1 /* $NetBSD: rf_states.c,v 1.44 2009/11/17 18:54:26 jld Exp $ */ 2 /* 3 * Copyright (c) 1995 Carnegie-Mellon University. 4 * All rights reserved. 5 * 6 * Author: Mark Holland, William V. Courtright II, Robby Findler 7 * 8 * Permission to use, copy, modify and distribute this software and 9 * its documentation is hereby granted, provided that both the copyright 10 * notice and this permission notice appear in all copies of the 11 * software, derivative works or modified versions, and any portions 12 * thereof, and that both notices appear in supporting documentation. 13 * 14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 17 * 18 * Carnegie Mellon requests users of this software to return to 19 * 20 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 21 * School of Computer Science 22 * Carnegie Mellon University 23 * Pittsburgh PA 15213-3890 24 * 25 * any improvements or extensions that they make and grant Carnegie the 26 * rights to redistribute these changes. 27 */ 28 29 #include <sys/cdefs.h> 30 __KERNEL_RCSID(0, "$NetBSD: rf_states.c,v 1.44 2009/11/17 18:54:26 jld Exp $"); 31 32 #include <sys/errno.h> 33 34 #include "rf_archs.h" 35 #include "rf_threadstuff.h" 36 #include "rf_raid.h" 37 #include "rf_dag.h" 38 #include "rf_desc.h" 39 #include "rf_aselect.h" 40 #include "rf_general.h" 41 #include "rf_states.h" 42 #include "rf_dagutils.h" 43 #include "rf_driver.h" 44 #include "rf_engine.h" 45 #include "rf_map.h" 46 #include "rf_etimer.h" 47 #include "rf_kintf.h" 48 #include "rf_paritymap.h" 49 50 #ifndef RF_DEBUG_STATES 51 #define RF_DEBUG_STATES 0 52 #endif 53 54 /* prototypes for some of the available states. 55 56 States must: 57 58 - not block. 59 60 - either schedule rf_ContinueRaidAccess as a callback and return 61 RF_TRUE, or complete all of their work and return RF_FALSE. 62 63 - increment desc->state when they have finished their work. 64 */ 65 66 #if RF_DEBUG_STATES 67 static char * 68 StateName(RF_AccessState_t state) 69 { 70 switch (state) { 71 case rf_QuiesceState:return "QuiesceState"; 72 case rf_MapState: 73 return "MapState"; 74 case rf_LockState: 75 return "LockState"; 76 case rf_CreateDAGState: 77 return "CreateDAGState"; 78 case rf_ExecuteDAGState: 79 return "ExecuteDAGState"; 80 case rf_ProcessDAGState: 81 return "ProcessDAGState"; 82 case rf_CleanupState: 83 return "CleanupState"; 84 case rf_LastState: 85 return "LastState"; 86 case rf_IncrAccessesCountState: 87 return "IncrAccessesCountState"; 88 case rf_DecrAccessesCountState: 89 return "DecrAccessesCountState"; 90 default: 91 return "!!! UnnamedState !!!"; 92 } 93 } 94 #endif 95 96 void 97 rf_ContinueRaidAccess(RF_RaidAccessDesc_t *desc) 98 { 99 int suspended = RF_FALSE; 100 int current_state_index = desc->state; 101 RF_AccessState_t current_state = desc->states[current_state_index]; 102 #if RF_DEBUG_STATES 103 int unit = desc->raidPtr->raidid; 104 #endif 105 106 do { 107 108 current_state_index = desc->state; 109 current_state = desc->states[current_state_index]; 110 111 switch (current_state) { 112 113 case rf_QuiesceState: 