xref: /netbsd-src/sys/dev/raidframe/rf_states.c (revision 56a34939419542e88b386b2229be7565f4f45461)
1 /*	$NetBSD: rf_states.c,v 1.43 2008/05/20 00:29:54 oster Exp $	*/
2 /*
3  * Copyright (c) 1995 Carnegie-Mellon University.
4  * All rights reserved.
5  *
6  * Author: Mark Holland, William V. Courtright II, Robby Findler
7  *
8  * Permission to use, copy, modify and distribute this software and
9  * its documentation is hereby granted, provided that both the copyright
10  * notice and this permission notice appear in all copies of the
11  * software, derivative works or modified versions, and any portions
12  * thereof, and that both notices appear in supporting documentation.
13  *
14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17  *
18  * Carnegie Mellon requests users of this software to return to
19  *
20  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21  *  School of Computer Science
22  *  Carnegie Mellon University
23  *  Pittsburgh PA 15213-3890
24  *
25  * any improvements or extensions that they make and grant Carnegie the
26  * rights to redistribute these changes.
27  */
28 
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: rf_states.c,v 1.43 2008/05/20 00:29:54 oster Exp $");
31 
32 #include <sys/errno.h>
33 
34 #include "rf_archs.h"
35 #include "rf_threadstuff.h"
36 #include "rf_raid.h"
37 #include "rf_dag.h"
38 #include "rf_desc.h"
39 #include "rf_aselect.h"
40 #include "rf_general.h"
41 #include "rf_states.h"
42 #include "rf_dagutils.h"
43 #include "rf_driver.h"
44 #include "rf_engine.h"
45 #include "rf_map.h"
46 #include "rf_etimer.h"
47 #include "rf_kintf.h"
48 
49 #ifndef RF_DEBUG_STATES
50 #define RF_DEBUG_STATES 0
51 #endif
52 
53 /* prototypes for some of the available states.
54 
55    States must:
56 
57      - not block.
58 
59      - either schedule rf_ContinueRaidAccess as a callback and return
60        RF_TRUE, or complete all of their work and return RF_FALSE.
61 
62      - increment desc->state when they have finished their work.
63 */
64 
65 #if RF_DEBUG_STATES
66 static char *
67 StateName(RF_AccessState_t state)
68 {
69 	switch (state) {
70 		case rf_QuiesceState:return "QuiesceState";
71 	case rf_MapState:
72 		return "MapState";
73 	case rf_LockState:
74 		return "LockState";
75 	case rf_CreateDAGState:
76 		return "CreateDAGState";
77 	case rf_ExecuteDAGState:
78 		return "ExecuteDAGState";
79 	case rf_ProcessDAGState:
80 		return "ProcessDAGState";
81 	case rf_CleanupState:
82 		return "CleanupState";
83 	case rf_LastState:
84 		return "LastState";
85 	case rf_IncrAccessesCountState:
86 		return "IncrAccessesCountState";
87 	case rf_DecrAccessesCountState:
88 		return "DecrAccessesCountState";
89 	default:
90 		return "!!! UnnamedState !!!";
91 	}
92 }
93 #endif
94 
95 void
96 rf_ContinueRaidAccess(RF_RaidAccessDesc_t *desc)
97 {
98 	int     suspended = RF_FALSE;
99 	int     current_state_index = desc->state;
100 	RF_AccessState_t current_state = desc->states[current_state_index];
101 #if RF_DEBUG_STATES
102 	int     unit = desc->raidPtr->raidid;
103 #endif
104 
105 	do {
106 
107 		current_state_index = desc->state;
108 		current_state = desc->states[current_state_index];
109 
110 		switch (current_state) {
111 
112 		case rf_QuiesceState:
113 			suspended = rf_State_Quiesce(desc);
114 			break;
115 		case rf_IncrAccessesCountState:
