xref: /netbsd-src/sys/dev/raidframe/rf_states.c (revision 946379e7b37692fc43f68eb0d1c10daa0a7f3b6c)
1 /*	$NetBSD: rf_states.c,v 1.50 2016/01/03 08:17:24 mlelstv Exp $	*/
2 /*
3  * Copyright (c) 1995 Carnegie-Mellon University.
4  * All rights reserved.
5  *
6  * Author: Mark Holland, William V. Courtright II, Robby Findler
7  *
8  * Permission to use, copy, modify and distribute this software and
9  * its documentation is hereby granted, provided that both the copyright
10  * notice and this permission notice appear in all copies of the
11  * software, derivative works or modified versions, and any portions
12  * thereof, and that both notices appear in supporting documentation.
13  *
14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17  *
18  * Carnegie Mellon requests users of this software to return to
19  *
20  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21  *  School of Computer Science
22  *  Carnegie Mellon University
23  *  Pittsburgh PA 15213-3890
24  *
25  * any improvements or extensions that they make and grant Carnegie the
26  * rights to redistribute these changes.
27  */
28 
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: rf_states.c,v 1.50 2016/01/03 08:17:24 mlelstv Exp $");
31 
32 #include <sys/errno.h>
33 
34 #include "rf_archs.h"
35 #include "rf_threadstuff.h"
36 #include "rf_raid.h"
37 #include "rf_dag.h"
38 #include "rf_desc.h"
39 #include "rf_aselect.h"
40 #include "rf_general.h"
41 #include "rf_states.h"
42 #include "rf_dagutils.h"
43 #include "rf_driver.h"
44 #include "rf_engine.h"
45 #include "rf_map.h"
46 #include "rf_etimer.h"
47 #include "rf_kintf.h"
48 #include "rf_paritymap.h"
49 
50 #ifndef RF_DEBUG_STATES
51 #define RF_DEBUG_STATES 0
52 #endif
53 
54 /* prototypes for some of the available states.
55 
56    States must:
57 
58      - not block.
59 
60      - either schedule rf_ContinueRaidAccess as a callback and return
61        RF_TRUE, or complete all of their work and return RF_FALSE.
62 
63      - increment desc->state when they have finished their work.
64 */
65 
66 #if RF_DEBUG_STATES
67 static char *
68 StateName(RF_AccessState_t state)
69 {
70 	switch (state) {
71 		case rf_QuiesceState:return "QuiesceState";
72 	case rf_MapState:
73 		return "MapState";
74 	case rf_LockState:
75 		return "LockState";
76 	case rf_CreateDAGState:
77 		return "CreateDAGState";
78 	case rf_ExecuteDAGState:
79 		return "ExecuteDAGState";
80 	case rf_ProcessDAGState:
81 		return "ProcessDAGState";
82 	case rf_CleanupState:
83 		return "CleanupState";
84 	case rf_LastState:
85 		return "LastState";
86 	case rf_IncrAccessesCountState:
87 		return "IncrAccessesCountState";
88 	case rf_DecrAccessesCountState:
89 		return "DecrAccessesCountState";
90 	default:
91 		return "!!! UnnamedState !!!";
92 	}
93 }
94 #endif
95 
96 void
97 rf_ContinueRaidAccess(RF_RaidAccessDesc_t *desc)
98 {
99 	int     suspended = RF_FALSE;
100 	int     current_state_index = desc->state;
101 	RF_AccessState_t current_state = desc->states[current_state_index];
102 #if RF_DEBUG_STATES
103 	int     unit = desc->raidPtr->raidid;
104 #endif
105 
106 	do {
107 
108 		current_state_index = desc->state;
109 		current_state = desc->states[current_state_index];
110 
111 		switch (current_state) {
112 
113 		case rf_QuiesceState:
114 			suspended = rf_State_Quiesce(desc);
