xref: /netbsd-src/sys/dev/sbus/dbri.c (revision ba65fde2d7fefa7d39838fa5fa855e62bd606b5e)
1 /*	$NetBSD: dbri.c,v 1.34 2011/11/23 23:07:36 jmcneill Exp $	*/
2 
3 /*
4  * Copyright (C) 1997 Rudolf Koenig (rfkoenig@immd4.informatik.uni-erlangen.de)
5  * Copyright (c) 1998, 1999 Brent Baccala (baccala@freesoft.org)
6  * Copyright (c) 2001, 2002 Jared D. McNeill <jmcneill@netbsd.org>
7  * Copyright (c) 2005 Michael Lorenz <macallan@netbsd.org>
8  * All rights reserved.
9  *
10  * This driver is losely based on a Linux driver written by Rudolf Koenig and
11  * Brent Baccala who kindly gave their permission to use their code in a
12  * BSD-licensed driver.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
28  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
29  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  */
35 
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: dbri.c,v 1.34 2011/11/23 23:07:36 jmcneill Exp $");
38 
39 #include "audio.h"
40 #if NAUDIO > 0
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/errno.h>
45 #include <sys/device.h>
46 #include <sys/proc.h>
47 #include <sys/kernel.h>
48 #include <sys/bus.h>
49 #include <sys/intr.h>
50 #include <sys/kmem.h>
51 
52 #include <dev/sbus/sbusvar.h>
53 #include <sparc/sparc/auxreg.h>
54 #include <machine/autoconf.h>
55 
56 #include <sys/audioio.h>
57 #include <dev/audio_if.h>
58 #include <dev/auconv.h>
59 
60 #include <dev/ic/cs4215reg.h>
61 #include <dev/ic/cs4215var.h>
62 #include <dev/sbus/dbrireg.h>
63 #include <dev/sbus/dbrivar.h>
64 
65 #include "opt_sbus_dbri.h"
66 
67 #define DBRI_ROM_NAME_PREFIX		"SUNW,DBRI"
68 
69 #ifdef DBRI_DEBUG
70 # define DPRINTF aprint_normal
71 #else
72 # define DPRINTF while (0) printf
73 #endif
74 
75 static const char *dbri_supported[] = {
76 	"e",
77 	"s3",
78 	""
79 };
80 
81 enum ms {
82 	CHImaster,
83 	CHIslave
84 };
85 
86 enum io {
87 	PIPEinput,
88 	PIPEoutput
89 };
90 
91 /*
92  * Function prototypes
93  */
94 
95 /* softc stuff */
96 static void	dbri_attach_sbus(device_t, device_t, void *);
97 static int	dbri_match_sbus(device_t, cfdata_t, void *);
98 
99 static int	dbri_config_interrupts(device_t);
100 
101 /* interrupt handler */
102 static int	dbri_intr(void *);
103 static void	dbri_softint(void *);
104 
105 /* supporting subroutines */
106 static int	dbri_init(struct dbri_softc *);
107 static int	dbri_reset(struct dbri_softc *);
108 static volatile uint32_t *dbri_command_lock(struct dbri_softc *);
109 static void	dbri_command_send(struct dbri_softc *, volatile uint32_t *);
110 static void	dbri_process_interrupt_buffer(struct dbri_softc *);
111 static void	dbri_process_interrupt(struct dbri_softc *, int32_t);
112 
113 /* mmcodec subroutines */
114 static int	mmcodec_init(struct dbri_softc *);
115 static void	mmcodec_init_data(struct dbri_softc *);
116 static void	mmcodec_pipe_init(struct dbri_softc *);
117 static void	mmcodec_default(struct dbri_softc *);
118 static void	mmcodec_setgain(struct dbri_softc *, int);
119 static int	mmcodec_setcontrol(struct dbri_softc *);
120 
121 /* chi subroutines */
122 static void	chi_reset(struct dbri_softc *, enum ms, int);
123 
124 /* pipe subroutines */
125 static void	pipe_setup(struct dbri_softc *, int, int);
126 static void	pipe_reset(struct dbri_softc *, int);
127 static void	pipe_receive_fixed(struct dbri_softc *, int,
128     volatile uint32_t *);
129 static void	pipe_transmit_fixed(struct dbri_softc *, int, uint32_t);
130 
131 static void	pipe_ts_link(struct dbri_softc *, int, enum io, int, int, int);
132 static int	pipe_active(struct dbri_softc *, int);
133 
134 /* audio(9) stuff */
135 static int	dbri_query_encoding(void *, struct audio_encoding *);
136 static int	dbri_set_params(void *, int, int, struct audio_params *,
137     struct audio_params *,stream_filter_list_t *, stream_filter_list_t *);
138 static int	dbri_round_blocksize(void *, int, int, const audio_params_t *);
139 static int	dbri_halt_output(void *);
140 static int	dbri_halt_input(void *);
141 static int	dbri_getdev(void *, struct audio_device *);
142 static int	dbri_set_port(void *, mixer_ctrl_t *);
143 static int	dbri_get_port(void *, mixer_ctrl_t *);
144 static int	dbri_query_devinfo(void *, mixer_devinfo_t *);
145 static size_t	dbri_round_buffersize(void *, int, size_t);
146 static int	dbri_get_props(void *);
147 static int	dbri_open(void *, int);
148 static void	dbri_close(void *);
149 
150 static void	setup_ring_xmit(struct dbri_softc *, int, int, int, int,
151     void (*)(void *), void *);
152 static void	setup_ring_recv(struct dbri_softc *, int, int, int, int,
153     void (*)(void *), void *);
154 
155 static int	dbri_trigger_output(void *, void *, void *, int,
156     void (*)(void *), void *, const struct audio_params *);
157 static int	dbri_trigger_input(void *, void *, void *, int,
158     void (*)(void *), void *, const struct audio_params *);
159 static void	dbri_get_locks(void *, kmutex_t **, kmutex_t **);
160 
161 static void	*dbri_malloc(void *, int, size_t);
162 static void	dbri_free(void *, void *, size_t);
163 static paddr_t	dbri_mappage(void *, void *, off_t, int);
164 static void	dbri_set_power(struct dbri_softc *, int);
165 static void	dbri_bring_up(struct dbri_softc *);
166 static bool	dbri_suspend(device_t, const pmf_qual_t *);
167 static bool	dbri_resume(device_t, const pmf_qual_t *);
168 
169 /* stupid support routines */
170 static uint32_t	reverse_bytes(uint32_t, int);
171 
172 struct audio_device dbri_device = {
173 	"CS4215",
174 	"",
175 	"dbri"
176 };
177 
178 struct audio_hw_if dbri_hw_if = {
179 	.open			= dbri_open,
180 	.close			= dbri_close,
181 	.query_encoding		= dbri_query_encoding,
182 	.set_params		= dbri_set_params,
183 	.round_blocksize	= dbri_round_blocksize,
184 	.halt_output		= dbri_halt_output,
185 	.halt_input		= dbri_halt_input,
186 	.getdev			= dbri_getdev,
187 	.set_port		= dbri_set_port,
188 	.get_port		= dbri_get_port,
189 	.query_devinfo		= dbri_query_devinfo,
190 	.allocm			= dbri_malloc,
191 	.freem			= dbri_free,
192 	.round_buffersize	= dbri_round_buffersize,
193 	.mappage		= dbri_mappage,
194 	.get_props		= dbri_get_props,
195 	.trigger_output		= dbri_trigger_output,
196 	.trigger_input		= dbri_trigger_input,
197 	.get_locks		= dbri_get_locks,
198 };
199 
200 CFATTACH_DECL_NEW(dbri, sizeof(struct dbri_softc),
201     dbri_match_sbus, dbri_attach_sbus, NULL, NULL);
202 
203 #define DBRI_NFORMATS		4
204 static const struct audio_format dbri_formats[DBRI_NFORMATS] = {
205 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_BE, 16, 16,
206 	 2, AUFMT_STEREO, 8, {8000, 9600, 11025, 16000, 22050, 32000, 44100,
207 	 48000}},
208 /*	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULAW, 8, 8,
209 	 2, AUFMT_STEREO, 8, {8000, 9600, 11025, 16000, 22050, 32000, 44100,
210 	 48000}},
211 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ALAW, 8, 8,
212 	 2, AUFMT_STEREO, 8, {8000, 9600, 11025, 16000, 22050, 32000, 44100,
213 	 48000}},
214 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR, 8, 8,
215 	 2, AUFMT_STEREO, 8, {8000, 9600, 11025, 16000, 22050, 32000, 44100,
216 	 48000}},*/
217 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULAW, 8, 8,
218 	 1, AUFMT_MONAURAL, 8, {8000, 9600, 11025, 16000, 22050, 32000, 44100,
219 	 48000}},
220 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ALAW, 8, 8,
221 	 1, AUFMT_MONAURAL, 8, {8000, 9600, 11025, 16000, 22050, 32000, 44100,
222 	 48000}},
223 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR, 8, 8,
224 	 1, AUFMT_MONAURAL, 8, {8000, 9600, 11025, 16000, 22050, 32000, 44100,
225 	 48000}},
226 };
227 
228 enum {
229 	DBRI_OUTPUT_CLASS,
230 	DBRI_VOL_OUTPUT,
231 	DBRI_ENABLE_MONO,
232 	DBRI_ENABLE_HEADPHONE,
233 	DBRI_ENABLE_LINE,
234 	DBRI_MONITOR_CLASS,
235 	DBRI_VOL_MONITOR,
236 	DBRI_INPUT_CLASS,
237 	DBRI_INPUT_GAIN,
238 	DBRI_INPUT_SELECT,
239 	DBRI_RECORD_CLASS,
240 	DBRI_ENUM_LAST
241 };
242 
243 /*
244  * Autoconfig routines
245  */
246 static int
247 dbri_match_sbus(device_t parent, cfdata_t match, void *aux)
248 {
249 	struct sbus_attach_args *sa = aux;
250 	char *ver;
251 	int i;
252 
253 	if (strncmp(DBRI_ROM_NAME_PREFIX, sa->sa_name, 9))
254 		return (0);
255 
256 	ver = &sa->sa_name[9];
257 
258 	for (i = 0; dbri_supported[i][0] != '\0'; i++)
259 		if (strcmp(dbri_supported[i], ver) == 0)
260 			return (1);
261 
262 	return (0);
263 }
264 
265 static void
266 dbri_attach_sbus(device_t parent, device_t self, void *aux)
267 {
268 	struct dbri_softc *sc = device_private(self);
269 	struct sbus_attach_args *sa = aux;
270 	bus_space_handle_t ioh;
271 	bus_size_t size;
272 	int error, rseg, pwr, i;
273 	char *ver = &sa->sa_name[9];