116 			suspended = rf_State_IncrAccessCount(desc);
117 			break;
118 		case rf_MapState:
119 			suspended = rf_State_Map(desc);
120 			break;
121 		case rf_LockState:
122 			suspended = rf_State_Lock(desc);
123 			break;
124 		case rf_CreateDAGState:
125 			suspended = rf_State_CreateDAG(desc);
126 			break;
127 		case rf_ExecuteDAGState:
128 			suspended = rf_State_ExecuteDAG(desc);
129 			break;
130 		case rf_ProcessDAGState:
131 			suspended = rf_State_ProcessDAG(desc);
132 			break;
133 		case rf_CleanupState:
134 			suspended = rf_State_Cleanup(desc);
135 			break;
136 		case rf_DecrAccessesCountState:
137 			suspended = rf_State_DecrAccessCount(desc);
138 			break;
139 		case rf_LastState:
140 			suspended = rf_State_LastState(desc);
141 			break;
142 		}
143 
144 		/* after this point, we cannot dereference desc since
145 		 * desc may have been freed. desc is only freed in
146 		 * LastState, so if we renter this function or loop
147 		 * back up, desc should be valid. */
148 
149 #if RF_DEBUG_STATES
150 		if (rf_printStatesDebug) {
151 			printf("raid%d: State: %-24s StateIndex: %3i desc: 0x%ld %s\n",
152 			       unit, StateName(current_state),
153 			       current_state_index, (long) desc,
154 			       suspended ? "callback scheduled" : "looping");
155 		}
156 #endif
157 	} while (!suspended && current_state != rf_LastState);
158 
159 	return;
160 }
161 
162 
163 void
164 rf_ContinueDagAccess(RF_DagList_t *dagList)
165 {
166 #if RF_ACC_TRACE > 0
167 	RF_AccTraceEntry_t *tracerec = &(dagList->desc->tracerec);
168 	RF_Etimer_t timer;
169 #endif
170 	RF_RaidAccessDesc_t *desc;
171 	RF_DagHeader_t *dag_h;
172 	int     i;
173 
174 	desc = dagList->desc;
175 
176 #if RF_ACC_TRACE > 0
177 	timer = tracerec->timer;
178 	RF_ETIMER_STOP(timer);
179 	RF_ETIMER_EVAL(timer);
180 	tracerec->specific.user.exec_us = RF_ETIMER_VAL_US(timer);
181 	RF_ETIMER_START(tracerec->timer);
182 #endif
183 
184 	/* skip to dag which just finished */
185 	dag_h = dagList->dags;
186 	for (i = 0; i < dagList->numDagsDone; i++) {
187 		dag_h = dag_h->next;
188 	}
189 
190 	/* check to see if retry is required */
191 	if (dag_h->status == rf_rollBackward) {
192 		/* when a dag fails, mark desc status as bad and allow
193 		 * all other dags in the desc to execute to
194 		 * completion.  then, free all dags and start over */
195 		desc->status = 1;	/* bad status */
196 #if 0
197 		printf("raid%d: DAG failure: %c addr 0x%lx "
198 		       "(%ld) nblk 0x%x (%d) buf 0x%lx state %d\n",
199 		       desc->raidPtr->raidid, desc->type,
200 		       (long) desc->raidAddress,
201 		       (long) desc->raidAddress, (int) desc->numBlocks,
202 		       (int) desc->numBlocks,
203 		       (unsigned long) (desc->bufPtr), desc->state);
204 #endif
205 	}
206 	dagList->numDagsDone++;
207 	rf_ContinueRaidAccess(desc);
208 }
209 
210 int
211 rf_State_LastState(RF_RaidAccessDesc_t *desc)
212 {
213 	void    (*callbackFunc) (RF_CBParam_t) = desc->callbackFunc;
214 	RF_CBParam_t callbackArg;
215 
216 	callbackArg.p = desc->callbackArg;
217 
218 	/*
219 	 * If this is not an async request, wake up the caller
220 	 */
221 	if (desc->async_flag == 0)
222 		wakeup(desc->bp);
223 
224 	/*
225 	 * That's all the IO for this one... unbusy the 'disk'.
226 	 */
227 
228 	rf_disk_unbusy(desc);
229 
230 	/*
231 	 * Wakeup any requests waiting to go.
