1 /* $NetBSD: rf_reconstruct.c,v 1.104 2008/05/19 19:49:54 oster Exp $ */ 2 /* 3 * Copyright (c) 1995 Carnegie-Mellon University. 4 * All rights reserved. 5 * 6 * Author: Mark Holland 7 * 8 * Permission to use, copy, modify and distribute this software and 9 * its documentation is hereby granted, provided that both the copyright 10 * notice and this permission notice appear in all copies of the 11 * software, derivative works or modified versions, and any portions 12 * thereof, and that both notices appear in supporting documentation. 13 * 14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 17 * 18 * Carnegie Mellon requests users of this software to return to 19 * 20 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 21 * School of Computer Science 22 * Carnegie Mellon University 23 * Pittsburgh PA 15213-3890 24 * 25 * any improvements or extensions that they make and grant Carnegie the 26 * rights to redistribute these changes. 27 */ 28 29 /************************************************************ 30 * 31 * rf_reconstruct.c -- code to perform on-line reconstruction 32 * 33 ************************************************************/ 34 35 #include <sys/cdefs.h> 36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.104 2008/05/19 19:49:54 oster Exp $"); 37 38 #include <sys/param.h> 39 #include <sys/time.h> 40 #include <sys/buf.h> 41 #include <sys/errno.h> 42 #include <sys/systm.h> 43 #include <sys/proc.h> 44 #include <sys/ioctl.h> 45 #include <sys/fcntl.h> 46 #include <sys/vnode.h> 47 #include <dev/raidframe/raidframevar.h> 48 49 #include "rf_raid.h" 50 #include "rf_reconutil.h" 51 #include "rf_revent.h" 52 #include "rf_reconbuffer.h" 53 #include "rf_acctrace.h" 54 #include "rf_etimer.h" 55 #include "rf_dag.h" 56 #include "rf_desc.h" 57 #include "rf_debugprint.h" 58 #include "rf_general.h" 59 #include "rf_driver.h" 60 #include "rf_utils.h" 61 #include "rf_shutdown.h" 62 63 #include "rf_kintf.h" 64 65 /* setting these to -1 causes them to be set to their default values if not set by debug options */ 66 67 #if RF_DEBUG_RECON 68 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL) 69 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL) 70 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL) 71 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL) 72 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL) 73 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL) 74 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL) 75 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL) 76 77 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL) 78 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL) 79 80 #else /* RF_DEBUG_RECON */ 81 82 #define Dprintf(s) {} 83 #define Dprintf1(s,a) {} 84 #define Dprintf2(s,a,b) {} 85 #define Dprintf3(s,a,b,c) {} 86 #define Dprintf4(s,a,b,c,d) {} 87 #define Dprintf5(s,a,b,c,d,e) {} 88 #define Dprintf6(s,a,b,c,d,e,f) {} 89 #define Dprintf7(s,a,b,c,d,e,f,g) {} 90 91 #define DDprintf1(s,a) {} 92 #define DDprintf2(s,a,b) {} 93 94 #endif /* RF_DEBUG_RECON */ 95 96 #define RF_RECON_DONE_READS 1 97 #define RF_RECON_READ_ERROR 2 98 #define RF_RECON_WRITE_ERROR 3 99 #define RF_RECON_READ_STOPPED 4 100 #define RF_RECON_WRITE_DONE 5 101 102 #define RF_MAX_FREE_RECONBUFFER 32 103 #define RF_MIN_FREE_RECONBUFFER 16 104 105 static RF_RaidReconDesc_t *AllocRaidReconDesc(RF_Raid_t *, RF_RowCol_t, 106 RF_RaidDisk_t *, int, RF_RowCol_t); 107 static void FreeReconDesc(RF_RaidReconDesc_t *); 108 static int ProcessReconEvent(RF_Raid_t *, RF_ReconEvent_t *); 109 static int IssueNextReadRequest(RF_Raid_t *, RF_RowCol_t); 110 static int TryToRead(RF_Raid_t *, RF_RowCol_t); 111 static int ComputePSDiskOffsets(RF_Raid_t *, RF_StripeNum_t, RF_RowCol_t, 112 RF_SectorNum_t *, RF_SectorNum_t *, RF_RowCol_t *, 113 RF_SectorNum_t *); 114 static int IssueNextWriteRequest(RF_Raid_t *); 115 static int ReconReadDoneProc(void *, int); 116 static int ReconWriteDoneProc(void *, int); 117 static void CheckForNewMinHeadSep(RF_Raid_t *, RF_HeadSepLimit_t); 118 static int CheckHeadSeparation(RF_Raid_t *, RF_PerDiskReconCtrl_t *, 119 RF_RowCol_t, RF_HeadSepLimit_t, 120 RF_ReconUnitNum_t); 121 static int CheckForcedOrBlockedReconstruction(RF_Raid_t *, 122 RF_ReconParityStripeStatus_t *, 123 RF_PerDiskReconCtrl_t *, 124 RF_RowCol_t, RF_StripeNum_t, 125 RF_ReconUnitNum_t); 126 static void ForceReconReadDoneProc(void *, int); 127 static void rf_ShutdownReconstruction(void *); 128 129 struct RF_ReconDoneProc_s { 130 void (*proc) (RF_Raid_t *, void *); 131 void *arg; 132 RF_ReconDoneProc_t *next; 133 }; 134 135 /************************************************************************** 136 * 137 * sets up the parameters that will be used by the reconstruction process 138 * currently there are none, except for those that the layout-specific 139 * configuration (e.g. rf_ConfigureDeclustered) routine sets up. 140 * 141 * in the kernel, we fire off the recon thread. 142 * 143 **************************************************************************/ 144 static void 145 rf_ShutdownReconstruction(void *ignored) 146 { 147 pool_destroy(&rf_pools.reconbuffer); 148 } 149 150 int 151 rf_ConfigureReconstruction(RF_ShutdownList_t **listp) 152 { 153 154 rf_pool_init(&rf_pools.reconbuffer, sizeof(RF_ReconBuffer_t), 155 "rf_reconbuffer_pl", RF_MIN_FREE_RECONBUFFER, RF_MAX_FREE_RECONBUFFER); 156 rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL); 157 158 return (0); 159 } 160 161 static RF_RaidReconDesc_t * 162 AllocRaidReconDesc(RF_Raid_t *raidPtr, RF_RowCol_t col, 163 RF_RaidDisk_t *spareDiskPtr, int numDisksDone, 164 RF_RowCol_t scol) 165 { 166 167 RF_RaidReconDesc_t *reconDesc; 168 169 RF_Malloc(reconDesc, sizeof(RF_RaidReconDesc_t), 170 (RF_RaidReconDesc_t *)); 171 reconDesc->raidPtr = raidPtr; 172 reconDesc->col = col; 173 reconDesc->spareDiskPtr = spareDiskPtr; 174 reconDesc->numDisksDone = numDisksDone; 175 reconDesc->scol = scol; 176 reconDesc->next = NULL; 177 178 return (reconDesc); 179 } 180 181 static void 182 FreeReconDesc(RF_RaidReconDesc_t *reconDesc) 183 { 184 #if RF_RECON_STATS > 0 185 printf("raid%d: %lu recon event waits, %lu recon delays\n", 186 reconDesc->raidPtr->raidid, 187 (long) reconDesc->numReconEventWaits, 188 (long) reconDesc->numReconExecDelays); 189 #endif /* RF_RECON_STATS > 0 */ 190 printf("raid%d: %lu max exec ticks\n", 191 reconDesc->raidPtr->raidid, 192 (long) reconDesc->maxReconExecTicks); 193 #if (RF_RECON_STATS > 0) || defined(KERNEL) 194 printf("\n"); 195 #endif /* (RF_RECON_STATS > 0) || KERNEL */ 196 RF_Free(reconDesc, sizeof(RF_RaidReconDesc_t)); 197 } 198 199 200 /***************************************************************************** 201 * 202 * primary routine to reconstruct a failed disk. This should be called from 203 * within its own thread. It won't return until reconstruction completes, 204 * fails, or is aborted. 205 *****************************************************************************/ 206 int 207 rf_ReconstructFailedDisk(RF_Raid_t *raidPtr, RF_RowCol_t col) 208 { 209 const RF_LayoutSW_t *lp; 210 int rc; 211 212 lp = raidPtr->Layout.map; 213 if (lp->SubmitReconBuffer) { 214 /* 215 * The current infrastructure only supports reconstructing one 216 * disk at a time for each array. 