274 
275 	sc->sc_dev = self;
276 	sc->sc_iot = sa->sa_bustag;
277 	sc->sc_dmat = sa->sa_dmatag;
278 	sc->sc_powerstate = 1;
279 
280 	pwr = prom_getpropint(sa->sa_node,"pwr-on-auxio",0);
281 	aprint_normal(": rev %s\n", ver);
282 
283 	if (pwr) {
284 		/*
285 		 * we can control DBRI power via auxio and we're initially
286 		 * powered down
287 		 */
288 
289 		sc->sc_have_powerctl = 1;
290 		sc->sc_powerstate = 0;
291 		dbri_set_power(sc, 1);
292 		if (!pmf_device_register(self, dbri_suspend, dbri_resume)) {
293 			aprint_error_dev(self,
294 			    "cannot set power mgmt handler\n");
295 		}
296 	} else {
297 		/* we can't control power so we're always up */
298 		sc->sc_have_powerctl = 0;
299 		sc->sc_powerstate = 1;
300 	}
301 
302 	for (i = 0; i < DBRI_NUM_DESCRIPTORS; i++) {
303 		sc->sc_desc[i].softint = softint_establish(SOFTINT_SERIAL,
304 		    dbri_softint, &sc->sc_desc[i]);
305 	}
306 
307 	if (sa->sa_npromvaddrs)
308 		ioh = (bus_space_handle_t)sa->sa_promvaddrs[0];
309 	else {
310 		if (sbus_bus_map(sa->sa_bustag, sa->sa_slot,
311 				 sa->sa_offset, sa->sa_size,
312 				 BUS_SPACE_MAP_LINEAR, /*0,*/ &ioh) != 0) {
313 			aprint_error("%s @ sbus: cannot map registers\n",
314 				device_xname(self));
315 			return;
316 		}
317 	}
318 
319 	sc->sc_ioh = ioh;
320 
321 	size = sizeof(struct dbri_dma);
322 
323 	/* get a DMA handle */
324 	if ((error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
325 				       BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
326 		aprint_error_dev(self, "DMA map create error %d\n",
327 		    error);
328 		return;
329 	}
330 
331 	/* allocate DMA buffer */
332 	if ((error = bus_dmamem_alloc(sc->sc_dmat, size, 0, 0, &sc->sc_dmaseg,
333 				      1, &rseg, BUS_DMA_NOWAIT)) != 0) {
334 		aprint_error_dev(self, "DMA buffer alloc error %d\n",
335 		    error);
336 		return;
337 	}
338 
339 	/* map DMA buffer into CPU addressable space */
340 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dmaseg, rseg, size,
341 				    &sc->sc_membase,
342 				    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
343 		aprint_error_dev(self, "DMA buffer map error %d\n",
344 		    error);
345 		return;
346 	}
347 
348 	/* load the buffer */
349 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
350 				     sc->sc_membase, size, NULL,
351 				     BUS_DMA_NOWAIT)) != 0) {
352 		aprint_error_dev(self, "DMA buffer map load error %d\n",
353 		    error);
354 		bus_dmamem_unmap(sc->sc_dmat, sc->sc_membase, size);
355 		bus_dmamem_free(sc->sc_dmat, &sc->sc_dmaseg, rseg);
356 		return;
357 	}
358 
359 	/* map the registers into memory */
360 
361 	/* kernel virtual address of DMA buffer */
362 	sc->sc_dma = (struct dbri_dma *)sc->sc_membase;
363 	/* physical address of DMA buffer */
364 	sc->sc_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr;
365 	sc->sc_bufsiz = size;
366 
367 	mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NONE);
368 	mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_SCHED);
369 
370 	bus_intr_establish(sa->sa_bustag, sa->sa_pri, IPL_SCHED, dbri_intr,
371 	    sc);
372 
373 	sc->sc_locked = 0;
374 	sc->sc_desc_used = 0;
375 	sc->sc_refcount = 0;
376 	sc->sc_playing = 0;
377 	sc->sc_recording = 0;
378 	sc->sc_init_done = 0;
379 	config_finalize_register(self, &dbri_config_interrupts);
380 
381 	return;
382 }
383 
384 /*
385  * lowlevel routine to switch power for the DBRI chip
386  */
387 static void
388 dbri_set_power(struct dbri_softc *sc, int state)
389 {
390 	int s;
391 
392 	if (sc->sc_have_powerctl == 0)
393 		return;
394 	if (sc->sc_powerstate == state)
395 		return;
396 
397 	if (state) {
398 		DPRINTF("%s: waiting to power up... ",
399 		    device_xname(sc->sc_dev));
400 		s = splhigh();
401 		*AUXIO4M_REG |= (AUXIO4M_MMX);
402 		splx(s);
403 		delay(10000);
404 		DPRINTF("done (%02x)\n", *AUXIO4M_REG);
405 	} else {
406 		DPRINTF("%s: powering down\n", device_xname(sc->sc_dev));
407 		s = splhigh();
408 		*AUXIO4M_REG &= ~AUXIO4M_MMX;
409 		splx(s);
410 		DPRINTF("done (%02x})\n", *AUXIO4M_REG);
411 	}
412 	sc->sc_powerstate = state;
413 }
414 
415 /*
416  * power up and re-initialize the chip
417  */
418 static void
419 dbri_bring_up(struct dbri_softc *sc)
420 {
421 
422 	if (sc->sc_have_powerctl == 0)
423 		return;
424 
425 	if (sc->sc_powerstate == 1)
426 		return;
427 
428 	/* ok, we really need to do something */
429 	dbri_set_power(sc, 1);
430 
431 	/*
432 	 * re-initialize the chip but skip all the probing, don't overwrite
433 	 * any other settings either
434 	 */
435 	dbri_init(sc);
436 	mmcodec_setgain(sc, 1);
437 	mmcodec_pipe_init(sc);
438 	mmcodec_init_data(sc);
439 	mmcodec_setgain(sc, 0);
440 }
441 
442 static int
443 dbri_config_interrupts(device_t dev)
444 {
445 	struct dbri_softc *sc = device_private(dev);
446 
447 	if (sc->sc_init_done != 0)
448 		return 0;
449 
450 	sc->sc_init_done = 1;
451 
452 	dbri_init(sc);
453 	if (mmcodec_init(sc) == -1) {
454 		printf("%s: no codec detected, aborting\n",
455 		    device_xname(dev));
456 		return 0;
457 	}
458 
459 	/* Attach ourselves to the high level audio interface */
460 	audio_attach_mi(&dbri_hw_if, sc, sc->sc_dev);
461 
462 	/* power down until open() */
463 	dbri_set_power(sc, 0);
464 	return 0;
465 }
466 
467 static int
468 dbri_intr(void *hdl)
469 {
470 	struct dbri_softc *sc = hdl;
471 	bus_space_tag_t iot = sc->sc_iot;
472 	bus_space_handle_t ioh = sc->sc_ioh;
473 	int x;
474 
475 	mutex_spin_enter(&sc->sc_intr_lock);
476 
477 	/* clear interrupt */
478 	x = bus_space_read_4(iot, ioh, DBRI_REG1);
479 	if (x & (DBRI_MRR | DBRI_MLE | DBRI_LBG | DBRI_MBE)) {
480 		uint32_t tmp;
481 
482 		if (x & DBRI_MRR)
483 			aprint_debug_dev(sc->sc_dev,
484 			     "multiple ack error on sbus\n");
485 		if (x & DBRI_MLE)
486 			aprint_debug_dev(sc->sc_dev,
487 			    "multiple late error on sbus\n");
488 		if (x & DBRI_LBG)
489 			aprint_debug_dev(sc->sc_dev,
490 			    "lost bus grant on sbus\n");
491 		if (x & DBRI_MBE)
492 			aprint_debug_dev(sc->sc_dev, "burst error on sbus\n");
493 
494 		/*
495 		 * Some of these errors disable the chip's circuitry.
496 		 * Re-enable the circuitry and keep on going.
497 		 */
498 
499 		tmp = bus_space_read_4(iot, ioh, DBRI_REG0);
500 		tmp &= ~(DBRI_DISABLE_MASTER);
501 		bus_space_write_4(iot, ioh, DBRI_REG0, tmp);
502 	}
503 
504 #if 0
505 	if (!x & 1)	/* XXX: DBRI_INTR_REQ */
506 		return (1);
507 #endif
508 
509 	dbri_process_interrupt_buffer(sc);
510 
511 	mutex_spin_exit(&sc->sc_intr_lock);
512 
513 	return (1);
514 }
515 
516 static void
517 dbri_softint(void *cookie)
518 {
519 	struct dbri_desc *dd = cookie;
520 
521 	if (dd->callback != NULL)
522 		dd->callback(dd->callback_args);
523 }
524 
525 static int
526 dbri_init(struct dbri_softc *sc)
527 {
528 	bus_space_tag_t iot = sc->sc_iot;
529 	bus_space_handle_t ioh = sc->sc_ioh;
530 	uint32_t reg;
531 	volatile uint32_t *cmd;
532 	bus_addr_t dmaaddr;
533 	int n;
534 
535 	dbri_reset(sc);
536 
537 	cmd = dbri_command_lock(sc);
538 
539 	/* XXX: Initialize interrupt ring buffer */
540 	sc->sc_dma->intr[0] = (uint32_t)sc->sc_dmabase + dbri_dma_off(intr, 0);
541 	sc->sc_irqp = 1;
542 
543 	/* Initialize pipes */
544 	for (n = 0; n < DBRI_PIPE_MAX; n++)
545 		sc->sc_pipe[n].desc = sc->sc_pipe[n].next = -1;
546 
547 	for (n = 1; n < DBRI_INT_BLOCKS; n++) {
548 		sc->sc_dma->intr[n] = 0;
549 	}
550 
551 	/* Disable all SBus bursts */
552 	/* XXX 16 byte bursts cause errors, the rest works */
553 	reg = bus_space_read_4(iot, ioh, DBRI_REG0);
554 
555 	/*reg &= ~(DBRI_BURST_4 | DBRI_BURST_8 | DBRI_BURST_16);*/
556 	reg |= (DBRI_BURST_4 | DBRI_BURST_8);
557 	bus_space_write_4(iot, ioh, DBRI_REG0, reg);
558 
559 	/* setup interrupt queue */
560 	dmaaddr = (uint32_t)sc->sc_dmabase + dbri_dma_off(intr, 0);
561 	*(cmd++) = DBRI_CMD(DBRI_COMMAND_IIQ, 0, 0);
562 	*(cmd++) = dmaaddr;
563 
564 	dbri_command_send(sc, cmd);
565 	return (0);
566 }
567 
568 static int
569 dbri_reset(struct dbri_softc *sc)
570 {
571 	int bail = 0;
572 
573 	bus_space_tag_t iot = sc->sc_iot;
574 	bus_space_handle_t ioh = sc->sc_ioh;
575 
576 	bus_space_write_4(iot, ioh, DBRI_REG0, DBRI_SOFT_RESET);
577 	while ((bus_space_read_4(iot, ioh, DBRI_REG0) & DBRI_SOFT_RESET) &&
578 	    (bail < 100000)) {
579 		bail++;
580 		delay(10);
581 	}
582 	if (bail == 100000)
583 		aprint_error_dev(sc->sc_dev, "reset timed out\n");
584 	return (0);
585 }
586 
587 static volatile uint32_t *
588 dbri_command_lock(struct dbri_softc *sc)
589 {
590 
591 	if (sc->sc_locked)
592 		aprint_debug_dev(sc->sc_dev, "command buffer locked\n");
593 
594 	sc->sc_locked++;
595 
596 	return (&sc->sc_dma->command[0]);
597 }
598 
