xref: /netbsd-src/sys/dev/sbus/dbri.c (revision 181254a7b1bdde6873432bffef2d2decc4b5c22f)
1 /*	$NetBSD: dbri.c,v 1.43 2020/08/25 13:36:41 skrll Exp $	*/
2 
3 /*
4  * Copyright (C) 1997 Rudolf Koenig (rfkoenig@immd4.informatik.uni-erlangen.de)
5  * Copyright (c) 1998, 1999 Brent Baccala (baccala@freesoft.org)
6  * Copyright (c) 2001, 2002 Jared D. McNeill <jmcneill@netbsd.org>
7  * Copyright (c) 2005 Michael Lorenz <macallan@netbsd.org>
8  * All rights reserved.
9  *
10  * This driver is losely based on a Linux driver written by Rudolf Koenig and
11  * Brent Baccala who kindly gave their permission to use their code in a
12  * BSD-licensed driver.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
28  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
29  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  */
35 
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: dbri.c,v 1.43 2020/08/25 13:36:41 skrll Exp $");
38 
39 #include "audio.h"
40 #if NAUDIO > 0
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/errno.h>
45 #include <sys/device.h>
46 #include <sys/proc.h>
47 #include <sys/kernel.h>
48 #include <sys/bus.h>
49 #include <sys/intr.h>
50 #include <sys/kmem.h>
51 
52 #include <dev/sbus/sbusvar.h>
53 #include <sparc/sparc/auxreg.h>
54 #include <machine/autoconf.h>
55 
56 #include <sys/audioio.h>
57 #include <dev/audio/audio_if.h>
58 
59 #include <dev/ic/cs4215reg.h>
60 #include <dev/ic/cs4215var.h>
61 #include <dev/sbus/dbrireg.h>
62 #include <dev/sbus/dbrivar.h>
63 
64 #include "opt_sbus_dbri.h"
65 
66 #define DBRI_ROM_NAME_PREFIX		"SUNW,DBRI"
67 
68 #ifdef DBRI_DEBUG
69 # define DPRINTF aprint_normal
70 #else
71 # define DPRINTF while (0) printf
72 #endif
73 
74 static const char *dbri_supported[] = {
75 	"e",
76 	"s3",
77 	""
78 };
79 
80 enum ms {
81 	CHImaster,
82 	CHIslave
83 };
84 
85 enum io {
86 	PIPEinput,
87 	PIPEoutput
88 };
89 
90 /*
91  * Function prototypes
92  */
93 
94 /* softc stuff */
95 static void	dbri_attach_sbus(device_t, device_t, void *);
96 static int	dbri_match_sbus(device_t, cfdata_t, void *);
97 
98 static int	dbri_config_interrupts(device_t);
99 
100 /* interrupt handler */
101 static int	dbri_intr(void *);
102 static void	dbri_softint(void *);
103 
104 /* supporting subroutines */
105 static int	dbri_init(struct dbri_softc *);
106 static int	dbri_reset(struct dbri_softc *);
107 static volatile uint32_t *dbri_command_lock(struct dbri_softc *);
108 static void	dbri_command_send(struct dbri_softc *, volatile uint32_t *);
109 static void	dbri_process_interrupt_buffer(struct dbri_softc *);
110 static void	dbri_process_interrupt(struct dbri_softc *, int32_t);
111 
112 /* mmcodec subroutines */
113 static int	mmcodec_init(struct dbri_softc *);
114 static void	mmcodec_init_data(struct dbri_softc *);
115 static void	mmcodec_pipe_init(struct dbri_softc *);
116 static void	mmcodec_default(struct dbri_softc *);
117 static void	mmcodec_setgain(struct dbri_softc *, int);
118 static int	mmcodec_setcontrol(struct dbri_softc *);
119 
120 /* chi subroutines */
121 static void	chi_reset(struct dbri_softc *, enum ms, int);
122 
123 /* pipe subroutines */
124 static void	pipe_setup(struct dbri_softc *, int, int);
125 static void	pipe_reset(struct dbri_softc *, int);
126 static void	pipe_receive_fixed(struct dbri_softc *, int,
127     volatile uint32_t *);
128 static void	pipe_transmit_fixed(struct dbri_softc *, int, uint32_t);
129 
130 static void	pipe_ts_link(struct dbri_softc *, int, enum io, int, int, int);
131 static int	pipe_active(struct dbri_softc *, int);
132 
133 /* audio(9) stuff */
134 static int	dbri_query_format(void *, audio_format_query_t *);
135 static int	dbri_set_format(void *, int,
136     const audio_params_t *, const audio_params_t *,
137     audio_filter_reg_t *, audio_filter_reg_t *);
138 static int	dbri_round_blocksize(void *, int, int, const audio_params_t *);
139 static int	dbri_halt_output(void *);
140 static int	dbri_halt_input(void *);
141 static int	dbri_getdev(void *, struct audio_device *);
142 static int	dbri_set_port(void *, mixer_ctrl_t *);
143 static int	dbri_get_port(void *, mixer_ctrl_t *);
144 static int	dbri_query_devinfo(void *, mixer_devinfo_t *);
145 static int	dbri_get_props(void *);
146 static int	dbri_open(void *, int);
147 static void	dbri_close(void *);
148 
149 static void	setup_ring_xmit(struct dbri_softc *, int, int, int, int,
150     void (*)(void *), void *);
151 static void	setup_ring_recv(struct dbri_softc *, int, int, int, int,
152     void (*)(void *), void *);
153 
154 static int	dbri_trigger_output(void *, void *, void *, int,
155     void (*)(void *), void *, const struct audio_params *);
156 static int	dbri_trigger_input(void *, void *, void *, int,
157     void (*)(void *), void *, const struct audio_params *);
158 static void	dbri_get_locks(void *, kmutex_t **, kmutex_t **);
159 
160 static void	*dbri_malloc(void *, int, size_t);
161 static void	dbri_free(void *, void *, size_t);
162 static void	dbri_set_power(struct dbri_softc *, int);
163 static void	dbri_bring_up(struct dbri_softc *);
164 static bool	dbri_suspend(device_t, const pmf_qual_t *);
165 static bool	dbri_resume(device_t, const pmf_qual_t *);
166 static int	dbri_commit(void *);
167 
168 /* stupid support routines */
169 static uint32_t	reverse_bytes(uint32_t, int);
170 
171 struct audio_device dbri_device = {
172 	"CS4215",
173 	"",
174 	"dbri"
175 };
176 
177 struct audio_hw_if dbri_hw_if = {
178 	.open			= dbri_open,
179 	.close			= dbri_close,
180 	.query_format		= dbri_query_format,
181 	.set_format		= dbri_set_format,
182 	.round_blocksize	= dbri_round_blocksize,
183 	.halt_output		= dbri_halt_output,
184 	.halt_input		= dbri_halt_input,
185 	.getdev			= dbri_getdev,
186 	.set_port		= dbri_set_port,
187 	.get_port		= dbri_get_port,
188 	.query_devinfo		= dbri_query_devinfo,
189 	.allocm			= dbri_malloc,
190 	.freem			= dbri_free,
191 	.get_props		= dbri_get_props,
192 	.trigger_output		= dbri_trigger_output,
193 	.trigger_input		= dbri_trigger_input,
194 	.get_locks		= dbri_get_locks,
195 	.commit_settings	= dbri_commit,
196 };
197 
198 CFATTACH_DECL_NEW(dbri, sizeof(struct dbri_softc),
199     dbri_match_sbus, dbri_attach_sbus, NULL, NULL);
200 
201 /* The HW actually supports more encodings/frequencies, but it's enough. */
202 static const struct audio_format dbri_formats[] = {
203 	{
204 		.mode		= AUMODE_PLAY | AUMODE_RECORD,
205 		.encoding	= AUDIO_ENCODING_SLINEAR_BE,
206 		.validbits	= 16,
207 		.precision	= 16,
208 		.channels	= 2,
209 		.channel_mask	= AUFMT_STEREO,
210 		.frequency_type	= 8,
211 		.frequency	=
212 		    { 8000, 9600, 11025, 16000, 22050, 32000, 44100, 48000 },
213 	},
214 };
215 #define DBRI_NFORMATS	__arraycount(dbri_formats)
216 
217 enum {
218 	DBRI_OUTPUT_CLASS,
219 	DBRI_VOL_OUTPUT,
220 	DBRI_ENABLE_MONO,
221 	DBRI_ENABLE_HEADPHONE,
222 	DBRI_ENABLE_LINE,
223 	DBRI_MONITOR_CLASS,
224 	DBRI_VOL_MONITOR,
225 	DBRI_INPUT_CLASS,
226 	DBRI_INPUT_GAIN,
227 	DBRI_INPUT_SELECT,
228 	DBRI_RECORD_CLASS,
229 	DBRI_ENUM_LAST
230 };
231 
232 /*
233  * Autoconfig routines
234  */
235 static int
236 dbri_match_sbus(device_t parent, cfdata_t match, void *aux)
237 {
238 	struct sbus_attach_args *sa = aux;
239 	char *ver;
240 	int i;
241 
242 	if (strncmp(DBRI_ROM_NAME_PREFIX, sa->sa_name, 9))
243 		return (0);
244 
245 	ver = &sa->sa_name[9];
246 
247 	for (i = 0; dbri_supported[i][0] != '\0'; i++)
248 		if (strcmp(dbri_supported[i], ver) == 0)
249 			return (1);
250 
251 	return (0);
252 }
253 
254 static void
255 dbri_attach_sbus(device_t parent, device_t self, void *aux)
256 {
257 	struct dbri_softc *sc = device_private(self);
258 	struct sbus_attach_args *sa = aux;
259 	bus_space_handle_t ioh;
260 	bus_size_t size;
261 	int error, rseg, pwr, i;
262 	char *ver = &sa->sa_name[9];
263 
264 	sc->sc_dev = self;
265 	sc->sc_iot = sa->sa_bustag;
266 	sc->sc_dmat = sa->sa_dmatag;
267 	sc->sc_powerstate = 1;
268 
269 	sc->sc_whack_codec = 0;
270 
271 	pwr = prom_getpropint(sa->sa_node,"pwr-on-auxio",0);
272 	aprint_normal(": rev %s\n", ver);
273 
274 	if (pwr) {
275 		/*
276 		 * we can control DBRI power via auxio and we're initially
277 		 * powered down
278 		 */
279 
280 		sc->sc_have_powerctl = 1;
281 		sc->sc_powerstate = 0;
282 		dbri_set_power(sc, 1);
283 		if (!pmf_device_register(self, dbri_suspend, dbri_resume)) {
284 			aprint_error_dev(self,
285 			    "cannot set power mgmt handler\n");
286 		}
287 	} else {
288 		/* we can't control power so we're always up */
289 		sc->sc_have_powerctl = 0;
290 		sc->sc_powerstate = 1;
291 	}
292 
293 	for (i = 0; i < DBRI_NUM_DESCRIPTORS; i++) {
294 		sc->sc_desc[i].softint = softint_establish(SOFTINT_SERIAL,
