cv_broadcast(&sc->sc_cv);
734 #endif
735 		break;
736 	case DBRI_INTR_SBRI:
737 		DPRINTF("dbri_intr: SBRI\n");
738 		break;
739 	case DBRI_INTR_BRDY:
740 	{
741 		int td;
742 		struct dbri_desc *dd;
743 
744 		DPRINTF("dbri_intr: buffer ready (%d)\n", channel);
745 		td = sc->sc_pipe[channel].desc;
746 		dd = &sc->sc_desc[td];
747 
748 		if (dd->callback != NULL)
749 			softint_schedule(dd->softint);
750 		break;
751 	}
752 	case DBRI_INTR_UNDR:
753 	{
754 		volatile uint32_t *cmd;
755 		int td = sc->sc_pipe[channel].desc;
756 
757 		DPRINTF("%s: DBRI_INTR_UNDR\n", device_xname(sc->sc_dev));
758 
759 		sc->sc_dma->xmit[td].status = 0;
760 
761 		cmd = dbri_command_lock(sc);
762 		*(cmd++) = DBRI_CMD(DBRI_COMMAND_SDP, 0,
763 				    sc->sc_pipe[channel].sdp |
764 				    DBRI_SDP_VALID_POINTER |
765 				    DBRI_SDP_CLEAR |
766 				    DBRI_SDP_2SAME);
767 		*(cmd++) = sc->sc_dmabase + dbri_dma_off(xmit, td);
768 		dbri_command_send(sc, cmd);
769 		break;
770 	}
771 	case DBRI_INTR_CMDI:
772 		DPRINTF("ok");
773 		break;
774 	default:
775 
776 		aprint_error_dev(sc->sc_dev, "unknown interrupt code %d\n",
777 		    code);
778 		break;
779 	}
780 
781 	return;
782 }
783 
784 /*
785  * mmcodec stuff
786  */
787 
788 static int
789 mmcodec_init(struct dbri_softc *sc)
790 {
791 	bus_space_handle_t ioh = sc->sc_ioh;
792 	bus_space_tag_t iot = sc->sc_iot;
793 	uint32_t reg2;
794 	int bail;
795 
796 	reg2 = bus_space_read_4(iot, ioh, DBRI_REG2);
797 	DPRINTF("mmcodec_init: PIO reads %x\n", reg2);
798 
799 	if (reg2 & DBRI_PIO2) {
800 		aprint_normal_dev(sc->sc_dev, " onboard CS4215 detected\n");
801 		sc->sc_mm.onboard = 1;
802 	}
803 
804 	if (reg2 & DBRI_PIO0) {
805 		aprint_normal_dev(sc->sc_dev, "speakerbox detected\n");
806 		bus_space_write_4(iot, ioh, DBRI_REG2, DBRI_PIO2_ENABLE);
807 		sc->sc_mm.onboard = 0;
808 	}
809 
810 	if ((reg2 & DBRI_PIO2) && (reg2 & DBRI_PIO0)) {
811 		aprint_normal_dev(sc->sc_dev, "using speakerbox\n");
812 		bus_space_write_4(iot, ioh, DBRI_REG2, DBRI_PIO2_ENABLE);
813 		sc->sc_mm.onboard = 0;
814 	}
815 
816 	if (!(reg2 & (DBRI_PIO0|DBRI_PIO2))) {
817 		aprint_normal_dev(sc->sc_dev, "no mmcodec found\n");
818 		return -1;
819 	}
820 
821 	sc->sc_version = 0xff;
822 
823 	mmcodec_pipe_init(sc);
824 	mmcodec_default(sc);
825 
826 	sc->sc_mm.offset = sc->sc_mm.onboard ? 0 : 8;
827 
828 	/*
829 	 * mmcodec_setcontrol() sometimes fails right after powerup
830 	 * so we just try again until we either get a useful response or run
831 	 * out of time
832 	 */
833 	bail = 0;
834 	while (mmcodec_setcontrol(sc) == -1 || sc->sc_version == 0xff) {
835 
836 		bail++;
837 		if (bail > 100) {
838 			DPRINTF("%s: cs4215 probe failed at offset %d\n",
839 		    	    device_xname(sc->sc_dev), sc->sc_mm.offset);
840 			return (-1);
841 		}
842 		delay(10000);
843 	}
844 
845 	aprint_normal_dev(sc->sc_dev, "cs4215 rev %c found at offset %d\n",
846 	    0x43 + (sc->sc_version & 0xf), sc->sc_mm.offset);
847 
848 	/* set some sane defaults for mmcodec_init_data */
849 	sc->sc_params.channels = 2;
850 	sc->sc_params.precision = 16;
851 
852 	mmcodec_init_data(sc);
853 
854 	return (0);
855 }
856 
857 static void
858 mmcodec_init_data(struct dbri_softc *sc)
859 {
860 	bus_space_tag_t iot = sc->sc_iot;
861 	bus_space_handle_t ioh = sc->sc_ioh;
862 	uint32_t tmp;
863 	int data_width;
864 
865 	tmp = bus_space_read_4(iot, ioh, DBRI_REG0);
866 	tmp &= ~(DBRI_CHI_ACTIVATE);	/* disable CHI */
867 	bus_space_write_4(iot, ioh, DBRI_REG0, tmp);
868 
869 	/* switch CS4215 to data mode - set PIO3 to 1 */
870 	tmp = DBRI_PIO_ENABLE_ALL | DBRI_PIO1 | DBRI_PIO3;
871 
872 	/* XXX */
873 	tmp |= (sc->sc_mm.onboard ? DBRI_PIO0 : DBRI_PIO2);
874 
875 	bus_space_write_4(iot, ioh, DBRI_REG2, tmp);
876 	chi_reset(sc, CHIslave, 128);
877 
878 	data_width = sc->sc_params.channels * sc->sc_params.precision;
879 
880 	if ((data_width != 32) && (data_width != 8))
881 		aprint_error("%s: data_width is %d\n", __func__, data_width);
882 
883 	pipe_ts_link(sc, 20, PIPEoutput, 16, 32, sc->sc_mm.offset + 32);
884 	pipe_ts_link(sc, 4, PIPEoutput, 16, data_width, sc->sc_mm.offset);
885 	pipe_ts_link(sc, 6, PIPEinput, 16, data_width, sc->sc_mm.offset);
886 #if 0
887 	/* readback for the mixer registers - we don't use that */
888 	pipe_ts_link(sc, 21, PIPEinput, 16, 32, sc->sc_mm.offset + 32);
889 
890 	pipe_receive_fixed(sc, 21, &sc->sc_mm.d.ldata);
891 #endif
892 	mmcodec_setgain(sc, 0);
893 
894 	tmp = bus_space_read_4(iot, ioh, DBRI_REG0);
895 	tmp |= DBRI_CHI_ACTIVATE;
896 	bus_space_write_4(iot, ioh, DBRI_REG0, tmp);
897 
898 	return;
899 }
900 
901 static void
902 mmcodec_pipe_init(struct dbri_softc *sc)
903 {
904 
905 	pipe_setup(sc, 4, DBRI_SDP_MEM | DBRI_SDP_TO_SER | DBRI_SDP_MSB);
906 	pipe_setup(sc, 20, DBRI_SDP_FIXED | DBRI_SDP_TO_SER | DBRI_SDP_MSB);
907 	pipe_setup(sc, 6, DBRI_SDP_MEM | DBRI_SDP_FROM_SER | DBRI_SDP_MSB);
908 #if 0
909 	pipe_setup(sc, 21, DBRI_SDP_FIXED | DBRI_SDP_FROM_SER | DBRI_SDP_MSB);
910 #endif
911 	pipe_setup(sc, 17, DBRI_SDP_FIXED | DBRI_SDP_TO_SER | DBRI_SDP_MSB);
912 	pipe_setup(sc, 18, DBRI_SDP_FIXED | DBRI_SDP_FROM_SER | DBRI_SDP_MSB);
913 	pipe_setup(sc, 19, DBRI_SDP_FIXED | DBRI_SDP_FROM_SER | DBRI_SDP_MSB);
914 
915 	pipe_receive_fixed(sc, 18, &sc->sc_mm.status);
916 	pipe_receive_fixed(sc, 19, &sc->sc_mm.version);
917 
918 	return;
919 }
920 
921 static void
922 mmcodec_default(struct dbri_softc *sc)
923 {
924 	struct cs4215_state *mm = &sc->sc_mm;
925 
926 	/*
927 	 * no action, memory resetting only
928 	 *
929 	 * data time slots 5-8
930 	 * speaker, line and headphone enable. set gain to half.
