1 /* $NetBSD: rf_states.c,v 1.50 2016/01/03 08:17:24 mlelstv Exp $ */ 2 /* 3 * Copyright (c) 1995 Carnegie-Mellon University. 4 * All rights reserved. 5 * 6 * Author: Mark Holland, William V. Courtright II, Robby Findler 7 * 8 * Permission to use, copy, modify and distribute this software and 9 * its documentation is hereby granted, provided that both the copyright 10 * notice and this permission notice appear in all copies of the 11 * software, derivative works or modified versions, and any portions 12 * thereof, and that both notices appear in supporting documentation. 13 * 14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 17 * 18 * Carnegie Mellon requests users of this software to return to 19 * 20 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 21 * School of Computer Science 22 * Carnegie Mellon University 23 * Pittsburgh PA 15213-3890 24 * 25 * any improvements or extensions that they make and grant Carnegie the 26 * rights to redistribute these changes. 27 */ 28 29 #include <sys/cdefs.h> 30 __KERNEL_RCSID(0, "$NetBSD: rf_states.c,v 1.50 2016/01/03 08:17:24 mlelstv Exp $"); 31 32 #include <sys/errno.h> 33 34 #include "rf_archs.h" 35 #include "rf_threadstuff.h" 36 #include "rf_raid.h" 37 #include "rf_dag.h" 38 #include "rf_desc.h" 39 #include "rf_aselect.h" 40 #include "rf_general.h" 41 #include "rf_states.h" 42 #include "rf_dagutils.h" 43 #include "rf_driver.h" 44 #include "rf_engine.h" 45 #include "rf_map.h" 46 #include "rf_etimer.h" 47 #include "rf_kintf.h" 48 #include "rf_paritymap.h" 49 50 #ifndef RF_DEBUG_STATES 51 #define RF_DEBUG_STATES 0 52 #endif 53 54 /* prototypes for some of the available states. 55 56 States must: 57 58 - not block. 59 60 - either schedule rf_ContinueRaidAccess as a callback and return 61 RF_TRUE, or complete all of their work and return RF_FALSE. 62 63 - increment desc->state when they have finished their work. 64 */ 65 66 #if RF_DEBUG_STATES 67 static char * 68 StateName(RF_AccessState_t state) 69 { 70 switch (state) { 71 case rf_QuiesceState:return "QuiesceState"; 72 case rf_MapState: 73 return "MapState"; 74 case rf_LockState: 75 return "LockState"; 76 case rf_CreateDAGState: 77 return "CreateDAGState"; 78 case rf_ExecuteDAGState: 79 return "ExecuteDAGState"; 80 case rf_ProcessDAGState: 81 return "ProcessDAGState"; 82 case rf_CleanupState: 83 return "CleanupState"; 84 case rf_LastState: 85 return "LastState"; 86 case rf_IncrAccessesCountState: 87 return "IncrAccessesCountState"; 88 case rf_DecrAccessesCountState: 89 return "DecrAccessesCountState"; 90 default: 91 return "!!! UnnamedState !!!"; 92 } 93 } 94 #endif 95 96 void 97 rf_ContinueRaidAccess(RF_RaidAccessDesc_t *desc) 98 { 99 int suspended = RF_FALSE; 100 int current_state_index = desc->state; 101 RF_AccessState_t current_state = desc->states[current_state_index]; 102 #if RF_DEBUG_STATES 103 int unit = desc->raidPtr->raidid; 104 #endif 105 106 do { 107 108 current_state_index = desc->state; 109 current_state = desc->states[current_state_index]; 