232 	 */
233 
234 	RF_LOCK_MUTEX(((RF_Raid_t *) desc->raidPtr)->mutex);
235 	((RF_Raid_t *) desc->raidPtr)->openings++;
236 	RF_UNLOCK_MUTEX(((RF_Raid_t *) desc->raidPtr)->mutex);
237 
238 	wakeup(&(desc->raidPtr->iodone));
239 
240 	/* printf("Calling biodone on 0x%x\n",desc->bp); */
241 	biodone(desc->bp);	/* access came through ioctl */
242 
243 	if (callbackFunc)
244 		callbackFunc(callbackArg);
245 	rf_FreeRaidAccDesc(desc);
246 
247 	return RF_FALSE;
248 }
249 
250 int
251 rf_State_IncrAccessCount(RF_RaidAccessDesc_t *desc)
252 {
253 	RF_Raid_t *raidPtr;
254 
255 	raidPtr = desc->raidPtr;
256 	/* Bummer. We have to do this to be 100% safe w.r.t. the increment
257 	 * below */
258 	RF_LOCK_MUTEX(raidPtr->access_suspend_mutex);
259 	raidPtr->accs_in_flight++;	/* used to detect quiescence */
260 	RF_UNLOCK_MUTEX(raidPtr->access_suspend_mutex);
261 
262 	desc->state++;
263 	return RF_FALSE;
264 }
265 
266 int
267 rf_State_DecrAccessCount(RF_RaidAccessDesc_t *desc)
268 {
269 	RF_Raid_t *raidPtr;
270 
271 	raidPtr = desc->raidPtr;
272 
273 	RF_LOCK_MUTEX(raidPtr->access_suspend_mutex);
274 	raidPtr->accs_in_flight--;
275 	if (raidPtr->accesses_suspended && raidPtr->accs_in_flight == 0) {
276 		rf_SignalQuiescenceLock(raidPtr);
277 	}
278 	RF_UNLOCK_MUTEX(raidPtr->access_suspend_mutex);
279 
280 	desc->state++;
281 	return RF_FALSE;
282 }
283 
284 int
285 rf_State_Quiesce(RF_RaidAccessDesc_t *desc)
286 {
287 #if RF_ACC_TRACE > 0
288 	RF_AccTraceEntry_t *tracerec = &desc->tracerec;
289 	RF_Etimer_t timer;
290 #endif
291 	RF_CallbackDesc_t *cb;
292 	RF_Raid_t *raidPtr;
293 	int     suspended = RF_FALSE;
294 	int need_cb, used_cb;
295 
296 	raidPtr = desc->raidPtr;
297 
298 #if RF_ACC_TRACE > 0
299 	RF_ETIMER_START(timer);
300 	RF_ETIMER_START(desc->timer);
301 #endif
302 
303 	need_cb = 0;
304 	used_cb = 0;
305 	cb = NULL;
306 
307 	RF_LOCK_MUTEX(raidPtr->access_suspend_mutex);
308 	/* Do an initial check to see if we might need a callback structure */
309 	if (raidPtr->accesses_suspended) {
310 		need_cb = 1;
311 	}
312 	RF_UNLOCK_MUTEX(raidPtr->access_suspend_mutex);
313 
314 	if (need_cb) {
315 		/* create a callback if we might need it...
316 		   and we likely do. */
317 		cb = rf_AllocCallbackDesc();
318 	}
319 
320 	RF_LOCK_MUTEX(raidPtr->access_suspend_mutex);
321 	if (raidPtr->accesses_suspended) {
322 		cb->callbackFunc = (void (*) (RF_CBParam_t)) rf_ContinueRaidAccess;
323 		cb->callbackArg.p = (void *) desc;
324 		cb->next = raidPtr->quiesce_wait_list;
325 		raidPtr->quiesce_wait_list = cb;
326 		suspended = RF_TRUE;
327 		used_cb = 1;
328 	}
329 	RF_UNLOCK_MUTEX(raidPtr->access_suspend_mutex);
330 
331 	if ((need_cb == 1) && (used_cb == 0)) {
332 		rf_FreeCallbackDesc(cb);
333 	}
334 
335 #if RF_ACC_TRACE > 0
336 	RF_ETIMER_STOP(timer);
337 	RF_ETIMER_EVAL(timer);
338 	tracerec->specific.user.suspend_ovhd_us += RF_ETIMER_VAL_US(timer);
339 #endif
340 
341 #if RF_DEBUG_QUIESCE
342 	if (suspended && rf_quiesceDebug)
343 		printf("Stalling access due to quiescence lock\n");
344 #endif
345 	desc->state++;
346 	return suspended;
347 }
348 
349 int
350 rf_State_Map(RF_RaidAccessDesc_t *desc)
351 {
352 	RF_Raid_t *raidPtr = desc->raidPtr;
353 #if RF_ACC_TRACE > 0