931 	 * input is line
932 	 */
933 	mm->d.bdata[0] = sc->sc_latt = 0x20 | CS4215_HE | CS4215_LE;
934 	mm->d.bdata[1] = sc->sc_ratt = 0x20 | CS4215_SE;
935 	sc->sc_linp = 128;
936 	sc->sc_rinp = 128;
937 	sc->sc_monitor = 0;
938 	sc->sc_input = 1;	/* line */
939 	mm->d.bdata[2] = (CS4215_LG((sc->sc_linp >> 4)) & 0x0f) |
940 	    ((sc->sc_input == 2) ? CS4215_IS : 0) | CS4215_PIO0 | CS4215_PIO1;
941 	mm->d.bdata[3] = (CS4215_RG((sc->sc_rinp >> 4) & 0x0f)) |
942 	    CS4215_MA(15 - ((sc->sc_monitor >> 4) & 0x0f));
943 
944 
945 	/*
946 	 * control time slots 1-4
947 	 *
948 	 * 0: default I/O voltage scale
949 	 * 1: 8 bit ulaw, 8kHz, mono, high pass filter disabled
950 	 * 2: serial enable, CHI master, 128 bits per frame, clock 1
951 	 * 3: tests disabled
952 	 */
953 	mm->c.bcontrol[0] = CS4215_ONE | CS4215_MLB;
954 	mm->c.bcontrol[1] = CS4215_DFR_ULAW | CS4215_FREQ[0].csval;
955 	mm->c.bcontrol[2] = CS4215_XCLK | CS4215_BSEL_128 | CS4215_FREQ[0].xtal;
956 	mm->c.bcontrol[3] = 0;
957 
958 	return;
959 }
960 
961 static void
962 mmcodec_setgain(struct dbri_softc *sc, int mute)
963 {
964 	if (mute) {
965 		/* disable all outputs, max. attenuation */
966 		sc->sc_mm.d.bdata[0] = sc->sc_latt | 63;
967 		sc->sc_mm.d.bdata[1] = sc->sc_ratt | 63;
968 	} else {
969 
970 		sc->sc_mm.d.bdata[0] = sc->sc_latt;
971 		sc->sc_mm.d.bdata[1] = sc->sc_ratt;
972 	}
973 
974 	/* input stuff */
975 	sc->sc_mm.d.bdata[2] = CS4215_LG((sc->sc_linp >> 4) & 0x0f) |
976 	    ((sc->sc_input == 2) ? CS4215_IS : 0) | CS4215_PIO0 | CS4215_PIO1;
977 	sc->sc_mm.d.bdata[3] = (CS4215_RG((sc->sc_rinp >> 4)) & 0x0f) |
978 	    (CS4215_MA(15 - ((sc->sc_monitor >> 4) & 0x0f)));
979 
980 	if (sc->sc_powerstate == 0)
981 		return;
982 	pipe_transmit_fixed(sc, 20, sc->sc_mm.d.ldata);
983 
984 	DPRINTF("mmcodec_setgain: %08x\n", sc->sc_mm.d.ldata);
985 	/* give the chip some time to execute the command */
986 	delay(250);
987 
988 	return;
989 }
990 
991 static int
992 mmcodec_setcontrol(struct dbri_softc *sc)
993 {
994 	bus_space_tag_t iot = sc->sc_iot;
995 	bus_space_handle_t ioh = sc->sc_ioh;
996 	uint32_t val;
997 	uint32_t tmp;
998 	int ret = 0;
999 #ifdef DBRI_SPIN
1000 	int i;
1001 #else
1002 	int error, bail = 0;
1003 #endif
1004 
1005 	KASSERT(mutex_owned(&sc->sc_intr_lock));
1006 
1007 	/*
1008 	 * Temporarily mute outputs and wait 125 us to make sure that it
1009 	 * happens. This avoids clicking noises.
1010 	 */
1011 	mmcodec_setgain(sc, 1);
1012 	delay(125);
1013 
1014 	tmp = bus_space_read_4(iot, ioh, DBRI_REG0);
1015 	tmp &= ~(DBRI_CHI_ACTIVATE);	/* disable CHI */
1016 	bus_space_write_4(iot, ioh, DBRI_REG0, tmp);
1017 
1018 	bus_space_write_4(iot, ioh, DBRI_REG2, 0);
1019 	delay(125);
1020 
1021 	/* enable control mode */
1022 	val = DBRI_PIO_ENABLE_ALL | DBRI_PIO1;	/* was PIO1 */
1023 
1024 	/* XXX */
1025 	val |= (sc->sc_mm.onboard ? DBRI_PIO0 : DBRI_PIO2);
1026 
1027 	bus_space_write_4(iot, ioh, DBRI_REG2, val);
1028 	delay(34);
1029 
1030 	/*
1031 	 * in control mode, the cs4215 is the slave device, so the
1032 	 * DBRI must act as the CHI master.
1033 	 *
1034 	 * in data mode, the cs4215 must be the CHI master to insure
1035 	 * that the data stream is in sync with its codec
1036 	 */
1037 	tmp = bus_space_read_4(iot, ioh, DBRI_REG0);
1038 	tmp &= ~DBRI_COMMAND_CHI;
1039 	bus_space_write_4(iot, ioh, DBRI_REG0, tmp);
1040 
1041 	chi_reset(sc, CHImaster, 128);
1042 
1043 	/* control mode */
1044 	pipe_ts_link(sc, 17, PIPEoutput, 16, 32, sc->sc_mm.offset);
1045 	pipe_ts_link(sc, 18, PIPEinput, 16, 8, sc->sc_mm.offset);
1046 	pipe_ts_link(sc, 19, PIPEinput, 16, 8, sc->sc_mm.offset + 48);
1047 
1048 	pipe_receive_fixed(sc, 18, &sc->sc_mm.status);
1049 
1050 	/* wait for the chip to echo back CLB as zero */
1051 	sc->sc_mm.c.bcontrol[0] &= ~CS4215_CLB;
1052 	pipe_transmit_fixed(sc, 17, sc->sc_mm.c.lcontrol);
1053 
1054 	tmp = bus_space_read_4(iot, ioh, DBRI_REG0);
1055 	tmp |= DBRI_CHI_ACTIVATE;
1056 	bus_space_write_4(iot, ioh, DBRI_REG0, tmp);
1057 
1058 #ifdef DBRI_SPIN
1059 	i = 1024;
1060 	while (((sc->sc_mm.status & 0xe4) != CS4215_ONE) && (i > 0)) {
1061 		i--;
1062 		delay(125);
1063 	}
1064 
1065 	if (i == 0) {
1066 		DPRINTF("%s: cs4215 didn't respond to CLB (0x%02x)\n",
1067 		    device_xname(sc->sc_dev), sc->sc_mm.status);
1068 		ret = -1;
1069 		goto fail;
1070 	}
1071 #else
1072 	while (((sc->sc_mm.status & 0xe4) != CS4215_ONE) && (bail < 10)) {
1073 		DPRINTF("%s: cv_wait_sig %p\n", device_xname(sc->sc_dev), sc);
1074 		error = cv_timedwait_sig(&sc->sc_cv, &sc->sc_intr_lock, hz);
1075 		if (error == EINTR) {
1076 			DPRINTF("%s: interrupted\n", device_xname(sc->sc_dev));
1077 			ret = -1;
1078 			mutex_spin_exit(&sc->sc_intr_lock);
1079 			goto fail;
1080 		}
1081 		bail++;
1082 	}
1083 	if (bail >= 10) {
1084 		aprint_error("%s: switching to control mode timed out (%x %x)\n",
1085 		    device_xname(sc->sc_dev), sc->sc_mm.status,
1086 		    bus_space_read_4(iot, ioh, DBRI_REG2));
1087 		ret = -1;
1088 		goto fail;
1089 	}
1090 #endif
1091 
1092 	/* copy the version information before it becomes unreadable again */
1093 	sc->sc_version = sc->sc_mm.version;
1094 	sc->sc_whack_codec = 0;
1095 
1096 fail:
1097 	/* terminate cs4215 control mode */