114 suspended = rf_State_Quiesce(desc); 115 break; 116 case rf_IncrAccessesCountState: 117 suspended = rf_State_IncrAccessCount(desc); 118 break; 119 case rf_MapState: 120 suspended = rf_State_Map(desc); 121 break; 122 case rf_LockState: 123 suspended = rf_State_Lock(desc); 124 break; 125 case rf_CreateDAGState: 126 suspended = rf_State_CreateDAG(desc); 127 break; 128 case rf_ExecuteDAGState: 129 suspended = rf_State_ExecuteDAG(desc); 130 break; 131 case rf_ProcessDAGState: 132 suspended = rf_State_ProcessDAG(desc); 133 break; 134 case rf_CleanupState: 135 suspended = rf_State_Cleanup(desc); 136 break; 137 case rf_DecrAccessesCountState: 138 suspended = rf_State_DecrAccessCount(desc); 139 break; 140 case rf_LastState: 141 suspended = rf_State_LastState(desc); 142 break; 143 } 144 145 /* after this point, we cannot dereference desc since 146 * desc may have been freed. desc is only freed in 147 * LastState, so if we renter this function or loop 148 * back up, desc should be valid. */ 149 150 #if RF_DEBUG_STATES 151 if (rf_printStatesDebug) { 152 printf("raid%d: State: %-24s StateIndex: %3i desc: 0x%ld %s\n", 153 unit, StateName(current_state), 154 current_state_index, (long) desc, 155 suspended ? "callback scheduled" : "looping"); 156 } 157 #endif 158 } while (!suspended && current_state != rf_LastState); 159 160 return; 161 } 162 163 164 void 165 rf_ContinueDagAccess(RF_DagList_t *dagList) 166 { 167 #if RF_ACC_TRACE > 0 168 RF_AccTraceEntry_t *tracerec = &(dagList->desc->tracerec); 169 RF_Etimer_t timer; 170 #endif 171 RF_RaidAccessDesc_t *desc; 172 RF_DagHeader_t *dag_h; 173 int i; 174 175 desc = dagList->desc; 176 177 #if RF_ACC_TRACE > 0 178 timer = tracerec->timer; 179 RF_ETIMER_STOP(timer); 180 RF_ETIMER_EVAL(timer); 181 tracerec->specific.user.exec_us = RF_ETIMER_VAL_US(timer); 182 RF_ETIMER_START(tracerec->timer); 183 #endif 184 185 /* skip to dag which just finished */ 186 dag_h = dagList->dags; 187 for (i = 0; i < dagList->numDagsDone; i++) { 188 dag_h = dag_h->next; 189 } 190 191 /* check to see if retry is required */ 192 if (dag_h->status == rf_rollBackward) { 193 /* when a dag fails, mark desc status as bad and allow 194 * all other dags in the desc to execute to 195 * completion. then, free all dags and start over */ 196 desc->status = 1; /* bad status */ 197 #if 0 198 printf("raid%d: DAG failure: %c addr 0x%lx " 199 "(%ld) nblk 0x%x (%d) buf 0x%lx state %d\n", 200 desc->raidPtr->raidid, desc->type, 201 (long) desc->raidAddress, 202 (long) desc->raidAddress, (int) desc->numBlocks, 203 (int) desc->numBlocks, 204 (unsigned long) (desc->bufPtr), desc->state); 205 #endif 206 } 207 dagList->numDagsDone++; 208 rf_ContinueRaidAccess(desc); 209 } 210 211 int 212 rf_State_LastState(RF_RaidAccessDesc_t *desc) 213 { 214 void (*callbackFunc) (RF_CBParam_t) = desc->callbackFunc; 215 RF_CBParam_t callbackArg; 216 217 callbackArg.p = desc->callbackArg; 218 219 /* 220 * If this is not an async request, wake up the caller 221 */ 222 if (desc->async_flag == 0) 223 wakeup(desc->bp); 224 225 /* 226 * That's all the IO for this one... unbusy the 'disk'. 