1 /* $NetBSD: rf_states.c,v 1.49 2011/05/11 18:13:12 mrg Exp $ */ 2 /* 3 * Copyright (c) 1995 Carnegie-Mellon University. 4 * All rights reserved. 5 * 6 * Author: Mark Holland, William V. Courtright II, Robby Findler 7 * 8 * Permission to use, copy, modify and distribute this software and 9 * its documentation is hereby granted, provided that both the copyright 10 * notice and this permission notice appear in all copies of the 11 * software, derivative works or modified versions, and any portions 12 * thereof, and that both notices appear in supporting documentation. 13 * 14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 17 * 18 * Carnegie Mellon requests users of this software to return to 19 * 20 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 21 * School of Computer Science 22 * Carnegie Mellon University 23 * Pittsburgh PA 15213-3890 24 * 25 * any improvements or extensions that they make and grant Carnegie the 26 * rights to redistribute these changes. 27 */ 28 29 #include <sys/cdefs.h> 30 __KERNEL_RCSID(0, "$NetBSD: rf_states.c,v 1.49 2011/05/11 18:13:12 mrg Exp $"); 31 32 #include <sys/errno.h> 33 34 #include "rf_archs.h" 35 #include "rf_threadstuff.h" 36 #include "rf_raid.h" 37 #include "rf_dag.h" 38 #include "rf_desc.h" 39 #include "rf_aselect.h" 40 #include "rf_general.h" 41 #include "rf_states.h" 42 #include "rf_dagutils.h" 43 #include "rf_driver.h" 44 #include "rf_engine.h" 45 #include "rf_map.h" 46 #include "rf_etimer.h" 47 #include "rf_kintf.h" 48 #include "rf_paritymap.h" 49 50 #ifndef RF_DEBUG_STATES 51 #define RF_DEBUG_STATES 0 52 #endif 53 54 /* prototypes for some of the available states. 55 56 States must: 57 58 - not block. 59 60 - either schedule rf_ContinueRaidAccess as a callback and return 61 RF_TRUE, or complete all of their work and return RF_FALSE. 62 63 - increment desc->state when they have finished their work. 64 */ 65 66 #if RF_DEBUG_STATES 67 static char * 68 StateName(RF_AccessState_t state) 69 { 70 switch (state) { 71 case rf_QuiesceState:return "QuiesceState"; 72 case rf_MapState: 73 return "MapState"; 74 case rf_LockState: 75 return "LockState"; 76 case rf_CreateDAGState: 77 return "CreateDAGState"; 78 case rf_ExecuteDAGState: 79 return "ExecuteDAGState"; 80 case rf_ProcessDAGState: 81 return "ProcessDAGState"; 82 case rf_CleanupState: 83 return "CleanupState"; 84 case rf_LastState: 85 return "LastState"; 86 case rf_IncrAccessesCountState: 87 return "IncrAccessesCountState"; 88 case rf_DecrAccessesCountState: 89 return "DecrAccessesCountState"; 90 default: 91 return "!!! UnnamedState !!!"; 92 } 93 } 94 #endif 95 96 void 97 rf_ContinueRaidAccess(RF_RaidAccessDesc_t *desc) 98 { 99 int suspended = RF_FALSE; 100 int current_state_index = desc->state; 101 RF_AccessState_t current_state = desc->states[current_state_index]; 102 #if RF_DEBUG_STATES 103 int unit = desc->raidPtr->raidid; 104 #endif 105 106 do { 107 108 current_state_index = desc->state; 109 current_state = desc->states[current_state_index]; 110 111 switch (current_state) { 112 113 case rf_QuiesceState: 