1098 	sc->sc_mm.c.bcontrol[0] |= CS4215_CLB;
1099 	pipe_transmit_fixed(sc, 17, sc->sc_mm.c.lcontrol);
1100 
1101 	/* two frames of control info @ 8kHz frame rate = 250us delay */
1102 	delay(250);
1103 
1104 	mmcodec_setgain(sc, 0);
1105 
1106 	return ret;
1107 
1108 }
1109 
1110 /*
1111  * CHI combo
1112  */
1113 static void
1114 chi_reset(struct dbri_softc *sc, enum ms ms, int bpf)
1115 {
1116 	volatile uint32_t *cmd;
1117 	int val;
1118 	int clockrate, divisor;
1119 
1120 	cmd = dbri_command_lock(sc);
1121 
1122 	/* set CHI anchor: pipe 16 */
1123 	val = DBRI_DTS_VI | DBRI_DTS_INS | DBRI_DTS_PRVIN(16) | DBRI_PIPE(16);
1124 	*(cmd++) = DBRI_CMD(DBRI_COMMAND_DTS, 0, val);
1125 	*(cmd++) = DBRI_TS_ANCHOR | DBRI_TS_NEXT(16);
1126 	*(cmd++) = 0;
1127 
1128 	val = DBRI_DTS_VO | DBRI_DTS_INS | DBRI_DTS_PRVOUT(16) | DBRI_PIPE(16);
1129 	*(cmd++) = DBRI_CMD(DBRI_COMMAND_DTS, 0, val);
1130 	*(cmd++) = 0;
1131 	*(cmd++) = DBRI_TS_ANCHOR | DBRI_TS_NEXT(16);
1132 
1133 	sc->sc_pipe[16].sdp = 1;
1134 	sc->sc_pipe[16].next = 16;
1135 	sc->sc_chi_pipe_in = 16;
1136 	sc->sc_chi_pipe_out = 16;
1137 
1138 	switch (ms) {
1139 	case CHIslave:
1140 		*(cmd++) = DBRI_CMD(DBRI_COMMAND_CHI, 0, DBRI_CHI_CHICM(0));
1141 		break;
1142 	case CHImaster:
1143 		clockrate = bpf * 8;
1144 		divisor = 12288 / clockrate;
1145 
1146 		if (divisor > 255 || divisor * clockrate != 12288)
1147 			aprint_error_dev(sc->sc_dev,
1148 			    "illegal bits-per-frame %d\n", bpf);
1149 
1150 		*(cmd++) = DBRI_CMD(DBRI_COMMAND_CHI, 0,
1151 		    DBRI_CHI_CHICM(divisor) | DBRI_CHI_FD | DBRI_CHI_BPF(bpf));
1152 		break;
1153 	default:
1154 		aprint_error_dev(sc->sc_dev, "unknown value for ms!\n");
1155 		break;
1156 	}
1157 
1158 	sc->sc_chi_bpf = bpf;
1159 
1160 	/* CHI data mode */
1161 	*(cmd++) = DBRI_CMD(DBRI_COMMAND_PAUSE, 0, 0);
1162 	*(cmd++) = DBRI_CMD(DBRI_COMMAND_CDM, 0,
1163 	    DBRI_CDM_XCE | DBRI_CDM_XEN | DBRI_CDM_REN);
1164 
1165 	dbri_command_send(sc, cmd);
1166 
1167 	return;
1168 }
1169 
1170 /*
1171  * pipe stuff
1172  */
1173 static void
1174 pipe_setup(struct dbri_softc *sc, int pipe, int sdp)
1175 {
1176 	DPRINTF("pipe setup: %d\n", pipe);
1177 	if (pipe < 0 || pipe >= DBRI_PIPE_MAX) {
1178 		aprint_error_dev(sc->sc_dev, "illegal pipe number %d\n",
1179 		    pipe);
1180 		return;
1181 	}
1182 
1183 	if ((sdp & 0xf800) != sdp)
1184 		aprint_error_dev(sc->sc_dev, "strange SDP value %d\n",
1185 		    sdp);
1186 
1187 	if (DBRI_SDP_MODE(sdp) == DBRI_SDP_FIXED &&
1188 	    !(sdp & DBRI_SDP_TO_SER))
1189 		sdp |= DBRI_SDP_CHANGE;
1190 
1191 	sdp |= DBRI_PIPE(pipe);
1192 
1193 	sc->sc_pipe[pipe].sdp = sdp;
1194 	sc->sc_pipe[pipe].desc = -1;
1195 
1196 	pipe_reset(sc, pipe);
1197 
1198 	return;
1199 }
1200 
1201 static void
1202 pipe_reset(struct dbri_softc *sc, int pipe)
1203 {
1204 	struct dbri_desc *dd;
1205 	int sdp;
1206 	int desc;
1207 	volatile uint32_t *cmd;
1208 
1209 	if (pipe < 0 || pipe >= DBRI_PIPE_MAX) {
1210 		aprint_error_dev(sc->sc_dev, "illegal pipe number %d\n",
1211 		    pipe);
1212 		return;
1213 	}
1214 
1215 	sdp = sc->sc_pipe[pipe].sdp;
1216 	if (sdp == 0) {
1217 		aprint_error_dev(sc->sc_dev, "can not reset uninitialized pipe %d\n",
1218 		    pipe);
1219 		return;
1220 	}
1221 
1222 	cmd = dbri_command_lock(sc);
1223 	*(cmd++) = DBRI_CMD(DBRI_COMMAND_SDP, 0,
1224 	    sdp | DBRI_SDP_CLEAR | DBRI_SDP_VALID_POINTER);
1225 	*(cmd++) = 0;
1226 	dbri_command_send(sc, cmd);
1227 
1228 	desc = sc->sc_pipe[pipe].desc;
1229 
1230 	dd = &sc->sc_desc[desc];
1231 
1232 	dd->busy = 0;
1233 
1234 #if 0
1235 	if (dd->callback)
1236 		softint_schedule(dd->softint);
1237 #endif
1238 
1239 	sc->sc_pipe[pipe].desc = -1;
1240 
1241 	return;
1242 }
1243 
1244 static void
1245 pipe_receive_fixed(struct dbri_softc *sc, int pipe, volatile uint32_t *prec)
1246 {
1247 
1248 	if (pipe < DBRI_PIPE_MAX / 2 || pipe >= DBRI_PIPE_MAX) {
1249 		aprint_error_dev(sc->sc_dev, "illegal pipe number %d\n",
1250 		    pipe);
1251 		return;
1252 	}
1253 
1254 	if (DBRI_SDP_MODE(sc->sc_pipe[pipe].sdp) != DBRI_SDP_FIXED) {
1255 		aprint_error_dev(sc->sc_dev, "non-fixed pipe %d\n",
1256 		    pipe);
1257 		return;
1258 	}
1259 
1260 	if (sc->sc_pipe[pipe].sdp & DBRI_SDP_TO_SER) {
1261 		aprint_error_dev(sc->sc_dev, "can not receive on transmit pipe %d\b",
1262 		    pipe);
1263 		return;
1264 	}
1265 
1266 	sc->sc_pipe[pipe].prec = prec;
1267 
1268 	return;
1269 }
1270 
1271 static void
1272 pipe_transmit_fixed(struct dbri_softc *sc, int pipe, uint32_t data)
1273 {
1274 	volatile uint32_t *cmd;
1275 
1276 	if (pipe < DBRI_PIPE_MAX / 2 || pipe >= DBRI_PIPE_MAX) {
1277 		aprint_error_dev(sc->sc_dev, "illegal pipe number %d\n",
1278 		    pipe);
1279 		return;
1280 	}
1281 
1282 	if (DBRI_SDP_MODE(sc->sc_pipe[pipe].sdp) == 0) {
1283 		aprint_error_dev(sc->sc_dev, "uninitialized pipe %d\n",
1284 		    pipe);
1285 		return;
1286 	}
1287 
1288 	if (DBRI_SDP_MODE(sc->sc_pipe[pipe].sdp) != DBRI_SDP_FIXED) {
1289 		aprint_error_dev(sc->sc_dev, "non-fixed pipe %d\n",
1290 		    pipe);
1291 		return;
1292 	}
1293 
1294 	if (!(sc->sc_pipe[pipe].sdp & DBRI_SDP_TO_SER)) {
1295 		aprint_error_dev(sc->sc_dev, "called on receive pipe %d\n",
1296 		    pipe);
1297 		return;
1298 	}
1299 
1300 	if (sc->sc_pipe[pipe].sdp & DBRI_SDP_MSB)
