1 /* $NetBSD: dbri.c,v 1.34 2011/11/23 23:07:36 jmcneill Exp $ */ 2 3 /* 4 * Copyright (C) 1997 Rudolf Koenig (rfkoenig@immd4.informatik.uni-erlangen.de) 5 * Copyright (c) 1998, 1999 Brent Baccala (baccala@freesoft.org) 6 * Copyright (c) 2001, 2002 Jared D. McNeill <jmcneill@netbsd.org> 7 * Copyright (c) 2005 Michael Lorenz <macallan@netbsd.org> 8 * All rights reserved. 9 * 10 * This driver is losely based on a Linux driver written by Rudolf Koenig and 11 * Brent Baccala who kindly gave their permission to use their code in a 12 * BSD-licensed driver. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR 24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 26 * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, 27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 28 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF 29 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 33 * 34 */ 35 36 #include <sys/cdefs.h> 37 __KERNEL_RCSID(0, "$NetBSD: dbri.c,v 1.34 2011/11/23 23:07:36 jmcneill Exp $"); 38 39 #include "audio.h" 40 #if NAUDIO > 0 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/errno.h> 45 #include <sys/device.h> 46 #include <sys/proc.h> 47 #include <sys/kernel.h> 48 #include <sys/bus.h> 49 #include <sys/intr.h> 50 #include <sys/kmem.h> 51 52 #include <dev/sbus/sbusvar.h> 53 #include <sparc/sparc/auxreg.h> 54 #include <machine/autoconf.h> 55 56 #include <sys/audioio.h> 57 #include <dev/audio_if.h> 58 #include <dev/auconv.h> 59 60 #include <dev/ic/cs4215reg.h> 61 #include <dev/ic/cs4215var.h> 62 #include <dev/sbus/dbrireg.h> 63 #include <dev/sbus/dbrivar.h> 64 65 #include "opt_sbus_dbri.h" 66 67 #define DBRI_ROM_NAME_PREFIX "SUNW,DBRI" 68 69 #ifdef DBRI_DEBUG 70 # define DPRINTF aprint_normal 71 #else 72 # define DPRINTF while (0) printf 73 #endif 74 75 static const char *dbri_supported[] = { 76 "e", 77 "s3", 78 "" 79 }; 80 81 enum ms { 82 CHImaster, 83 CHIslave 84 }; 85 86 enum io { 87 PIPEinput, 88 PIPEoutput 89 }; 90 91 /* 92 * Function prototypes 93 */ 94 95 /* softc stuff */ 96 static void dbri_attach_sbus(device_t, device_t, void *); 97 static int dbri_match_sbus(device_t, cfdata_t, void *); 98 99 static int dbri_config_interrupts(device_t); 100 101 /* interrupt handler */ 102 static int dbri_intr(void *); 103 static void dbri_softint(void *); 104 105 /* supporting subroutines */ 106 static int dbri_init(struct dbri_softc *); 107 static int dbri_reset(struct dbri_softc *); 108 static volatile uint32_t *dbri_command_lock(struct dbri_softc *); 109 static void dbri_command_send(struct dbri_softc *, volatile uint32_t *); 110 static void dbri_process_interrupt_buffer(struct dbri_softc *); 111 static void dbri_process_interrupt(struct dbri_softc *, int32_t); 112 113 /* mmcodec subroutines */ 114 static int mmcodec_init(struct dbri_softc *); 115 static void mmcodec_init_data(struct dbri_softc *); 116 static void mmcodec_pipe_init(struct dbri_softc *); 117 static void mmcodec_default(struct dbri_softc *); 118 static void mmcodec_setgain(struct dbri_softc *, int); 119 static int mmcodec_setcontrol(struct dbri_softc *); 120 121 /* chi subroutines */ 122 static void chi_reset(struct dbri_softc *, enum ms, int); 123 124 /* pipe subroutines */ 125 static void pipe_setup(struct dbri_softc *, int, int); 126 static void pipe_reset(struct dbri_softc *, int); 127 static void pipe_receive_fixed(struct dbri_softc *, int, 128 volatile uint32_t *); 129 static void pipe_transmit_fixed(struct dbri_softc *, int, uint32_t); 130 131 static void pipe_ts_link(struct dbri_softc *, int, enum io, int, int, int); 132 static int pipe_active(struct dbri_softc *, int); 133 134 /* audio(9) stuff */ 135 static int dbri_query_encoding(void *, struct audio_encoding *); 136 static int dbri_set_params(void *, int, int, struct audio_params *, 137 struct audio_params *,stream_filter_list_t *, stream_filter_list_t *); 138 static int dbri_round_blocksize(void *, int, int, const audio_params_t *); 139 static int dbri_halt_output(void *); 140 static int dbri_halt_input(void *); 141 static int dbri_getdev(void *, struct audio_device *); 142 static int dbri_set_port(void *, mixer_ctrl_t *); 143 static int dbri_get_port(void *, mixer_ctrl_t *); 144 static int dbri_query_devinfo(void *, mixer_devinfo_t *); 145 static size_t dbri_round_buffersize(void *, int, size_t); 146 static int dbri_get_props(void *); 147 static int dbri_open(void *, int); 148 static void dbri_close(void *); 149 150 static void setup_ring_xmit(struct dbri_softc *, int, int, int, int, 151 void (*)(void *), void *); 152 static void setup_ring_recv(struct dbri_softc *, int, int, int, int, 153 void (*)(void *), void *); 154 155 static int dbri_trigger_output(void *, void *, void *, int, 156 void (*)(void *), void *, const struct audio_params *); 157 static int dbri_trigger_input(void *, void *, void *, int, 158 void (*)(void *), void *, const struct audio_params *); 159 static void dbri_get_locks(void *, kmutex_t **, kmutex_t **); 160 161 static void *dbri_malloc(void *, int, size_t); 162 static void dbri_free(void *, void *, size_t); 163 static paddr_t dbri_mappage(void *, void *, off_t, int); 164 static void dbri_set_power(struct dbri_softc *, int); 165 static void dbri_bring_up(struct dbri_softc *); 166 static bool dbri_suspend(device_t, const pmf_qual_t *); 167 static bool dbri_resume(device_t, const pmf_qual_t *); 168 169 /* stupid support routines */ 170 static uint32_t reverse_bytes(uint32_t, int); 171 172 struct audio_device dbri_device = { 173 "CS4215", 174 "", 175 "dbri" 176 }; 177 178 struct audio_hw_if dbri_hw_if = { 179 .open = dbri_open, 180 .close = dbri_close, 181 .query_encoding = dbri_query_encoding, 182 .set_params = dbri_set_params, 183 .round_blocksize = dbri_round_blocksize, 184 .halt_output = dbri_halt_output, 185 .halt_input = dbri_halt_input, 186 .getdev = dbri_getdev, 187 .set_port = dbri_set_port, 188 .get_port = dbri_get_port, 189 .query_devinfo = dbri_query_devinfo, 190 .allocm = dbri_malloc, 191 .freem = dbri_free, 192 .round_buffersize = dbri_round_buffersize, 193 .mappage = dbri_mappage, 194 .get_props = dbri_get_props, 195 .trigger_output = dbri_trigger_output, 196 .trigger_input = dbri_trigger_input, 197 .get_locks = dbri_get_locks, 198 }; 199 200 CFATTACH_DECL_NEW(dbri, sizeof(struct dbri_softc), 201 dbri_match_sbus, dbri_attach_sbus, NULL, NULL); 202 203 #define DBRI_NFORMATS 4 204 static const struct audio_format dbri_formats[DBRI_NFORMATS] = { 205 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_BE, 16, 16, 206 2, AUFMT_STEREO, 8, {8000, 9600, 11025, 16000, 22050, 32000, 44100, 207 48000}}, 208 /* {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULAW, 8, 8, 209 2, AUFMT_STEREO, 8, {8000, 9600, 11025, 16000, 22050, 32000, 44100, 210 48000}}, 211 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ALAW, 8, 8, 212 2, AUFMT_STEREO, 8, {8000, 9600, 11025, 16000, 22050, 32000, 44100, 213 48000}}, 214 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR, 8, 8, 215 2, AUFMT_STEREO, 8, {8000, 9600, 11025, 16000, 22050, 32000, 44100, 216 48000}},*/ 217 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULAW, 8, 8, 218 1, AUFMT_MONAURAL, 8, {8000, 9600, 11025, 16000, 22050, 32000, 44100, 219 48000}}, 220 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ALAW, 8, 8, 221 1, AUFMT_MONAURAL, 8, {8000, 9600, 11025, 16000, 22050, 32000, 44100, 222 48000}}, 223 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR, 8, 8, 224 1, AUFMT_MONAURAL, 8, {8000, 9600, 11025, 16000, 22050, 32000, 44100, 225 48000}}, 226 }; 227 228 enum { 229 DBRI_OUTPUT_CLASS, 230 DBRI_VOL_OUTPUT, 231 DBRI_ENABLE_MONO, 232 DBRI_ENABLE_HEADPHONE, 