354 	RF_AccTraceEntry_t *tracerec = &desc->tracerec;
355 	RF_Etimer_t timer;
356 
357 	RF_ETIMER_START(timer);
358 #endif
359 
360 	if (!(desc->asmap = rf_MapAccess(raidPtr, desc->raidAddress, desc->numBlocks,
361 		    desc->bufPtr, RF_DONT_REMAP)))
362 		RF_PANIC();
363 
364 #if RF_ACC_TRACE > 0
365 	RF_ETIMER_STOP(timer);
366 	RF_ETIMER_EVAL(timer);
367 	tracerec->specific.user.map_us = RF_ETIMER_VAL_US(timer);
368 #endif
369 
370 	desc->state++;
371 	return RF_FALSE;
372 }
373 
374 int
375 rf_State_Lock(RF_RaidAccessDesc_t *desc)
376 {
377 #if RF_ACC_TRACE > 0
378 	RF_AccTraceEntry_t *tracerec = &desc->tracerec;
379 	RF_Etimer_t timer;
380 #endif
381 	RF_Raid_t *raidPtr = desc->raidPtr;
382 	RF_AccessStripeMapHeader_t *asmh = desc->asmap;
383 	RF_AccessStripeMap_t *asm_p;
384 	RF_StripeNum_t lastStripeID = -1;
385 	int     suspended = RF_FALSE;
386 
387 #if RF_ACC_TRACE > 0
388 	RF_ETIMER_START(timer);
389 #endif
390 
391 	/* acquire each lock that we don't already hold */
392 	for (asm_p = asmh->stripeMap; asm_p; asm_p = asm_p->next) {
393 		RF_ASSERT(RF_IO_IS_R_OR_W(desc->type));
394 		if (!rf_suppressLocksAndLargeWrites &&
395 		    asm_p->parityInfo &&
396 		    !(desc->flags & RF_DAG_SUPPRESS_LOCKS) &&
397 		    !(asm_p->flags & RF_ASM_FLAGS_LOCK_TRIED)) {
398 			asm_p->flags |= RF_ASM_FLAGS_LOCK_TRIED;
399 				/* locks must be acquired hierarchically */
400 			RF_ASSERT(asm_p->stripeID > lastStripeID);
401 			lastStripeID = asm_p->stripeID;
402 
403 			RF_INIT_LOCK_REQ_DESC(asm_p->lockReqDesc, desc->type,
404 					      (void (*) (struct buf *)) rf_ContinueRaidAccess, desc, asm_p,
405 					      raidPtr->Layout.dataSectorsPerStripe);
406 			if (rf_AcquireStripeLock(raidPtr->lockTable, asm_p->stripeID,
407 						 &asm_p->lockReqDesc)) {
408 				suspended = RF_TRUE;
409 				break;
410 			}
411 		}
412 		if (desc->type == RF_IO_TYPE_WRITE &&
413 		    raidPtr->status == rf_rs_reconstructing) {
414 			if (!(asm_p->flags & RF_ASM_FLAGS_FORCE_TRIED)) {
415 				int     val;
416 
417 				asm_p->flags |= RF_ASM_FLAGS_FORCE_TRIED;
418 				val = rf_ForceOrBlockRecon(raidPtr, asm_p,
419 							   (void (*) (RF_Raid_t *, void *)) rf_ContinueRaidAccess, desc);
420 				if (val == 0) {
421 					asm_p->flags |= RF_ASM_FLAGS_RECON_BLOCKED;
422 				} else {
423 					suspended = RF_TRUE;
424 					break;
425 				}
426 			} else {
427 #if RF_DEBUG_PSS > 0
428 				if (rf_pssDebug) {
429 					printf("raid%d: skipping force/block because already done, psid %ld\n",
430 					       desc->raidPtr->raidid,
431 					       (long) asm_p->stripeID);
432 				}
433 #endif
434 			}
435 		} else {
436 #if RF_DEBUG_PSS > 0
437 			if (rf_pssDebug) {
438 				printf("raid%d: skipping force/block because not write or not under recon, psid %ld\n",
439 				       desc->raidPtr->raidid,
440 				       (long) asm_p->stripeID);
441 			}
442 #endif
443 		}
444 	}
445 #if RF_ACC_TRACE > 0
446 	RF_ETIMER_STOP(timer);
447 	RF_ETIMER_EVAL(timer);
448 	tracerec->specific.user.lock_us += RF_ETIMER_VAL_US(timer);
449 #endif
450 	if (suspended)
451 		return (RF_TRUE);
452 
453 	desc->state++;
454 	return (RF_FALSE);
455 }
456 /*
457  * the following three states create, execute, and post-process dags
458  * the error recovery unit is a single dag.