1301 		data = reverse_bytes(data, sc->sc_pipe[pipe].length);
1302 
1303 	cmd = dbri_command_lock(sc);
1304 	*(cmd++) = DBRI_CMD(DBRI_COMMAND_SSP, 0, pipe);
1305 	*(cmd++) = data;
1306 
1307 	dbri_command_send(sc, cmd);
1308 
1309 	return;
1310 }
1311 
1312 static void
1313 setup_ring_xmit(struct dbri_softc *sc, int pipe, int which, int num, int blksz,
1314 		void (*callback)(void *), void *callback_args)
1315 {
1316 	volatile uint32_t *cmd;
1317 	int i;
1318 #if 0
1319 	int td;
1320 	int td_first, td_last;
1321 #endif
1322 	bus_addr_t dmabuf, dmabase;
1323 	struct dbri_desc *dd = &sc->sc_desc[which];
1324 
1325 	switch (pipe) {
1326 		case 4:
1327 			/* output, offset 0 */
1328 			break;
1329 		default:
1330 			aprint_error("%s: illegal pipe number (%d)\n",
1331 			    __func__, pipe);
1332 			return;
1333 	}
1334 
1335 #if 0
1336 	td = 0;
1337 	td_first = td_last = -1;
1338 #endif
1339 
1340 	if (sc->sc_pipe[pipe].sdp == 0) {
1341 		aprint_error_dev(sc->sc_dev, "uninitialized pipe %d\n",
1342 		    pipe);
1343 		return;
1344 	}
1345 
1346 	dmabuf = dd->dmabase;
1347 	dmabase = sc->sc_dmabase;
1348 
1349 	for (i = 0; i < (num - 1); i++) {
1350 
1351 		sc->sc_dma->xmit[i].flags = TX_BCNT(blksz)
1352 		    | TX_EOF | TX_BINT;
1353 		sc->sc_dma->xmit[i].ba = dmabuf;
1354 		sc->sc_dma->xmit[i].nda = dmabase + dbri_dma_off(xmit, i + 1);
1355 		sc->sc_dma->xmit[i].status = 0;
1356 
1357 #if 0
1358 		td_last = td;
1359 #endif
1360 		dmabuf += blksz;
1361 	}
1362 
1363 	sc->sc_dma->xmit[i].flags = TX_BCNT(blksz) | TX_EOF | TX_BINT;
1364 
1365 	sc->sc_dma->xmit[i].ba = dmabuf;
1366 	sc->sc_dma->xmit[i].nda = dmabase + dbri_dma_off(xmit, 0);
1367 	sc->sc_dma->xmit[i].status = 0;
1368 
1369 	dd->callback = callback;
1370 	dd->callback_args = callback_args;
1371 
1372 	/* the pipe shouldn't be active */
1373 	if (pipe_active(sc, pipe)) {
1374 		aprint_error("pipe active (CDP)\n");
1375 		/* pipe is already active */
1376 #if 0
1377 		td_last = sc->sc_pipe[pipe].desc;
1378 		while (sc->sc_desc[td_last].next != -1)
1379 			td_last = sc->sc_desc[td_last].next;
1380 
1381 		sc->sc_desc[td_last].next = td_first;
1382 		sc->sc_dma->desc[td_last].nda =
1383 		    sc->sc_dmabase + dbri_dma_off(desc, td_first);
1384 
1385 		cmd = dbri_command_lock(sc);
1386 		*(cmd++) = DBRI_CMD(DBRI_COMMAND_CDP, 0, pipe);
1387 		dbri_command_send(sc, cmd);
1388 #endif
1389 	} else {
1390 		/*
1391 		 * pipe isn't active - issue an SDP command to start our
1392 		 * chain of TDs running
1393 		 */
1394 		sc->sc_pipe[pipe].desc = which;
1395 		cmd = dbri_command_lock(sc);
1396 		*(cmd++) = DBRI_CMD(DBRI_COMMAND_SDP, 0,
1397 					sc->sc_pipe[pipe].sdp |
1398 					DBRI_SDP_VALID_POINTER |
1399 					DBRI_SDP_EVERY |
1400 					DBRI_SDP_CLEAR);
1401 		*(cmd++) = sc->sc_dmabase + dbri_dma_off(xmit, 0);
1402 		dbri_command_send(sc, cmd);
1403 		DPRINTF("%s: starting DMA\n", __func__);
1404 	}
1405 
1406 	return;
1407 }
1408 
1409 static void
1410 setup_ring_recv(struct dbri_softc *sc, int pipe, int which, int num, int blksz,
1411 		void (*callback)(void *), void *callback_args)
1412 {
1413 	volatile uint32_t *cmd;
1414 	int i;
1415 #if 0
1416 	int td_first, td_last;
1417 #endif
1418 	bus_addr_t dmabuf, dmabase;
1419 	struct dbri_desc *dd = &sc->sc_desc[which];
1420 
1421 	switch (pipe) {
1422 		case 6:
1423 			break;
1424 		default:
1425 			aprint_error("%s: illegal pipe number (%d)\n",
1426 			    __func__, pipe);
1427 			return;
1428 	}
1429 
1430 #if 0
1431 	td_first = td_last = -1;
1432 #endif
1433 
1434 	if (sc->sc_pipe[pipe].sdp == 0) {
1435 		aprint_error_dev(sc->sc_dev, "uninitialized pipe %d\n",
1436 		    pipe);
1437 		return;
1438 	}
1439 
1440 	dmabuf = dd->dmabase;
1441 	dmabase = sc->sc_dmabase;
1442 
1443 	for (i = 0; i < (num - 1); i++) {
1444 
1445 		sc->sc_dma->recv[i].flags = RX_BSIZE(blksz) | RX_FINAL;
1446 		sc->sc_dma->recv[i].ba = dmabuf;
1447 		sc->sc_dma->recv[i].nda = dmabase + dbri_dma_off(recv, i + 1);
1448 		sc->sc_dma->recv[i].status = RX_EOF;
1449 
1450 #if 0
1451 		td_last = i;
1452 #endif
1453 		dmabuf += blksz;
1454 	}
1455 
1456 	sc->sc_dma->recv[i].flags = RX_BSIZE(blksz) | RX_FINAL;
1457 
1458 	sc->sc_dma->recv[i].ba = dmabuf;
1459 	sc->sc_dma->recv[i].nda = dmabase + dbri_dma_off(recv, 0);
1460 	sc->sc_dma->recv[i].status = RX_EOF;
1461 
1462 	dd->callback = callback;
1463 	dd->callback_args = callback_args;
1464 
1465 	/* the pipe shouldn't be active */
1466 	if (pipe_active(sc, pipe)) {
1467 		aprint_error("pipe active (CDP)\n");
1468 		/* pipe is already active */
1469 #if 0
1470 		td_last = sc->sc_pipe[pipe].desc;
1471 		while (sc->sc_desc[td_last].next != -1)
1472 			td_last = sc->sc_desc[td_last].next;
1473 
1474 		sc->sc_desc[td_last].next = td_first;
1475 		sc->sc_dma->desc[td_last].nda =
1476 		    sc->sc_dmabase + dbri_dma_off(desc, td_first);
1477 
1478 		cmd = dbri_command_lock(sc);
1479 		*(cmd++) = DBRI_CMD(DBRI_COMMAND_CDP, 0, pipe);
1480 		dbri_command_send(sc, cmd);
1481 #endif
1482 	} else {
1483 		/*
1484 		 * pipe isn't active - issue an SDP command to start our
1485 		 * chain of TDs running
1486 		 */
1487 		sc->sc_pipe[pipe].desc = which;
1488 		cmd = dbri_command_lock(sc);
1489 		*(cmd++) = DBRI_CMD(DBRI_COMMAND_SDP, 0,