110 111 switch (current_state) { 112 113 case rf_QuiesceState: 114 suspended = rf_State_Quiesce(desc); 115 break; 116 case rf_IncrAccessesCountState: 117 suspended = rf_State_IncrAccessCount(desc); 118 break; 119 case rf_MapState: 120 suspended = rf_State_Map(desc); 121 break; 122 case rf_LockState: 123 suspended = rf_State_Lock(desc); 124 break; 125 case rf_CreateDAGState: 126 suspended = rf_State_CreateDAG(desc); 127 break; 128 case rf_ExecuteDAGState: 129 suspended = rf_State_ExecuteDAG(desc); 130 break; 131 case rf_ProcessDAGState: 132 suspended = rf_State_ProcessDAG(desc); 133 break; 134 case rf_CleanupState: 135 suspended = rf_State_Cleanup(desc); 136 break; 137 case rf_DecrAccessesCountState: 138 suspended = rf_State_DecrAccessCount(desc); 139 break; 140 case rf_LastState: 141 suspended = rf_State_LastState(desc); 142 break; 143 } 144 145 /* after this point, we cannot dereference desc since 146 * desc may have been freed. desc is only freed in 147 * LastState, so if we renter this function or loop 148 * back up, desc should be valid. */ 149 150 #if RF_DEBUG_STATES 151 if (rf_printStatesDebug) { 152 printf("raid%d: State: %-24s StateIndex: %3i desc: 0x%ld %s\n", 153 unit, StateName(current_state), 154 current_state_index, (long) desc, 155 suspended ? "callback scheduled" : "looping"); 156 } 157 #endif 158 } while (!suspended && current_state != rf_LastState); 159 160 return; 161 } 162 163 164 void 165 rf_ContinueDagAccess(RF_DagList_t *dagList) 166 { 167 #if RF_ACC_TRACE > 0 168 RF_AccTraceEntry_t *tracerec = &(dagList->desc->tracerec); 169 RF_Etimer_t timer; 170 #endif 171 RF_RaidAccessDesc_t *desc; 172 RF_DagHeader_t *dag_h; 173 int i; 174 175 desc = dagList->desc; 176 177 #if RF_ACC_TRACE > 0 178 timer = tracerec->timer; 179 RF_ETIMER_STOP(timer); 180 RF_ETIMER_EVAL(timer); 181 tracerec->specific.user.exec_us = RF_ETIMER_VAL_US(timer); 182 RF_ETIMER_START(tracerec->timer); 183 #endif 184 185 /* skip to dag which just finished */ 186 dag_h = dagList->dags; 187 for (i = 0; i < dagList->numDagsDone; i++) { 188 dag_h = dag_h->next; 189 } 190 191 /* check to see if retry is required */ 192 if (dag_h->status == rf_rollBackward) { 193 /* when a dag fails, mark desc status as bad and allow 194 * all other dags in the desc to execute to 195 * completion. then, free all dags and start over */ 196 desc->status = 1; /* bad status */ 197 #if 0 198 printf("raid%d: DAG failure: %c addr 0x%lx " 199 "(%ld) nblk 0x%x (%d) buf 0x%lx state %d\n", 200 desc->raidPtr->raidid, desc->type, 201 (long) desc->raidAddress, 202 (long) desc->raidAddress, (int) desc->numBlocks, 203 (int) desc->numBlocks, 204 (unsigned long) (desc->bufPtr), desc->state); 205 #endif 206 } 207 dagList->numDagsDone++; 208 rf_ContinueRaidAccess(desc); 209 } 210 211 int 212 rf_State_LastState(RF_RaidAccessDesc_t *desc) 213 { 214 void (*callbackFunc) (RF_CBParam_t) = desc->callbackFunc; 215 RF_CBParam_t callbackArg; 216 217 callbackArg.p = desc->callbackArg; 218 219 /* 220 * We don't support non-async IO. 221 */ 222 KASSERT(desc->async_flag); 223 224 /* 225 * The parity_map hook has to go here, because the iodone 226 * callback goes straight into the kintf layer. 