599 static void
600 dbri_command_send(struct dbri_softc *sc, volatile uint32_t *cmd)
601 {
602 	bus_space_handle_t ioh = sc->sc_ioh;
603 	bus_space_tag_t iot = sc->sc_iot;
604 	int maxloops = 1000000;
605 
606 	mutex_spin_enter(&sc->sc_intr_lock);
607 
608 	sc->sc_locked--;
609 
610 	if (sc->sc_locked != 0) {
611 		aprint_error_dev(sc->sc_dev,
612 		    "command buffer improperly locked\n");
613 	} else if ((cmd - &sc->sc_dma->command[0]) >= DBRI_NUM_COMMANDS - 1) {
614 		aprint_error_dev(sc->sc_dev, "command buffer overflow\n");
615 	} else {
616 		*(cmd++) = DBRI_CMD(DBRI_COMMAND_PAUSE, 0, 0);
617 		*(cmd++) = DBRI_CMD(DBRI_COMMAND_WAIT, 1, 0);
618 		sc->sc_waitseen = 0;
619 		bus_space_write_4(iot, ioh, DBRI_REG8, sc->sc_dmabase);
620 		while ((--maxloops) > 0 &&
621 		    (bus_space_read_4(iot, ioh, DBRI_REG0)
622 		     & DBRI_COMMAND_VALID)) {
623 			bus_space_barrier(iot, ioh, DBRI_REG0, 4,
624 					  BUS_SPACE_BARRIER_READ);
625 			delay(1000);
626 		}
627 
628 		if (maxloops == 0) {
629 			aprint_error_dev(sc->sc_dev,
630 			    "chip never completed command buffer\n");
631 		} else {
632 
633 			DPRINTF("%s: command completed\n",
634 			    device_xname(sc->sc_dev));
635 
636 			while ((--maxloops) > 0 && (!sc->sc_waitseen))
637 				dbri_process_interrupt_buffer(sc);
638 			if (maxloops == 0) {
639 				aprint_error_dev(sc->sc_dev, "chip never acked WAIT\n");
640 			}
641 		}
642 	}
643 
644 	mutex_spin_exit(&sc->sc_intr_lock);
645 
646 	return;
647 }
648 
649 static void
650 dbri_process_interrupt_buffer(struct dbri_softc *sc)
651 {
652 	int32_t i;
653 
654 	while ((i = sc->sc_dma->intr[sc->sc_irqp]) != 0) {
655 		sc->sc_dma->intr[sc->sc_irqp] = 0;
656 		sc->sc_irqp++;
657 
658 		if (sc->sc_irqp == DBRI_INT_BLOCKS)
659 			sc->sc_irqp = 1;
660 		else if ((sc->sc_irqp & (DBRI_INT_BLOCKS - 1)) == 0)
661 			sc->sc_irqp++;
662 
663 		dbri_process_interrupt(sc, i);
664 	}
665 
666 	return;
667 }
668 
669 static void
670 dbri_process_interrupt(struct dbri_softc *sc, int32_t i)
671 {
672 #if 0
673 	const int liu_states[] = { 1, 0, 8, 3, 4, 5, 6, 7 };
674 #endif
675 	int val = DBRI_INTR_GETVAL(i);
676 	int channel = DBRI_INTR_GETCHAN(i);
677 	int command = DBRI_INTR_GETCMD(i);
678 	int code = DBRI_INTR_GETCODE(i);
679 #if 0
680 	int rval = DBRI_INTR_GETRVAL(i);
681 #endif
682 	if (channel == DBRI_INTR_CMD && command == DBRI_COMMAND_WAIT)
683 		sc->sc_waitseen++;
684 
685 	switch (code) {
686 	case DBRI_INTR_XCMP:	/* transmission complete */
687 	{
688 		int td;
689 		struct dbri_desc *dd;
690 
691 		td = sc->sc_pipe[channel].desc;
692 		dd = &sc->sc_desc[td];
693 
694 		if (dd->callback != NULL)
695 			softint_schedule(dd->softint);
696 		break;
697 	}
698 	case DBRI_INTR_FXDT:		/* fixed data change */
699 		DPRINTF("dbri_intr: Fixed data change (%d: %x)\n", channel,
700 		    val);
701 #if 0
702 		printf("reg: %08x\n", sc->sc_mm.status);
703 #endif
704 		if (sc->sc_pipe[channel].sdp & DBRI_SDP_MSB)
705 			val = reverse_bytes(val, sc->sc_pipe[channel].length);
706 		if (sc->sc_pipe[channel].prec)
707 			*(sc->sc_pipe[channel].prec) = val;
708 #ifndef DBRI_SPIN
709 		DPRINTF("%s: wakeup %p\n", device_xname(sc->sc_dev), sc);
710 		wakeup(sc);
711 #endif
712 		break;
713 	case DBRI_INTR_SBRI:
714 		DPRINTF("dbri_intr: SBRI\n");
715 		break;
716 	case DBRI_INTR_BRDY:
717 	{
718 		int td;
719 		struct dbri_desc *dd;
720 
721 		td = sc->sc_pipe[channel].desc;
722 		dd = &sc->sc_desc[td];
723 
724 		if (dd->callback != NULL)
725 			softint_schedule(dd->softint);
726 		break;
727 	}
728 	case DBRI_INTR_UNDR:
729 	{
730 		volatile uint32_t *cmd;
731 		int td = sc->sc_pipe[channel].desc;
732 
733 		DPRINTF("%s: DBRI_INTR_UNDR\n", device_xname(sc->sc_dev));
734 
735 		sc->sc_dma->xmit[td].status = 0;
736 
737 		cmd = dbri_command_lock(sc);
738 		*(cmd++) = DBRI_CMD(DBRI_COMMAND_SDP, 0,
739 				    sc->sc_pipe[channel].sdp |
740 				    DBRI_SDP_VALID_POINTER |
741 				    DBRI_SDP_CLEAR |
742 				    DBRI_SDP_2SAME);
743 		*(cmd++) = sc->sc_dmabase + dbri_dma_off(xmit, td);
744 		dbri_command_send(sc, cmd);
745 		break;
746 	}
747 	case DBRI_INTR_CMDI:
748 		DPRINTF("ok");
749 		break;
750 	default:
751 
752 		aprint_error_dev(sc->sc_dev, "unknown interrupt code %d\n",
753 		    code);
754 		break;
755 	}
756 
757 	return;
758 }
759 
760 /*
761  * mmcodec stuff
762  */
763 
764 static int
765 mmcodec_init(struct dbri_softc *sc)
766 {
767 	bus_space_handle_t ioh = sc->sc_ioh;
768 	bus_space_tag_t iot = sc->sc_iot;
769 	uint32_t reg2;
770 	int bail;
771 
772 	reg2 = bus_space_read_4(iot, ioh, DBRI_REG2);
773 	DPRINTF("mmcodec_init: PIO reads %x\n", reg2);
774 
775 	if (reg2 & DBRI_PIO2) {
776 		aprint_normal_dev(sc->sc_dev, " onboard CS4215 detected\n");
777 		sc->sc_mm.onboard = 1;
778 	}
779 
780 	if (reg2 & DBRI_PIO0) {
781 		aprint_normal_dev(sc->sc_dev, "speakerbox detected\n");
782 		bus_space_write_4(iot, ioh, DBRI_REG2, DBRI_PIO2_ENABLE);
783 		sc->sc_mm.onboard = 0;
784 	}
785 
786 	if ((reg2 & DBRI_PIO2) && (reg2 & DBRI_PIO0)) {
787 		aprint_normal_dev(sc->sc_dev, "using speakerbox\n");
788 		bus_space_write_4(iot, ioh, DBRI_REG2, DBRI_PIO2_ENABLE);
789 		sc->sc_mm.onboard = 0;
790 	}
791 
792 	if (!(reg2 & (DBRI_PIO0|DBRI_PIO2))) {
793 		aprint_normal_dev(sc->sc_dev, "no mmcodec found\n");
794 		return -1;
795 	}
796 
797 	sc->sc_version = 0xff;
798 
799 	mmcodec_pipe_init(sc);
800 	mmcodec_default(sc);
801 
802 	sc->sc_mm.offset = sc->sc_mm.onboard ? 0 : 8;
803 
804 	/*
805 	 * mmcodec_setcontrol() sometimes fails right after powerup
806 	 * so we just try again until we either get a useful response or run
807 	 * out of time
808 	 */
809 	bail = 0;
810 	while (mmcodec_setcontrol(sc) == -1 || sc->sc_version == 0xff) {
811 
812 		bail++;
813 		if (bail > 100) {
814 			DPRINTF("%s: cs4215 probe failed at offset %d\n",
815 		    	    device_xname(sc->sc_dev), sc->sc_mm.offset);
816 			return (-1);
817 		}
818 		delay(10000);
819 	}
820 
821 	aprint_normal_dev(sc->sc_dev, "cs4215 rev %c found at offset %d\n",
822 	    0x43 + (sc->sc_version & 0xf), sc->sc_mm.offset);
823 
824 	/* set some sane defaults for mmcodec_init_data */
825 	sc->sc_params.channels = 2;
826 	sc->sc_params.precision = 16;
827 
828 	mmcodec_init_data(sc);
829 
830 	return (0);
831 }
832 
833 static void
834 mmcodec_init_data(struct dbri_softc *sc)
835 {
836 	bus_space_tag_t iot = sc->sc_iot;
837 	bus_space_handle_t ioh = sc->sc_ioh;
838 	uint32_t tmp;
839 	int data_width;
840 
841 	tmp = bus_space_read_4(iot, ioh, DBRI_REG0);
842 	tmp &= ~(DBRI_CHI_ACTIVATE);	/* disable CHI */
843 	bus_space_write_4(iot, ioh, DBRI_REG0, tmp);
844 
845 	/* switch CS4215 to data mode - set PIO3 to 1 */
846 	tmp = DBRI_PIO_ENABLE_ALL | DBRI_PIO1 | DBRI_PIO3;
847 
848 	/* XXX */
849 	tmp |= (sc->sc_mm.onboard ? DBRI_PIO0 : DBRI_PIO2);
850 
851 	bus_space_write_4(iot, ioh, DBRI_REG2, tmp);
852 	chi_reset(sc, CHIslave, 128);
853 
854 	data_width = sc->sc_params.channels * sc->sc_params.precision;
855 
856 	if ((data_width != 32) && (data_width != 8))
857 		aprint_error("%s: data_width is %d\n", __func__, data_width);
858 
859 	pipe_ts_link(sc, 20, PIPEoutput, 16, 32, sc->sc_mm.offset + 32);
860 	pipe_ts_link(sc, 4, PIPEoutput, 16, data_width, sc->sc_mm.offset);
861 	pipe_ts_link(sc, 6, PIPEinput, 16, data_width, sc->sc_mm.offset);
862 	pipe_ts_link(sc, 21, PIPEinput, 16, 32, sc->sc_mm.offset + 32);
863 
864 	pipe_receive_fixed(sc, 21, &sc->sc_mm.status);
865 
866 	mmcodec_setgain(sc, 0);
867 
868 	tmp = bus_space_read_4(iot, ioh, DBRI_REG0);
869 	tmp |= DBRI_CHI_ACTIVATE;
870 	bus_space_write_4(iot, ioh, DBRI_REG0, tmp);
871 
872 	return;
873 }
874 
875 static void
876 mmcodec_pipe_init(struct dbri_softc *sc)
877 {
878 
879 	pipe_setup(sc, 4, DBRI_SDP_MEM | DBRI_SDP_TO_SER | DBRI_SDP_MSB);
880 	pipe_setup(sc, 20, DBRI_SDP_FIXED | DBRI_SDP_TO_SER | DBRI_SDP_MSB);
881 	pipe_setup(sc, 6, DBRI_SDP_MEM | DBRI_SDP_FROM_SER | DBRI_SDP_MSB);
882 	pipe_setup(sc, 21, DBRI_SDP_FIXED | DBRI_SDP_FROM_SER | DBRI_SDP_MSB);
883 
884 	pipe_setup(sc, 17, DBRI_SDP_FIXED | DBRI_SDP_TO_SER | DBRI_SDP_MSB);
885 	pipe_setup(sc, 18, DBRI_SDP_FIXED | DBRI_SDP_FROM_SER | DBRI_SDP_MSB);
886 	pipe_setup(sc, 19, DBRI_SDP_FIXED | DBRI_SDP_FROM_SER | DBRI_SDP_MSB);
887 
888 	sc->sc_mm.status = 0;
889 
890 	pipe_receive_fixed(sc, 18, &sc->sc_mm.status);
891 	pipe_receive_fixed(sc, 19, &sc->sc_mm.version);
892 
893 	return;
894 }
895 
896 static void
897 mmcodec_default(struct dbri_softc *sc)
898 {
899 	struct cs4215_state *mm = &sc->sc_mm;
900 
901 	/*
902 	 * no action, memory resetting only
903 	 *
904 	 * data time slots 5-8
905 	 * speaker, line and headphone enable. set gain to half.