115 			break;
116 		case rf_IncrAccessesCountState:
117 			suspended = rf_State_IncrAccessCount(desc);
118 			break;
119 		case rf_MapState:
120 			suspended = rf_State_Map(desc);
121 			break;
122 		case rf_LockState:
123 			suspended = rf_State_Lock(desc);
124 			break;
125 		case rf_CreateDAGState:
126 			suspended = rf_State_CreateDAG(desc);
127 			break;
128 		case rf_ExecuteDAGState:
129 			suspended = rf_State_ExecuteDAG(desc);
130 			break;
131 		case rf_ProcessDAGState:
132 			suspended = rf_State_ProcessDAG(desc);
133 			break;
134 		case rf_CleanupState:
135 			suspended = rf_State_Cleanup(desc);
136 			break;
137 		case rf_DecrAccessesCountState:
138 			suspended = rf_State_DecrAccessCount(desc);
139 			break;
140 		case rf_LastState:
141 			suspended = rf_State_LastState(desc);
142 			break;
143 		}
144 
145 		/* after this point, we cannot dereference desc since
146 		 * desc may have been freed. desc is only freed in
147 		 * LastState, so if we renter this function or loop
148 		 * back up, desc should be valid. */
149 
150 #if RF_DEBUG_STATES
151 		if (rf_printStatesDebug) {
152 			printf("raid%d: State: %-24s StateIndex: %3i desc: 0x%ld %s\n",
153 			       unit, StateName(current_state),
154 			       current_state_index, (long) desc,
155 			       suspended ? "callback scheduled" : "looping");
156 		}
157 #endif
158 	} while (!suspended && current_state != rf_LastState);
159 
160 	return;
161 }
162 
163 
164 void
165 rf_ContinueDagAccess(RF_DagList_t *dagList)
166 {
167 #if RF_ACC_TRACE > 0
168 	RF_AccTraceEntry_t *tracerec = &(dagList->desc->tracerec);
169 	RF_Etimer_t timer;
170 #endif
171 	RF_RaidAccessDesc_t *desc;
172 	RF_DagHeader_t *dag_h;
173 	int     i;
174 
175 	desc = dagList->desc;
176 
177 #if RF_ACC_TRACE > 0
178 	timer = tracerec->timer;
179 	RF_ETIMER_STOP(timer);
180 	RF_ETIMER_EVAL(timer);
181 	tracerec->specific.user.exec_us = RF_ETIMER_VAL_US(timer);
182 	RF_ETIMER_START(tracerec->timer);
183 #endif
184 
185 	/* skip to dag which just finished */
186 	dag_h = dagList->dags;
187 	for (i = 0; i < dagList->numDagsDone; i++) {
188 		dag_h = dag_h->next;
189 	}
190 
191 	/* check to see if retry is required */
192 	if (dag_h->status == rf_rollBackward) {
193 		/* when a dag fails, mark desc status as bad and allow
194 		 * all other dags in the desc to execute to
195 		 * completion.  then, free all dags and start over */
196 		desc->status = 1;	/* bad status */
197 #if 0
198 		printf("raid%d: DAG failure: %c addr 0x%lx "
199 		       "(%ld) nblk 0x%x (%d) buf 0x%lx state %d\n",
200 		       desc->raidPtr->raidid, desc->type,
201 		       (long) desc->raidAddress,
202 		       (long) desc->raidAddress, (int) desc->numBlocks,
203 		       (int) desc->numBlocks,
204 		       (unsigned long) (desc->bufPtr), desc->state);
205 #endif
206 	}
207 	dagList->numDagsDone++;
208 	rf_ContinueRaidAccess(desc);
209 }
210 
211 int
212 rf_State_LastState(RF_RaidAccessDesc_t *desc)
213 {
214 	void    (*callbackFunc) (RF_CBParam_t) = desc->callbackFunc;
215 	RF_CBParam_t callbackArg;
216 
217 	callbackArg.p = desc->callbackArg;
218 
219 	/*
220 	 * We don't support non-async IO.
221 	 */
222 	KASSERT(desc->async_flag);
223 
224 	/*
225 	 * The parity_map hook has to go here, because the iodone
226 	 * callback goes straight into the kintf layer.