1490 					sc->sc_pipe[pipe].sdp |
1491 					DBRI_SDP_VALID_POINTER |
1492 					DBRI_SDP_EVERY |
1493 					DBRI_SDP_CLEAR);
1494 		*(cmd++) = sc->sc_dmabase + dbri_dma_off(recv, 0);
1495 		dbri_command_send(sc, cmd);
1496 		DPRINTF("%s: starting DMA\n", __func__);
1497 	}
1498 
1499 	return;
1500 }
1501 
1502 static void
1503 pipe_ts_link(struct dbri_softc *sc, int pipe, enum io dir, int basepipe,
1504 		int len, int cycle)
1505 {
1506 	volatile uint32_t *cmd;
1507 	int prevpipe, nextpipe;
1508 	int val;
1509 
1510 	DPRINTF("%s: %d\n", __func__, pipe);
1511 	if (pipe < 0 || pipe >= DBRI_PIPE_MAX ||
1512 	    basepipe < 0 || basepipe >= DBRI_PIPE_MAX) {
1513 		aprint_error_dev(sc->sc_dev, "illegal pipe numbers (%d, %d)\n",
1514 		    pipe, basepipe);
1515 		return;
1516 	}
1517 
1518 	if (sc->sc_pipe[pipe].sdp == 0 || sc->sc_pipe[basepipe].sdp == 0) {
1519 		aprint_error_dev(sc->sc_dev, "uninitialized pipe (%d, %d)\n",
1520 		    pipe, basepipe);
1521 		return;
1522 	}
1523 
1524 	if (basepipe == 16 && dir == PIPEoutput && cycle == 0)
1525 		cycle = sc->sc_chi_bpf;
1526 
1527 	if (basepipe == pipe)
1528 		prevpipe = nextpipe = pipe;
1529 	else {
1530 		if (basepipe == 16) {
1531 			if (dir == PIPEinput) {
1532 				prevpipe = sc->sc_chi_pipe_in;
1533 			} else {
1534 				prevpipe = sc->sc_chi_pipe_out;
1535 			}
1536 		} else
1537 			prevpipe = basepipe;
1538 
1539 		nextpipe = sc->sc_pipe[prevpipe].next;
1540 
1541 		while (sc->sc_pipe[nextpipe].cycle < cycle &&
1542 		    sc->sc_pipe[nextpipe].next != basepipe) {
1543 			prevpipe = nextpipe;
1544 			nextpipe = sc->sc_pipe[nextpipe].next;
1545 		}
1546 	}
1547 
1548 	if (prevpipe == 16) {
1549 		if (dir == PIPEinput) {
1550 			sc->sc_chi_pipe_in = pipe;
1551 		} else {
1552 			sc->sc_chi_pipe_out = pipe;
1553 		}
1554 	} else
1555 		sc->sc_pipe[prevpipe].next = pipe;
1556 
1557 	sc->sc_pipe[pipe].next = nextpipe;
1558 	sc->sc_pipe[pipe].cycle = cycle;
1559 	sc->sc_pipe[pipe].length = len;
1560 
1561 	cmd = dbri_command_lock(sc);
1562 
1563 	switch (dir) {
1564 	case PIPEinput:
1565 		val = DBRI_DTS_VI | DBRI_DTS_INS | DBRI_DTS_PRVIN(prevpipe);
1566 		val |= pipe;
1567 		*(cmd++) = DBRI_CMD(DBRI_COMMAND_DTS, 0, val);
1568 		*(cmd++) = DBRI_TS_LEN(len) | DBRI_TS_CYCLE(cycle) |
1569 		    DBRI_TS_NEXT(nextpipe);
1570 		*(cmd++) = 0;
1571 		break;
1572 	case PIPEoutput:
1573 		val = DBRI_DTS_VO | DBRI_DTS_INS | DBRI_DTS_PRVOUT(prevpipe);
1574 		val |= pipe;
1575 		*(cmd++) = DBRI_CMD(DBRI_COMMAND_DTS, 0, val);
1576 		*(cmd++) = 0;
1577 		*(cmd++) = DBRI_TS_LEN(len) | DBRI_TS_CYCLE(cycle) |
1578 		    DBRI_TS_NEXT(nextpipe);
1579 		break;
1580 	default:
1581 		DPRINTF("%s: should not have happened!\n",
1582 		    device_xname(sc->sc_dev));
1583 		break;
1584 	}
1585 
1586 	dbri_command_send(sc, cmd);
1587 
1588 	return;
1589 }
1590 
1591 static int
1592 pipe_active(struct dbri_softc *sc, int pipe)
1593 {
1594 
1595 	return (sc->sc_pipe[pipe].desc != -1);
1596 }
1597 
1598 /*
1599  * subroutines required to interface with audio(9)
1600  */
1601 
1602 static int
1603 dbri_query_encoding(void *hdl, struct audio_encoding *ae)
1604 {
1605 
1606 	switch (ae->index) {
1607 	case 0:
1608 		strcpy(ae->name, AudioEulinear);
1609 		ae->encoding = AUDIO_ENCODING_ULINEAR;
1610 		ae->precision = 8;
1611 		ae->flags = 0;
1612 		break;
1613 	case 1:
1614 		strcpy(ae->name, AudioEmulaw);
1615 		ae->encoding = AUDIO_ENCODING_ULAW;
1616 		ae->precision = 8;
1617 		ae->flags = 0;
1618 		break;
1619 	case 2:
1620 		strcpy(ae->name, AudioEalaw);
1621 		ae->encoding = AUDIO_ENCODING_ALAW;
1622 		ae->precision = 8;
1623 		ae->flags = 0;
1624 		break;
1625 	case 3:
1626 		strcpy(ae->name, AudioEslinear);
1627 		ae->encoding = AUDIO_ENCODING_SLINEAR;
1628 		ae->precision = 8;
1629 		ae->flags = AUDIO_ENCODINGFLAG_EMULATED;
1630 		break;
1631 	case 4:
1632 		strcpy(ae->name, AudioEslinear_le);
1633 		ae->encoding = AUDIO_ENCODING_SLINEAR_LE;
1634 		ae->precision = 16;
1635 		ae->flags = AUDIO_ENCODINGFLAG_EMULATED;
1636 		break;
1637 	case 5:
1638 		strcpy(ae->name, AudioEulinear_le);
1639 		ae->encoding = AUDIO_ENCODING_ULINEAR_LE;
1640 		ae->precision = 16;
1641 		ae->flags = AUDIO_ENCODINGFLAG_EMULATED;
1642 		break;
1643 	case 6:
1644 		strcpy(ae->name, AudioEslinear_be);
1645 		ae->encoding = AUDIO_ENCODING_SLINEAR_BE;
1646 		ae->precision = 16;
1647 		ae->flags = 0;
1648 		break;
1649 	case 7:
1650 		strcpy(ae->name, AudioEulinear_be);
1651 		ae->encoding = AUDIO_ENCODING_ULINEAR_BE;
1652 		ae->precision = 16;
1653 		ae->flags = AUDIO_ENCODINGFLAG_EMULATED;
1654 		break;
1655 	case 8:
1656 		strcpy(ae->name, AudioEslinear);
1657 		ae->encoding = AUDIO_ENCODING_SLINEAR;
1658 		ae->precision = 16;
1659 		ae->flags = 0;
1660 		break;
1661 	default:
1662 		return (EINVAL);
1663 	}
1664 
1665 	return (0);
1666 }
1667 
1668 static int
1669 dbri_set_params(void *hdl, int setmode, int usemode,
1670 		struct audio_params *play, struct audio_params *rec,
1671 		stream_filter_list_t *pfil, stream_filter_list_t *rfil)
1672 {
1673 	struct dbri_softc *sc = hdl;
1674 	int rate;
1675 	audio_params_t *p = NULL;
1676 	stream_filter_list_t *fil;
1677 	int mode;
1678 
1679 	/*
1680 	 * This device only has one clock, so make the sample rates match.