114 suspended = rf_State_Quiesce(desc); 115 break; 116 case rf_IncrAccessesCountState: 117 suspended = rf_State_IncrAccessCount(desc); 118 break; 119 case rf_MapState: 120 suspended = rf_State_Map(desc); 121 break; 122 case rf_LockState: 123 suspended = rf_State_Lock(desc); 124 break; 125 case rf_CreateDAGState: 126 suspended = rf_State_CreateDAG(desc); 127 break; 128 case rf_ExecuteDAGState: 129 suspended = rf_State_ExecuteDAG(desc); 130 break; 131 case rf_ProcessDAGState: 132 suspended = rf_State_ProcessDAG(desc); 133 break; 134 case rf_CleanupState: 135 suspended = rf_State_Cleanup(desc); 136 break; 137 case rf_DecrAccessesCountState: 138 suspended = rf_State_DecrAccessCount(desc); 139 break; 140 case rf_LastState: 141 suspended = rf_State_LastState(desc); 142 break; 143 } 144 145 /* after this point, we cannot dereference desc since 146 * desc may have been freed. desc is only freed in 147 * LastState, so if we renter this function or loop 148 * back up, desc should be valid. */ 149 150 #if RF_DEBUG_STATES 151 if (rf_printStatesDebug) { 152 printf("raid%d: State: %-24s StateIndex: %3i desc: 0x%ld %s\n", 153 unit, StateName(current_state), 154 current_state_index, (long) desc, 155 suspended ? "callback scheduled" : "looping"); 156 } 157 #endif 158 } while (!suspended && current_state != rf_LastState); 159 160 return; 161 } 162 163 164 void 165 rf_ContinueDagAccess(RF_DagList_t *dagList) 166 { 167 #if RF_ACC_TRACE > 0 168 RF_AccTraceEntry_t *tracerec = &(dagList->desc->tracerec); 169 RF_Etimer_t timer; 170 #endif 171 RF_RaidAccessDesc_t *desc; 172 RF_DagHeader_t *dag_h; 173 int i; 174 175 desc = dagList->desc; 176 177 #if RF_ACC_TRACE > 0 178 timer = tracerec->timer; 179 RF_ETIMER_STOP(timer); 180 RF_ETIMER_EVAL(timer); 181 tracerec->specific.user.exec_us = RF_ETIMER_VAL_US(timer); 182 RF_ETIMER_START(tracerec->timer); 183 #endif 184 185 /* skip to dag which just finished */ 186 dag_h = dagList->dags; 187 for (i = 0; i < dagList->numDagsDone; i++) { 188 dag_h = dag_h->next; 189 } 190 191 /* check to see if retry is required */ 192 if (dag_h->status == rf_rollBackward) { 193 /* when a dag fails, mark desc status as bad and allow 194 * all other dags in the desc to execute to 195 * completion. then, free all dags and start over */ 196 desc->status = 1; /* bad status */ 197 #if 0 198 printf("raid%d: DAG failure: %c addr 0x%lx " 199 "(%ld) nblk 0x%x (%d) buf 0x%lx state %d\n", 200 desc->raidPtr->raidid, desc->type, 201 (long) desc->raidAddress, 202 (long) desc->raidAddress, (int) desc->numBlocks, 203 (int) desc->numBlocks, 204 (unsigned long) (desc->bufPtr), desc->state); 205 #endif 206 } 207 dagList->numDagsDone++; 208 rf_ContinueRaidAccess(desc); 209 } 210 211 int 212 rf_State_LastState(RF_RaidAccessDesc_t *desc) 213 { 214 void (*callbackFunc) (RF_CBParam_t) = desc->callbackFunc; 215 RF_CBParam_t callbackArg; 216 217 callbackArg.p = desc->callbackArg; 218 219 /* 220 * We don't support non-async IO. 221 */ 222 KASSERT(desc->async_flag); 223 224 /* 225 * That's all the IO for this one... unbusy the 'disk'. 