295 		    dbri_softint, &sc->sc_desc[i]);
296 		sc->sc_desc[i].sc = sc;
297 	}
298 
299 	if (sa->sa_npromvaddrs)
300 		ioh = (bus_space_handle_t)sa->sa_promvaddrs[0];
301 	else {
302 		if (sbus_bus_map(sa->sa_bustag, sa->sa_slot,
303 				 sa->sa_offset, sa->sa_size,
304 				 BUS_SPACE_MAP_LINEAR, /*0,*/ &ioh) != 0) {
305 			aprint_error("%s @ sbus: cannot map registers\n",
306 				device_xname(self));
307 			return;
308 		}
309 	}
310 
311 	sc->sc_ioh = ioh;
312 
313 	size = sizeof(struct dbri_dma);
314 
315 	/* get a DMA handle */
316 	if ((error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
317 				       BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
318 		aprint_error_dev(self, "DMA map create error %d\n",
319 		    error);
320 		return;
321 	}
322 
323 	/* allocate DMA buffer */
324 	if ((error = bus_dmamem_alloc(sc->sc_dmat, size, 0, 0, &sc->sc_dmaseg,
325 				      1, &rseg, BUS_DMA_NOWAIT)) != 0) {
326 		aprint_error_dev(self, "DMA buffer alloc error %d\n",
327 		    error);
328 		return;
329 	}
330 
331 	/* map DMA buffer into CPU addressable space */
332 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dmaseg, rseg, size,
333 				    &sc->sc_membase,
334 				    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
335 		aprint_error_dev(self, "DMA buffer map error %d\n",
336 		    error);
337 		return;
338 	}
339 
340 	/* load the buffer */
341 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
342 				     sc->sc_membase, size, NULL,
343 				     BUS_DMA_NOWAIT)) != 0) {
344 		aprint_error_dev(self, "DMA buffer map load error %d\n",
345 		    error);
346 		bus_dmamem_unmap(sc->sc_dmat, sc->sc_membase, size);
347 		bus_dmamem_free(sc->sc_dmat, &sc->sc_dmaseg, rseg);
348 		return;
349 	}
350 
351 	/* map the registers into memory */
352 
353 	/* kernel virtual address of DMA buffer */
354 	sc->sc_dma = (struct dbri_dma *)sc->sc_membase;
355 	/* physical address of DMA buffer */
356 	sc->sc_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr;
357 	sc->sc_bufsiz = size;
358 
359 	mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NONE);
360 	mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_AUDIO);
361 
362 #ifndef DBRI_SPIN
363 	cv_init(&sc->sc_cv, "dbricv");
364 #endif
365 
366 	bus_intr_establish(sa->sa_bustag, sa->sa_pri, IPL_AUDIO, dbri_intr,
367 	    sc);
368 
369 	sc->sc_locked = 0;
370 	sc->sc_desc_used = 0;
371 	sc->sc_refcount = 0;
372 	sc->sc_playing = 0;
373 	sc->sc_recording = 0;
374 	sc->sc_init_done = 0;
375 	config_finalize_register(self, dbri_config_interrupts);
376 
377 	return;
378 }
379 
380 /*
381  * lowlevel routine to switch power for the DBRI chip
382  */
383 static void
384 dbri_set_power(struct dbri_softc *sc, int state)
385 {
386 	int s;
387 
388 	if (sc->sc_have_powerctl == 0)
389 		return;
390 	if (sc->sc_powerstate == state)
391 		return;
392 
393 	if (state) {
394 		DPRINTF("%s: waiting to power up... ",
395 		    device_xname(sc->sc_dev));
396 		s = splhigh();
397 		*AUXIO4M_REG |= (AUXIO4M_MMX);
398 		splx(s);
399 		delay(10000);
400 		DPRINTF("done (%02x)\n", *AUXIO4M_REG);
401 	} else {
402 		DPRINTF("%s: powering down\n", device_xname(sc->sc_dev));
403 		s = splhigh();
404 		*AUXIO4M_REG &= ~AUXIO4M_MMX;
405 		splx(s);
406 		DPRINTF("done (%02x})\n", *AUXIO4M_REG);
407 	}
408 	sc->sc_powerstate = state;
409 }
410 
411 /*
412  * power up and re-initialize the chip
413  */
414 static void
415 dbri_bring_up(struct dbri_softc *sc)
416 {
417 
418 	if (sc->sc_have_powerctl == 0)
419 		return;
420 
421 	if (sc->sc_powerstate == 1)
422 		return;
423 
424 	/* ok, we really need to do something */
425 	dbri_set_power(sc, 1);
426 
427 	/*
428 	 * re-initialize the chip but skip all the probing, don't overwrite
429 	 * any other settings either
430 	 */
431 	dbri_init(sc);
432 	mmcodec_setgain(sc, 1);
433 	mmcodec_pipe_init(sc);
434 	mmcodec_init_data(sc);
435 	mmcodec_setgain(sc, 0);
436 }
437 
438 static int
439 dbri_config_interrupts(device_t dev)
440 {
441 	struct dbri_softc *sc = device_private(dev);
442 
443 	mutex_spin_enter(&sc->sc_intr_lock);
444 	if (sc->sc_init_done != 0) {
445 		mutex_spin_exit(&sc->sc_intr_lock);
446 		return 0;
447 	}
448 	sc->sc_init_done = 1;
449 
450 	dbri_init(sc);
451 
452 	/* talking to the codec needs working interrupts */
453 	if (mmcodec_init(sc) == -1) {
454 		mutex_spin_exit(&sc->sc_intr_lock);
455 		printf("%s: no codec detected, aborting\n",
456 		    device_xname(dev));
457 		return 0;
458 	}
459 	mutex_spin_exit(&sc->sc_intr_lock);
460 
461 	/* Attach ourselves to the high level audio interface */
462 	audio_attach_mi(&dbri_hw_if, sc, sc->sc_dev);
463 
464 	/* power down until open() */
465 	mutex_spin_enter(&sc->sc_intr_lock);
466 	dbri_set_power(sc, 0);
467 	mutex_spin_exit(&sc->sc_intr_lock);
468 
469 	return 0;
470 }
471 
472 static int
473 dbri_intr(void *hdl)
474 {
475 	struct dbri_softc *sc = hdl;
476 	bus_space_tag_t iot = sc->sc_iot;
477 	bus_space_handle_t ioh = sc->sc_ioh;
478 	int x;
479 
480 	mutex_spin_enter(&sc->sc_intr_lock);
481 
482 	/* clear interrupt */
483 	x = bus_space_read_4(iot, ioh, DBRI_REG1);
484 	if (x & (DBRI_MRR | DBRI_MLE | DBRI_LBG | DBRI_MBE)) {
485 		uint32_t tmp;
486 
487 		if (x & DBRI_MRR)
488 			aprint_debug_dev(sc->sc_dev,
489 			     "multiple ack error on sbus\n");
490 		if (x & DBRI_MLE)
491 			aprint_debug_dev(sc->sc_dev,
492 			    "multiple late error on sbus\n");
493 		if (x & DBRI_LBG)
494 			aprint_debug_dev(sc->sc_dev,
495 			    "lost bus grant on sbus\n");
496 		if (x & DBRI_MBE)
497 			aprint_debug_dev(sc->sc_dev, "burst error on sbus\n");
498 
499 		/*
500 		 * Some of these errors disable the chip's circuitry.
501 		 * Re-enable the circuitry and keep on going.
502 		 */
503 
504 		tmp = bus_space_read_4(iot, ioh, DBRI_REG0);
505 		tmp &= ~(DBRI_DISABLE_MASTER);
506 		bus_space_write_4(iot, ioh, DBRI_REG0, tmp);
507 	}
508 
509 #if 0
510 	if (!x & 1)	/* XXX: DBRI_INTR_REQ */
511 		return (1);
512 #endif
513 
514 	dbri_process_interrupt_buffer(sc);
515 
516 	mutex_spin_exit(&sc->sc_intr_lock);
517 
518 	return (1);
519 }
520 
521 static void
522 dbri_softint(void *cookie)
523 {
524 	struct dbri_desc *dd = cookie;
525 	struct dbri_softc *sc = dd->sc;
526 
527 	mutex_spin_enter(&sc->sc_intr_lock);
528 	if (dd->callback != NULL)
529 		dd->callback(dd->callback_args);
530 	mutex_spin_exit(&sc->sc_intr_lock);
531 }
532 
533 static int
534 dbri_init(struct dbri_softc *sc)
535 {
536 	bus_space_tag_t iot = sc->sc_iot;
537 	bus_space_handle_t ioh = sc->sc_ioh;
538 	uint32_t reg;
539 	volatile uint32_t *cmd;
540 	bus_addr_t dmaaddr;
541 	int n;
542 
543 	KASSERT(mutex_owned(&sc->sc_intr_lock));
544 
545 	dbri_reset(sc);
546 	sc->sc_mm.status = 0;
547 
548 	cmd = dbri_command_lock(sc);
549 
550 	/* XXX: Initialize interrupt ring buffer */
551 	sc->sc_dma->intr[0] = (uint32_t)sc->sc_dmabase + dbri_dma_off(intr, 0);
552 	sc->sc_irqp = 1;
553 
554 	/* Initialize pipes */
555 	for (n = 0; n < DBRI_PIPE_MAX; n++)
556 		sc->sc_pipe[n].desc = sc->sc_pipe[n].next = -1;
557 
558 	for (n = 1; n < DBRI_INT_BLOCKS; n++) {
559 		sc->sc_dma->intr[n] = 0;
560 	}
561 
562 	/* XXX 16 byte bursts cause errors, the rest works */
563 	reg = bus_space_read_4(iot, ioh, DBRI_REG0);
564 
565 	/*reg &= ~(DBRI_BURST_4 | DBRI_BURST_8 | DBRI_BURST_16);*/
566 	reg |= (DBRI_BURST_4 | DBRI_BURST_8);
567 	bus_space_write_4(iot, ioh, DBRI_REG0, reg);
568 
569 	/* setup interrupt queue */
570 	dmaaddr = (uint32_t)sc->sc_dmabase + dbri_dma_off(intr, 0);
571 	*(cmd++) = DBRI_CMD(DBRI_COMMAND_IIQ, 0, 0);
572 	*(cmd++) = dmaaddr;
573 
574 	dbri_command_send(sc, cmd);
575 
576 	return (0);
577 }
578 
579 static int
580 dbri_reset(struct dbri_softc *sc)
581 {
582 	int bail = 0;
583 
584 	bus_space_tag_t iot = sc->sc_iot;
585 	bus_space_handle_t ioh = sc->sc_ioh;
586 
587 	bus_space_write_4(iot, ioh, DBRI_REG0, DBRI_SOFT_RESET);
588 	while ((bus_space_read_4(iot, ioh, DBRI_REG0) & DBRI_SOFT_RESET) &&
589 	    (bail < 100000)) {
590 		bail++;
591 		delay(10);
592 	}
593 	if (bail == 100000)
594 		aprint_error_dev(sc->sc_dev, "reset timed out\n");
595 	return (0);
596 }
597 
598 static volatile uint32_t *
599 dbri_command_lock(struct dbri_softc *sc)
600 {
601 
602 	if (sc->sc_locked)
603 		aprint_debug_dev(sc->sc_dev, "command buffer locked\n");
604 
605 	sc->sc_locked++;
606 
607 	return (&sc->sc_dma->command[0]);
608 }
609 
610 static void
611 dbri_command_send(struct dbri_softc *sc, volatile uint32_t *cmd)
612 {
613 	bus_space_handle_t ioh = sc->sc_ioh;
614 	bus_space_tag_t iot = sc->sc_iot;
615 	int maxloops = 1000000;
616 
617 	KASSERT(mutex_owned(&sc->sc_intr_lock));
618 