1681 	 */
1682 	if (play->sample_rate != rec->sample_rate &&
1683 	    usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
1684 		if (setmode == AUMODE_PLAY) {
1685 			rec->sample_rate = play->sample_rate;
1686 			setmode |= AUMODE_RECORD;
1687 		} else if (setmode == AUMODE_RECORD) {
1688 			play->sample_rate = rec->sample_rate;
1689 			setmode |= AUMODE_PLAY;
1690 		} else
1691 			return EINVAL;
1692 	}
1693 
1694 	for (mode = AUMODE_RECORD; mode != -1;
1695 	     mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
1696 		if ((setmode & mode) == 0)
1697 			continue;
1698 
1699 		p = mode == AUMODE_PLAY ? play : rec;
1700 		if (p->sample_rate < 4000 || p->sample_rate > 50000) {
1701 			DPRINTF("dbri_set_params: invalid rate %d\n",
1702 			    p->sample_rate);
1703 			return EINVAL;
1704 		}
1705 
1706 		fil = mode == AUMODE_PLAY ? pfil : rfil;
1707 	DPRINTF("requested enc: %d rate: %d prec: %d chan: %d\n", p->encoding,
1708 	    p->sample_rate, p->precision, p->channels);
1709 		if (auconv_set_converter(dbri_formats, DBRI_NFORMATS,
1710 					 mode, p, true, fil) < 0) {
1711 			aprint_debug("dbri_set_params: auconv_set_converter failed\n");
1712 			return EINVAL;
1713 		}
1714 		if (fil->req_size > 0)
1715 			p = &fil->filters[0].param;
1716 	}
1717 
1718 	if (p == NULL) {
1719 		DPRINTF("dbri_set_params: no parameters to set\n");
1720 		return 0;
1721 	}
1722 
1723 	DPRINTF("native enc: %d rate: %d prec: %d chan: %d\n", p->encoding,
1724 	    p->sample_rate, p->precision, p->channels);
1725 
1726 	for (rate = 0; CS4215_FREQ[rate].freq; rate++)
1727 		if (CS4215_FREQ[rate].freq == p->sample_rate)
1728 			break;
1729 
1730 	if (CS4215_FREQ[rate].freq == 0)
1731 		return (EINVAL);
1732 
1733 	/* set frequency */
1734 	sc->sc_mm.c.bcontrol[1] &= ~0x38;
1735 	sc->sc_mm.c.bcontrol[1] |= CS4215_FREQ[rate].csval;
1736 	sc->sc_mm.c.bcontrol[2] &= ~0x70;
1737 	sc->sc_mm.c.bcontrol[2] |= CS4215_FREQ[rate].xtal;
1738 
1739 	switch (p->encoding) {
1740 	case AUDIO_ENCODING_ULAW:
1741 		sc->sc_mm.c.bcontrol[1] &= ~3;
1742 		sc->sc_mm.c.bcontrol[1] |= CS4215_DFR_ULAW;
1743 		break;
1744 	case AUDIO_ENCODING_ALAW:
1745 		sc->sc_mm.c.bcontrol[1] &= ~3;
1746 		sc->sc_mm.c.bcontrol[1] |= CS4215_DFR_ALAW;
1747 		break;
1748 	case AUDIO_ENCODING_ULINEAR:
1749 		sc->sc_mm.c.bcontrol[1] &= ~3;
1750 		if (p->precision == 8) {
1751 			sc->sc_mm.c.bcontrol[1] |= CS4215_DFR_LINEAR8;
1752 		} else {
1753 			sc->sc_mm.c.bcontrol[1] |= CS4215_DFR_LINEAR16;
1754 		}
1755 		break;
1756 	case AUDIO_ENCODING_SLINEAR_BE:
1757 	case AUDIO_ENCODING_SLINEAR:
1758 		sc->sc_mm.c.bcontrol[1] &= ~3;
1759 		sc->sc_mm.c.bcontrol[1] |= CS4215_DFR_LINEAR16;
1760 		break;
1761 	}
1762 
1763 	switch (p->channels) {
1764 	case 1:
1765 		sc->sc_mm.c.bcontrol[1] &= ~CS4215_DFR_STEREO;
1766 		break;
1767 	case 2:
1768 		sc->sc_mm.c.bcontrol[1] |= CS4215_DFR_STEREO;
1769 		break;
1770 	}
1771 	sc->sc_whack_codec = 1;
1772 	return (0);
1773 }
1774 
1775 static int
1776 dbri_round_blocksize(void *hdl, int bs, int mode,
1777 			const audio_params_t *param)
1778 {
1779 
1780 	/*
1781 	 * DBRI DMA segment size can be up to 0x1fff, sixes that are not powers
1782 	 * of two seem to confuse the upper audio layer so we're going with
1783 	 * 0x1000 here
1784 	 */
1785 	return 0x1000;
1786 }
1787 
1788 static int
1789 dbri_halt_output(void *hdl)
1790 {
1791 	struct dbri_softc *sc = hdl;
1792 
1793 	if (!sc->sc_playing)
1794 		return 0;
1795 
1796 	sc->sc_playing = 0;
1797 	pipe_reset(sc, 4);
1798 	return (0);
1799 }
1800 
1801 static int
1802 dbri_getdev(void *hdl, struct audio_device *ret)
1803 {
1804 
1805 	*ret = dbri_device;
1806 	return (0);
1807 }
1808 
1809 static int
1810 dbri_set_port(void *hdl, mixer_ctrl_t *mc)
1811 {
1812 	struct dbri_softc *sc = hdl;
1813 	int latt = sc->sc_latt, ratt = sc->sc_ratt;
1814 
1815 	switch (mc->dev) {
1816 	    case DBRI_VOL_OUTPUT:	/* master volume */
1817 		latt = (latt & 0xc0) | (63 -
1818 		    min(mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] >> 2, 63));
1819 		ratt = (ratt & 0xc0) | (63 -
1820 		    min(mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] >> 2, 63));
1821 		break;
1822 	    case DBRI_ENABLE_MONO:	/* built-in speaker */
1823 	    	if (mc->un.ord == 1) {
1824 			ratt |= CS4215_SE;
1825 		} else
1826 			ratt &= ~CS4215_SE;
1827 		break;
1828 	    case DBRI_ENABLE_HEADPHONE:	/* headphones output */
1829 	    	if (mc->un.ord == 1) {
1830 			latt |= CS4215_HE;
1831 		} else
1832 			latt &= ~CS4215_HE;
1833 		break;
1834 	    case DBRI_ENABLE_LINE:	/* line out */
1835 	    	if (mc->un.ord == 1) {
1836 			latt |= CS4215_LE;
1837 		} else
1838 			latt &= ~CS4215_LE;
1839 		break;
1840 	    case DBRI_VOL_MONITOR:
1841 		if (mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] ==
1842 		    sc->sc_monitor)
1843 			return 0;
1844 		sc->sc_monitor = mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
1845 		break;
1846 	    case DBRI_INPUT_GAIN:
1847 		sc->sc_linp = mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
1848 		sc->sc_rinp = mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
1849 		break;
1850 	    case DBRI_INPUT_SELECT:
1851 	    	if (mc->un.mask == sc->sc_input)
1852 	    		return 0;
1853 	    	sc->sc_input =  mc->un.mask;
1854 	    	break;
1855 	}
1856 
1857 	sc->sc_latt = latt;
1858 	sc->sc_ratt = ratt;
1859 
1860 	mmcodec_setgain(sc, 0);
1861 
1862 	return (0);
1863 }
1864 
1865 static int
1866 dbri_get_port(void *hdl, mixer_ctrl_t *mc)
1867 {
1868 	struct dbri_softc *sc = hdl;
1869 
1870 	switch (mc->dev) {
1871 	    case DBRI_VOL_OUTPUT:	/* master volume */
1872 		mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1873 		    (63 - (sc->sc_latt & 0x3f)) << 2;
1874 		mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1875 		    (63 - (sc->sc_ratt & 0x3f)) << 2;
1876 		return (0);
1877 	    case DBRI_ENABLE_MONO:	/* built-in speaker */
1878 	    	mc->un.ord = (sc->sc_ratt & CS4215_SE) ? 1 : 0;
1879 		return 0;
1880 	    case DBRI_ENABLE_HEADPHONE:	/* headphones output */
1881 	    	mc->un.ord = (sc->sc_latt & CS4215_HE) ? 1 : 0;
1882 		return 0;