233 DBRI_ENABLE_LINE, 234 DBRI_MONITOR_CLASS, 235 DBRI_VOL_MONITOR, 236 DBRI_INPUT_CLASS, 237 DBRI_INPUT_GAIN, 238 DBRI_INPUT_SELECT, 239 DBRI_RECORD_CLASS, 240 DBRI_ENUM_LAST 241 }; 242 243 /* 244 * Autoconfig routines 245 */ 246 static int 247 dbri_match_sbus(device_t parent, cfdata_t match, void *aux) 248 { 249 struct sbus_attach_args *sa = aux; 250 char *ver; 251 int i; 252 253 if (strncmp(DBRI_ROM_NAME_PREFIX, sa->sa_name, 9)) 254 return (0); 255 256 ver = &sa->sa_name[9]; 257 258 for (i = 0; dbri_supported[i][0] != '\0'; i++) 259 if (strcmp(dbri_supported[i], ver) == 0) 260 return (1); 261 262 return (0); 263 } 264 265 static void 266 dbri_attach_sbus(device_t parent, device_t self, void *aux) 267 { 268 struct dbri_softc *sc = device_private(self); 269 struct sbus_attach_args *sa = aux; 270 bus_space_handle_t ioh; 271 bus_size_t size; 272 int error, rseg, pwr, i; 273 char *ver = &sa->sa_name[9]; 274 275 sc->sc_dev = self; 276 sc->sc_iot = sa->sa_bustag; 277 sc->sc_dmat = sa->sa_dmatag; 278 sc->sc_powerstate = 1; 279 280 pwr = prom_getpropint(sa->sa_node,"pwr-on-auxio",0); 281 aprint_normal(": rev %s\n", ver); 282 283 if (pwr) { 284 /* 285 * we can control DBRI power via auxio and we're initially 286 * powered down 287 */ 288 289 sc->sc_have_powerctl = 1; 290 sc->sc_powerstate = 0; 291 dbri_set_power(sc, 1); 292 if (!pmf_device_register(self, dbri_suspend, dbri_resume)) { 293 aprint_error_dev(self, 294 "cannot set power mgmt handler\n"); 295 } 296 } else { 297 /* we can't control power so we're always up */ 298 sc->sc_have_powerctl = 0; 299 sc->sc_powerstate = 1; 300 } 301 302 for (i = 0; i < DBRI_NUM_DESCRIPTORS; i++) { 303 sc->sc_desc[i].softint = softint_establish(SOFTINT_SERIAL, 304 dbri_softint, &sc->sc_desc[i]); 305 } 306 307 if (sa->sa_npromvaddrs) 308 ioh = (bus_space_handle_t)sa->sa_promvaddrs[0]; 309 else { 310 if (sbus_bus_map(sa->sa_bustag, sa->sa_slot, 311 sa->sa_offset, sa->sa_size, 312 BUS_SPACE_MAP_LINEAR, /*0,*/ &ioh) != 0) { 313 aprint_error("%s @ sbus: cannot map registers\n", 314 device_xname(self)); 315 return; 316 } 317 } 318 319 sc->sc_ioh = ioh; 320 321 size = sizeof(struct dbri_dma); 322 323 /* get a DMA handle */ 324 if ((error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0, 325 BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) { 326 aprint_error_dev(self, "DMA map create error %d\n", 327 error); 328 return; 329 } 330 331 /* allocate DMA buffer */ 332 if ((error = bus_dmamem_alloc(sc->sc_dmat, size, 0, 0, &sc->sc_dmaseg, 333 1, &rseg, BUS_DMA_NOWAIT)) != 0) { 334 aprint_error_dev(self, "DMA buffer alloc error %d\n", 335 error); 336 return; 337 } 338 339 /* map DMA buffer into CPU addressable space */ 340 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dmaseg, rseg, size, 341 &sc->sc_membase, 342 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) { 343 aprint_error_dev(self, "DMA buffer map error %d\n", 344 error); 345 return; 346 } 347 348 /* load the buffer */ 349 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap, 350 sc->sc_membase, size, NULL, 351 BUS_DMA_NOWAIT)) != 0) { 352 aprint_error_dev(self, "DMA buffer map load error %d\n", 353 error); 354 bus_dmamem_unmap(sc->sc_dmat, sc->sc_membase, size); 355 bus_dmamem_free(sc->sc_dmat, &sc->sc_dmaseg, rseg); 356 return; 357 } 358 359 /* map the registers into memory */ 360 361 /* kernel virtual address of DMA buffer */ 362 sc->sc_dma = (struct dbri_dma *)sc->sc_membase; 363 /* physical address of DMA buffer */ 364 sc->sc_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr; 365 sc->sc_bufsiz = size; 366 367 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NONE); 368 mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_SCHED); 369 370 bus_intr_establish(sa->sa_bustag, sa->sa_pri, IPL_SCHED, dbri_intr, 371 sc); 372 373 sc->sc_locked = 0; 374 sc->sc_desc_used = 0; 375 sc->sc_refcount = 0; 376 sc->sc_playing = 0; 377 sc->sc_recording = 0; 378 sc->sc_init_done = 0; 379 config_finalize_register(self, &dbri_config_interrupts); 380 381 return; 382 } 383 384 /* 385 * lowlevel routine to switch power for the DBRI chip 386 */ 387 static void 388 dbri_set_power(struct dbri_softc *sc, int state) 389 { 390 int s; 391 392 if (sc->sc_have_powerctl == 0) 393 return; 394 if (sc->sc_powerstate == state) 395 return; 396 397 if (state) { 398 DPRINTF("%s: waiting to power up... ", 399 device_xname(sc->sc_dev)); 400 s = splhigh(); 401 *AUXIO4M_REG |= (AUXIO4M_MMX); 402 splx(s); 403 delay(10000); 404 DPRINTF("done (%02x)\n", *AUXIO4M_REG); 405 } else { 406 DPRINTF("%s: powering down\n", device_xname(sc->sc_dev)); 407 s = splhigh(); 408 *AUXIO4M_REG &= ~AUXIO4M_MMX; 409 splx(s); 410 DPRINTF("done (%02x})\n", *AUXIO4M_REG); 411 } 412 sc->sc_powerstate = state; 413 } 414 415 /* 416 * power up and re-initialize the chip 417 */ 418 static void 419 dbri_bring_up(struct dbri_softc *sc) 420 { 421 422 if (sc->sc_have_powerctl == 0) 423 return; 424 425 if (sc->sc_powerstate == 1) 426 return; 427 428 /* ok, we really need to do something */ 429 dbri_set_power(sc, 1); 430 431 /* 432 * re-initialize the chip but skip all the probing, don't overwrite 433 * any other settings either 434 */ 435 dbri_init(sc); 436 mmcodec_setgain(sc, 1); 437 mmcodec_pipe_init(sc); 438 mmcodec_init_data(sc); 439 mmcodec_setgain(sc, 0); 440 } 441 442 static int 443 dbri_config_interrupts(device_t dev) 444 { 445 struct dbri_softc *sc = device_private(dev); 446 447 if (sc->sc_init_done != 0) 448 return 0; 449 450 sc->sc_init_done = 1; 451 452 dbri_init(sc); 453 if (mmcodec_init(sc) == -1) { 454 printf("%s: no codec detected, aborting\n", 455 device_xname(dev)); 456 return 0; 457 } 458 459 /* Attach ourselves to the high level audio interface */ 460 audio_attach_mi(&dbri_hw_if, sc, sc->sc_dev); 461 462 /* power down until open() */ 463 dbri_set_power(sc, 0); 464 return 0; 465 } 466 467 static int 468 dbri_intr(void *hdl) 469 { 470 struct dbri_softc *sc = hdl; 471 bus_space_tag_t iot = sc->sc_iot; 472 bus_space_handle_t ioh = sc->sc_ioh; 473 int x; 474 475 mutex_spin_enter(&sc->sc_intr_lock); 476 477 /* clear interrupt */ 478 x = bus_space_read_4(iot, ioh, DBRI_REG1); 479 if (x & (DBRI_MRR | DBRI_MLE | DBRI_LBG | DBRI_MBE)) { 480 uint32_t tmp; 481 482 if (x & DBRI_MRR) 483 aprint_debug_dev(sc->sc_dev, 484 "multiple ack error on sbus\n"); 485 if (x & DBRI_MLE) 486 aprint_debug_dev(sc->sc_dev, 487 "multiple late error on sbus\n"); 488 if (x & DBRI_LBG) 489 aprint_debug_dev(sc->sc_dev, 490 "lost bus grant on sbus\n"); 491 if (x & DBRI_MBE) 492 aprint_debug_dev(sc->sc_dev, "burst error on sbus\n"); 493 494 /* 495 * Some of these errors disable the chip's circuitry. 496 * Re-enable the circuitry and keep on going. 