619 	sc->sc_locked--;
620 
621 	if (sc->sc_locked != 0) {
622 		aprint_error_dev(sc->sc_dev,
623 		    "command buffer improperly locked\n");
624 	} else if ((cmd - &sc->sc_dma->command[0]) >= DBRI_NUM_COMMANDS - 1) {
625 		aprint_error_dev(sc->sc_dev, "command buffer overflow\n");
626 	} else {
627 		*(cmd++) = DBRI_CMD(DBRI_COMMAND_PAUSE, 0, 0);
628 		*(cmd++) = DBRI_CMD(DBRI_COMMAND_WAIT, 1, 0);
629 		sc->sc_waitseen = 0;
630 		bus_space_write_4(iot, ioh, DBRI_REG8, sc->sc_dmabase);
631 		while ((--maxloops) > 0 &&
632 		    (bus_space_read_4(iot, ioh, DBRI_REG0)
633 		     & DBRI_COMMAND_VALID)) {
634 			bus_space_barrier(iot, ioh, DBRI_REG0, 4,
635 					  BUS_SPACE_BARRIER_READ);
636 			delay(1000);
637 		}
638 
639 		if (maxloops == 0) {
640 			aprint_error_dev(sc->sc_dev,
641 			    "chip never completed command buffer\n");
642 		} else {
643 
644 			DPRINTF("%s: command completed\n",
645 			    device_xname(sc->sc_dev));
646 
647 			while ((--maxloops) > 0 && (!sc->sc_waitseen))
648 				dbri_process_interrupt_buffer(sc);
649 			if (maxloops == 0) {
650 				aprint_error_dev(sc->sc_dev, "chip never acked WAIT\n");
651 			}
652 		}
653 	}
654 
655 	return;
656 }
657 
658 static void
659 dbri_process_interrupt_buffer(struct dbri_softc *sc)
660 {
661 	int32_t i;
662 	int orig_irqp = sc->sc_irqp;
663 
664 	KASSERT(mutex_owned(&sc->sc_intr_lock));
665 
666 	while ((i = sc->sc_dma->intr[sc->sc_irqp]) != 0) {
667 		sc->sc_dma->intr[sc->sc_irqp] = 0;
668 		sc->sc_irqp++;
669 
670 		if (sc->sc_irqp == DBRI_INT_BLOCKS)
671 			sc->sc_irqp = 1;
672 		else if ((sc->sc_irqp & (DBRI_INT_BLOCKS - 1)) == 0)
673 			sc->sc_irqp++;
674 
675 		dbri_process_interrupt(sc, i);
676 
677 		/* don't loop more than once. */
678 		if (orig_irqp == sc->sc_irqp)
679 			break;
680 	}
681 
682 	return;
683 }
684 
685 static void
686 dbri_process_interrupt(struct dbri_softc *sc, int32_t i)
687 {
688 #if 0
689 	const int liu_states[] = { 1, 0, 8, 3, 4, 5, 6, 7 };
690 #endif
691 	int val = DBRI_INTR_GETVAL(i);
692 	int channel = DBRI_INTR_GETCHAN(i);
693 	int command = DBRI_INTR_GETCMD(i);
694 	int code = DBRI_INTR_GETCODE(i);
695 #if 0
696 	int rval = DBRI_INTR_GETRVAL(i);
697 #endif
698 	if (channel == DBRI_INTR_CMD && command == DBRI_COMMAND_WAIT)
699 		sc->sc_waitseen++;
700 
701 	switch (code) {
702 	case DBRI_INTR_XCMP:	/* transmission complete */
703 	{
704 		int td;
705 		struct dbri_desc *dd;
706 
707 		DPRINTF("%s:%d tx complete\n", __func__, channel);
708 		td = sc->sc_pipe[channel].desc;
709 		dd = &sc->sc_desc[td];
710 
711 		if (dd->callback != NULL)
712 			softint_schedule(dd->softint);
713 		break;
714 	}
715 	case DBRI_INTR_FXDT:		/* fixed data change */
716 		DPRINTF("%s:%d: Fixed data change: %x\n", __func__, channel,
717 		    val);
718 		if (sc->sc_pipe[channel].sdp & DBRI_SDP_MSB)
719 			val = reverse_bytes(val, sc->sc_pipe[channel].length);
720 		if (sc->sc_pipe[channel].prec)
721 			*(sc->sc_pipe[channel].prec) = val;
722 #ifndef DBRI_SPIN
723 		DPRINTF("%s: cv_broadcast %p\n", device_xname(sc->sc_dev), sc);
724 		cv_broadcast(&sc->sc_cv);
725 #endif
726 		break;
727 	case DBRI_INTR_SBRI:
728 		DPRINTF("dbri_intr: SBRI\n");
729 		break;
730 	case DBRI_INTR_BRDY:
731 	{
732 		int td;
733 		struct dbri_desc *dd;
734 
735 		DPRINTF("dbri_intr: buffer ready (%d)\n", channel);
736 		td = sc->sc_pipe[channel].desc;
737 		dd = &sc->sc_desc[td];
738 
739 		if (dd->callback != NULL)
740 			softint_schedule(dd->softint);
741 		break;
742 	}
743 	case DBRI_INTR_UNDR:
744 	{
745 		volatile uint32_t *cmd;
746 		int td = sc->sc_pipe[channel].desc;
747 
748 		DPRINTF("%s: DBRI_INTR_UNDR\n", device_xname(sc->sc_dev));
749 
750 		sc->sc_dma->xmit[td].status = 0;
751 
752 		cmd = dbri_command_lock(sc);
753 		*(cmd++) = DBRI_CMD(DBRI_COMMAND_SDP, 0,
754 				    sc->sc_pipe[channel].sdp |
755 				    DBRI_SDP_VALID_POINTER |
756 				    DBRI_SDP_CLEAR |
757 				    DBRI_SDP_2SAME);
758 		*(cmd++) = sc->sc_dmabase + dbri_dma_off(xmit, td);
759 		dbri_command_send(sc, cmd);
760 		break;
761 	}
762 	case DBRI_INTR_CMDI:
763 		DPRINTF("ok");
764 		break;
765 	default:
766 
767 		aprint_error_dev(sc->sc_dev, "unknown interrupt code %d\n",
768 		    code);
769 		break;
770 	}
771 
772 	return;
773 }
774 
775 /*
776  * mmcodec stuff
777  */
778 
779 static int
780 mmcodec_init(struct dbri_softc *sc)
781 {
782 	bus_space_handle_t ioh = sc->sc_ioh;
783 	bus_space_tag_t iot = sc->sc_iot;
784 	uint32_t reg2;
785 	int bail;
786 
787 	reg2 = bus_space_read_4(iot, ioh, DBRI_REG2);
788 	DPRINTF("mmcodec_init: PIO reads %x\n", reg2);
789 
790 	if (reg2 & DBRI_PIO2) {
791 		aprint_normal_dev(sc->sc_dev, " onboard CS4215 detected\n");
792 		sc->sc_mm.onboard = 1;
793 	}
794 
795 	if (reg2 & DBRI_PIO0) {
796 		aprint_normal_dev(sc->sc_dev, "speakerbox detected\n");
797 		bus_space_write_4(iot, ioh, DBRI_REG2, DBRI_PIO2_ENABLE);
798 		sc->sc_mm.onboard = 0;
799 	}
800 
801 	if ((reg2 & DBRI_PIO2) && (reg2 & DBRI_PIO0)) {
802 		aprint_normal_dev(sc->sc_dev, "using speakerbox\n");
803 		bus_space_write_4(iot, ioh, DBRI_REG2, DBRI_PIO2_ENABLE);
804 		sc->sc_mm.onboard = 0;
805 	}
806 
807 	if (!(reg2 & (DBRI_PIO0|DBRI_PIO2))) {
808 		aprint_normal_dev(sc->sc_dev, "no mmcodec found\n");
809 		return -1;
810 	}
811 
812 	sc->sc_version = 0xff;
813 
814 	mmcodec_pipe_init(sc);
815 	mmcodec_default(sc);
816 
817 	sc->sc_mm.offset = sc->sc_mm.onboard ? 0 : 8;
818 
819 	/*
820 	 * mmcodec_setcontrol() sometimes fails right after powerup
821 	 * so we just try again until we either get a useful response or run
822 	 * out of time
823 	 */
824 	bail = 0;
825 	while (mmcodec_setcontrol(sc) == -1 || sc->sc_version == 0xff) {
826 
827 		bail++;
828 		if (bail > 100) {
829 			DPRINTF("%s: cs4215 probe failed at offset %d\n",
830 		    	    device_xname(sc->sc_dev), sc->sc_mm.offset);
831 			return (-1);
832 		}
833 		delay(10000);
834 	}
835 
836 	aprint_normal_dev(sc->sc_dev, "cs4215 rev %c found at offset %d\n",
837 	    0x43 + (sc->sc_version & 0xf), sc->sc_mm.offset);
838 
839 	/* set some sane defaults for mmcodec_init_data */
840 	sc->sc_params.channels = 2;
841 	sc->sc_params.precision = 16;
842 
843 	mmcodec_init_data(sc);
844 
845 	return (0);
846 }
847 
848 static void
849 mmcodec_init_data(struct dbri_softc *sc)
850 {
851 	bus_space_tag_t iot = sc->sc_iot;
852 	bus_space_handle_t ioh = sc->sc_ioh;
853 	uint32_t tmp;
854 	int data_width;
855 
856 	tmp = bus_space_read_4(iot, ioh, DBRI_REG0);
857 	tmp &= ~(DBRI_CHI_ACTIVATE);	/* disable CHI */
858 	bus_space_write_4(iot, ioh, DBRI_REG0, tmp);
859 
860 	/* switch CS4215 to data mode - set PIO3 to 1 */
861 	tmp = DBRI_PIO_ENABLE_ALL | DBRI_PIO1 | DBRI_PIO3;
862 
863 	/* XXX */
864 	tmp |= (sc->sc_mm.onboard ? DBRI_PIO0 : DBRI_PIO2);
865 
866 	bus_space_write_4(iot, ioh, DBRI_REG2, tmp);
867 	chi_reset(sc, CHIslave, 128);
868 
869 	data_width = sc->sc_params.channels * sc->sc_params.precision;
870 
871 	if ((data_width != 32) && (data_width != 8))
872 		aprint_error("%s: data_width is %d\n", __func__, data_width);
873 
874 	pipe_ts_link(sc, 20, PIPEoutput, 16, 32, sc->sc_mm.offset + 32);
875 	pipe_ts_link(sc, 4, PIPEoutput, 16, data_width, sc->sc_mm.offset);
876 	pipe_ts_link(sc, 6, PIPEinput, 16, data_width, sc->sc_mm.offset);
877 #if 0
878 	/* readback for the mixer registers - we don't use that */
879 	pipe_ts_link(sc, 21, PIPEinput, 16, 32, sc->sc_mm.offset + 32);
880 
881 	pipe_receive_fixed(sc, 21, &sc->sc_mm.d.ldata);
882 #endif
883 	mmcodec_setgain(sc, 0);
884 
885 	tmp = bus_space_read_4(iot, ioh, DBRI_REG0);
886 	tmp |= DBRI_CHI_ACTIVATE;
887 	bus_space_write_4(iot, ioh, DBRI_REG0, tmp);
888 
889 	return;
890 }
891 
892 static void
893 mmcodec_pipe_init(struct dbri_softc *sc)
894 {
895 
896 	pipe_setup(sc, 4, DBRI_SDP_MEM | DBRI_SDP_TO_SER | DBRI_SDP_MSB);
897 	pipe_setup(sc, 20, DBRI_SDP_FIXED | DBRI_SDP_TO_SER | DBRI_SDP_MSB);
898 	pipe_setup(sc, 6, DBRI_SDP_MEM | DBRI_SDP_FROM_SER | DBRI_SDP_MSB);
899 #if 0
900 	pipe_setup(sc, 21, DBRI_SDP_FIXED | DBRI_SDP_FROM_SER | DBRI_SDP_MSB);
901 #endif
902 	pipe_setup(sc, 17, DBRI_SDP_FIXED | DBRI_SDP_TO_SER | DBRI_SDP_MSB);
903 	pipe_setup(sc, 18, DBRI_SDP_FIXED | DBRI_SDP_FROM_SER | DBRI_SDP_MSB);
904 	pipe_setup(sc, 19, DBRI_SDP_FIXED | DBRI_SDP_FROM_SER | DBRI_SDP_MSB);
905 
906 	pipe_receive_fixed(sc, 18, &sc->sc_mm.status);
907 	pipe_receive_fixed(sc, 19, &sc->sc_mm.version);
908 
909 	return;
910 }
911 
912 static void
913 mmcodec_default(struct dbri_softc *sc)
914 {
915 	struct cs4215_state *mm = &sc->sc_mm;
916 
917 	/*
918 	 * no action, memory resetting only
919 	 *
920 	 * data time slots 5-8
921 	 * speaker, line and headphone enable. set gain to half.