1883 	    case DBRI_ENABLE_LINE:	/* line out */
1884 	    	mc->un.ord = (sc->sc_latt & CS4215_LE) ? 1 : 0;
1885 		return 0;
1886 	    case DBRI_VOL_MONITOR:
1887 		mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = sc->sc_monitor;
1888 		return 0;
1889 	    case DBRI_INPUT_GAIN:
1890 		mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = sc->sc_linp;
1891 		mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = sc->sc_rinp;
1892 		return 0;
1893 	    case DBRI_INPUT_SELECT:
1894 	    	mc->un.mask = sc->sc_input;
1895 	    	return 0;
1896 	}
1897 	return (EINVAL);
1898 }
1899 
1900 static int
1901 dbri_query_devinfo(void *hdl, mixer_devinfo_t *di)
1902 {
1903 
1904 	switch (di->index) {
1905 	case DBRI_MONITOR_CLASS:
1906 		di->mixer_class = DBRI_MONITOR_CLASS;
1907 		strcpy(di->label.name, AudioCmonitor);
1908 		di->type = AUDIO_MIXER_CLASS;
1909 		di->next = di->prev = AUDIO_MIXER_LAST;
1910 		return 0;
1911 	case DBRI_OUTPUT_CLASS:
1912 		di->mixer_class = DBRI_OUTPUT_CLASS;
1913 		strcpy(di->label.name, AudioCoutputs);
1914 		di->type = AUDIO_MIXER_CLASS;
1915 		di->next = di->prev = AUDIO_MIXER_LAST;
1916 		return 0;
1917 	case DBRI_INPUT_CLASS:
1918 		di->mixer_class = DBRI_INPUT_CLASS;
1919 		strcpy(di->label.name, AudioCinputs);
1920 		di->type = AUDIO_MIXER_CLASS;
1921 		di->next = di->prev = AUDIO_MIXER_LAST;
1922 		return 0;
1923 	case DBRI_VOL_OUTPUT:	/* master volume */
1924 		di->mixer_class = DBRI_OUTPUT_CLASS;
1925 		di->next = di->prev = AUDIO_MIXER_LAST;
1926 		strcpy(di->label.name, AudioNmaster);
1927 		di->type = AUDIO_MIXER_VALUE;
1928 		di->un.v.num_channels = 2;
1929 		di->un.v.delta = 16;
1930 		strcpy(di->un.v.units.name, AudioNvolume);
1931 		return (0);
1932 	case DBRI_INPUT_GAIN:	/* input gain */
1933 		di->mixer_class = DBRI_INPUT_CLASS;
1934 		di->next = di->prev = AUDIO_MIXER_LAST;
1935 		strcpy(di->label.name, AudioNrecord);
1936 		di->type = AUDIO_MIXER_VALUE;
1937 		di->un.v.num_channels = 2;
1938 		strcpy(di->un.v.units.name, AudioNvolume);
1939 		return (0);
1940 	case DBRI_VOL_MONITOR:	/* monitor volume */
1941 		di->mixer_class = DBRI_MONITOR_CLASS;
1942 		di->next = di->prev = AUDIO_MIXER_LAST;
1943 		strcpy(di->label.name, AudioNmonitor);
1944 		di->type = AUDIO_MIXER_VALUE;
1945 		di->un.v.num_channels = 1;
1946 		strcpy(di->un.v.units.name, AudioNvolume);
1947 		return (0);
1948 	case DBRI_ENABLE_MONO:	/* built-in speaker */
1949 		di->mixer_class = DBRI_OUTPUT_CLASS;
1950 		di->next = di->prev = AUDIO_MIXER_LAST;
1951 		strcpy(di->label.name, AudioNmono);
1952 		di->type = AUDIO_MIXER_ENUM;
1953 		di->un.e.num_mem = 2;
1954 		strcpy(di->un.e.member[0].label.name, AudioNoff);
1955 		di->un.e.member[0].ord = 0;
1956 		strcpy(di->un.e.member[1].label.name, AudioNon);
1957 		di->un.e.member[1].ord = 1;
1958 		return (0);
1959 	case DBRI_ENABLE_HEADPHONE:	/* headphones output */
1960 		di->mixer_class = DBRI_OUTPUT_CLASS;
1961 		di->next = di->prev = AUDIO_MIXER_LAST;
1962 		strcpy(di->label.name, AudioNheadphone);
1963 		di->type = AUDIO_MIXER_ENUM;
1964 		di->un.e.num_mem = 2;
1965 		strcpy(di->un.e.member[0].label.name, AudioNoff);
1966 		di->un.e.member[0].ord = 0;
1967 		strcpy(di->un.e.member[1].label.name, AudioNon);
1968 		di->un.e.member[1].ord = 1;
1969 		return (0);
1970 	case DBRI_ENABLE_LINE:	/* line out */
1971 		di->mixer_class = DBRI_OUTPUT_CLASS;
1972 		di->next = di->prev = AUDIO_MIXER_LAST;
1973 		strcpy(di->label.name, AudioNline);
1974 		di->type = AUDIO_MIXER_ENUM;
1975 		di->un.e.num_mem = 2;
1976 		strcpy(di->un.e.member[0].label.name, AudioNoff);
1977 		di->un.e.member[0].ord = 0;
1978 		strcpy(di->un.e.member[1].label.name, AudioNon);
1979 		di->un.e.member[1].ord = 1;
1980 		return (0);
1981 	case DBRI_INPUT_SELECT:
1982 		di->mixer_class = DBRI_INPUT_CLASS;
1983 		strcpy(di->label.name, AudioNsource);
1984 		di->type = AUDIO_MIXER_SET;
1985 		di->prev = di->next = AUDIO_MIXER_LAST;
1986 		di->un.s.num_mem = 2;
1987 		strcpy(di->un.s.member[0].label.name, AudioNline);
1988 		di->un.s.member[0].mask = 1 << 0;
1989 		strcpy(di->un.s.member[1].label.name, AudioNmicrophone);
1990 		di->un.s.member[1].mask = 1 << 1;
1991 		return 0;
1992 	}
1993 
1994 	return (ENXIO);
1995 }
1996 
1997 static size_t
1998 dbri_round_buffersize(void *hdl, int dir, size_t bufsize)
1999 {
2000 #ifdef DBRI_BIG_BUFFER
2001 	return 0x20000;	/* use 128KB buffer */
2002 #else
2003 	return bufsize;
2004 #endif
2005 }
2006 
2007 static int
2008 dbri_get_props(void *hdl)
2009 {
2010 
2011 	return AUDIO_PROP_MMAP | AUDIO_PROP_FULLDUPLEX;
2012 }
2013 
2014 static int
2015 dbri_commit(void *hdl)
2016 {
2017 	struct dbri_softc *sc = hdl;
2018 	int ret = 0;
2019 
2020 	/*
2021 	 * we only need to whack the codec if things like sample format or
2022 	 * frequency changed, not for mixer stuff
2023 	 */
2024 	if (sc->sc_whack_codec == 0)
2025 		return 0;
2026 
2027 	mutex_spin_enter(&sc->sc_intr_lock);
2028 	ret = mmcodec_setcontrol(sc);
2029 	if (ret) {
2030 		DPRINTF("%s: control mode failed. Mutex %s PIL %x\n", __func__,
2031 		    mutex_owned(&sc->sc_intr_lock) ? "held" : "free",
2032 		    (getpsr() & PSR_PIL) >> 8);
2033 	} else
2034 		DPRINTF("%s: control mode ok\n", __func__);
2035 	mmcodec_init_data(sc);
2036 	mutex_spin_exit(&sc->sc_intr_lock);
2037 	return 0;
2038 }
2039 
2040 static int
2041 dbri_trigger_output(void *hdl, void *start, void *end, int blksize,
2042 		    void (*intr)(void *), void *intrarg,
2043 		    const struct audio_params *param)
2044 {
2045 	struct dbri_softc *sc = hdl;
2046 	unsigned long count, num;
2047 
2048 	if (sc->sc_playing)
2049 		return 0;
2050 
2051 	count = (unsigned long)(((char *)end - (char *)start));
2052 	num = count / blksize;
2053 
2054 	DPRINTF("trigger_output(%lx %lx) : %d %ld %ld\n",
2055 	    (unsigned long)intr,
2056 	    (unsigned long)intrarg, blksize, count, num);
2057 
2058 	sc->sc_params = *param;
2059 
2060 	/*
2061 	 * always use DMA descriptor 0 for output
2062 	 * no need to allocate them dynamically since we only ever have
2063 	 * exactly one input stream and exactly one output stream
2064 	 */