497 */ 498 499 tmp = bus_space_read_4(iot, ioh, DBRI_REG0); 500 tmp &= ~(DBRI_DISABLE_MASTER); 501 bus_space_write_4(iot, ioh, DBRI_REG0, tmp); 502 } 503 504 #if 0 505 if (!x & 1) /* XXX: DBRI_INTR_REQ */ 506 return (1); 507 #endif 508 509 dbri_process_interrupt_buffer(sc); 510 511 mutex_spin_exit(&sc->sc_intr_lock); 512 513 return (1); 514 } 515 516 static void 517 dbri_softint(void *cookie) 518 { 519 struct dbri_desc *dd = cookie; 520 521 if (dd->callback != NULL) 522 dd->callback(dd->callback_args); 523 } 524 525 static int 526 dbri_init(struct dbri_softc *sc) 527 { 528 bus_space_tag_t iot = sc->sc_iot; 529 bus_space_handle_t ioh = sc->sc_ioh; 530 uint32_t reg; 531 volatile uint32_t *cmd; 532 bus_addr_t dmaaddr; 533 int n; 534 535 dbri_reset(sc); 536 537 cmd = dbri_command_lock(sc); 538 539 /* XXX: Initialize interrupt ring buffer */ 540 sc->sc_dma->intr[0] = (uint32_t)sc->sc_dmabase + dbri_dma_off(intr, 0); 541 sc->sc_irqp = 1; 542 543 /* Initialize pipes */ 544 for (n = 0; n < DBRI_PIPE_MAX; n++) 545 sc->sc_pipe[n].desc = sc->sc_pipe[n].next = -1; 546 547 for (n = 1; n < DBRI_INT_BLOCKS; n++) { 548 sc->sc_dma->intr[n] = 0; 549 } 550 551 /* Disable all SBus bursts */ 552 /* XXX 16 byte bursts cause errors, the rest works */ 553 reg = bus_space_read_4(iot, ioh, DBRI_REG0); 554 555 /*reg &= ~(DBRI_BURST_4 | DBRI_BURST_8 | DBRI_BURST_16);*/ 556 reg |= (DBRI_BURST_4 | DBRI_BURST_8); 557 bus_space_write_4(iot, ioh, DBRI_REG0, reg); 558 559 /* setup interrupt queue */ 560 dmaaddr = (uint32_t)sc->sc_dmabase + dbri_dma_off(intr, 0); 561 *(cmd++) = DBRI_CMD(DBRI_COMMAND_IIQ, 0, 0); 562 *(cmd++) = dmaaddr; 563 564 dbri_command_send(sc, cmd); 565 return (0); 566 } 567 568 static int 569 dbri_reset(struct dbri_softc *sc) 570 { 571 int bail = 0; 572 573 bus_space_tag_t iot = sc->sc_iot; 574 bus_space_handle_t ioh = sc->sc_ioh; 575 576 bus_space_write_4(iot, ioh, DBRI_REG0, DBRI_SOFT_RESET); 577 while ((bus_space_read_4(iot, ioh, DBRI_REG0) & DBRI_SOFT_RESET) && 578 (bail < 100000)) { 579 bail++; 580 delay(10); 581 } 582 if (bail == 100000) 583 aprint_error_dev(sc->sc_dev, "reset timed out\n"); 584 return (0); 585 } 586 587 static volatile uint32_t * 588 dbri_command_lock(struct dbri_softc *sc) 589 { 590 591 if (sc->sc_locked) 592 aprint_debug_dev(sc->sc_dev, "command buffer locked\n"); 593 594 sc->sc_locked++; 595 596 return (&sc->sc_dma->command[0]); 597 } 598 599 static void 600 dbri_command_send(struct dbri_softc *sc, volatile uint32_t *cmd) 601 { 602 bus_space_handle_t ioh = sc->sc_ioh; 603 bus_space_tag_t iot = sc->sc_iot; 604 int maxloops = 1000000; 605 606 mutex_spin_enter(&sc->sc_intr_lock); 607 608 sc->sc_locked--; 609 610 if (sc->sc_locked != 0) { 611 aprint_error_dev(sc->sc_dev, 612 "command buffer improperly locked\n"); 613 } else if ((cmd - &sc->sc_dma->command[0]) >= DBRI_NUM_COMMANDS - 1) { 614 aprint_error_dev(sc->sc_dev, "command buffer overflow\n"); 615 } else { 616 *(cmd++) = DBRI_CMD(DBRI_COMMAND_PAUSE, 0, 0); 617 *(cmd++) = DBRI_CMD(DBRI_COMMAND_WAIT, 1, 0); 618 sc->sc_waitseen = 0; 619 bus_space_write_4(iot, ioh, DBRI_REG8, sc->sc_dmabase); 620 while ((--maxloops) > 0 && 621 (bus_space_read_4(iot, ioh, DBRI_REG0) 622 & DBRI_COMMAND_VALID)) { 623 bus_space_barrier(iot, ioh, DBRI_REG0, 4, 624 BUS_SPACE_BARRIER_READ); 625 delay(1000); 626 } 627 628 if (maxloops == 0) { 629 aprint_error_dev(sc->sc_dev, 630 "chip never completed command buffer\n"); 631 } else { 632 633 DPRINTF("%s: command completed\n", 634 device_xname(sc->sc_dev)); 635 636 while ((--maxloops) > 0 && (!sc->sc_waitseen)) 637 dbri_process_interrupt_buffer(sc); 638 if (maxloops == 0) { 639 aprint_error_dev(sc->sc_dev, "chip never acked WAIT\n"); 640 } 641 } 642 } 643 644 mutex_spin_exit(&sc->sc_intr_lock); 645 646 return; 647 } 648 649 static void 650 dbri_process_interrupt_buffer(struct dbri_softc *sc) 651 { 652 int32_t i; 653 654 while ((i = sc->sc_dma->intr[sc->sc_irqp]) != 0) { 655 sc->sc_dma->intr[sc->sc_irqp] = 0; 656 sc->sc_irqp++; 657 658 if (sc->sc_irqp == DBRI_INT_BLOCKS) 659 sc->sc_irqp = 1; 660 else if ((sc->sc_irqp & (DBRI_INT_BLOCKS - 1)) == 0) 661 sc->sc_irqp++; 662 663 dbri_process_interrupt(sc, i); 664 } 665 666 return; 667 } 668 669 static void 670 dbri_process_interrupt(struct dbri_softc *sc, int32_t i) 671 { 672 #if 0 673 const int liu_states[] = { 1, 0, 8, 3, 4, 5, 6, 7 }; 674 #endif 675 int val = DBRI_INTR_GETVAL(i); 676 int channel = DBRI_INTR_GETCHAN(i); 677 int command = DBRI_INTR_GETCMD(i); 678 int code = DBRI_INTR_GETCODE(i); 679 #if 0 680 int rval = DBRI_INTR_GETRVAL(i); 681 #endif 682 if (channel == DBRI_INTR_CMD && command == DBRI_COMMAND_WAIT) 683 sc->sc_waitseen++; 684 685 switch (code) { 686 case DBRI_INTR_XCMP: /* transmission complete */ 687 { 688 int td; 689 struct dbri_desc *dd; 690 691 td = sc->sc_pipe[channel].desc; 692 dd = &sc->sc_desc[td]; 693 694 if (dd->callback != NULL) 695 softint_schedule(dd->softint); 696 break; 697 } 698 case DBRI_INTR_FXDT: /* fixed data change */ 699 DPRINTF("dbri_intr: Fixed data change (%d: %x)\n", channel, 700 val); 701 #if 0 702 printf("reg: %08x\n", sc->sc_mm.status); 703 #endif 704 if (sc->sc_pipe[channel].sdp & DBRI_SDP_MSB) 705 val = reverse_bytes(val, sc->sc_pipe[channel].length); 706 if (sc->sc_pipe[channel].prec) 707 *(sc->sc_pipe[channel].prec) = val; 708 #ifndef DBRI_SPIN 709 DPRINTF("%s: wakeup %p\n", device_xname(sc->sc_dev), sc); 710 wakeup(sc); 711 #endif 712 break; 713 case DBRI_INTR_SBRI: 714 DPRINTF("dbri_intr: SBRI\n"); 715 break; 716 case DBRI_INTR_BRDY: 717 { 718 int td; 719 struct dbri_desc *dd; 720 721 td = sc->sc_pipe[channel].desc; 722 dd = &sc->sc_desc[td]; 723 724 if (dd->callback != NULL) 725 softint_schedule(dd->softint); 726 break; 727 } 728 case DBRI_INTR_UNDR: 729 { 730 volatile uint32_t *cmd; 731 int td = sc->sc_pipe[channel].desc; 732 733 DPRINTF("%s: DBRI_INTR_UNDR\n", device_xname(sc->sc_dev)); 734 735 sc->sc_dma->xmit[td].status = 0; 736 737 cmd = dbri_command_lock(sc); 738 *(cmd++) = DBRI_CMD(DBRI_COMMAND_SDP, 0, 739 sc->sc_pipe[channel].sdp | 740 DBRI_SDP_VALID_POINTER | 741 DBRI_SDP_CLEAR | 742 DBRI_SDP_2SAME); 743 *(cmd++) = sc->sc_dmabase + dbri_dma_off(xmit, td); 744 dbri_command_send(sc, cmd); 745 break; 746 } 747 case DBRI_INTR_CMDI: 748 DPRINTF("ok"); 749 break; 750 default: 751 752 aprint_error_dev(sc->sc_dev, "unknown interrupt code %d\n", 753 code); 754 break; 755 } 756 757 return; 758 } 759 760 /* 761 * mmcodec stuff 762 */ 763 764 static int 765 mmcodec_init(struct dbri_softc *sc) 766 { 767 bus_space_handle_t ioh = sc->sc_ioh; 768 bus_space_tag_t iot = sc->sc_iot; 769 uint32_t reg2; 770 int bail; 771 772 reg2 = bus_space_read_4(iot, ioh, DBRI_REG2); 773 DPRINTF("mmcodec_init: PIO reads %x\n", reg2); 774 775 if (reg2 & DBRI_PIO2) { 776 aprint_normal_dev(sc->sc_dev, " onboard CS4215 detected\n"); 777 sc->sc_mm.onboard = 1; 778 } 779 780 if (reg2 & DBRI_PIO0) { 781 aprint_normal_dev(sc->sc_dev, "speakerbox detected\n"); 782 bus_space_write_4(iot, ioh, DBRI_REG2, DBRI_PIO2_ENABLE); 783 sc->sc_mm.onboard = 0; 784 } 785 786 if ((reg2 & DBRI_PIO2) && (reg2 & DBRI_PIO0)) { 787 aprint_normal_dev(sc->sc_dev, "using speakerbox\n"); 788 bus_space_write_4(iot, ioh, DBRI_REG2, DBRI_PIO2_ENABLE); 789 sc->sc_mm.onboard = 0; 790 } 791 792 if (!(reg2 & (DBRI_PIO0|DBRI_PIO2))) { 793 aprint_normal_dev(sc->sc_dev, "no mmcodec found\n"); 794 return -1; 795 } 796 797 sc->sc_version = 0xff; 798 799 mmcodec_pipe_init(sc); 800 mmcodec_default(sc); 801 802 sc->sc_mm.offset = sc->sc_mm.onboard ? 