906 	 * input is line
907 	 */
908 	mm->d.bdata[0] = sc->sc_latt = 0x20 | CS4215_HE | CS4215_LE;
909 	mm->d.bdata[1] = sc->sc_ratt = 0x20 | CS4215_SE;
910 	sc->sc_linp = 128;
911 	sc->sc_rinp = 128;
912 	sc->sc_monitor = 0;
913 	sc->sc_input = 1;	/* line */
914 	mm->d.bdata[2] = (CS4215_LG((sc->sc_linp >> 4)) & 0x0f) |
915 	    ((sc->sc_input == 2) ? CS4215_IS : 0) | CS4215_PIO0 | CS4215_PIO1;
916 	mm->d.bdata[3] = (CS4215_RG((sc->sc_rinp >> 4) & 0x0f)) |
917 	    CS4215_MA(15 - ((sc->sc_monitor >> 4) & 0x0f));
918 
919 
920 	/*
921 	 * control time slots 1-4
922 	 *
923 	 * 0: default I/O voltage scale
924 	 * 1: 8 bit ulaw, 8kHz, mono, high pass filter disabled
925 	 * 2: serial enable, CHI master, 128 bits per frame, clock 1
926 	 * 3: tests disabled
927 	 */
928 	mm->c.bcontrol[0] = CS4215_RSRVD_1 | CS4215_MLB;
929 	mm->c.bcontrol[1] = CS4215_DFR_ULAW | CS4215_FREQ[0].csval;
930 	mm->c.bcontrol[2] = CS4215_XCLK | CS4215_BSEL_128 | CS4215_FREQ[0].xtal;
931 	mm->c.bcontrol[3] = 0;
932 
933 	return;
934 }
935 
936 static void
937 mmcodec_setgain(struct dbri_softc *sc, int mute)
938 {
939 	if (mute) {
940 		/* disable all outputs, max. attenuation */
941 		sc->sc_mm.d.bdata[0] = sc->sc_latt | 63;
942 		sc->sc_mm.d.bdata[1] = sc->sc_ratt | 63;
943 	} else {
944 
945 		sc->sc_mm.d.bdata[0] = sc->sc_latt;
946 		sc->sc_mm.d.bdata[1] = sc->sc_ratt;
947 	}
948 
949 	/* input stuff */
950 	sc->sc_mm.d.bdata[2] = CS4215_LG((sc->sc_linp >> 4) & 0x0f) |
951 	    ((sc->sc_input == 2) ? CS4215_IS : 0) | CS4215_PIO0 | CS4215_PIO1;
952 	sc->sc_mm.d.bdata[3] = (CS4215_RG((sc->sc_rinp >> 4)) & 0x0f) |
953 	    (CS4215_MA(15 - ((sc->sc_monitor >> 4) & 0x0f)));
954 
955 	if (sc->sc_powerstate == 0)
956 		return;
957 	pipe_transmit_fixed(sc, 20, sc->sc_mm.d.ldata);
958 
959 	DPRINTF("mmcodec_setgain: %08x\n", sc->sc_mm.d.ldata);
960 	/* give the chip some time to execute the command */
961 	delay(250);
962 
963 	return;
964 }
965 
966 static int
967 mmcodec_setcontrol(struct dbri_softc *sc)
968 {
969 	bus_space_tag_t iot = sc->sc_iot;
970 	bus_space_handle_t ioh = sc->sc_ioh;
971 	uint32_t val;
972 	uint32_t tmp;
973 	int bail = 0;
974 #if DBRI_SPIN
975 	int i;
976 #endif
977 
978 	/*
979 	 * Temporarily mute outputs and wait 125 us to make sure that it
980 	 * happens. This avoids clicking noises.
981 	 */
982 	mmcodec_setgain(sc, 1);
983 	delay(125);
984 
985 	bus_space_write_4(iot, ioh, DBRI_REG2, 0);
986 	delay(125);
987 
988 	/* enable control mode */
989 	val = DBRI_PIO_ENABLE_ALL | DBRI_PIO1;	/* was PIO1 */
990 
991 	/* XXX */
992 	val |= (sc->sc_mm.onboard ? DBRI_PIO0 : DBRI_PIO2);
993 
994 	bus_space_write_4(iot, ioh, DBRI_REG2, val);
995 
996 	delay(34);
997 
998 	/*
999 	 * in control mode, the cs4215 is the slave device, so the
1000 	 * DBRI must act as the CHI master.
1001 	 *
1002 	 * in data mode, the cs4215 must be the CHI master to insure
1003 	 * that the data stream is in sync with its codec
1004 	 */
1005 	tmp = bus_space_read_4(iot, ioh, DBRI_REG0);
1006 	tmp &= ~DBRI_COMMAND_CHI;
1007 	bus_space_write_4(iot, ioh, DBRI_REG0, tmp);
1008 
1009 	chi_reset(sc, CHImaster, 128);
1010 
1011 	/* control mode */
1012 	pipe_ts_link(sc, 17, PIPEoutput, 16, 32, sc->sc_mm.offset);
1013 	pipe_ts_link(sc, 18, PIPEinput, 16, 8, sc->sc_mm.offset);
1014 	pipe_ts_link(sc, 19, PIPEinput, 16, 8, sc->sc_mm.offset + 48);
1015 
1016 	/* wait for the chip to echo back CLB as zero */
1017 	sc->sc_mm.c.bcontrol[0] &= ~CS4215_CLB;
1018 	pipe_transmit_fixed(sc, 17, sc->sc_mm.c.lcontrol);
1019 
1020 	tmp = bus_space_read_4(iot, ioh, DBRI_REG0);
1021 	tmp |= DBRI_CHI_ACTIVATE;
1022 	bus_space_write_4(iot, ioh, DBRI_REG0, tmp);
1023 
1024 #if DBRI_SPIN
1025 	i = 1024;
1026 	while (((sc->sc_mm.status & 0xe4) != 0x20) && --i) {
1027 		delay(125);
1028 	}
1029 
1030 	if (i == 0) {
1031 		DPRINTF("%s: cs4215 didn't respond to CLB (0x%02x)\n",
1032 		    device_xname(sc->sc_dev), sc->sc_mm.status);
1033 		return (-1);
1034 	}
1035 #else
1036 	while (((sc->sc_mm.status & 0xe4) != 0x20) && (bail < 10)) {
1037 		DPRINTF("%s: tsleep %p\n", device_xname(sc->sc_dev), sc);
1038 		tsleep(sc, PCATCH | PZERO, "dbrifxdt", hz);
1039 		bail++;
1040 	}
1041 #endif
1042 	if (bail >= 10) {
1043 		DPRINTF("%s: switching to control mode timed out (%x %x)\n",
1044 		    device_xname(sc->sc_dev), sc->sc_mm.status,
1045 		    bus_space_read_4(iot, ioh, DBRI_REG2));
1046 		return -1;
1047 	}
1048 
1049 	/* copy the version information before it becomes unreadable again */
1050 	sc->sc_version = sc->sc_mm.version;
1051 
1052 	/* terminate cs4215 control mode */
1053 	sc->sc_mm.c.bcontrol[0] |= CS4215_CLB;
1054 	pipe_transmit_fixed(sc, 17, sc->sc_mm.c.lcontrol);
1055 
1056 	/* two frames of control info @ 8kHz frame rate = 250us delay */
1057 	delay(250);
1058 
1059 	mmcodec_setgain(sc, 0);
1060 
1061 	return (0);
1062 
1063 }
1064 
1065 /*
1066  * CHI combo
1067  */
1068 static void
1069 chi_reset(struct dbri_softc *sc, enum ms ms, int bpf)
1070 {
1071 	volatile uint32_t *cmd;
1072 	int val;
1073 	int clockrate, divisor;
1074 
1075 	cmd = dbri_command_lock(sc);
1076 
1077 	/* set CHI anchor: pipe 16 */
1078 	val = DBRI_DTS_VI | DBRI_DTS_INS | DBRI_DTS_PRVIN(16) | DBRI_PIPE(16);
1079 	*(cmd++) = DBRI_CMD(DBRI_COMMAND_DTS, 0, val);
1080 	*(cmd++) = DBRI_TS_ANCHOR | DBRI_TS_NEXT(16);
1081 	*(cmd++) = 0;
1082 
1083 	val = DBRI_DTS_VO | DBRI_DTS_INS | DBRI_DTS_PRVOUT(16) | DBRI_PIPE(16);
1084 	*(cmd++) = DBRI_CMD(DBRI_COMMAND_DTS, 0, val);
1085 	*(cmd++) = 0;
1086 	*(cmd++) = DBRI_TS_ANCHOR | DBRI_TS_NEXT(16);
1087 
1088 	sc->sc_pipe[16].sdp = 1;
1089 	sc->sc_pipe[16].next = 16;
1090 	sc->sc_chi_pipe_in = 16;
1091 	sc->sc_chi_pipe_out = 16;
1092 
1093 	switch (ms) {
1094 	case CHIslave:
1095 		*(cmd++) = DBRI_CMD(DBRI_COMMAND_CHI, 0, DBRI_CHI_CHICM(0));
1096 		break;
1097 	case CHImaster:
1098 		clockrate = bpf * 8;
1099 		divisor = 12288 / clockrate;
1100 
1101 		if (divisor > 255 || divisor * clockrate != 12288)
1102 			aprint_error_dev(sc->sc_dev,
1103 			    "illegal bits-per-frame %d\n", bpf);
1104 
1105 		*(cmd++) = DBRI_CMD(DBRI_COMMAND_CHI, 0,
1106 		    DBRI_CHI_CHICM(divisor) | DBRI_CHI_FD | DBRI_CHI_BPF(bpf));
1107 		break;
1108 	default:
1109 		aprint_error_dev(sc->sc_dev, "unknown value for ms!\n");
1110 		break;
1111 	}
1112 
1113 	sc->sc_chi_bpf = bpf;
1114 
1115 	/* CHI data mode */
1116 	*(cmd++) = DBRI_CMD(DBRI_COMMAND_PAUSE, 0, 0);
1117 	*(cmd++) = DBRI_CMD(DBRI_COMMAND_CDM, 0,
1118 	    DBRI_CDM_XCE | DBRI_CDM_XEN | DBRI_CDM_REN);
1119 
1120 	dbri_command_send(sc, cmd);
1121 
1122 	return;
1123 }
1124 
1125 /*
1126  * pipe stuff
1127  */
1128 static void
1129 pipe_setup(struct dbri_softc *sc, int pipe, int sdp)
1130 {
1131 	DPRINTF("pipe setup: %d\n", pipe);
1132 	if (pipe < 0 || pipe >= DBRI_PIPE_MAX) {