226 */ 227 228 rf_disk_unbusy(desc); 229 230 /* 231 * Wakeup any requests waiting to go. 232 */ 233 234 rf_lock_mutex2(desc->raidPtr->mutex); 235 desc->raidPtr->openings++; 236 rf_unlock_mutex2(desc->raidPtr->mutex); 237 238 rf_lock_mutex2(desc->raidPtr->iodone_lock); 239 rf_signal_cond2(desc->raidPtr->iodone_cv); 240 rf_unlock_mutex2(desc->raidPtr->iodone_lock); 241 242 /* 243 * The parity_map hook has to go here, because the iodone 244 * callback goes straight into the kintf layer. 245 */ 246 if (desc->raidPtr->parity_map != NULL && 247 desc->type == RF_IO_TYPE_WRITE) 248 rf_paritymap_end(desc->raidPtr->parity_map, 249 desc->raidAddress, desc->numBlocks); 250 251 /* printf("Calling biodone on 0x%x\n",desc->bp); */ 252 biodone(desc->bp); /* access came through ioctl */ 253 254 if (callbackFunc) 255 callbackFunc(callbackArg); 256 rf_FreeRaidAccDesc(desc); 257 258 return RF_FALSE; 259 } 260 261 int 262 rf_State_IncrAccessCount(RF_RaidAccessDesc_t *desc) 263 { 264 RF_Raid_t *raidPtr; 265 266 raidPtr = desc->raidPtr; 267 /* Bummer. We have to do this to be 100% safe w.r.t. the increment 268 * below */ 269 rf_lock_mutex2(raidPtr->access_suspend_mutex); 270 raidPtr->accs_in_flight++; /* used to detect quiescence */ 271 rf_unlock_mutex2(raidPtr->access_suspend_mutex); 272 273 desc->state++; 274 return RF_FALSE; 275 } 276 277 int 278 rf_State_DecrAccessCount(RF_RaidAccessDesc_t *desc) 279 { 280 RF_Raid_t *raidPtr; 281 282 raidPtr = desc->raidPtr; 283 284 rf_lock_mutex2(raidPtr->access_suspend_mutex); 285 raidPtr->accs_in_flight--; 286 if (raidPtr->accesses_suspended && raidPtr->accs_in_flight == 0) { 287 rf_SignalQuiescenceLock(raidPtr); 288 } 289 rf_unlock_mutex2(raidPtr->access_suspend_mutex); 290 291 desc->state++; 292 return RF_FALSE; 293 } 294 295 int 296 rf_State_Quiesce(RF_RaidAccessDesc_t *desc) 297 { 298 #if RF_ACC_TRACE > 0 299 RF_AccTraceEntry_t *tracerec = &desc->tracerec; 300 RF_Etimer_t timer; 301 #endif 302 RF_CallbackDesc_t *cb; 303 RF_Raid_t *raidPtr; 304 int suspended = RF_FALSE; 305 int need_cb, used_cb; 306 307 raidPtr = desc->raidPtr; 308 309 #if RF_ACC_TRACE > 0 310 RF_ETIMER_START(timer); 311 RF_ETIMER_START(desc->timer); 312 #endif 313 314 need_cb = 0; 315 used_cb = 0; 316 cb = NULL; 317 318 rf_lock_mutex2(raidPtr->access_suspend_mutex); 319 /* Do an initial check to see if we might need a callback structure */ 320 if (raidPtr->accesses_suspended) { 321 need_cb = 1; 322 } 323 rf_unlock_mutex2(raidPtr->access_suspend_mutex); 324 325 if (need_cb) { 326 /* create a callback if we might need it... 327 and we likely do. */ 328 cb = rf_AllocCallbackDesc(); 329 } 330 331 rf_lock_mutex2(raidPtr->access_suspend_mutex); 332 if (raidPtr->accesses_suspended) { 333 cb->callbackFunc = (void (*) (RF_CBParam_t)) rf_ContinueRaidAccess; 334 cb->callbackArg.p = (void *) desc; 335 cb->next = raidPtr->quiesce_wait_list; 336 raidPtr->quiesce_wait_list = cb; 337 suspended = RF_TRUE; 338 used_cb = 1; 339 } 340 rf_unlock_mutex2(raidPtr->access_suspend_mutex); 341 342 if ((need_cb == 1) && (used_cb == 0)) { 343 