922 	 * input is line
923 	 */
924 	mm->d.bdata[0] = sc->sc_latt = 0x20 | CS4215_HE | CS4215_LE;
925 	mm->d.bdata[1] = sc->sc_ratt = 0x20 | CS4215_SE;
926 	sc->sc_linp = 128;
927 	sc->sc_rinp = 128;
928 	sc->sc_monitor = 0;
929 	sc->sc_input = 1;	/* line */
930 	mm->d.bdata[2] = (CS4215_LG((sc->sc_linp >> 4)) & 0x0f) |
931 	    ((sc->sc_input == 2) ? CS4215_IS : 0) | CS4215_PIO0 | CS4215_PIO1;
932 	mm->d.bdata[3] = (CS4215_RG((sc->sc_rinp >> 4) & 0x0f)) |
933 	    CS4215_MA(15 - ((sc->sc_monitor >> 4) & 0x0f));
934 
935 
936 	/*
937 	 * control time slots 1-4
938 	 *
939 	 * 0: default I/O voltage scale
940 	 * 1: 8 bit ulaw, 8kHz, mono, high pass filter disabled
941 	 * 2: serial enable, CHI master, 128 bits per frame, clock 1
942 	 * 3: tests disabled
943 	 */
944 	mm->c.bcontrol[0] = CS4215_ONE | CS4215_MLB;
945 	mm->c.bcontrol[1] = CS4215_DFR_ULAW | CS4215_FREQ[0].csval;
946 	mm->c.bcontrol[2] = CS4215_XCLK | CS4215_BSEL_128 | CS4215_FREQ[0].xtal;
947 	mm->c.bcontrol[3] = 0;
948 
949 	return;
950 }
951 
952 static void
953 mmcodec_setgain(struct dbri_softc *sc, int mute)
954 {
955 	if (mute) {
956 		/* disable all outputs, max. attenuation */
957 		sc->sc_mm.d.bdata[0] = sc->sc_latt | 63;
958 		sc->sc_mm.d.bdata[1] = sc->sc_ratt | 63;
959 	} else {
960 
961 		sc->sc_mm.d.bdata[0] = sc->sc_latt;
962 		sc->sc_mm.d.bdata[1] = sc->sc_ratt;
963 	}
964 
965 	/* input stuff */
966 	sc->sc_mm.d.bdata[2] = CS4215_LG((sc->sc_linp >> 4) & 0x0f) |
967 	    ((sc->sc_input == 2) ? CS4215_IS : 0) | CS4215_PIO0 | CS4215_PIO1;
968 	sc->sc_mm.d.bdata[3] = (CS4215_RG((sc->sc_rinp >> 4)) & 0x0f) |
969 	    (CS4215_MA(15 - ((sc->sc_monitor >> 4) & 0x0f)));
970 
971 	if (sc->sc_powerstate == 0)
972 		return;
973 	pipe_transmit_fixed(sc, 20, sc->sc_mm.d.ldata);
974 
975 	DPRINTF("mmcodec_setgain: %08x\n", sc->sc_mm.d.ldata);
976 	/* give the chip some time to execute the command */
977 	delay(250);
978 
979 	return;
980 }
981 
982 static int
983 mmcodec_setcontrol(struct dbri_softc *sc)
984 {
985 	bus_space_tag_t iot = sc->sc_iot;
986 	bus_space_handle_t ioh = sc->sc_ioh;
987 	uint32_t val;
988 	uint32_t tmp;
989 	int ret = 0;
990 #ifdef DBRI_SPIN
991 	int i;
992 #else
993 	int error, bail = 0;
994 #endif
995 
996 	KASSERT(mutex_owned(&sc->sc_intr_lock));
997 
998 	/*
999 	 * Temporarily mute outputs and wait 125 us to make sure that it
1000 	 * happens. This avoids clicking noises.
1001 	 */
1002 	mmcodec_setgain(sc, 1);
1003 	delay(125);
1004 
1005 	tmp = bus_space_read_4(iot, ioh, DBRI_REG0);
1006 	tmp &= ~(DBRI_CHI_ACTIVATE);	/* disable CHI */
1007 	bus_space_write_4(iot, ioh, DBRI_REG0, tmp);
1008 
1009 	bus_space_write_4(iot, ioh, DBRI_REG2, 0);
1010 	delay(125);
1011 
1012 	/* enable control mode */
1013 	val = DBRI_PIO_ENABLE_ALL | DBRI_PIO1;	/* was PIO1 */
1014 
1015 	/* XXX */
1016 	val |= (sc->sc_mm.onboard ? DBRI_PIO0 : DBRI_PIO2);
1017 
1018 	bus_space_write_4(iot, ioh, DBRI_REG2, val);
1019 	delay(34);
1020 
1021 	/*
1022 	 * in control mode, the cs4215 is the slave device, so the
1023 	 * DBRI must act as the CHI master.