459  * by default, SelectAlgorithm creates an array of dags, one per parity stripe
460  * in some tricky cases, multiple dags per stripe are created
461  *   - dags within a parity stripe are executed sequentially (arbitrary order)
462  *   - dags for distinct parity stripes are executed concurrently
463  *
464  * repeat until all dags complete successfully -or- dag selection fails
465  *
466  * while !done
467  *   create dag(s) (SelectAlgorithm)
468  *   if dag
469  *     execute dag (DispatchDAG)
470  *     if dag successful
471  *       done (SUCCESS)
472  *     else
473  *       !done (RETRY - start over with new dags)
474  *   else
475  *     done (FAIL)
476  */
477 int
478 rf_State_CreateDAG(RF_RaidAccessDesc_t *desc)
479 {
480 #if RF_ACC_TRACE > 0
481 	RF_AccTraceEntry_t *tracerec = &desc->tracerec;
482 	RF_Etimer_t timer;
483 #endif
484 	RF_DagHeader_t *dag_h;
485 	RF_DagList_t *dagList;
486 	struct buf *bp;
487 	int     i, selectStatus;
488 
489 	/* generate a dag for the access, and fire it off.  When the dag
490 	 * completes, we'll get re-invoked in the next state. */
491 #if RF_ACC_TRACE > 0
492 	RF_ETIMER_START(timer);
493 #endif
494 	/* SelectAlgorithm returns one or more dags */
495 	selectStatus = rf_SelectAlgorithm(desc, desc->flags | RF_DAG_SUPPRESS_LOCKS);
496 #if RF_DEBUG_VALIDATE_DAG
497 	if (rf_printDAGsDebug) {
498 		dagList = desc->dagList;
499 		for (i = 0; i < desc->numStripes; i++) {
500 			rf_PrintDAGList(dagList->dags);
501 			dagList = dagList->next;
502 		}
503 	}
504 #endif /* RF_DEBUG_VALIDATE_DAG */
505 #if RF_ACC_TRACE > 0
506 	RF_ETIMER_STOP(timer);
507 	RF_ETIMER_EVAL(timer);
508 	/* update time to create all dags */
509 	tracerec->specific.user.dag_create_us = RF_ETIMER_VAL_US(timer);
510 #endif
511 
512 	desc->status = 0;	/* good status */
513 
514 	if (selectStatus || (desc->numRetries > RF_RETRY_THRESHOLD)) {
515 		/* failed to create a dag */
516 		/* this happens when there are too many faults or incomplete
517 		 * dag libraries */
518 		if (selectStatus) {
519 			printf("raid%d: failed to create a dag. "
520 			       "Too many component failures.\n",
521 			       desc->raidPtr->raidid);
522 		} else {
523 			printf("raid%d: IO failed after %d retries.\n",
524 			       desc->raidPtr->raidid, RF_RETRY_THRESHOLD);
525 		}
526 
527 		desc->status = 1; /* bad status */
528 		/* skip straight to rf_State_Cleanup() */
529 		desc->state = rf_CleanupState;
530 		bp = (struct buf *)desc->bp;
531 		bp->b_error = EIO;
532 		bp->b_resid = bp->b_bcount;
533 	} else {
534 		/* bind dags to desc */
535 		dagList = desc->dagList;
536 		for (i = 0; i < desc->numStripes; i++) {
537 			dag_h = dagList->dags;
538 			while (dag_h) {
539 				dag_h->bp = (struct buf *) desc->bp;
540 #if RF_ACC_TRACE > 0
541 				dag_h->tracerec = tracerec;
542 #endif
543 				dag_h = dag_h->next;
544 			}
545 			dagList = dagList->next;
546 		}
547 		desc->flags |= RF_DAG_DISPATCH_RETURNED;
548 		desc->state++;	/* next state should be rf_State_ExecuteDAG */
549 	}
550 	return RF_FALSE;
551 }
552 
553 
554 
555 /* the access has an list of dagLists, one dagList per parity stripe.