rf_FreeCallbackDesc(cb); 344 } 345 346 #if RF_ACC_TRACE > 0 347 RF_ETIMER_STOP(timer); 348 RF_ETIMER_EVAL(timer); 349 tracerec->specific.user.suspend_ovhd_us += RF_ETIMER_VAL_US(timer); 350 #endif 351 352 #if RF_DEBUG_QUIESCE 353 if (suspended && rf_quiesceDebug) 354 printf("Stalling access due to quiescence lock\n"); 355 #endif 356 desc->state++; 357 return suspended; 358 } 359 360 int 361 rf_State_Map(RF_RaidAccessDesc_t *desc) 362 { 363 RF_Raid_t *raidPtr = desc->raidPtr; 364 #if RF_ACC_TRACE > 0 365 RF_AccTraceEntry_t *tracerec = &desc->tracerec; 366 RF_Etimer_t timer; 367 368 RF_ETIMER_START(timer); 369 #endif 370 371 if (!(desc->asmap = rf_MapAccess(raidPtr, desc->raidAddress, desc->numBlocks, 372 desc->bufPtr, RF_DONT_REMAP))) 373 RF_PANIC(); 374 375 #if RF_ACC_TRACE > 0 376 RF_ETIMER_STOP(timer); 377 RF_ETIMER_EVAL(timer); 378 tracerec->specific.user.map_us = RF_ETIMER_VAL_US(timer); 379 #endif 380 381 desc->state++; 382 return RF_FALSE; 383 } 384 385 int 386 rf_State_Lock(RF_RaidAccessDesc_t *desc) 387 { 388 #if RF_ACC_TRACE > 0 389 RF_AccTraceEntry_t *tracerec = &desc->tracerec; 390 RF_Etimer_t timer; 391 #endif 392 RF_Raid_t *raidPtr = desc->raidPtr; 393 RF_AccessStripeMapHeader_t *asmh = desc->asmap; 394 RF_AccessStripeMap_t *asm_p; 395 RF_StripeNum_t lastStripeID = -1; 396 int suspended = RF_FALSE; 397 398 #if RF_ACC_TRACE > 0 399 RF_ETIMER_START(timer); 400 #endif 401 402 /* acquire each lock that we don't already hold */ 403 for (asm_p = asmh->stripeMap; asm_p; asm_p = asm_p->next) { 404 RF_ASSERT(RF_IO_IS_R_OR_W(desc->type)); 405 if (!rf_suppressLocksAndLargeWrites && 406 asm_p->parityInfo && 407 !(desc->flags & RF_DAG_SUPPRESS_LOCKS) && 408 !(asm_p->flags & RF_ASM_FLAGS_LOCK_TRIED)) { 409 asm_p->flags |= RF_ASM_FLAGS_LOCK_TRIED; 410 /* locks must be acquired hierarchically */ 411 RF_ASSERT(asm_p->stripeID > lastStripeID); 412 lastStripeID = asm_p->stripeID; 413 414 RF_INIT_LOCK_REQ_DESC(asm_p->lockReqDesc, desc->type, 415 (void (*) (struct buf *)) rf_ContinueRaidAccess, desc, asm_p, 416 raidPtr->Layout.dataSectorsPerStripe); 417 if (rf_AcquireStripeLock(raidPtr->lockTable, asm_p->stripeID, 418 &asm_p->lockReqDesc)) { 419 suspended = RF_TRUE; 420 break; 421 } 422 } 423 if (desc->type == RF_IO_TYPE_WRITE && 424 raidPtr->status == rf_rs_reconstructing) { 425 if (!(asm_p->flags & RF_ASM_FLAGS_FORCE_TRIED)) { 426 int val; 427 428 asm_p->flags |= RF_ASM_FLAGS_FORCE_TRIED; 429 val = rf_ForceOrBlockRecon(raidPtr, asm_p, 430 (void (*) (RF_Raid_t *, void *)) rf_ContinueRaidAccess, desc); 431 if (val == 0) { 432 asm_p->flags |= RF_ASM_FLAGS_RECON_BLOCKED; 433 } else { 434 suspended = RF_TRUE; 435 break; 436 } 437 } else { 438 #if RF_DEBUG_PSS > 0 439 if (rf_pssDebug) { 440 printf("raid%d: skipping force/block because already done, psid %ld\n", 441 desc->raidPtr->raidid, 442 (long) asm_p->stripeID); 443 } 444 #endif 445 } 446 } else { 447 #if RF_DEBUG_PSS > 0 448 if (rf_pssDebug) { 449 printf("raid%d: skipping force/block because not write or not under recon, psid %ld\n", 450 desc->raidPtr->raidid, 