217 */ 218 RF_LOCK_MUTEX(raidPtr->mutex); 219 while (raidPtr->reconInProgress) { 220 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex); 221 } 222 raidPtr->reconInProgress++; 223 RF_UNLOCK_MUTEX(raidPtr->mutex); 224 rc = rf_ReconstructFailedDiskBasic(raidPtr, col); 225 RF_LOCK_MUTEX(raidPtr->mutex); 226 raidPtr->reconInProgress--; 227 RF_UNLOCK_MUTEX(raidPtr->mutex); 228 } else { 229 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n", 230 lp->parityConfig); 231 rc = EIO; 232 } 233 RF_SIGNAL_COND(raidPtr->waitForReconCond); 234 return (rc); 235 } 236 237 int 238 rf_ReconstructFailedDiskBasic(RF_Raid_t *raidPtr, RF_RowCol_t col) 239 { 240 RF_ComponentLabel_t c_label; 241 RF_RaidDisk_t *spareDiskPtr = NULL; 242 RF_RaidReconDesc_t *reconDesc; 243 RF_RowCol_t scol; 244 int numDisksDone = 0, rc; 245 246 /* first look for a spare drive onto which to reconstruct the data */ 247 /* spare disk descriptors are stored in row 0. This may have to 248 * change eventually */ 249 250 RF_LOCK_MUTEX(raidPtr->mutex); 251 RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed); 252 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 253 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { 254 if (raidPtr->status != rf_rs_degraded) { 255 RF_ERRORMSG1("Unable to reconstruct disk at col %d because status not degraded\n", col); 256 RF_UNLOCK_MUTEX(raidPtr->mutex); 257 return (EINVAL); 258 } 259 scol = (-1); 260 } else { 261 #endif 262 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) { 263 if (raidPtr->Disks[scol].status == rf_ds_spare) { 264 spareDiskPtr = &raidPtr->Disks[scol]; 265 spareDiskPtr->status = rf_ds_used_spare; 266 break; 267 } 268 } 269 if (!spareDiskPtr) { 270 RF_ERRORMSG1("Unable to reconstruct disk at col %d because no spares are available\n", col); 271 RF_UNLOCK_MUTEX(raidPtr->mutex); 272 return (ENOSPC); 273 } 274 printf("RECON: initiating reconstruction on col %d -> spare at col %d\n", col, scol); 275 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 276 } 277 #endif 278 RF_UNLOCK_MUTEX(raidPtr->mutex); 279 280 reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr, numDisksDone, scol); 281 raidPtr->reconDesc = (void *) reconDesc; 282 #if RF_RECON_STATS > 0 283 reconDesc->hsStallCount = 0; 284 reconDesc->numReconExecDelays = 0; 285 reconDesc->numReconEventWaits = 0; 286 #endif /* RF_RECON_STATS > 0 */ 287 reconDesc->reconExecTimerRunning = 0; 288 reconDesc->reconExecTicks = 0; 289 reconDesc->maxReconExecTicks = 0; 290 rc = rf_ContinueReconstructFailedDisk(reconDesc); 291 292 if (!rc) { 293 /* fix up the component label */ 294 /* Don't actually need the read here.. */ 295 raidread_component_label( 296 raidPtr->raid_cinfo[scol].ci_dev, 297 raidPtr->raid_cinfo[scol].ci_vp, 298 &c_label); 299 300 raid_init_component_label( raidPtr, &c_label); 301 c_label.row = 0; 302 c_label.column = col; 303 c_label.clean = RF_RAID_DIRTY; 304 c_label.status = rf_ds_optimal; 305 c_label.partitionSize = raidPtr->Disks[scol].partitionSize; 306 307 /* We've just done a rebuild based on all the other 308 disks, so at this point the parity is known to be 309 clean, even if it wasn't before. */ 310 311 /* XXX doesn't hold for RAID 6!!*/ 312 313 RF_LOCK_MUTEX(raidPtr->mutex); 314 raidPtr->parity_good = RF_RAID_CLEAN; 315 RF_UNLOCK_MUTEX(raidPtr->mutex); 316 317 /* XXXX MORE NEEDED HERE */ 318 319 raidwrite_component_label( 320 raidPtr->raid_cinfo[scol].ci_dev, 321 raidPtr->raid_cinfo[scol].ci_vp, 322 &c_label); 323 324 } else { 325 /* Reconstruct failed. */ 326 327 RF_LOCK_MUTEX(raidPtr->mutex); 328 /* Failed disk goes back to "failed" status */ 329 raidPtr->Disks[col].status = rf_ds_failed; 330 331 /* Spare disk goes back to "spare" status. */ 332 spareDiskPtr->status = rf_ds_spare; 333 RF_UNLOCK_MUTEX(raidPtr->mutex); 334 335 } 336 rf_update_component_labels(raidPtr, RF_NORMAL_COMPONENT_UPDATE); 337 return (rc); 338 } 339 340 /* 341 342 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL, 343 and you don't get a spare until the next Monday. With this function 344 (and hot-swappable drives) you can now put your new disk containing 345 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to 346 rebuild the data "on the spot". 347 348 */ 349 350 int 351 rf_ReconstructInPlace(RF_Raid_t *raidPtr, RF_RowCol_t col) 352 { 353 RF_RaidDisk_t *spareDiskPtr = NULL; 354 RF_RaidReconDesc_t *reconDesc; 355 const RF_LayoutSW_t *lp; 356 RF_ComponentLabel_t c_label; 357 int numDisksDone = 0, rc; 358 struct partinfo dpart; 359 struct vnode *vp; 360 struct vattr va; 361 int retcode; 362 int ac; 363 364 lp = raidPtr->Layout.map; 365 if (!lp->SubmitReconBuffer) { 366 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n", 367 lp->parityConfig); 368 /* wakeup anyone who might be waiting to do a reconstruct */ 369 RF_SIGNAL_COND(raidPtr->waitForReconCond); 370 return(EIO); 371 } 372 373 /* 374 * The current infrastructure only supports reconstructing one 375 * disk at a time for each array. 376 */ 377 RF_LOCK_MUTEX(raidPtr->mutex); 378 379 if (raidPtr->Disks[col].status != rf_ds_failed) { 380 /* "It's gone..." */ 381 raidPtr->numFailures++; 382 raidPtr->Disks[col].status = rf_ds_failed; 383 raidPtr->status = rf_rs_degraded; 384 RF_UNLOCK_MUTEX(raidPtr->mutex); 385 rf_update_component_labels(raidPtr, 386 RF_NORMAL_COMPONENT_UPDATE); 387 RF_LOCK_MUTEX(raidPtr->mutex); 388 } 389 390 while (raidPtr->reconInProgress) { 391 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex); 392 } 393 394 raidPtr->reconInProgress++; 395 396 /* first look for a spare drive onto which to reconstruct the 397 data. spare disk descriptors are stored in row 0. This 398 may have to change eventually */ 399 400 /* Actually, we don't care if it's failed or not... On a RAID 401 set with correct parity, this function should be callable 402 on any component without ill effects. */ 403 /* RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed); */ 404 405 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 406 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { 407 RF_ERRORMSG1("Unable to reconstruct to disk at col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", col); 408 409 raidPtr->reconInProgress--; 410 RF_UNLOCK_MUTEX(raidPtr->mutex); 411 RF_SIGNAL_COND(raidPtr->waitForReconCond); 412 return (EINVAL); 413 } 414 #endif 415 416 /* This device may have been opened successfully the 417 first time. Close it before trying to open it again.. */ 418 419 if (raidPtr->raid_cinfo[col].ci_vp != NULL) { 420 #if 0 421 printf("Closed the open device: %s\n", 422 raidPtr->Disks[col].devname); 423 #endif 424 vp = raidPtr->raid_cinfo[col].ci_vp; 425 ac = raidPtr->Disks[col].auto_configured; 426 RF_UNLOCK_MUTEX(raidPtr->mutex); 427 rf_close_component(raidPtr, vp, ac); 428 RF_LOCK_MUTEX(raidPtr->mutex); 429 raidPtr->raid_cinfo[col].ci_vp = NULL; 430 } 431 /* note that this disk was *not* auto_configured (any longer)*/ 432 raidPtr->Disks[col].auto_configured = 0; 433 434 #if 0 435 printf("About to (re-)open the device for rebuilding: %s\n", 436 raidPtr->Disks[col].devname); 437 #endif 438 RF_UNLOCK_MUTEX(raidPtr->mutex); 439 retcode = dk_lookup(raidPtr->Disks[col].devname, curlwp, &vp, UIO_SYSSPACE); 440 441 if (retcode) { 442 printf("raid%d: rebuilding: dk_lookup on device: %s failed: %d!\n",raidPtr->raidid, 443 raidPtr->Disks[col].devname, retcode); 444 445 /* the component isn't responding properly... 446 must be still dead :-( */ 447 RF_LOCK_MUTEX(raidPtr->mutex); 448 raidPtr->reconInProgress--; 449 RF_UNLOCK_MUTEX(raidPtr->mutex); 450 RF_SIGNAL_COND(raidPtr->waitForReconCond); 451 return(retcode); 452 } 453 454 /* Ok, so we can at least do a lookup... 455 How about actually getting a vp for it? */ 456 457 if ((retcode = VOP_GETATTR(vp, &va, curlwp->l_cred)) != 0) { 458 RF_LOCK_MUTEX(raidPtr->mutex); 459 raidPtr->reconInProgress--; 460 RF_UNLOCK_MUTEX(raidPtr->mutex); 461 RF_SIGNAL_COND(raidPtr->waitForReconCond); 462 return(retcode); 463 } 464 465 retcode = VOP_IOCTL(vp, DIOCGPART, &dpart, FREAD, curlwp->l_cred); 466 if (retcode) { 467 RF_LOCK_MUTEX(raidPtr->mutex); 468 raidPtr->reconInProgress--; 469 RF_UNLOCK_MUTEX(raidPtr->mutex); 470 RF_SIGNAL_COND(raidPtr->waitForReconCond); 471 return(retcode); 472 } 473 RF_LOCK_MUTEX(raidPtr->mutex); 474 raidPtr->Disks[col].blockSize = dpart.disklab->d_secsize; 475 476 raidPtr->Disks[col].numBlocks = dpart.part->p_size - 477 rf_protectedSectors; 478 479 raidPtr->raid_cinfo[col].ci_vp = vp; 480 raidPtr->raid_cinfo[col].ci_dev = va.va_rdev; 481 482 raidPtr->Disks[col].dev = va.va_rdev; 483 484 /* we allow the user to specify that only a fraction 485 of the disks should be used this is just for debug: 486 it speeds up * the parity scan */ 487 raidPtr->Disks[col].numBlocks = raidPtr->Disks[col].numBlocks * 488 rf_sizePercentage / 100; 489 RF_UNLOCK_MUTEX(raidPtr->mutex); 490 491 spareDiskPtr = &raidPtr->Disks[col]; 492 spareDiskPtr->status = rf_ds_used_spare; 493 494 printf("raid%d: initiating in-place reconstruction on column %d\n", 495 raidPtr->raidid, col); 496 497 reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr, 498 numDisksDone, col); 499 raidPtr->reconDesc = (void *) reconDesc; 500 #if RF_RECON_STATS > 0 501 reconDesc->hsStallCount = 0; 502 reconDesc->numReconExecDelays = 0; 503 reconDesc->numReconEventWaits = 0; 504 #endif /* RF_RECON_STATS > 0 */ 505 reconDesc->reconExecTimerRunning = 0; 506 reconDesc->reconExecTicks = 0; 507 reconDesc->maxReconExecTicks = 0; 508 rc = rf_ContinueReconstructFailedDisk(reconDesc); 509 510 if (!rc) { 511 RF_LOCK_MUTEX(raidPtr->mutex); 512 /* Need to set these here, as at this point it'll be claiming 513 that the disk is in rf_ds_spared! But we know better :-) */ 514 515 raidPtr->Disks[col].status = rf_ds_optimal; 516 raidPtr->status = rf_rs_optimal; 517 RF_UNLOCK_MUTEX(raidPtr->mutex); 518 519 /* fix up the component label */ 520 /* Don't actually need the read here.. */ 521 raidread_component_label(raidPtr->raid_cinfo[col].ci_dev, 522 raidPtr->raid_cinfo[col].ci_vp, 523 &c_label); 524 525 RF_LOCK_MUTEX(raidPtr->mutex); 526 raid_init_component_label(raidPtr, &c_label); 527 528 c_label.row = 0; 529 c_label.column = col; 530 531 /* We've just done a rebuild based on all the other 532 disks, so at this point the parity is known to be 533 clean, even if it wasn't before. */ 534 535 /* XXX doesn't hold for RAID 6!!