227 */ 228 229 rf_disk_unbusy(desc); 230 231 /* 232 * Wakeup any requests waiting to go. 233 */ 234 235 RF_LOCK_MUTEX(((RF_Raid_t *) desc->raidPtr)->mutex); 236 ((RF_Raid_t *) desc->raidPtr)->openings++; 237 RF_UNLOCK_MUTEX(((RF_Raid_t *) desc->raidPtr)->mutex); 238 239 wakeup(&(desc->raidPtr->iodone)); 240 241 /* 242 * The parity_map hook has to go here, because the iodone 243 * callback goes straight into the kintf layer. 244 */ 245 if (desc->raidPtr->parity_map != NULL && 246 desc->type == RF_IO_TYPE_WRITE) 247 rf_paritymap_end(desc->raidPtr->parity_map, 248 desc->raidAddress, desc->numBlocks); 249 250 /* printf("Calling biodone on 0x%x\n",desc->bp); */ 251 biodone(desc->bp); /* access came through ioctl */ 252 253 if (callbackFunc) 254 callbackFunc(callbackArg); 255 rf_FreeRaidAccDesc(desc); 256 257 return RF_FALSE; 258 } 259 260 int 261 rf_State_IncrAccessCount(RF_RaidAccessDesc_t *desc) 262 { 263 RF_Raid_t *raidPtr; 264 265 raidPtr = desc->raidPtr; 266 /* Bummer. We have to do this to be 100% safe w.r.t. the increment 267 * below */ 268 RF_LOCK_MUTEX(raidPtr->access_suspend_mutex); 269 raidPtr->accs_in_flight++; /* used to detect quiescence */ 270 RF_UNLOCK_MUTEX(raidPtr->access_suspend_mutex); 271 272 desc->state++; 273 return RF_FALSE; 274 } 275 276 int 277 rf_State_DecrAccessCount(RF_RaidAccessDesc_t *desc) 278 { 279 RF_Raid_t *raidPtr; 280 281 raidPtr = desc->raidPtr; 282 283 RF_LOCK_MUTEX(raidPtr->access_suspend_mutex); 284 raidPtr->accs_in_flight--; 285 if (raidPtr->accesses_suspended && raidPtr->accs_in_flight == 0) { 286 rf_SignalQuiescenceLock(raidPtr); 287 } 288 RF_UNLOCK_MUTEX(raidPtr->access_suspend_mutex); 289 290 desc->state++; 291 return RF_FALSE; 292 } 293 294 int 295 rf_State_Quiesce(RF_RaidAccessDesc_t *desc) 296 { 297 #if RF_ACC_TRACE > 0 298 RF_AccTraceEntry_t *tracerec = &desc->tracerec; 299 RF_Etimer_t timer; 300 #endif 301 RF_CallbackDesc_t *cb; 302 RF_Raid_t *raidPtr; 303 int suspended = RF_FALSE; 304 int need_cb, used_cb; 305 306 raidPtr = desc->raidPtr; 307 308 #if RF_ACC_TRACE > 0 309 RF_ETIMER_START(timer); 310 RF_ETIMER_START(desc->timer); 311 #endif 312 313 need_cb = 0; 314 used_cb = 0; 315 cb = NULL; 316 317 RF_LOCK_MUTEX(raidPtr->access_suspend_mutex); 318 /* Do an initial check to see if we might need a callback structure */ 319 if (raidPtr->accesses_suspended) { 320 need_cb = 1; 321 } 322 RF_UNLOCK_MUTEX(raidPtr->access_suspend_mutex); 323 324 if (need_cb) { 325 /* create a callback if we might need it... 326 and we likely do. */ 327 cb = rf_AllocCallbackDesc(); 328 } 329 330 RF_LOCK_MUTEX(raidPtr->access_suspend_mutex); 331 if (raidPtr->accesses_suspended) { 332 cb->callbackFunc = (void (*) (RF_CBParam_t)) rf_ContinueRaidAccess; 333 cb->callbackArg.p = (void *) desc; 334 cb->next = raidPtr->quiesce_wait_list; 335 raidPtr->quiesce_wait_list = cb; 336 suspended = RF_TRUE; 337 used_cb = 1; 338 } 339 RF_UNLOCK_MUTEX(raidPtr->access_suspend_mutex); 340 341 if ((need_cb == 1) && (used_cb == 0)) { 342 rf_FreeCallbackDesc(cb); 