227 */ 228 if (desc->raidPtr->parity_map != NULL && 229 desc->type == RF_IO_TYPE_WRITE) 230 rf_paritymap_end(desc->raidPtr->parity_map, 231 desc->raidAddress, desc->numBlocks); 232 233 /* printf("Calling raiddone on 0x%x\n",desc->bp); */ 234 raiddone(desc->raidPtr, desc->bp); /* access came through ioctl */ 235 236 if (callbackFunc) 237 callbackFunc(callbackArg); 238 rf_FreeRaidAccDesc(desc); 239 240 return RF_FALSE; 241 } 242 243 int 244 rf_State_IncrAccessCount(RF_RaidAccessDesc_t *desc) 245 { 246 RF_Raid_t *raidPtr; 247 248 raidPtr = desc->raidPtr; 249 /* Bummer. We have to do this to be 100% safe w.r.t. the increment 250 * below */ 251 rf_lock_mutex2(raidPtr->access_suspend_mutex); 252 raidPtr->accs_in_flight++; /* used to detect quiescence */ 253 rf_unlock_mutex2(raidPtr->access_suspend_mutex); 254 255 desc->state++; 256 return RF_FALSE; 257 } 258 259 int 260 rf_State_DecrAccessCount(RF_RaidAccessDesc_t *desc) 261 { 262 RF_Raid_t *raidPtr; 263 264 raidPtr = desc->raidPtr; 265 266 rf_lock_mutex2(raidPtr->access_suspend_mutex); 267 raidPtr->accs_in_flight--; 268 if (raidPtr->accesses_suspended && raidPtr->accs_in_flight == 0) { 269 rf_SignalQuiescenceLock(raidPtr); 270 } 271 rf_unlock_mutex2(raidPtr->access_suspend_mutex); 272 273 desc->state++; 274 return RF_FALSE; 275 } 276 277 int 278 rf_State_Quiesce(RF_RaidAccessDesc_t *desc) 279 { 280 #if RF_ACC_TRACE > 0 281 RF_AccTraceEntry_t *tracerec = &desc->tracerec; 282 RF_Etimer_t timer; 283 #endif 284 RF_CallbackDesc_t *cb; 285 RF_Raid_t *raidPtr; 286 int suspended = RF_FALSE; 287 int need_cb, used_cb; 288 289 raidPtr = desc->raidPtr; 290 291 #if RF_ACC_TRACE > 0 292 RF_ETIMER_START(timer); 293 RF_ETIMER_START(desc->timer); 294 #endif 295 296 need_cb = 0; 297 used_cb = 0; 298 cb = NULL; 299 300 rf_lock_mutex2(raidPtr->access_suspend_mutex); 301 /* Do an initial check to see if we might need a callback structure */ 302 if (raidPtr->accesses_suspended) { 303 need_cb = 1; 304 } 305 rf_unlock_mutex2(raidPtr->access_suspend_mutex); 306 307 if (need_cb) { 308 /* create a callback if we might need it... 309 and we likely do. */ 310 cb = rf_AllocCallbackDesc(); 311 } 312 313 rf_lock_mutex2(raidPtr->access_suspend_mutex); 314 if (raidPtr->accesses_suspended) { 315 cb->callbackFunc = (void (*) (RF_CBParam_t)) rf_ContinueRaidAccess; 316 cb->callbackArg.p = (void *) desc; 317 cb->next = raidPtr->quiesce_wait_list; 318 raidPtr->quiesce_wait_list = cb; 319 suspended = RF_TRUE; 320 used_cb = 1; 321 } 322 rf_unlock_mutex2(raidPtr->access_suspend_mutex); 323 324 if ((need_cb == 1) && (used_cb == 0)) { 325 rf_FreeCallbackDesc(cb); 326 } 327 328 #if RF_ACC_TRACE > 0 329 RF_ETIMER_STOP(timer); 330 RF_ETIMER_EVAL(timer); 331 tracerec->specific.user.suspend_ovhd_us += RF_ETIMER_VAL_US(timer); 332 #endif 333 334 #if RF_DEBUG_QUIESCE 335 if (suspended && rf_quiesceDebug) 336 printf("Stalling access due to quiescence lock\n"); 337 #endif 338 desc->state++; 339 return suspended; 340 } 341 342 int 343 rf_State_Map(RF_RaidAccessDesc_t *desc) 344 { 345 RF_Raid_t *raidPtr = desc->raidPtr; 346 #if RF_ACC_TRACE > 0 347 RF_AccTraceEntry_t *tracerec = &desc->tracerec; 348 RF_Etimer_t timer; 349 350 RF_ETIMER_START(timer); 351 #endif 352 353 if (!