451 (long) asm_p->stripeID); 452 } 453 #endif 454 } 455 } 456 #if RF_ACC_TRACE > 0 457 RF_ETIMER_STOP(timer); 458 RF_ETIMER_EVAL(timer); 459 tracerec->specific.user.lock_us += RF_ETIMER_VAL_US(timer); 460 #endif 461 if (suspended) 462 return (RF_TRUE); 463 464 desc->state++; 465 return (RF_FALSE); 466 } 467 /* 468 * the following three states create, execute, and post-process dags 469 * the error recovery unit is a single dag. 470 * by default, SelectAlgorithm creates an array of dags, one per parity stripe 471 * in some tricky cases, multiple dags per stripe are created 472 * - dags within a parity stripe are executed sequentially (arbitrary order) 473 * - dags for distinct parity stripes are executed concurrently 474 * 475 * repeat until all dags complete successfully -or- dag selection fails 476 * 477 * while !done 478 * create dag(s) (SelectAlgorithm) 479 * if dag 480 * execute dag (DispatchDAG) 481 * if dag successful 482 * done (SUCCESS) 483 * else 484 * !done (RETRY - start over with new dags) 485 * else 486 * done (FAIL) 487 */ 488 int 489 rf_State_CreateDAG(RF_RaidAccessDesc_t *desc) 490 { 491 #if RF_ACC_TRACE > 0 492 RF_AccTraceEntry_t *tracerec = &desc->tracerec; 493 RF_Etimer_t timer; 494 #endif 495 RF_DagHeader_t *dag_h; 496 RF_DagList_t *dagList; 497 struct buf *bp; 498 int i, selectStatus; 499 500 /* generate a dag for the access, and fire it off. When the dag 501 * completes, we'll get re-invoked in the next state. */ 502 #if RF_ACC_TRACE > 0 503 RF_ETIMER_START(timer); 504 #endif 505 /* SelectAlgorithm returns one or more dags */ 506 selectStatus = rf_SelectAlgorithm(desc, desc->flags | RF_DAG_SUPPRESS_LOCKS); 507 #if RF_DEBUG_VALIDATE_DAG 508 if (rf_printDAGsDebug) { 509 dagList = desc->dagList; 510 for (i = 0; i < desc->numStripes; i++) { 511 rf_PrintDAGList(dagList->dags); 512 dagList = dagList->next; 513 } 514 } 515 #endif /* RF_DEBUG_VALIDATE_DAG */ 516 #if RF_ACC_TRACE > 0 517 RF_ETIMER_STOP(timer); 518 RF_ETIMER_EVAL(timer); 519 /* update time to create all dags */ 520 tracerec->specific.user.dag_create_us = RF_ETIMER_VAL_US(timer); 521 #endif 522 523 desc->status = 0; /* good status */ 524 525 if (selectStatus || (desc->numRetries > RF_RETRY_THRESHOLD)) { 526 /* failed to create a dag */ 527 /* this happens when there are too many faults or incomplete 528 * dag libraries */ 529 if (selectStatus) { 530 printf("raid%d: failed to create a dag. " 531 "Too many component failures.\n", 532 desc->raidPtr->raidid); 533 } else { 534 printf("raid%d: IO failed after %d retries.\n", 535 desc->raidPtr->raidid, RF_RETRY_THRESHOLD); 536 } 537 538 desc->status = 1; /* bad status */ 539 /* skip straight to rf_State_Cleanup() */ 540 desc->state = rf_CleanupState; 541 bp = (struct buf *)desc->bp; 542 bp->b_error = EIO; 543 bp->b_resid = bp->b_bcount; 544 } else { 545 /* bind dags to desc */ 546 dagList = desc->dagList; 547 for (i = 0; i < desc->numStripes; i++) { 548 dag_h = dagList->dags; 549 while (dag_h) { 550 dag_h->bp = (struct buf *) desc->bp; 551 #if RF_ACC_TRACE > 0 552 dag_h->tracerec = tracerec; 553 #endif 554 dag_h = dag_h->next; 555 } 556 dagList = dagList->next; 557 } 558 desc->flags |= RF_DAG_DISPATCH_RETURNED; 559 desc->state++; /* next state should be rf_State_ExecuteDAG */ 560 } 561 return RF_FALSE; 562 } 563 564 565 566 /* the access has an list of dagLists, one dagList per parity stripe. 