2065 	setup_ring_xmit(sc, 4, 0, num, blksize, intr, intrarg);
2066 	sc->sc_playing = 1;
2067 	return 0;
2068 }
2069 
2070 static int
2071 dbri_halt_input(void *cookie)
2072 {
2073 	struct dbri_softc *sc = cookie;
2074 
2075 	if (!sc->sc_recording)
2076 		return 0;
2077 
2078 	sc->sc_recording = 0;
2079 	pipe_reset(sc, 6);
2080 	return 0;
2081 }
2082 
2083 static int
2084 dbri_trigger_input(void *hdl, void *start, void *end, int blksize,
2085 		    void (*intr)(void *), void *intrarg,
2086 		    const struct audio_params *param)
2087 {
2088 	struct dbri_softc *sc = hdl;
2089 	unsigned long count, num;
2090 
2091 	if (sc->sc_recording)
2092 		return 0;
2093 
2094 	count = (unsigned long)(((char *)end - (char *)start));
2095 	num = count / blksize;
2096 
2097 	DPRINTF("trigger_input(%lx %lx) : %d %ld %ld\n",
2098 	    (unsigned long)intr,
2099 	    (unsigned long)intrarg, blksize, count, num);
2100 
2101 	sc->sc_params = *param;
2102 
2103 	sc->sc_recording = 1;
2104 	setup_ring_recv(sc, 6, 1, num, blksize, intr, intrarg);
2105 	return 0;
2106 }
2107 
2108 static void
2109 dbri_get_locks(void *opaque, kmutex_t **intr, kmutex_t **thread)
2110 {
2111 	struct dbri_softc *sc = opaque;
2112 
2113 	*intr = &sc->sc_intr_lock;
2114 	*thread = &sc->sc_lock;
2115 }
2116 
2117 static uint32_t
2118 reverse_bytes(uint32_t b, int len)
2119 {
2120 	switch (len) {
2121 	case 32:
2122 		b = ((b & 0xffff0000) >> 16) | ((b & 0x0000ffff) << 16);
2123 	case 16:
2124 		b = ((b & 0xff00ff00) >>  8) | ((b & 0x00ff00ff) <<  8);
2125 	case 8:
2126 		b = ((b & 0xf0f0f0f0) >>  4) | ((b & 0x0f0f0f0f) <<  4);
2127 	case 4:
2128 		b = ((b & 0xcccccccc) >>  2) | ((b & 0x33333333) <<  2);
2129 	case 2:
2130 		b = ((b & 0xaaaaaaaa) >>  1) | ((b & 0x55555555) <<  1);
2131 	case 1:
2132 	case 0:
2133 		break;
2134 	default:
2135 		DPRINTF("reverse_bytes: unsupported length\n");
2136 	};
2137 
2138 	return (b);
2139 }
2140 
2141 static void *
2142 dbri_malloc(void *v, int dir, size_t s)
2143 {
2144 	struct dbri_softc *sc = v;
2145 	struct dbri_desc *dd = &sc->sc_desc[sc->sc_desc_used];
2146 	int rseg;
2147 
2148 	if (bus_dmamap_create(sc->sc_dmat, s, 1, s, 0, BUS_DMA_NOWAIT,
2149 	    &dd->dmamap) == 0) {
2150 		if (bus_dmamem_alloc(sc->sc_dmat, s, 0, 0, &dd->dmaseg,
2151 		    1, &rseg, BUS_DMA_NOWAIT) == 0) {
2152 			if (bus_dmamem_map(sc->sc_dmat, &dd->dmaseg, rseg, s,
2153 			    &dd->buf, BUS_DMA_NOWAIT|BUS_DMA_COHERENT) == 0) {
2154 				if (dd->buf != NULL) {
2155 					if (bus_dmamap_load(sc->sc_dmat,
2156 					    dd->dmamap, dd->buf, s, NULL,
2157 					    BUS_DMA_NOWAIT) == 0) {
2158 						dd->len = s;
2159 						dd->busy = 0;
2160 						dd->callback = NULL;
2161 						dd->dmabase =
2162 						 dd->dmamap->dm_segs[0].ds_addr;
2163 						DPRINTF("dbri_malloc: using buffer %d %08x\n",
2164 						    sc->sc_desc_used, (uint32_t)dd->buf);
2165 						sc->sc_desc_used++;
2166 						return dd->buf;
2167 					} else
2168 						aprint_error("dbri_malloc: load failed\n");
2169 				} else
2170 					aprint_error("dbri_malloc: map returned NULL\n");
2171 			} else
2172 				aprint_error("dbri_malloc: map failed\n");
2173 			bus_dmamem_free(sc->sc_dmat, &dd->dmaseg, rseg);
2174 		} else
2175 			aprint_error("dbri_malloc: malloc() failed\n");
2176 		bus_dmamap_destroy(sc->sc_dmat, dd->dmamap);
2177 	} else
2178 		aprint_error("dbri_malloc: bus_dmamap_create() failed\n");
2179 	return NULL;
2180 }
2181 
2182 static void
2183 dbri_free(void *v, void *p, size_t size)
2184 {
2185 	struct dbri_softc *sc = v;
2186 	struct dbri_desc *dd;
2187 	int i;
2188 
2189 	for (i = 0; i < sc->sc_desc_used; i++) {
2190 		dd = &sc->sc_desc[i];
2191 		if (dd->buf == p)
2192 			break;
2193 	}
2194 	if (i >= sc->sc_desc_used)
2195 		return;
2196 	bus_dmamap_unload(sc->sc_dmat, dd->dmamap);
2197 	bus_dmamap_destroy(sc->sc_dmat, dd->dmamap);
2198 }
2199 
2200 static paddr_t
2201 dbri_mappage(void *v, void *mem, off_t off, int prot)
2202 {
2203 	struct dbri_softc *sc = v;
2204 	int current;
2205 
2206 	if (off < 0)
2207 		return -1;
2208 
2209 	current = 0;
2210 	while ((current < sc->sc_desc_used) &&
2211 	    (sc->sc_desc[current].buf != mem))
2212 	    	current++;
2213 
2214 	if (current < sc->sc_desc_used) {
2215 		return bus_dmamem_mmap(sc->sc_dmat,
2216 		    &sc->sc_desc[current].dmaseg, 1, off, prot, BUS_DMA_WAITOK);
2217 	}
2218 
2219 	return -1;
2220 }
2221 
2222 static int
2223 dbri_open(void *cookie, int flags)
2224 {
2225 	struct dbri_softc *sc = cookie;
2226 
2227 	DPRINTF("%s: %d\n", __func__, sc->sc_refcount);
2228 
2229 	if (sc->sc_refcount == 0) {
2230 		dbri_bring_up(sc);
2231 	}
2232 
2233 	sc->sc_refcount++;
2234 
2235 	return 0;
2236 }
2237 
2238 static void
2239 dbri_close(void *cookie)
2240 {
2241 	struct dbri_softc *sc = cookie;
2242 
2243 	DPRINTF("%s: %d\n", __func__, sc->sc_refcount);
2244 
2245 	sc->sc_refcount--;
2246 	KASSERT(sc->sc_refcount >= 0);
2247 	if (sc->sc_refcount > 0)
2248 		return;
2249 
2250 	dbri_set_power(sc, 0);
2251 	sc->sc_playing = 0;
2252 	sc->sc_recording = 0;
2253 }
2254 
2255 static bool
2256 dbri_suspend(device_t self, const pmf_qual_t *qual)
2257 {
2258 	struct dbri_softc *sc = device_private(self);
2259 
2260 	mutex_spin_enter(&sc->sc_intr_lock);
2261 	dbri_set_power(sc, 0);
2262 	mutex_spin_exit(&sc->sc_intr_lock);
2263 	return true;
2264 }
2265 
2266 static bool
2267 dbri_resume(device_t self, const pmf_qual_t *qual)
2268 {
2269 	struct dbri_softc *sc = device_private(self);
2270 
2271 	if (sc->sc_powerstate != 0)
2272 		return true;
2273 	aprint_verbose("resume: %d\n", sc->sc_refcount);
2274 	if (sc->sc_playing) {
2275 		volatile uint32_t *cmd;
2276 
2277 		mutex_spin_enter(&sc->sc_intr_lock);
2278 		dbri_bring_up(sc);
2279 		cmd = dbri_command_lock(sc);
2280 		*(cmd++) = DBRI_CMD(DBRI_COMMAND_SDP,
2281 		    0, sc->sc_pipe[4].sdp |
2282 		    DBRI_SDP_VALID_POINTER |
2283 		    DBRI_SDP_EVERY | DBRI_SDP_CLEAR);
2284 		*(cmd++) = sc->sc_dmabase +
2285 		    dbri_dma_off(xmit, 0);
2286 		dbri_command_send(sc, cmd);
2287 		mutex_spin_exit(&sc->sc_intr_lock);
2288 	}
2289 	return true;
2290 }
2291 
2292 #endif /* NAUDIO > 0 */
2293