1024 	 *
1025 	 * in data mode, the cs4215 must be the CHI master to insure
1026 	 * that the data stream is in sync with its codec
1027 	 */
1028 	tmp = bus_space_read_4(iot, ioh, DBRI_REG0);
1029 	tmp &= ~DBRI_COMMAND_CHI;
1030 	bus_space_write_4(iot, ioh, DBRI_REG0, tmp);
1031 
1032 	chi_reset(sc, CHImaster, 128);
1033 
1034 	/* control mode */
1035 	pipe_ts_link(sc, 17, PIPEoutput, 16, 32, sc->sc_mm.offset);
1036 	pipe_ts_link(sc, 18, PIPEinput, 16, 8, sc->sc_mm.offset);
1037 	pipe_ts_link(sc, 19, PIPEinput, 16, 8, sc->sc_mm.offset + 48);
1038 
1039 	pipe_receive_fixed(sc, 18, &sc->sc_mm.status);
1040 
1041 	/* wait for the chip to echo back CLB as zero */
1042 	sc->sc_mm.c.bcontrol[0] &= ~CS4215_CLB;
1043 	pipe_transmit_fixed(sc, 17, sc->sc_mm.c.lcontrol);
1044 
1045 	tmp = bus_space_read_4(iot, ioh, DBRI_REG0);
1046 	tmp |= DBRI_CHI_ACTIVATE;
1047 	bus_space_write_4(iot, ioh, DBRI_REG0, tmp);
1048 
1049 #ifdef DBRI_SPIN
1050 	i = 1024;
1051 	while (((sc->sc_mm.status & 0xe4) != CS4215_ONE) && (i > 0)) {
1052 		i--;
1053 		delay(125);
1054 	}
1055 
1056 	if (i == 0) {
1057 		DPRINTF("%s: cs4215 didn't respond to CLB (0x%02x)\n",
1058 		    device_xname(sc->sc_dev), sc->sc_mm.status);
1059 		ret = -1;
1060 		goto fail;
1061 	}
1062 #else
1063 	while (((sc->sc_mm.status & 0xe4) != CS4215_ONE) && (bail < 10)) {
1064 		DPRINTF("%s: cv_wait_sig %p\n", device_xname(sc->sc_dev), sc);
1065 		error = cv_timedwait_sig(&sc->sc_cv, &sc->sc_intr_lock, hz);
1066 		if (error == EINTR) {
1067 			DPRINTF("%s: interrupted\n", device_xname(sc->sc_dev));
1068 			ret = -1;
1069 			mutex_spin_exit(&sc->sc_intr_lock);
1070 			goto fail;
1071 		}
1072 		bail++;
1073 	}
1074 	if (bail >= 10) {
1075 		aprint_error("%s: switching to control mode timed out (%x %x)\n",
1076 		    device_xname(sc->sc_dev), sc->sc_mm.status,
1077 		    bus_space_read_4(iot, ioh, DBRI_REG2));
1078 		ret = -1;
1079 		goto fail;
1080 	}
1081 #endif
1082 
1083 	/* copy the version information before it becomes unreadable again */
1084 	sc->sc_version = sc->sc_mm.version;
1085 	sc->sc_whack_codec = 0;
1086 
1087 fail:
1088 	/* terminate cs4215 control mode */
1089 	sc->sc_mm.c.bcontrol[0] |= CS4215_CLB;
1090 	pipe_transmit_fixed(sc, 17, sc->sc_mm.c.lcontrol);
1091 
1092 	/* two frames of control info @ 8kHz frame rate = 250us delay */
1093 	delay(250);
1094 
1095 	mmcodec_setgain(sc, 0);
1096 
1097 	return ret;
1098 
1099 }
1100 
1101 /*
1102  * CHI combo
1103  */
1104 static void
1105 chi_reset(struct dbri_softc *sc, enum ms ms, int bpf)
1106 {
1107 	volatile uint32_t *cmd;
1108 	int val;
1109 	int clockrate, divisor;
1110 
1111 	cmd = dbri_command_lock(sc);
1112 
1113 	/* set CHI anchor: pipe 16 */
1114 	val = DBRI_DTS_VI | DBRI_DTS_INS | DBRI_DTS_PRVIN(16) | DBRI_PIPE(16);
1115 	*(cmd++) = DBRI_CMD(DBRI_COMMAND_DTS, 0, val);
1116 	*(cmd++) = DBRI_TS_ANCHOR | DBRI_TS_NEXT(16);
1117 	*(cmd++) = 0;
1118 
1119 	val = DBRI_DTS_VO | DBRI_DTS_INS | DBRI_DTS_PRVOUT(16) | DBRI_PIPE(16);
1120 	*(cmd++) = DBRI_CMD(DBRI_COMMAND_DTS, 0, val);
1121 	*(cmd++) = 0;
1122 	*(cmd++) = DBRI_TS_ANCHOR | DBRI_TS_NEXT(16);
1123 
1124 	sc->sc_pipe[16].sdp = 1;
1125 	sc->sc_pipe[16].next = 16;
1126 	sc->sc_chi_pipe_in = 16;
1127 	sc->sc_chi_pipe_out = 16;
1128 
1129 	switch (ms) {
1130 	case CHIslave:
1131 		*(cmd++) = DBRI_CMD(DBRI_COMMAND_CHI, 0, DBRI_CHI_CHICM(0));
1132 		break;
1133 	case CHImaster:
1134 		clockrate = bpf * 8;
1135 		divisor = 12288 / clockrate;
1136 
1137 		if (divisor > 255 || divisor * clockrate != 12288)
1138 			aprint_error_dev(sc->sc_dev,
1139 			    "illegal bits-per-frame %d\n", bpf);
1140 
1141 		*(cmd++) = DBRI_CMD(DBRI_COMMAND_CHI, 0,
1142 		    DBRI_CHI_CHICM(divisor) | DBRI_CHI_FD | DBRI_CHI_BPF(bpf));
1143 		break;
1144 	default:
1145 		aprint_error_dev(sc->sc_dev, "unknown value for ms!\n");
1146 		break;
1147 	}
1148 
1149 	sc->sc_chi_bpf = bpf;
1150 
1151 	/* CHI data mode */
1152 	*(cmd++) = DBRI_CMD(DBRI_COMMAND_PAUSE, 0, 0);
1153 	*(cmd++) = DBRI_CMD(DBRI_COMMAND_CDM, 0,
1154 	    DBRI_CDM_XCE | DBRI_CDM_XEN | DBRI_CDM_REN);
1155 
1156 	dbri_command_send(sc, cmd);
1157 
1158 	return;
1159 }
1160 
1161 /*
1162  * pipe stuff
1163  */
1164 static void
1165 pipe_setup(struct dbri_softc *sc, int pipe, int sdp)
1166 {
1167 	DPRINTF("pipe setup: %d\n", pipe);
1168 	if (pipe < 0 || pipe >= DBRI_PIPE_MAX) {
1169 		aprint_error_dev(sc->sc_dev, "illegal pipe number %d\n",
1170 		    pipe);
1171 		return;
1172 	}
1173 
1174 	if ((sdp & 0xf800) != sdp)
1175 		aprint_error_dev(sc->sc_dev, "strange SDP value %d\n",
1176 		    sdp);
1177 
1178 	if (DBRI_SDP_MODE(sdp) == DBRI_SDP_FIXED &&
1179 	    !(sdp & DBRI_SDP_TO_SER))
1180 		sdp |= DBRI_SDP_CHANGE;
1181 
1182 	sdp |= DBRI_PIPE(pipe);
1183 
1184 	sc->sc_pipe[pipe].sdp = sdp;
1185 	sc->sc_pipe[pipe].desc = -1;
1186 
1187 	pipe_reset(sc, pipe);
1188 
1189 	return;
1190 }
1191 
1192 static void
1193 pipe_reset(struct dbri_softc *sc, int pipe)
1194 {
1195 	struct dbri_desc *dd;
1196 	int sdp;
1197 	int desc;
1198 	volatile uint32_t *cmd;
1199 
1200 	if (pipe < 0 || pipe >= DBRI_PIPE_MAX) {
1201 		aprint_error_dev(sc->sc_dev, "illegal pipe number %d\n",
1202 		    pipe);
1203 		return;
1204 	}
1205 
1206 	sdp = sc->sc_pipe[pipe].sdp;
1207 	if (sdp == 0) {
1208 		aprint_error_dev(sc->sc_dev, "can not reset uninitialized pipe %d\n",
1209 		    pipe);
1210 		return;
1211 	}
1212 
1213 	cmd = dbri_command_lock(sc);
1214 	*(cmd++) = DBRI_CMD(DBRI_COMMAND_SDP, 0,
1215 	    sdp | DBRI_SDP_CLEAR | DBRI_SDP_VALID_POINTER);
1216 	*(cmd++) = 0;
1217 	dbri_command_send(sc, cmd);
1218 
1219 	desc = sc->sc_pipe[pipe].desc;
1220 
1221 	dd = &sc->sc_desc[desc];
1222 
1223 	dd->busy = 0;
1224 
1225 #if 0
1226 	if (dd->callback)
1227 		softint_schedule(dd->softint);
1228 #endif
1229 
1230 	sc->sc_pipe[pipe].desc = -1;
1231 
1232 	return;
1233 }
1234 
1235 static void
1236 pipe_receive_fixed(struct dbri_softc *sc, int pipe, volatile uint32_t *prec)
1237 {
1238 
1239 	if (pipe < DBRI_PIPE_MAX / 2 || pipe >= DBRI_PIPE_MAX) {
1240 		aprint_error_dev(sc->sc_dev, "illegal pipe number %d\n",
1241 		    pipe);
1242 		return;
1243 	}
1244 
1245 	if (DBRI_SDP_MODE(sc->sc_pipe[pipe].sdp) != DBRI_SDP_FIXED) {
1246 		aprint_error_dev(sc->sc_dev, "non-fixed pipe %d\n",
1247 		    pipe);
1248 		return;
1249 	}
1250 
1251 	if (sc->sc_pipe[pipe].sdp & DBRI_SDP_TO_SER) {
1252 		aprint_error_dev(sc->sc_dev, "can not receive on transmit pipe %d\b",
1253 		    pipe);
1254 		return;
1255 	}
1256 
1257 	sc->sc_pipe[pipe].prec = prec;
1258 
1259 	return;
1260 }
1261 
1262 static void
1263 pipe_transmit_fixed(struct dbri_softc *sc, int pipe, uint32_t data)
1264 {
1265 	volatile uint32_t *cmd;
1266 
1267 	if (pipe < DBRI_PIPE_MAX / 2 || pipe >= DBRI_PIPE_MAX) {
1268 		aprint_error_dev(sc->sc_dev, "illegal pipe number %d\n",
1269 		    pipe);
1270 		return;
1271 	}
1272 
1273 	if (DBRI_SDP_MODE(sc->sc_pipe[pipe].sdp) == 0) {
1274 		aprint_error_dev(sc->sc_dev, "uninitialized pipe %d\n",
1275 		    pipe);
1276 		return;
1277 	}
1278 
1279 	if (DBRI_SDP_MODE(sc->sc_pipe[pipe].sdp) != DBRI_SDP_FIXED) {
1280 		aprint_error_dev(sc->sc_dev, "non-fixed pipe %d\n",
1281 		    pipe);
1282 		return;
1283 	}
1284 
1285 	if (!(sc->sc_pipe[pipe].sdp & DBRI_SDP_TO_SER)) {
1286 		aprint_error_dev(sc->sc_dev, "called on receive pipe %d\n",
1287 		    pipe);
1288 		return;
1289 	}
1290 
1291 	if (sc->sc_pipe[pipe].sdp & DBRI_SDP_MSB)
1292 		data = reverse_bytes(data, sc->sc_pipe[pipe].length);
1293 
1294 	cmd = dbri_command_lock(sc);
1295 	*(cmd++) = DBRI_CMD(DBRI_COMMAND_SSP, 0, pipe);
1296 	*(cmd++) = data;
1297 
1298 	dbri_command_send(sc, cmd);
1299 
1300 	return;
1301 }
1302 
1303 static void
1304 setup_ring_xmit(struct dbri_softc *sc, int pipe, int which, int num, int blksz,
1305 		void (*callback)(void *), void *callback_args)
1306 {
1307 	volatile uint32_t *cmd;
1308 	int i;