227 	 */
228 	if (desc->raidPtr->parity_map != NULL &&
229 	    desc->type == RF_IO_TYPE_WRITE)
230 		rf_paritymap_end(desc->raidPtr->parity_map,
231 		    desc->raidAddress, desc->numBlocks);
232 
233 	/* printf("Calling raiddone on 0x%x\n",desc->bp); */
234 	raiddone(desc->raidPtr, desc->bp); /* access came through ioctl */
235 
236 	if (callbackFunc)
237 		callbackFunc(callbackArg);
238 	rf_FreeRaidAccDesc(desc);
239 
240 	return RF_FALSE;
241 }
242 
243 int
244 rf_State_IncrAccessCount(RF_RaidAccessDesc_t *desc)
245 {
246 	RF_Raid_t *raidPtr;
247 
248 	raidPtr = desc->raidPtr;
249 	/* Bummer. We have to do this to be 100% safe w.r.t. the increment
250 	 * below */
251 	rf_lock_mutex2(raidPtr->access_suspend_mutex);
252 	raidPtr->accs_in_flight++;	/* used to detect quiescence */
253 	rf_unlock_mutex2(raidPtr->access_suspend_mutex);
254 
255 	desc->state++;
256 	return RF_FALSE;
257 }
258 
259 int
260 rf_State_DecrAccessCount(RF_RaidAccessDesc_t *desc)
261 {
262 	RF_Raid_t *raidPtr;
263 
264 	raidPtr = desc->raidPtr;
265 
266 	rf_lock_mutex2(raidPtr->access_suspend_mutex);
267 	raidPtr->accs_in_flight--;
268 	if (raidPtr->accesses_suspended && raidPtr->accs_in_flight == 0) {
269 		rf_SignalQuiescenceLock(raidPtr);
270 	}
271 	rf_unlock_mutex2(raidPtr->access_suspend_mutex);
272 
273 	desc->state++;
274 	return RF_FALSE;
275 }
276 
277 int
278 rf_State_Quiesce(RF_RaidAccessDesc_t *desc)
279 {
280 #if RF_ACC_TRACE > 0
281 	RF_AccTraceEntry_t *tracerec = &desc->tracerec;
282 	RF_Etimer_t timer;
283 #endif
284 	RF_CallbackDesc_t *cb;
285 	RF_Raid_t *raidPtr;
286 	int     suspended = RF_FALSE;
287 	int need_cb, used_cb;
288 
289 	raidPtr = desc->raidPtr;
290 
291 #if RF_ACC_TRACE > 0
292 	RF_ETIMER_START(timer);
293 	RF_ETIMER_START(desc->timer);
294 #endif
295 
296 	need_cb = 0;
297 	used_cb = 0;
298 	cb = NULL;
299 
300 	rf_lock_mutex2(raidPtr->access_suspend_mutex);
301 	/* Do an initial check to see if we might need a callback structure */
302 	if (raidPtr->accesses_suspended) {
303 		need_cb = 1;
304 	}
305 	rf_unlock_mutex2(raidPtr->access_suspend_mutex);
306 
307 	if (need_cb) {
308 		/* create a callback if we might need it...
309 		   and we likely do. */
310 		cb = rf_AllocCallbackDesc();
311 	}
312 
313 	rf_lock_mutex2(raidPtr->access_suspend_mutex);
314 	if (raidPtr->accesses_suspended) {
315 		cb->callbackFunc = (void (*) (RF_CBParam_t)) rf_ContinueRaidAccess;
316 		cb->callbackArg.p = (void *) desc;
317 		cb->next = raidPtr->quiesce_wait_list;
318 		raidPtr->quiesce_wait_list = cb;
319 		suspended = RF_TRUE;
320 		used_cb = 1;
321 	}
322 	rf_unlock_mutex2(raidPtr->access_suspend_mutex);
323 
324 	if ((need_cb == 1) && (used_cb == 0)) {
325 		rf_FreeCallbackDesc(cb);
326 	}
327 
328 #if RF_ACC_TRACE > 0
329 	RF_ETIMER_STOP(timer);
330 	RF_ETIMER_EVAL(timer);
331 	tracerec->specific.user.suspend_ovhd_us += RF_ETIMER_VAL_US(timer);
332 #endif
333 
334 #if RF_DEBUG_QUIESCE
335 	if (suspended && rf_quiesceDebug)
336 		printf("Stalling access due to quiescence lock\n");
337 #endif
338 	desc->state++;
339 	return suspended;
340 }
341 
342 int
343 rf_State_Map(RF_RaidAccessDesc_t *desc)
344 {
345 	RF_Raid_t *raidPtr = desc->raidPtr;
346 #if RF_ACC_TRACE > 0