0 : 8; 803 804 /* 805 * mmcodec_setcontrol() sometimes fails right after powerup 806 * so we just try again until we either get a useful response or run 807 * out of time 808 */ 809 bail = 0; 810 while (mmcodec_setcontrol(sc) == -1 || sc->sc_version == 0xff) { 811 812 bail++; 813 if (bail > 100) { 814 DPRINTF("%s: cs4215 probe failed at offset %d\n", 815 device_xname(sc->sc_dev), sc->sc_mm.offset); 816 return (-1); 817 } 818 delay(10000); 819 } 820 821 aprint_normal_dev(sc->sc_dev, "cs4215 rev %c found at offset %d\n", 822 0x43 + (sc->sc_version & 0xf), sc->sc_mm.offset); 823 824 /* set some sane defaults for mmcodec_init_data */ 825 sc->sc_params.channels = 2; 826 sc->sc_params.precision = 16; 827 828 mmcodec_init_data(sc); 829 830 return (0); 831 } 832 833 static void 834 mmcodec_init_data(struct dbri_softc *sc) 835 { 836 bus_space_tag_t iot = sc->sc_iot; 837 bus_space_handle_t ioh = sc->sc_ioh; 838 uint32_t tmp; 839 int data_width; 840 841 tmp = bus_space_read_4(iot, ioh, DBRI_REG0); 842 tmp &= ~(DBRI_CHI_ACTIVATE); /* disable CHI */ 843 bus_space_write_4(iot, ioh, DBRI_REG0, tmp); 844 845 /* switch CS4215 to data mode - set PIO3 to 1 */ 846 tmp = DBRI_PIO_ENABLE_ALL | DBRI_PIO1 | DBRI_PIO3; 847 848 /* XXX */ 849 tmp |= (sc->sc_mm.onboard ? DBRI_PIO0 : DBRI_PIO2); 850 851 bus_space_write_4(iot, ioh, DBRI_REG2, tmp); 852 chi_reset(sc, CHIslave, 128); 853 854 data_width = sc->sc_params.channels * sc->sc_params.precision; 855 856 if ((data_width != 32) && (data_width != 8)) 857 aprint_error("%s: data_width is %d\n", __func__, data_width); 858 859 pipe_ts_link(sc, 20, PIPEoutput, 16, 32, sc->sc_mm.offset + 32); 860 pipe_ts_link(sc, 4, PIPEoutput, 16, data_width, sc->sc_mm.offset); 861 pipe_ts_link(sc, 6, PIPEinput, 16, data_width, sc->sc_mm.offset); 862 pipe_ts_link(sc, 21, PIPEinput, 16, 32, sc->sc_mm.offset + 32); 863 864 pipe_receive_fixed(sc, 21, &sc->sc_mm.status); 865 866 mmcodec_setgain(sc, 0); 867 868 tmp = bus_space_read_4(iot, ioh, DBRI_REG0); 869 tmp |= DBRI_CHI_ACTIVATE; 870 bus_space_write_4(iot, ioh, DBRI_REG0, tmp); 871 872 return; 873 } 874 875 static void 876 mmcodec_pipe_init(struct dbri_softc *sc) 877 { 878 879 pipe_setup(sc, 4, DBRI_SDP_MEM | DBRI_SDP_TO_SER | DBRI_SDP_MSB); 880 pipe_setup(sc, 20, DBRI_SDP_FIXED | DBRI_SDP_TO_SER | DBRI_SDP_MSB); 881 pipe_setup(sc, 6, DBRI_SDP_MEM | DBRI_SDP_FROM_SER | DBRI_SDP_MSB); 882 pipe_setup(sc, 21, DBRI_SDP_FIXED | DBRI_SDP_FROM_SER | DBRI_SDP_MSB); 883 884 pipe_setup(sc, 17, DBRI_SDP_FIXED | DBRI_SDP_TO_SER | DBRI_SDP_MSB); 885 pipe_setup(sc, 18, DBRI_SDP_FIXED | DBRI_SDP_FROM_SER | DBRI_SDP_MSB); 886 pipe_setup(sc, 19, DBRI_SDP_FIXED | DBRI_SDP_FROM_SER | DBRI_SDP_MSB); 887 888 sc->sc_mm.status = 0; 889 890 pipe_receive_fixed(sc, 18, &sc->sc_mm.status); 891 pipe_receive_fixed(sc, 19, &sc->sc_mm.version); 892 893 return; 894 } 895 896 static void 897 mmcodec_default(struct dbri_softc *sc) 898 { 899 struct cs4215_state *mm = &sc->sc_mm; 900 901 /* 902 * no action, memory resetting only 903 * 904 * data time slots 5-8 905 * speaker, line and headphone enable. set gain to half. 906 * input is line 907 */ 908 mm->d.bdata[0] = sc->sc_latt = 0x20 | CS4215_HE | CS4215_LE; 909 mm->d.bdata[1] = sc->sc_ratt = 0x20 | CS4215_SE; 910 sc->sc_linp = 128; 911 sc->sc_rinp = 128; 912 sc->sc_monitor = 0; 913 sc->sc_input = 1; /* line */ 914 mm->d.bdata[2] = (CS4215_LG((sc->sc_linp >> 4)) & 0x0f) | 915 ((sc->sc_input == 2) ? CS4215_IS : 0) | CS4215_PIO0 | CS4215_PIO1; 916 mm->d.bdata[3] = (CS4215_RG((sc->sc_rinp >> 4) & 0x0f)) | 917 CS4215_MA(15 - ((sc->sc_monitor >> 4) & 0x0f)); 918 919 920 /* 921 * control time slots 1-4 922 * 923 * 0: default I/O voltage scale 924 * 1: 8 bit ulaw, 8kHz, mono, high pass filter disabled 925 * 2: serial enable, CHI master, 128 bits per frame, clock 1 926 * 3: tests disabled 927 */ 928 mm->c.bcontrol[0] = CS4215_RSRVD_1 | CS4215_MLB; 929 mm->c.bcontrol[1] = CS4215_DFR_ULAW | CS4215_FREQ[0].csval; 930 mm->c.bcontrol[2] = CS4215_XCLK | CS4215_BSEL_128 | CS4215_FREQ[0].xtal; 931 mm->c.bcontrol[3] = 0; 932 933 return; 934 } 935 936 static void 937 mmcodec_setgain(struct dbri_softc *sc, int mute) 938 { 939 if (mute) { 940 /* disable all outputs, max. attenuation */ 941 sc->sc_mm.d.bdata[0] = sc->sc_latt | 63; 942 sc->sc_mm.d.bdata[1] = sc->sc_ratt | 63; 943 } else { 944 945 sc->sc_mm.d.bdata[0] = sc->sc_latt; 946 sc->sc_mm.d.bdata[1] = sc->sc_ratt; 947 } 948 949 /* input stuff */ 950 sc->sc_mm.d.bdata[2] = CS4215_LG((sc->sc_linp >> 4) & 0x0f) | 951 ((sc->sc_input == 2) ? CS4215_IS : 0) | CS4215_PIO0 | CS4215_PIO1; 952 sc->sc_mm.d.bdata[3] = (CS4215_RG((sc->sc_rinp >> 4)) & 0x0f) | 953 (CS4215_MA(15 - ((sc->sc_monitor >> 4) & 0x0f))); 954 955 if (sc->sc_powerstate == 0) 956 return; 957 pipe_transmit_fixed(sc, 20, sc->sc_mm.d.ldata); 958 959 DPRINTF("mmcodec_setgain: %08x\n", sc->sc_mm.d.ldata); 960 /* give the chip some time to execute the command */ 961 delay(250); 962 963 return; 964 } 965 966 static int 967 mmcodec_setcontrol(struct dbri_softc *sc) 968 { 969 bus_space_tag_t iot = sc->sc_iot; 970 bus_space_handle_t ioh = sc->sc_ioh; 971 uint32_t val; 972 uint32_t tmp; 973 int bail = 0; 974 #if DBRI_SPIN 975 int i; 976 #endif 977 978 /* 979 * Temporarily mute outputs and wait 125 us to make sure that it 980 * happens. This avoids clicking noises. 981 */ 982 mmcodec_setgain(sc, 1); 983 delay(125); 984 985 bus_space_write_4(iot, ioh, DBRI_REG2, 0); 986 delay(125); 987 988 /* enable control mode */ 989 val = DBRI_PIO_ENABLE_ALL | DBRI_PIO1; /* was PIO1 */ 990 991 /* XXX */ 992 val |= (sc->sc_mm.onboard ? DBRI_PIO0 : DBRI_PIO2); 993 994 bus_space_write_4(iot, ioh, DBRI_REG2, val); 995 996 delay(34); 997 998 /* 999 * in control mode, the cs4215 is the slave device, so the 1000 * DBRI must act as the CHI master. 1001 * 1002 * in data mode, the cs4215 must be the CHI master to insure 1003 * that the data stream is in sync with its codec 1004 */ 1005 tmp = bus_space_read_4(iot, ioh, DBRI_REG0); 1006 tmp &= ~DBRI_COMMAND_CHI; 1007 bus_space_write_4(iot, ioh, DBRI_REG0, tmp); 1008 1009 chi_reset(sc, CHImaster, 128); 1010 1011 /* control mode */ 1012 pipe_ts_link(sc, 17, PIPEoutput, 16, 32, sc->sc_mm.offset); 1013 pipe_ts_link(sc, 18, PIPEinput, 16, 8, sc->sc_mm.offset); 1014 pipe_ts_link(sc, 19, PIPEinput, 16, 8, sc->sc_mm.offset + 48); 1015 1016 /* wait for the chip to echo back CLB as zero */ 1017 sc->sc_mm.c.bcontrol[0] &= ~CS4215_CLB; 1018 pipe_transmit_fixed(sc, 17, sc->sc_mm.c.lcontrol); 1019 1020 tmp = bus_space_read_4(iot, ioh, DBRI_REG0); 1021 tmp |= DBRI_CHI_ACTIVATE; 1022 bus_space_write_4(iot, ioh, DBRI_REG0, tmp); 1023 1024 #if DBRI_SPIN 1025 i = 1024; 1026 while (((sc->sc_mm.status & 0xe4) != 0x20) && --i) { 1027 delay(125); 1028 } 1029 1030 if (i == 0) { 1031 DPRINTF("%s: cs4215 didn't respond to CLB (0x%02x)\n", 1032 device_xname(sc->sc_dev), sc->sc_mm.status); 1033 return (-1); 1034 } 1035 #else 1036 while (((sc->sc_mm.status & 0xe4) != 0x20) && (bail < 10)) { 1037 DPRINTF("%s: tsleep %p\n", device_xname(sc->sc_dev), sc); 1038 tsleep(sc, PCATCH | PZERO, "dbrifxdt", hz); 1039 bail++; 1040 } 1041 #endif 1042 if (bail >= 10) { 1043 DPRINTF("%s: switching to control mode timed out (%x %x)\n", 1044 device_xname(sc->sc_dev), sc->sc_mm.status, 1045 bus_space_read_4(iot, ioh, DBRI_REG2)); 1046 return -1; 1047 } 1048 1049 /* copy the version information before it becomes unreadable again */ 1050 sc->sc_version = sc->sc_mm.version; 1051 1052 /* terminate cs4215 control mode */ 1053 sc->sc_mm.c.bcontrol[0] |= CS4215_CLB; 1054 pipe_transmit_fixed(sc, 17, sc->sc_mm.c.lcontrol); 1055 1056 /* two frames of control info @ 8kHz frame rate = 250us delay */ 1057 delay(250); 1058 1059 mmcodec_setgain(sc, 0); 1060 1061 return (0); 1062 1063 } 1064 1065 /* 1066 * CHI combo 1067 */ 1068 static void 1069 chi_reset(struct dbri_softc *sc, enum ms ms, int bpf) 1070 { 1071 volatile uint32_t *cmd; 1072 int val; 1073 int clockrate, divisor; 1074 1075 cmd = dbri_command_lock(sc); 1076 1077 /* set CHI anchor: pipe 16 */ 1078 val = DBRI_DTS_VI | DBRI_DTS_INS | DBRI_DTS_PRVIN(16) | DBRI_PIPE(16); 1079 *(cmd++) = DBRI_CMD(DBRI_COMMAND_DTS, 0, val); 1080 *(cmd++) = DBRI_TS_ANCHOR | DBRI_TS_NEXT(16); 1081 *(cmd++) = 0; 1082 1083 val = DBRI_DTS_VO | DBRI_DTS_INS | DBRI_DTS_PRVOUT(16) | DBRI_PIPE(16); 1084 *(cmd++) = DBRI_CMD(DBRI_COMMAND_DTS, 0, val); 1085 *(cmd++) = 0; 1086 *(cmd++) = DBRI_TS_ANCHOR | DBRI_TS_NEXT(16); 1087 1088 sc->sc_pipe[16].sdp = 1; 1089 sc->sc_pipe[16].next = 16; 1090 sc->sc_chi_pipe_in = 16; 1091 sc->sc_chi_pipe_out = 16; 1092 1093 switch (ms) { 1094 case CHIslave: 1095 *(cmd++) = DBRI_CMD(DBRI_COMMAND_CHI, 0, DBRI_CHI_CHICM(0)); 1096 break; 1097 case CHImaster: 1098 clockrate = bpf * 8; 1099 divisor = 12288 / clockrate; 1100 1101 if (divisor > 255 || divisor * clockrate != 12288) 1102 aprint_error_dev(sc->sc_dev, 1103 "illegal bits-per-frame %d\n", bpf); 1104 1105 *(cmd++) = DBRI_CMD(DBRI_COMMAND_CHI, 0, 1106 DBRI_CHI_CHICM(divisor) | DBRI_CHI_FD | DBRI_CHI_BPF(bpf)); 1107 break; 1108 default: 1109 aprint_error_dev(sc->sc_dev, "unknown value for ms!