1309 #if 0
1310 	int td;
1311 	int td_first, td_last;
1312 #endif
1313 	bus_addr_t dmabuf, dmabase;
1314 	struct dbri_desc *dd = &sc->sc_desc[which];
1315 
1316 	switch (pipe) {
1317 		case 4:
1318 			/* output, offset 0 */
1319 			break;
1320 		default:
1321 			aprint_error("%s: illegal pipe number (%d)\n",
1322 			    __func__, pipe);
1323 			return;
1324 	}
1325 
1326 #if 0
1327 	td = 0;
1328 	td_first = td_last = -1;
1329 #endif
1330 
1331 	if (sc->sc_pipe[pipe].sdp == 0) {
1332 		aprint_error_dev(sc->sc_dev, "uninitialized pipe %d\n",
1333 		    pipe);
1334 		return;
1335 	}
1336 
1337 	dmabuf = dd->dmabase;
1338 	dmabase = sc->sc_dmabase;
1339 
1340 	for (i = 0; i < (num - 1); i++) {
1341 
1342 		sc->sc_dma->xmit[i].flags = TX_BCNT(blksz)
1343 		    | TX_EOF | TX_BINT;
1344 		sc->sc_dma->xmit[i].ba = dmabuf;
1345 		sc->sc_dma->xmit[i].nda = dmabase + dbri_dma_off(xmit, i + 1);
1346 		sc->sc_dma->xmit[i].status = 0;
1347 
1348 #if 0
1349 		td_last = td;
1350 #endif
1351 		dmabuf += blksz;
1352 	}
1353 
1354 	sc->sc_dma->xmit[i].flags = TX_BCNT(blksz) | TX_EOF | TX_BINT;
1355 
1356 	sc->sc_dma->xmit[i].ba = dmabuf;
1357 	sc->sc_dma->xmit[i].nda = dmabase + dbri_dma_off(xmit, 0);
1358 	sc->sc_dma->xmit[i].status = 0;
1359 
1360 	dd->callback = callback;
1361 	dd->callback_args = callback_args;
1362 
1363 	/* the pipe shouldn't be active */
1364 	if (pipe_active(sc, pipe)) {
1365 		aprint_error("pipe active (CDP)\n");
1366 		/* pipe is already active */
1367 #if 0
1368 		td_last = sc->sc_pipe[pipe].desc;
1369 		while (sc->sc_desc[td_last].next != -1)
1370 			td_last = sc->sc_desc[td_last].next;
1371 
1372 		sc->sc_desc[td_last].next = td_first;
1373 		sc->sc_dma->desc[td_last].nda =
1374 		    sc->sc_dmabase + dbri_dma_off(desc, td_first);
1375 
1376 		cmd = dbri_command_lock(sc);
1377 		*(cmd++) = DBRI_CMD(DBRI_COMMAND_CDP, 0, pipe);
1378 		dbri_command_send(sc, cmd);
1379 #endif
1380 	} else {
1381 		/*
1382 		 * pipe isn't active - issue an SDP command to start our
1383 		 * chain of TDs running
1384 		 */
1385 		sc->sc_pipe[pipe].desc = which;
1386 		cmd = dbri_command_lock(sc);
1387 		*(cmd++) = DBRI_CMD(DBRI_COMMAND_SDP, 0,
1388 					sc->sc_pipe[pipe].sdp |
1389 					DBRI_SDP_VALID_POINTER |
1390 					DBRI_SDP_EVERY |
1391 					DBRI_SDP_CLEAR);
1392 		*(cmd++) = sc->sc_dmabase + dbri_dma_off(xmit, 0);
1393 		dbri_command_send(sc, cmd);
1394 		DPRINTF("%s: starting DMA\n", __func__);
1395 	}
1396 
1397 	return;
1398 }
1399 
1400 static void
1401 setup_ring_recv(struct dbri_softc *sc, int pipe, int which, int num, int blksz,
1402 		void (*callback)(void *), void *callback_args)
1403 {
1404 	volatile uint32_t *cmd;
1405 	int i;
1406 #if 0
1407 	int td_first, td_last;
1408 #endif
1409 	bus_addr_t dmabuf, dmabase;
1410 	struct dbri_desc *dd = &sc->sc_desc[which];
1411 
1412 	switch (pipe) {
1413 		case 6:
1414 			break;
1415 		default:
1416 			aprint_error("%s: illegal pipe number (%d)\n",
1417 			    __func__, pipe);
1418 			return;
1419 	}
1420 
1421 #if 0
1422 	td_first = td_last = -1;
1423 #endif
1424 
1425 	if (sc->sc_pipe[pipe].sdp == 0) {
1426 		aprint_error_dev(sc->sc_dev, "uninitialized pipe %d\n",
1427 		    pipe);
1428 		return;
1429 	}
1430 
1431 	dmabuf = dd->dmabase;
1432 	dmabase = sc->sc_dmabase;
1433 
1434 	for (i = 0; i < (num - 1); i++) {
1435 
1436 		sc->sc_dma->recv[i].flags = RX_BSIZE(blksz) | RX_FINAL;
1437 		sc->sc_dma->recv[i].ba = dmabuf;
1438 		sc->sc_dma->recv[i].nda = dmabase + dbri_dma_off(recv, i + 1);
1439 		sc->sc_dma->recv[i].status = RX_EOF;
1440 
1441 #if 0
1442 		td_last = i;
1443 #endif
1444 		dmabuf += blksz;
1445 	}
1446 
1447 	sc->sc_dma->recv[i].flags = RX_BSIZE(blksz) | RX_FINAL;
1448 
1449 	sc->sc_dma->recv[i].ba = dmabuf;
1450 	sc->sc_dma->recv[i].nda = dmabase + dbri_dma_off(recv, 0);
1451 	sc->sc_dma->recv[i].status = RX_EOF;
1452 
1453 	dd->callback = callback;
1454 	dd->callback_args = callback_args;
1455 
1456 	/* the pipe shouldn't be active */
1457 	if (pipe_active(sc, pipe)) {
1458 		aprint_error("pipe active (CDP)\n");
1459 		/* pipe is already active */
1460 #if 0
1461 		td_last = sc->sc_pipe[pipe].desc;
1462 		while (sc->sc_desc[td_last].next != -1)
1463 			td_last = sc->sc_desc[td_last].next;
1464 
1465 		sc->sc_desc[td_last].next = td_first;
1466 		sc->sc_dma->desc[td_last].nda =
1467 		    sc->sc_dmabase + dbri_dma_off(desc, td_first);
1468 
1469 		cmd = dbri_command_lock(sc);
1470 		*(cmd++) = DBRI_CMD(DBRI_COMMAND_CDP, 0, pipe);
1471 		dbri_command_send(sc, cmd);
1472 #endif
1473 	} else {
1474 		/*
1475 		 * pipe isn't active - issue an SDP command to start our
1476 		 * chain of TDs running
1477 		 */
1478 		sc->sc_pipe[pipe].desc = which;
1479 		cmd = dbri_command_lock(sc);
1480 		*(cmd++) = DBRI_CMD(DBRI_COMMAND_SDP, 0,
1481 					sc->sc_pipe[pipe].sdp |
1482 					DBRI_SDP_VALID_POINTER |
1483 					DBRI_SDP_EVERY |
1484 					DBRI_SDP_CLEAR);
1485 		*(cmd++) = sc->sc_dmabase + dbri_dma_off(recv, 0);
1486 		dbri_command_send(sc, cmd);
1487 		DPRINTF("%s: starting DMA\n", __func__);
1488 	}
1489 
1490 	return;
1491 }
1492 
1493 static void
1494 pipe_ts_link(struct dbri_softc *sc, int pipe, enum io dir, int basepipe,
1495 		int len, int cycle)
1496 {
1497 	volatile uint32_t *cmd;
1498 	int prevpipe, nextpipe;
1499 	int val;
1500 
1501 	DPRINTF("%s: %d\n", __func__, pipe);
1502 	if (pipe < 0 || pipe >= DBRI_PIPE_MAX ||
1503 	    basepipe < 0 || basepipe >= DBRI_PIPE_MAX) {
1504 		aprint_error_dev(sc->sc_dev, "illegal pipe numbers (%d, %d)\n",
1505 		    pipe, basepipe);
1506 		return;
1507 	}
1508 
1509 	if (sc->sc_pipe[pipe].sdp == 0 || sc->sc_pipe[basepipe].sdp == 0) {
1510 		aprint_error_dev(sc->sc_dev, "uninitialized pipe (%d, %d)\n",
1511 		    pipe, basepipe);
1512 		return;
1513 	}
1514 
1515 	if (basepipe == 16 && dir == PIPEoutput && cycle == 0)
1516 		cycle = sc->sc_chi_bpf;
1517 
1518 	if (basepipe == pipe)
1519 		prevpipe = nextpipe = pipe;
1520 	else {
1521 		if (basepipe == 16) {
1522 			if (dir == PIPEinput) {
1523 				prevpipe = sc->sc_chi_pipe_in;
1524 			} else {
1525 				prevpipe = sc->sc_chi_pipe_out;
1526 			}
1527 		} else
1528 			prevpipe = basepipe;
1529 
1530 		nextpipe = sc->sc_pipe[prevpipe].next;
1531 
1532 		while (sc->sc_pipe[nextpipe].cycle < cycle &&
1533 		    sc->sc_pipe[nextpipe].next != basepipe) {
1534 			prevpipe = nextpipe;
1535 			nextpipe = sc->sc_pipe[nextpipe].next;
1536 		}
1537 	}
1538 
1539 	if (prevpipe == 16) {
1540 		if (dir == PIPEinput) {
1541 			sc->sc_chi_pipe_in = pipe;
1542 		} else {
1543 			sc->sc_chi_pipe_out = pipe;
1544 		}
1545 	} else
1546 		sc->sc_pipe[prevpipe].next = pipe;
1547 
1548 	sc->sc_pipe[pipe].next = nextpipe;
1549 	sc->sc_pipe[pipe].cycle = cycle;
1550 	sc->sc_pipe[pipe].length = len;
1551 
1552 	cmd = dbri_command_lock(sc);
1553 
1554 	switch (dir) {
1555 	case PIPEinput:
1556 		val = DBRI_DTS_VI | DBRI_DTS_INS | DBRI_DTS_PRVIN(prevpipe);
1557 		val |= pipe;
1558 		*(cmd++) = DBRI_CMD(DBRI_COMMAND_DTS, 0, val);
1559 		*(cmd++) = DBRI_TS_LEN(len) | DBRI_TS_CYCLE(cycle) |
1560 		    DBRI_TS_NEXT(nextpipe);
1561 		*(cmd++) = 0;
1562 		break;
1563 	case PIPEoutput:
1564 		val = DBRI_DTS_VO | DBRI_DTS_INS | DBRI_DTS_PRVOUT(prevpipe);
1565 		val |= pipe;
1566 		*(cmd++) = DBRI_CMD(DBRI_COMMAND_DTS, 0, val);
1567 		*(cmd++) = 0;
1568 		*(cmd++) = DBRI_TS_LEN(len) | DBRI_TS_CYCLE(cycle) |
1569 		    DBRI_TS_NEXT(nextpipe);
1570 		break;
1571 	default:
1572 		DPRINTF("%s: should not have happened!\n",
1573 		    device_xname(sc->sc_dev));
1574 		break;
1575 	}
1576 
1577 	dbri_command_send(sc, cmd);
1578 
1579 	return;
1580 }
1581 
1582 static int
1583 pipe_active(struct dbri_softc *sc, int pipe)
1584 {
1585 
1586 	return (sc->sc_pipe[pipe].desc != -1);
1587 }
1588 
1589 /*
1590  * subroutines required to interface with audio(9)
1591  */
1592 
1593 static int
1594 dbri_query_format(void *hdl, audio_format_query_t *afp)