1133 		aprint_error_dev(sc->sc_dev, "illegal pipe number %d\n",
1134 		    pipe);
1135 		return;
1136 	}
1137 
1138 	if ((sdp & 0xf800) != sdp)
1139 		aprint_error_dev(sc->sc_dev, "strange SDP value %d\n",
1140 		    sdp);
1141 
1142 	if (DBRI_SDP_MODE(sdp) == DBRI_SDP_FIXED &&
1143 	    !(sdp & DBRI_SDP_TO_SER))
1144 		sdp |= DBRI_SDP_CHANGE;
1145 
1146 	sdp |= DBRI_PIPE(pipe);
1147 
1148 	sc->sc_pipe[pipe].sdp = sdp;
1149 	sc->sc_pipe[pipe].desc = -1;
1150 
1151 	pipe_reset(sc, pipe);
1152 
1153 	return;
1154 }
1155 
1156 static void
1157 pipe_reset(struct dbri_softc *sc, int pipe)
1158 {
1159 	struct dbri_desc *dd;
1160 	int sdp;
1161 	int desc;
1162 	volatile uint32_t *cmd;
1163 
1164 	if (pipe < 0 || pipe >= DBRI_PIPE_MAX) {
1165 		aprint_error_dev(sc->sc_dev, "illegal pipe number %d\n",
1166 		    pipe);
1167 		return;
1168 	}
1169 
1170 	sdp = sc->sc_pipe[pipe].sdp;
1171 	if (sdp == 0) {
1172 		aprint_error_dev(sc->sc_dev, "can not reset uninitialized pipe %d\n",
1173 		    pipe);
1174 		return;
1175 	}
1176 
1177 	cmd = dbri_command_lock(sc);
1178 	*(cmd++) = DBRI_CMD(DBRI_COMMAND_SDP, 0,
1179 	    sdp | DBRI_SDP_CLEAR | DBRI_SDP_VALID_POINTER);
1180 	*(cmd++) = 0;
1181 	dbri_command_send(sc, cmd);
1182 
1183 	desc = sc->sc_pipe[pipe].desc;
1184 
1185 	dd = &sc->sc_desc[desc];
1186 
1187 	dd->busy = 0;
1188 
1189 #if 0
1190 	if (dd->callback)
1191 		softint_schedule(dd->softint);
1192 #endif
1193 
1194 	sc->sc_pipe[pipe].desc = -1;
1195 
1196 	return;
1197 }
1198 
1199 static void
1200 pipe_receive_fixed(struct dbri_softc *sc, int pipe, volatile uint32_t *prec)
1201 {
1202 
1203 	if (pipe < DBRI_PIPE_MAX / 2 || pipe >= DBRI_PIPE_MAX) {
1204 		aprint_error_dev(sc->sc_dev, "illegal pipe number %d\n",
1205 		    pipe);
1206 		return;
1207 	}
1208 
1209 	if (DBRI_SDP_MODE(sc->sc_pipe[pipe].sdp) != DBRI_SDP_FIXED) {
1210 		aprint_error_dev(sc->sc_dev, "non-fixed pipe %d\n",
1211 		    pipe);
1212 		return;
1213 	}
1214 
1215 	if (sc->sc_pipe[pipe].sdp & DBRI_SDP_TO_SER) {
1216 		aprint_error_dev(sc->sc_dev, "can not receive on transmit pipe %d\b",
1217 		    pipe);
1218 		return;
1219 	}
1220 
1221 	sc->sc_pipe[pipe].prec = prec;
1222 
1223 	return;
1224 }
1225 
1226 static void
1227 pipe_transmit_fixed(struct dbri_softc *sc, int pipe, uint32_t data)
1228 {
1229 	volatile uint32_t *cmd;
1230 
1231 	if (pipe < DBRI_PIPE_MAX / 2 || pipe >= DBRI_PIPE_MAX) {
1232 		aprint_error_dev(sc->sc_dev, "illegal pipe number %d\n",
1233 		    pipe);
1234 		return;
1235 	}
1236 
1237 	if (DBRI_SDP_MODE(sc->sc_pipe[pipe].sdp) == 0) {
1238 		aprint_error_dev(sc->sc_dev, "uninitialized pipe %d\n",
1239 		    pipe);
1240 		return;
1241 	}
1242 
1243 	if (DBRI_SDP_MODE(sc->sc_pipe[pipe].sdp) != DBRI_SDP_FIXED) {
1244 		aprint_error_dev(sc->sc_dev, "non-fixed pipe %d\n",
1245 		    pipe);
1246 		return;
1247 	}
1248 
1249 	if (!(sc->sc_pipe[pipe].sdp & DBRI_SDP_TO_SER)) {
1250 		aprint_error_dev(sc->sc_dev, "called on receive pipe %d\n",
1251 		    pipe);
1252 		return;
1253 	}
1254 
1255 	if (sc->sc_pipe[pipe].sdp & DBRI_SDP_MSB)
1256 		data = reverse_bytes(data, sc->sc_pipe[pipe].length);
1257 
1258 	cmd = dbri_command_lock(sc);
1259 	*(cmd++) = DBRI_CMD(DBRI_COMMAND_SSP, 0, pipe);
1260 	*(cmd++) = data;
1261 
1262 	dbri_command_send(sc, cmd);
1263 
1264 	return;
1265 }
1266 
1267 static void
1268 setup_ring_xmit(struct dbri_softc *sc, int pipe, int which, int num, int blksz,
1269 		void (*callback)(void *), void *callback_args)
1270 {
1271 	volatile uint32_t *cmd;
1272 	int i;
1273 	int td;
1274 	int td_first, td_last;
1275 	bus_addr_t dmabuf, dmabase;
1276 	struct dbri_desc *dd = &sc->sc_desc[which];
1277 
1278 	switch (pipe) {
1279 		case 4:
1280 			/* output, offset 0 */
1281 			break;
1282 		default:
1283 			aprint_error("%s: illegal pipe number (%d)\n",
1284 			    __func__, pipe);
1285 			return;
1286 	}
1287 
1288 	td = 0;
1289 	td_first = td_last = -1;
1290 
1291 	if (sc->sc_pipe[pipe].sdp == 0) {
1292 		aprint_error_dev(sc->sc_dev, "uninitialized pipe %d\n",
1293 		    pipe);
1294 		return;
1295 	}
1296 
1297 	dmabuf = dd->dmabase;
1298 	dmabase = sc->sc_dmabase;
1299 	td = 0;
1300 
1301 	for (i = 0; i < (num - 1); i++) {
1302 
1303 		sc->sc_dma->xmit[i].flags = TX_BCNT(blksz)
1304 		    | TX_EOF | TX_BINT;
1305 		sc->sc_dma->xmit[i].ba = dmabuf;
1306 		sc->sc_dma->xmit[i].nda = dmabase + dbri_dma_off(xmit, i + 1);
1307 		sc->sc_dma->xmit[i].status = 0;
1308 
1309 		td_last = td;
1310 		dmabuf += blksz;
1311 	}
1312 
1313 	sc->sc_dma->xmit[i].flags = TX_BCNT(blksz) | TX_EOF | TX_BINT;
1314 
1315 	sc->sc_dma->xmit[i].ba = dmabuf;
1316 	sc->sc_dma->xmit[i].nda = dmabase + dbri_dma_off(xmit, 0);
1317 	sc->sc_dma->xmit[i].status = 0;
1318 
1319 	dd->callback = callback;
1320 	dd->callback_args = callback_args;
1321 
1322 	mutex_spin_enter(&sc->sc_intr_lock);
1323 
1324 	/* the pipe shouldn't be active */
1325 	if (pipe_active(sc, pipe)) {
1326 		aprint_error("pipe active (CDP)\n");
1327 		/* pipe is already active */
1328 #if 0
1329 		td_last = sc->sc_pipe[pipe].desc;
1330 		while (sc->sc_desc[td_last].next != -1)
1331 			td_last = sc->sc_desc[td_last].next;
1332 
1333 		sc->sc_desc[td_last].next = td_first;
1334 		sc->sc_dma->desc[td_last].nda =
1335 		    sc->sc_dmabase + dbri_dma_off(desc, td_first);
1336 
1337 		cmd = dbri_command_lock(sc);
1338 		*(cmd++) = DBRI_CMD(DBRI_COMMAND_CDP, 0, pipe);
1339 		dbri_command_send(sc, cmd);
1340 #endif
1341 	} else {
1342 		/*
1343 		 * pipe isn't active - issue an SDP command to start our
1344 		 * chain of TDs running
1345 		 */
1346 		sc->sc_pipe[pipe].desc = which;
1347 		cmd = dbri_command_lock(sc);
1348 		*(cmd++) = DBRI_CMD(DBRI_COMMAND_SDP, 0,
1349 					sc->sc_pipe[pipe].sdp |
1350 					DBRI_SDP_VALID_POINTER |
1351 					DBRI_SDP_EVERY |
1352 					DBRI_SDP_CLEAR);
1353 		*(cmd++) = sc->sc_dmabase + dbri_dma_off(xmit, 0);
1354 		dbri_command_send(sc, cmd);
1355 		DPRINTF("%s: starting DMA\n", __func__);
1356 	}
1357 
1358 	mutex_spin_exit(&sc->sc_intr_lock);
1359 
1360 	return;
1361 }
1362 
1363 static void
1364 setup_ring_recv(struct dbri_softc *sc, int pipe, int which, int num, int blksz,
1365 		void (*callback)(void *), void *callback_args)
1366 {
1367 	volatile uint32_t *cmd;
1368 	int i;
1369 	int td_first, td_last;
1370 	bus_addr_t dmabuf, dmabase;
1371 	struct dbri_desc *dd = &sc->sc_desc[which];
1372 
1373 	switch (pipe) {
1374 		case 6:
1375 			break;
1376 		default:
1377 			aprint_error("%s: illegal pipe number (%d)\n",
1378 			    __func__, pipe);
1379 			return;
1380 	}
1381 
1382 	td_first = td_last = -1;
1383 
1384 	if (sc->sc_pipe[pipe].sdp == 0) {
1385 		aprint_error_dev(sc->sc_dev, "uninitialized pipe %d\n",
1386 		    pipe);
1387 		return;
1388 	}
1389 
1390 	dmabuf = dd->dmabase;
1391 	dmabase = sc->sc_dmabase;
1392 