556  * fire the first dag in each parity stripe (dagList).
557  * dags within a stripe (dagList) must be executed sequentially
558  *  - this preserves atomic parity update
559  * dags for independents parity groups (stripes) are fired concurrently */
560 
561 int
562 rf_State_ExecuteDAG(RF_RaidAccessDesc_t *desc)
563 {
564 	int     i;
565 	RF_DagHeader_t *dag_h;
566 	RF_DagList_t *dagList;
567 
568 	/* next state is always rf_State_ProcessDAG important to do
569 	 * this before firing the first dag (it may finish before we
570 	 * leave this routine) */
571 	desc->state++;
572 
573 	/* sweep dag array, a stripe at a time, firing the first dag
574 	 * in each stripe */
575 	dagList = desc->dagList;
576 	for (i = 0; i < desc->numStripes; i++) {
577 		RF_ASSERT(dagList->numDags > 0);
578 		RF_ASSERT(dagList->numDagsDone == 0);
579 		RF_ASSERT(dagList->numDagsFired == 0);
580 #if RF_ACC_TRACE > 0
581 		RF_ETIMER_START(dagList->tracerec.timer);
582 #endif
583 		/* fire first dag in this stripe */
584 		dag_h = dagList->dags;
585 		RF_ASSERT(dag_h);
586 		dagList->numDagsFired++;
587 		rf_DispatchDAG(dag_h, (void (*) (void *)) rf_ContinueDagAccess, dagList);
588 		dagList = dagList->next;
589 	}
590 
591 	/* the DAG will always call the callback, even if there was no
592 	 * blocking, so we are always suspended in this state */
593 	return RF_TRUE;
594 }
595 
596 
597 
598 /* rf_State_ProcessDAG is entered when a dag completes.
599  * first, check to all dags in the access have completed
600  * if not, fire as many dags as possible */
601 
602 int
603 rf_State_ProcessDAG(RF_RaidAccessDesc_t *desc)
604 {
605 	RF_AccessStripeMapHeader_t *asmh = desc->asmap;
606 	RF_Raid_t *raidPtr = desc->raidPtr;
607 	RF_DagHeader_t *dag_h;
608 	int     i, j, done = RF_TRUE;
609 	RF_DagList_t *dagList, *temp;
610 
611 	/* check to see if this is the last dag */
612 	dagList = desc->dagList;
613 	for (i = 0; i < desc->numStripes; i++) {
614 		if (dagList->numDags != dagList->numDagsDone)
615 			done = RF_FALSE;
616 		dagList = dagList->next;
617 	}
618 
619 	if (done) {
620 		if (desc->status) {
621 			/* a dag failed, retry */
622 			/* free all dags */
623 			dagList = desc->dagList;
624 			for (i = 0; i < desc->numStripes; i++) {
625 				rf_FreeDAG(dagList->dags);
626 				temp = dagList;
627 				dagList = dagList->next;
628 				rf_FreeDAGList(temp);
629 			}
630 			desc->dagList = NULL;
631 
632 			rf_MarkFailuresInASMList(raidPtr, asmh);
633 
634 			/* note the retry so that we'll bail in
635 			   rf_State_CreateDAG() once we've retired
636 			   the IO RF_RETRY_THRESHOLD times */
637 
638 			desc->numRetries++;
639 
640 			/* back up to rf_State_CreateDAG */
641 			desc->state = desc->state - 2;
642 			return RF_FALSE;
643 		} else {
644 			/* move on to rf_State_Cleanup */
645 			desc->state++;
646 		}
647 		return RF_FALSE;
648 	} else {
649 		/* more dags to execute */
650 		/* see if any are ready to be fired.  if so, fire them */
651 		/* don't fire the initial dag in a list, it's fired in
652 		 * rf_State_ExecuteDAG */