*/ 536 537 raidPtr->parity_good = RF_RAID_CLEAN; 538 RF_UNLOCK_MUTEX(raidPtr->mutex); 539 540 raidwrite_component_label(raidPtr->raid_cinfo[col].ci_dev, 541 raidPtr->raid_cinfo[col].ci_vp, 542 &c_label); 543 544 } else { 545 /* Reconstruct-in-place failed. Disk goes back to 546 "failed" status, regardless of what it was before. */ 547 RF_LOCK_MUTEX(raidPtr->mutex); 548 raidPtr->Disks[col].status = rf_ds_failed; 549 RF_UNLOCK_MUTEX(raidPtr->mutex); 550 } 551 552 rf_update_component_labels(raidPtr, RF_NORMAL_COMPONENT_UPDATE); 553 554 RF_LOCK_MUTEX(raidPtr->mutex); 555 raidPtr->reconInProgress--; 556 RF_UNLOCK_MUTEX(raidPtr->mutex); 557 558 RF_SIGNAL_COND(raidPtr->waitForReconCond); 559 return (rc); 560 } 561 562 563 int 564 rf_ContinueReconstructFailedDisk(RF_RaidReconDesc_t *reconDesc) 565 { 566 RF_Raid_t *raidPtr = reconDesc->raidPtr; 567 RF_RowCol_t col = reconDesc->col; 568 RF_RowCol_t scol = reconDesc->scol; 569 RF_ReconMap_t *mapPtr; 570 RF_ReconCtrl_t *tmp_reconctrl; 571 RF_ReconEvent_t *event; 572 RF_StripeCount_t incPSID,lastPSID,num_writes,pending_writes,prev; 573 RF_ReconUnitCount_t RUsPerPU; 574 struct timeval etime, elpsd; 575 unsigned long xor_s, xor_resid_us; 576 int i, ds; 577 int status, done; 578 int recon_error, write_error; 579 580 raidPtr->accumXorTimeUs = 0; 581 #if RF_ACC_TRACE > 0 582 /* create one trace record per physical disk */ 583 RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *)); 584 #endif 585 586 /* quiesce the array prior to starting recon. this is needed 587 * to assure no nasty interactions with pending user writes. 588 * We need to do this before we change the disk or row status. */ 589 590 Dprintf("RECON: begin request suspend\n"); 591 rf_SuspendNewRequestsAndWait(raidPtr); 592 Dprintf("RECON: end request suspend\n"); 593 594 /* allocate our RF_ReconCTRL_t before we protect raidPtr->reconControl[row] */ 595 tmp_reconctrl = rf_MakeReconControl(reconDesc, col, scol); 596 597 RF_LOCK_MUTEX(raidPtr->mutex); 598 599 /* create the reconstruction control pointer and install it in 600 * the right slot */ 601 raidPtr->reconControl = tmp_reconctrl; 602 mapPtr = raidPtr->reconControl->reconMap; 603 raidPtr->reconControl->numRUsTotal = mapPtr->totalRUs; 604 raidPtr->reconControl->numRUsComplete = 0; 605 raidPtr->status = rf_rs_reconstructing; 606 raidPtr->Disks[col].status = rf_ds_reconstructing; 607 raidPtr->Disks[col].spareCol = scol; 608 609 RF_UNLOCK_MUTEX(raidPtr->mutex); 610 611 RF_GETTIME(raidPtr->reconControl->starttime); 612 613 Dprintf("RECON: resume requests\n"); 614 rf_ResumeNewRequests(raidPtr); 615 616 617 mapPtr = raidPtr->reconControl->reconMap; 618 619 incPSID = RF_RECONMAP_SIZE; 620 lastPSID = raidPtr->Layout.numStripe / raidPtr->Layout.SUsPerPU; 621 RUsPerPU = raidPtr->Layout.SUsPerPU / raidPtr->Layout.SUsPerRU; 622 recon_error = 0; 623 write_error = 0; 624 pending_writes = incPSID; 625 raidPtr->reconControl->lastPSID = incPSID; 626 627 /* start the actual reconstruction */ 628 629 done = 0; 630 while (!done) { 631 632 num_writes = 0; 633 634 /* issue a read for each surviving disk */ 635 636 reconDesc->numDisksDone = 0; 637 for (i = 0; i < raidPtr->numCol; i++) { 638 if (i != col) { 639 /* find and issue the next I/O on the 640 * indicated disk */ 641 if (IssueNextReadRequest(raidPtr, i)) { 642 Dprintf1("RECON: done issuing for c%d\n", i); 643 reconDesc->numDisksDone++; 644 } 645 } 646 } 647 648 /* process reconstruction events until all disks report that 649 * they've completed all work */ 650 651 while (reconDesc->numDisksDone < raidPtr->numCol - 1) { 652 653 event = rf_GetNextReconEvent(reconDesc); 654 status = ProcessReconEvent(raidPtr, event); 655 656 /* the normal case is that a read completes, and all is well. */ 657 if (status == RF_RECON_DONE_READS) { 658 reconDesc->numDisksDone++; 659 } else if ((status == RF_RECON_READ_ERROR) || 660 (status == RF_RECON_WRITE_ERROR)) { 661 /* an error was encountered while reconstructing... 662 Pretend we've finished this disk. 663 */ 664 recon_error = 1; 665 raidPtr->reconControl->error = 1; 666 667 /* bump the numDisksDone count for reads, 668 but not for writes */ 669 if (status == RF_RECON_READ_ERROR) 670 reconDesc->numDisksDone++; 671 672 /* write errors are special -- when we are 673 done dealing with the reads that are 674 finished, we don't want to wait for any 675 writes */ 676 if (status == RF_RECON_WRITE_ERROR) 677 write_error = 1; 678 679 } else if (status == RF_RECON_READ_STOPPED) { 680 /* count this component as being "done" */ 681 reconDesc->numDisksDone++; 682 } else if (status == RF_RECON_WRITE_DONE) { 683 num_writes++; 684 } 685 686 if (recon_error) { 687 /* make sure any stragglers are woken up so that 688 their theads will complete, and we can get out 689 of here with all IO processed */ 690 691 rf_WakeupHeadSepCBWaiters(raidPtr); 692 } 693 694 raidPtr->reconControl->numRUsTotal = 695 mapPtr->totalRUs; 696 raidPtr->reconControl->numRUsComplete = 697 mapPtr->totalRUs - 698 rf_UnitsLeftToReconstruct(mapPtr); 699 700 #if RF_DEBUG_RECON 701 raidPtr->reconControl->percentComplete = 702 (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal); 703 if (rf_prReconSched) { 704 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime)); 705 } 706 #endif 707 } 708 709 /* reads done, wakup any waiters, and then wait for writes */ 710 711 rf_WakeupHeadSepCBWaiters(raidPtr); 712 713 while (!recon_error && (num_writes < pending_writes)) { 714 event = rf_GetNextReconEvent(reconDesc); 715 status = ProcessReconEvent(raidPtr, event); 716 717 if (status == RF_RECON_WRITE_ERROR) { 718 recon_error = 1; 719 raidPtr->reconControl->error = 1; 720 /* an error was encountered at the very end... bail */ 721 } else if (status == RF_RECON_WRITE_DONE) { 722 num_writes++; 723 } 724 } 725 if (recon_error || 726 (raidPtr->reconControl->lastPSID == lastPSID)) { 727 done = 1; 728 break; 729 } 730 731 prev = raidPtr->reconControl->lastPSID; 732 raidPtr->reconControl->lastPSID += incPSID; 733 734 if (raidPtr->reconControl->lastPSID > lastPSID) { 735 pending_writes = lastPSID - prev; 736 raidPtr->reconControl->lastPSID = lastPSID; 737 } 738 739 /* back down curPSID to get ready for the next round... */ 740 for (i = 0; i < raidPtr->numCol; i++) { 741 if (i != col) { 742 raidPtr->reconControl->perDiskInfo[i].curPSID--; 743 raidPtr->reconControl->perDiskInfo[i].ru_count = RUsPerPU - 1; 744 } 745 } 746 } 747 748 mapPtr = raidPtr->reconControl->reconMap; 749 if (rf_reconDebug) { 750 printf("RECON: all reads completed\n"); 751 } 752 /* at this point all the reads have completed. We now wait 753 * for any pending writes to complete, and then we're done */ 754 755 while (!recon_error && rf_UnitsLeftToReconstruct(raidPtr->reconControl->reconMap) > 0) { 756 757 event = rf_GetNextReconEvent(reconDesc); 758 status = ProcessReconEvent(raidPtr, event); 759 760 if (status == RF_RECON_WRITE_ERROR) { 761 recon_error = 1; 762 raidPtr->reconControl->error = 1; 763 /* an error was encountered at the very end... bail */ 764 } else { 765 #if RF_DEBUG_RECON 766 raidPtr->reconControl->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs); 767 if (rf_prReconSched) { 768 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime)); 769 } 770 #endif 771 } 772 } 773 774 if (recon_error) { 775 /* we've encountered an error in reconstructing. */ 776 printf("raid%d: reconstruction failed.\n", raidPtr->raidid); 777 778 /* we start by blocking IO to the RAID set. */ 779 rf_SuspendNewRequestsAndWait(raidPtr); 780 781 RF_LOCK_MUTEX(raidPtr->mutex); 782 /* mark set as being degraded, rather than 783 rf_rs_reconstructing as we were before the problem. 