1393 	for (i = 0; i < (num - 1); i++) {
1394 
1395 		sc->sc_dma->recv[i].flags = RX_BSIZE(blksz) | RX_FINAL;
1396 		sc->sc_dma->recv[i].ba = dmabuf;
1397 		sc->sc_dma->recv[i].nda = dmabase + dbri_dma_off(recv, i + 1);
1398 		sc->sc_dma->recv[i].status = RX_EOF;
1399 
1400 		td_last = i;
1401 		dmabuf += blksz;
1402 	}
1403 
1404 	sc->sc_dma->recv[i].flags = RX_BSIZE(blksz) | RX_FINAL;
1405 
1406 	sc->sc_dma->recv[i].ba = dmabuf;
1407 	sc->sc_dma->recv[i].nda = dmabase + dbri_dma_off(recv, 0);
1408 	sc->sc_dma->recv[i].status = RX_EOF;
1409 
1410 	dd->callback = callback;
1411 	dd->callback_args = callback_args;
1412 
1413 	mutex_spin_enter(&sc->sc_intr_lock);
1414 
1415 	/* the pipe shouldn't be active */
1416 	if (pipe_active(sc, pipe)) {
1417 		aprint_error("pipe active (CDP)\n");
1418 		/* pipe is already active */
1419 #if 0
1420 		td_last = sc->sc_pipe[pipe].desc;
1421 		while (sc->sc_desc[td_last].next != -1)
1422 			td_last = sc->sc_desc[td_last].next;
1423 
1424 		sc->sc_desc[td_last].next = td_first;
1425 		sc->sc_dma->desc[td_last].nda =
1426 		    sc->sc_dmabase + dbri_dma_off(desc, td_first);
1427 
1428 		cmd = dbri_command_lock(sc);
1429 		*(cmd++) = DBRI_CMD(DBRI_COMMAND_CDP, 0, pipe);
1430 		dbri_command_send(sc, cmd);
1431 #endif
1432 	} else {
1433 		/*
1434 		 * pipe isn't active - issue an SDP command to start our
1435 		 * chain of TDs running
1436 		 */
1437 		sc->sc_pipe[pipe].desc = which;
1438 		cmd = dbri_command_lock(sc);
1439 		*(cmd++) = DBRI_CMD(DBRI_COMMAND_SDP, 0,
1440 					sc->sc_pipe[pipe].sdp |
1441 					DBRI_SDP_VALID_POINTER |
1442 					DBRI_SDP_EVERY |
1443 					DBRI_SDP_CLEAR);
1444 		*(cmd++) = sc->sc_dmabase + dbri_dma_off(recv, 0);
1445 		dbri_command_send(sc, cmd);
1446 		DPRINTF("%s: starting DMA\n", __func__);
1447 	}
1448 
1449 	mutex_spin_exit(&sc->sc_intr_lock);
1450 
1451 	return;
1452 }
1453 
1454 static void
1455 pipe_ts_link(struct dbri_softc *sc, int pipe, enum io dir, int basepipe,
1456 		int len, int cycle)
1457 {
1458 	volatile uint32_t *cmd;
1459 	int prevpipe, nextpipe;
1460 	int val;
1461 
1462 	DPRINTF("%s: %d\n", __func__, pipe);
1463 	if (pipe < 0 || pipe >= DBRI_PIPE_MAX ||
1464 	    basepipe < 0 || basepipe >= DBRI_PIPE_MAX) {
1465 		aprint_error_dev(sc->sc_dev, "illegal pipe numbers (%d, %d)\n",
1466 		    pipe, basepipe);
1467 		return;
1468 	}
1469 
1470 	if (sc->sc_pipe[pipe].sdp == 0 || sc->sc_pipe[basepipe].sdp == 0) {
1471 		aprint_error_dev(sc->sc_dev, "uninitialized pipe (%d, %d)\n",
1472 		    pipe, basepipe);
1473 		return;
1474 	}
1475 
1476 	if (basepipe == 16 && dir == PIPEoutput && cycle == 0)
1477 		cycle = sc->sc_chi_bpf;
1478 
1479 	if (basepipe == pipe)
1480 		prevpipe = nextpipe = pipe;
1481 	else {
1482 		if (basepipe == 16) {
1483 			if (dir == PIPEinput) {
1484 				prevpipe = sc->sc_chi_pipe_in;
1485 			} else {
1486 				prevpipe = sc->sc_chi_pipe_out;
1487 			}
1488 		} else
1489 			prevpipe = basepipe;
1490 
1491 		nextpipe = sc->sc_pipe[prevpipe].next;
1492 
1493 		while (sc->sc_pipe[nextpipe].cycle < cycle &&
1494 		    sc->sc_pipe[nextpipe].next != basepipe) {
1495 			prevpipe = nextpipe;
1496 			nextpipe = sc->sc_pipe[nextpipe].next;
1497 		}
1498 	}
1499 
1500 	if (prevpipe == 16) {
1501 		if (dir == PIPEinput) {
1502 			sc->sc_chi_pipe_in = pipe;
1503 		} else {
1504 			sc->sc_chi_pipe_out = pipe;
1505 		}
1506 	} else
1507 		sc->sc_pipe[prevpipe].next = pipe;
1508 
1509 	sc->sc_pipe[pipe].next = nextpipe;
1510 	sc->sc_pipe[pipe].cycle = cycle;
1511 	sc->sc_pipe[pipe].length = len;
1512 
1513 	cmd = dbri_command_lock(sc);
1514 
1515 	switch (dir) {
1516 	case PIPEinput:
1517 		val = DBRI_DTS_VI | DBRI_DTS_INS | DBRI_DTS_PRVIN(prevpipe);
1518 		val |= pipe;
1519 		*(cmd++) = DBRI_CMD(DBRI_COMMAND_DTS, 0, val);
1520 		*(cmd++) = DBRI_TS_LEN(len) | DBRI_TS_CYCLE(cycle) |
1521 		    DBRI_TS_NEXT(nextpipe);
1522 		*(cmd++) = 0;
1523 		break;
1524 	case PIPEoutput:
1525 		val = DBRI_DTS_VO | DBRI_DTS_INS | DBRI_DTS_PRVOUT(prevpipe);
1526 		val |= pipe;
1527 		*(cmd++) = DBRI_CMD(DBRI_COMMAND_DTS, 0, val);
1528 		*(cmd++) = 0;
1529 		*(cmd++) = DBRI_TS_LEN(len) | DBRI_TS_CYCLE(cycle) |
1530 		    DBRI_TS_NEXT(nextpipe);
1531 		break;
1532 	default:
1533 		DPRINTF("%s: should not have happened!\n",
1534 		    device_xname(sc->sc_dev));
1535 		break;
1536 	}
1537 
1538 	dbri_command_send(sc, cmd);
1539 
1540 	return;
1541 }
1542 
1543 static int
1544 pipe_active(struct dbri_softc *sc, int pipe)
1545 {
1546 
1547 	return (sc->sc_pipe[pipe].desc != -1);
1548 }
1549 
1550 /*
1551  * subroutines required to interface with audio(9)
1552  */
1553 
1554 static int
1555 dbri_query_encoding(void *hdl, struct audio_encoding *ae)
1556 {
1557 
1558 	switch (ae->index) {
1559 	case 0:
1560 		strcpy(ae->name, AudioEulinear);
1561 		ae->encoding = AUDIO_ENCODING_ULINEAR;
1562 		ae->precision = 8;
1563 		ae->flags = 0;
1564 		break;
1565 	case 1:
1566 		strcpy(ae->name, AudioEmulaw);
1567 		ae->encoding = AUDIO_ENCODING_ULAW;
1568 		ae->precision = 8;
1569 		ae->flags = 0;
1570 		break;
1571 	case 2:
1572 		strcpy(ae->name, AudioEalaw);
1573 		ae->encoding = AUDIO_ENCODING_ALAW;
1574 		ae->precision = 8;
1575 		ae->flags = 0;
1576 		break;
1577 	case 3:
1578 		strcpy(ae->name, AudioEslinear);
1579 		ae->encoding = AUDIO_ENCODING_SLINEAR;
1580 		ae->precision = 8;
1581 		ae->flags = AUDIO_ENCODINGFLAG_EMULATED;
1582 		break;
1583 	case 4:
1584 		strcpy(ae->name, AudioEslinear_le);
1585 		ae->encoding = AUDIO_ENCODING_SLINEAR_LE;
1586 		ae->precision = 16;
1587 		ae->flags = AUDIO_ENCODINGFLAG_EMULATED;
1588 		break;
1589 	case 5:
1590 		strcpy(ae->name, AudioEulinear_le);
1591 		ae->encoding = AUDIO_ENCODING_ULINEAR_LE;
1592 		ae->precision = 16;
1593 		ae->flags = AUDIO_ENCODINGFLAG_EMULATED;
1594 		break;
1595 	case 6:
1596 		strcpy(ae->name, AudioEslinear_be);
1597 		ae->encoding = AUDIO_ENCODING_SLINEAR_BE;
1598 		ae->precision = 16;
1599 		ae->flags = 0;
1600 		break;
1601 	case 7:
1602 		strcpy(ae->name, AudioEulinear_be);
1603 		ae->encoding = AUDIO_ENCODING_ULINEAR_BE;
1604 		ae->precision = 16;
1605 		ae->flags = AUDIO_ENCODINGFLAG_EMULATED;
1606 		break;
1607 	case 8:
1608 		strcpy(ae->name, AudioEslinear);
1609 		ae->encoding = AUDIO_ENCODING_SLINEAR;
1610 		ae->precision = 16;
1611 		ae->flags = 0;
1612 		break;
1613 	default:
1614 		return (EINVAL);
1615 	}
1616 
1617 	return (0);
1618 }
1619 
1620 static int
1621 dbri_set_params(void *hdl, int setmode, int usemode,
1622 		struct audio_params *play, struct audio_params *rec,
1623 		stream_filter_list_t *pfil, stream_filter_list_t *rfil)
1624 {
1625 	struct dbri_softc *sc = hdl;
1626 	int rate;
1627 	audio_params_t *p = NULL;
1628 	stream_filter_list_t *fil;
1629 	int mode;
1630 
1631 	/*
1632 	 * This device only has one clock, so make the sample rates match.