(desc->asmap = rf_MapAccess(raidPtr, desc->raidAddress, desc->numBlocks, 354 desc->bufPtr, RF_DONT_REMAP))) 355 RF_PANIC(); 356 357 #if RF_ACC_TRACE > 0 358 RF_ETIMER_STOP(timer); 359 RF_ETIMER_EVAL(timer); 360 tracerec->specific.user.map_us = RF_ETIMER_VAL_US(timer); 361 #endif 362 363 desc->state++; 364 return RF_FALSE; 365 } 366 367 int 368 rf_State_Lock(RF_RaidAccessDesc_t *desc) 369 { 370 #if RF_ACC_TRACE > 0 371 RF_AccTraceEntry_t *tracerec = &desc->tracerec; 372 RF_Etimer_t timer; 373 #endif 374 RF_Raid_t *raidPtr = desc->raidPtr; 375 RF_AccessStripeMapHeader_t *asmh = desc->asmap; 376 RF_AccessStripeMap_t *asm_p; 377 RF_StripeNum_t lastStripeID = -1; 378 int suspended = RF_FALSE; 379 380 #if RF_ACC_TRACE > 0 381 RF_ETIMER_START(timer); 382 #endif 383 384 /* acquire each lock that we don't already hold */ 385 for (asm_p = asmh->stripeMap; asm_p; asm_p = asm_p->next) { 386 RF_ASSERT(RF_IO_IS_R_OR_W(desc->type)); 387 if (!rf_suppressLocksAndLargeWrites && 388 asm_p->parityInfo && 389 !(desc->flags & RF_DAG_SUPPRESS_LOCKS) && 390 !(asm_p->flags & RF_ASM_FLAGS_LOCK_TRIED)) { 391 asm_p->flags |= RF_ASM_FLAGS_LOCK_TRIED; 392 /* locks must be acquired hierarchically */ 393 RF_ASSERT(asm_p->stripeID > lastStripeID); 394 lastStripeID = asm_p->stripeID; 395 396 RF_INIT_LOCK_REQ_DESC(asm_p->lockReqDesc, desc->type, 397 (void (*) (struct buf *)) rf_ContinueRaidAccess, desc, asm_p, 398 raidPtr->Layout.dataSectorsPerStripe); 399 if (rf_AcquireStripeLock(raidPtr->lockTable, asm_p->stripeID, 400 &asm_p->lockReqDesc)) { 401 suspended = RF_TRUE; 402 break; 403 } 404 } 405 if (desc->type == RF_IO_TYPE_WRITE && 406 raidPtr->status == rf_rs_reconstructing) { 407 if (!(asm_p->flags & RF_ASM_FLAGS_FORCE_TRIED)) { 408 int val; 409 410 asm_p->flags |= RF_ASM_FLAGS_FORCE_TRIED; 411 val = rf_ForceOrBlockRecon(raidPtr, asm_p, 412 (void (*) (RF_Raid_t *, void *)) rf_ContinueRaidAccess, desc); 413 if (val == 0) { 414 asm_p->flags |= RF_ASM_FLAGS_RECON_BLOCKED; 415 } else { 416 suspended = RF_TRUE; 417 break; 418 } 419 } else { 420 #if RF_DEBUG_PSS > 0 421 if (rf_pssDebug) { 422 printf("raid%d: skipping force/block because already done, psid %ld\n", 423 desc->raidPtr->raidid, 424 (long) asm_p->stripeID); 425 } 426 #endif 427 } 428 } else { 429 #if RF_DEBUG_PSS > 0 430 if (rf_pssDebug) { 431 printf("raid%d: skipping force/block because not write or not under recon, psid %ld\n", 432 desc->raidPtr->raidid, 433 (long) asm_p->stripeID); 434 } 435 #endif 436 } 437 } 438 #if RF_ACC_TRACE > 0 439 RF_ETIMER_STOP(timer); 440 RF_ETIMER_EVAL(timer); 441 tracerec->specific.user.lock_us += RF_ETIMER_VAL_US(timer); 442 #endif 443 if (suspended) 444 return (RF_TRUE); 445 446 desc->state++; 447 return (RF_FALSE); 448 } 449 /* 450 * the following three states create, execute, and post-process dags 451 * the error recovery unit is a single dag. 452 * by default, SelectAlgorithm creates an array of dags, one per parity stripe 453 * in some tricky cases, multiple dags per stripe are created 454 * - dags within a parity stripe are executed sequentially (arbitrary order) 455 * - dags for distinct parity stripes are executed concurrently 456 * 457 * repeat until all dags complete successfully -or- dag selection fails 458 * 459 * while !done 460 * create dag(s) (SelectAlgorithm) 461 * if dag 462 * execute dag (DispatchDAG) 463 * if dag successful 464 * done (SUCCESS) 465 * else 466 * !done (RETRY - start over with new dags) 467 * else 468 * done (FAIL) 469 */ 470 int 471 rf_State_CreateDAG(RF_RaidAccessDesc_t *desc) 472 { 473 #if RF_ACC_TRACE > 0 474 RF_AccTraceEntry_t *tracerec = &desc->tracerec; 475 RF_Etimer_t timer; 476 #endif 477 RF_DagHeader_t *dag_h; 478 RF_DagList_t *dagList; 479 struct buf *bp; 480 int i, selectStatus; 481 482 /* generate a dag for the access, and fire it off. When the dag 483 * completes, we'll get re-invoked in the next state. */ 484 #if RF_ACC_TRACE > 0 485 RF_ETIMER_START(timer); 486 #endif 487 /* SelectAlgorithm returns one or more dags */ 488 selectStatus = rf_SelectAlgorithm(desc, desc->flags | RF_DAG_SUPPRESS_LOCKS); 489 #if RF_DEBUG_VALIDATE_DAG 490 if (rf_printDAGsDebug) { 491 dagList = desc->dagList; 492 for (i = 0; i < desc->numStripes; i++) { 493 rf_PrintDAGList(dagList->dags); 494 dagList = dagList->next; 495 } 496 } 497 #endif /* RF_DEBUG_VALIDATE_DAG */ 498 #if RF_ACC_TRACE > 0 499 RF_ETIMER_STOP(timer); 500 RF_ETIMER_EVAL(timer); 501 /* update time to create all dags */ 502 tracerec->specific.user.dag_create_us = RF_ETIMER_VAL_US(timer); 503 #endif 504 505 desc->status = 0; /* good status */ 506 507 if (selectStatus || (desc->numRetries > RF_RETRY_THRESHOLD)) { 508 /* failed to create a dag */ 509 /* this happens when there are too many faults or incomplete 510 * dag libraries */ 511 if (selectStatus) { 512 printf("raid%d: failed to create a dag. " 513 "Too many component failures.\n", 514 desc->raidPtr->raidid); 515 } else { 516 printf("raid%d: IO failed after %d retries.\n", 517 desc->raidPtr->raidid, RF_RETRY_THRESHOLD); 518 } 519 520 desc->status = 1; /* bad status */ 521 /* skip straight to rf_State_Cleanup() */ 522 desc->state = rf_CleanupState; 523 bp = (struct buf *)desc->bp; 524 bp->b_error = EIO; 525 bp->b_resid = bp->b_bcount; 526 } else { 527 /* bind dags to desc */ 528 dagList = desc->dagList; 529 for (i = 0; i < desc->numStripes; i++) { 530 dag_h = dagList->dags; 531 while (dag_h) { 532 dag_h->bp = (struct buf *) desc->bp; 533 #if RF_ACC_TRACE > 0 534 dag_h->tracerec = tracerec; 535 #endif 536 dag_h = dag_h->next; 537 } 538 dagList = dagList->next; 539 } 540 desc->flags |= RF_DAG_DISPATCH_RETURNED; 541 desc->state++; /* next state should be rf_State_ExecuteDAG */ 542 } 543 return RF_FALSE; 544 } 545 546 547 548 /* the access has an list of dagLists, one dagList per parity stripe. 