343 } 344 345 #if RF_ACC_TRACE > 0 346 RF_ETIMER_STOP(timer); 347 RF_ETIMER_EVAL(timer); 348 tracerec->specific.user.suspend_ovhd_us += RF_ETIMER_VAL_US(timer); 349 #endif 350 351 #if RF_DEBUG_QUIESCE 352 if (suspended && rf_quiesceDebug) 353 printf("Stalling access due to quiescence lock\n"); 354 #endif 355 desc->state++; 356 return suspended; 357 } 358 359 int 360 rf_State_Map(RF_RaidAccessDesc_t *desc) 361 { 362 RF_Raid_t *raidPtr = desc->raidPtr; 363 #if RF_ACC_TRACE > 0 364 RF_AccTraceEntry_t *tracerec = &desc->tracerec; 365 RF_Etimer_t timer; 366 367 RF_ETIMER_START(timer); 368 #endif 369 370 if (!(desc->asmap = rf_MapAccess(raidPtr, desc->raidAddress, desc->numBlocks, 371 desc->bufPtr, RF_DONT_REMAP))) 372 RF_PANIC(); 373 374 #if RF_ACC_TRACE > 0 375 RF_ETIMER_STOP(timer); 376 RF_ETIMER_EVAL(timer); 377 tracerec->specific.user.map_us = RF_ETIMER_VAL_US(timer); 378 #endif 379 380 desc->state++; 381 return RF_FALSE; 382 } 383 384 int 385 rf_State_Lock(RF_RaidAccessDesc_t *desc) 386 { 387 #if RF_ACC_TRACE > 0 388 RF_AccTraceEntry_t *tracerec = &desc->tracerec; 389 RF_Etimer_t timer; 390 #endif 391 RF_Raid_t *raidPtr = desc->raidPtr; 392 RF_AccessStripeMapHeader_t *asmh = desc->asmap; 393 RF_AccessStripeMap_t *asm_p; 394 RF_StripeNum_t lastStripeID = -1; 395 int suspended = RF_FALSE; 396 397 #if RF_ACC_TRACE > 0 398 RF_ETIMER_START(timer); 399 #endif 400 401 /* acquire each lock that we don't already hold */ 402 for (asm_p = asmh->stripeMap; asm_p; asm_p = asm_p->next) { 403 RF_ASSERT(RF_IO_IS_R_OR_W(desc->type)); 404 if (!rf_suppressLocksAndLargeWrites && 405 asm_p->parityInfo && 406 !(desc->flags & RF_DAG_SUPPRESS_LOCKS) && 407 !(asm_p->flags & RF_ASM_FLAGS_LOCK_TRIED)) { 408 asm_p->flags |= RF_ASM_FLAGS_LOCK_TRIED; 409 /* locks must be acquired hierarchically */ 410 RF_ASSERT(asm_p->stripeID > lastStripeID); 411 lastStripeID = asm_p->stripeID; 412 413 RF_INIT_LOCK_REQ_DESC(asm_p->lockReqDesc, desc->type, 414 (void (*) (struct buf *)) rf_ContinueRaidAccess, desc, asm_p, 415 raidPtr->Layout.dataSectorsPerStripe); 416 if (rf_AcquireStripeLock(raidPtr->lockTable, asm_p->stripeID, 417 &asm_p->lockReqDesc)) { 418 suspended = RF_TRUE; 419 break; 420 } 421 } 422 if (desc->type == RF_IO_TYPE_WRITE && 423 raidPtr->status == rf_rs_reconstructing) { 424 if (!(asm_p->flags & RF_ASM_FLAGS_FORCE_TRIED)) { 425 int val; 426 427 asm_p->flags |= RF_ASM_FLAGS_FORCE_TRIED; 428 val = rf_ForceOrBlockRecon(raidPtr, asm_p, 429 (void (*) (RF_Raid_t *, void *)) rf_ContinueRaidAccess, desc); 430 if (val == 0) { 431 asm_p->flags |= RF_ASM_FLAGS_RECON_BLOCKED; 432 } else { 433 suspended = RF_TRUE; 434 break; 435 } 436 } else { 437 #if RF_DEBUG_PSS > 0 438 if (rf_pssDebug) { 439 printf("raid%d: skipping force/block because already done, psid %ld\n", 440 desc->raidPtr->raidid, 441 (long) asm_p->stripeID); 442 } 443 #endif 444 } 445 } else { 446 #if RF_DEBUG_PSS > 0 447 if (rf_pssDebug) { 448 printf("raid%d: skipping force/block because not write or not under recon, psid %ld\n", 449 desc->raidPtr->raidid, 450 (long) asm_p->stripeID); 451 } 452 #endif 453 } 454 } 455 #if RF_ACC_TRACE > 0 456 RF_ETIMER_STOP(timer); 457 RF_ETIMER_EVAL(timer); 458 tracerec->specific.user.lock_us += RF_ETIMER_VAL_US(timer); 459 #endif 460 if (suspended) 461 return (RF_TRUE); 462 463 desc->state++; 464 return (RF_FALSE); 465 } 466 /* 467 * the following three states create, execute, and post-process dags 468 * the error recovery unit is a single dag. 469 * by default, SelectAlgorithm creates an array of dags, one per parity stripe 470 * in some tricky cases, multiple dags per stripe are created 471 * - dags within a parity stripe are executed sequentially (arbitrary order) 472 * - dags for distinct parity stripes are executed concurrently 473 * 474 * repeat until all dags complete successfully -or- dag selection fails 475 * 476 * while !done 477 * create dag(s) (SelectAlgorithm) 478 * if dag 479 * execute dag (DispatchDAG) 480 * if dag successful 481 * done (SUCCESS) 482 * else 483 * !done (RETRY - start over with new dags) 484 * else 485 * done (FAIL) 486 */ 487 int 488 rf_State_CreateDAG(RF_RaidAccessDesc_t *desc) 489 { 490 #if RF_ACC_TRACE > 0 491 RF_AccTraceEntry_t *tracerec = &desc->tracerec; 492 RF_Etimer_t timer; 493 #endif 494 RF_DagHeader_t *dag_h; 495 RF_DagList_t *dagList; 496 struct buf *bp; 497 int i, selectStatus; 498 499 /* generate a dag for the access, and fire it off. When the dag 500 * completes, we'll get re-invoked in the next state. */ 501 #if RF_ACC_TRACE > 0 502 RF_ETIMER_START(timer); 503 #endif 504 /* SelectAlgorithm returns one or more dags */ 505 selectStatus = rf_SelectAlgorithm(desc, desc->flags | RF_DAG_SUPPRESS_LOCKS); 506 #if RF_DEBUG_VALIDATE_DAG 507 if (rf_printDAGsDebug) { 508 dagList = desc->dagList; 509 for (i = 0; i < desc->numStripes; i++) { 510 rf_PrintDAGList(dagList->dags); 511 dagList = dagList->next; 512 } 513 } 514 #endif /* RF_DEBUG_VALIDATE_DAG */ 515 #if RF_ACC_TRACE > 0 516 RF_ETIMER_STOP(timer); 517 RF_ETIMER_EVAL(timer); 518 /* update time to create all dags */ 519 tracerec->specific.user.dag_create_us = RF_ETIMER_VAL_US(timer); 520 #endif 521 522 desc->status = 0; /* good status */ 523 524 if (selectStatus || (desc->numRetries > RF_RETRY_THRESHOLD)) { 525 /* failed to create a dag */ 526 /* this happens when there are too many faults or incomplete 527 * dag libraries */ 528 if (selectStatus) { 529 printf("raid%d: failed to create a dag. " 530 "Too many component failures.\n", 531 desc->raidPtr->raidid); 532 } else { 533 printf("raid%d: IO failed after %d retries.\n", 534 desc->raidPtr->raidid, RF_RETRY_THRESHOLD); 535 } 536 537 desc->status = 1; /* bad status */ 538 /* skip straight to rf_State_Cleanup() */ 539 desc->state = rf_CleanupState; 540 bp = (struct buf *)desc->bp; 541 bp->b_error = EIO; 542 bp->b_resid = bp->b_bcount; 543 } else { 544 /* bind dags to desc */ 545 dagList = desc->dagList; 546 for (i = 0; i < desc->numStripes; i++) { 547 dag_h = dagList->dags; 548 while (dag_h) { 549 dag_h->bp = (struct buf *) desc->bp; 550 #if RF_ACC_TRACE > 0 551 dag_h->tracerec = tracerec; 552 #endif 553 dag_h = dag_h->next; 554 } 555 dagList = dagList->next; 556 } 557 desc->flags |= RF_DAG_DISPATCH_RETURNED; 558 desc->state++; /* next state should be rf_State_ExecuteDAG */ 559 } 560 return RF_FALSE; 561 } 562 563 564 565 /* the access has an list of dagLists, one dagList per parity stripe. 