784 After this is done we can update status of the 785 component disks without worrying about someone 786 trying to read from a failed component. 787 */ 788 raidPtr->status = rf_rs_degraded; 789 RF_UNLOCK_MUTEX(raidPtr->mutex); 790 791 /* resume IO */ 792 rf_ResumeNewRequests(raidPtr); 793 794 /* At this point there are two cases: 795 1) If we've experienced a read error, then we've 796 already waited for all the reads we're going to get, 797 and we just need to wait for the writes. 798 799 2) If we've experienced a write error, we've also 800 already waited for all the reads to complete, 801 but there is little point in waiting for the writes -- 802 when they do complete, they will just be ignored. 803 804 So we just wait for writes to complete if we didn't have a 805 write error. 806 */ 807 808 if (!write_error) { 809 /* wait for writes to complete */ 810 while (raidPtr->reconControl->pending_writes > 0) { 811 812 event = rf_GetNextReconEvent(reconDesc); 813 status = ProcessReconEvent(raidPtr, event); 814 815 if (status == RF_RECON_WRITE_ERROR) { 816 raidPtr->reconControl->error = 1; 817 /* an error was encountered at the very end... bail. 818 This will be very bad news for the user, since 819 at this point there will have been a read error 820 on one component, and a write error on another! 821 */ 822 break; 823 } 824 } 825 } 826 827 828 /* cleanup */ 829 830 /* drain the event queue - after waiting for the writes above, 831 there shouldn't be much (if anything!) left in the queue. */ 832 833 rf_DrainReconEventQueue(reconDesc); 834 835 /* XXX As much as we'd like to free the recon control structure 836 and the reconDesc, we have no way of knowing if/when those will 837 be touched by IO that has yet to occur. It is rather poor to be 838 basically causing a 'memory leak' here, but there doesn't seem to be 839 a cleaner alternative at this time. Perhaps when the reconstruct code 840 gets a makeover this problem will go away. 841 */ 842 #if 0 843 rf_FreeReconControl(raidPtr); 844 #endif 845 846 #if RF_ACC_TRACE > 0 847 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t)); 848 #endif 849 /* XXX see comment above */ 850 #if 0 851 FreeReconDesc(reconDesc); 852 #endif 853 854 return (1); 855 } 856 857 /* Success: mark the dead disk as reconstructed. We quiesce 858 * the array here to assure no nasty interactions with pending 859 * user accesses when we free up the psstatus structure as 860 * part of FreeReconControl() */ 861 862 rf_SuspendNewRequestsAndWait(raidPtr); 863 864 RF_LOCK_MUTEX(raidPtr->mutex); 865 raidPtr->numFailures--; 866 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE); 867 raidPtr->Disks[col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared; 868 raidPtr->status = (ds) ? rf_rs_reconfigured : rf_rs_optimal; 869 RF_UNLOCK_MUTEX(raidPtr->mutex); 870 RF_GETTIME(etime); 871 RF_TIMEVAL_DIFF(&(raidPtr->reconControl->starttime), &etime, &elpsd); 872 873 rf_ResumeNewRequests(raidPtr); 874 875 printf("raid%d: Reconstruction of disk at col %d completed\n", 876 raidPtr->raidid, col); 877 xor_s = raidPtr->accumXorTimeUs / 1000000; 878 xor_resid_us = raidPtr->accumXorTimeUs % 1000000; 879 printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n", 880 raidPtr->raidid, 881 (int) elpsd.tv_sec, (int) elpsd.tv_usec, 882 raidPtr->accumXorTimeUs, xor_s, xor_resid_us); 883 printf("raid%d: (start time %d sec %d usec, end time %d sec %d usec)\n", 884 raidPtr->raidid, 885 (int) raidPtr->reconControl->starttime.tv_sec, 886 (int) raidPtr->reconControl->starttime.tv_usec, 887 (int) etime.tv_sec, (int) etime.tv_usec); 888 #if RF_RECON_STATS > 0 889 printf("raid%d: Total head-sep stall count was %d\n", 890 raidPtr->raidid, (int) reconDesc->hsStallCount); 891 #endif /* RF_RECON_STATS > 0 */ 892 rf_FreeReconControl(raidPtr); 893 #if RF_ACC_TRACE > 0 894 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t)); 895 #endif 896 FreeReconDesc(reconDesc); 897 898 return (0); 899 900 } 901 /***************************************************************************** 902 * do the right thing upon each reconstruction event. 903 *****************************************************************************/ 904 static int 905 ProcessReconEvent(RF_Raid_t *raidPtr, RF_ReconEvent_t *event) 906 { 907 int retcode = 0, submitblocked; 908 RF_ReconBuffer_t *rbuf; 909 RF_SectorCount_t sectorsPerRU; 910 911 retcode = RF_RECON_READ_STOPPED; 912 913 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type); 914 915 switch (event->type) { 916 917 /* a read I/O has completed */ 918 case RF_REVENT_READDONE: 919 rbuf = raidPtr->reconControl->perDiskInfo[event->col].rbuf; 920 Dprintf2("RECON: READDONE EVENT: col %d psid %ld\n", 921 event->col, rbuf->parityStripeID); 922 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n", 923 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff, 924 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff); 925 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 926 if (!raidPtr->reconControl->error) { 927 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0); 928 Dprintf1("RECON: submitblocked=%d\n", submitblocked); 929 if (!submitblocked) 930 retcode = IssueNextReadRequest(raidPtr, event->col); 931 else 932 retcode = 0; 933 } 934 break; 935 936 /* a write I/O has completed */ 937 case RF_REVENT_WRITEDONE: 938 #if RF_DEBUG_RECON 939 if (rf_floatingRbufDebug) { 940 rf_CheckFloatingRbufCount(raidPtr, 1); 941 } 942 #endif 943 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; 944 rbuf = (RF_ReconBuffer_t *) event->arg; 945 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 946 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n", 947 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl->percentComplete); 948 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl->reconMap, 949 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1); 950 rf_RemoveFromActiveReconTable(raidPtr, rbuf->parityStripeID, rbuf->which_ru); 951 952 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex); 953 raidPtr->reconControl->pending_writes--; 954 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex); 955 956 if (rbuf->type == RF_RBUF_TYPE_FLOATING) { 957 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex); 958 while(raidPtr->reconControl->rb_lock) { 959 ltsleep(&raidPtr->reconControl->rb_lock, PRIBIO, "reconctrlpre1", 0, 960 &raidPtr->reconControl->rb_mutex); 961 } 962 raidPtr->reconControl->rb_lock = 1; 963 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex); 964 965 raidPtr->numFullReconBuffers--; 966 rf_ReleaseFloatingReconBuffer(raidPtr, rbuf); 967 968 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex); 969 raidPtr->reconControl->rb_lock = 0; 970 wakeup(&raidPtr->reconControl->rb_lock); 971 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex); 972 } else 973 if (rbuf->type == RF_RBUF_TYPE_FORCED) 974 rf_FreeReconBuffer(rbuf); 975 else 976 RF_ASSERT(0); 977 retcode = RF_RECON_WRITE_DONE; 978 break; 979 980 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been 981 * cleared */ 982 Dprintf1("RECON: BUFCLEAR EVENT: col %d\n", event->col); 983 if (!raidPtr->reconControl->error) { 984 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl->perDiskInfo[event->col].rbuf, 985 0, (int) (long) event->arg); 986 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the 987 * BUFCLEAR event if we 988 * couldn't submit */ 989 retcode = IssueNextReadRequest(raidPtr, event->col); 990 } 991 break; 992 993 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction 994 * blockage has been cleared */ 995 DDprintf1("RECON: BLOCKCLEAR EVENT: col %d\n", event->col); 996 if (!raidPtr->reconControl->error) { 997 retcode = TryToRead(raidPtr, event->col); 998 } 999 break; 1000 1001 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation 1002 * reconstruction blockage has been 1003 * cleared */ 1004 Dprintf1("RECON: HEADSEPCLEAR EVENT: col %d\n", event->col); 1005 if (!raidPtr->reconControl->error) { 1006 retcode = TryToRead(raidPtr, event->col); 1007 } 1008 break; 1009 1010 /* a buffer has become ready to write */ 1011 case RF_REVENT_BUFREADY: 1012 Dprintf1("RECON: BUFREADY EVENT: col %d\n", event->col); 1013 if (!raidPtr->reconControl->error) { 1014 retcode = IssueNextWriteRequest(raidPtr); 1015 #if