653 		dagList = desc->dagList;
654 		for (i = 0; i < desc->numStripes; i++) {
655 			if ((dagList->numDagsDone < dagList->numDags)
656 			    && (dagList->numDagsDone == dagList->numDagsFired)
657 			    && (dagList->numDagsFired > 0)) {
658 #if RF_ACC_TRACE > 0
659 				RF_ETIMER_START(dagList->tracerec.timer);
660 #endif
661 				/* fire next dag in this stripe */
662 				/* first, skip to next dag awaiting execution */
663 				dag_h = dagList->dags;
664 				for (j = 0; j < dagList->numDagsDone; j++)
665 					dag_h = dag_h->next;
666 				dagList->numDagsFired++;
667 				rf_DispatchDAG(dag_h, (void (*) (void *)) rf_ContinueDagAccess,
668 				    dagList);
669 			}
670 			dagList = dagList->next;
671 		}
672 		return RF_TRUE;
673 	}
674 }
675 /* only make it this far if all dags complete successfully */
676 int
677 rf_State_Cleanup(RF_RaidAccessDesc_t *desc)
678 {
679 #if RF_ACC_TRACE > 0
680 	RF_AccTraceEntry_t *tracerec = &desc->tracerec;
681 	RF_Etimer_t timer;
682 #endif
683 	RF_AccessStripeMapHeader_t *asmh = desc->asmap;
684 	RF_Raid_t *raidPtr = desc->raidPtr;
685 	RF_AccessStripeMap_t *asm_p;
686 	RF_DagList_t *dagList;
687 	int i;
688 
689 	desc->state++;
690 
691 #if RF_ACC_TRACE > 0
692 	timer = tracerec->timer;
693 	RF_ETIMER_STOP(timer);
694 	RF_ETIMER_EVAL(timer);
695 	tracerec->specific.user.dag_retry_us = RF_ETIMER_VAL_US(timer);
696 
697 	/* the RAID I/O is complete.  Clean up. */
698 	tracerec->specific.user.dag_retry_us = 0;
699 
700 	RF_ETIMER_START(timer);
701 #endif
702 	/* free all dags */
703 	dagList = desc->dagList;
704 	for (i = 0; i < desc->numStripes; i++) {
705 		rf_FreeDAG(dagList->dags);
706 		dagList = dagList->next;
707 	}
708 #if RF_ACC_TRACE > 0
709 	RF_ETIMER_STOP(timer);
710 	RF_ETIMER_EVAL(timer);
711 	tracerec->specific.user.cleanup_us = RF_ETIMER_VAL_US(timer);
712 
713 	RF_ETIMER_START(timer);
714 #endif
715 	for (asm_p = asmh->stripeMap; asm_p; asm_p = asm_p->next) {
716 		if (!rf_suppressLocksAndLargeWrites &&
717 		    asm_p->parityInfo &&
718 		    !(desc->flags & RF_DAG_SUPPRESS_LOCKS)) {
719 			RF_ASSERT_VALID_LOCKREQ(&asm_p->lockReqDesc);
720 			rf_ReleaseStripeLock(raidPtr->lockTable,
721 					     asm_p->stripeID,
722 					     &asm_p->lockReqDesc);
723 		}
724 		if (asm_p->flags & RF_ASM_FLAGS_RECON_BLOCKED) {
725 			rf_UnblockRecon(raidPtr, asm_p);
726 		}
727 	}
728 #if RF_ACC_TRACE > 0
729 	RF_ETIMER_STOP(timer);
730 	RF_ETIMER_EVAL(timer);
731 	tracerec->specific.user.lock_us += RF_ETIMER_VAL_US(timer);
732 
733 	RF_ETIMER_START(timer);
734 #endif
735 	rf_FreeAccessStripeMap(asmh);
736 #if RF_ACC_TRACE > 0
737 	RF_ETIMER_STOP(timer);
738 	RF_ETIMER_EVAL(timer);
739 	tracerec->specific.user.cleanup_us += RF_ETIMER_VAL_US(timer);
740 
741 	RF_ETIMER_STOP(desc->timer);
742 	RF_ETIMER_EVAL(desc->timer);
743 
744 	timer = desc->tracerec.tot_timer;
745 	RF_ETIMER_STOP(timer);
746 	RF_ETIMER_EVAL(timer);
747 	desc->tracerec.total_us = RF_ETIMER_VAL_US(timer);
748 
749 	rf_LogTraceRec(raidPtr, tracerec);
750 #endif
751 	desc->flags |= RF_DAG_ACCESS_COMPLETE;
752 
753 	return RF_FALSE;
754 }
755