1595 {
1596 
1597 	return audio_query_format(dbri_formats, DBRI_NFORMATS, afp);
1598 }
1599 
1600 static int
1601 dbri_set_format(void *hdl, int setmode,
1602 		const audio_params_t *play, const audio_params_t *rec,
1603 		audio_filter_reg_t *pfil, audio_filter_reg_t *rfil)
1604 {
1605 	struct dbri_softc *sc = hdl;
1606 	int rate;
1607 
1608 	/* *play and *rec are the identical because !AUDIO_PROP_INDEPENDENT. */
1609 
1610 	for (rate = 0; CS4215_FREQ[rate].freq; rate++)
1611 		if (CS4215_FREQ[rate].freq == play->sample_rate)
1612 			break;
1613 
1614 	if (CS4215_FREQ[rate].freq == 0)
1615 		return EINVAL;
1616 
1617 	/* set frequency */
1618 	sc->sc_mm.c.bcontrol[1] &= ~0x38;
1619 	sc->sc_mm.c.bcontrol[1] |= CS4215_FREQ[rate].csval;
1620 	sc->sc_mm.c.bcontrol[2] &= ~0x70;
1621 	sc->sc_mm.c.bcontrol[2] |= CS4215_FREQ[rate].xtal;
1622 
1623 	/* set encoding */
1624 	sc->sc_mm.c.bcontrol[1] &= ~3;
1625 	sc->sc_mm.c.bcontrol[1] |= CS4215_DFR_LINEAR16;
1626 
1627 	/* set channel */
1628 	sc->sc_mm.c.bcontrol[1] |= CS4215_DFR_STEREO;
1629 
1630 	sc->sc_whack_codec = 1;
1631 	return 0;
1632 }
1633 
1634 static int
1635 dbri_round_blocksize(void *hdl, int bs, int mode,
1636 			const audio_params_t *param)
1637 {
1638 
1639 	if (bs > 0x1ffc)
1640 		return 0x1ffc;
1641 	return bs;
1642 }
1643 
1644 static int
1645 dbri_halt_output(void *hdl)
1646 {
1647 	struct dbri_softc *sc = hdl;
1648 
1649 	if (!sc->sc_playing)
1650 		return 0;
1651 
1652 	sc->sc_playing = 0;
1653 	pipe_reset(sc, 4);
1654 	return (0);
1655 }
1656 
1657 static int
1658 dbri_getdev(void *hdl, struct audio_device *ret)
1659 {
1660 
1661 	*ret = dbri_device;
1662 	return (0);
1663 }
1664 
1665 static int
1666 dbri_set_port(void *hdl, mixer_ctrl_t *mc)
1667 {
1668 	struct dbri_softc *sc = hdl;
1669 	int latt = sc->sc_latt, ratt = sc->sc_ratt;
1670 
1671 	switch (mc->dev) {
1672 	    case DBRI_VOL_OUTPUT:	/* master volume */
1673 		latt = (latt & 0xc0) | (63 -
1674 		    uimin(mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] >> 2, 63));
1675 		ratt = (ratt & 0xc0) | (63 -
1676 		    uimin(mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] >> 2, 63));
1677 		break;
1678 	    case DBRI_ENABLE_MONO:	/* built-in speaker */
1679 	    	if (mc->un.ord == 1) {
1680 			ratt |= CS4215_SE;
1681 		} else
1682 			ratt &= ~CS4215_SE;
1683 		break;
1684 	    case DBRI_ENABLE_HEADPHONE:	/* headphones output */
1685 	    	if (mc->un.ord == 1) {
1686 			latt |= CS4215_HE;
1687 		} else
1688 			latt &= ~CS4215_HE;
1689 		break;
1690 	    case DBRI_ENABLE_LINE:	/* line out */
1691 	    	if (mc->un.ord == 1) {
1692 			latt |= CS4215_LE;
1693 		} else
1694 			latt &= ~CS4215_LE;
1695 		break;
1696 	    case DBRI_VOL_MONITOR:
1697 		if (mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] ==
1698 		    sc->sc_monitor)
1699 			return 0;
1700 		sc->sc_monitor = mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
1701 		break;
1702 	    case DBRI_INPUT_GAIN:
1703 		sc->sc_linp = mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
1704 		sc->sc_rinp = mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
1705 		break;
1706 	    case DBRI_INPUT_SELECT:
1707 	    	if (mc->un.mask == sc->sc_input)
1708 	    		return 0;
1709 	    	sc->sc_input =  mc->un.mask;
1710 	    	break;
1711 	}
1712 
1713 	sc->sc_latt = latt;
1714 	sc->sc_ratt = ratt;
1715 
1716 	mutex_spin_enter(&sc->sc_intr_lock);
1717 	mmcodec_setgain(sc, 0);
1718 	mutex_spin_exit(&sc->sc_intr_lock);
1719 
1720 	return (0);
1721 }
1722 
1723 static int
1724 dbri_get_port(void *hdl, mixer_ctrl_t *mc)
1725 {
1726 	struct dbri_softc *sc = hdl;
1727 
1728 	switch (mc->dev) {
1729 	    case DBRI_VOL_OUTPUT:	/* master volume */
1730 		mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1731 		    (63 - (sc->sc_latt & 0x3f)) << 2;
1732 		mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1733 		    (63 - (sc->sc_ratt & 0x3f)) << 2;
1734 		return (0);
1735 	    case DBRI_ENABLE_MONO:	/* built-in speaker */
1736 	    	mc->un.ord = (sc->sc_ratt & CS4215_SE) ? 1 : 0;
1737 		return 0;
1738 	    case DBRI_ENABLE_HEADPHONE:	/* headphones output */
1739 	    	mc->un.ord = (sc->sc_latt & CS4215_HE) ? 1 : 0;
1740 		return 0;
1741 	    case DBRI_ENABLE_LINE:	/* line out */
1742 	    	mc->un.ord = (sc->sc_latt & CS4215_LE) ? 1 : 0;
1743 		return 0;
1744 	    case DBRI_VOL_MONITOR:
1745 		mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = sc->sc_monitor;
1746 		return 0;
1747 	    case DBRI_INPUT_GAIN:
1748 		mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = sc->sc_linp;
1749 		mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = sc->sc_rinp;
1750 		return 0;
1751 	    case DBRI_INPUT_SELECT:
1752 	    	mc->un.mask = sc->sc_input;
1753 	    	return 0;
1754 	}
1755 	return (EINVAL);
1756 }
1757 
1758 static int
1759 dbri_query_devinfo(void *hdl, mixer_devinfo_t *di)
1760 {
1761 
1762 	switch (di->index) {
1763 	case DBRI_MONITOR_CLASS:
1764 		di->mixer_class = DBRI_MONITOR_CLASS;
1765 		strcpy(di->label.name, AudioCmonitor);
1766 		di->type = AUDIO_MIXER_CLASS;
1767 		di->next = di->prev = AUDIO_MIXER_LAST;
1768 		return 0;
1769 	case DBRI_OUTPUT_CLASS:
1770 		di->mixer_class = DBRI_OUTPUT_CLASS;
1771 		strcpy(di->label.name, AudioCoutputs);
1772 		di->type = AUDIO_MIXER_CLASS;
1773 		di->next = di->prev = AUDIO_MIXER_LAST;
1774 		return 0;
1775 	case DBRI_INPUT_CLASS:
1776 		di->mixer_class = DBRI_INPUT_CLASS;
1777 		strcpy(di->label.name, AudioCinputs);
1778 		di->type = AUDIO_MIXER_CLASS;
1779 		di->next = di->prev = AUDIO_MIXER_LAST;
1780 		return 0;
1781 	case DBRI_VOL_OUTPUT:	/* master volume */
1782 		di->mixer_class = DBRI_OUTPUT_CLASS;
1783 		di->next = di->prev = AUDIO_MIXER_LAST;
1784 		strcpy(di->label.name, AudioNmaster);
1785 		di->type = AUDIO_MIXER_VALUE;
1786 		di->un.v.num_channels = 2;
1787 		di->un.v.delta = 16;
1788 		strcpy(di->un.v.units.name, AudioNvolume);
1789 		return (0);
1790 	case DBRI_INPUT_GAIN:	/* input gain */
1791 		di->mixer_class = DBRI_INPUT_CLASS;
1792 		di->next = di->prev = AUDIO_MIXER_LAST;
1793 		strcpy(di->label.name, AudioNrecord);
1794 		di->type = AUDIO_MIXER_VALUE;
1795 		di->un.v.num_channels = 2;
1796 		strcpy(di->un.v.units.name, AudioNvolume);
1797 		return (0);
1798 	case DBRI_VOL_MONITOR:	/* monitor volume */
1799 		di->mixer_class = DBRI_MONITOR_CLASS;
1800 		di->next = di->prev = AUDIO_MIXER_LAST;
1801 		strcpy(di->label.name, AudioNmonitor);
1802 		di->type = AUDIO_MIXER_VALUE;
1803 		di->un.v.num_channels = 1;
1804 		strcpy(di->un.v.units.name, AudioNvolume);
1805 		return (0);
1806 	case DBRI_ENABLE_MONO:	/* built-in speaker */
1807 		di->mixer_class = DBRI_OUTPUT_CLASS;
1808 		di->next = di->prev = AUDIO_MIXER_LAST;
1809 		strcpy(di->label.name, AudioNmono);
1810 		di->type = AUDIO_MIXER_ENUM;
1811 		di->un.e.num_mem = 2;
1812 		strcpy(di->un.e.member[0].label.name, AudioNoff);
1813 		di->un.e.member[0].ord = 0;
1814 		strcpy(di->un.e.member[1].label.name, AudioNon);
1815 		di->un.e.member[1].ord = 1;
1816 		return (0);
1817 	case DBRI_ENABLE_HEADPHONE:	/* headphones output */
1818 		di->mixer_class = DBRI_OUTPUT_CLASS;
1819 		di->next = di->prev = AUDIO_MIXER_LAST;
1820 		strcpy(di->label.name, AudioNheadphone);
1821 		di->type = AUDIO_MIXER_ENUM;
1822 		di->un.e.num_mem = 2;
1823 		strcpy(di->un.e.member[0].label.name, AudioNoff);
1824 		di->un.e.member[0].ord = 0;
1825 		strcpy(di->un.e.member[1].label.name, AudioNon);
1826 		di->un.e.member[1].ord = 1;
1827 		return (0);
1828 	case DBRI_ENABLE_LINE:	/* line out */
1829 		di->mixer_class = DBRI_OUTPUT_CLASS;
1830 		di->next = di->prev = AUDIO_MIXER_LAST;
1831 		strcpy(di->label.name, AudioNline);
1832 		di->type = AUDIO_MIXER_ENUM;
1833 		di->un.e.num_mem = 2;
1834 		strcpy(di->un.e.member[0].label.name, AudioNoff);
1835 		di->un.e.member[0].ord = 0;
1836 		strcpy(di->un.e.member[1].label.name, AudioNon);