347 	RF_AccTraceEntry_t *tracerec = &desc->tracerec;
348 	RF_Etimer_t timer;
349 
350 	RF_ETIMER_START(timer);
351 #endif
352 
353 	if (!(desc->asmap = rf_MapAccess(raidPtr, desc->raidAddress, desc->numBlocks,
354 		    desc->bufPtr, RF_DONT_REMAP)))
355 		RF_PANIC();
356 
357 #if RF_ACC_TRACE > 0
358 	RF_ETIMER_STOP(timer);
359 	RF_ETIMER_EVAL(timer);
360 	tracerec->specific.user.map_us = RF_ETIMER_VAL_US(timer);
361 #endif
362 
363 	desc->state++;
364 	return RF_FALSE;
365 }
366 
367 int
368 rf_State_Lock(RF_RaidAccessDesc_t *desc)
369 {
370 #if RF_ACC_TRACE > 0
371 	RF_AccTraceEntry_t *tracerec = &desc->tracerec;
372 	RF_Etimer_t timer;
373 #endif
374 	RF_Raid_t *raidPtr = desc->raidPtr;
375 	RF_AccessStripeMapHeader_t *asmh = desc->asmap;
376 	RF_AccessStripeMap_t *asm_p;
377 	RF_StripeNum_t lastStripeID = -1;
378 	int     suspended = RF_FALSE;
379 
380 #if RF_ACC_TRACE > 0
381 	RF_ETIMER_START(timer);
382 #endif
383 
384 	/* acquire each lock that we don't already hold */
385 	for (asm_p = asmh->stripeMap; asm_p; asm_p = asm_p->next) {
386 		RF_ASSERT(RF_IO_IS_R_OR_W(desc->type));
387 		if (!rf_suppressLocksAndLargeWrites &&
388 		    asm_p->parityInfo &&
389 		    !(desc->flags & RF_DAG_SUPPRESS_LOCKS) &&
390 		    !(asm_p->flags & RF_ASM_FLAGS_LOCK_TRIED)) {
391 			asm_p->flags |= RF_ASM_FLAGS_LOCK_TRIED;
392 				/* locks must be acquired hierarchically */
393 			RF_ASSERT(asm_p->stripeID > lastStripeID);
394 			lastStripeID = asm_p->stripeID;
395 
396 			RF_INIT_LOCK_REQ_DESC(asm_p->lockReqDesc, desc->type,
397 					      (void (*) (struct buf *)) rf_ContinueRaidAccess, desc, asm_p,
398 					      raidPtr->Layout.dataSectorsPerStripe);
399 			if (rf_AcquireStripeLock(raidPtr->lockTable, asm_p->stripeID,
400 						 &asm_p->lockReqDesc)) {
401 				suspended = RF_TRUE;
402 				break;
403 			}
404 		}
405 		if (desc->type == RF_IO_TYPE_WRITE &&
406 		    raidPtr->status == rf_rs_reconstructing) {
407 			if (!(asm_p->flags & RF_ASM_FLAGS_FORCE_TRIED)) {
408 				int     val;
409 
410 				asm_p->flags |= RF_ASM_FLAGS_FORCE_TRIED;
411 				val = rf_ForceOrBlockRecon(raidPtr, asm_p,
412 							   (void (*) (RF_Raid_t *, void *)) rf_ContinueRaidAccess, desc);
413 				if (val == 0) {
414 					asm_p->flags |= RF_ASM_FLAGS_RECON_BLOCKED;
415 				} else {
416 					suspended = RF_TRUE;
417 					break;
418 				}
419 			} else {
420 #if RF_DEBUG_PSS > 0
421 				if (rf_pssDebug) {
422 					printf("raid%d: skipping force/block because already done, psid %ld\n",
423 					       desc->raidPtr->raidid,
424 					       (long) asm_p->stripeID);
425 				}
426 #endif
427 			}
428 		} else {
429 #if RF_DEBUG_PSS > 0
430 			if (rf_pssDebug) {
431 				printf("raid%d: skipping force/block because not write or not under recon, psid %ld\n",
432 				       desc->raidPtr->raidid,
433 				       (long) asm_p->stripeID);
434 			}
435 #endif
436 		}
437 	}
438 #if RF_ACC_TRACE > 0
439 	RF_ETIMER_STOP(timer);
440 	RF_ETIMER_EVAL(timer);
441 	tracerec->specific.user.lock_us += RF_ETIMER_VAL_US(timer);
442 #endif
443 	if (suspended)
444 		return (RF_TRUE);
445 
446 	desc->state++;
447 	return (RF_FALSE);
448 }
449 /*
450  * the following three states create, execute, and post-process dags
451  * the error recovery unit is a single dag.