RF_DEBUG_RECON 1016 if (rf_floatingRbufDebug) { 1017 rf_CheckFloatingRbufCount(raidPtr, 1); 1018 } 1019 #endif 1020 } 1021 break; 1022 1023 /* we need to skip the current RU entirely because it got 1024 * recon'd while we were waiting for something else to happen */ 1025 case RF_REVENT_SKIP: 1026 DDprintf1("RECON: SKIP EVENT: col %d\n", event->col); 1027 if (!raidPtr->reconControl->error) { 1028 retcode = IssueNextReadRequest(raidPtr, event->col); 1029 } 1030 break; 1031 1032 /* a forced-reconstruction read access has completed. Just 1033 * submit the buffer */ 1034 case RF_REVENT_FORCEDREADDONE: 1035 rbuf = (RF_ReconBuffer_t *) event->arg; 1036 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 1037 DDprintf1("RECON: FORCEDREADDONE EVENT: col %d\n", event->col); 1038 if (!raidPtr->reconControl->error) { 1039 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0); 1040 RF_ASSERT(!submitblocked); 1041 retcode = 0; 1042 } 1043 break; 1044 1045 /* A read I/O failed to complete */ 1046 case RF_REVENT_READ_FAILED: 1047 retcode = RF_RECON_READ_ERROR; 1048 break; 1049 1050 /* A write I/O failed to complete */ 1051 case RF_REVENT_WRITE_FAILED: 1052 retcode = RF_RECON_WRITE_ERROR; 1053 1054 rbuf = (RF_ReconBuffer_t *) event->arg; 1055 1056 /* cleanup the disk queue data */ 1057 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 1058 1059 /* At this point we're erroring out, badly, and floatingRbufs 1060 may not even be valid. Rather than putting this back onto 1061 the floatingRbufs list, just arrange for its immediate 1062 destruction. 1063 */ 1064 rf_FreeReconBuffer(rbuf); 1065 break; 1066 1067 /* a forced read I/O failed to complete */ 1068 case RF_REVENT_FORCEDREAD_FAILED: 1069 retcode = RF_RECON_READ_ERROR; 1070 break; 1071 1072 default: 1073 RF_PANIC(); 1074 } 1075 rf_FreeReconEventDesc(event); 1076 return (retcode); 1077 } 1078 /***************************************************************************** 1079 * 1080 * find the next thing that's needed on the indicated disk, and issue 1081 * a read request for it. We assume that the reconstruction buffer 1082 * associated with this process is free to receive the data. If 1083 * reconstruction is blocked on the indicated RU, we issue a 1084 * blockage-release request instead of a physical disk read request. 1085 * If the current disk gets too far ahead of the others, we issue a 1086 * head-separation wait request and return. 1087 * 1088 * ctrl->{ru_count, curPSID, diskOffset} and 1089 * rbuf->failedDiskSectorOffset are maintained to point to the unit 1090 * we're currently accessing. Note that this deviates from the 1091 * standard C idiom of having counters point to the next thing to be 1092 * accessed. This allows us to easily retry when we're blocked by 1093 * head separation or reconstruction-blockage events. 1094 * 1095 *****************************************************************************/ 1096 static int 1097 IssueNextReadRequest(RF_Raid_t *raidPtr, RF_RowCol_t col) 1098 { 1099 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col]; 1100 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 1101 RF_ReconBuffer_t *rbuf = ctrl->rbuf; 1102 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU; 1103 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU; 1104 int do_new_check = 0, retcode = 0, status; 1105 1106 /* if we are currently the slowest disk, mark that we have to do a new 1107 * check */ 1108 if (ctrl->headSepCounter <= raidPtr->reconControl->minHeadSepCounter) 1109 do_new_check = 1; 1110 1111 while (1) { 1112 1113 ctrl->ru_count++; 1114 if (ctrl->ru_count < RUsPerPU) { 1115 ctrl->diskOffset += sectorsPerRU; 1116 rbuf->failedDiskSectorOffset += sectorsPerRU; 1117 } else { 1118 ctrl->curPSID++; 1119 ctrl->ru_count = 0; 1120 /* code left over from when head-sep was based on 1121 * parity stripe id */ 1122 if (ctrl->curPSID >= raidPtr->reconControl->lastPSID) { 1123 CheckForNewMinHeadSep(raidPtr, ++(ctrl->headSepCounter)); 1124 return (RF_RECON_DONE_READS); /* finito! */ 1125 } 1126 /* find the disk offsets of the start of the parity 1127 * stripe on both the current disk and the failed 1128 * disk. skip this entire parity stripe if either disk 1129 * does not appear in the indicated PS */ 1130 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset, 1131 &rbuf->spCol, &rbuf->spOffset); 1132 if (status) { 1133 ctrl->ru_count = RUsPerPU - 1; 1134 continue; 1135 } 1136 } 1137 rbuf->which_ru = ctrl->ru_count; 1138 1139 /* skip this RU if it's already been reconstructed */ 1140 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, rbuf->failedDiskSectorOffset)) { 1141 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count); 1142 continue; 1143 } 1144 break; 1145 } 1146 ctrl->headSepCounter++; 1147 if (do_new_check) 1148 CheckForNewMinHeadSep(raidPtr, ctrl->headSepCounter); /* update min if needed */ 1149 1150 1151 /* at this point, we have definitely decided what to do, and we have 1152 * only to see if we can actually do it now */ 1153 rbuf->parityStripeID = ctrl->curPSID; 1154 rbuf->which_ru = ctrl->ru_count; 1155 #if RF_ACC_TRACE > 0 1156 memset((char *) &raidPtr->recon_tracerecs[col], 0, 1157 sizeof(raidPtr->recon_tracerecs[col])); 1158 raidPtr->recon_tracerecs[col].reconacc = 1; 1159 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer); 1160 #endif 1161 retcode = TryToRead(raidPtr, col); 1162 return (retcode); 1163 } 1164 1165 /* 1166 * tries to issue the next read on the indicated disk. We may be 1167 * blocked by (a) the heads being too far apart, or (b) recon on the 1168 * indicated RU being blocked due to a write by a user thread. In 1169 * this case, we issue a head-sep or blockage wait request, which will 1170 * cause this same routine to be invoked again later when the blockage 1171 * has cleared. 1172 */ 1173 1174 static int 1175 TryToRead(RF_Raid_t *raidPtr, RF_RowCol_t col) 1176 { 1177 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col]; 1178 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; 1179 RF_StripeNum_t psid = ctrl->curPSID; 1180 RF_ReconUnitNum_t which_ru = ctrl->ru_count; 1181 RF_DiskQueueData_t *req; 1182 int status; 1183 RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr; 1184 1185 /* if the current disk is too far ahead of the others, issue a 1186 * head-separation wait and return */ 1187 if (CheckHeadSeparation(raidPtr, ctrl, col, ctrl->headSepCounter, which_ru)) 1188 return (0); 1189 1190 /* allocate a new PSS in case we need it */ 1191 newpssPtr = rf_AllocPSStatus(raidPtr); 1192 1193 RF_LOCK_PSS_MUTEX(raidPtr, psid); 1194 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE, newpssPtr); 1195 1196 if (pssPtr != newpssPtr) { 1197 rf_FreePSStatus(raidPtr, newpssPtr); 1198 } 1199 1200 /* if recon is blocked on the indicated parity stripe, issue a 1201 * block-wait request and return. this also must mark the indicated RU 1202 * in the stripe as under reconstruction if not blocked. */ 1203 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, col, psid, which_ru); 1204 if (status == RF_PSS_RECON_BLOCKED) { 1205 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru); 1206 goto out; 1207 } else 1208 if (status == RF_PSS_FORCED_ON_WRITE) { 1209 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP); 1210 goto out; 1211 } 1212 /* make one last check to be sure that the indicated RU didn't get 1213 * reconstructed while we were waiting for something else to happen. 