\n"); 1110 break; 1111 } 1112 1113 sc->sc_chi_bpf = bpf; 1114 1115 /* CHI data mode */ 1116 *(cmd++) = DBRI_CMD(DBRI_COMMAND_PAUSE, 0, 0); 1117 *(cmd++) = DBRI_CMD(DBRI_COMMAND_CDM, 0, 1118 DBRI_CDM_XCE | DBRI_CDM_XEN | DBRI_CDM_REN); 1119 1120 dbri_command_send(sc, cmd); 1121 1122 return; 1123 } 1124 1125 /* 1126 * pipe stuff 1127 */ 1128 static void 1129 pipe_setup(struct dbri_softc *sc, int pipe, int sdp) 1130 { 1131 DPRINTF("pipe setup: %d\n", pipe); 1132 if (pipe < 0 || pipe >= DBRI_PIPE_MAX) { 1133 aprint_error_dev(sc->sc_dev, "illegal pipe number %d\n", 1134 pipe); 1135 return; 1136 } 1137 1138 if ((sdp & 0xf800) != sdp) 1139 aprint_error_dev(sc->sc_dev, "strange SDP value %d\n", 1140 sdp); 1141 1142 if (DBRI_SDP_MODE(sdp) == DBRI_SDP_FIXED && 1143 !(sdp & DBRI_SDP_TO_SER)) 1144 sdp |= DBRI_SDP_CHANGE; 1145 1146 sdp |= DBRI_PIPE(pipe); 1147 1148 sc->sc_pipe[pipe].sdp = sdp; 1149 sc->sc_pipe[pipe].desc = -1; 1150 1151 pipe_reset(sc, pipe); 1152 1153 return; 1154 } 1155 1156 static void 1157 pipe_reset(struct dbri_softc *sc, int pipe) 1158 { 1159 struct dbri_desc *dd; 1160 int sdp; 1161 int desc; 1162 volatile uint32_t *cmd; 1163 1164 if (pipe < 0 || pipe >= DBRI_PIPE_MAX) { 1165 aprint_error_dev(sc->sc_dev, "illegal pipe number %d\n", 1166 pipe); 1167 return; 1168 } 1169 1170 sdp = sc->sc_pipe[pipe].sdp; 1171 if (sdp == 0) { 1172 aprint_error_dev(sc->sc_dev, "can not reset uninitialized pipe %d\n", 1173 pipe); 1174 return; 1175 } 1176 1177 cmd = dbri_command_lock(sc); 1178 *(cmd++) = DBRI_CMD(DBRI_COMMAND_SDP, 0, 1179 sdp | DBRI_SDP_CLEAR | DBRI_SDP_VALID_POINTER); 1180 *(cmd++) = 0; 1181 dbri_command_send(sc, cmd); 1182 1183 desc = sc->sc_pipe[pipe].desc; 1184 1185 dd = &sc->sc_desc[desc]; 1186 1187 dd->busy = 0; 1188 1189 #if 0 1190 if (dd->callback) 1191 softint_schedule(dd->softint); 1192 #endif 1193 1194 sc->sc_pipe[pipe].desc = -1; 1195 1196 return; 1197 } 1198 1199 static void 1200 pipe_receive_fixed(struct dbri_softc *sc, int pipe, volatile uint32_t *prec) 1201 { 1202 1203 if (pipe < DBRI_PIPE_MAX / 2 || pipe >= DBRI_PIPE_MAX) { 1204 aprint_error_dev(sc->sc_dev, "illegal pipe number %d\n", 1205 pipe); 1206 return; 1207 } 1208 1209 if (DBRI_SDP_MODE(sc->sc_pipe[pipe].sdp) != DBRI_SDP_FIXED) { 1210 aprint_error_dev(sc->sc_dev, "non-fixed pipe %d\n", 1211 pipe); 1212 return; 1213 } 1214 1215 if (sc->sc_pipe[pipe].sdp & DBRI_SDP_TO_SER) { 1216 aprint_error_dev(sc->sc_dev, "can not receive on transmit pipe %d\b", 1217 pipe); 1218 return; 1219 } 1220 1221 sc->sc_pipe[pipe].prec = prec; 1222 1223 return; 1224 } 1225 1226 static void 1227 pipe_transmit_fixed(struct dbri_softc *sc, int pipe, uint32_t data) 1228 { 1229 volatile uint32_t *cmd; 1230 1231 if (pipe < DBRI_PIPE_MAX / 2 || pipe >= DBRI_PIPE_MAX) { 1232 aprint_error_dev(sc->sc_dev, "illegal pipe number %d\n", 1233 pipe); 1234 return; 1235 } 1236 1237 if (DBRI_SDP_MODE(sc->sc_pipe[pipe].sdp) == 0) { 1238 aprint_error_dev(sc->sc_dev, "uninitialized pipe %d\n", 1239 pipe); 1240 return; 1241 } 1242 1243 if (DBRI_SDP_MODE(sc->sc_pipe[pipe].sdp) != DBRI_SDP_FIXED) { 1244 aprint_error_dev(sc->sc_dev, "non-fixed pipe %d\n", 1245 pipe); 1246 return; 1247 } 1248 1249 if (!(sc->sc_pipe[pipe].sdp & DBRI_SDP_TO_SER)) { 1250 aprint_error_dev(sc->sc_dev, "called on receive pipe %d\n", 1251 pipe); 1252 return; 1253 } 1254 1255 if (sc->sc_pipe[pipe].sdp & DBRI_SDP_MSB) 1256 data = reverse_bytes(data, sc->sc_pipe[pipe].length); 1257 1258 cmd = dbri_command_lock(sc); 1259 *(cmd++) = DBRI_CMD(DBRI_COMMAND_SSP, 0, pipe); 1260 *(cmd++) = data; 1261 1262 dbri_command_send(sc, cmd); 1263 1264 return; 1265 } 1266 1267 static void 1268 setup_ring_xmit(struct dbri_softc *sc, int pipe, int which, int num, int blksz, 1269 void (*callback)(void *), void *callback_args) 1270 { 1271 volatile uint32_t *cmd; 1272 int i; 1273 int td; 1274 int td_first, td_last; 1275 bus_addr_t dmabuf, dmabase; 1276 struct dbri_desc *dd = &sc->sc_desc[which]; 1277 1278 switch (pipe) { 1279 case 4: 1280 /* output, offset 0 */ 1281 break; 1282 default: 1283 aprint_error("%s: illegal pipe number (%d)\n", 1284 __func__, pipe); 1285 return; 1286 } 1287 1288 td = 0; 1289 td_first = td_last = -1; 1290 1291 if (sc->sc_pipe[pipe].sdp == 0) { 1292 aprint_error_dev(sc->sc_dev, "uninitialized pipe %d\n", 1293 pipe); 1294 return; 1295 } 1296 1297 dmabuf = dd->dmabase; 1298 dmabase = sc->sc_dmabase; 1299 td = 0; 1300 1301 for (i = 0; i < (num - 1); i++) { 1302 1303 sc->sc_dma->xmit[i].flags = TX_BCNT(blksz) 1304 | TX_EOF | TX_BINT; 1305 sc->sc_dma->xmit[i].ba = dmabuf; 1306 sc->sc_dma->xmit[i].nda = dmabase + dbri_dma_off(xmit, i + 1); 1307 sc->sc_dma->xmit[i].status = 0; 1308 1309 td_last = td; 1310 dmabuf += blksz; 1311 } 1312 1313 sc->sc_dma->xmit[i].flags = TX_BCNT(blksz) | TX_EOF | TX_BINT; 1314 1315 sc->sc_dma->xmit[i].ba = dmabuf; 1316 sc->sc_dma->xmit[i].nda = dmabase + dbri_dma_off(xmit, 0); 1317 sc->sc_dma->xmit[i].status = 0; 1318 1319 dd->callback = callback; 1320 dd->callback_args = callback_args; 1321 1322 mutex_spin_enter(&sc->sc_intr_lock); 1323 1324 /* the pipe shouldn't be active */ 1325 if (pipe_active(sc, pipe)) { 1326 aprint_error("pipe active (CDP)\n"); 1327 /* pipe is already active */ 1328 #if 0 1329 td_last = sc->sc_pipe[pipe].desc; 1330 while (sc->sc_desc[td_last].next != -1) 1331 td_last = sc->sc_desc[td_last].next; 1332 1333 sc->sc_desc[td_last].next = td_first; 1334 sc->sc_dma->desc[td_last].nda = 1335 sc->sc_dmabase + dbri_dma_off(desc, td_first); 1336 1337 cmd = dbri_command_lock(sc); 1338 *(cmd++) = DBRI_CMD(DBRI_COMMAND_CDP, 0, pipe); 1339 dbri_command_send(sc, cmd); 1340 #endif 1341 } else { 1342 /* 1343 * pipe isn't active - issue an SDP command to start our 1344 * chain of TDs running 1345 */ 1346 sc->sc_pipe[pipe].desc = which; 1347 cmd = dbri_command_lock(sc); 1348 *(cmd++) = DBRI_CMD(DBRI_COMMAND_SDP, 0, 1349 sc->sc_pipe[pipe].sdp | 1350 DBRI_SDP_VALID_POINTER | 1351 DBRI_SDP_EVERY | 1352 DBRI_SDP_CLEAR); 1353 *(cmd++) = sc->sc_dmabase + dbri_dma_off(xmit, 0); 1354 dbri_command_send(sc, cmd); 1355 DPRINTF("%s: starting DMA\n", __func__); 1356 } 1357 1358 mutex_spin_exit(&sc->sc_intr_lock); 1359 1360 return; 1361 } 1362 1363 static void 1364 setup_ring_recv(struct dbri_softc *sc, int pipe, int which, int num, int blksz, 1365 void (*callback)(void *), void *callback_args) 1366 { 1367 volatile uint32_t *cmd; 1368 int i; 1369 int td_first, td_last; 1370 bus_addr_t dmabuf, dmabase; 1371 struct dbri_desc *dd = &sc->sc_desc[which]; 1372 1373 switch (pipe) { 1374 case 6: 1375 break; 1376 default: 1377 aprint_error("%s: illegal pipe number (%d)\n", 1378 __func__, pipe); 1379 return; 1380 } 1381 1382 td_first = td_last = -1; 1383 1384 if (sc->sc_pipe[pipe].sdp == 0) { 1385 aprint_error_dev(sc->sc_dev, "uninitialized pipe %d\n", 1386 pipe); 1387 return; 1388 } 1389 1390 dmabuf = dd->dmabase; 1391 dmabase = sc->sc_dmabase; 1392 1393 for (i = 0; i < (num - 1); i++) { 1394 1395 sc->sc_dma->recv[i].flags = RX_BSIZE(blksz) | RX_FINAL; 1396 sc->sc_dma->recv[i].ba = dmabuf; 1397 sc->sc_dma->recv[i].nda = dmabase + dbri_dma_off(recv, i + 1); 1398 sc->sc_dma->recv[i].status = RX_EOF; 1399 1400 td_last = i; 1401 dmabuf += blksz; 1402 } 1403 1404 sc->sc_dma->recv[i].flags = RX_BSIZE(blksz) | RX_FINAL; 