549 * fire the first dag in each parity stripe (dagList). 550 * dags within a stripe (dagList) must be executed sequentially 551 * - this preserves atomic parity update 552 * dags for independents parity groups (stripes) are fired concurrently */ 553 554 int 555 rf_State_ExecuteDAG(RF_RaidAccessDesc_t *desc) 556 { 557 int i; 558 RF_DagHeader_t *dag_h; 559 RF_DagList_t *dagList; 560 561 /* next state is always rf_State_ProcessDAG important to do 562 * this before firing the first dag (it may finish before we 563 * leave this routine) */ 564 desc->state++; 565 566 /* sweep dag array, a stripe at a time, firing the first dag 567 * in each stripe */ 568 dagList = desc->dagList; 569 for (i = 0; i < desc->numStripes; i++) { 570 RF_ASSERT(dagList->numDags > 0); 571 RF_ASSERT(dagList->numDagsDone == 0); 572 RF_ASSERT(dagList->numDagsFired == 0); 573 #if RF_ACC_TRACE > 0 574 RF_ETIMER_START(dagList->tracerec.timer); 575 #endif 576 /* fire first dag in this stripe */ 577 dag_h = dagList->dags; 578 RF_ASSERT(dag_h); 579 dagList->numDagsFired++; 580 rf_DispatchDAG(dag_h, (void (*) (void *)) rf_ContinueDagAccess, dagList); 581 dagList = dagList->next; 582 } 583 584 /* the DAG will always call the callback, even if there was no 585 * blocking, so we are always suspended in this state */ 586 return RF_TRUE; 587 } 588 589 590 591 /* rf_State_ProcessDAG is entered when a dag completes. 592 * first, check to all dags in the access have completed 593 * if not, fire as many dags as possible */ 594 595 int 596 rf_State_ProcessDAG(RF_RaidAccessDesc_t *desc) 597 { 598 RF_AccessStripeMapHeader_t *asmh = desc->asmap; 599 RF_Raid_t *raidPtr = desc->raidPtr; 600 RF_DagHeader_t *dag_h; 601 int i, j, done = RF_TRUE; 602 RF_DagList_t *dagList, *temp; 603 604 /* check to see if this is the last dag */ 605 dagList = desc->dagList; 606 for (i = 0; i < desc->numStripes; i++) { 607 if (dagList->numDags != dagList->numDagsDone) 608 done = RF_FALSE; 609 dagList = dagList->next; 610 } 611 612 if (done) { 613 if (desc->status) { 614 /* a dag failed, retry */ 615 /* free all dags */ 616 dagList = desc->dagList; 617 for (i = 0; i < desc->numStripes; i++) { 618 rf_FreeDAG(dagList->dags); 619 temp = dagList; 620 dagList = dagList->next; 621 rf_FreeDAGList(temp); 622 } 623 desc->dagList = NULL; 624 625 rf_MarkFailuresInASMList(raidPtr, asmh); 626 627 /* note the retry so that we'll bail in 628 rf_State_CreateDAG() once we've retired 629 the IO RF_RETRY_THRESHOLD times */ 630 631 desc->numRetries++; 632 633 /* back up to rf_State_CreateDAG */ 634 desc->state = desc->state - 2; 635 return RF_FALSE; 636 } else { 637 /* move on to rf_State_Cleanup */ 638 desc->state++; 639 } 640 return RF_FALSE; 641 } else { 642 /* more dags to execute */ 643 /* see if any are ready to be fired. if so, fire them */ 644 /* don't fire the initial dag in a list, it's fired in 645 * rf_State_ExecuteDAG */ 646 dagList = desc->dagList; 647 for (i = 0; i < desc->numStripes; i++) { 648 if ((dagList->numDagsDone < dagList->numDags) 649 && (dagList->numDagsDone == dagList->numDagsFired) 650 && (dagList->numDagsFired > 0)) { 651 #if RF_ACC_TRACE > 0 652 RF_ETIMER_START(dagList->tracerec.timer); 653 #endif 654 /* fire next dag in this stripe */ 655 /* first, skip to next dag awaiting execution */ 656 dag_h = dagList->dags; 657 for (j = 0; j < dagList->numDagsDone; j++) 658 dag_h = dag_h->next; 659 dagList->numDagsFired++; 660 rf_DispatchDAG(dag_h, (void (*) (void *)) rf_ContinueDagAccess, 661 dagList); 662 } 663 dagList = dagList->next; 664 } 665 return RF_TRUE; 666 } 667 } 668 /* only make it this far if all dags complete successfully */ 669 int 670 rf_State_Cleanup(RF_RaidAccessDesc_t *desc) 671 { 672 #if RF_ACC_TRACE > 0 673 RF_AccTraceEntry_t *tracerec = &desc->tracerec; 674 RF_Etimer_t timer; 675 #endif 676 RF_AccessStripeMapHeader_t *asmh = desc->asmap; 677 RF_Raid_t *raidPtr = desc->raidPtr; 678 RF_AccessStripeMap_t *asm_p; 679 RF_DagList_t *dagList; 680 int i; 681 682 desc->state++; 683 684 #if RF_ACC_TRACE > 0 685 timer = tracerec->timer; 686 RF_ETIMER_STOP(timer); 687 RF_ETIMER_EVAL(timer); 688 tracerec->specific.user.dag_retry_us = RF_ETIMER_VAL_US(timer); 689 690 /* the RAID I/O is complete. Clean up. */ 691 tracerec->specific.user.dag_retry_us = 0; 692 693 RF_ETIMER_START(timer); 694 #endif 695 /* free all dags */ 696 dagList = desc->dagList; 697 for (i = 0; i < desc->numStripes; i++) { 698 rf_FreeDAG(dagList->dags); 699 dagList = dagList->next; 700 } 701 #if RF_ACC_TRACE > 0 702 RF_ETIMER_STOP(timer); 703 RF_ETIMER_EVAL(timer); 704 tracerec->specific.user.cleanup_us = RF_ETIMER_VAL_US(timer); 705 706 RF_ETIMER_START(timer); 707 #endif 708 for (asm_p = asmh->stripeMap; asm_p; asm_p = asm_p->next) { 709 if (!rf_suppressLocksAndLargeWrites && 710 asm_p->parityInfo && 711 !(desc->flags & RF_DAG_SUPPRESS_LOCKS)) { 712 RF_ASSERT_VALID_LOCKREQ(&asm_p->lockReqDesc); 713 rf_ReleaseStripeLock(raidPtr->lockTable, 714 asm_p->stripeID, 715 &asm_p->lockReqDesc); 716 } 717 if (asm_p->flags & RF_ASM_FLAGS_RECON_BLOCKED) { 718 rf_UnblockRecon(raidPtr, asm_p); 719 } 720 } 721 #if RF_ACC_TRACE > 0 722 RF_ETIMER_STOP(timer); 723 RF_ETIMER_EVAL(timer); 724 tracerec->specific.user.lock_us += RF_ETIMER_VAL_US(timer); 725 726 RF_ETIMER_START(timer); 727 #endif 728 rf_FreeAccessStripeMap(asmh); 729 #if RF_ACC_TRACE > 0 730 RF_ETIMER_STOP(timer); 731 RF_ETIMER_EVAL(timer); 732 tracerec->specific.user.cleanup_us += RF_ETIMER_VAL_US(timer); 733 734 RF_ETIMER_STOP(desc->timer); 735 RF_ETIMER_EVAL(desc->timer); 736 737 timer = desc->tracerec.tot_timer; 738 RF_ETIMER_STOP(timer); 739 RF_ETIMER_EVAL(timer); 740 desc->tracerec.total_us = RF_ETIMER_VAL_US(timer); 741 742 rf_LogTraceRec(raidPtr, tracerec); 743 #endif 744 desc->flags |= RF_DAG_ACCESS_COMPLETE; 745 746 return RF_FALSE; 747 } 748