566 * fire the first dag in each parity stripe (dagList). 567 * dags within a stripe (dagList) must be executed sequentially 568 * - this preserves atomic parity update 569 * dags for independents parity groups (stripes) are fired concurrently */ 570 571 int 572 rf_State_ExecuteDAG(RF_RaidAccessDesc_t *desc) 573 { 574 int i; 575 RF_DagHeader_t *dag_h; 576 RF_DagList_t *dagList; 577 578 /* next state is always rf_State_ProcessDAG important to do 579 * this before firing the first dag (it may finish before we 580 * leave this routine) */ 581 desc->state++; 582 583 /* sweep dag array, a stripe at a time, firing the first dag 584 * in each stripe */ 585 dagList = desc->dagList; 586 for (i = 0; i < desc->numStripes; i++) { 587 RF_ASSERT(dagList->numDags > 0); 588 RF_ASSERT(dagList->numDagsDone == 0); 589 RF_ASSERT(dagList->numDagsFired == 0); 590 #if RF_ACC_TRACE > 0 591 RF_ETIMER_START(dagList->tracerec.timer); 592 #endif 593 /* fire first dag in this stripe */ 594 dag_h = dagList->dags; 595 RF_ASSERT(dag_h); 596 dagList->numDagsFired++; 597 rf_DispatchDAG(dag_h, (void (*) (void *)) rf_ContinueDagAccess, dagList); 598 dagList = dagList->next; 599 } 600 601 /* the DAG will always call the callback, even if there was no 602 * blocking, so we are always suspended in this state */ 603 return RF_TRUE; 604 } 605 606 607 608 /* rf_State_ProcessDAG is entered when a dag completes. 609 * first, check to all dags in the access have completed 610 * if not, fire as many dags as possible */ 611 612 int 613 rf_State_ProcessDAG(RF_RaidAccessDesc_t *desc) 614 { 615 RF_AccessStripeMapHeader_t *asmh = desc->asmap; 616 RF_Raid_t *raidPtr = desc->raidPtr; 617 RF_DagHeader_t *dag_h; 618 int i, j, done = RF_TRUE; 619 RF_DagList_t *dagList, *temp; 620 621 /* check to see if this is the last dag */ 622 dagList = desc->dagList; 623 for (i = 0; i < desc->numStripes; i++) { 624 if (dagList->numDags != dagList->numDagsDone) 625 done = RF_FALSE; 626 dagList = dagList->next; 627 } 628 629 if (done) { 630 if (desc->status) { 631 /* a dag failed, retry */ 632 /* free all dags */ 633 dagList = desc->dagList; 634 for (i = 0; i < desc->numStripes; i++) { 635 rf_FreeDAG(dagList->dags); 636 temp = dagList; 637 dagList = dagList->next; 638 rf_FreeDAGList(temp); 639 } 640 desc->dagList = NULL; 641 642 rf_MarkFailuresInASMList(raidPtr, asmh); 643 644 /* note the retry so that we'll bail in 645 rf_State_CreateDAG() once we've retired 646 the IO RF_RETRY_THRESHOLD times */ 647 648 desc->numRetries++; 649 650 /* back up to rf_State_CreateDAG */ 651 desc->state = desc->state - 2; 652 return RF_FALSE; 653 } else { 654 /* move on to rf_State_Cleanup */ 655 desc->state++; 656 } 657 return RF_FALSE; 658 } else { 659 /* more dags to execute */ 660 /* see