1837 		di->un.e.member[1].ord = 1;
1838 		return (0);
1839 	case DBRI_INPUT_SELECT:
1840 		di->mixer_class = DBRI_INPUT_CLASS;
1841 		strcpy(di->label.name, AudioNsource);
1842 		di->type = AUDIO_MIXER_SET;
1843 		di->prev = di->next = AUDIO_MIXER_LAST;
1844 		di->un.s.num_mem = 2;
1845 		strcpy(di->un.s.member[0].label.name, AudioNline);
1846 		di->un.s.member[0].mask = 1 << 0;
1847 		strcpy(di->un.s.member[1].label.name, AudioNmicrophone);
1848 		di->un.s.member[1].mask = 1 << 1;
1849 		return 0;
1850 	}
1851 
1852 	return (ENXIO);
1853 }
1854 
1855 static int
1856 dbri_get_props(void *hdl)
1857 {
1858 
1859 	return AUDIO_PROP_PLAYBACK | AUDIO_PROP_CAPTURE |
1860 	    AUDIO_PROP_FULLDUPLEX;
1861 }
1862 
1863 static int
1864 dbri_commit(void *hdl)
1865 {
1866 	struct dbri_softc *sc = hdl;
1867 	int ret = 0;
1868 
1869 	/*
1870 	 * we only need to whack the codec if things like sample format or
1871 	 * frequency changed, not for mixer stuff
1872 	 */
1873 	if (sc->sc_whack_codec == 0)
1874 		return 0;
1875 
1876 	mutex_spin_enter(&sc->sc_intr_lock);
1877 	ret = mmcodec_setcontrol(sc);
1878 	if (ret) {
1879 		DPRINTF("%s: control mode failed. Mutex %s PIL %x\n", __func__,
1880 		    mutex_owned(&sc->sc_intr_lock) ? "held" : "free",
1881 		    (getpsr() & PSR_PIL) >> 8);
1882 	} else
1883 		DPRINTF("%s: control mode ok\n", __func__);
1884 	mmcodec_init_data(sc);
1885 	mutex_spin_exit(&sc->sc_intr_lock);
1886 	return 0;
1887 }
1888 
1889 static int
1890 dbri_trigger_output(void *hdl, void *start, void *end, int blksize,
1891 		    void (*intr)(void *), void *intrarg,
1892 		    const struct audio_params *param)
1893 {
1894 	struct dbri_softc *sc = hdl;
1895 	unsigned long count, num;
1896 
1897 	if (sc->sc_playing)
1898 		return 0;
1899 
1900 	count = (unsigned long)(((char *)end - (char *)start));
1901 	num = count / blksize;
1902 
1903 	DPRINTF("trigger_output(%lx %lx) : %d %ld %ld\n",
1904 	    (unsigned long)intr,
1905 	    (unsigned long)intrarg, blksize, count, num);
1906 
1907 	sc->sc_params = *param;
1908 
1909 	/*
1910 	 * always use DMA descriptor 0 for output
1911 	 * no need to allocate them dynamically since we only ever have
1912 	 * exactly one input stream and exactly one output stream
1913 	 */
1914 	setup_ring_xmit(sc, 4, 0, num, blksize, intr, intrarg);
1915 	sc->sc_playing = 1;
1916 	return 0;
1917 }
1918 
1919 static int
1920 dbri_halt_input(void *cookie)
1921 {
1922 	struct dbri_softc *sc = cookie;
1923 
1924 	if (!sc->sc_recording)
1925 		return 0;
1926 
1927 	sc->sc_recording = 0;
1928 	pipe_reset(sc, 6);
1929 	return 0;
1930 }
1931 
1932 static int
1933 dbri_trigger_input(void *hdl, void *start, void *end, int blksize,
1934 		    void (*intr)(void *), void *intrarg,
1935 		    const struct audio_params *param)
1936 {
1937 	struct dbri_softc *sc = hdl;
1938 	unsigned long count, num;
1939 
1940 	if (sc->sc_recording)
1941 		return 0;
1942 
1943 	count = (unsigned long)(((char *)end - (char *)start));
1944 	num = count / blksize;
1945 
1946 	DPRINTF("trigger_input(%lx %lx) : %d %ld %ld\n",
1947 	    (unsigned long)intr,
1948 	    (unsigned long)intrarg, blksize, count, num);
1949 
1950 	sc->sc_params = *param;
1951 
1952 	sc->sc_recording = 1;
1953 	setup_ring_recv(sc, 6, 1, num, blksize, intr, intrarg);
1954 	return 0;
1955 }
1956 
1957 static void
1958 dbri_get_locks(void *opaque, kmutex_t **intr, kmutex_t **thread)
1959 {
1960 	struct dbri_softc *sc = opaque;
1961 
1962 	*intr = &sc->sc_intr_lock;
1963 	*thread = &sc->sc_lock;
1964 }
1965 
1966 static uint32_t
1967 reverse_bytes(uint32_t b, int len)
1968 {
1969 	switch (len) {
1970 	case 32:
1971 		b = ((b & 0xffff0000) >> 16) | ((b & 0x0000ffff) << 16);
1972 	case 16:
1973 		b = ((b & 0xff00ff00) >>  8) | ((b & 0x00ff00ff) <<  8);
1974 	case 8:
1975 		b = ((b & 0xf0f0f0f0) >>  4) | ((b & 0x0f0f0f0f) <<  4);
1976 	case 4:
1977 		b = ((b & 0xcccccccc) >>  2) | ((b & 0x33333333) <<  2);
1978 	case 2:
1979 		b = ((b & 0xaaaaaaaa) >>  1) | ((b & 0x55555555) <<  1);
1980 	case 1:
1981 	case 0:
1982 		break;
1983 	default:
1984 		DPRINTF("reverse_bytes: unsupported length\n");
1985 	};
1986 
1987 	return (b);
1988 }
1989 
1990 static void *
1991 dbri_malloc(void *v, int dir, size_t s)
1992 {
1993 	struct dbri_softc *sc = v;
1994 	struct dbri_desc *dd = &sc->sc_desc[sc->sc_desc_used];
1995 	int rseg;
1996 
1997 	if (bus_dmamap_create(sc->sc_dmat, s, 1, s, 0, BUS_DMA_NOWAIT,
1998 	    &dd->dmamap) == 0) {
1999 		if (bus_dmamem_alloc(sc->sc_dmat, s, 0, 0, &dd->dmaseg,
2000 		    1, &rseg, BUS_DMA_NOWAIT) == 0) {
2001 			if (bus_dmamem_map(sc->sc_dmat, &dd->dmaseg, rseg, s,
2002 			    &dd->buf, BUS_DMA_NOWAIT|BUS_DMA_COHERENT) == 0) {
2003 				if (dd->buf != NULL) {
2004 					if (bus_dmamap_load(sc->sc_dmat,
2005 					    dd->dmamap, dd->buf, s, NULL,
2006 					    BUS_DMA_NOWAIT) == 0) {
2007 						dd->len = s;
2008 						dd->busy = 0;
2009 						dd->callback = NULL;
2010 						dd->dmabase =
2011 						 dd->dmamap->dm_segs[0].ds_addr;
2012 						DPRINTF("dbri_malloc: using buffer %d %08x\n",
2013 						    sc->sc_desc_used, (uint32_t)dd->buf);
2014 						sc->sc_desc_used++;
2015 						return dd->buf;
2016 					} else
2017 						aprint_error("dbri_malloc: load failed\n");
2018 				} else
2019 					aprint_error("dbri_malloc: map returned NULL\n");
2020 			} else
2021 				aprint_error("dbri_malloc: map failed\n");
2022 			bus_dmamem_free(sc->sc_dmat, &dd->dmaseg, rseg);
2023 		} else
2024 			aprint_error("dbri_malloc: malloc() failed\n");
2025 		bus_dmamap_destroy(sc->sc_dmat, dd->dmamap);
2026 	} else
2027 		aprint_error("dbri_malloc: bus_dmamap_create() failed\n");
2028 	return NULL;
2029 }
2030 
2031 static void
2032 dbri_free(void *v, void *p, size_t size)
2033 {
2034 	struct dbri_softc *sc = v;
2035 	struct dbri_desc *dd;
2036 	int i;
2037 
2038 	for (i = 0; i < sc->sc_desc_used; i++) {
2039 		dd = &sc->sc_desc[i];
2040 		if (dd->buf == p)
2041 			break;
2042 	}
2043 	if (i >= sc->sc_desc_used)
2044 		return;
2045 	bus_dmamap_unload(sc->sc_dmat, dd->dmamap);
2046 	bus_dmamap_destroy(sc->sc_dmat, dd->dmamap);
2047 }
2048 
2049 static int
2050 dbri_open(void *cookie, int flags)
2051 {
2052 	struct dbri_softc *sc = cookie;
2053 
2054 	DPRINTF("%s: %d\n", __func__, sc->sc_refcount);
2055 
2056 	if (sc->sc_refcount == 0) {
2057 		dbri_bring_up(sc);
2058 	}
2059 
2060 	sc->sc_refcount++;
2061 
2062 	return 0;
2063 }
2064 
2065 static void
2066 dbri_close(void *cookie)
2067 {
2068 	struct dbri_softc *sc = cookie;
2069 
2070 	DPRINTF("%s: %d\n", __func__, sc->sc_refcount);
2071 
2072 	sc->sc_refcount--;
2073 	KASSERT(sc->sc_refcount >= 0);
2074 	if (sc->sc_refcount > 0)
2075 		return;
2076 
2077 	dbri_set_power(sc, 0);
2078 	sc->sc_playing = 0;
2079 	sc->sc_recording = 0;
2080 }
2081 
2082 static bool
2083 dbri_suspend(device_t self, const pmf_qual_t *qual)
2084 {
2085 	struct dbri_softc *sc = device_private(self);
2086 
2087 	mutex_spin_enter(&sc->sc_intr_lock);
2088 	dbri_set_power(sc, 0);
2089 	mutex_spin_exit(&sc->sc_intr_lock);
2090 	return true;
2091 }
2092 
2093 static bool
2094 dbri_resume(device_t self, const pmf_qual_t *qual)
2095 {
2096 	struct dbri_softc *sc = device_private(self);
2097 
2098 	if (sc->sc_powerstate != 0)
2099 		return true;
2100 	aprint_verbose("resume: %d\n", sc->sc_refcount);
2101 	if (sc->sc_playing) {
2102 		volatile uint32_t *cmd;
2103 
2104 		mutex_spin_enter(&sc->sc_intr_lock);
2105 		dbri_bring_up(sc);
2106 		cmd = dbri_command_lock(sc);
2107 		*(cmd++) = DBRI_CMD(DBRI_COMMAND_SDP,
2108 		    0, sc->sc_pipe[4].sdp |
2109 		    DBRI_SDP_VALID_POINTER |
2110 		    DBRI_SDP_EVERY | DBRI_SDP_CLEAR);
2111 		*(cmd++) = sc->sc_dmabase +
2112 		    dbri_dma_off(xmit, 0);
2113 		dbri_command_send(sc, cmd);
2114 		mutex_spin_exit(&sc->sc_intr_lock);
2115 	}
2116 	return true;
2117 }
2118 
2119 #endif /* NAUDIO > 0 */
2120