1633 	 */
1634 	if (play->sample_rate != rec->sample_rate &&
1635 	    usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
1636 		if (setmode == AUMODE_PLAY) {
1637 			rec->sample_rate = play->sample_rate;
1638 			setmode |= AUMODE_RECORD;
1639 		} else if (setmode == AUMODE_RECORD) {
1640 			play->sample_rate = rec->sample_rate;
1641 			setmode |= AUMODE_PLAY;
1642 		} else
1643 			return EINVAL;
1644 	}
1645 
1646 	for (mode = AUMODE_RECORD; mode != -1;
1647 	     mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
1648 		if ((setmode & mode) == 0)
1649 			continue;
1650 
1651 		p = mode == AUMODE_PLAY ? play : rec;
1652 		if (p->sample_rate < 4000 || p->sample_rate > 50000) {
1653 			DPRINTF("dbri_set_params: invalid rate %d\n",
1654 			    p->sample_rate);
1655 			return EINVAL;
1656 		}
1657 
1658 		fil = mode == AUMODE_PLAY ? pfil : rfil;
1659 	DPRINTF("requested enc: %d rate: %d prec: %d chan: %d\n", p->encoding,
1660 	    p->sample_rate, p->precision, p->channels);
1661 		if (auconv_set_converter(dbri_formats, DBRI_NFORMATS,
1662 					 mode, p, true, fil) < 0) {
1663 			aprint_debug("dbri_set_params: auconv_set_converter failed\n");
1664 			return EINVAL;
1665 		}
1666 		if (fil->req_size > 0)
1667 			p = &fil->filters[0].param;
1668 	}
1669 
1670 	if (p == NULL) {
1671 		DPRINTF("dbri_set_params: no parameters to set\n");
1672 		return 0;
1673 	}
1674 
1675 	DPRINTF("native enc: %d rate: %d prec: %d chan: %d\n", p->encoding,
1676 	    p->sample_rate, p->precision, p->channels);
1677 
1678 	for (rate = 0; CS4215_FREQ[rate].freq; rate++)
1679 		if (CS4215_FREQ[rate].freq == p->sample_rate)
1680 			break;
1681 
1682 	if (CS4215_FREQ[rate].freq == 0)
1683 		return (EINVAL);
1684 
1685 	/* set frequency */
1686 	sc->sc_mm.c.bcontrol[1] &= ~0x38;
1687 	sc->sc_mm.c.bcontrol[1] |= CS4215_FREQ[rate].csval;
1688 	sc->sc_mm.c.bcontrol[2] &= ~0x70;
1689 	sc->sc_mm.c.bcontrol[2] |= CS4215_FREQ[rate].xtal;
1690 
1691 	switch (p->encoding) {
1692 	case AUDIO_ENCODING_ULAW:
1693 		sc->sc_mm.c.bcontrol[1] &= ~3;
1694 		sc->sc_mm.c.bcontrol[1] |= CS4215_DFR_ULAW;
1695 		break;
1696 	case AUDIO_ENCODING_ALAW:
1697 		sc->sc_mm.c.bcontrol[1] &= ~3;
1698 		sc->sc_mm.c.bcontrol[1] |= CS4215_DFR_ALAW;
1699 		break;
1700 	case AUDIO_ENCODING_ULINEAR:
1701 		sc->sc_mm.c.bcontrol[1] &= ~3;
1702 		if (p->precision == 8) {
1703 			sc->sc_mm.c.bcontrol[1] |= CS4215_DFR_LINEAR8;
1704 		} else {
1705 			sc->sc_mm.c.bcontrol[1] |= CS4215_DFR_LINEAR16;
1706 		}
1707 		break;
1708 	case AUDIO_ENCODING_SLINEAR_BE:
1709 	case AUDIO_ENCODING_SLINEAR:
1710 		sc->sc_mm.c.bcontrol[1] &= ~3;
1711 		sc->sc_mm.c.bcontrol[1] |= CS4215_DFR_LINEAR16;
1712 		break;
1713 	}
1714 
1715 	switch (p->channels) {
1716 	case 1:
1717 		sc->sc_mm.c.bcontrol[1] &= ~CS4215_DFR_STEREO;
1718 		break;
1719 	case 2:
1720 		sc->sc_mm.c.bcontrol[1] |= CS4215_DFR_STEREO;
1721 		break;
1722 	}
1723 
1724 	return (0);
1725 }
1726 
1727 static int
1728 dbri_round_blocksize(void *hdl, int bs, int mode,
1729 			const audio_params_t *param)
1730 {
1731 
1732 	/*
1733 	 * DBRI DMA segment size can be up to 0x1fff, sixes that are not powers
1734 	 * of two seem to confuse the upper audio layer so we're going with
1735 	 * 0x1000 here
1736 	 */
1737 	return 0x1000;
1738 }
1739 
1740 static int
1741 dbri_halt_output(void *hdl)
1742 {
1743 	struct dbri_softc *sc = hdl;
1744 
1745 	if (!sc->sc_playing)
1746 		return 0;
1747 
1748 	sc->sc_playing = 0;
1749 	pipe_reset(sc, 4);
1750 	return (0);
1751 }
1752 
1753 static int
1754 dbri_getdev(void *hdl, struct audio_device *ret)
1755 {
1756 
1757 	*ret = dbri_device;
1758 	return (0);
1759 }
1760 
1761 static int
1762 dbri_set_port(void *hdl, mixer_ctrl_t *mc)
1763 {
1764 	struct dbri_softc *sc = hdl;
1765 	int latt = sc->sc_latt, ratt = sc->sc_ratt;
1766 
1767 	switch (mc->dev) {
1768 	    case DBRI_VOL_OUTPUT:	/* master volume */
1769 		latt = (latt & 0xc0) | (63 -
1770 		    min(mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] >> 2, 63));
1771 		ratt = (ratt & 0xc0) | (63 -
1772 		    min(mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] >> 2, 63));
1773 		break;
1774 	    case DBRI_ENABLE_MONO:	/* built-in speaker */
1775 	    	if (mc->un.ord == 1) {
1776 			ratt |= CS4215_SE;
1777 		} else
1778 			ratt &= ~CS4215_SE;
1779 		break;
1780 	    case DBRI_ENABLE_HEADPHONE:	/* headphones output */
1781 	    	if (mc->un.ord == 1) {
1782 			latt |= CS4215_HE;
1783 		} else
1784 			latt &= ~CS4215_HE;
1785 		break;
1786 	    case DBRI_ENABLE_LINE:	/* line out */
1787 	    	if (mc->un.ord == 1) {
1788 			latt |= CS4215_LE;
1789 		} else
1790 			latt &= ~CS4215_LE;
1791 		break;
1792 	    case DBRI_VOL_MONITOR:
1793 		if (mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] ==
1794 		    sc->sc_monitor)
1795 			return 0;
1796 		sc->sc_monitor = mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
1797 		break;
1798 	    case DBRI_INPUT_GAIN:
1799 		sc->sc_linp = mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
1800 		sc->sc_rinp = mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
1801 		break;
1802 	    case DBRI_INPUT_SELECT:
1803 	    	if (mc->un.mask == sc->sc_input)
1804 	    		return 0;
1805 	    	sc->sc_input =  mc->un.mask;
1806 	    	break;
1807 	}
1808 
1809 	sc->sc_latt = latt;
1810 	sc->sc_ratt = ratt;
1811 
1812 	mmcodec_setgain(sc, 0);
1813 
1814 	return (0);
1815 }
1816 
1817 static int
1818 dbri_get_port(void *hdl, mixer_ctrl_t *mc)
1819 {
1820 	struct dbri_softc *sc = hdl;
1821 
1822 	switch (mc->dev) {
1823 	    case DBRI_VOL_OUTPUT:	/* master volume */
1824 		mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1825 		    (63 - (sc->sc_latt & 0x3f)) << 2;
1826 		mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1827 		    (63 - (sc->sc_ratt & 0x3f)) << 2;
1828 		return (0);
1829 	    case DBRI_ENABLE_MONO:	/* built-in speaker */
1830 	    	mc->un.ord = (sc->sc_ratt & CS4215_SE) ? 1 : 0;
1831 		return 0;
1832 	    case DBRI_ENABLE_HEADPHONE:	/* headphones output */
1833 	    	mc->un.ord = (sc->sc_latt & CS4215_HE) ? 1 : 0;
1834 		return 0;
1835 	    case DBRI_ENABLE_LINE:	/* line out */
1836 	    	mc->un.ord = (sc->sc_latt & CS4215_LE) ? 1 : 0;
1837 		return 0;
1838 	    case DBRI_VOL_MONITOR:
1839 		mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = sc->sc_monitor;
1840 		return 0;
1841 	    case DBRI_INPUT_GAIN:
1842 		mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = sc->sc_linp;
1843 		mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = sc->sc_rinp;
1844 		return 0;
1845 	    case DBRI_INPUT_SELECT:
1846 	    	mc->un.mask = sc->sc_input;
1847 	    	return 0;
1848 	}
1849 	return (EINVAL);
1850 }
1851 
1852 static int
1853 dbri_query_devinfo(void *hdl, mixer_devinfo_t *di)
1854 {
1855 
1856 	switch (di->index) {
1857 	case DBRI_MONITOR_CLASS:
1858 		di->mixer_class = DBRI_MONITOR_CLASS;
1859 		strcpy(di->label.name, AudioCmonitor);
1860 		di->type = AUDIO_MIXER_CLASS;
1861 		di->next = di->prev = AUDIO_MIXER_LAST;
1862 		return 0;
1863 	case DBRI_OUTPUT_CLASS:
1864 		di->mixer_class = DBRI_OUTPUT_CLASS;
1865 		strcpy(di->label.name, AudioCoutputs);
1866 		di->type = AUDIO_MIXER_CLASS;
1867 		di->next = di->prev = AUDIO_MIXER_LAST;
1868 		return 0;
1869 	case DBRI_INPUT_CLASS:
1870 		di->mixer_class = DBRI_INPUT_CLASS;
1871 		strcpy(di->label.name, AudioCinputs);
1872 		di->type = AUDIO_MIXER_CLASS;
1873 		di->next = di->prev = AUDIO_MIXER_LAST;
1874 		return 0;
1875 	case DBRI_VOL_OUTPUT:	/* master volume */
1876 		di->mixer_class = DBRI_OUTPUT_CLASS;
1877 		di->next = di->prev = AUDIO_MIXER_LAST;
1878 		strcpy(di->label.name, AudioNmaster);
1879 		di->type = AUDIO_MIXER_VALUE;
1880 		di->un.v.num_channels = 2;
1881 		di->un.v.delta = 16;
1882 		strcpy(di->un.v.units.name, AudioNvolume);
1883 		return (0);
1884 	case DBRI_INPUT_GAIN:	/* input gain */
1885 		di->mixer_class = DBRI_INPUT_CLASS;
1886 		di->next = di->prev = AUDIO_MIXER_LAST;
1887 		strcpy(di->label.name, AudioNrecord);
1888 		di->type = AUDIO_MIXER_VALUE;
1889 		di->un.v.num_channels = 2;
1890 		strcpy(di->un.v.units.name, AudioNvolume);
1891 		return (0);
1892 	case DBRI_VOL_MONITOR:	/* monitor volume */
1893 		di->mixer_class = DBRI_MONITOR_CLASS;
1894 		di->next = di->prev = AUDIO_MIXER_LAST;
1895 		strcpy(di->label.name, AudioNmonitor);
1896 		di->type = AUDIO_MIXER_VALUE;
1897 		di->un.v.num_channels = 1;
1898 		strcpy(di->un.v.units.name, AudioNvolume);
1899 		return (0);
1900 	case DBRI_ENABLE_MONO:	/* built-in speaker */
1901 		di->mixer_class = DBRI_OUTPUT_CLASS;
1902 		di->next = di->prev = AUDIO_MIXER_LAST;
1903 		strcpy(di->label.name, AudioNmono);
1904 		di->type = AUDIO_MIXER_ENUM;
1905 		di->un.e.num_mem = 2;
1906 		strcpy(di->un.e.member[0].label.name, AudioNoff);
1907 		di->un.e.member[0].ord = 0;
1908 		strcpy(di->un.e.member[1].label.name, AudioNon);
1909 		di->un.e.member[1].ord = 1;
1910 		return (0);
1911 	case DBRI_ENABLE_HEADPHONE:	/* headphones output */
1912 		di->mixer_class = DBRI_OUTPUT_CLASS;