452  * by default, SelectAlgorithm creates an array of dags, one per parity stripe
453  * in some tricky cases, multiple dags per stripe are created
454  *   - dags within a parity stripe are executed sequentially (arbitrary order)
455  *   - dags for distinct parity stripes are executed concurrently
456  *
457  * repeat until all dags complete successfully -or- dag selection fails
458  *
459  * while !done
460  *   create dag(s) (SelectAlgorithm)
461  *   if dag
462  *     execute dag (DispatchDAG)
463  *     if dag successful
464  *       done (SUCCESS)
465  *     else
466  *       !done (RETRY - start over with new dags)
467  *   else
468  *     done (FAIL)
469  */
470 int
471 rf_State_CreateDAG(RF_RaidAccessDesc_t *desc)
472 {
473 #if RF_ACC_TRACE > 0
474 	RF_AccTraceEntry_t *tracerec = &desc->tracerec;
475 	RF_Etimer_t timer;
476 #endif
477 	RF_DagHeader_t *dag_h;
478 	RF_DagList_t *dagList;
479 	struct buf *bp;
480 	int     i, selectStatus;
481 
482 	/* generate a dag for the access, and fire it off.  When the dag
483 	 * completes, we'll get re-invoked in the next state. */
484 #if RF_ACC_TRACE > 0
485 	RF_ETIMER_START(timer);
486 #endif
487 	/* SelectAlgorithm returns one or more dags */
488 	selectStatus = rf_SelectAlgorithm(desc, desc->flags | RF_DAG_SUPPRESS_LOCKS);
489 #if RF_DEBUG_VALIDATE_DAG
490 	if (rf_printDAGsDebug) {
491 		dagList = desc->dagList;
492 		for (i = 0; i < desc->numStripes; i++) {
493 			rf_PrintDAGList(dagList->dags);
494 			dagList = dagList->next;
495 		}
496 	}
497 #endif /* RF_DEBUG_VALIDATE_DAG */
498 #if RF_ACC_TRACE > 0
499 	RF_ETIMER_STOP(timer);
500 	RF_ETIMER_EVAL(timer);
501 	/* update time to create all dags */
502 	tracerec->specific.user.dag_create_us = RF_ETIMER_VAL_US(timer);
503 #endif
504 
505 	desc->status = 0;	/* good status */
506 
507 	if (selectStatus || (desc->numRetries > RF_RETRY_THRESHOLD)) {
508 		/* failed to create a dag */
509 		/* this happens when there are too many faults or incomplete
510 		 * dag libraries */
511 		if (selectStatus) {
512 			printf("raid%d: failed to create a dag. "
513 			       "Too many component failures.\n",
514 			       desc->raidPtr->raidid);
515 		} else {
516 			printf("raid%d: IO failed after %d retries.\n",
517 			       desc->raidPtr->raidid, RF_RETRY_THRESHOLD);
518 		}
519 
520 		desc->status = 1; /* bad status */
521 		/* skip straight to rf_State_Cleanup() */
522 		desc->state = rf_CleanupState;
523 		bp = (struct buf *)desc->bp;
524 		bp->b_error = EIO;
525 		bp->b_resid = bp->b_bcount;
526 	} else {
527 		/* bind dags to desc */
528 		dagList = desc->dagList;
529 		for (i = 0; i < desc->numStripes; i++) {
530 			dag_h = dagList->dags;
531 			while (dag_h) {
532 				dag_h->bp = (struct buf *) desc->bp;
533 #if RF_ACC_TRACE > 0
534 				dag_h->tracerec = tracerec;
535 #endif
536 				dag_h = dag_h->next;
537 			}
538 			dagList = dagList->next;
539 		}
540 		desc->flags |= RF_DAG_DISPATCH_RETURNED;
541 		desc->state++;	/* next state should be rf_State_ExecuteDAG */
542 	}
543 	return RF_FALSE;
544 }
545 
546 
547 
548 /* the access has an list of dagLists, one dagList per parity stripe.