1214 * This is unfortunate in that it causes us to make this check twice 1215 * in the normal case. Might want to make some attempt to re-work 1216 * this so that we only do this check if we've definitely blocked on 1217 * one of the above checks. When this condition is detected, we may 1218 * have just created a bogus status entry, which we need to delete. */ 1219 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, ctrl->rbuf->failedDiskSectorOffset)) { 1220 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru); 1221 if (pssPtr == newpssPtr) 1222 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr); 1223 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP); 1224 goto out; 1225 } 1226 /* found something to read. issue the I/O */ 1227 Dprintf4("RECON: Read for psid %ld on col %d offset %ld buf %lx\n", 1228 psid, col, ctrl->diskOffset, ctrl->rbuf->buffer); 1229 #if RF_ACC_TRACE > 0 1230 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer); 1231 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer); 1232 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us = 1233 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer); 1234 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer); 1235 #endif 1236 /* should be ok to use a NULL proc pointer here, all the bufs we use 1237 * should be in kernel space */ 1238 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru, 1239 ReconReadDoneProc, (void *) ctrl, 1240 #if RF_ACC_TRACE > 0 1241 &raidPtr->recon_tracerecs[col], 1242 #else 1243 NULL, 1244 #endif 1245 (void *) raidPtr, 0, NULL, PR_WAITOK); 1246 1247 ctrl->rbuf->arg = (void *) req; 1248 rf_DiskIOEnqueue(&raidPtr->Queues[col], req, RF_IO_RECON_PRIORITY); 1249 pssPtr->issued[col] = 1; 1250 1251 out: 1252 RF_UNLOCK_PSS_MUTEX(raidPtr, psid); 1253 return (0); 1254 } 1255 1256 1257 /* 1258 * given a parity stripe ID, we want to find out whether both the 1259 * current disk and the failed disk exist in that parity stripe. If 1260 * not, we want to skip this whole PS. If so, we want to find the 1261 * disk offset of the start of the PS on both the current disk and the 1262 * failed disk. 1263 * 1264 * this works by getting a list of disks comprising the indicated 1265 * parity stripe, and searching the list for the current and failed 1266 * disks. Once we've decided they both exist in the parity stripe, we 1267 * need to decide whether each is data or parity, so that we'll know 1268 * which mapping function to call to get the corresponding disk 1269 * offsets. 1270 * 1271 * this is kind of unpleasant, but doing it this way allows the 1272 * reconstruction code to use parity stripe IDs rather than physical 1273 * disks address to march through the failed disk, which greatly 1274 * simplifies a lot of code, as well as eliminating the need for a 1275 * reverse-mapping function. I also think it will execute faster, 1276 * since the calls to the mapping module are kept to a minimum. 1277 * 1278 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING 1279 * THE STRIPE IN THE CORRECT ORDER 1280 * 1281 * raidPtr - raid descriptor 1282 * psid - parity stripe identifier 1283 * col - column of disk to find the offsets for 1284 * spCol - out: col of spare unit for failed unit 1285 * spOffset - out: offset into disk containing spare unit 1286 * 1287 */ 1288 1289 1290 static int 1291 ComputePSDiskOffsets(RF_Raid_t *raidPtr, RF_StripeNum_t psid, 1292 RF_RowCol_t col, RF_SectorNum_t *outDiskOffset, 1293 RF_SectorNum_t *outFailedDiskSectorOffset, 1294 RF_RowCol_t *spCol, RF_SectorNum_t *spOffset) 1295 { 1296 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 1297 RF_RowCol_t fcol = raidPtr->reconControl->fcol; 1298 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */ 1299 RF_RowCol_t *diskids; 1300 u_int i, j, k, i_offset, j_offset; 1301 RF_RowCol_t pcol; 1302 int testcol; 1303 RF_SectorNum_t poffset; 1304 char i_is_parity = 0, j_is_parity = 0; 1305 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol; 1306 1307 /* get a listing of the disks comprising that stripe */ 1308 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid); 1309 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids); 1310 RF_ASSERT(diskids); 1311 1312 /* reject this entire parity stripe if it does not contain the 1313 * indicated disk or it does not contain the failed disk */ 1314 1315 for (i = 0; i < stripeWidth; i++) { 1316 if (col == diskids[i]) 1317 break; 1318 } 1319 if (i == stripeWidth) 1320 goto skipit; 1321 for (j = 0; j < stripeWidth; j++) { 1322 if (fcol == diskids[j]) 1323 break; 1324 } 1325 if (j == stripeWidth) { 1326 goto skipit; 1327 } 1328 /* find out which disk the parity is on */ 1329 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &pcol, &poffset, RF_DONT_REMAP); 1330 1331 /* find out if either the current RU or the failed RU is parity */ 1332 /* also, if the parity occurs in this stripe prior to the data and/or 1333 * failed col, we need to decrement i and/or j */ 1334 for (k = 0; k < stripeWidth; k++) 1335 if (diskids[k] == pcol) 1336 break; 1337 RF_ASSERT(k < stripeWidth); 1338 i_offset = i; 1339 j_offset = j; 1340 if (k < i) 1341 i_offset--; 1342 else 1343 if (k == i) { 1344 i_is_parity = 1; 1345 i_offset = 0; 1346 } /* set offsets to zero to disable multiply 1347 * below */ 1348 if (k < j) 1349 j_offset--; 1350 else 1351 if (k == j) { 1352 j_is_parity = 1; 1353 j_offset = 0; 1354 } 1355 /* at this point, [ij]_is_parity tells us whether the [current,failed] 1356 * disk is parity at the start of this RU, and, if data, "[ij]_offset" 1357 * tells us how far into the stripe the [current,failed] disk is. */ 1358 1359 /* call the mapping routine to get the offset into the current disk, 1360 * repeat for failed disk. */ 1361 if (i_is_parity) 1362 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP); 1363 else 1364 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP); 1365 1366 RF_ASSERT(col == testcol); 1367 1368 if (j_is_parity) 1369 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP); 1370 else 1371 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP); 1372 RF_ASSERT(fcol == testcol); 1373 1374 /* now locate the spare unit for the failed unit */ 1375 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 1376 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) { 1377 if (j_is_parity) 1378 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP); 1379 else 1380 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP); 1381 } else { 1382 #endif 1383 *spCol = raidPtr->reconControl->spareCol; 1384 *spOffset = *outFailedDiskSectorOffset; 1385 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 1386 } 1387 #endif 1388 return (0); 1389 1390 skipit: 1391 Dprintf2("RECON: Skipping psid %ld: nothing needed from c%d\n", 1392 psid, col); 1393 return (1); 1394 } 1395 /* this is called when a buffer has become ready to write to the replacement disk */ 1396 static int 1397 IssueNextWriteRequest(RF_Raid_t *raidPtr) 1398 { 1399 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 1400 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU; 1401 #if RF_ACC_TRACE > 0 1402 RF_RowCol_t fcol = raidPtr->reconControl->fcol; 1403 #endif 1404 RF_ReconBuffer_t *rbuf; 1405 RF_DiskQueueData_t *req; 1406 1407 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl); 1408 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't 1409 * have gotten the event that sent us here */ 1410 RF_ASSERT(rbuf->pssPtr); 1411 1412 rbuf->pssPtr->writeRbuf = rbuf; 1413 rbuf->pssPtr = NULL; 1414 1415 Dprintf6("RECON: New write (c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n", 1416 rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID, 1417 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer); 1418 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n", 1419 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff, 1420 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff); 1421 1422 /* should be ok to use a NULL b_proc here b/c all addrs should be in 1423 * kernel space */ 1424 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset, 1425 sectorsPerRU, rbuf->buffer, 1426 rbuf->parityStripeID, rbuf->which_ru, 1427 ReconWriteDoneProc, (void *) rbuf, 1428 #if RF_ACC_TRACE > 0 1429 &raidPtr->recon_tracerecs[fcol], 1430 #else 1431 NULL, 1432 #endif 1433 (void *) raidPtr, 0, NULL, PR_WAITOK); 1434 1435 rbuf->arg = (void *) req; 1436 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex); 1437 raidPtr->reconControl->pending_writes++; 1438 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex); 1439 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spCol], req, RF_IO_RECON_PRIORITY); 1440 1441 return (0); 1442 } 1443 1444 /* 1445 * this gets called upon the completion of a reconstruction read 1446 * operation the arg is a pointer to the per-disk reconstruction 1447 * control structure for the process that just finished a read. 1448 * 1449 * called at interrupt context in the kernel, so don't do anything 1450 * illegal here. 1451 */ 1452 static int 1453 ReconReadDoneProc(void *arg, int status) 1454 { 1455 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg; 1456 RF_Raid_t *raidPtr; 1457 1458 /* Detect that reconCtrl is no longer valid, and if that 1459 is the case, bail without calling rf_CauseReconEvent(). 