1405 1406 sc->sc_dma->recv[i].ba = dmabuf; 1407 sc->sc_dma->recv[i].nda = dmabase + dbri_dma_off(recv, 0); 1408 sc->sc_dma->recv[i].status = RX_EOF; 1409 1410 dd->callback = callback; 1411 dd->callback_args = callback_args; 1412 1413 mutex_spin_enter(&sc->sc_intr_lock); 1414 1415 /* the pipe shouldn't be active */ 1416 if (pipe_active(sc, pipe)) { 1417 aprint_error("pipe active (CDP)\n"); 1418 /* pipe is already active */ 1419 #if 0 1420 td_last = sc->sc_pipe[pipe].desc; 1421 while (sc->sc_desc[td_last].next != -1) 1422 td_last = sc->sc_desc[td_last].next; 1423 1424 sc->sc_desc[td_last].next = td_first; 1425 sc->sc_dma->desc[td_last].nda = 1426 sc->sc_dmabase + dbri_dma_off(desc, td_first); 1427 1428 cmd = dbri_command_lock(sc); 1429 *(cmd++) = DBRI_CMD(DBRI_COMMAND_CDP, 0, pipe); 1430 dbri_command_send(sc, cmd); 1431 #endif 1432 } else { 1433 /* 1434 * pipe isn't active - issue an SDP command to start our 1435 * chain of TDs running 1436 */ 1437 sc->sc_pipe[pipe].desc = which; 1438 cmd = dbri_command_lock(sc); 1439 *(cmd++) = DBRI_CMD(DBRI_COMMAND_SDP, 0, 1440 sc->sc_pipe[pipe].sdp | 1441 DBRI_SDP_VALID_POINTER | 1442 DBRI_SDP_EVERY | 1443 DBRI_SDP_CLEAR); 1444 *(cmd++) = sc->sc_dmabase + dbri_dma_off(recv, 0); 1445 dbri_command_send(sc, cmd); 1446 DPRINTF("%s: starting DMA\n", __func__); 1447 } 1448 1449 mutex_spin_exit(&sc->sc_intr_lock); 1450 1451 return; 1452 } 1453 1454 static void 1455 pipe_ts_link(struct dbri_softc *sc, int pipe, enum io dir, int basepipe, 1456 int len, int cycle) 1457 { 1458 volatile uint32_t *cmd; 1459 int prevpipe, nextpipe; 1460 int val; 1461 1462 DPRINTF("%s: %d\n", __func__, pipe); 1463 if (pipe < 0 || pipe >= DBRI_PIPE_MAX || 1464 basepipe < 0 || basepipe >= DBRI_PIPE_MAX) { 1465 aprint_error_dev(sc->sc_dev, "illegal pipe numbers (%d, %d)\n", 1466 pipe, basepipe); 1467 return; 1468 } 1469 1470 if (sc->sc_pipe[pipe].sdp == 0 || sc->sc_pipe[basepipe].sdp == 0) { 1471 aprint_error_dev(sc->sc_dev, "uninitialized pipe (%d, %d)\n", 1472 pipe, basepipe); 1473 return; 1474 } 1475 1476 if (basepipe == 16 && dir == PIPEoutput && cycle == 0) 1477 cycle = sc->sc_chi_bpf; 1478 1479 if (basepipe == pipe) 1480 prevpipe = nextpipe = pipe; 1481 else { 1482 if (basepipe == 16) { 1483 if (dir == PIPEinput) { 1484 prevpipe = sc->sc_chi_pipe_in; 1485 } else { 1486 prevpipe = sc->sc_chi_pipe_out; 1487 } 1488 } else 1489 prevpipe = basepipe; 1490 1491 nextpipe = sc->sc_pipe[prevpipe].next; 1492 1493 while (sc->sc_pipe[nextpipe].cycle < cycle && 1494 sc->sc_pipe[nextpipe].next != basepipe) { 1495 prevpipe = nextpipe; 1496 nextpipe = sc->sc_pipe[nextpipe].next; 1497 } 1498 } 1499 1500 if (prevpipe == 16) { 1501 if (dir == PIPEinput) { 1502 sc->sc_chi_pipe_in = pipe; 1503 } else { 1504 sc->sc_chi_pipe_out = pipe; 1505 } 1506 } else 1507 sc->sc_pipe[prevpipe].next = pipe; 1508 1509 sc->sc_pipe[pipe].next = nextpipe; 1510 sc->sc_pipe[pipe].cycle = cycle; 1511 sc->sc_pipe[pipe].length = len; 1512 1513 cmd = dbri_command_lock(sc); 1514 1515 switch (dir) { 1516 case PIPEinput: 1517 val = DBRI_DTS_VI | DBRI_DTS_INS | DBRI_DTS_PRVIN(prevpipe); 1518 val |= pipe; 1519 *(cmd++) = DBRI_CMD(DBRI_COMMAND_DTS, 0, val); 1520 *(cmd++) = DBRI_TS_LEN(len) | DBRI_TS_CYCLE(cycle) | 1521 DBRI_TS_NEXT(nextpipe); 1522 *(cmd++) = 0; 1523 break; 1524 case PIPEoutput: 1525 val = DBRI_DTS_VO | DBRI_DTS_INS | DBRI_DTS_PRVOUT(prevpipe); 1526 val |= pipe; 1527 *(cmd++) = DBRI_CMD(DBRI_COMMAND_DTS, 0, val); 1528 *(cmd++) = 0; 1529 *(cmd++) = DBRI_TS_LEN(len) | DBRI_TS_CYCLE(cycle) | 1530 DBRI_TS_NEXT(nextpipe); 1531 break; 1532 default: 1533 DPRINTF("%s: should not have happened!\n", 1534 device_xname(sc->sc_dev)); 1535 break; 1536 } 1537 1538 dbri_command_send(sc, cmd); 1539 1540 return; 1541 } 1542 1543 static int 1544 pipe_active(struct dbri_softc *sc, int pipe) 1545 { 1546 1547 return (sc->sc_pipe[pipe].desc != -1); 1548 } 1549 1550 /* 1551 * subroutines required to interface with audio(9) 1552 */ 1553 1554 static int 1555 dbri_query_encoding(void *hdl, struct audio_encoding *ae) 1556 { 1557 1558 switch (ae->index) { 1559 case 0: 1560 strcpy(ae->name, AudioEulinear); 1561 ae->encoding = AUDIO_ENCODING_ULINEAR; 1562 ae->precision = 8; 1563 ae->flags = 0; 1564 break; 1565 case 1: 1566 strcpy(ae->name, AudioEmulaw); 1567 ae->encoding = AUDIO_ENCODING_ULAW; 1568 ae->precision = 8; 1569 ae->flags = 0; 1570 break; 1571 case 2: 1572 strcpy(ae->name, AudioEalaw); 1573 ae->encoding = AUDIO_ENCODING_ALAW; 1574 ae->precision = 8; 1575 ae->flags = 0; 1576 break; 1577 case 3: 1578 strcpy(ae->name, AudioEslinear); 1579 ae->encoding = AUDIO_ENCODING_SLINEAR; 1580 ae->precision = 8; 1581 ae->flags = AUDIO_ENCODINGFLAG_EMULATED; 1582 break; 1583 case 4: 1584 strcpy(ae->name, AudioEslinear_le); 1585 ae->encoding = AUDIO_ENCODING_SLINEAR_LE; 1586 ae->precision = 16; 1587 ae->flags = AUDIO_ENCODINGFLAG_EMULATED; 1588 break; 1589 case 5: 1590 strcpy(ae->name, AudioEulinear_le); 1591 ae->encoding = AUDIO_ENCODING_ULINEAR_LE; 1592 ae->precision = 16; 1593 ae->flags = AUDIO_ENCODINGFLAG_EMULATED; 1594 break; 1595 case 6: 1596 strcpy(ae->name, AudioEslinear_be); 1597 ae->encoding = AUDIO_ENCODING_SLINEAR_BE; 1598 ae->precision = 16; 1599 ae->flags = 0; 1600 break; 1601 case 7: 1602 strcpy(ae->name, AudioEulinear_be); 1603 ae->encoding = AUDIO_ENCODING_ULINEAR_BE; 1604 ae->precision = 16; 1605 ae->flags = AUDIO_ENCODINGFLAG_EMULATED; 1606 break; 1607 case 8: 1608 strcpy(ae->name, AudioEslinear); 1609 ae->encoding = AUDIO_ENCODING_SLINEAR; 1610 ae->precision = 16; 1611 ae->flags = 0; 1612 break; 1613 default: 1614 return (EINVAL); 1615 } 1616 1617 return (0); 1618 } 1619 1620 static int 1621 dbri_set_params(void *hdl, int setmode, int usemode, 1622 struct audio_params *play, struct audio_params *rec, 1623 stream_filter_list_t *pfil, stream_filter_list_t *rfil) 1624 { 1625 struct dbri_softc *sc = hdl; 1626 int rate; 1627 audio_params_t *p = NULL; 1628 stream_filter_list_t *fil; 1629 int mode; 1630 1631 /* 1632 * This device only has one clock, so make the sample rates match. 1633 */ 1634 if (play->sample_rate != rec->sample_rate && 1635 usemode == (AUMODE_PLAY | AUMODE_RECORD)) { 1636 if (setmode == AUMODE_PLAY) { 1637 rec->sample_rate = play->sample_rate; 1638 setmode |= AUMODE_RECORD; 1639 } else if (setmode == AUMODE_RECORD) { 1640 play->sample_rate = rec->sample_rate; 1641 setmode |= AUMODE_PLAY; 1642 } else 1643 return EINVAL; 1644 } 1645 1646 for (mode = AUMODE_RECORD; mode != -1; 1647 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) { 1648 if ((setmode & mode) == 0) 1649 continue; 1650 1651 p = mode == AUMODE_PLAY ? play : rec; 1652 if (p->sample_rate < 4000 || p->sample_rate > 50000) { 1653 DPRINTF("dbri_set_params: invalid rate %d\n", 1654 p->sample_rate); 1655 return EINVAL; 1656 } 1657 1658 fil = mode == AUMODE_PLAY ? pfil : rfil; 1659 DPRINTF("requested enc: %d rate: %d prec: %d chan: %d\n", p->encoding, 1660 p->sample_rate, p->precision, p->channels); 1661 if (auconv_set_converter(dbri_formats, DBRI_NFORMATS, 1662 mode, p, true, fil) < 0) { 1663 aprint_debug("dbri_set_params: auconv_set_converter failed\n"); 1664 return EINVAL; 1665 } 1666 if (fil->req_size > 0) 1667 p = &fil->filters[0].param; 1668 } 1669 1670 if (p == NULL) { 1671 DPRINTF("dbri_set_params: no parameters to set\n"); 1672 return 0; 1673 } 1674 1675 DPRINTF("native enc: %d rate: %d prec: %d chan: %d\n", p->encoding, 1676 p->sample_rate, p->precision, p->channels); 1677 1678 for (rate = 0; CS4215_FREQ[rate].freq; rate++) 1679 if (CS4215_FREQ[rate].freq == p->sample_rate) 1680 break; 1681 1682 if (CS4215_FREQ[rate].freq == 0) 1683 return (EINVAL); 1684 1685 /* set frequency */ 1686 sc->sc_mm.c.bcontrol[1] &= ~0x38; 1687 sc->sc_mm.c.bcontrol[1] |= CS4215_FREQ[rate].csval; 1688 sc->sc_mm.c.bcontrol[2] &= ~0x70; 1689 sc->sc_mm.c.bcontrol[2] |= CS4215_FREQ[rate].xtal; 1690 1691 switch (p->encoding) { 1692 case AUDIO_ENCODING_ULAW: 1693 sc->sc_mm.c.bcontrol[1] &= ~3; 1694 sc->sc_mm.c.bcontrol[1] |= CS4215_DFR_ULAW; 1695 break; 1696 case AUDIO_ENCODING_ALAW: 1697 sc->sc_mm.c.bcontrol[1] &= ~3; 1698 sc->sc_mm.c.bcontrol[1] |= CS4215_DFR_ALAW; 1699 break; 1700 case AUDIO_ENCODING_ULINEAR: 1701 sc->sc_mm.c.bcontrol[1] &= ~3; 1702 if (p->precision == 8) { 1703 sc->sc_mm.c.bcontrol[1] |= CS4215_DFR_LINEAR8; 1704 } else { 1705 sc->sc_mm.c.bcontrol[1] |= CS4215_DFR_LINEAR16; 1706 } 1707 break; 1708 case AUDIO_ENCODING_SLINEAR_BE: 1709 case AUDIO_ENCODING_SLINEAR: 1710 sc->sc_mm.c.bcontrol[1] &= ~3; 1711 sc->sc_mm.c.bcontrol[1] |= CS4215_DFR_LINEAR16; 1712 break; 1713 } 1714 1715 switch (p->channels) { 1716 case 1: 1717 sc->sc_mm.c.bcontrol[1] &= ~CS4215_DFR_STEREO; 1718 break; 1719 case 2: 1720 sc->sc_mm.c.bcontrol[1] |= CS4215_DFR_STEREO; 1721 break; 1722 } 1723 1724 return (0); 1725 } 1726 1727 static int 1728 dbri_round_blocksize(void *hdl, int bs, int mode, 1729 const audio_params_t *param) 1730 { 1731 1732 /* 1733 * DBRI DMA segment size can be up to 0x1fff, sixes that are not powers 1734 * of two seem to confuse the upper audio layer so we're going with 1735 * 0x1000 here 1736 */ 1737 return 0x1000; 1738 } 1739 1740 static int 1741 dbri_halt_output(void *hdl) 1742 { 1743 struct dbri_softc *sc = hdl; 1744 1745 if (!sc->sc_playing) 1746 return 0; 1747 1748 sc->sc_playing = 0; 1749 pipe_reset(sc, 4); 1750 return (0); 1751 } 1752 1753 static int 1754 dbri_getdev(void *hdl, struct audio_device *ret) 1755 { 1756 1757 *ret = dbri_device; 1758 return (0); 1759 } 1760 1761 static int 1762 dbri_set_port(void *hdl, mixer_ctrl_t *mc) 1763 { 1764 struct dbri_softc *sc = hdl; 1765 int latt = sc->sc_latt, ratt = sc->sc_ratt; 1766 1767 switch (mc->dev) { 1768 case DBRI_VOL_OUTPUT: /* master volume */ 1769 latt = (latt & 0xc0) | (63 - 1770 min(mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] >> 2, 63)); 1771 ratt = (ratt & 0xc0) | (63 - 1772 min(mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] >> 2, 63)); 1773 break; 1774 case DBRI_ENABLE_MONO: /* built-in speaker */ 1775 if (mc->un.ord == 1) { 1776 ratt |= CS4215_SE; 1777 } else 1778 ratt &= ~CS4215_SE; 1779 break; 1780 case DBRI_ENABLE_HEADPHONE: /* headphones output */ 1781 if (mc->un.ord == 1) { 1782 latt |= CS4215_HE; 1783 } else 1784 latt &= ~CS4215_HE; 1785 break; 1786 case DBRI_ENABLE_LINE: /* line out */ 1787 if (mc->un.ord == 1) { 1788 latt |= CS4215_LE; 1789 } else 1790 latt &= ~CS4215_LE; 1791 break; 1792 case DBRI_VOL_MONITOR: 1793 if (mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] == 1794 sc->sc_monitor) 1795 return 0; 1796 sc->sc_monitor = mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT]; 1797 break; 1798 case DBRI_INPUT_GAIN: 1799 sc->sc_linp = mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT]; 1800 sc->sc_rinp = mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]; 1801 break; 1802 case DBRI_INPUT_SELECT: 1803 if (mc->un.mask == sc->sc_input) 1804 return 0; 1805 sc->sc_input = mc->un.mask; 1806 break; 1807 } 1808 1809 sc->sc_latt = latt; 1810 sc->sc_ratt = ratt; 1811 1812 mmcodec_setgain(sc, 0); 1813 1814 return (0); 1815 } 1816 1817 static int 1818 dbri_get_port(void *hdl, mixer_ctrl_t *mc) 1819 { 1820 struct dbri_softc *sc = hdl; 1821 1822 switch (mc->dev) { 1823 case DBRI_VOL_OUTPUT: /* master volume */ 1824 mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = 1825 (63 - (sc->sc_latt & 0x3f)) << 2; 1826 mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = 1827 (63 - (sc->sc_ratt & 0x3f)) << 2; 1828 return (0); 1829 case DBRI_ENABLE_MONO: /* built-in speaker */ 1830 mc->un.ord = (sc->sc_ratt & CS4215_SE) ? 1 : 0; 1831 return 0; 1832 case DBRI_ENABLE_HEADPHONE: /* headphones output */ 1833 mc->un.ord = (sc->sc_latt & CS4215_HE) ? 1 : 0; 1834 return 0; 1835 case DBRI_ENABLE_LINE: /* line out */ 1836 mc->un.ord = (sc->sc_latt & CS4215_LE) ? 1 : 0; 1837 return 0; 1838 case DBRI_VOL_MONITOR: 1839 mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = sc->sc_monitor; 1840 return 0; 1841 case DBRI_INPUT_GAIN: 1842 mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = sc->sc_linp; 1843 mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = sc->sc_rinp; 1844 return 0; 1845 case DBRI_INPUT_SELECT: 1846 mc->un.mask = sc->sc_input; 1847 return 0; 1848 } 1849 return (EINVAL); 1850 } 1851 1852 static int 1853 dbri_query_devinfo(void *hdl, mixer_devinfo_t *di) 1854 { 1855 1856 switch (di->index) { 1857 case DBRI_MONITOR_CLASS: 1858 di->mixer_class = DBRI_MONITOR_CLASS; 1859 strcpy(di->label.name, AudioCmonitor); 1860 di->type = AUDIO_MIXER_CLASS; 1861 di->next = di->prev = AUDIO_MIXER_LAST; 1862 return 0; 1863 case DBRI_OUTPUT_CLASS: 1864 di->mixer_class = DBRI_OUTPUT_CLASS; 1865 strcpy(di->label.name, AudioCoutputs); 1866 di->type = AUDIO_MIXER_CLASS; 1867 di->next = di->prev = AUDIO_MIXER_LAST; 1868 return 0; 1869 case DBRI_INPUT_CLASS: 1870 di->mixer_class = DBRI_INPUT_CLASS; 1871 strcpy(di->label.name, AudioCinputs); 1872 di->type = AUDIO_MIXER_CLASS; 1873 di->next = di->prev = AUDIO_MIXER_LAST; 1874 return 0; 1875 case DBRI_VOL_OUTPUT: /* master volume */ 1876 di->mixer_class = DBRI_OUTPUT_CLASS; 1877 di->next = di->prev = AUDIO_MIXER_LAST; 1878 strcpy(di->label.name, AudioNmaster); 1879 di->type = AUDIO_MIXER_VALUE; 1880 di->un.v.num_channels = 2; 1881 di->un.v.delta = 16; 1882 strcpy(di->un.v.units.name, AudioNvolume); 1883 return (0); 1884 case DBRI_INPUT_GAIN: /* input gain */ 1885 di->mixer_class = DBRI_INPUT_CLASS; 1886 di->next = di->prev = AUDIO_MIXER_LAST; 1887 strcpy(di->label.name, AudioNrecord); 1888 di->type = AUDIO_MIXER_VALUE; 1889 di->un.v.num_channels = 2; 1890 strcpy(di->un.v.units.name, AudioNvolume); 1891 return (0); 1892 case DBRI_VOL_MONITOR: /* monitor volume */ 1893 di->mixer_class = DBRI_MONITOR_CLASS; 1894 di->next = di->prev = AUDIO_MIXER_LAST; 1895 strcpy(di->label.name, AudioNmonitor); 1896 di->type = AUDIO_MIXER_VALUE; 1897 di->un.v.num_channels = 1; 1898 strcpy(di->un.v.units.name, AudioNvolume); 1899 return (0); 1900 case DBRI_ENABLE_MONO: /* built-in speaker */ 1901 di->mixer_class = DBRI_OUTPUT_CLASS; 1902 di->next = di->prev = AUDIO_MIXER_LAST; 1903 strcpy(di->label.name, AudioNmono); 1904 di->type = AUDIO_MIXER_ENUM; 1905 di->un.e.num_mem = 2; 1906 strcpy(di->un.e.member[0].label.name, AudioNoff); 1907 di->un.e.member[0].ord = 0; 1908 strcpy(di->un.e.member[1].label.name, AudioNon); 1909 di->un.e.member[1].ord = 1; 1910 return (0); 1911 case DBRI_ENABLE_HEADPHONE: /* headphones output */ 1912 di->mixer_class = DBRI_OUTPUT_CLASS; 1913 di->next = di->prev = AUDIO_MIXER_LAST; 1914 strcpy(di->label.name, AudioNheadphone); 1915 di->type = AUDIO_MIXER_ENUM; 1916 di->un.e.num_mem = 2; 1917 strcpy(di->un.e.member[0].label.name, AudioNoff); 1918 di->un.e.member[0].ord = 0; 1919 strcpy(di->un.e.member[1].label.name, AudioNon); 1920 di->un.e.member[1].ord = 1; 1921 return (0); 1922 case DBRI_ENABLE_LINE: /* line out */ 1923 di->mixer_class = DBRI_OUTPUT_CLASS; 1924 di->next = di->prev = AUDIO_MIXER_LAST; 1925 strcpy(di->label.name, AudioNline); 1926 di->type = AUDIO_MIXER_ENUM; 1927 di->un.e.num_mem = 2; 1928 strcpy(di->un.e.member[0].label.name, AudioNoff); 1929 di->un.e.member[0].ord = 0; 1930 strcpy(di->un.e.member[1].label.name, AudioNon); 1931 di->un.e.member[1].ord = 1; 1932 return (0); 1933 case DBRI_INPUT_SELECT: 1934 di->mixer_class = DBRI_INPUT_CLASS; 1935 strcpy(di->label.name, AudioNsource); 1936 di->type = AUDIO_MIXER_SET; 1937 di->prev = di->next = AUDIO_MIXER_LAST; 1938 di->un.s.num_mem = 2; 1939 strcpy(di->un.s.member[0].label.name, AudioNline); 1940 di->un.s.member[0].mask = 1 << 0; 1941 strcpy(di->un.s.member[1].label.name, AudioNmicrophone); 1942 di->un.s.member[1].mask = 1 << 1; 1943 return 0; 1944 } 1945 1946 return (ENXIO); 1947 } 1948 1949 static size_t 1950 dbri_round_buffersize(void *hdl, int dir, size_t bufsize) 1951 { 1952 #ifdef DBRI_BIG_BUFFER 1953 return 0x20000; /* use 128KB buffer */ 1954 #else 1955 return bufsize; 1956 #endif 1957 } 1958 1959 static int 1960 dbri_get_props(void *hdl) 1961 { 1962 1963 return AUDIO_PROP_MMAP | AUDIO_PROP_FULLDUPLEX; 1964 } 1965 1966 static int 1967 dbri_trigger_output(void *hdl, void *start, void *end, int blksize, 1968 void (*intr)(void *), void *intrarg, 1969 const struct audio_params *param) 1970 { 1971 struct dbri_softc *sc = hdl; 1972 unsigned long count, num; 1973 1974 if (sc->sc_playing) 1975 return 0; 1976 1977 count = (unsigned long)(((char *)end - (char *)start)); 1978 num = count / blksize; 1979 1980 DPRINTF("trigger_output(%lx %lx) : %d %ld %ld\n", 1981 (unsigned long)intr, 1982 (unsigned long)intrarg, blksize, count, num); 1983 1984 sc->sc_params = *param; 1985 1986 if (sc->sc_recording == 0) { 1987 /* do not muck with the codec when it's already in use */ 1988 if (mmcodec_setcontrol(sc) != 0) 1989 return -1; 1990 mmcodec_init_data(sc); 1991 } 1992 1993 /* 1994 * always use DMA descriptor 0 for output 1995 * no need to allocate them dynamically since we only ever have 1996 * exactly one input stream and exactly one output stream 1997 */ 1998 setup_ring_xmit(sc, 4, 0, num, blksize, intr, intrarg); 1999 sc->sc_playing = 1; 2000 return 0; 2001 } 2002 2003 static int 2004 dbri_halt_input(void *cookie) 2005 { 2006 struct dbri_softc *sc = cookie; 2007 2008 if (!sc->sc_recording) 2009 return 0; 2010 2011 sc->sc_recording = 0; 2012 pipe_reset(sc, 6); 2013 return 0; 2014 } 2015 2016 static int 2017 dbri_trigger_input(void *hdl, void *start, void *end, int blksize, 2018 void (*intr)(void *), void *intrarg, 2019 const struct audio_params *param) 2020 { 2021 struct dbri_softc *sc = hdl; 2022 unsigned long count, num; 2023 2024 if (sc->sc_recording) 2025 return 0; 2026 2027 count = (unsigned long)(((char *)end - (char *)start)); 2028 num = count / blksize; 2029 2030 DPRINTF("trigger_input(%lx %lx) : %d %ld %ld\n", 2031 (unsigned long)intr, 2032 (unsigned long)intrarg, blksize, count, num); 2033 2034 sc->sc_params = *param; 2035 2036 if (sc->sc_playing == 0) { 2037 2038 /* 2039 * we don't support different parameters for playing and 2040 * recording anyway so don't bother whacking the codec if 2041 * it's already set up 2042 */ 2043 mmcodec_setcontrol(sc); 2044 mmcodec_init_data(sc); 2045 } 2046 2047 sc->sc_recording = 1; 2048 setup_ring_recv(sc, 6, 1, num, blksize, intr, intrarg); 2049 return 0; 2050 } 2051 2052 static void 2053 dbri_get_locks(void *opaque, kmutex_t **intr, kmutex_t **thread) 2054 { 2055 struct dbri_softc *sc = opaque; 2056 2057 *intr = &sc->sc_intr_lock; 2058 *thread = &sc->sc_lock; 2059 } 2060 2061 static uint32_t 2062 reverse_bytes(uint32_t b, int len) 2063 { 2064 switch (len) { 2065 case 32: 2066 b = ((b & 0xffff0000) >> 16) | ((b & 0x0000ffff) << 16); 2067 case 16: 2068 b = ((b & 0xff00ff00) >> 8) | ((b & 0x00ff00ff) << 8); 2069 case 8: 2070 b = ((b & 0xf0f0f0f0) >> 4) | ((b & 0x0f0f0f0f) << 4); 2071 case 4: 2072 b = ((b & 0xcccccccc) >> 2) | ((b & 0x33333333) << 2); 2073 case 2: 2074 b = ((b & 0xaaaaaaaa) >> 1) | ((b & 0x55555555) << 1); 2075 case 1: 2076 case 0: 2077 break; 2078 default: 2079 DPRINTF("reverse_bytes: unsupported length\n"); 2080 }; 2081 2082 return (b); 2083 } 2084 2085 static void * 2086 dbri_malloc(void *v, int dir, size_t s) 2087 { 2088 struct dbri_softc *sc = v; 2089 struct dbri_desc *dd = &sc->sc_desc[sc->sc_desc_used]; 2090 int rseg; 2091 2092 if (bus_dmamap_create(sc->sc_dmat, s, 1, s, 0, BUS_DMA_NOWAIT, 2093 &dd->dmamap) == 0) { 2094 if (bus_dmamem_alloc(sc->sc_dmat, s, 0, 0, &dd->dmaseg, 2095 1, &rseg, BUS_DMA_NOWAIT) == 0) { 2096 if (bus_dmamem_map(sc->sc_dmat, &dd->dmaseg, rseg, s, 2097 &dd->buf, BUS_DMA_NOWAIT|BUS_DMA_COHERENT) == 0) { 2098 if (dd->buf != NULL) { 2099 if (bus_dmamap_load(sc->sc_dmat, 2100 dd->dmamap, dd->buf, s, NULL, 2101 BUS_DMA_NOWAIT) == 0) { 2102 dd->len = s; 2103 dd->busy = 0; 2104 dd->callback = NULL; 2105 dd->dmabase = 2106 dd->dmamap->dm_segs[0].ds_addr; 2107 DPRINTF("dbri_malloc: using buffer %d %08x\n", 2108 sc->sc_desc_used, (uint32_t)dd->buf); 2109 sc->sc_desc_used++; 2110 return dd->buf; 2111 } else 2112 aprint_error("dbri_malloc: load failed\n"); 2113 } else 2114 aprint_error("dbri_malloc: map returned NULL\n"); 2115 } else 2116 aprint_error("dbri_malloc: map failed\n"); 2117 bus_dmamem_free(sc->sc_dmat, &dd->dmaseg, rseg); 2118 } else 2119 aprint_error("dbri_malloc: malloc() failed\n"); 2120 bus_dmamap_destroy(sc->sc_dmat, dd->dmamap); 2121 } else 2122 aprint_error("dbri_malloc: bus_dmamap_create() failed\n"); 2123 return NULL; 2124 } 2125 2126 static void 2127 dbri_free(void *v, void *p, size_t size) 2128 { 2129 struct dbri_softc *sc = v; 2130 struct dbri_desc *dd; 2131 int i; 2132 2133 for (i = 0; i < sc->sc_desc_used; i++) { 2134 dd = &sc->sc_desc[i]; 2135 if (dd->buf == p) 2136 break; 2137 } 2138 if (i >= sc->sc_desc_used) 2139 return; 2140 bus_dmamap_unload(sc->sc_dmat, dd->dmamap); 2141 bus_dmamap_destroy(sc->sc_dmat, dd->dmamap); 2142 } 2143 2144 static paddr_t 2145 dbri_mappage(void *v, void *mem, off_t off, int prot) 2146 { 2147 struct dbri_softc *sc = v; 2148 int current; 2149 2150 if (off < 0) 2151 return -1; 2152 2153 current = 0; 2154 while ((current < sc->sc_desc_used) && 2155 (sc->sc_desc[current].buf != mem)) 2156 current++; 2157 2158 if (current < sc->sc_desc_used) { 2159 return bus_dmamem_mmap(sc->sc_dmat, 2160 &sc->sc_desc[current].dmaseg, 1, off, prot, BUS_DMA_WAITOK); 2161 } 2162 2163 return -1; 2164 } 2165 2166 static int 2167 dbri_open(void *cookie, int flags) 2168 { 2169 struct dbri_softc *sc = cookie; 2170 2171 DPRINTF("%s: %d\n", __func__, sc->sc_refcount); 2172 2173 if (sc->sc_refcount == 0) 2174 dbri_bring_up(sc); 2175 2176 sc->sc_refcount++; 2177 2178 return 0; 2179 } 2180 2181 static void 2182 dbri_close(void *cookie) 2183 { 2184 struct dbri_softc *sc = cookie; 2185 2186 DPRINTF("%s: %d\n", __func__, sc->sc_refcount); 2187 2188 sc->sc_refcount--; 2189 KASSERT(sc->sc_refcount >= 0); 2190 if (sc->sc_refcount > 0) 2191 return; 2192 2193 dbri_set_power(sc, 0); 2194 sc->sc_playing = 0; 2195 sc->sc_recording = 0; 2196 } 2197 2198 static bool 2199 dbri_suspend(device_t self, const pmf_qual_t *qual) 2200 { 2201 struct dbri_softc *sc = device_private(self); 2202 2203 dbri_set_power(sc, 0); 2204 return true; 2205 } 2206 2207 static bool 2208 dbri_resume(device_t self, const pmf_qual_t *qual) 2209 { 2210 struct dbri_softc *sc = device_private(self); 2211 2212 if (sc->sc_powerstate != 0) 2213 return true; 2214 aprint_verbose("resume: %d\n", sc->sc_refcount); 2215 if (sc->sc_playing) { 2216 volatile uint32_t *cmd; 2217 2218 dbri_bring_up(sc); 2219 mutex_spin_enter(&sc->sc_intr_lock); 2220 cmd = dbri_command_lock(sc); 2221 *(cmd++) = DBRI_CMD(DBRI_COMMAND_SDP, 2222 0, sc->sc_pipe[4].sdp | 2223 DBRI_SDP_VALID_POINTER | 2224 DBRI_SDP_EVERY | DBRI_SDP_CLEAR); 2225 *(cmd++) = sc->sc_dmabase + 2226 dbri_dma_off(xmit, 0); 2227 dbri_command_send(sc, cmd); 2228 mutex_spin_exit(&sc->sc_intr_lock); 2229 } 2230 return true; 2231 } 2232 2233 #endif /* NAUDIO > 0 */ 2234