549  * fire the first dag in each parity stripe (dagList).
550  * dags within a stripe (dagList) must be executed sequentially
551  *  - this preserves atomic parity update
552  * dags for independents parity groups (stripes) are fired concurrently */
553 
554 int
555 rf_State_ExecuteDAG(RF_RaidAccessDesc_t *desc)
556 {
557 	int     i;
558 	RF_DagHeader_t *dag_h;
559 	RF_DagList_t *dagList;
560 
561 	/* next state is always rf_State_ProcessDAG important to do
562 	 * this before firing the first dag (it may finish before we
563 	 * leave this routine) */
564 	desc->state++;
565 
566 	/* sweep dag array, a stripe at a time, firing the first dag
567 	 * in each stripe */
568 	dagList = desc->dagList;
569 	for (i = 0; i < desc->numStripes; i++) {
570 		RF_ASSERT(dagList->numDags > 0);
571 		RF_ASSERT(dagList->numDagsDone == 0);
572 		RF_ASSERT(dagList->numDagsFired == 0);
573 #if RF_ACC_TRACE > 0
574 		RF_ETIMER_START(dagList->tracerec.timer);
575 #endif
576 		/* fire first dag in this stripe */
577 		dag_h = dagList->dags;
578 		RF_ASSERT(dag_h);
579 		dagList->numDagsFired++;
580 		rf_DispatchDAG(dag_h, (void (*) (void *)) rf_ContinueDagAccess, dagList);
581 		dagList = dagList->next;
582 	}
583 
584 	/* the DAG will always call the callback, even if there was no
585 	 * blocking, so we are always suspended in this state */
586 	return RF_TRUE;
587 }
588 
589 
590 
591 /* rf_State_ProcessDAG is entered when a dag completes.
592  * first, check to all dags in the access have completed
593  * if not, fire as many dags as possible */
594 
595 int
596 rf_State_ProcessDAG(RF_RaidAccessDesc_t *desc)
597 {
598 	RF_AccessStripeMapHeader_t *asmh = desc->asmap;
599 	RF_Raid_t *raidPtr = desc->raidPtr;
600 	RF_DagHeader_t *dag_h;
601 	int     i, j, done = RF_TRUE;
602 	RF_DagList_t *dagList, *temp;
603 
604 	/* check to see if this is the last dag */
605 	dagList = desc->dagList;
606 	for (i = 0; i < desc->numStripes; i++) {
607 		if (dagList->numDags != dagList->numDagsDone)
608 			done = RF_FALSE;
609 		dagList = dagList->next;
610 	}
611 
612 	if (done) {
613 		if (desc->status) {
614 			/* a dag failed, retry */
615 			/* free all dags */
616 			dagList = desc->dagList;
617 			for (i = 0; i < desc->numStripes; i++) {
618 				rf_FreeDAG(dagList->dags);
619 				temp = dagList;
620 				dagList = dagList->next;
621 				rf_FreeDAGList(temp);
622 			}
623 			desc->dagList = NULL;
624 
625 			rf_MarkFailuresInASMList(raidPtr, asmh);
626 
627 			/* note the retry so that we'll bail in
628 			   rf_State_CreateDAG() once we've retired
629 			   the IO RF_RETRY_THRESHOLD times */
630 
631 			desc->numRetries++;
632 
633 			/* back up to rf_State_CreateDAG */
634 			desc->state = desc->state - 2;
635 			return RF_FALSE;
636 		} else {
637 			/* move on to rf_State_Cleanup */
638 			desc->state++;
639 		}
640 		return RF_FALSE;
641 	} else {
642 		/* more dags to execute */
643 		/* see if any are ready to be fired.  if so, fire them */
644 		/* don't fire the initial dag in a list, it's fired in
645 		 * rf_State_ExecuteDAG */