1460 There won't be anyone listening for this event anyway */ 1461 1462 if (ctrl->reconCtrl == NULL) 1463 return(0); 1464 1465 raidPtr = ctrl->reconCtrl->reconDesc->raidPtr; 1466 1467 if (status) { 1468 printf("raid%d: Recon read failed: %d\n", raidPtr->raidid, status); 1469 rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READ_FAILED); 1470 return(0); 1471 } 1472 #if RF_ACC_TRACE > 0 1473 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1474 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1475 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us = 1476 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1477 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1478 #endif 1479 rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READDONE); 1480 return (0); 1481 } 1482 /* this gets called upon the completion of a reconstruction write operation. 1483 * the arg is a pointer to the rbuf that was just written 1484 * 1485 * called at interrupt context in the kernel, so don't do anything illegal here. 1486 */ 1487 static int 1488 ReconWriteDoneProc(void *arg, int status) 1489 { 1490 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg; 1491 1492 /* Detect that reconControl is no longer valid, and if that 1493 is the case, bail without calling rf_CauseReconEvent(). 1494 There won't be anyone listening for this event anyway */ 1495 1496 if (rbuf->raidPtr->reconControl == NULL) 1497 return(0); 1498 1499 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru); 1500 if (status) { 1501 printf("raid%d: Recon write failed!\n", rbuf->raidPtr->raidid); 1502 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITE_FAILED); 1503 return(0); 1504 } 1505 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITEDONE); 1506 return (0); 1507 } 1508 1509 1510 /* 1511 * computes a new minimum head sep, and wakes up anyone who needs to 1512 * be woken as a result 1513 */ 1514 static void 1515 CheckForNewMinHeadSep(RF_Raid_t *raidPtr, RF_HeadSepLimit_t hsCtr) 1516 { 1517 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl; 1518 RF_HeadSepLimit_t new_min; 1519 RF_RowCol_t i; 1520 RF_CallbackDesc_t *p; 1521 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition 1522 * of a minimum */ 1523 1524 1525 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); 1526 while(reconCtrlPtr->rb_lock) { 1527 ltsleep(&reconCtrlPtr->rb_lock, PRIBIO, "reconctlcnmhs", 0, &reconCtrlPtr->rb_mutex); 1528 } 1529 reconCtrlPtr->rb_lock = 1; 1530 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); 1531 1532 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */ 1533 for (i = 0; i < raidPtr->numCol; i++) 1534 if (i != reconCtrlPtr->fcol) { 1535 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min) 1536 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter; 1537 } 1538 /* set the new minimum and wake up anyone who can now run again */ 1539 if (new_min != reconCtrlPtr->minHeadSepCounter) { 1540 reconCtrlPtr->minHeadSepCounter = new_min; 1541 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min); 1542 while (reconCtrlPtr->headSepCBList) { 1543 if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min) 1544 break; 1545 p = reconCtrlPtr->headSepCBList; 1546 reconCtrlPtr->headSepCBList = p->next; 1547 p->next = NULL; 1548 rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR); 1549 rf_FreeCallbackDesc(p); 1550 } 1551 1552 } 1553 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); 1554 reconCtrlPtr->rb_lock = 0; 1555 wakeup(&reconCtrlPtr->rb_lock); 1556 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); 1557 } 1558 1559 /* 1560 * checks to see that the maximum head separation will not be violated 1561 * if we initiate a reconstruction I/O on the indicated disk. 1562 * Limiting the maximum head separation between two disks eliminates 1563 * the nasty buffer-stall conditions that occur when one disk races 1564 * ahead of the others and consumes all of the floating recon buffers. 1565 * This code is complex and unpleasant but it's necessary to avoid 1566 * some very nasty, albeit fairly rare, reconstruction behavior. 1567 * 1568 * returns non-zero if and only if we have to stop working on the 1569 * indicated disk due to a head-separation delay. 1570 */ 1571 static int 1572 CheckHeadSeparation(RF_Raid_t *raidPtr, RF_PerDiskReconCtrl_t *ctrl, 1573 RF_RowCol_t col, RF_HeadSepLimit_t hsCtr, 1574 RF_ReconUnitNum_t which_ru) 1575 { 1576 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl; 1577 RF_CallbackDesc_t *cb, *p, *pt; 1578 int retval = 0; 1579 1580 /* if we're too far ahead of the slowest disk, stop working on this 1581 * disk until the slower ones catch up. We do this by scheduling a 1582 * wakeup callback for the time when the slowest disk has caught up. 1583 * We define "caught up" with 20% hysteresis, i.e. the head separation 1584 * must have fallen to at most 80% of the max allowable head 1585 * separation before we'll wake up. 1586 * 1587 */ 1588 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); 1589 while(reconCtrlPtr->rb_lock) { 1590 ltsleep(&reconCtrlPtr->rb_lock, PRIBIO, "reconctlchs", 0, &reconCtrlPtr->rb_mutex); 1591 } 1592 reconCtrlPtr->rb_lock = 1; 1593 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); 1594 if ((raidPtr->headSepLimit >= 0) && 1595 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) { 1596 Dprintf5("raid%d: RECON: head sep stall: col %d hsCtr %ld minHSCtr %ld limit %ld\n", 1597 raidPtr->raidid, col, ctrl->headSepCounter, 1598 reconCtrlPtr->minHeadSepCounter, 1599 raidPtr->headSepLimit); 1600 cb = rf_AllocCallbackDesc(); 1601 /* the minHeadSepCounter value we have to get to before we'll 1602 * wake up. build in 20% hysteresis. */ 1603 cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5); 1604 cb->col = col; 1605 cb->next = NULL; 1606 1607 /* insert this callback descriptor into the sorted list of 1608 * pending head-sep callbacks */ 1609 p = reconCtrlPtr->headSepCBList; 1610 if (!p) 1611 reconCtrlPtr->headSepCBList = cb; 1612 else 1613 if (cb->callbackArg.v < p->callbackArg.v) { 1614 cb->next = reconCtrlPtr->headSepCBList; 1615 reconCtrlPtr->headSepCBList = cb; 1616 } else { 1617 for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next); 1618 cb->next = p; 1619 pt->next = cb; 1620 } 1621 retval = 1; 1622 #if RF_RECON_STATS > 0 1623 ctrl->reconCtrl->reconDesc->hsStallCount++; 1624 #endif /* RF_RECON_STATS > 0 */ 1625 } 1626 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); 1627 reconCtrlPtr->rb_lock = 0; 1628 wakeup(&reconCtrlPtr->rb_lock); 1629 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); 1630 1631 return (retval); 1632 } 1633 /* 1634 * checks to see if reconstruction has been either forced or blocked 1635 * by a user operation. if forced, we skip this RU entirely. else if 1636 * blocked, put ourselves on the wait list. else return 0. 1637 * 1638 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY 1639 */ 1640 static int 1641 CheckForcedOrBlockedReconstruction(RF_Raid_t *raidPtr, 1642 RF_ReconParityStripeStatus_t *pssPtr, 1643 RF_PerDiskReconCtrl_t *ctrl, 1644 RF_RowCol_t col, 1645 RF_StripeNum_t psid, 1646 RF_ReconUnitNum_t which_ru) 1647 { 1648 RF_CallbackDesc_t *cb; 1649 int retcode = 0; 1650 1651 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE)) 1652 retcode = RF_PSS_FORCED_ON_WRITE; 1653 else 1654 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) { 1655 Dprintf3("RECON: col %d blocked at psid %ld ru %d\n", col, psid, which_ru); 1656 cb = rf_AllocCallbackDesc(); /* append ourselves to 1657 * the blockage-wait 1658 * list */ 1659 cb->col = col; 1660 cb->next = pssPtr->blockWaitList; 1661 pssPtr->blockWaitList = cb; 1662 retcode = RF_PSS_RECON_BLOCKED; 1663 } 1664 if (!retcode) 1665 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under 1666 * reconstruction */ 1667 1668 return (retcode); 1669 } 1670 /* 1671 * if reconstruction is currently ongoing for the indicated stripeID, 1672 * reconstruction is forced to completion and we return non-zero to 1673 * indicate that the caller must wait. If not, then reconstruction is 1674 * blocked on the indicated stripe and the routine returns zero. If 1675 * and only if we return non-zero, we'll cause the cbFunc to get 1676 * invoked with the cbArg when the reconstruction has completed. 