567 * fire the first dag in each parity stripe (dagList). 568 * dags within a stripe (dagList) must be executed sequentially 569 * - this preserves atomic parity update 570 * dags for independents parity groups (stripes) are fired concurrently */ 571 572 int 573 rf_State_ExecuteDAG(RF_RaidAccessDesc_t *desc) 574 { 575 int i; 576 RF_DagHeader_t *dag_h; 577 RF_DagList_t *dagList; 578 579 /* next state is always rf_State_ProcessDAG important to do 580 * this before firing the first dag (it may finish before we 581 * leave this routine) */ 582 desc->state++; 583 584 /* sweep dag array, a stripe at a time, firing the first dag 585 * in each stripe */ 586 dagList = desc->dagList; 587 for (i = 0; i < desc->numStripes; i++) { 588 RF_ASSERT(dagList->numDags > 0); 589 RF_ASSERT(dagList->numDagsDone == 0); 590 RF_ASSERT(dagList->numDagsFired == 0); 591 #if RF_ACC_TRACE > 0 592 RF_ETIMER_START(dagList->tracerec.timer); 593 #endif 594 /* fire first dag in this stripe */ 595 dag_h = dagList->dags; 596 RF_ASSERT(dag_h); 597 dagList->numDagsFired++; 598 rf_DispatchDAG(dag_h, (void (*) (void *)) rf_ContinueDagAccess, dagList); 599 dagList = dagList->next; 600 } 601 602 /* the DAG will always call the callback, even if there was no 603 * blocking, so we are always suspended in this state */ 604 return RF_TRUE; 605 } 606 607 608 609 /* rf_State_ProcessDAG is entered when a dag completes. 610 * first, check to all dags in the access have completed 611 * if not, fire as many dags as possible */ 612 613 int 614 rf_State_ProcessDAG(RF_RaidAccessDesc_t *desc) 615 { 616 RF_AccessStripeMapHeader_t *asmh = desc->asmap; 617 RF_Raid_t *raidPtr = desc->raidPtr; 618 RF_DagHeader_t *dag_h; 619 int i, j, done = RF_TRUE; 620 RF_DagList_t *dagList, *temp; 621 622 /* check to see if this is the last dag */ 623 dagList = desc->dagList; 624 for (i = 0; i < desc->numStripes; i++) { 625 if (dagList->numDags != dagList->numDagsDone) 626 done = RF_FALSE; 627 dagList = dagList->next; 628 } 629 630 if (done) { 631 if (desc->status) { 632 /* a dag failed, retry */ 633 /* free all dags */ 634 dagList = desc->dagList; 635 for (i = 0; i < desc->numStripes; i++) { 636 rf_FreeDAG(dagList->dags); 637 temp = dagList; 638 dagList = dagList->next; 639 rf_FreeDAGList(temp); 640 } 641 desc->dagList = NULL; 642 643 rf_MarkFailuresInASMList(raidPtr, asmh); 644 645 /* note the retry so that we'll bail in 646 rf_State_CreateDAG() once we've retired 647 the IO RF_RETRY_THRESHOLD times */ 648 649 desc->numRetries++; 650 651 /* back up to rf_State_CreateDAG */ 652 desc->state = desc->state - 2; 653 return RF_FALSE; 654 } else { 655 /* move on to rf_State_Cleanup */ 656 desc->state++; 657 } 658 return RF_FALSE; 659 } else { 660 /* more dags to execute */ 661 /* see if any are ready to be fired. if so, fire them */ 662 /* don't fire the initial dag in a list, it's fired in 663 * rf_State_ExecuteDAG */ 664 dagList = desc->dagList; 665 for (i = 0; i < desc->numStripes; i++) { 666 if ((dagList->numDagsDone < dagList->numDags) 667 && (dagList->numDagsDone == dagList->numDagsFired) 668 && (dagList->numDagsFired > 0)) { 669 #if RF_ACC_TRACE > 0 670 RF_ETIMER_START(dagList->tracerec.timer); 671 #endif 672 /* fire next dag in this stripe */ 673 /* first, skip to next dag awaiting execution */ 674 dag_h = dagList->dags; 675 for (j = 0; j < dagList->numDagsDone; j++) 676 dag_h = dag_h->next; 677 dagList->numDagsFired++; 678 rf_DispatchDAG(dag_h, (void (*) (void *)) rf_ContinueDagAccess, 679 dagList); 680 } 681 dagList = dagList->next; 682 } 683 return RF_TRUE; 684 } 685 } 686 /* only make it this far if all dags complete successfully */ 687 int 688 rf_State_Cleanup(RF_RaidAccessDesc_t *desc) 689 { 690 #if RF_ACC_TRACE > 0 691 RF_AccTraceEntry_t *tracerec = &desc->tracerec; 692 RF_Etimer_t timer; 693 #endif 694 RF_AccessStripeMapHeader_t *asmh = desc->asmap; 695 RF_Raid_t *raidPtr = desc->raidPtr; 696 RF_AccessStripeMap_t *asm_p; 697 RF_DagList_t *dagList; 698 int i; 699 700 desc->state++; 701 702 #if RF_ACC_TRACE > 0 703 timer = tracerec->timer; 704 RF_ETIMER_STOP(timer); 705 RF_ETIMER_EVAL(timer); 706 tracerec->specific.user.dag_retry_us = RF_ETIMER_VAL_US(timer); 707 708 /* the RAID I/O is complete. Clean up. */ 709 tracerec->specific.user.dag_retry_us = 0; 710 711 RF_ETIMER_START(timer); 712 #endif 713 /* free all dags */ 714 dagList = desc->dagList; 715 for (i = 0; i < desc->numStripes; i++) { 716 rf_FreeDAG(dagList->dags); 717 dagList = dagList->next; 718 } 719 #if RF_ACC_TRACE > 0 720 RF_ETIMER_STOP(timer); 721 RF_ETIMER_EVAL(timer); 722 tracerec->specific.user.cleanup_us = RF_ETIMER_VAL_US(timer); 723 724 RF_ETIMER_START(timer); 725 #endif 726 for (asm_p = asmh->stripeMap; asm_p; asm_p = asm_p->next) { 727 if (!rf_suppressLocksAndLargeWrites && 728 asm_p->parityInfo && 729 !(desc->flags & RF_DAG_SUPPRESS_LOCKS)) { 730 RF_ASSERT_VALID_LOCKREQ(&asm_p->lockReqDesc); 731 rf_ReleaseStripeLock(raidPtr->lockTable, 732 asm_p->stripeID, 733 &asm_p->lockReqDesc); 734 } 735 if (asm_p->flags & RF_ASM_FLAGS_RECON_BLOCKED) { 736 rf_UnblockRecon(raidPtr, asm_p); 737 } 738 } 739 #if RF_ACC_TRACE > 0 740 RF_ETIMER_STOP(timer); 741 RF_ETIMER_EVAL(timer); 742 tracerec->specific.user.lock_us += RF_ETIMER_VAL_US(timer); 743 744 RF_ETIMER_START(timer); 745 #endif 746 rf_FreeAccessStripeMap(asmh); 747 #if RF_ACC_TRACE > 0 748 RF_ETIMER_STOP(timer); 749 RF_ETIMER_EVAL(timer); 750 tracerec->specific.user.cleanup_us += RF_ETIMER_VAL_US(timer); 751 752 RF_ETIMER_STOP(desc->timer); 753 RF_ETIMER_EVAL(desc->timer); 754 755 timer = desc->tracerec.tot_timer; 756 RF_ETIMER_STOP(timer); 757 RF_ETIMER_EVAL(timer); 758 desc->tracerec.total_us = RF_ETIMER_VAL_US(timer); 759 760 rf_LogTraceRec(raidPtr, tracerec); 761 #endif 762 desc->flags |= RF_DAG_ACCESS_COMPLETE; 763 764 return RF_FALSE; 765 } 766