646 		dagList = desc->dagList;
647 		for (i = 0; i < desc->numStripes; i++) {
648 			if ((dagList->numDagsDone < dagList->numDags)
649 			    && (dagList->numDagsDone == dagList->numDagsFired)
650 			    && (dagList->numDagsFired > 0)) {
651 #if RF_ACC_TRACE > 0
652 				RF_ETIMER_START(dagList->tracerec.timer);
653 #endif
654 				/* fire next dag in this stripe */
655 				/* first, skip to next dag awaiting execution */
656 				dag_h = dagList->dags;
657 				for (j = 0; j < dagList->numDagsDone; j++)
658 					dag_h = dag_h->next;
659 				dagList->numDagsFired++;
660 				rf_DispatchDAG(dag_h, (void (*) (void *)) rf_ContinueDagAccess,
661 				    dagList);
662 			}
663 			dagList = dagList->next;
664 		}
665 		return RF_TRUE;
666 	}
667 }
668 /* only make it this far if all dags complete successfully */
669 int
670 rf_State_Cleanup(RF_RaidAccessDesc_t *desc)
671 {
672 #if RF_ACC_TRACE > 0
673 	RF_AccTraceEntry_t *tracerec = &desc->tracerec;
674 	RF_Etimer_t timer;
675 #endif
676 	RF_AccessStripeMapHeader_t *asmh = desc->asmap;
677 	RF_Raid_t *raidPtr = desc->raidPtr;
678 	RF_AccessStripeMap_t *asm_p;
679 	RF_DagList_t *dagList;
680 	int i;
681 
682 	desc->state++;
683 
684 #if RF_ACC_TRACE > 0
685 	timer = tracerec->timer;
686 	RF_ETIMER_STOP(timer);
687 	RF_ETIMER_EVAL(timer);
688 	tracerec->specific.user.dag_retry_us = RF_ETIMER_VAL_US(timer);
689 
690 	/* the RAID I/O is complete.  Clean up. */
691 	tracerec->specific.user.dag_retry_us = 0;
692 
693 	RF_ETIMER_START(timer);
694 #endif
695 	/* free all dags */
696 	dagList = desc->dagList;
697 	for (i = 0; i < desc->numStripes; i++) {
698 		rf_FreeDAG(dagList->dags);
699 		dagList = dagList->next;
700 	}
701 #if RF_ACC_TRACE > 0
702 	RF_ETIMER_STOP(timer);
703 	RF_ETIMER_EVAL(timer);
704 	tracerec->specific.user.cleanup_us = RF_ETIMER_VAL_US(timer);
705 
706 	RF_ETIMER_START(timer);
707 #endif
708 	for (asm_p = asmh->stripeMap; asm_p; asm_p = asm_p->next) {
709 		if (!rf_suppressLocksAndLargeWrites &&
710 		    asm_p->parityInfo &&
711 		    !(desc->flags & RF_DAG_SUPPRESS_LOCKS)) {
712 			RF_ASSERT_VALID_LOCKREQ(&asm_p->lockReqDesc);
713 			rf_ReleaseStripeLock(raidPtr->lockTable,
714 					     asm_p->stripeID,
715 					     &asm_p->lockReqDesc);
716 		}
717 		if (asm_p->flags & RF_ASM_FLAGS_RECON_BLOCKED) {
718 			rf_UnblockRecon(raidPtr, asm_p);
719 		}
720 	}
721 #if RF_ACC_TRACE > 0
722 	RF_ETIMER_STOP(timer);
723 	RF_ETIMER_EVAL(timer);
724 	tracerec->specific.user.lock_us += RF_ETIMER_VAL_US(timer);
725 
726 	RF_ETIMER_START(timer);
727 #endif
728 	rf_FreeAccessStripeMap(asmh);
729 #if RF_ACC_TRACE > 0
730 	RF_ETIMER_STOP(timer);
731 	RF_ETIMER_EVAL(timer);
732 	tracerec->specific.user.cleanup_us += RF_ETIMER_VAL_US(timer);
733 
734 	RF_ETIMER_STOP(desc->timer);
735 	RF_ETIMER_EVAL(desc->timer);
736 
737 	timer = desc->tracerec.tot_timer;
738 	RF_ETIMER_STOP(timer);
739 	RF_ETIMER_EVAL(timer);
740 	desc->tracerec.total_us = RF_ETIMER_VAL_US(timer);
741 
742 	rf_LogTraceRec(raidPtr, tracerec);
743 #endif
744 	desc->flags |= RF_DAG_ACCESS_COMPLETE;
745 
746 	return RF_FALSE;
747 }
748