1677 */ 1678 int 1679 rf_ForceOrBlockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap, 1680 void (*cbFunc)(RF_Raid_t *, void *), void *cbArg) 1681 { 1682 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're 1683 * forcing recon on */ 1684 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */ 1685 RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr; /* a pointer to the parity 1686 * stripe status structure */ 1687 RF_StripeNum_t psid; /* parity stripe id */ 1688 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk 1689 * offset */ 1690 RF_RowCol_t *diskids; 1691 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */ 1692 RF_RowCol_t fcol, diskno, i; 1693 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */ 1694 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */ 1695 RF_CallbackDesc_t *cb; 1696 int nPromoted; 1697 1698 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru); 1699 1700 /* allocate a new PSS in case we need it */ 1701 newpssPtr = rf_AllocPSStatus(raidPtr); 1702 1703 RF_LOCK_PSS_MUTEX(raidPtr, psid); 1704 1705 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, newpssPtr); 1706 1707 if (pssPtr != newpssPtr) { 1708 rf_FreePSStatus(raidPtr, newpssPtr); 1709 } 1710 1711 /* if recon is not ongoing on this PS, just return */ 1712 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) { 1713 RF_UNLOCK_PSS_MUTEX(raidPtr, psid); 1714 return (0); 1715 } 1716 /* otherwise, we have to wait for reconstruction to complete on this 1717 * RU. */ 1718 /* In order to avoid waiting for a potentially large number of 1719 * low-priority accesses to complete, we force a normal-priority (i.e. 1720 * not low-priority) reconstruction on this RU. */ 1721 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) { 1722 DDprintf1("Forcing recon on psid %ld\n", psid); 1723 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under 1724 * forced recon */ 1725 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage 1726 * that we just set */ 1727 fcol = raidPtr->reconControl->fcol; 1728 1729 /* get a listing of the disks comprising the indicated stripe */ 1730 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids); 1731 1732 /* For previously issued reads, elevate them to normal 1733 * priority. If the I/O has already completed, it won't be 1734 * found in the queue, and hence this will be a no-op. For 1735 * unissued reads, allocate buffers and issue new reads. The 1736 * fact that we've set the FORCED bit means that the regular 1737 * recon procs will not re-issue these reqs */ 1738 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++) 1739 if ((diskno = diskids[i]) != fcol) { 1740 if (pssPtr->issued[diskno]) { 1741 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[diskno], psid, which_ru); 1742 if (rf_reconDebug && nPromoted) 1743 printf("raid%d: promoted read from col %d\n", raidPtr->raidid, diskno); 1744 } else { 1745 new_rbuf = rf_MakeReconBuffer(raidPtr, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */ 1746 ComputePSDiskOffsets(raidPtr, psid, diskno, &offset, &fd_offset, 1747 &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare 1748 * location */ 1749 new_rbuf->parityStripeID = psid; /* fill in the buffer */ 1750 new_rbuf->which_ru = which_ru; 1751 new_rbuf->failedDiskSectorOffset = fd_offset; 1752 new_rbuf->priority = RF_IO_NORMAL_PRIORITY; 1753 1754 /* use NULL b_proc b/c all addrs 1755 * should be in kernel space */ 1756 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer, 1757 psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, 1758 NULL, (void *) raidPtr, 0, NULL, PR_WAITOK); 1759 1760 new_rbuf->arg = req; 1761 rf_DiskIOEnqueue(&raidPtr->Queues[diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */ 1762 Dprintf2("raid%d: Issued new read req on col %d\n", raidPtr->raidid, diskno); 1763 } 1764 } 1765 /* if the write is sitting in the disk queue, elevate its 1766 * priority */ 1767 if (rf_DiskIOPromote(&raidPtr->Queues[fcol], psid, which_ru)) 1768 if (rf_reconDebug) 1769 printf("raid%d: promoted write to col %d\n", 1770 raidPtr->raidid, fcol); 1771 } 1772 /* install a callback descriptor to be invoked when recon completes on 1773 * this parity stripe. */ 1774 cb = rf_AllocCallbackDesc(); 1775 /* XXX the following is bogus.. These functions don't really match!! 1776 * GO */ 1777 cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc; 1778 cb->callbackArg.p = (void *) cbArg; 1779 cb->next = pssPtr->procWaitList; 1780 pssPtr->procWaitList = cb; 1781 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n", 1782 raidPtr->raidid, psid); 1783 1784 RF_UNLOCK_PSS_MUTEX(raidPtr, psid); 1785 return (1); 1786 } 1787 /* called upon the completion of a forced reconstruction read. 1788 * all we do is schedule the FORCEDREADONE event. 1789 * called at interrupt context in the kernel, so don't do anything illegal here. 1790 */ 1791 static void 1792 ForceReconReadDoneProc(void *arg, int status) 1793 { 1794 RF_ReconBuffer_t *rbuf = arg; 1795 1796 /* Detect that reconControl is no longer valid, and if that 1797 is the case, bail without calling rf_CauseReconEvent(). 1798 There won't be anyone listening for this event anyway */ 1799 1800 if (rbuf->raidPtr->reconControl == NULL) 1801 return; 1802 1803 if (status) { 1804 printf("raid%d: Forced recon read failed!\n", rbuf->raidPtr->raidid); 1805 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREAD_FAILED); 1806 return; 1807 } 1808 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE); 1809 } 1810 /* releases a block on the reconstruction of the indicated stripe */ 1811 int 1812 rf_UnblockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap) 1813 { 1814 RF_StripeNum_t stripeID = asmap->stripeID; 1815 RF_ReconParityStripeStatus_t *pssPtr; 1816 RF_ReconUnitNum_t which_ru; 1817 RF_StripeNum_t psid; 1818 RF_CallbackDesc_t *cb; 1819 1820 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru); 1821 RF_LOCK_PSS_MUTEX(raidPtr, psid); 1822 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_NONE, NULL); 1823 1824 /* When recon is forced, the pss desc can get deleted before we get 1825 * back to unblock recon. But, this can _only_ happen when recon is 1826 * forced. It would be good to put some kind of sanity check here, but 1827 * how to decide if recon was just forced or not? */ 1828 if (!pssPtr) { 1829 /* printf("Warning: no pss descriptor upon unblock on psid %ld 1830 * RU %d\n",psid,which_ru); */ 1831 #if (RF_DEBUG_RECON > 0) || (RF_DEBUG_PSS > 0) 1832 if (rf_reconDebug || rf_pssDebug) 1833 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru); 1834 #endif 1835 goto out; 1836 } 1837 pssPtr->blockCount--; 1838 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n", 1839 raidPtr->raidid, psid, pssPtr->blockCount); 1840 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */ 1841 1842 /* unblock recon before calling CauseReconEvent in case 1843 * CauseReconEvent causes us to try to issue a new read before 1844 * returning here. */ 1845 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; 1846 1847 1848 while (pssPtr->blockWaitList) { 1849 /* spin through the block-wait list and 1850 release all the waiters */ 1851 cb = pssPtr->blockWaitList; 1852 pssPtr->blockWaitList = cb->next; 1853 cb->next = NULL; 1854 rf_CauseReconEvent(raidPtr, cb->col, NULL, RF_REVENT_BLOCKCLEAR); 1855 rf_FreeCallbackDesc(cb); 1856 } 1857 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) { 1858 /* if no recon was requested while recon was blocked */ 1859 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr); 1860 } 1861 } 1862 out: 1863 RF_UNLOCK_PSS_MUTEX(raidPtr, psid); 1864 return (0); 1865 } 1866 1867 void 1868 rf_WakeupHeadSepCBWaiters(RF_Raid_t *raidPtr) 1869 { 1870 RF_CallbackDesc_t *p; 1871 1872 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex); 1873 while(raidPtr->reconControl->rb_lock) { 1874 ltsleep(&raidPtr->reconControl->rb_lock, PRIBIO, 1875 "rf_wakeuphscbw", 0, &raidPtr->reconControl->rb_mutex); 1876 } 1877 1878 raidPtr->reconControl->rb_lock = 1; 1879 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex); 1880 1881 while (raidPtr->reconControl->headSepCBList) { 1882 p = raidPtr->reconControl->headSepCBList; 1883 raidPtr->reconControl->headSepCBList = p->next; 1884 p->next = NULL; 1885 rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR); 1886 rf_FreeCallbackDesc(p); 1887 } 1888 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex); 1889 raidPtr->reconControl->rb_lock = 0; 1890 wakeup(&raidPtr->reconControl->rb_lock); 1891 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex); 1892 1893 } 1894 1895