1913 		di->next = di->prev = AUDIO_MIXER_LAST;
1914 		strcpy(di->label.name, AudioNheadphone);
1915 		di->type = AUDIO_MIXER_ENUM;
1916 		di->un.e.num_mem = 2;
1917 		strcpy(di->un.e.member[0].label.name, AudioNoff);
1918 		di->un.e.member[0].ord = 0;
1919 		strcpy(di->un.e.member[1].label.name, AudioNon);
1920 		di->un.e.member[1].ord = 1;
1921 		return (0);
1922 	case DBRI_ENABLE_LINE:	/* line out */
1923 		di->mixer_class = DBRI_OUTPUT_CLASS;
1924 		di->next = di->prev = AUDIO_MIXER_LAST;
1925 		strcpy(di->label.name, AudioNline);
1926 		di->type = AUDIO_MIXER_ENUM;
1927 		di->un.e.num_mem = 2;
1928 		strcpy(di->un.e.member[0].label.name, AudioNoff);
1929 		di->un.e.member[0].ord = 0;
1930 		strcpy(di->un.e.member[1].label.name, AudioNon);
1931 		di->un.e.member[1].ord = 1;
1932 		return (0);
1933 	case DBRI_INPUT_SELECT:
1934 		di->mixer_class = DBRI_INPUT_CLASS;
1935 		strcpy(di->label.name, AudioNsource);
1936 		di->type = AUDIO_MIXER_SET;
1937 		di->prev = di->next = AUDIO_MIXER_LAST;
1938 		di->un.s.num_mem = 2;
1939 		strcpy(di->un.s.member[0].label.name, AudioNline);
1940 		di->un.s.member[0].mask = 1 << 0;
1941 		strcpy(di->un.s.member[1].label.name, AudioNmicrophone);
1942 		di->un.s.member[1].mask = 1 << 1;
1943 		return 0;
1944 	}
1945 
1946 	return (ENXIO);
1947 }
1948 
1949 static size_t
1950 dbri_round_buffersize(void *hdl, int dir, size_t bufsize)
1951 {
1952 #ifdef DBRI_BIG_BUFFER
1953 	return 0x20000;	/* use 128KB buffer */
1954 #else
1955 	return bufsize;
1956 #endif
1957 }
1958 
1959 static int
1960 dbri_get_props(void *hdl)
1961 {
1962 
1963 	return AUDIO_PROP_MMAP | AUDIO_PROP_FULLDUPLEX;
1964 }
1965 
1966 static int
1967 dbri_trigger_output(void *hdl, void *start, void *end, int blksize,
1968 		    void (*intr)(void *), void *intrarg,
1969 		    const struct audio_params *param)
1970 {
1971 	struct dbri_softc *sc = hdl;
1972 	unsigned long count, num;
1973 
1974 	if (sc->sc_playing)
1975 		return 0;
1976 
1977 	count = (unsigned long)(((char *)end - (char *)start));
1978 	num = count / blksize;
1979 
1980 	DPRINTF("trigger_output(%lx %lx) : %d %ld %ld\n",
1981 	    (unsigned long)intr,
1982 	    (unsigned long)intrarg, blksize, count, num);
1983 
1984 	sc->sc_params = *param;
1985 
1986 	if (sc->sc_recording == 0) {
1987 		/* do not muck with the codec when it's already in use */
1988 		if (mmcodec_setcontrol(sc) != 0)
1989 			return -1;
1990 		mmcodec_init_data(sc);
1991 	}
1992 
1993 	/*
1994 	 * always use DMA descriptor 0 for output
1995 	 * no need to allocate them dynamically since we only ever have
1996 	 * exactly one input stream and exactly one output stream
1997 	 */
1998 	setup_ring_xmit(sc, 4, 0, num, blksize, intr, intrarg);
1999 	sc->sc_playing = 1;
2000 	return 0;
2001 }
2002 
2003 static int
2004 dbri_halt_input(void *cookie)
2005 {
2006 	struct dbri_softc *sc = cookie;
2007 
2008 	if (!sc->sc_recording)
2009 		return 0;
2010 
2011 	sc->sc_recording = 0;
2012 	pipe_reset(sc, 6);
2013 	return 0;
2014 }
2015 
2016 static int
2017 dbri_trigger_input(void *hdl, void *start, void *end, int blksize,
2018 		    void (*intr)(void *), void *intrarg,
2019 		    const struct audio_params *param)
2020 {
2021 	struct dbri_softc *sc = hdl;
2022 	unsigned long count, num;
2023 
2024 	if (sc->sc_recording)
2025 		return 0;
2026 
2027 	count = (unsigned long)(((char *)end - (char *)start));
2028 	num = count / blksize;
2029 
2030 	DPRINTF("trigger_input(%lx %lx) : %d %ld %ld\n",
2031 	    (unsigned long)intr,
2032 	    (unsigned long)intrarg, blksize, count, num);
2033 
2034 	sc->sc_params = *param;
2035 
2036 	if (sc->sc_playing == 0) {
2037 
2038 		/*
2039 		 * we don't support different parameters for playing and
2040 		 * recording anyway so don't bother whacking the codec if
2041 		 * it's already set up
2042 		 */
2043 		mmcodec_setcontrol(sc);
2044 		mmcodec_init_data(sc);
2045 	}
2046 
2047 	sc->sc_recording = 1;
2048 	setup_ring_recv(sc, 6, 1, num, blksize, intr, intrarg);
2049 	return 0;
2050 }
2051 
2052 static void
2053 dbri_get_locks(void *opaque, kmutex_t **intr, kmutex_t **thread)
2054 {
2055 	struct dbri_softc *sc = opaque;
2056 
2057 	*intr = &sc->sc_intr_lock;
2058 	*thread = &sc->sc_lock;
2059 }
2060 
2061 static uint32_t
2062 reverse_bytes(uint32_t b, int len)
2063 {
2064 	switch (len) {
2065 	case 32:
2066 		b = ((b & 0xffff0000) >> 16) | ((b & 0x0000ffff) << 16);
2067 	case 16:
2068 		b = ((b & 0xff00ff00) >>  8) | ((b & 0x00ff00ff) <<  8);
2069 	case 8:
2070 		b = ((b & 0xf0f0f0f0) >>  4) | ((b & 0x0f0f0f0f) <<  4);
2071 	case 4:
2072 		b = ((b & 0xcccccccc) >>  2) | ((b & 0x33333333) <<  2);
2073 	case 2:
2074 		b = ((b & 0xaaaaaaaa) >>  1) | ((b & 0x55555555) <<  1);
2075 	case 1:
2076 	case 0:
2077 		break;
2078 	default:
2079 		DPRINTF("reverse_bytes: unsupported length\n");
2080 	};
2081 
2082 	return (b);
2083 }
2084 
2085 static void *
2086 dbri_malloc(void *v, int dir, size_t s)
2087 {
2088 	struct dbri_softc *sc = v;
2089 	struct dbri_desc *dd = &sc->sc_desc[sc->sc_desc_used];
2090 	int rseg;
2091 
2092 	if (bus_dmamap_create(sc->sc_dmat, s, 1, s, 0, BUS_DMA_NOWAIT,
2093 	    &dd->dmamap) == 0) {
2094 		if (bus_dmamem_alloc(sc->sc_dmat, s, 0, 0, &dd->dmaseg,
2095 		    1, &rseg, BUS_DMA_NOWAIT) == 0) {
2096 			if (bus_dmamem_map(sc->sc_dmat, &dd->dmaseg, rseg, s,
2097 			    &dd->buf, BUS_DMA_NOWAIT|BUS_DMA_COHERENT) == 0) {
2098 				if (dd->buf != NULL) {
2099 					if (bus_dmamap_load(sc->sc_dmat,
2100 					    dd->dmamap, dd->buf, s, NULL,
2101 					    BUS_DMA_NOWAIT) == 0) {
2102 						dd->len = s;
2103 						dd->busy = 0;
2104 						dd->callback = NULL;
2105 						dd->dmabase =
2106 						 dd->dmamap->dm_segs[0].ds_addr;
2107 						DPRINTF("dbri_malloc: using buffer %d %08x\n",
2108 						    sc->sc_desc_used, (uint32_t)dd->buf);
2109 						sc->sc_desc_used++;
2110 						return dd->buf;
2111 					} else
2112 						aprint_error("dbri_malloc: load failed\n");
2113 				} else
2114 					aprint_error("dbri_malloc: map returned NULL\n");
2115 			} else
2116 				aprint_error("dbri_malloc: map failed\n");
2117 			bus_dmamem_free(sc->sc_dmat, &dd->dmaseg, rseg);
2118 		} else
2119 			aprint_error("dbri_malloc: malloc() failed\n");
2120 		bus_dmamap_destroy(sc->sc_dmat, dd->dmamap);
2121 	} else
2122 		aprint_error("dbri_malloc: bus_dmamap_create() failed\n");
2123 	return NULL;
2124 }
2125 
2126 static void
2127 dbri_free(void *v, void *p, size_t size)
2128 {
2129 	struct dbri_softc *sc = v;
2130 	struct dbri_desc *dd;
2131 	int i;
2132 
2133 	for (i = 0; i < sc->sc_desc_used; i++) {
2134 		dd = &sc->sc_desc[i];
2135 		if (dd->buf == p)
2136 			break;
2137 	}
2138 	if (i >= sc->sc_desc_used)
2139 		return;
2140 	bus_dmamap_unload(sc->sc_dmat, dd->dmamap);
2141 	bus_dmamap_destroy(sc->sc_dmat, dd->dmamap);
2142 }
2143 
2144 static paddr_t
2145 dbri_mappage(void *v, void *mem, off_t off, int prot)
2146 {
2147 	struct dbri_softc *sc = v;
2148 	int current;
2149 
2150 	if (off < 0)
2151 		return -1;
2152 
2153 	current = 0;
2154 	while ((current < sc->sc_desc_used) &&
2155 	    (sc->sc_desc[current].buf != mem))
2156 	    	current++;
2157 
2158 	if (current < sc->sc_desc_used) {
2159 		return bus_dmamem_mmap(sc->sc_dmat,
2160 		    &sc->sc_desc[current].dmaseg, 1, off, prot, BUS_DMA_WAITOK);
2161 	}
2162 
2163 	return -1;
2164 }
2165 
2166 static int
2167 dbri_open(void *cookie, int flags)
2168 {
2169 	struct dbri_softc *sc = cookie;
2170 
2171 	DPRINTF("%s: %d\n", __func__, sc->sc_refcount);
2172 
2173 	if (sc->sc_refcount == 0)
2174 		dbri_bring_up(sc);
2175 
2176 	sc->sc_refcount++;
2177 
2178 	return 0;
2179 }
2180 
2181 static void
2182 dbri_close(void *cookie)
2183 {
2184 	struct dbri_softc *sc = cookie;
2185 
2186 	DPRINTF("%s: %d\n", __func__, sc->sc_refcount);
2187 
2188 	sc->sc_refcount--;
2189 	KASSERT(sc->sc_refcount >= 0);
2190 	if (sc->sc_refcount > 0)
2191 		return;
2192 
2193 	dbri_set_power(sc, 0);
2194 	sc->sc_playing = 0;
2195 	sc->sc_recording = 0;
2196 }
2197 
2198 static bool
2199 dbri_suspend(device_t self, const pmf_qual_t *qual)
2200 {
2201 	struct dbri_softc *sc = device_private(self);
2202 
2203 	dbri_set_power(sc, 0);
2204 	return true;
2205 }
2206 
2207 static bool
2208 dbri_resume(device_t self, const pmf_qual_t *qual)
2209 {
2210 	struct dbri_softc *sc = device_private(self);
2211 
2212 	if (sc->sc_powerstate != 0)
2213 		return true;
2214 	aprint_verbose("resume: %d\n", sc->sc_refcount);
2215 	if (sc->sc_playing) {
2216 		volatile uint32_t *cmd;
2217 
2218 		dbri_bring_up(sc);
2219 		mutex_spin_enter(&sc->sc_intr_lock);
2220 		cmd = dbri_command_lock(sc);
2221 		*(cmd++) = DBRI_CMD(DBRI_COMMAND_SDP,
2222 		    0, sc->sc_pipe[4].sdp |
2223 		    DBRI_SDP_VALID_POINTER |
2224 		    DBRI_SDP_EVERY | DBRI_SDP_CLEAR);
2225 		*(cmd++) = sc->sc_dmabase +
2226 		    dbri_dma_off(xmit, 0);
2227 		dbri_command_send(sc, cmd);
2228 		mutex_spin_exit(&sc->sc_intr_lock);
2229 	}
2230 	return true;
2231 }
2232 
2233 #endif /* NAUDIO > 0 */
2234