if any are ready to be fired. if so, fire them */ 661 /* don't fire the initial dag in a list, it's fired in 662 * rf_State_ExecuteDAG */ 663 dagList = desc->dagList; 664 for (i = 0; i < desc->numStripes; i++) { 665 if ((dagList->numDagsDone < dagList->numDags) 666 && (dagList->numDagsDone == dagList->numDagsFired) 667 && (dagList->numDagsFired > 0)) { 668 #if RF_ACC_TRACE > 0 669 RF_ETIMER_START(dagList->tracerec.timer); 670 #endif 671 /* fire next dag in this stripe */ 672 /* first, skip to next dag awaiting execution */ 673 dag_h = dagList->dags; 674 for (j = 0; j < dagList->numDagsDone; j++) 675 dag_h = dag_h->next; 676 dagList->numDagsFired++; 677 rf_DispatchDAG(dag_h, (void (*) (void *)) rf_ContinueDagAccess, 678 dagList); 679 } 680 dagList = dagList->next; 681 } 682 return RF_TRUE; 683 } 684 } 685 /* only make it this far if all dags complete successfully */ 686 int 687 rf_State_Cleanup(RF_RaidAccessDesc_t *desc) 688 { 689 #if RF_ACC_TRACE > 0 690 RF_AccTraceEntry_t *tracerec = &desc->tracerec; 691 RF_Etimer_t timer; 692 #endif 693 RF_AccessStripeMapHeader_t *asmh = desc->asmap; 694 RF_Raid_t *raidPtr = desc->raidPtr; 695 RF_AccessStripeMap_t *asm_p; 696 RF_DagList_t *dagList; 697 int i; 698 699 desc->state++; 700 701 #if RF_ACC_TRACE > 0 702 timer = tracerec->timer; 703 RF_ETIMER_STOP(timer); 704 RF_ETIMER_EVAL(timer); 705 tracerec->specific.user.dag_retry_us = RF_ETIMER_VAL_US(timer); 706 707 /* the RAID I/O is complete. Clean up. */ 708 tracerec->specific.user.dag_retry_us = 0; 709 710 RF_ETIMER_START(timer); 711 #endif 712 /* free all dags */ 713 dagList = desc->dagList; 714 for (i = 0; i < desc->numStripes; i++) { 715 rf_FreeDAG(dagList->dags); 716 dagList = dagList->next; 717 } 718 #if RF_ACC_TRACE > 0 719 RF_ETIMER_STOP(timer); 720 RF_ETIMER_EVAL(timer); 721 tracerec->specific.user.cleanup_us = RF_ETIMER_VAL_US(timer); 722 723 RF_ETIMER_START(timer); 724 #endif 725 for (asm_p = asmh->stripeMap; asm_p; asm_p = asm_p->next) { 726 if (!rf_suppressLocksAndLargeWrites && 727 asm_p->parityInfo && 728 !(desc->flags & RF_DAG_SUPPRESS_LOCKS)) { 729 RF_ASSERT_VALID_LOCKREQ(&asm_p->lockReqDesc); 730 rf_ReleaseStripeLock(raidPtr->lockTable, 731 asm_p->stripeID, 732 &asm_p->lockReqDesc); 733 } 734 if (asm_p->flags & RF_ASM_FLAGS_RECON_BLOCKED) { 735 rf_UnblockRecon(raidPtr, asm_p); 736 } 737 } 738 #if RF_ACC_TRACE > 0 739 RF_ETIMER_STOP(timer); 740 RF_ETIMER_EVAL(timer); 741 tracerec->specific.user.lock_us += RF_ETIMER_VAL_US(timer); 742 743 RF_ETIMER_START(timer); 744 #endif 745 rf_FreeAccessStripeMap(asmh); 746 #if RF_ACC_TRACE > 0 747 RF_ETIMER_STOP(timer); 748 RF_ETIMER_EVAL(timer); 749 tracerec->specific.user.cleanup_us += RF_ETIMER_VAL_US(timer); 750 751 RF_ETIMER_STOP(desc->timer); 752 RF_ETIMER_EVAL(desc->timer); 753 754 timer = desc->tracerec.tot_timer; 755 RF_ETIMER_STOP(timer); 756 RF_ETIMER_EVAL(timer); 757 desc->tracerec.total_us = RF_ETIMER_VAL_US(timer); 758 759 rf_LogTraceRec(raidPtr, tracerec); 760 #endif 761 desc->flags |= RF_DAG_ACCESS_COMPLETE; 762 763 return RF_FALSE; 764 } 765